USRE29088E - Surgical cutting instrument having electrically heated cutting edge - Google Patents

Surgical cutting instrument having electrically heated cutting edge Download PDF

Info

Publication number
USRE29088E
USRE29088E US05/625,845 US62584575A USRE29088E US RE29088 E USRE29088 E US RE29088E US 62584575 A US62584575 A US 62584575A US RE29088 E USRE29088 E US RE29088E
Authority
US
United States
Prior art keywords
cutting edge
tissue
electrically
iadd
iaddend
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US05/625,845
Inventor
Robert F. Shaw
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to US05/625,845 priority Critical patent/USRE29088E/en
Application granted granted Critical
Publication of USRE29088E publication Critical patent/USRE29088E/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/08Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by means of electrically-heated probes
    • A61B18/082Probes or electrodes therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/1402Probes for open surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00053Mechanical features of the instrument of device
    • A61B2018/00107Coatings on the energy applicator
    • A61B2018/00119Coatings on the energy applicator with metal oxide nitride

Definitions

  • the present invention provides a surgical cutting instrument having a cutting edge which is electrically heated to a constant high temperature for sterilizing the blade, cutting the tissue and cauterizing the surfaces of the incision, thereby allowing surgery to be more rapidly performed.
  • This is accomplished in accordance with the illustrated embodiment of this invention by providing electrically heated elements disposed to form the cutting edge of the blade and by providing a common constant voltage source which operates to maintain the cutting edge at a high substantially constant temperature during its use.
  • the hot cutting edge according to the present invention decreases the amount of tissue that is damaged and reduces the tendency of the instrument to stick to the heated tissue in the incision.
  • the material used in the electrically heated cutting edge has a positive temperature coefficient of resistance.
  • the temperature at which the cutting edge of the blade is maintained depends upon such factors as the nature of the tissue to be cut, the speed of cutting desired, the degree of tissue coagulation desired, and the non-adherence of the blade to the incised tissue and generally is maintained between 300°-1,000° Centigrade for typical incisions in typical human tissue.
  • the cutting edge includes many parallel current paths in a conductive material connected between the terminals of a constant-voltage power source. The operating temperature of the cutting edge is controlled by altering the voltage between the terminals.
  • the handle of the cutting instrument is thermally insulated from the blade to permit comfortable use of the instrument and the handle and blade with its electrically-heated cutting edge are detachable for easy replacement and interchangeability with blades having cutting edges of various shapes and sizes determined by the nature of the incision to be made and the tissue to be cut.
  • FIGS. 1 and 2 are pictorial views of embodiments of cutting instruments according to the present invention.
  • FIG. 3 is an end sectional view of the embodiment of FIG. 1 showing the heater element disposed as the cutting edge of the blade between electrodes on opposite sides thereof.
  • the surgical cutting instrument 9 including a thin ceramic card 63 in the desired shape of a surgical cutting blade which is detachable from the handle or holder 10.
  • An electrical heating element 61 is disposed in the region of, i.e. on or about, the cutting edge 62 of ceramic card 63 between electrodes 65 and 67 which are electrically connected to a constant voltage source through the cable 14 and the connectors 71 and 73.
  • the element 61 may be a continuous conductive film attached to the card 63, for example, using conventional vapor-deposition processes.
  • the material used for the element 61 may be tantalum nitride or other similar material having a positive temperature coefficient of resistance.
  • the resistance of such portion of the element decreases and draws increased current from the constant voltage source 75. This localizes the portion of the element 61 in which additional power is dissipated to the portion cooled on contact with tissue.
  • the temperature of such portions of the element may thus be maintained substantially constant as the cutting edge comes in contact with tissue being cut.
  • suitable materials having positive temperature coefficients of resistance for use as the element 61 include tungsten, nickel, platinum, chromium, alloys of such metals, and the like.
  • the heating element 61 is laterally disposed across the cutting edge 62 of the blade-like support card 63 to form a continuum of current-conducting paths along the length of the cutting edge.
  • These current-conducting paths of heating element 61 are all parallel-connected between the contact electrodes 65 and 67 and which are disposed on opposite sides of the support card 63.
  • These contact electrodes may be formed of a material such as platinum or tungsten, or the like, which makes good contact with the heating element material and which does not readily oxidize at elevated operating temperatures.
  • the heating element 61 may also be arranged to traverse the cutting edge 62 as discrete, closely-spaced elements 69 that are all parallel-connected between opposite-side electrodes 65 and 67 on the card 63, as shown in FIG. 2. Such discrete elements are connected on one side of the card 63 to the electrode 67 and on the other side of the card to electrode 65.
  • the heating elements 69 as shown in FIG. 2, may be sufficiently closely located along the cutting edge 62 in parallel connection between the opposite-side electrodes 65 and 67, as to perform substantially as a continuous conductive film, as shown in FIG. 1.
  • the electrodes 65 and 67 and heating elements 61 or 69 may be conductive material which is vapor-deposited in the desired interconnected patterns on a suitable electrically-insulating ceramic card 63.
  • the electrodes and heater elements may be etched to shape on a card 63 whose side surfaces and edges are coated with the selected conductive materials.
  • the electrodes 65, 67 are connected through conductors 14 and suitable electrical connectors 71, 73 mounted in the handle 10 to a source 75 of substantially constant voltage.
  • This source 75 may be a conventional, well-regulated power supply or other low-output impedance supply which is capable of delivering the total current required by all portions of heating element 61 (or by all discrete elements 69) while maintaining the voltage between electrodes 65 and 67 substantially constant. In this way, each portion of heating element 61 (or discrete element 69) which cools down when placed in contact with tissue during surgical use decreases in resistance between electrodes (for positive temperature coefficient of resistance).
  • the cooled regions draw correspondingly more current and dissipate more power in the cooled region, thereby tending to maintain the heating element all along the cutting edge at the preselected operating temperature.
  • the operating temperature of the cutting edge is thus selected by altering the value of the constant voltage supplied by source 75.
  • the heating element 61 (or the discrete elements 69 closely spaced about the edge) may have substantially uniform resistance per unit area.
  • the ceramic card 63 may be formed of high thermal conductivity material such as aluminum oxide, or the like, to assure more uniform operating temperature along the length of the cutting edge.

Abstract

A surgical cutting instrument includes an electrically heated cutting edge and a power supply system for maintaining the cutting edge at a constant high temperature for sterilizing the blade, cutting tissue, and cauterizing the incised tissue to reduce hemorrhage from the cut surfaces of the tissues (hemostasis). .Iadd.

Description

RELATED APPLICATION
This application is a reissue of Pat. 3,768,482 which matured from application 295,879 filed October 10, 1972 and which is a continuation of continuation-in-part of U.S. Pat. Application Ser. No. 63,645 filed August 13, 1970, now abandoned, which is a continuation of U.S. Pat. Application Ser. No. 681,737 filed Nov. 9, 1967, now abandoned. .Iaddend.
The control of bleeding during surgery accounts for a major portion of the total time involved in an operation. The bleeding that occurs when tissue is incised obscures the surgeon's vision, reduces his precision and often dictates slow and elaborate procedures in surgical operations. Each bleeding vessel must be grasped in pincer-like clamps to stop the flow of blood and the tissue and vessel within each clamp must then be tied with pieces of fine thread. These ligated masses of tissue die and decompose and thus tend to retard healing and promote infection.
SUMMARY OF THE INVENTION
Accordingly, the present invention provides a surgical cutting instrument having a cutting edge which is electrically heated to a constant high temperature for sterilizing the blade, cutting the tissue and cauterizing the surfaces of the incision, thereby allowing surgery to be more rapidly performed. This is accomplished in accordance with the illustrated embodiment of this invention by providing electrically heated elements disposed to form the cutting edge of the blade and by providing a common constant voltage source which operates to maintain the cutting edge at a high substantially constant temperature during its use. The hot cutting edge according to the present invention decreases the amount of tissue that is damaged and reduces the tendency of the instrument to stick to the heated tissue in the incision. In one embodiment, the material used in the electrically heated cutting edge has a positive temperature coefficient of resistance. The temperature at which the cutting edge of the blade is maintained depends upon such factors as the nature of the tissue to be cut, the speed of cutting desired, the degree of tissue coagulation desired, and the non-adherence of the blade to the incised tissue and generally is maintained between 300°-1,000° Centigrade for typical incisions in typical human tissue. The cutting edge includes many parallel current paths in a conductive material connected between the terminals of a constant-voltage power source. The operating temperature of the cutting edge is controlled by altering the voltage between the terminals.
The handle of the cutting instrument is thermally insulated from the blade to permit comfortable use of the instrument and the handle and blade with its electrically-heated cutting edge are detachable for easy replacement and interchangeability with blades having cutting edges of various shapes and sizes determined by the nature of the incision to be made and the tissue to be cut.
DESCRIPTiON OF THE DRAWINGS
FIGS. 1 and 2 are pictorial views of embodiments of cutting instruments according to the present invention; and
FIG. 3 is an end sectional view of the embodiment of FIG. 1 showing the heater element disposed as the cutting edge of the blade between electrodes on opposite sides thereof.
DESCRIPTION OF THE PREFERRED EMBODIMENT
Referring now to FIGS. 1 and 3 of the drawing, there is shown the surgical cutting instrument 9 including a thin ceramic card 63 in the desired shape of a surgical cutting blade which is detachable from the handle or holder 10. An electrical heating element 61 is disposed in the region of, i.e. on or about, the cutting edge 62 of ceramic card 63 between electrodes 65 and 67 which are electrically connected to a constant voltage source through the cable 14 and the connectors 71 and 73. The element 61 may be a continuous conductive film attached to the card 63, for example, using conventional vapor-deposition processes. The material used for the element 61 may be tantalum nitride or other similar material having a positive temperature coefficient of resistance. Thus, as a portion of the element cools when in contact with tissue, the resistance of such portion of the element decreases and draws increased current from the constant voltage source 75. This localizes the portion of the element 61 in which additional power is dissipated to the portion cooled on contact with tissue. The temperature of such portions of the element may thus be maintained substantially constant as the cutting edge comes in contact with tissue being cut. Other suitable materials having positive temperature coefficients of resistance for use as the element 61 include tungsten, nickel, platinum, chromium, alloys of such metals, and the like.
In the embodiment of the present invention illustrated in FIGS. 1 and 3, the heating element 61 is laterally disposed across the cutting edge 62 of the blade-like support card 63 to form a continuum of current-conducting paths along the length of the cutting edge. These current-conducting paths of heating element 61 are all parallel-connected between the contact electrodes 65 and 67 and which are disposed on opposite sides of the support card 63. These contact electrodes may be formed of a material such as platinum or tungsten, or the like, which makes good contact with the heating element material and which does not readily oxidize at elevated operating temperatures. Alternatively, the heating element 61 may also be arranged to traverse the cutting edge 62 as discrete, closely-spaced elements 69 that are all parallel-connected between opposite- side electrodes 65 and 67 on the card 63, as shown in FIG. 2. Such discrete elements are connected on one side of the card 63 to the electrode 67 and on the other side of the card to electrode 65. In the limit, the heating elements 69, as shown in FIG. 2, may be sufficiently closely located along the cutting edge 62 in parallel connection between the opposite- side electrodes 65 and 67, as to perform substantially as a continuous conductive film, as shown in FIG. 1.
In each of the illustrated embodiments, the electrodes 65 and 67 and heating elements 61 or 69 may be conductive material which is vapor-deposited in the desired interconnected patterns on a suitable electrically-insulating ceramic card 63. Alternatively, the electrodes and heater elements may be etched to shape on a card 63 whose side surfaces and edges are coated with the selected conductive materials.
In each of these embodiments, the electrodes 65, 67 are connected through conductors 14 and suitable electrical connectors 71, 73 mounted in the handle 10 to a source 75 of substantially constant voltage. This source 75 may be a conventional, well-regulated power supply or other low-output impedance supply which is capable of delivering the total current required by all portions of heating element 61 (or by all discrete elements 69) while maintaining the voltage between electrodes 65 and 67 substantially constant. In this way, each portion of heating element 61 (or discrete element 69) which cools down when placed in contact with tissue during surgical use decreases in resistance between electrodes (for positive temperature coefficient of resistance). With constant voltage applied to the electrodes, the cooled regions draw correspondingly more current and dissipate more power in the cooled region, thereby tending to maintain the heating element all along the cutting edge at the preselected operating temperature. The operating temperature of the cutting edge is thus selected by altering the value of the constant voltage supplied by source 75. To assure substantially uniform operating temperature over the length of the cutting edge 62, the heating element 61 (or the discrete elements 69 closely spaced about the edge) may have substantially uniform resistance per unit area. The ceramic card 63 may be formed of high thermal conductivity material such as aluminum oxide, or the like, to assure more uniform operating temperature along the length of the cutting edge.

Claims (4)

I claim:
1. A surgical instrument for cutting tissue with simultaneous hemostasis, the instrument comprising:
insulating support means having .Iadd.as a portion thereof .Iaddend.a tissue-cutting edge .[.and including thereon.]. .Iadd.region and including in physical contact with said support means .Iaddend.an electrically-heatable element of electrically-conductive material disposed on said edge region defining a cutting edge to contact tissue and to conduct electrical current along a plurality of parallel current paths for directly heating the cutting edge in response to electrical signal applied thereto; and
connection means on said instrument providing electrical connections to said element for supplying electrical signal thereto to be conducted along a plurality of parallel current paths.
2. A surgical instrument as in claim 1 wherein said electrically-heatable element includes a substantially continuous conductive layer disposed adjacent the cutting edge; and
said connection means includes a pair of electrodes which are disposed in spaced relationship on opposite sides of said support means and which are connected to said conductive layer on opposite sides of the cutting edge for conducting current along a plurality of parallel current paths oriented substantially laterally across the cutting edge.
3. A surgical instrument as in claim 1 wherein:
.[.said.]. electrodes are disposed on opposite sides of said support means; and
the electrically-heatable element includes a plurality of discrete electrically-heatable elements disposed to traverse the cutting edge .[.of said support means.]. and connected at the ends thereof to electrodes on opposite sides of said support means.
4. A surgical instrument as in claim 1 wherein:
said electrically-heatable element on said support means is formed of electrically-conductive material which has positive-temperature coefficient of resistance; and
said connection means includes a source of substantially constant voltage connected to .[.said pair of.]. electrodes for maintaining the voltage across the element substantially constant as portions of said element contact tissue. .Iadd.5. A hemostatic surgical cutting blade comprising:
a cutting blade having a tissue cutting edge;
an electrically heatable element of electrically conductive material thermally connected to and at least extending along the area of the cutting edge such that said edge may be maintained within a predetermined temperature range; and
two or more electrodes disposed in spaced relationship on the cutting blade and connected to said electrically conductive material for conducting current along a plurality of parallel current paths. .Iaddend..Iadd. 6. The hemostatic surgical cutting blade claimed in claim 5 wherein said electrodes are disposd in lateral spacial relationship on opposite sides of said cutting edge for conducting current along a plurality of parallel current paths oriented substantially laterally across the cutting edge. .Iaddend..Iadd. 7. The hemostatic surgical cutting blade claimed in claim 5 wherein said electrically heatable element is further defined as comprising a plurality of discrete electrically heatable elements. .Iaddend..Iadd. 8. The hemostatic surgical cutting blade claimed in claim 5 wherein said electrically heatable element is formed from a material having a positive-temperature coefficient. .Iaddend. .Iadd. 9. The method of cutting tissue with simultaneous hemostasis comprising the steps of:
contacting the tissue to be cut with a tissue cutting edge at an elevated temperature;
establishing the elevated temperature by conducting current along a plurality of substantially parallel current paths located along said tissue cutting edge; and
increasing power dissipation in regions of the edge which are selectively cooled upon contact with tissue for maintaining the temperature of the edge within a selected range. .Iaddend..Iadd. 10. A method of cutting tissue with simultaneous hemostasis comprising:
conducting current along a plurality of substantially parallel current paths oriented laterally across a supported tissue cutting edge;
dissipating power in regions of said tissue cutting edge responsive to selective cooling of said regions by reason of contact with tissue; thereby maintaining said tissue cutting edge at a selected temperature range. .Iaddend..Iadd. 11. A method of hemostatic surgery as in claim 9 wherein:
current is conducted along a plurality of substantially parallel current paths which are discrete. .Iaddend..Iadd. 12. A method of hemostatic surgery according to claim 9 wherein:
the resistance of the parallel current paths increases with increasing temperature thereof. .Iaddend..Iadd. 13. A method of hemostatic surgery according to claim 12 wherein:
a constant voltage is impressed upon the current paths. .Iaddend.
US05/625,845 1972-10-10 1975-10-28 Surgical cutting instrument having electrically heated cutting edge Expired - Lifetime USRE29088E (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US05/625,845 USRE29088E (en) 1972-10-10 1975-10-28 Surgical cutting instrument having electrically heated cutting edge

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US29587972A 1972-10-10 1972-10-10
US05/625,845 USRE29088E (en) 1972-10-10 1975-10-28 Surgical cutting instrument having electrically heated cutting edge

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
US6364570A Continuation 1967-11-09 1970-08-13
US29587972A Reissue 1972-10-10 1972-10-10

Publications (1)

Publication Number Publication Date
USRE29088E true USRE29088E (en) 1976-12-28

Family

ID=26969386

Family Applications (1)

Application Number Title Priority Date Filing Date
US05/625,845 Expired - Lifetime USRE29088E (en) 1972-10-10 1975-10-28 Surgical cutting instrument having electrically heated cutting edge

Country Status (1)

Country Link
US (1) USRE29088E (en)

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4314559A (en) 1979-12-12 1982-02-09 Corning Glass Works Nonstick conductive coating
US4333467A (en) 1979-12-12 1982-06-08 Corning Glass Works Nonstick conductive coating
US5373840A (en) * 1992-10-02 1994-12-20 Knighton; David R. Endoscope and method for vein removal
US5693052A (en) * 1995-09-01 1997-12-02 Megadyne Medical Products, Inc. Coated bipolar electrocautery
US5766166A (en) * 1995-03-07 1998-06-16 Enable Medical Corporation Bipolar Electrosurgical scissors
US5772576A (en) * 1995-12-11 1998-06-30 Embro Vascular L.L.C. Apparatus and method for vein removal
US5843080A (en) * 1996-10-16 1998-12-01 Megadyne Medical Products, Inc. Bipolar instrument with multi-coated electrodes
US6179837B1 (en) 1995-03-07 2001-01-30 Enable Medical Corporation Bipolar electrosurgical scissors
US6391029B1 (en) 1995-03-07 2002-05-21 Enable Medical Corporation Bipolar electrosurgical scissors
US6464701B1 (en) 1995-03-07 2002-10-15 Enable Medical Corporation Bipolar electrosurgical scissors
US6506200B1 (en) 1995-07-13 2003-01-14 Origin Medsystems, Inc. Tissue separation cannula and method
US20040030327A1 (en) * 2000-09-12 2004-02-12 Gady Golan Surgical cauterizing instrument particularly useful as a cauterizing scalpel
US20040111101A1 (en) * 1999-08-10 2004-06-10 Chin Albert K. Endoscopic subxiphoid surgical procedures
US7001404B1 (en) 1995-07-13 2006-02-21 Origin Medsystems, Inc. Tissue separation cannula and method
US7214180B2 (en) 1999-08-10 2007-05-08 Origin Medsystems, Inc. Method for cardiac restraint
US7288096B2 (en) 2003-01-17 2007-10-30 Origin Medsystems, Inc. Apparatus for placement of cardiac defibrillator and pacer
US7384423B1 (en) 1995-07-13 2008-06-10 Origin Medsystems, Inc. Tissue dissection method
US7526342B2 (en) 1999-08-10 2009-04-28 Maquet Cardiovascular Llc Apparatus for endoscopic cardiac mapping and lead placement
US7597698B2 (en) 1999-08-10 2009-10-06 Maquet Cardiovascular Llc Apparatus and method for endoscopic encirclement of pulmonary veins for epicardial ablation
US7867163B2 (en) 1998-06-22 2011-01-11 Maquet Cardiovascular Llc Instrument and method for remotely manipulating a tissue structure
US7938842B1 (en) 1998-08-12 2011-05-10 Maquet Cardiovascular Llc Tissue dissector apparatus
US7972265B1 (en) 1998-06-22 2011-07-05 Maquet Cardiovascular, Llc Device and method for remote vessel ligation
US8241210B2 (en) 1998-06-22 2012-08-14 Maquet Cardiovascular Llc Vessel retractor
US8292888B2 (en) 2001-04-20 2012-10-23 Tyco Healthcare Group Lp Bipolar or ultrasonic surgical device
US8292879B2 (en) 2009-04-17 2012-10-23 Domain Surgical, Inc. Method of treatment with adjustable ferromagnetic coated conductor thermal surgical tool
US8323278B2 (en) 2010-12-06 2012-12-04 Soulor Surgical, Inc. Apparatus for treating a portion of a reproductive system and related methods of use
US8617151B2 (en) 2009-04-17 2013-12-31 Domain Surgical, Inc. System and method of controlling power delivery to a surgical instrument
US8858544B2 (en) 2011-05-16 2014-10-14 Domain Surgical, Inc. Surgical instrument guide
US8915909B2 (en) 2011-04-08 2014-12-23 Domain Surgical, Inc. Impedance matching circuit
US8932279B2 (en) 2011-04-08 2015-01-13 Domain Surgical, Inc. System and method for cooling of a heated surgical instrument and/or surgical site and treating tissue
US9078655B2 (en) 2009-04-17 2015-07-14 Domain Surgical, Inc. Heated balloon catheter
US9107666B2 (en) 2009-04-17 2015-08-18 Domain Surgical, Inc. Thermal resecting loop
US9131977B2 (en) 2009-04-17 2015-09-15 Domain Surgical, Inc. Layered ferromagnetic coated conductor thermal surgical tool
US9265556B2 (en) 2009-04-17 2016-02-23 Domain Surgical, Inc. Thermally adjustable surgical tool, balloon catheters and sculpting of biologic materials
US9526558B2 (en) 2011-09-13 2016-12-27 Domain Surgical, Inc. Sealing and/or cutting instrument
US10299770B2 (en) 2006-06-01 2019-05-28 Maquet Cardiovascular Llc Endoscopic vessel harvesting system components
US10357306B2 (en) 2014-05-14 2019-07-23 Domain Surgical, Inc. Planar ferromagnetic coated surgical tip and method for making
US10507012B2 (en) 2000-11-17 2019-12-17 Maquet Cardiovascular Llc Vein harvesting system and method

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1735271A (en) * 1928-03-14 1929-11-12 Sutten H Groff Diathermy knife
US1794296A (en) * 1927-08-24 1931-02-24 Mortimer N Hyams Surgical instrument
US1930214A (en) * 1931-03-23 1933-10-10 Wappler Frederick Charles Surgical electrode
US2012938A (en) * 1934-11-27 1935-09-03 George H Beuoy Electrical caponizing knife
US2917614A (en) * 1957-09-18 1959-12-15 Vincent J Caliri Cauterizing device
US3234356A (en) * 1963-05-07 1966-02-08 Raymond F Babb Electrically heated medical implement
US3526750A (en) * 1967-06-02 1970-09-01 William J Siegel Thermal tool
US3584190A (en) * 1970-02-27 1971-06-08 Texas Instruments Inc Self-regulating heat applicator
US3648001A (en) * 1969-12-11 1972-03-07 Robert K Anderson Compact hand held switching device with insertable switching means
US3662755A (en) * 1968-08-08 1972-05-16 Leybold Heracus Gmbh & Co Kg Cryo-scalpel
US3826263A (en) * 1970-08-13 1974-07-30 R Shaw Electrically heated surgical cutting instrument

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1794296A (en) * 1927-08-24 1931-02-24 Mortimer N Hyams Surgical instrument
US1735271A (en) * 1928-03-14 1929-11-12 Sutten H Groff Diathermy knife
US1930214A (en) * 1931-03-23 1933-10-10 Wappler Frederick Charles Surgical electrode
US2012938A (en) * 1934-11-27 1935-09-03 George H Beuoy Electrical caponizing knife
US2917614A (en) * 1957-09-18 1959-12-15 Vincent J Caliri Cauterizing device
US3234356A (en) * 1963-05-07 1966-02-08 Raymond F Babb Electrically heated medical implement
US3526750A (en) * 1967-06-02 1970-09-01 William J Siegel Thermal tool
US3662755A (en) * 1968-08-08 1972-05-16 Leybold Heracus Gmbh & Co Kg Cryo-scalpel
US3648001A (en) * 1969-12-11 1972-03-07 Robert K Anderson Compact hand held switching device with insertable switching means
US3584190A (en) * 1970-02-27 1971-06-08 Texas Instruments Inc Self-regulating heat applicator
US3826263A (en) * 1970-08-13 1974-07-30 R Shaw Electrically heated surgical cutting instrument

Cited By (84)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4333467A (en) 1979-12-12 1982-06-08 Corning Glass Works Nonstick conductive coating
US4314559A (en) 1979-12-12 1982-02-09 Corning Glass Works Nonstick conductive coating
US5373840A (en) * 1992-10-02 1994-12-20 Knighton; David R. Endoscope and method for vein removal
USRE36043E (en) * 1992-10-02 1999-01-12 Embro Vascular, L.L.C. Endoscope and method for vein removal
US6350264B1 (en) 1995-03-07 2002-02-26 Enable Medical Corporation Bipolar electrosurgical scissors
US5766166A (en) * 1995-03-07 1998-06-16 Enable Medical Corporation Bipolar Electrosurgical scissors
US6464701B1 (en) 1995-03-07 2002-10-15 Enable Medical Corporation Bipolar electrosurgical scissors
US6391029B1 (en) 1995-03-07 2002-05-21 Enable Medical Corporation Bipolar electrosurgical scissors
US6179837B1 (en) 1995-03-07 2001-01-30 Enable Medical Corporation Bipolar electrosurgical scissors
US7001404B1 (en) 1995-07-13 2006-02-21 Origin Medsystems, Inc. Tissue separation cannula and method
US7384423B1 (en) 1995-07-13 2008-06-10 Origin Medsystems, Inc. Tissue dissection method
US6506200B1 (en) 1995-07-13 2003-01-14 Origin Medsystems, Inc. Tissue separation cannula and method
US7981133B2 (en) 1995-07-13 2011-07-19 Maquet Cardiovascular, Llc Tissue dissection method
US5693052A (en) * 1995-09-01 1997-12-02 Megadyne Medical Products, Inc. Coated bipolar electrocautery
US6428468B1 (en) 1995-12-11 2002-08-06 Cardiothoracic Systems, Inc. Apparatus and method for vein removal
US5772576A (en) * 1995-12-11 1998-06-30 Embro Vascular L.L.C. Apparatus and method for vein removal
US7066875B2 (en) 1995-12-11 2006-06-27 Cardio Thoracic Systems, Inc. Apparatus and method for vein removal
US5843080A (en) * 1996-10-16 1998-12-01 Megadyne Medical Products, Inc. Bipolar instrument with multi-coated electrodes
US8241210B2 (en) 1998-06-22 2012-08-14 Maquet Cardiovascular Llc Vessel retractor
US7972265B1 (en) 1998-06-22 2011-07-05 Maquet Cardiovascular, Llc Device and method for remote vessel ligation
US7867163B2 (en) 1998-06-22 2011-01-11 Maquet Cardiovascular Llc Instrument and method for remotely manipulating a tissue structure
US9730782B2 (en) 1998-08-12 2017-08-15 Maquet Cardiovascular Llc Vessel harvester
US8986335B2 (en) 1998-08-12 2015-03-24 Maquet Cardiovascular Llc Tissue dissector apparatus and method
US9700398B2 (en) 1998-08-12 2017-07-11 Maquet Cardiovascular Llc Vessel harvester
US7938842B1 (en) 1998-08-12 2011-05-10 Maquet Cardiovascular Llc Tissue dissector apparatus
US8460331B2 (en) 1998-08-12 2013-06-11 Maquet Cardiovascular, Llc Tissue dissector apparatus and method
US9662514B2 (en) 1999-06-02 2017-05-30 Covidien Lp Bipolar or ultrasonic surgical device
US7597698B2 (en) 1999-08-10 2009-10-06 Maquet Cardiovascular Llc Apparatus and method for endoscopic encirclement of pulmonary veins for epicardial ablation
US7264587B2 (en) 1999-08-10 2007-09-04 Origin Medsystems, Inc. Endoscopic subxiphoid surgical procedures
US7214180B2 (en) 1999-08-10 2007-05-08 Origin Medsystems, Inc. Method for cardiac restraint
US20040111101A1 (en) * 1999-08-10 2004-06-10 Chin Albert K. Endoscopic subxiphoid surgical procedures
US7398781B1 (en) 1999-08-10 2008-07-15 Maquet Cardiovascular, Llc Method for subxiphoid endoscopic access
US7526342B2 (en) 1999-08-10 2009-04-28 Maquet Cardiovascular Llc Apparatus for endoscopic cardiac mapping and lead placement
US20040030327A1 (en) * 2000-09-12 2004-02-12 Gady Golan Surgical cauterizing instrument particularly useful as a cauterizing scalpel
US10507012B2 (en) 2000-11-17 2019-12-17 Maquet Cardiovascular Llc Vein harvesting system and method
US8292888B2 (en) 2001-04-20 2012-10-23 Tyco Healthcare Group Lp Bipolar or ultrasonic surgical device
US8845665B2 (en) 2001-04-20 2014-09-30 Covidien Lp Bipolar or ultrasonic surgical device
US8523890B2 (en) 2001-04-20 2013-09-03 Covidien Lp Bipolar or ultrasonic surgical device
US7288096B2 (en) 2003-01-17 2007-10-30 Origin Medsystems, Inc. Apparatus for placement of cardiac defibrillator and pacer
US10299770B2 (en) 2006-06-01 2019-05-28 Maquet Cardiovascular Llc Endoscopic vessel harvesting system components
US11134835B2 (en) 2006-06-01 2021-10-05 Maquet Cardiovascular Llc Endoscopic vessel harvesting system components
US11141055B2 (en) 2006-06-01 2021-10-12 Maquet Cardiovascular Llc Endoscopic vessel harvesting system components
US8523850B2 (en) 2009-04-17 2013-09-03 Domain Surgical, Inc. Method for heating a surgical implement
US11123127B2 (en) 2009-04-17 2021-09-21 Domain Surgical, Inc. System and method of controlling power delivery to a surgical instrument
US8506561B2 (en) 2009-04-17 2013-08-13 Domain Surgical, Inc. Catheter with inductively heated regions
US8523852B2 (en) 2009-04-17 2013-09-03 Domain Surgical, Inc. Thermally adjustable surgical tool system
US9265553B2 (en) 2009-04-17 2016-02-23 Domain Surgical, Inc. Inductively heated multi-mode surgical tool
US8617151B2 (en) 2009-04-17 2013-12-31 Domain Surgical, Inc. System and method of controlling power delivery to a surgical instrument
US8491578B2 (en) 2009-04-17 2013-07-23 Domain Surgical, Inc. Inductively heated multi-mode bipolar surgical tool
US10639089B2 (en) 2009-04-17 2020-05-05 Domain Surgical, Inc. Thermal surgical tool
US9265555B2 (en) 2009-04-17 2016-02-23 Domain Surgical, Inc. Multi-mode surgical tool
US8372066B2 (en) 2009-04-17 2013-02-12 Domain Surgical, Inc. Inductively heated multi-mode surgical tool
US8430870B2 (en) 2009-04-17 2013-04-30 Domain Surgical, Inc. Inductively heated snare
US9078655B2 (en) 2009-04-17 2015-07-14 Domain Surgical, Inc. Heated balloon catheter
US9107666B2 (en) 2009-04-17 2015-08-18 Domain Surgical, Inc. Thermal resecting loop
US9131977B2 (en) 2009-04-17 2015-09-15 Domain Surgical, Inc. Layered ferromagnetic coated conductor thermal surgical tool
US10441342B2 (en) 2009-04-17 2019-10-15 Domain Surgical, Inc. Multi-mode surgical tool
US9220557B2 (en) 2009-04-17 2015-12-29 Domain Surgical, Inc. Thermal surgical tool
US9265556B2 (en) 2009-04-17 2016-02-23 Domain Surgical, Inc. Thermally adjustable surgical tool, balloon catheters and sculpting of biologic materials
US9265554B2 (en) 2009-04-17 2016-02-23 Domain Surgical, Inc. Thermally adjustable surgical system and method
US10405914B2 (en) 2009-04-17 2019-09-10 Domain Surgical, Inc. Thermally adjustable surgical system and method
US8292879B2 (en) 2009-04-17 2012-10-23 Domain Surgical, Inc. Method of treatment with adjustable ferromagnetic coated conductor thermal surgical tool
US9730749B2 (en) 2009-04-17 2017-08-15 Domain Surgical, Inc. Surgical scalpel with inductively heated regions
US8523851B2 (en) 2009-04-17 2013-09-03 Domain Surgical, Inc. Inductively heated multi-mode ultrasonic surgical tool
US9549774B2 (en) 2009-04-17 2017-01-24 Domain Surgical, Inc. System and method of controlling power delivery to a surgical instrument
US8425503B2 (en) 2009-04-17 2013-04-23 Domain Surgical, Inc. Adjustable ferromagnetic coated conductor thermal surgical tool
US8419724B2 (en) 2009-04-17 2013-04-16 Domain Surgical, Inc. Adjustable ferromagnetic coated conductor thermal surgical tool
US9320560B2 (en) 2009-04-17 2016-04-26 Domain Surgical, Inc. Method for treating tissue with a ferromagnetic thermal surgical tool
US8414569B2 (en) 2009-04-17 2013-04-09 Domain Surgical, Inc. Method of treatment with multi-mode surgical tool
US8377052B2 (en) 2009-04-17 2013-02-19 Domain Surgical, Inc. Surgical tool with inductively heated regions
US10149712B2 (en) 2009-04-17 2018-12-11 Domain Surgical, Inc. Layered ferromagnetic coated conductor thermal surgical tool
US10213247B2 (en) 2009-04-17 2019-02-26 Domain Surgical, Inc. Thermal resecting loop
US10034687B2 (en) 2010-12-06 2018-07-31 Surgigyn, Inc. Apparatus for treating a portion of a reproductive system and related methods of use
US11627990B2 (en) 2010-12-06 2023-04-18 Gyrus Acmi, Inc. Apparatus for treating a portion of a reproductive system and related methods of use
US8608738B2 (en) 2010-12-06 2013-12-17 Soulor Surgical, Inc. Apparatus for treating a portion of a reproductive system and related methods of use
US8323278B2 (en) 2010-12-06 2012-12-04 Soulor Surgical, Inc. Apparatus for treating a portion of a reproductive system and related methods of use
US8915909B2 (en) 2011-04-08 2014-12-23 Domain Surgical, Inc. Impedance matching circuit
US9149321B2 (en) 2011-04-08 2015-10-06 Domain Surgical, Inc. System and method for cooling of a heated surgical instrument and/or surgical site and treating tissue
US8932279B2 (en) 2011-04-08 2015-01-13 Domain Surgical, Inc. System and method for cooling of a heated surgical instrument and/or surgical site and treating tissue
US8858544B2 (en) 2011-05-16 2014-10-14 Domain Surgical, Inc. Surgical instrument guide
US9526558B2 (en) 2011-09-13 2016-12-27 Domain Surgical, Inc. Sealing and/or cutting instrument
US11266459B2 (en) 2011-09-13 2022-03-08 Domain Surgical, Inc. Sealing and/or cutting instrument
US10357306B2 (en) 2014-05-14 2019-07-23 Domain Surgical, Inc. Planar ferromagnetic coated surgical tip and method for making
US11701160B2 (en) 2014-05-14 2023-07-18 Domain Surgical, Inc. Planar ferromagnetic coated surgical tip and method for making

Similar Documents

Publication Publication Date Title
USRE29088E (en) Surgical cutting instrument having electrically heated cutting edge
US3768482A (en) Surgical cutting instrument having electrically heated cutting edge
US4185632A (en) Surgical instrument having self-regulated electrical skin-depth heating of its cutting edge and method of using the same
US4232676A (en) Surgical cutting instrument
US4089336A (en) Electrically heated surgical cutting instrument and method of using the same
US6726683B1 (en) Electrically heated surgical cutting instrument
US3826263A (en) Electrically heated surgical cutting instrument
US4198957A (en) Method of using an electrically heated surgical cutting instrument
US4091813A (en) Surgical instrument having self-regulated electrical proximity heating of its cutting edge and method of using the same
CA2110921C (en) Hemostatic bi-polar electrosurgical cutting apparatus and method
US4074718A (en) Electrosurgical instrument
JP4313205B2 (en) Surgical instruments
US4651734A (en) Electrosurgical device for both mechanical cutting and coagulation of bleeding
US7211084B2 (en) Surgical system
US20190192209A1 (en) Apparatus, System and Method for Excision of Soft Tissue
US5151102A (en) Blood vessel coagulation/stanching device
US6832998B2 (en) Surgical instrument
US4248231A (en) Surgical cutting instrument
US4476862A (en) Method of scleral marking
US4485810A (en) Surgical cutting blade
US5700261A (en) Bipolar Scissors
US5911719A (en) Resistively heating cutting and coagulating surgical instrument
US6174309B1 (en) Seal & cut electrosurgical instrument
US4364390A (en) Surgical instrument having self-regulating dielectric heating of its cutting edge and method of using the same
USRE30190E (en) Electrically heated surgical cutting instrument