WO2022267205A1 - 一种余热深度利用的超低NOx排放浸没燃烧式气化系统 - Google Patents

一种余热深度利用的超低NOx排放浸没燃烧式气化系统 Download PDF

Info

Publication number
WO2022267205A1
WO2022267205A1 PCT/CN2021/113040 CN2021113040W WO2022267205A1 WO 2022267205 A1 WO2022267205 A1 WO 2022267205A1 CN 2021113040 W CN2021113040 W CN 2021113040W WO 2022267205 A1 WO2022267205 A1 WO 2022267205A1
Authority
WO
WIPO (PCT)
Prior art keywords
water tank
ultra
gasification
submerged combustion
low nox
Prior art date
Application number
PCT/CN2021/113040
Other languages
English (en)
French (fr)
Inventor
郭宏新
刘丰
张贤福
刘世平
何松
田朝阳
董海涛
Original Assignee
江苏中圣高科技产业有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏中圣高科技产业有限公司 filed Critical 江苏中圣高科技产业有限公司
Priority to KR1020237008162A priority Critical patent/KR20230050390A/ko
Publication of WO2022267205A1 publication Critical patent/WO2022267205A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/46Details, e.g. noise reduction means
    • F23D14/66Preheating the combustion air or gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D47/00Separating dispersed particles from gases, air or vapours by liquid as separating agent
    • B01D47/02Separating dispersed particles from gases, air or vapours by liquid as separating agent by passing the gas or air or vapour over or through a liquid bath
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/54Nitrogen compounds
    • B01D53/56Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/02Special adaptations of indicating, measuring, or monitoring equipment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C7/00Methods or apparatus for discharging liquefied, solidified, or compressed gases from pressure vessels, not covered by another subclass
    • F17C7/02Discharging liquefied gases
    • F17C7/04Discharging liquefied gases with change of state, e.g. vaporisation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C9/00Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure
    • F17C9/02Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure with change of state, e.g. vaporisation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes
    • F23J15/003Arrangements of devices for treating smoke or fumes for supplying chemicals to fumes, e.g. using injection devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes
    • F23J15/02Arrangements of devices for treating smoke or fumes of purifiers, e.g. for removing noxious material
    • F23J15/04Arrangements of devices for treating smoke or fumes of purifiers, e.g. for removing noxious material using washing fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes
    • F23J15/06Arrangements of devices for treating smoke or fumes of coolers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D21/0001Recuperative heat exchangers
    • F28D21/0003Recuperative heat exchangers the heat being recuperated from exhaust gases
    • F28D21/001Recuperative heat exchangers the heat being recuperated from exhaust gases for thermal power plants or industrial processes
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • G05B13/048Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators using a predictor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/033Methane, e.g. natural gas, CNG, LNG, GNL, GNC, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/05Regasification
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/30Technologies for a more efficient combustion or heat usage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working

Definitions

  • the invention relates to a liquefied natural gas gasification technology, in particular to a gasifier technology, in particular to an ultra-low NOx emission submerged combustion gasification system for deep utilization of waste heat.
  • the submerged combustion gasifier is an important form of liquefied natural gas gasifier. It uses the high-temperature flue gas generated by gas combustion to heat water, and then uses hot water to gasify LNG in the gasification tube bundle into natural gas (NG). The natural gas is then exported from the gasifier.
  • Nitrogen oxides are one of the main pollutants in the atmosphere, causing serious harm to human health, environmental ecology, and social production activities.
  • the flue gas produced by industrial activities needs to be purified before being allowed to be discharged.
  • countries around the world are restricting NOx emissions more and more stringently.
  • Patent application number CN201520739797.7 High-efficiency submerged combustion gasifier
  • X liquefied natural gas submerged combustion gasifier
  • application number CN201510290223.0 an improved submerged combustion LNG gasifier
  • X submerged combustion gasifier and its monitoring system
  • application number CN201310627874.5 control system and control method of LNG submerged combustion gasifier” etc. Requirements are made for submerged combustion burners, and no denitrification treatment of combustion flue gas is mentioned.
  • Application No. CN202020542738.1 Low NOx Emission Immersed Combustion Gasifier
  • the purpose of the present invention is to design an ultra-low NOx emission submerged combustion type gasification system with deep utilization of waste heat, aiming at the problem that a large amount of nitrogen oxides will be produced in the current liquefied natural gas gasification process and pollute the environment.
  • the waste heat recovery device not only solves the problem of denitrification of flue gas, but also deeply utilizes the waste heat of flue gas after denitrification, achieving the purpose of energy saving and environmental protection.
  • An ultra-low NOx emission submerged combustion gasification system for deep utilization of waste heat characterized in that it includes a main fan 1, a main burner 2, a flue gas distributor 3, a water tank 4, a gasification tube bundle 5, a chimney 7, Auxiliary burner 8, gas mixer 9, denitration reactor 10, heat exchanger 11, induced draft fan 12 and scrubber 13; main fan 1 is connected with main burner 2 and auxiliary burner 8, and main burner 2 is connected with smoke
  • the gas distributor 3 is connected; the main burner 2, the gasification tube bundle 5, and the auxiliary burner 8 are placed in the water tank 4; the smoke distributor 3 is placed at the bottom of the water tank 4; the chimney 7 is connected to the top of the water tank 4; the chimney 7 and the auxiliary combustion
  • the outlet of the device 8 is connected with the gas mixer 9; the gas mixer 9, the denitration reactor 10, the heat exchanger 11, the induced draft fan 12 and the scrubber 13 are connected in sequence, and before the gas mixer 9 or the denitration reactor 10, a Reductant system.
  • the moisture from the water tank 4 enters the heat exchanger 11 in two ways, and the gas scrubber 13 in the other way, and returns to the water tank 4 after heat exchange and gas washing.
  • Liquefied natural gas enters from the inlet of the gasification tube bundle 5, and is gasified through the gasification tube bundle 5 to become natural gas NG, and then flows out from the gasification tube bundle 5 outlet.
  • the gasification tube bundle 5 adopts threaded tubes, internal wave and external threaded tubes, and the material is stainless steel or titanium alloy steel.
  • the bottom of the chimney 7 is equipped with a demister 6 .
  • a demister 14 is installed at the outlet of the scrubber 13.
  • the auxiliary burner 8 can also be placed outside the water tank 4, and a water jacket 15 is arranged outside the auxiliary burner 8, and the inlet and outlet of the water jacket 15 are all connected to the water tank 4.
  • the reducing agent system includes a storage system, a conveying system, and an injection system.
  • the reducing agent is controlled by a dual-fuzzy control, predictive feedforward control, and a fitting optimization algorithm integrated control system, and the amount of reducing agent input is always matched with the operating conditions of the equipment. , to achieve the dual control goals of NO X and ammonia slip.
  • the denitration reducing agent is injected into the medium-temperature flue gas before the gas mixer 9 or the denitration reactor 10, and then enters the denitration reactor 10 together with the flue gas, and reacts under the action of the catalyst to remove nitrogen oxides.
  • a reducing agent system is set up, including a storage system, a conveying system, and an injection system.
  • the reducing agent can be controlled by double-fuzzy control, predictive feedforward control, and an integrated control system with a fitting optimization algorithm, and always maintains
  • the amount of reducing agent input matches the operating conditions of the equipment to achieve the dual control goals of NO X and ammonia escape.
  • Combustible gas and air are burned in the main burner, and the high-temperature flue gas produced enters the water in the tank through the flue gas distributor, directly heating the water, and the flue gas is discharged from the chimney after being cooled to normal temperature by the water; liquefied natural gas (LNG) passes through the device
  • LNG liquefied natural gas
  • the gasification tube bundle in the water absorbs the heat in the water and is gasified into natural gas (NG) and sent to the pipe network;
  • the high-temperature flue gas produced by the auxiliary burner and the low-temperature flue gas from the chimney are mixed in the gas mixer to form medium-temperature flue gas.
  • the medium-temperature flue gas reacts in the denitrification reactor to remove nitrogen oxides in the flue gas.
  • the medium-temperature flue gas exchanges heat with water from the water tank in the heat exchanger and initially reduces the temperature, and then enters the scrubber.
  • the gas tower further lowers the temperature to normal temperature and discharges from the top of the tower.
  • the hot water in the heat exchanger and scrubber returns to the water tank, and the heat is transferred to the liquefied natural gas through the gasification tube bundle.
  • the invention not only solves the problem of flue gas denitrification by setting a flue gas denitrification device and a waste heat recovery device, but also deeply utilizes the waste heat of the flue gas after denitrification, thereby achieving the purpose of energy saving and environmental protection.
  • Fig. 1 is one of structural representations of the present invention.
  • Fig. 2 is the second structural diagram of the present invention.
  • An ultra-low NOx emission submerged combustion gasification system for deep utilization of waste heat. It is characterized in that it includes main fan 1, main burner 2, flue gas distributor 3, water tank 4, gasification tube bundle 5, 1# demister 6, chimney 7, auxiliary burner 8, gas mixer 9, denitrification reaction Device 10, heat exchanger 11, induced draft fan 12, scrubber 13, 2# demister 14.
  • the gasification tube bundle 5 can use threaded tubes, internal wave and external threaded tubes, and the material is stainless steel or titanium alloy steel, etc.; the heat exchanger 11 can use special-type tube bundles such as finned tubes.
  • the main fan 1 is connected with the main burner 2 and the auxiliary burner 8, the auxiliary burner 8 is installed in the water tank 4, the main burner 2 is connected with the flue gas distributor 3; the main burner 2, the gasification tube bundle 5, the auxiliary burner 8 is placed in the water tank 4; the flue gas distributor 3 is placed at the bottom of the water tank 4; the chimney 7 is connected to the top of the water tank 4; the outlet of the chimney 7 and the auxiliary burner 8 is connected to the gas mixer 9; the gas mixer 9, the denitrification reactor 10.
  • the heat exchanger 11, the induced draft fan 12 and the scrubber 13 are connected in sequence, and a reducing agent system is installed before the gas mixer 9 or the denitration reactor 10.
  • Liquefied natural gas enters from the inlet of the gasification tube bundle 5, and flows out from the outlet of the gasification tube bundle 5 after being gasified by the gasification tube bundle 5 to become natural gas NG.
  • the bottom of chimney 7 is equipped with demister 6.
  • the outlet of scrubber 13 is equipped with demister 14.
  • the combustible gas and air are mixed and burned in the main burner to produce high-temperature flue gas that enters the flue gas distributor 3.
  • the flue gas distributor 3 is a box-shaped or tubular element with small holes evenly opened. Through these small holes, the high-temperature flue gas The flue gas evenly enters the water tank 4, and in the water tank 4, the high-temperature flue gas directly contacts with the water to heat the water into hot water. After the flue gas exits the water tank 4, it passes through the 1# demister 6 and enters the chimney 7.
  • the liquefied natural gas enters the gasification tube bundle 5 through the external pipeline, absorbs the heat of the hot water in the water tank 4 through heat exchange through the partition wall, and is vaporized to become natural gas, and then sent to the pipeline network or users.
  • the auxiliary burner 8 is placed in the water tank 4, and a part of combustible gas and air are burned therein to generate high-temperature flue gas. Since the outer shell of the burner is cooled by the water in the water tank, the inside of the burner does not need to be lined with refractory materials.
  • the gas mixer 9 can be a buffer tank, a static mixer or a section of flue, or other measures or devices that can achieve uniform mixing of the airflow.
  • the denitration reducing agent is injected into the medium-temperature flue gas before the gas mixer 9 or the denitration reactor 10, and then enters the denitration reactor 10 together with the flue gas, and reacts under the action of the catalyst to remove nitrogen oxides.
  • the reductant system (which can be purchased directly from the market or made by using existing technology) provided before the gas mixer 9 or the denitration reactor 10 includes a storage system, a delivery system, and an injection system.
  • the injection system adopts the direct injection technology of the spray gun, so that the reducing agent is more evenly distributed in the flue and the denitration reactor 10 .
  • a rectification grid can also be installed behind the reducing agent spray gun, and computational fluid dynamics (CFD) is used to conduct numerical simulations on the flue layout of the denitration reactor 10 and the denitration system, optimize the design of the denitration reactor 10, and confirm the reduction
  • CFD computational fluid dynamics
  • the location and quantity of agent injection points can be precisely controlled to achieve the purpose of precisely controlling the injection amount of reducing agent, effectively reducing ammonia escape, and making the distribution of flue gas and reducing agent on the surface of the catalyst more uniform.
  • the amount of flue gas at the inlet of the denitrification reactor 10 and the required reducing agent can be controlled by the integrated control system of double fuzzy control, predictive feedforward control and fitting optimization algorithm.
  • the system predicts the equipment load and the change trend of NOx concentration at the inlet of the reaction zone in advance , collect outlet NO X and ammonia escape concentration in real time, find out the optimal target value corresponding to different working conditions, improve the closed-loop stability and anti-interference ability of the denitrification system, and always keep the reducing agent input matching the equipment operating conditions, to achieve NOX and ammonia escape dual control goals.
  • the reducing agent is controlled by a metering pump, and the control parameters of the system are optimized to keep the ammonia-to-nitrogen ratio slightly less than 1 to ensure that the denitrification reaction is in the high-efficiency working range and prevent ammonia from escaping.
  • the medium-temperature flue gas from which nitrogen oxides have been removed then enters the heat exchanger 11, and after initially lowering the heat exchange temperature with the water from the water tank, it enters the induced draft fan 12, pressurized by the induced draft fan 12, and then enters the scrubber 13.
  • the temperature of the flue gas is further reduced to below 30°C, and the mist is removed by the demister 14 before being discharged.
  • the water in the heat exchanger 11 and the scrubber 13 comes from the water tank, undergoes heat exchange and gas scrubbing respectively, and returns to the water tank 4 after absorbing the heat in the flue gas.
  • the heat is used to vaporize the LNG in the tube bundle.
  • the heat in the flue gas is completely recovered through two-stage heat exchange between the heat exchanger and the scrubber. As the last stage of heat exchange, the scrubber can reduce the heat exchange area of the heat exchanger 11, recover waste heat deeply, and prevent ammonia from escaping.
  • Embodiment 1 The difference between this embodiment and Embodiment 1 is that the auxiliary burner 8 is installed outside the water tank 4. At this time, a water jacket 15 should be provided outside the auxiliary burner 8, and the water from the water tank 4 is circulated in the water jacket 15. , to keep the auxiliary burner 8 cool, so as to avoid setting the refractory material inside the burner 8 .
  • the rest are all the same as in Example 1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Analytical Chemistry (AREA)
  • Evolutionary Computation (AREA)
  • Software Systems (AREA)
  • Medical Informatics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Thermal Sciences (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Artificial Intelligence (AREA)
  • Treating Waste Gases (AREA)
  • Chimneys And Flues (AREA)

Abstract

一种余热深度利用的超低NOx排放浸没燃烧式气化系统, 包括主风机(1)、主燃烧器(2)、烟气分布器(3)、水槽(4)、气化管束(5)等,主风机(1)与主燃烧器(2)、辅助燃烧器(8)相连,主燃烧器(2)与烟气分布器(3)相连;主燃烧器(2)、气化管束(5)、辅助燃烧器(8)置于水槽(4)中;烟气分布器(3)置于水槽(4)底部;烟囱(7)与水槽(4)顶部相连;烟囱(7)及辅助燃烧器(8)的出口与混气器(9)相连;混气器(9)、脱硝反应器(10)、换热器(11)、引风机(12)及洗气塔(13)依次相连,在混气器(9)或者脱硝反应器(10)之前设置有还原剂系统。氮氧化物排放低,节能环保。

Description

一种余热深度利用的超低NOx排放浸没燃烧式气化系统 技术领域
本发明涉及一种液化天然气气化技术,尤其是一种气化器技术,具体地说是一种余热深度利用的超低NOx排放浸没燃烧式气化系统。
背景技术
近年来,随着天然气能源需求量的增加,液化天然气(LNG)气化的需求量也随之增加。浸没燃烧式气化器是液化天然气气化器的一种重要形式,其利用燃气燃烧产生的高温烟气对水进行加热,再利用热水将气化管束内的LNG气化成天然气(NG),然后将天然气从气化器中输出。
氮氧化物(NOx)是大气的主要污染物之一,对人类身体健康、环境生态以及社会生产活动造成严重危害,工业活动产生的烟气需要进行污染物净化处理之后才被允许排放。目前,世界各国对NOx的排放限制越来越严格,我国2012年出台的《火电厂大气污染物排放标准》规定新建厂区NOx排放限值为100mg/m 3;我国《煤电节能减排升级与改造行动计划(2014—2020年)》提出新建燃煤发电机组大气污染物排放浓度基本达到燃气轮机组排放限值,即在基准氧含量6%条件下,NOx排放浓度分别≤50mg/m 3。2015年后颁布的地方标准尤其是锅炉行业特别严格,上海、天津允许NO X排放限值分别为50mg/m 3、80mg/m 3,北京、河北要求最严,NO X排放限值为30mg/m 3。如此严格的排放标准,仅靠预处理或者改进燃烧过程很难满足要求,因此,对烟气进行后处理就显得尤为重要。
专利申请号CN201520739797.7《高效浸没燃烧式气化器》、申请号CN201420646916.X《液化天然气浸没燃烧气化器》、申请号CN201510290223.0《一种改进的浸没燃烧式LNG气化器》、申请号CN201910363316.X《浸没燃烧式气化器及其监控系统》、申请号CN201310627874.5《LNG浸没燃烧气化器的控制系统及控制方法》等是从结构布置、燃烧组织、系统控制等方面对浸没燃烧式燃烧器进行了要求,没有提及燃烧烟气的脱硝处理。申请号CN202020542738.1《低氮氧化物排放浸没燃烧式气化器》虽然对烟气进行了后处理,但存在控制不灵敏、脱硝后烟气余热没有深度利用的问题。
发明内容
本发明的目的针对目前的液化天然气气化过程中会产生大量氮氧化物而污染环境的问题,设计一种余热深度利用的超低NOx排放浸没燃烧式气化系统,通过设置烟气脱硝装置及余热回收装置,既解决了烟气的脱硝问题,又对脱硝后的烟气余热进行了深度利用,达 到了既节能又环保的目的。
本发明的技术方案是:
1.一种余热深度利用的超低NOx排放浸没燃烧式气化系统,其特征在于,包括主风机1、主燃烧器2、烟气分布器3、水槽4、气化管束5、烟囱7、辅助燃烧器8、混气器9、脱硝反应器10、换热器11、引风机12和洗气塔13;主风机1与主燃烧器2、辅助燃烧器8相连,主燃烧器2与烟气分布器3相连;主燃烧器2、气化管束5、辅助燃烧器8置于水槽4中;烟气分布器3置于水槽4底部;烟囱7与水槽4顶部相连;烟囱7及辅助燃烧器8的出口与混气器9相连;混气器9、脱硝反应器10、换热器11、引风机12及洗气塔13依次相连,在混气器9或者脱硝反应器10之前设置有还原剂系统。
2.来自水槽4中的水分两路,一路进入换热器11,一路进入洗气塔13,经换热、洗气后返回水槽4。
3.液化天然气(LNG)从气化管束5的入口进入,通过气化管束5吸热气化变成天然气NG后从气化管束5出口流出。
4.所述气化管束5采用螺纹管、内波外螺纹管,材料选用不锈钢或者钛合金钢。
5.烟囱7的底部装有除沫器6。
6.洗气塔13出口装有除沫器14。
7.作为备选方案,辅助燃烧器8也可置于水槽4的外部,在辅助燃烧器8的外部设置水夹套15,水夹套15的进出口均与水槽4相连。
8.还原剂系统包括储存系统、输送系统、喷射系统,还原剂采用双模糊控制、预测前馈控制及拟合优选算法集成控制系统进行控制,始终保持还原剂投入量与设备运行工况相匹配,实现NO X和氨逃逸双控目标。
脱硝还原剂在混气器9或者脱硝反应器10之前注入中温烟气中,然后与烟气一起进入脱硝反应器10,在催化剂的作用下发生反应,脱除氮氧化物。混气器9或者脱硝反应器10之前设置还原剂系统,包括储存系统、输送系统、喷射系统,还原剂可采用双模糊控制、预测前馈控制及拟合优选算法集成控制系统进行控制,始终保持还原剂投入量与设备运行工况相匹配,实现NO X和氨逃逸双控目标。
可燃气体和空气在主燃烧器内燃烧,产生的高温烟气通过烟气分布器进入水槽的水中,直接将水加热,烟气被水冷却至常温后从烟囱排出;液化天然气(LNG)通过设在水中的气化管束吸取水中的热量而气化成天然气(NG)输送到管网;辅助燃烧器燃烧产生的高温烟气与烟囱里出来的低温烟气在混气器内混合形成中温烟气,中温烟气在脱硝反应器内发 生反应脱除烟气中的氮氧化物,脱除氮氧化物后的中温烟气在换热器中与来自水槽中的水换热初步降低温度后,进入洗气塔进一步将温度降至常温后从塔顶排放,换热器和洗气塔中的热水返回至水槽,通过气化管束将热量传递给液化天然气。
本发明的有益效果是:
本发明通过设置烟气脱硝装置及余热回收装置,既解决了烟气的脱硝问题,又对脱硝后的烟气余热进行了深度利用,达到了既节能又环保的目的。
附图说明
图1是本发明的结构示意图之一。
图2是本发明的结构示意图之二。
图中:1-主风机、2-主燃烧器、3-烟气分布器、4-水槽、5-气化管束、6-1#除沫器、7-烟囱、8-辅助燃烧器、9-混气器、10-脱硝反应器、11-换热器、12-引风机、13-洗气塔、14-2#除沫器。
具体实施方式
下面结构附图和实施例对本发明作进一步的说明。
实施例一。
如图1所示。
9.一种余热深度利用的超低NOx排放浸没燃烧式气化系统。其特征在于,包括主风机1、主燃烧器2、烟气分布器3、水槽4、气化管束5、1#除沫器6、烟囱7、辅助燃烧器8、混气器9、脱硝反应器10、换热器11、引风机12、洗气塔13、2#除沫器14。气化管束5可采用螺纹管、内波外螺纹管,材料选用不锈钢或者钛合金钢等;换热器11可采用翅片管等特型管束。主风机1与主燃烧器2、辅助燃烧器8相连,辅助燃烧器8安装在水槽4中,主燃烧器2与烟气分布器3相连;主燃烧器2、气化管束5、辅助燃烧器8置于水槽4中;烟气分布器3置于水槽4底部;烟囱7与水槽4顶部相连;烟囱7及辅助燃烧器8的出口与混气器9相连;混气器9、脱硝反应器10、换热器11、引风机12及洗气塔13依次相连,在混气器9或者脱硝反应器10之前设置有还原剂系统。来自水槽4中的水分两路,一路进入换热器11,一路进入洗气塔13,经换热、洗气后返回水槽4。液化天然气(LNG)从气化管束5的入口进入,通过气化管束5吸热气化变成天然气NG后从气化管束5出口流出。烟囱7的底部装有除沫器6。洗气塔13出口装有除沫器14。
可燃气体和空气混合,在主燃烧器内燃烧,产生高温烟气进入烟气分布器3中,烟气分布器3为均匀开小孔的箱型或管型元件,通过这些小孔,高温烟气均匀进入水槽4中, 在水槽4中高温烟气与水直接接触,将水加热成热水。烟气出水槽4后,通过1#除沫器6,进入烟囱7。液化天然气经外部管道进入气化管束5中,通过间壁换热,吸收水槽4中热水的热量气化,变成天然气,然后送出至管网或用户。辅助燃烧器8置于水槽4中,一部分可燃气体和空气在其中燃烧,产生高温烟气,由于燃烧器的外壳得到水槽中水的冷却,因此燃烧器内部不用衬耐火材料。
高温烟气出辅助燃烧器8后,在混气器9中与来自烟囱7的低温烟气混合,形成中温烟气。混气器9可以是一个缓冲罐、静态混合器或者一段烟道,或者其他能达到气流混合均匀的措施或装置。脱硝还原剂在混气器9或者脱硝反应器10之前注入中温烟气中,然后与烟气一起进入脱硝反应器10中,在催化剂的作用下发生反应,脱除氮氧化物。混气器9或者脱硝反应器10之前设置的还原剂系统(可直接从市场购置或利用现有技术自制)包括储存系统、输送系统、喷射系统。喷射系统采用喷枪直喷技术,使得还原剂在烟道以及脱硝反应器10内分布更加均匀。作为优先方案,还原剂喷枪后还可设置整流格栅,采用计算流体动力学(CFD)对脱硝反应器10和脱硝系统的烟道布置进行数值模拟,优化脱硝反应器10的设计,并确认还原剂喷射点位置及数量,以达到精准控制还原剂喷射量的目的,有效减少氨逃逸,使催化剂表层的烟气和还原剂的分布更为均匀。
脱硝反应器10入口烟气量与所需的还原剂可采用双模糊控制、预测前馈控制及拟合优选算法集成控制系统进行控制,系统提前预判设备负荷和反应区入口NO X浓度变化趋势,实时采集出口NO X和氨逃逸浓度,寻找出不同工况对应的最优目标值,提高了脱硝系统闭环稳定性和抗干扰能力,始终保持还原剂投入量与设备运行工况相匹配,实现NOX和氨逃逸双控目标。还原剂通过计量泵控制,对系统进行控制参数优化,控制氨氮比始终略小于1,确保脱硝反应处于高效工作范围,防止氨逃逸。
脱除氮氧化物的中温烟气随后进入换热器11,与来自水槽的水换热温度初步降低后,进入引风机12,通过引风机12加压后进入洗气塔13中,在洗气塔13中,与喷淋而下的水直接接触换热,烟气温度进一步降低至30℃以下,经除沫器14除去雾沫后排出。换热器11和洗气塔13中的水均来自水槽,分别经过换热、洗气,吸收烟气中的热量后返回水槽4,在水槽4中这些热量用来气化管束内的LNG。烟气中的热量通过换热器和洗气塔两级换热,得到彻底回收。洗气塔作为最后一级换热,可以起到降低换热器11的换热面积、深度回收余热、防止氨逃逸的目的。
实施例二。
如图2所示。
本实施例与实施例一的区别在于辅助燃烧器8安装在水槽4外部的,此时应在辅助燃烧器8外部设置水夹套15,水夹套15中循环流动着来自水槽4中的水,保持对辅助燃烧器8的冷却,从而避免在燃烧器8内部设置耐火材料。其余均与实施例一相同。
本发明未涉及部分与现有技术相同或可采用现有技术加以实现。

Claims (8)

  1. 一种余热深度利用的超低NOx排放浸没燃烧式气化系统,其特征在于,包括主风机(1)、主燃烧器(2)、烟气分布器(3)、水槽(4)、气化管束(5)、烟囱(7)、辅助燃烧器(8)、混气器(9)、脱硝反应器(10)、换热器(11)、引风机(12)和洗气塔(13);主风机(1)与主燃烧器(2)、辅助燃烧器(8)相连,主燃烧器(2)与烟气分布器(3)相连;主燃烧器(2)、气化管束(5)、辅助燃烧器(8)置于水槽(4)中;烟气分布器(3)置于水槽(4)底部;烟囱(7)与水槽(4)顶部相连;烟囱(7)及辅助燃烧器(8)的出口与混气器(9)相连;混气器(9)、脱硝反应器(10)、换热器(11)、引风机(12)及洗气塔(13)依次相连,在混气器(9)或者脱硝反应器(10)之前设置有还原剂系统。
  2. 根据权利要求1所述的余热深度利用的超低NOx排放浸没燃烧式气化系统,其特征在于来自水槽(4)中的水分两路,一路进入换热器(11),一路进入洗气塔(13),经换热、洗气后返回水槽(4)。
  3. 根据权利要求1所述的余热深度利用的超低NOx排放浸没燃烧式气化系统,其特征在于液化天然气(LNG)从气化管束(5)的入口进入,通过气化管束(5)吸热气化变成天然气(NG)后从气化管束(5)出口流出。
  4. 根据权利要求1所述的余热深度利用的超低NOx排放浸没燃烧式气化系统,其特征在于所述气化管束(5)采用螺纹管、内波外螺纹管,材料选用不锈钢或者钛合金钢。
  5. 根据权利要求1所述的余热深度利用的超低NOx排放浸没燃烧式气化系统,其特征在于烟囱(7)的底部装有除沫器(6)。
  6. 根据权利要求1所述的余热深度利用的超低NOx排放浸没燃烧式气化系统,其特征在于洗气塔((13)出口装有除沫器(14)。
  7. 根据权利要求1所述的余热深度利用的超低NOx排放浸没燃烧式气化系统,其特征在于还原剂系统包括储存系统、输送系统、喷射系统,还原剂采用双模糊控制、预测前馈控制及拟合优选算法集成控制系统进行控制,始终保持还原剂投入量与设备运行工况相匹配,实现NO X和氨逃逸双控目标。
  8. 根据权利要求1所述的余热深度利用的超低NOx排放浸没燃烧式气化系统,其特征在于辅助燃烧器(8)安装在水槽(4)中或安装在水槽(4)的外部,安装在水槽(4)的外部时,辅助燃烧器(8)外安装有水套(15),水套(15)的进、出水口与水槽(4)相连通。
PCT/CN2021/113040 2021-06-22 2021-08-17 一种余热深度利用的超低NOx排放浸没燃烧式气化系统 WO2022267205A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020237008162A KR20230050390A (ko) 2021-06-22 2021-08-17 폐열을 심층 활용한 초저 NOx 배출 액중연소식 가스화 시스템

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110688997.4 2021-06-22
CN202110688997.4A CN113531534A (zh) 2021-06-22 2021-06-22 一种余热深度利用的超低NOx排放浸没燃烧式气化系统

Publications (1)

Publication Number Publication Date
WO2022267205A1 true WO2022267205A1 (zh) 2022-12-29

Family

ID=78125483

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/113040 WO2022267205A1 (zh) 2021-06-22 2021-08-17 一种余热深度利用的超低NOx排放浸没燃烧式气化系统

Country Status (3)

Country Link
KR (1) KR20230050390A (zh)
CN (1) CN113531534A (zh)
WO (1) WO2022267205A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014173689A (ja) * 2013-03-12 2014-09-22 Sumitomo Precision Prod Co Ltd 水中燃焼式気化装置
CN105156882A (zh) * 2015-09-22 2015-12-16 江苏中圣压力容器装备制造有限公司 节能型浸没燃烧式气化器
KR101865679B1 (ko) * 2017-08-03 2018-06-12 주식회사 제이케이인 열효율이 개선된 이동형 액화천연가스 기화장치
CN210196987U (zh) * 2019-04-16 2020-03-27 河南查瑞特种设备有限公司 一种新型高压液氮气化装置
CN111306564A (zh) * 2020-03-18 2020-06-19 南京金瀚环保科技有限公司 一种烧结烟气脱硝直燃式加热装置及方法
CN111397398A (zh) * 2020-04-14 2020-07-10 中海石油气电集团有限责任公司 一种低氮氧化物排放浸没燃烧式气化器
CN211475489U (zh) * 2019-12-13 2020-09-11 中国寰球工程有限公司 双热源浸没燃烧式气化器
CN112963857A (zh) * 2021-04-09 2021-06-15 江苏中圣压力容器装备制造有限公司 一种超低NOx排放浸没燃烧式气化系统及尾气脱硝余热回收工艺
CN215372480U (zh) * 2021-06-22 2021-12-31 江苏中圣高科技产业有限公司 超低NOx排放浸没燃烧式气化装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014173689A (ja) * 2013-03-12 2014-09-22 Sumitomo Precision Prod Co Ltd 水中燃焼式気化装置
CN105156882A (zh) * 2015-09-22 2015-12-16 江苏中圣压力容器装备制造有限公司 节能型浸没燃烧式气化器
KR101865679B1 (ko) * 2017-08-03 2018-06-12 주식회사 제이케이인 열효율이 개선된 이동형 액화천연가스 기화장치
CN210196987U (zh) * 2019-04-16 2020-03-27 河南查瑞特种设备有限公司 一种新型高压液氮气化装置
CN211475489U (zh) * 2019-12-13 2020-09-11 中国寰球工程有限公司 双热源浸没燃烧式气化器
CN111306564A (zh) * 2020-03-18 2020-06-19 南京金瀚环保科技有限公司 一种烧结烟气脱硝直燃式加热装置及方法
CN111397398A (zh) * 2020-04-14 2020-07-10 中海石油气电集团有限责任公司 一种低氮氧化物排放浸没燃烧式气化器
CN112963857A (zh) * 2021-04-09 2021-06-15 江苏中圣压力容器装备制造有限公司 一种超低NOx排放浸没燃烧式气化系统及尾气脱硝余热回收工艺
CN215372480U (zh) * 2021-06-22 2021-12-31 江苏中圣高科技产业有限公司 超低NOx排放浸没燃烧式气化装置

Also Published As

Publication number Publication date
CN113531534A (zh) 2021-10-22
KR20230050390A (ko) 2023-04-14

Similar Documents

Publication Publication Date Title
CN109458623B (zh) 一种高含盐高含氯有机废液焚烧环保节能排放系统
CN102644922B (zh) 用于含氮有机废物的焚烧处理装置及其焚烧处理工艺
CN104190253A (zh) 焦炉烟气scr脱硝系统
CN204421021U (zh) 一种用于含n2o废气的ω形热氧化处理装置
CN107559837A (zh) 一种含氯废液、废气焚烧及尾气处理的方法
CN205392184U (zh) 小型燃气锅炉烟气低温催化脱硝系统
CN207122904U (zh) 一种低氮燃烧的垃圾焚烧炉
CN215372480U (zh) 超低NOx排放浸没燃烧式气化装置
CN103768933B (zh) 一种fcc装置co余热锅炉的烟气脱硝工艺
CN109631056A (zh) 一种环氧丙烷氯醇化尾气和三氯乙烯车间废气联合治理的工艺
CN207778402U (zh) 超高温亚临界煤气发电系统
CN112963857A (zh) 一种超低NOx排放浸没燃烧式气化系统及尾气脱硝余热回收工艺
CN211098341U (zh) 一种垃圾焚烧炉的scr烟气脱硝装置
CN206881513U (zh) 低温烟气scr脱硝装置
WO2022267205A1 (zh) 一种余热深度利用的超低NOx排放浸没燃烧式气化系统
CN215372479U (zh) 新型浸没燃烧式气化装置
CN208449061U (zh) 一种以氨水为还原剂的scr烟气脱硝装置
CN103727803B (zh) 一种烟气脱硝装置
CN210410146U (zh) 一种sncr喷枪冷却联合还原剂蒸发热解系统
CN101907296A (zh) 一种高效二甲醚/空气低NOx高温燃烧系统
CN208750738U (zh) 一种焚烧联合蒸汽过热的处理系统
CN215233310U (zh) 一种氟材料含氟废液焚烧后烟气脱硝系统
CN104089299A (zh) 低氮燃烧方法
CN113041837A (zh) 一种氟材料含氟废液焚烧后烟气脱硝的工艺
CN204345610U (zh) 一种高效燃气式蒸汽过热装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21946689

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20237008162

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE