WO2022267029A1 - 电化学装置管理方法、电子设备、充电装置及存储介质 - Google Patents

电化学装置管理方法、电子设备、充电装置及存储介质 Download PDF

Info

Publication number
WO2022267029A1
WO2022267029A1 PCT/CN2021/102455 CN2021102455W WO2022267029A1 WO 2022267029 A1 WO2022267029 A1 WO 2022267029A1 CN 2021102455 W CN2021102455 W CN 2021102455W WO 2022267029 A1 WO2022267029 A1 WO 2022267029A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrochemical device
discharge
preset
electrochemical
charge operation
Prior art date
Application number
PCT/CN2021/102455
Other languages
English (en)
French (fr)
Inventor
孙琪
王慧鑫
汪颖
Original Assignee
宁德新能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德新能源科技有限公司 filed Critical 宁德新能源科技有限公司
Priority to PCT/CN2021/102455 priority Critical patent/WO2022267029A1/zh
Priority to CN202180003023.6A priority patent/CN113795965A/zh
Publication of WO2022267029A1 publication Critical patent/WO2022267029A1/zh
Priority to US18/394,406 priority patent/US20240128525A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/445Methods for charging or discharging in response to gas pressure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4285Testing apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/448End of discharge regulating measures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/007182Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/007188Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the field of electrochemical technology, and in particular to an electrochemical device management method, electronic equipment, a charging device and a storage medium.
  • Lithium-ion batteries have many advantages such as high specific energy density, long cycle life, high nominal voltage, low self-discharge rate, small size, and light weight, and have a wide range of applications in the field of consumer electronics.
  • the purpose of the embodiments of the present application is to provide a method for managing an electrochemical device, an electronic device, a charging device, and a storage medium, so as to delay gas production of the electrochemical device.
  • the first aspect of the embodiments of the present application provides a method for managing an electrochemical device.
  • the method includes measuring a predetermined parameter of the electrochemical device when the electrochemical device is in a preset state and performing at least one discharge-charge operation on the electrochemical device in response to the predetermined parameter satisfying a preset condition.
  • the discharging-charging operation includes discharging the electrochemical device to a second voltage threshold, the second voltage threshold being less than the first voltage threshold, and charging the electrochemical device to a third voltage threshold, wherein the first voltage The threshold is the charging limit voltage of the electrochemical device, and the difference between the third voltage threshold and the first voltage threshold is not more than 20%.
  • the embodiments of the present application measure predetermined parameters that can reflect the health of the electrochemical device, and in response to the predetermined parameters satisfying the preset conditions, discharge-charge the electrochemical device, thereby reducing the electrochemical Due to the long-term high-voltage state of the device, there are risks such as gas production and bulging, resulting in reduced performance or reduced lifespan. After the discharge-charge operation, the electrochemical device can still maintain sufficient power, which is convenient for use at any time.
  • the step of performing at least one discharge-charge operation on the electrochemical device in response to the predetermined parameter satisfying a preset condition includes performing a discharge-charge operation on the electrochemical device in response to the predetermined parameter being not less than a preset threshold value.
  • the electrochemical device performs at least one discharge-charge operation.
  • the predetermined parameter is not less than the preset threshold, indicating that the health of the electrochemical device has declined.
  • the electrochemical device is discharged-charged when the health of the electrochemical device is reduced, so as to reduce the occurrence of the electrochemical device. Risks such as gas production and bulging can be avoided, and the life of the electrochemical device can be extended.
  • the preset state includes: at least one of: the operating voltage of the electrochemical device is not less than a first voltage threshold or the electrochemical device is electrically connected to a charging device.
  • measuring a predetermined parameter of the electrochemical device includes measuring a thickness of the electrochemical device, and in response to the thickness being not less than a preset thickness, performing at least one discharge-charge operation on the electrochemical device .
  • the increase in the thickness of the electrochemical device indicates that gas production may occur inside the electrochemical device.
  • the embodiment of the present application can detect the health problems of the electrochemical device in time by measuring the thickness change of the electrochemical device, and by discharging the electrochemical device- The charging operation suppresses the further gas production of the electrochemical device, thereby improving the performance of the electrochemical device and prolonging the life of the electrochemical device.
  • measuring the predetermined parameter of the electrochemical device comprises measuring a time period during which the electrochemical device is in a predetermined state, and in response to the time period being not less than the predetermined time period, performing at least one operation on the electrochemical device discharge-charge operation. If the electrochemical device is in the preset state for too long, for example, when the electrochemical device is at the working voltage for too long, it may cause the electrochemical device to produce gas and bulge, which will affect the health of the electrochemical device.
  • the duration of the device being in the preset state, and performing discharge-charge operation on the electrochemical device when the duration is too long can prevent the electrochemical device from being under high voltage for a long time, thereby prolonging the life of the electrochemical device.
  • measuring the predetermined parameters of the electrochemical device includes measuring the internal pressure of the electrochemical device, and when the measured internal pressure of the electrochemical device is not less than the preset internal pressure of the electrochemical device, the The electrochemical device performs at least one discharge-charge operation.
  • the increase in the internal pressure of the electrochemical device indicates that gas production may occur inside the electrochemical device.
  • the embodiment of the present application can detect the health problems of the electrochemical device in time by measuring the change in the internal pressure of the electrochemical device, and by monitoring the electrochemical device
  • the discharge-charging operation suppresses the further gas generation of the electrochemical device, thereby improving the performance of the electrochemical device and prolonging the life of the electrochemical device.
  • measuring the predetermined parameters of the electrochemical device includes measuring the thickness of the electrochemical device and the duration of the electrochemical device in a preset state, when the measured thickness is less than the preset thickness, the When the duration is not less than the preset duration, perform at least one discharge-charge operation on the electrochemical device, or when the measured duration is less than the preset duration and the thickness is not less than the preset thickness, perform a discharge-charge operation on the electrochemical device.
  • the device performs at least one discharge-charge operation, or when the measured duration is not less than a preset duration and the thickness is not smaller than a preset thickness, at least one discharge-charge operation is performed on the electrochemical device.
  • the discharge-charging operation is performed, which can avoid gas production inside the electrochemical device to the greatest extent;
  • the thickness of the chemical device is greater than or equal to the preset thickness, even if the electrochemical device is in the preset state for less than the preset time, the above-mentioned discharge-charging operation can be performed to avoid gas production inside the electrochemical device to the greatest extent;
  • the duration is not less than the preset duration and the thickness is not less than the preset thickness, that is, when the above two parameters meet the preset conditions at the same time, the electrochemical device is discharged-charged.
  • measuring the predetermined parameters of the electrochemical device includes measuring the pressure in the electrochemical device and the time period for which the electrochemical device is in a preset state, and when the measured pressure in the electrochemical device is less than a predetermined When the internal pressure of the electrochemical device is set and the duration is not less than a preset duration, at least one discharge-charge operation is performed on the electrochemical device, or when the measured duration is less than the preset duration, the pressure in the electrochemical device is Perform at least one discharge-charge operation on the electrochemical device when the pressure in the electrochemical device is not less than the preset time, or when the measured duration is not less than the preset duration and the pressure in the electrochemical device is not less than the preset The electrochemical device is subjected to at least one discharge-charge operation when the internal pressure of the electrochemical device is reduced.
  • the discharge-charging operation is performed, which can avoid the internal occurrence of the electrochemical device to the greatest extent.
  • Gas generation when the internal pressure of the electrochemical device is greater than or equal to the preset internal pressure, even if the electrochemical device is in the preset state for less than the preset time, the discharge-charging operation is performed, which can also avoid the inside of the electrochemical device to the greatest extent.
  • the method before performing at least one discharge-charge operation on the electrochemical device, the method further includes generating a discharge-charge operation prompt message to prompt the user that the electrochemical device enters a discharge-charge operation state. After receiving an instruction from the user to perform a discharge-charge operation, the discharge-charge operation is started. Before the discharge-charge operation, by generating the discharge-charge operation prompt information, the user is informed that the electrochemical device will enter the discharge-charge operation state, and the user can decide whether to perform the discharge-charge operation on the current electrochemical device according to the actual situation, thereby improving user experience.
  • the positive electrode in the electrochemical device includes at least one of lithium cobaltate or lithium iron phosphate.
  • the first voltage threshold of the electrochemical device is from 4.3V to 4.5V.
  • the electrochemical device is a lithium iron phosphate system electrochemical device, that is, when the positive electrode in the electrochemical device includes lithium iron phosphate, the first voltage threshold of the electrochemical device is 3.5V to 3.7V.
  • the first voltage threshold of the electrochemical device is 4.3V to 4.5V V.
  • the second aspect of the embodiments of the present application provides an electronic device, including: a state detection device, a predetermined parameter measurement device, and a discharge-charging device, wherein the state detection device is used to detect the state of the electrochemical device, and the predetermined The parameter measurement device is used to measure predetermined parameters of the electrochemical device, and the discharge-charge device is used to perform at least one discharge-charge operation on the electrochemical device.
  • the state detecting device detects that the electrochemical device is in a preset state, it notifies the predetermined parameter measuring device to measure a predetermined parameter of the electrochemical device.
  • the predetermined parameter measuring device measures that the predetermined parameter meets a preset condition, a discharge-charge operation notification is issued.
  • the discharging-charging device performs the at least one discharging-charging operation after receiving the notification of the discharging-charging operation.
  • the discharging-charging operation includes discharging the electrochemical device to a second voltage threshold, the second voltage threshold being less than the first voltage threshold, and charging the electrochemical device to a third voltage threshold, the third The difference between the voltage threshold and the first voltage threshold is no more than 20%.
  • a predetermined parameter that can reflect the health degree of the electrochemical device is measured by a predetermined parameter measuring device, and when the predetermined parameter meets the preset condition, the discharge-charge operation is performed on the electrochemical device through the discharge-charge device, thereby reducing the cost of the electrochemical device. Long-term exposure to high voltage may cause risks such as gas production and bulges that may reduce performance or reduce lifespan.
  • the preset state includes: at least one of: the voltage of the electrochemical device is not less than the first voltage threshold or the electrochemical device is electrically connected to a charging device.
  • said predetermined parameter measuring device comprises a thickness measuring device, and/or a duration measuring device, and/or a pressure measuring device in an electrochemical device.
  • the thickness measuring device is used to measure the thickness of the electrochemical device; the time length measuring device is used to measure the duration of the electrochemical device in a preset state.
  • the internal pressure measuring device of the electrochemical device is used to measure the internal pressure of the electrochemical device. Changes in the thickness and internal pressure of the electrochemical device indicate that gas production may occur inside the electrochemical device. Excessively long periods of time in which the electrochemical device is in a preset state may also cause gas production and bulges in the electrochemical device.
  • the thickness of the device changes, and/or the length of time in a preset state, and/or the internal pressure changes, and the further gas generation of the electrochemical device is inhibited through the discharge-charge operation, thereby improving the performance of the electrochemical device and prolonging the life of the electrochemical device. life.
  • the predetermined parameter meeting a preset condition includes that the predetermined parameter is not less than a preset threshold.
  • the predetermined parameter is not less than the preset threshold, it indicates that the health of the electrochemical device has declined, for example, when the predetermined parameter is the thickness of the electrochemical device, the internal pressure of the electrochemical device, or the duration of the electrochemical device in a predetermined state, etc. Chemistry unit health decreased.
  • the embodiments of the present application can discharge-charge the electrochemical device when the health of the electrochemical device is degraded, thereby reducing the risks of gas production and bulging of the electrochemical device.
  • the electronic device further includes an information prompting device, configured to receive a discharge-charge operation notification, and generate discharge-charge operation prompt information to prompt the user that the electrochemical device enters a discharge-charge operation state.
  • the discharging-charging device performs the at least one discharging-charging operation after receiving an instruction from a user to perform a discharging-charging operation.
  • the discharge-charge operation prompt information is generated by the information prompt device, so that the user knows that the electrochemical device will enter the discharge-charge operation state, and the user can decide whether to discharge-charge the current electrochemical device according to the actual situation operations to improve user experience.
  • the positive electrode in the electrochemical device includes at least one of lithium cobaltate or lithium iron phosphate.
  • the first voltage threshold of the electrochemical device is from 4.3V to 4.5V.
  • the electrochemical device is a lithium iron phosphate system electrochemical device, that is, when the positive electrode in the electrochemical device includes lithium iron phosphate, the first voltage threshold of the electrochemical device is 3.5V to 3.7V.
  • the first voltage threshold of the electrochemical device is 4.3V to 4.5V V.
  • the first voltage threshold of the electrochemical device is 4.3V to 4.5V V.
  • a third aspect of the embodiments of the present application provides a charging device, including a processor and a machine-readable storage medium, the machine-readable storage medium stores machine-executable instructions that can be executed by the processor, and the processing When the machine executes the machine-executable instructions, the method steps described in any one of the above aspects are implemented.
  • a fourth aspect of the embodiments of the present application provides a computer-readable storage medium, wherein a computer program is stored in the computer-readable storage medium, and when the computer program is executed by a processor, the method described in any one of the above-mentioned aspects is implemented. Method steps.
  • a fifth aspect of the embodiments of the present application provides a battery system, which includes a processor and a machine-readable storage medium, where the machine-readable storage medium stores machine-executable instructions that can be executed by the processor, so When the processor executes the machine-executable instructions, the method steps described in any one of the above aspects are implemented.
  • the embodiments of the present application provide an electrochemical device management method, electronic equipment, a charging device, and a storage medium, which are mainly used when the electrochemical device is in a normal use state, a storage state, or a state where normal use and storage intersect.
  • Measure a predetermined parameter of the electrochemical device when it is in a preset state and perform at least one discharge-charge operation on the electrochemical device when the predetermined parameter is measured to be not less than the preset threshold
  • the discharge-charge operation specifically includes: discharging the electrochemical device The electrochemical device is charged to the second voltage threshold, and then the electrochemical device is charged to the third voltage threshold, which can significantly delay the gas production of the electrochemical device, thereby prolonging the life of the electrochemical device.
  • any product or method of the present application does not necessarily need to achieve all the above-mentioned advantages at the same time.
  • FIG. 1 is a schematic flow diagram of an electrochemical device management method according to an embodiment of the present application
  • FIG. 2 is a schematic flowchart of an electrochemical device management method according to another embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of an electronic device according to an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of an electronic device according to another embodiment of the present application.
  • Fig. 5 is a schematic structural diagram of a charging device according to an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a battery system according to an embodiment of the present application.
  • the lithium-ion battery is used as an example of the electrochemical device to explain the present application, but the electrochemical device of the present application is not limited to the lithium-ion battery.
  • embodiments of the present application provide an electrochemical device management method, electronic equipment, a charging device, a storage medium, and a battery system.
  • the embodiment of the present application provides a method for managing an electrochemical device, as shown in FIG. 1 , the method includes the following steps:
  • the state detecting device detects the state of the electrochemical device, and the predetermined parameter measuring device measures a predetermined parameter of the electrochemical device when the electrochemical device is in a predetermined state. For example, referring to FIG. 3 , when the state detection device 301 detects that the electrochemical device is in a preset state, the state detection device 301 sends a signal to the predetermined parameter measurement device 302, and after the predetermined parameter measurement device 302 receives the signal, the reservation of the electrochemical device is performed. parameters to measure.
  • the operation of the process shown above is only for the purpose of illustration.
  • the device modules in the example of the electronic device in the embodiment of the present application are only for the purpose of illustration and not for limitation.
  • Electrochemical devices typically have different states, for example, the electrochemical device is in a charging state, is in a discharging state, is in a resting state, and so on.
  • the above-mentioned different states usually correspond to different working conditions of the electrochemical device, for example, working condition, storage working condition or working/storage cross working condition, etc.
  • the working condition may refer to the working condition in which the electrochemical device is in the state of discharging, charging or charging while discharging
  • the storage working condition may refer to the working condition in which the electrochemical device is placed in the environment but not in the state of discharging, charging or charging and discharging. working conditions.
  • the predetermined parameter measuring device when the electrochemical device is in a preset state, can determine the health degree of the electrochemical device in time by measuring the predetermined parameter.
  • the predetermined parameters in the embodiments of the present application may be parameters related to the health of the electrochemical device, and the health of the electrochemical device may be used to reflect the degradation of the electrochemical device due to non-external force damage factors, for example: gas production by the electrochemical device and so on.
  • the aforementioned predetermined parameters may include, but are not limited to: at least one parameter of the thickness of the electrochemical device, the internal pressure of the electrochemical device, or the duration of the electrochemical device in a preset state.
  • the embodiment of the present application has no special limitation on the equipment used to measure the above parameters, as long as the purpose of the present application can be achieved.
  • the built-in clock is used to measure the duration of the electrochemical device in a predetermined state
  • the size measuring device is used to measure the thickness of the electrochemical device
  • the pressure sensor is used to measure the internal pressure of the electrochemical device, etc.
  • the size measuring device may be a distance sensor arranged between the surface of the electrochemical device and the casing containing the electrochemical device, and the sensor may measure the distance between the surface of the electrochemical device and the casing, Obtain the gas production of the electrochemical device. For example, the smaller the measured distance, the more serious the gas production.
  • the electrochemical device in the embodiment of the present application may include at least one lithium ion battery, and when multiple lithium ion batteries are included, these lithium ion batteries may exist in the electrochemical device in a series and/or parallel manner.
  • the discharge-charge operation includes: discharging the electrochemical device to a second voltage threshold, wherein the second voltage threshold is less than the first voltage threshold; and charging the electrochemical device to a third voltage threshold, wherein the third voltage threshold differs from the first voltage threshold by no more than 20%.
  • the predetermined parameter measuring device 302 measures the predetermined parameter of the electrochemical device
  • the predetermined parameter measuring device 302 sends a signal to the discharging-charging device 303 in response to the predetermined parameter meeting the preset condition
  • the discharging-charging device 303 sends the signal to the charging device 303 after receiving the signal.
  • the electrochemical device is discharged to a second voltage threshold, and then the electrochemical device is charged to a third voltage threshold.
  • the first voltage threshold of the present application may refer to a charge limiting voltage of the electrochemical device.
  • Charging limit voltage refers to the voltage value when the lithium-ion battery is transferred from constant current charging to constant voltage charging according to the manufacturer's regulations. Generally speaking, during the constant current charging process of lithium-ion batteries, the voltage will continue to rise. When it rises to the "charge limit voltage", the battery will no longer be charged to make the voltage continue to rise, but will turn to constant voltage. Charging phase to prevent damaging, irreversible electrochemical reactions in the battery.
  • the second voltage threshold in the present application may refer to the discharge cut-off voltage of the electrochemical device.
  • the discharge cut-off voltage refers to the lowest voltage allowed when the lithium-ion battery is discharged. Generally speaking, if the minimum discharge voltage of the lithium-ion battery is exceeded, the internal pressure of the battery will increase when the discharge continues, the reversibility of the positive and negative active materials will be damaged, and the battery life will be shortened. Therefore, when the electrochemical device is discharged to the cut-off voltage, it is no longer discharged to prevent the positive and negative active materials from being damaged.
  • the discharge-charge device can perform at least one discharge-charge operation on the electrochemical device: the electrochemical device Discharging to a second voltage threshold, and then charging the electrochemical device to a third voltage threshold, wherein the second voltage threshold is smaller than the first voltage threshold, and the difference between the third voltage threshold and the first voltage threshold is not more than 20%.
  • the third voltage threshold is equal to the first voltage threshold.
  • the degree of difference between two objects is equal to the ratio of the absolute value of the difference between the two objects to the smaller object among the two objects.
  • the risk of performance reduction or lifespan reduction caused by gas production and bulging of the electrochemical device due to long-term high voltage state can be reduced.
  • the electrochemical device after the discharging-charging operation can still maintain sufficient power and is convenient to use at any time, thereby improving the convenience of using the electrochemical device.
  • the above discharge-charge operation can be realized by a discharge-charge circuit in the discharge-charge device.
  • the preset conditions in the embodiments of the present application may be preset by technicians according to needs, for example, the voltage, thickness, or duration of the electrochemical device in a preset state reaches a certain condition.
  • the number of times of the at least one discharging-charging operation there is no particular limitation on the number of times of the at least one discharging-charging operation, as long as the purpose of the present application can be achieved. From the perspective of effectively prolonging the life of the electrochemical device, the number of discharge-charge operations mentioned above is at least one time, such as 1 time, 2 times, 3 times, etc., and from the perspective of user convenience, it is usually not more than 10 times, and further , usually no more than 4 times.
  • the specific values of the first voltage threshold, the second voltage threshold and the third voltage threshold as long as the above relationship is satisfied, which are usually determined according to the specific type of the electrochemical device.
  • the predetermined parameter satisfying the preset condition includes when the predetermined parameter is greater than or equal to the preset threshold value, for example, the predetermined parameter may include the thickness of the electrochemical device, the duration of the electrochemical device in a preset state, or the interior of the electrochemical device For pressure, it can be set that the thickness of the electrochemical device reaches a certain threshold, or the duration of the electrochemical device in a preset state reaches a certain threshold, or the internal pressure of the electrochemical device reaches a certain threshold, etc.
  • the predetermined parameter is greater than or equal to the preset threshold, at least one discharge-charge operation can be performed on the electrochemical device.
  • the preset state may include at least one of: the operating voltage of the electrochemical device is not less than the first voltage threshold, or the electrochemical device is electrically connected to the charging device.
  • the working voltage may refer to the voltage of the electrochemical device in the discharge state, the voltage of the charging and discharging state, or the open circuit voltage of the electrochemical device in the storage state.
  • the first voltage threshold may be determined by technicians according to actual needs. For example, when the electrochemical device is higher than a certain voltage, there may be risks such as gas production and bulging, then this voltage may be determined as the first voltage threshold.
  • the electrical connection between the electrochemical device and the charging device may mean that the electrochemical device is electrically connected to the charging device in a wired or wireless manner. Of course, the electrochemical device may be in a state where the operating voltage is not less than the first voltage threshold and is electrically connected to the charging device at the same time.
  • the predetermined parameters of the electrochemical device can be measured in time, reducing the cost of the electrochemical device.
  • the thickness of the electrochemical device is measured when the electrochemical device is in a preset state.
  • the thickness variation of the electrochemical device can reflect the health of the electrochemical device. Exemplarily, when the thickness of the electrochemical device increases, it indicates that gas production may occur inside the electrochemical device, and deterioration begins to occur. Based on this, when the electrochemical device is in a preset state, the thickness of the electrochemical device can be measured, so as to determine the thickness change of the electrochemical device. When the measured thickness is not less than the preset thickness, at least one discharge-charge operation is performed on the electrochemical device.
  • the preset thickness may be a thickness preset by technicians according to actual needs, which is not specifically limited in the embodiment of the present application, as long as the purpose of the embodiment of the present application can be achieved.
  • Electrochemical devices of different systems or different structures and sizes can also correspond to different preset thicknesses.
  • lithium cobalt oxide system electrochemical devices and lithium iron phosphate system electrochemical devices can correspond to different preset thicknesses.
  • the chemical device and the laminated electrochemical device can correspond to different preset thicknesses.
  • the embodiment of the present application has no particular limitation on the device for measuring the thickness of the electrochemical device, as long as the purpose of the present application can be achieved, for example, it may be an existing thickness measuring device.
  • the embodiment of the present application can measure the thickness change of the electrochemical device in time, and through the above-mentioned discharge-charging operation, reduce the risk of performance reduction or lifespan reduction caused by gas production and bulging of the electrochemical device.
  • the time the electrochemical device is in the preset state is measured.
  • the length of time that the electrochemical device is in a preset state is related to the health of the electrochemical device. For example, when the electrochemical device is in a preset state for too long, such as being under high voltage for too long, the electrochemical device may produce gas and bulge. Based on this, when the electrochemical device is in the preset state, the duration of the electrochemical device in the preset state can be measured, so as to determine the duration of the electrochemical device in the preset state.
  • At least one discharge-charge operation is performed on the electrochemical device.
  • the preset time length may be a time length preset by technicians according to actual needs, which is not specifically limited in the embodiment of the present application, as long as the purpose of the embodiment of the present application can be achieved.
  • Electrochemical devices of different systems or different structures and sizes can also correspond to different preset time lengths.
  • electrochemical devices of lithium cobaltate system and lithium iron phosphate system can correspond to different preset time lengths.
  • the chemical device and the laminated electrochemical device can correspond to different preset time periods.
  • the preset duration may be 6 hours, 8 hours, 10 hours, 15 hours, 20 hours and so on.
  • the device for measuring the duration of the electrochemical device is not particularly limited, as long as the purpose of the present application can be achieved, for example, it may be an existing timing device.
  • the embodiment of the present application can measure the time length of the electrochemical device in the preset state in time, and through the above-mentioned discharge-charge operation, further reduce the risk of performance reduction or life reduction caused by gas production and bulging of the electrochemical device, thereby extending lifetime of electrochemical devices.
  • the pressure within the electrochemical device is measured when the electrochemical device is in a preset state.
  • the change of the internal pressure of the electrochemical device can reflect the health of the electrochemical device. For example, when the pressure inside the electrochemical device increases, it indicates that gas production and bulging may occur inside the electrochemical device. Based on this, when the electrochemical device is in a preset state, the internal pressure of the electrochemical device can be measured, so as to determine the change of the internal pressure of the electrochemical device.
  • At least one discharge-charge operation is performed on the electrochemical device.
  • the preset internal pressure of the electrochemical device may be an internal pressure preset by technicians according to actual needs, which is not specifically limited in the embodiment of the present application, as long as the purpose of the embodiment of the present application can be achieved.
  • Electrochemical devices of different systems or different structures and sizes can also correspond to different preset internal pressures of electrochemical devices.
  • electrochemical devices of lithium cobaltate system and electrochemical devices of lithium iron phosphate system can correspond to different preset electrochemical devices.
  • the internal pressure of the device, the wound structure electrochemical device, and the laminated structure electrochemical device can correspond to different preset internal pressures of the electrochemical device.
  • the device for measuring the pressure in the electrochemical device there is no particular limitation on the device for measuring the pressure in the electrochemical device, as long as the purpose of the present application can be achieved, for example, it may be an existing pressure measuring device in the electrochemical device.
  • the embodiment of the present application can measure the internal pressure change of the electrochemical device in time, and through the above-mentioned discharge-charging operation, further reduce the risk of performance reduction or life reduction caused by gas production and bulging of the electrochemical device, thereby prolonging the electrochemical device. lifespan.
  • the thickness of the electrochemical device and the duration of the electrochemical device in the preset state are measured.
  • Both the thickness of the electrochemical device and the length of time in a preset state can be related to the health of the electrochemical device. Based on this, when the electrochemical device is in the preset state, the thickness of the electrochemical device and the duration of the electrochemical device in the preset state can be measured together, so as to determine the thickness change of the electrochemical device and the electrochemical device in the preset state. The length of time in the state.
  • At least one discharge-charge operation is performed on the electrochemical device.
  • the discharge-charging operation is performed even if the thickness of the electrochemical device is smaller than the preset thickness, thereby reducing the performance of the electrochemical device caused by gas production and bulging Reduce risks such as reduced or reduced life, and extend the life of electrochemical devices.
  • At least one discharge-charge operation is performed on the electrochemical device.
  • the thickness is greater than or equal to the preset thickness, even if the electrochemical device is in the preset state for less than the preset time, the above-mentioned discharge-charge operation is performed, thereby reducing the performance reduction or lifespan caused by further gas generation and bulging of the electrochemical device Reduce risks and extend the life of electrochemical devices.
  • At least one discharge-charge operation is performed on the electrochemical device.
  • the electrochemical device is discharged-charged.
  • the parameters of the electrochemical device in multiple dimensions, it is possible to more accurately determine the timing of the discharge-charge operation and reduce the electrochemical Further risks such as performance degradation or lifespan reduction caused by gas production and bulging of the device will prolong the life of the electrochemical device.
  • the pressure in the electrochemical device and the time duration of the electrochemical device in the preset state are measured.
  • Both the internal pressure of the electrochemical device and the length of time in a predetermined state can be related to the health of the electrochemical device. Based on this, in the embodiment of the present application, when the electrochemical device is in the preset state, the internal pressure of the electrochemical device and the duration of the electrochemical device in the preset state can be measured together to determine the change in the internal pressure of the electrochemical device and the length of time the electrochemical device is in a preset state.
  • the electrochemical device When the electrochemical device is in the preset state for longer than or equal to the preset duration, even if the internal pressure of the electrochemical device is less than the preset internal pressure of the electrochemical device, the discharge-charging operation is performed, thereby reducing further gas production, Risks such as performance degradation or lifespan reduction caused by bulges can be avoided, and the lifespan of electrochemical devices can be extended.
  • At least one discharge-charge operation is performed on the electrochemical device.
  • the internal pressure of the electrochemical device is greater than or equal to the preset internal pressure, even if the electrochemical device is in the preset state for less than the preset time, the discharge-charging operation will be performed, thereby reducing further gas production and bulging of the electrochemical device. Risks such as reduced performance or reduced lifespan.
  • At least one discharge-charge operation is performed on the electrochemical device.
  • the electrochemical device When the above two parameters meet the preset conditions at the same time, the electrochemical device is discharged-charged.
  • the parameters of the electrochemical device By judging the parameters of the electrochemical device in multiple dimensions, it is possible to more accurately determine the timing of the discharge-charge operation and further reduce the battery life. Risks such as performance degradation or lifespan reduction caused by outgassing and bulging of chemical devices.
  • the embodiment of the present application also provides a method for managing an electrochemical device, as shown in FIG. 2 , including the following steps:
  • the state detecting device 301 detects the state of the electrochemical device, and when the electrochemical device is in a preset state, the predetermined parameter measuring device 302 measures a predetermined parameter.
  • the state detection device 301 in the electronic equipment detects that the electrochemical device is in a preset state
  • the state detection device 301 sends a signal to the predetermined parameter measurement device 302, and after the predetermined parameter measurement device 302 receives the signal, the predetermined state of the electrochemical device is determined. parameters to measure.
  • This step is the same as step S101 in the method embodiment shown in FIG. 1 , and will not be repeated in this embodiment of the present application.
  • the predetermined parameter measurement device 302 measures the predetermined parameter of the electrochemical device
  • the predetermined parameter measurement device 302 sends a signal to the information prompting device 304 in response to the predetermined parameter meeting the preset condition, and the information prompting device 304 generates a discharge-
  • the charging operation prompt information is used to remind the user that the electrochemical device is about to enter the discharge-charge operation state.
  • the discharge-charge operation prompt information may include, but not limited to: at least one of text prompts, voice prompts, light prompts, vibration prompts, etc., so as to prompt the user whether the electrochemical device enters the discharge-charge operation state.
  • the information prompting device 304 sends a signal to the discharging-charging device 303 after receiving an instruction from the user to perform the discharging-charging operation, and the discharging-charging device 303 receives the signal and starts the discharging-charging operation.
  • the operation of the process shown above is only for the purpose of illustration.
  • the devices and modules in the examples of the electronic equipment given in the embodiment of the present application are only for the purpose of illustration and not for limitation.
  • the discharging-charging device can start to perform the discharging-charging operation after receiving the user's instruction to perform the discharging-charging operation, so that it is convenient for the user to decide whether to perform the discharging-charging operation on the current electrochemical device, and the user experience is improved.
  • the instruction sent by the user for example, it may be clicking a button to confirm the discharge-charge operation, sending a voice instruction to confirm the discharge-charge operation, and the like.
  • the positive electrode in the electrochemical device of the embodiment of the present application may include at least one of lithium cobaltate or lithium iron phosphate.
  • electrochemical devices of different systems correspond to different first voltage thresholds.
  • the electrochemical device when the electrochemical device is a lithium cobalt oxide system electrochemical device, that is, when the positive electrode in the electrochemical device includes lithium cobalt oxide, the first voltage threshold of the electrochemical device is 4.3V to 4.5V.
  • the electrochemical device when the electrochemical device is a lithium iron phosphate system electrochemical device, that is, when the positive electrode in the electrochemical device includes lithium iron phosphate, the first voltage threshold of the electrochemical device is 3.5V to 3.7V.
  • the electrochemical device when the electrochemical device is a mixed system of lithium cobalt oxide and lithium iron phosphate, that is, when the positive electrode in the electrochemical device includes lithium cobalt oxide and lithium iron phosphate, the first voltage threshold of the electrochemical device is 4.3 V to 4.5V.
  • the embodiment of the present application also provides an electronic device 300.
  • the electronic device 300 includes: a state detection device 301, a predetermined parameter measurement device 302, and a discharge-charging device 303, wherein,
  • the state detection device 301 is used to detect the state of the electrochemical device
  • the predetermined parameter measurement device 302 is used to measure the predetermined parameter of the electrochemical device
  • the discharge-charge device 303 is used to perform at least one discharge-charge operation on the electrochemical device.
  • the device 301 When the device 301 detects that the electrochemical device is in a preset state, it notifies the predetermined parameter measuring device 302 to measure a predetermined parameter of the electrochemical device, and when the predetermined parameter measuring device 302 measures that the predetermined parameter meets the preset condition, it sends a discharge-charging operation notification, After receiving the discharge-charge operation notification, the discharge-charge device 303 performs at least one discharge-charge operation, the discharge-charge operation includes: discharging the electrochemical device to a second voltage threshold, wherein the second voltage threshold is smaller than the first voltage threshold and charging the electrochemical device to a third voltage threshold, wherein the third voltage threshold differs from the first voltage threshold by no more than 20%.
  • the electronic device in the embodiment of the present application may include an electrochemical device.
  • the electronic device may be a device with a built-in lithium-ion battery and data processing capability, such as a mobile phone and a tablet computer.
  • the present application has no special limitations on the state detecting device 301 , the predetermined parameter measuring device 302 and the discharging-charging device 303 , as long as the corresponding functions can be realized.
  • the preset state includes: at least one of: the voltage of the electrochemical device is not less than a first voltage threshold or the electrochemical device is electrically connected to the charging device.
  • the predetermined parameter measuring means comprises a thickness measuring means, and/or a duration measuring means, and/or a pressure measuring means within the electrochemical device.
  • the thickness measuring device is used to measure the thickness of the electrochemical device
  • the duration measuring device is used to measure the duration of the electrochemical device in a preset state
  • the internal pressure measuring device of the electrochemical device is used to measure the internal pressure of the electrochemical device.
  • the predetermined parameter meeting the preset condition includes that the predetermined parameter is not less than a preset threshold.
  • the electronic device in the embodiment of the present application may further include an information prompting device 304, configured to receive a discharge-charge operation notification, and generate discharge-charge operation prompt information to prompt the user to charge
  • the chemical device enters a discharge-charge operation state.
  • the discharging-charging device 303 performs at least one discharging-charging operation after receiving an instruction from the user to perform a discharging-charging operation.
  • the positive electrode in the electrochemical device of the embodiment of the present application includes at least one of lithium cobalt oxide or lithium iron phosphate.
  • the first voltage threshold of the electrochemical device when the electrochemical device is a lithium cobalt oxide system electrochemical device, that is, when the positive electrode in the electrochemical device includes lithium cobalt oxide, the first voltage threshold of the electrochemical device is 4.3V to 4.5V; when When the electrochemical device is a lithium iron phosphate system electrochemical device, that is, when the positive electrode in the electrochemical device includes lithium iron phosphate, the first voltage threshold of the electrochemical device is 3.5V to 3.7V; when the electrochemical device is lithium cobaltate and When the lithium iron phosphate mixed system is used, that is, when the positive electrode in the electrochemical device includes lithium cobaltate and lithium iron phosphate, the first voltage threshold of the electrochemical device is 4.3V to 4.5V.
  • An electronic device provided in an embodiment of the present application is mainly used when an electrochemical device is in a normal use state, a storage state, or a state where normal use and storage are intersected, wherein the state detection device is used to detect the state of the electrochemical device, and the predetermined parameter measurement The device is used to measure predetermined parameters of the electrochemical device, and the discharge-charge device is used to perform at least one discharge-charge operation on the electrochemical device, which can significantly delay the gas production of the electrochemical device, thereby prolonging the life of the electrochemical device.
  • the charging device 400 includes a processor 401 and a machine-readable storage medium 402.
  • the charging device 400 may also include a detection circuit module 403, a discharge-charging circuit 404 , an interface 405 , a power supply interface 406 , and a rectification circuit 407 .
  • the detection circuit module 403 is used to detect the state and/or parameters of the lithium-ion battery 505, such as detecting the voltage of the lithium-ion battery, and sending the detection result to the processor 401;
  • the discharge-charge circuit 404 is used to receive the 401 to issue an instruction to charge or discharge the lithium-ion battery 505;
  • the interface 405 is used to electrically connect the lithium-ion battery 505;
  • the power interface 406 is used to connect to an external power supply;
  • the rectifier circuit 407 is used to rectify the input current;
  • the machine-readable storage medium 402 stores machine-executable instructions that can be executed by the processor. When the processor 401 executes the machine-executable instructions, the method steps described in any of the above embodiments can be implemented, which can significantly delay the gas production of the electrochemical device. Thereby prolonging the lifetime of the electrochemical device.
  • the embodiment of the present application also provides a computer-readable storage medium.
  • a computer program is stored in the computer-readable storage medium.
  • the computer program is executed by a processor, the method steps described in any of the above-mentioned implementations can be implemented, which can significantly delay the power consumption.
  • the chemical device generates gas, thereby prolonging the life of the electrochemical device.
  • the embodiment of the present application also provides a battery system.
  • the battery system 500 includes a second processor 501 and a second machine-readable storage medium 502. Discharging-charging circuit 504 , lithium-ion battery 505 and second interface 506 .
  • the detection circuit module 503 is used to detect the state and/or parameters of the lithium-ion battery 505, such as detecting the voltage of the lithium-ion battery, and sending the detection result to the second processor 501; the discharge-charge circuit 504 is used to receive Instructions issued by the second processor 501, thereby charging or discharging the lithium-ion battery 505; the second interface 506 is used to connect with the interface of the external charger 600; the external charger 600 is used to provide power; the second machine is readable
  • the storage medium 502 stores machine-executable instructions that can be executed by the processor.
  • the external charger 600 may include a first processor 601, a first machine-readable storage medium 602, a first interface 603 and a corresponding rectification circuit.
  • the external charger may be a commercially available charger, and the embodiment of the present application does not change its structure. Be specific.
  • the machine-readable storage medium may include a random access memory (Random Access Memory, RAM for short), and may also include a non-volatile memory (non-volatile memory), such as at least one magnetic disk memory.
  • the memory may also be at least one storage device located far away from the aforementioned processor.
  • the above-mentioned processor can be a general-purpose processor, including a central processing unit (Central Processing Unit, referred to as CPU), a network processor (Network Processor, referred to as NP), etc.; it can also be a digital signal processor (Digital Signal Processing, referred to as DSP) , Application Specific Integrated Circuit (ASIC for short), Field Programmable Gate Array (Field-Programmable Gate Array, FPGA for short) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • CPU Central Processing Unit
  • NP Network Processor
  • DSP Digital Signal Processing
  • ASIC Application Specific Integrated Circuit
  • FPGA Field-Programmable Gate Array
  • the positive active material lithium cobaltate, acetylene black, and polyvinylidene fluoride (PVDF) were mixed in a mass ratio of 94:3:3, and then N-methylpyrrolidone (NMP) was added as a solvent to prepare a solid Content is 75% slurry, and stir evenly.
  • the slurry is uniformly coated on one surface of an aluminum foil with a thickness of 12 ⁇ m, dried at 90°C, and cold-pressed to obtain a positive electrode sheet with a positive electrode active material layer thickness of 100 ⁇ m, and then coated on the other surface of the positive electrode sheet Repeat the above steps above to obtain a positive electrode sheet coated with a positive electrode active material layer on both sides. Cut the positive pole piece into a size of 74mm ⁇ 867mm and weld the tabs for use.
  • Preparation of the negative electrode sheet mix the negative active material artificial graphite, acetylene black, styrene-butadiene rubber and sodium carboxymethyl cellulose in a mass ratio of 96:1:1.5:1.5, then add deionized water as a solvent, and adjust the solid content Make a 70% slurry and stir well.
  • the slurry is uniformly coated on one surface of a copper foil with a thickness of 8 ⁇ m, dried at 110° C., and cold-pressed to obtain a negative electrode sheet with a negative active material layer coated on one side with a negative active material layer thickness of 150 ⁇ m.
  • a polyethylene (PE) porous polymer film with a thickness of 15 ⁇ m was used as the isolation membrane.
  • Electrolyte preparation In an environment with a water content of less than 10ppm, mix the non-aqueous organic solvents ethylene carbonate (EC), propylene carbonate (PC), and diethyl carbonate (DEC) in a mass ratio of 1:1:1 , and then add lithium hexafluorophosphate (LiPF 6 ) into the non-aqueous organic solvent to dissolve and mix uniformly to obtain an electrolyte solution, wherein the concentration of LiPF 6 is 1.15 mol/L.
  • EC ethylene carbonate
  • PC propylene carbonate
  • DEC diethyl carbonate
  • Preparation of the electrochemical device stack the above-prepared positive pole piece, separator, and negative pole piece in order, so that the separator is in the middle of the positive pole piece and the negative pole piece to play the role of isolation, and wind up to obtain the electrode assembly. Put the electrode assembly into an aluminum-plastic film packaging bag, remove moisture at 80°C, inject the prepared electrolyte, and obtain an electrochemical device through processes such as vacuum packaging, standing, chemical formation, and shaping.
  • Preparation of the positive electrode sheet mix the positive active material lithium iron phosphate, acetylene black, and polyvinylidene fluoride (PVDF) in a mass ratio of 94:3:3, and then add N-methylpyrrolidone (NMP) as a solvent to prepare a solid Content is 75% slurry, and stir evenly.
  • the slurry is uniformly coated on one surface of an aluminum foil with a thickness of 12 ⁇ m, dried at 90°C, and cold-pressed to obtain a positive electrode sheet with a positive electrode active material layer thickness of 100 ⁇ m, and then coated on the other surface of the positive electrode sheet Repeat the above steps above to obtain a positive electrode sheet coated with a positive electrode active material layer on both sides. Cut the positive pole piece into a size of 74mm ⁇ 867mm and weld the tabs for use.
  • the positive active material lithium cobalt oxide and lithium iron phosphate, acetylene black, polyvinylidene fluoride (PVDF) are mixed in a mass ratio of 94:3:3 (wherein the mass ratio of lithium cobalt oxide to lithium iron phosphate is 1:1), and then add N-methylpyrrolidone (NMP) as a solvent to prepare a slurry with a solid content of 75%, and stir evenly.
  • NMP N-methylpyrrolidone
  • the slurry is uniformly coated on one surface of an aluminum foil with a thickness of 12 ⁇ m, dried at 90°C, and cold-pressed to obtain a positive electrode sheet with a positive electrode active material layer thickness of 100 ⁇ m, and then coated on the other surface of the positive electrode sheet Repeat the above steps above to obtain a positive electrode sheet coated with a positive electrode active material layer on both sides. Cut the positive pole piece into a size of 74mm ⁇ 867mm and weld the tabs for use.
  • Discharging-charging operation discharge the electrochemical device with a constant current of 5A to a voltage of 3V, then charge the electrochemical device with a constant current of 5A to a voltage of 4.4V, and let it stand for 2 days. Repeat the discharging-charging operation until the electrochemical device produces gas, measure the thickness of the electrochemical device, and record it as the thickness after testing.
  • Electrochemical device test of lithium iron phosphate system
  • Discharging-charging operation discharge the electrochemical device with a constant current of 5A to a voltage of 2.5V, then charge the electrochemical device with a constant current of 5A to a voltage of 3.6V, and let it stand for 2 days. Repeat the discharging-charging operation until the electrochemical device produces gas, measure the thickness of the electrochemical device, and record it as the thickness after testing.
  • Electrochemical device test of lithium cobalt oxide and lithium iron phosphate mixed system
  • Discharging-charging operation discharge the electrochemical device with a constant current of 5A to a voltage of 3V, then charge the electrochemical device with a constant current of 5A to a voltage of 4.4V, and let it stand for 2 days. Repeat the discharging-charging operation until the electrochemical device produces gas, measure the thickness of the electrochemical device, and record it as the thickness after testing.
  • Discharge-charge operation discharge the electrochemical device with a constant current of 5A to a voltage of 3V, then charge the electrochemical device with a constant current of 5A to a voltage of 4.4V, and repeat the discharge-charge operation for a total of 2 times , standing for 2 days, recorded as a discharge-charge operation process. Repeat the discharge-charge operation process until the electrochemical device produces gas, measure the thickness of the electrochemical device, and record it as the thickness after the test.
  • the electrochemical device was charged to a voltage of 4.4V with a constant current of 5A, and left to stand for 2 days. Repeat the charging operation until the electrochemical device produces gas, measure the thickness of the electrochemical device, and record it as the thickness after the test.
  • the electrochemical device was charged to a voltage of 3.6V with a constant current of 5A, and left to stand for 2 days. Repeat the charging operation until the electrochemical device produces gas, measure the thickness of the electrochemical device, and record it as the thickness after the test.
  • the electrochemical device was charged to a voltage of 4.4V with a constant current of 5A, and left to stand for 2 days. Repeat the charging operation until the electrochemical device produces gas, measure the thickness of the electrochemical device, and record it as the thickness after the test.
  • Expansion ratio (thickness of the electrochemical device after the test - thickness of the electrochemical device before the test) / thickness of the electrochemical device before the test ⁇ 100%.
  • Example 1 and Comparative Example 1, Example 2 and Comparative Example 2, Example 3 and Comparative Example 3 it can be seen that after using the discharge-charging operation of the present application, the number of days of gas production of the electrochemical device is obviously prolonged, and in When the number of cycle days is significantly extended, the expansion rates of various electrochemical devices are very close, indicating that the electrochemical device management method of the present application can significantly delay the gas production of the electrochemical device and prolong the life of the electrochemical device.
  • the number of discharge-charge operations will also affect the number of days of gas production and the expansion rate of the electrochemical device, but as long as the number of discharge-charge operations is within the scope of this application, the electrochemical process can be significantly delayed.
  • the device produces gas and prolongs the life of the electrochemical device.
  • each embodiment in this specification is described in a related manner, the same and similar parts of each embodiment can be referred to each other, and each embodiment focuses on the differences from other embodiments.
  • the description is relatively simple, and for relevant parts, please refer to part of the description of the method embodiment.

Abstract

本申请实施例提供了一种电化学装置管理方法、电子设备、充电装置及存储介质,包括:当电化学装置处于预设状态时测量电化学装置的预定参数;响应于预定参数满足预设条件对电化学装置进行至少一次放电-充电操作,放电-充电操作包括:将电化学装置放电至第二电压阈值,第二电压阈值小于第一电压阈值,和将电化学装置充电至第三电压阈值,其中第一电压阈值为电化学装置的充电限制电压,第三电压阈值与第一电压阈值的差异度不大于20%。本申请实施例能够显著延缓电化学装置产气,从而延长电化学装置的寿命。

Description

电化学装置管理方法、电子设备、充电装置及存储介质 技术领域
本申请涉及电化学技术领域,具体涉及一种电化学装置管理方法、电子设备、充电装置及存储介质。
背景技术
锂离子电池具有比能量密度大、循环寿命长、标称电压高、自放电率低、体积小、重量轻等许多优点,在消费电子领域具有广泛的应用。
近年随着来消费类电子产品,例如平板电脑、手机的高速发展,市场对锂离子电池的需求也越来越多。但消费类电子产品经常面临持续在高电压工作的工况,在这种工况下,其中的锂离子电池容易出现产气等情况,影响锂离子电池使用寿命。
发明内容
本申请实施例的目的在于提供一种电化学装置管理方法、电子设备、充电装置及存储介质,以延缓电化学装置产气。
本申请实施例的第一方面提供了一种电化学装置管理方法。该方法包括当电化学装置处于预设状态时,测量所述电化学装置的预定参数和响应于所述预定参数满足预设条件,对所述电化学装置进行至少一次放电-充电操作。所述放电-充电操作包括将所述电化学装置放电至第二电压阈值,所述第二电压阈值小于第一电压阈值,和将所述电化学装置充电至第三电压阈值,其中第一电压阈值为所述电化学装置的充电限制电压,所述第三电压阈值与所述第一电压阈值的差异度不大于20%。
本申请的实施例包括的技术效果:本申请实施例通过测量能够反映电化学装置健康程度的预定参数,响应于预定参数满足预设条件,对电化学装置进行放电-充电操作,从而降低电化学装置因长期处于高电压状态而发生产气、鼓包所导致的性能降低或寿命降低等风险。放电-充电操作后的电化学装置仍能保持充足的电量,便于随时使用。
在一种实施方案中,所述响应于所述预定参数满足预设条件,对所述电化学装置进行至少一次放电-充电操作的步骤包括响应于所述预定参数不小于预设阈值,对所述电化学装置进行至少一次放电-充电操作。
所述预定参数不小于预设阈值,表明电化学装置的健康程度出现下降,本申请实施例通过在电化学装置的健康程度下降时对电化学装置进行放电-充电操作,从而降低电化学装 置出现产气、鼓包等风险,延长电化学装置的寿命。
在一种实施方案中,所述预设状态包括:所述电化学装置的工作电压不小于第一电压阈值或所述电化学装置与充电设备电连接中的至少一个。
在一种实施方案中,测量所述电化学装置的预定参数包括测量所述电化学装置的厚度,响应于所述厚度不小于预设厚度,对所述电化学装置进行至少一次放电-充电操作。
电化学装置的厚度增大表明电化学装置内部可能出现产气,本申请实施例通过测量电化学装置的厚度变化,能够及时检测到电化学装置的健康问题,并通过对电化学装置进行放电-充电操抑制电化学装置进一步产气,从而提高电化学装置的性能、延长电化学装置寿命。
在一种实施方案中,测量所述电化学装置的预定参数包括测量所述电化学装置处于预设状态的时长,响应于所述时长不小于预设时长,对所述电化学装置进行至少一次放电-充电操作。电化学装置处于预设状态的时长过长,例如当电化学装置处于工作电压时间过长,可能导致电化学装置产气、鼓包,影响电化学装置的健康程度,本申请实施例通过测量电化学装置处于预设状态的时长,并在时长过长时对电化学装置进行放电-充电操作,能够避免电化学装置过久处于高电压下,从而延长电化学装置寿命。
在一种实施方案中,测量所述电化学装置的预定参数包括测量所述电化学装置内压力,当测量到所述电化学装置内压力不小于预设电化学装置内压力时,对所述电化学装置进行至少一次放电-充电操作。电化学装置的内压力增大表明电化学装置内部可能出现产气,本申请实施例通过测量电化学装置的内压力变化,能够及时检测到电化学装置的健康问题,并通过对电化学装置进行放电-充电操抑制电化学装置进一步产气,从而提高电化学装置的性能、延长电化学装置寿命。
在一种实施方案中,测量所述电化学装置的预定参数包括测量所述电化学装置的厚度和所述电化学装置处于预设状态的时长,当测量到所述厚度小于预设厚度、所述时长不小于预设时长时,对所述电化学装置进行至少一次放电-充电操作,或者当测量到所述时长小于预设时长、所述厚度不小于预设厚度时,对所述电化学装置进行至少一次放电-充电操作,或者当测量到所述时长不小于预设时长、且所述厚度不小于预设厚度时,对所述电化学装置进行至少一次放电-充电操作。当电化学装置处于预设状态的时长大于或等于预设时长时,即使电化学装置的厚度小于预设厚度也进行放电-充电操作,能够最大程度地避免电化学装置内部出现产气;当电化学装置厚度大于或等于预设厚度时,即使电化学装置处于预设状 态的时长小于预设时长也进行上述放电-充电操作,也能够最大程度地避免电化学装置内部出现产气;当测量到时长不小于预设时长、且厚度不小于预设厚度时,即在上述两个参数同时满足预设条件时对电化学装置进行放电-充电操作,通过对电化学装置多个维度下的参数的判断,能够更精准地确定放电-充电操作的时机。
在一种实施方案中,测量所述电化学装置的预定参数包括测量所述电化学装置内压力和所述电化学装置处于预设状态的时长,当测量到所述电化学装置内压力小于预设电化学装置内压力、所述时长不小于预设时长时,对所述电化学装置进行至少一次放电-充电操作,或者当测量到所述时长小于预设时长、所述电化学装置内压力不小于预设电化学装置内压力时,对所述电化学装置进行至少一次放电-充电操作,或者当测量到所述时长不小于预设时长、且所述电化学装置内压力不小于预设电化学装置内压力时,对所述电化学装置进行至少一次放电-充电操作。当电化学装置处于预设状态的时长大于或等于预设时长时,即使电化学装置的内压力小于预设电化学装置内压力也进行放电-充电操作,能够最大程度地避免电化学装置内部出现产气;当电化学装置的内压力大于或等于预设内压力时,即使电化学装置处于预设状态的时长小于预设时长也进行放电-充电操作,也能够最大程度地避免电化学装置内部出现产气;当测量到时长不小于预设时长、且电化学装置内压力不小于预设电化学装置内压力时,即在上述两个参数同时满足预设条件时对电化学装置进行放电-充电操作,通过对电化学装置多个维度下的参数的判断,能够更精准地确定放电-充电操作的时机。
在一种实施方案中,所述对所述电化学装置进行至少一次放电-充电操作之前,所述方法还包括生成放电-充电操作提示信息,以提示用户所述电化学装置进入放电-充电操作状态。接收到用户进行放电-充电操作的指令后,开始进行所述放电-充电操作。在放电-充电操作之前通过生成放电-充电操作提示信息,使用户获知电化学装置将要进入放电-充电操作状态,用户可以根据实际情况,决定是否对当前电化学装置进行放电-充电操作,从而提高用户体验。
在一种实施方案中,所述电化学装置中的正极包括钴酸锂或磷酸铁锂中的至少一种。在一种实施方案中,当所述电化学装置为钴酸锂体系电化学装置时,即电化学装置中的正极包括钴酸锂时,所述电化学装置的第一电压阈值为4.3V至4.5V。当所述电化学装置为磷酸铁锂体系电化学装置时,即电化学装置中的正极包括磷酸铁锂时,所述电化学装置的第一电压阈值为3.5V至3.7V。当所述电化学装置为钴酸锂和磷酸铁锂混合体系时,即电 化学装置中的正极包括钴酸锂和磷酸铁锂时,所述电化学装置的第一电压阈值为4.3V至4.5V。通过对不同体系的电化学装置设置不同的第一电压阈值,能够更有针对性地对不同体系的电化学装置进行放电-充电操作,使不同体系的电化学装置都能保持在良好的健康状态,从而延长不同体系下的电化学装置的寿命。
本申请实施例的第二方面提供了一种电子设备,包括:状态检测装置、预定参数测量装置和放电-充电装置,其中,所述状态检测装置用于检测电化学装置的状态,所述预定参数测量装置用于测量所述电化学装置的预定参数,所述放电-充电装置用于对所述电化学装置进行至少一次放电-充电操作。当所述状态检测装置检测到所述电化学装置处于预设状态时,通知所述预定参数测量装置测量所述电化学装置的预定参数。当所述预定参数测量装置测量到所述预定参数满足预设条件时,发出放电-充电操作通知。所述放电-充电装置接收到放电-充电操作通知后,进行所述至少一次放电-充电操作。所述放电-充电操作包括将所述电化学装置放电至第二电压阈值,所述第二电压阈值小于第一电压阈值,和将所述电化学装置充电至第三电压阈值,所述第三电压阈值与所述第一电压阈值的差异度不大于20%。本申请实施例通过预定参数测量装置测量能够反映电化学装置健康程度的预定参数,在预定参数满足预设条件时通过放电-充电装置对电化学装置进行放电-充电操作,从而降低电化学装置因长期处于高电压状态而发生产气、鼓包所导致的性能降低或寿命降低等风险。
在一种实施方案中,所述预设状态包括:所述电化学装置的电压不小于所述第一电压阈值或所述电化学装置与充电设备电连接中的至少一个。
在一种实施方案中,所述预定参数测量装置包括厚度测量装置,和/或时长测量装置,和/或电化学装置内压力测量装置。所述厚度测量装置用于测量所述电化学装置的厚度;所述时长测量装置用于测量所述电化学装置处于预设状态的时长。所述电化学装置内压力测量装置用于测量所述电化学装置的内压力。电化学装置的厚度变化、内压力变化表明电化学装置内部可能出现产气,电化学装置处于预设状态的时长过长也可能导致电化学装置产气、鼓包,本申请实施例通过测量电化学装置的厚度变化、和/或在预设状态下的时间长度、和/或内压力变化,并通过放电-充电操作抑制电化学装置进一步产气,从而提高电化学装置的性能、延长电化学装置寿命。
在一种实施方案中,所述预定参数满足预设条件包括所述预定参数不小于预设阈值。当预定参数不小于预设阈值时,表明电化学装置的健康程度出现下降,例如当预定参数为 电化学装置的厚度、电化学装置的内压力或者电化学装置处于预定状态的时长等,表明电化学装置的健康程度下降。本申请实施例能够在电化学装置的健康程度下降时对电化学装置进行放电-充电操作,从而降低电化学装置出现产气、鼓包等风险。
在一种实施方案中,所述电子设备还包括信息提示装置,用于接收放电-充电操作通知,并生成放电-充电操作提示信息,以提示用户所述电化学装置进入放电-充电操作状态。所述放电-充电装置接收到用户进行放电-充电操作的指令后,进行所述至少一次放电-充电操作。在放电-充电操作之前通过信息提示装置生成放电-充电操作提示信息,使用户获知电化学装置将要进入放电-充电操作状态,用户可以根据实际情况,决定是否需要对当前电化学装置进行放电-充电操作,从而提高用户体验。
在一种实施方案中,所述电化学装置中的正极包括钴酸锂或磷酸铁锂中的至少一种。在一种实施方案中,当所述电化学装置为钴酸锂体系电化学装置时,即电化学装置中的正极包括钴酸锂时,所述电化学装置的第一电压阈值为4.3V至4.5V。当所述电化学装置为磷酸铁锂体系电化学装置时,即电化学装置中的正极包括磷酸铁锂时,所述电化学装置的第一电压阈值为3.5V至3.7V。当所述电化学装置为钴酸锂和磷酸铁锂混合体系时,即电化学装置中的正极包括钴酸锂和磷酸铁锂时,所述电化学装置的第一电压阈值为4.3V至4.5V。本申请实施例通过对不同体系的电化学装置设置不同的第一电压阈值,能够更有针对性地对不同体系的电化学装置进行放电-充电操作,使不同体系的电化学装置都能保持在良好的健康状态,从而延长不同体系下的电化学装置的寿命。
本申请实施例的第三方面提供了一种充电装置,包括处理器和机器可读存储介质,所述机器可读存储介质存储有能够被所述处理器执行的机器可执行指令,所述处理器执行所述机器可执行指令时,实现上述任一方面所述的方法步骤。
本申请实施例的第四方面提供了一种计算机可读存储介质,其中,所述计算机可读存储介质内存储有计算机程序,所述计算机程序被处理器执行时实现上述任一方面所述的方法步骤。
本申请实施例的第五方面提供了一种电池系统,其中,包括处理器和机器可读存储介质,所述机器可读存储介质存储有能够被所述处理器执行的机器可执行指令,所述处理器执行所述机器可执行指令时,实现上述任一方面所述的方法步骤。
本申请实施例提供了一种电化学装置管理方法、电子设备、充电装置及存储介质,主要用于电化学装置处于正常使用状态、储存状态或者正常使用和储存交叉的状态下,当电 化学装置处于预设状态时测量电化学装置的预定参数,当测量到预定参数不小于预设阈值时,对电化学装置进行至少一次放电-充电操作,该放电-充电操作具体为:将电化学装置放电至第二电压阈值,再将电化学装置充电至第三电压阈值,能够显著延缓电化学装置产气,从而延长电化学装置的寿命。当然,实施本申请的任一产品或方法并不一定需要同时达到以上所述的所有优点。
附图说明
为了更清楚地说明本申请和现有技术的技术方案,下面对实施例和现有技术中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例。
图1为本申请一种实施方案的电化学装置管理方法的流程示意图;
图2为本申请另一种实施方案的电化学装置管理方法的流程示意图;
图3为本申请一种实施方案的电子设备的结构示意图;
图4为本申请另一种实施方案的电子设备的结构示意图;
图5为本申请一种实施方案的充电装置的结构示意图;
图6为本申请一种实施方案的电池系统的结构示意图。
具体实施方式
为使本申请的目的、技术方案、及优点更加清楚明白,以下参照附图和实施例,对本申请进一步详细说明。显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员所获得的所有其他技术方案,都属于本申请保护的范围。
需要说明的是,本申请的内容中,以锂离子电池作为电化学装置的例子来解释本申请,但是本申请的电化学装置并不仅限于锂离子电池。
为了延缓电化学装置产气,从而延长电化学装置的使用寿命,本申请实施例提供了一种电化学装置管理方法、电子设备、充电装置、存储介质及电池系统。
本申请实施例提供了一种电化学装置管理方法,如图1所示,该方法包括以下步骤:
S101:当电化学装置处于预设状态时,测量电化学装置的预定参数;
状态检测装置检测电化学装置的状态,当电化学装置处于预定状态时,预定参数测量装置测量电化学装置的预定参数。例如,参见图3,当状态检测装置301检测到电化学装置处于预设状态时,状态检测装置301向预定参数测量装置302发送信号,预定参数测量装置302接收信号后,对电化学装置的预定参数进行测量。以上所示过程的操作仅出于说 明的目的,另外,本申请实施例对所举的电子设备示例中的装置模块仅出于说明的目的而非限制性的。
电化学装置通常具有不同的状态,例如,电化学装置处于充电状态、处于放电状态、处于静置状态等。上述不同的状态通常对应电化学装置不同的工况,例如,工作工况、储存工况或者工作/储存交叉工况等。其中,工作工况可以是指电化学装置处于放电、充电或边充边放状态的工况,储存工况可以指电化学装置放置在环境中而未处于放电、充电或边充边放状态的工况。
本申请实施例中,当电化学装置处于预设状态时,预定参数测量装置通过对预定参数进行测量,可以及时确定电化学装置的健康程度。本申请实施例的预定参数可以是与电化学装置健康程度相关的参数,电化学装置的健康程度可以用于反映电化学装置由于非外力损伤因素所导致的劣化情况,例如:电化学装置产气等情况。具体而言,上述预定参数可以包括但不限于:电化学装置的厚度、电化学装置内压力或电化学装置处于预设状态的时长中的至少一个参数。
本申请实施例对用于测量上述参数的设备没有特别限制,只要能实现本申请的目的即可。例如利用内置时钟测量电化学装置处于预定状态的时长;利用尺寸测量装置测量电化学装置的厚度;利用压力传感器测量电化学装置内压力等等。示例的,所述尺寸测量装置可以是设置于电化学装置表面与容纳该电化学装置的外壳之间的距离传感器,该传感器通过测量所述电化学装置表面与所述外壳之间的距离,可以得到电化学装置的产气情况。例如,所测得的距离越小,说明产气情况越严重。
本申请实施例的电化学装置可以包括至少一个锂离子电池,当包括多个锂离子电池时,这些锂离子电池可以通过串联和/或并联的方式存在于电化学装置中。
S102:响应于预定参数满足预设条件,对电化学装置进行至少一次放电-充电操作,该放电-充电操作包括:将电化学装置放电至第二电压阈值,其中第二电压阈值小于第一电压阈值;和将电化学装置充电至第三电压阈值,其中第三电压阈值与第一电压阈值的差异度不大于20%。
例如,预定参数测量装置302对电化学装置的预定参数进行测量后,预定参数测量装置302响应于预定参数满足预设条件,向放电-充电装置303发送信号,放电-充电装置303接收信号后将电化学装置放电至第二电压阈值,然后再将电化学装置充电至第三电压阈值。以上所示过程的操作仅出于说明的目的,另外,本申请实施例对所举的电子设备示例中的 装置、模块仅出于说明的目的而非限制性的。
本申请的第一电压阈值可以指电化学装置的充电限制电压。充电限制电压是指:按生产厂规定,锂离子电池由恒流充电转入恒压充电时的电压值。一般来说,锂离子电池恒流充电过程中电压会不断上升,当上升至“充电限制电压”时,不再对电池进行会使其电压继续升高的充电动作,而是转而进入恒压充电阶段,以防止电池中发生损伤性的、不可逆的电化学反应。
本申请的第二电压阈值可以指电化学装置的放电截止电压。放电截止电压是指:锂离子电池放电时允许的最低电压。一般来说,如果超过锂离子电池放电的最低电压,还继续放电时就会造成电池内压升高,正、负极活性物质的可逆性遭到损坏,缩短电池寿命。因此当对电化学装置放电至截止电压时就不再放电,以防止正、负极活性物质发生损坏。
本申请实施例中,在预定参数测量装置测量电化学装置的预定参数后,响应于预定参数满足预设条件,放电-充电装置可以对电化学装置进行至少一次放电-充电操作:将电化学装置放电至第二电压阈值,再将电化学装置充电至第三电压阈值,其中第二电压阈值小于第一电压阈值,第三电压阈值与第一电压阈值的差异度不大于20%。例如,第三电压阈值等于第一电压阈值。本申请中,两个对象的差异度等于两个对象的差值的绝对值与所述两个对象中较小的对象的比值。通过上述至少一次的放电-充电操作,能够降低电化学装置因长期处于高电压状态而发生产气、鼓包所导致的性能降低或寿命降低等风险。放电-充电操作后的电化学装置仍能保持充足的电量,便于随时使用,提高了电化学装置的使用便利性。上述放电-充电操作可以通过放电-充电装置中的放电-充电电路实现。
本申请实施例的预设条件可以是技术人员根据需要预先设定好的,例如,电化学装置的电压、厚度、或处于预设状态的时长达到某一条件等。本申请实施例对上述至少一次放电-充电操作的次数没有特别限制,只要能实现本申请目的即可。从有效延长电化学装置寿命的角度出发,上述放电-充电操作的次数为至少一次,例如1次、2次、3次等,从用户使用方便的角度出发,通常为不大于10次,进一步地,通常为不大于4次。本申请实施例对第一电压阈值、第二电压阈值和第三电压阈值的具体数值没有特别限制,只要满足上述关系即可,通常根据电化学装置的具体类型进行确定。
在一种实施方案中,预定参数满足预设条件包括当预定参数大于或者等于预设阈值,例如预定参数可以包括电化学装置的厚度、电化学装置的处于预设状态的时长或电化学装置内部压力,可以设定电化学装置的厚度达到某一阈值、或电化学装置的处于预设状态的 时长达到某一阈值、或者电化学装置内部压力达到某一阈值等。当预定参数大于或者等于预设阈值时,可以对电化学装置进行至少一次放电-充电操作。
在一种实施方案中,预设状态可以包括:电化学装置的工作电压不小于第一电压阈值,或,电化学装置与充电设备电连接中的至少一个。
在本申请实施例中,工作电压可以指电化学装置处于放电状态的电压、边充边放状态的电压、或者电化学装置在储存状态时的开路电压。第一电压阈值可以是技术人员根据实际需要确定的,例如,电化学装置高于某一电压时可能存在产气、鼓包等风险,则可以确定该电压为第一电压阈值。电化学装置与充电设备电连接可以是指电化学装置通过有线或无线的方式与充电设备进行电力连接。当然,电化学装置可能同时处于工作电压不小于第一电压阈值以及与充电设备电连接的状态中。本申请实施例中,当电化学装置的工作电压不小于第一电压阈值,或电化学装置与充电设备电连接中的至少一个时,能够及时测量电化学装置的预定参数,降低电化学装置因长期高于第一电压阈值或长期与充电设备电连接而发生产气、鼓包所导致的性能降低或寿命降低等风险,从而延长电化学装置的寿命。
在一种实施方案中,当电化学装置处于预设状态时,测量电化学装置的厚度。
电化学装置的厚度变化可以反映出电化学装置的健康程度。示例性地,当电化学装置厚度增大时,表明电化学装置内部可能出现产气,开始出现劣化。基于此,当电化学装置处于预设状态时,可以对电化学装置的厚度进行测量,从而确定出电化学装置的厚度变化。当测量到厚度不小于预设厚度时,对电化学装置进行至少一次放电-充电操作。
预设厚度可以是技术人员根据实际需要预先设定好的厚度,本申请实施例对此不作具体限定,只要能够实现本申请实施例的目的即可。不同体系或者不同结构及不同尺寸的电化学装置也可以对应不同的预设厚度,例如,钴酸锂体系电化学装置、磷酸铁锂体系电化学装置可以对应不同的预设厚度,卷绕结构电化学装置、叠片结构电化学装置可以对应不同的预设厚度。本申请实施例对测量电化学装置厚度的装置没有特别限制,只要能实现本申请目的即可,例如可以为现有的厚度测量装置。本申请实施例能够及时测量到电化学装置的厚度变化,并通过上述放电-充电操作,降低电化学装置发生产气、鼓包所导致的性能降低或寿命降低等风险。
在一种实施方案中,当电化学装置处于预设状态时,测量电化学装置处于预设状态的时长。
电化学装置处于预设状态的时长与电化学装置的健康程度相关。示例性地,当电化学 装置处于预设状态的时长过长时,例如处于高电压下的时长过长时,可能导致电化学装置产气、鼓包。基于此,当电化学装置处于预设状态时,可以对电化学装置处于预设状态的时长进行测量,从而确定出电化学装置处于预设状态下的时间长度。
当测量到时长不小于预设时长时,对电化学装置进行至少一次放电-充电操作。
预设时长可以是技术人员根据实际需要预先设定好的时长,本申请实施例对此不作具体限定,只要能够实现本申请实施例的目的即可。不同体系或者不同结构及不同尺寸的电化学装置也可以对应不同的预设时长,例如,钴酸锂体系电化学装置、磷酸铁锂体系电化学装置可以对应不同的预设时长,卷绕结构电化学装置、叠片结构电化学装置可以对应不同的预设时长。作为示例,预设时长可以是6小时,8小时,10小时,15小时,20小时等。本申请实施例对测量电化学装置时长的装置没有特别限制,只要能实现本申请目的即可,例如可以为现有的计时装置。本申请实施例能够及时测量到电化学装置在预设状态下的时间长度,并通过上述放电-充电操作,进一步降低电化学装置产气、鼓包所导致的性能降低或寿命降低等风险,从而延长电化学装置的寿命。
在一种实施方案中,当电化学装置处于预设状态时,测量电化学装置内压力。
电化学装置的内压力变化可以反映出电化学装置的健康程度。示例性地,当电化学装置内压力增大时,表明电化学装置内部可能出现产气、鼓包。基于此,当电化学装置处于预设状态时,可以对电化学装置的内压力进行测量,从而确定出电化学装置的内压力变化。
当测量到电化学装置内压力不小于预设电化学装置内压力时,对电化学装置进行至少一次放电-充电操作。
预设电化学装置内压力可以是技术人员根据实际需要预先设定好的内压力,本申请实施例对此不作具体限定,只要能够实现本申请实施例的目的即可。不同体系或者不同结构及不同尺寸的电化学装置也可以对应不同的预设电化学装置内压力,例如,钴酸锂体系电化学装置、磷酸铁锂体系电化学装置可以对应不同的预设电化学装置内压力,卷绕结构电化学装置、叠片结构电化学装置可以对应不同的预设电化学装置内压力。本申请实施例对测量电化学装置内压力的装置没有特别限制,只要能实现本申请目的即可,例如可以为现有的电化学装置内压力测量装置。本申请实施例能够及时测量到电化学装置的内压力变化,并通过上述放电-充电操作,进一步降低电化学装置发生产气、鼓包所导致的性能降低或寿命降低等风险,从而延长电化学装置的寿命。
在一种优选的实施方案中,当电化学装置处于预设状态时,测量电化学装置的厚度和 电化学装置处于预设状态的时长。
电化学装置的厚度和处于预设状态的时长都可以与电化学装置的健康程度相关。基于此,当电化学装置处于预设状态时,可以对电化学装置的厚度和电化学装置处于预设状态的时长共同进行测量,从而确定出电化学装置的厚度变化以及电化学装置处于预设状态下的时间长度。
当测量到厚度小于预设厚度、时长不小于预设时长时,对电化学装置进行至少一次放电-充电操作。
当电化学装置处于预设状态的时长大于或等于预设时长时,即使电化学装置的厚度小于预设厚度也进行上述放电-充电操作,从而降低电化学装置发生产气、鼓包所导致的性能降低或寿命降低等风险,延长电化学装置的寿命。
或者,当测量到时长小于预设时长、厚度不小于预设厚度时,对电化学装置进行至少一次放电-充电操作。
当厚度大于或等于预设厚度时,即使电化学装置处于预设状态的时长小于预设时长也进行上述放电-充电操作,从而降低电化学装置进一步发生产气、鼓包所导致的性能降低或寿命降低等风险,延长电化学装置的寿命。
或者,当测量到时长不小于预设时长、且厚度不小于预设厚度时,对电化学装置进行至少一次放电-充电操作。
在上述两个参数同时满足预设条件时对电化学装置进行放电-充电操作,通过对电化学装置多个维度下的参数的判断,能够更精准地确定放电-充电操作的时机,降低电化学装置进一步发生产气、鼓包所导致的性能降低或寿命降低等风险,延长电化学装置的寿命。同时在电化学装置产气不严重的情况下不必频繁进行放电-充电操作,从而提高用户使用所述电化学装置的体验。
在另一种优选的实施方案中,当电化学装置处于预设状态时,测量电化学装置内压力和电化学装置处于预设状态的时长。
电化学装置的内压力和处于预设状态的时长都可以与电化学装置的健康程度相关。基于此,本申请实施例中当电化学装置处于预设状态时,可以对电化学装置的内压力和电化学装置处于预设状态的时长共同进行测量,从而确定出电化学装置的内压力变化以及电化学装置处于预设状态下的时间长度。
当测量到电化学装置内压力小于预设电化学装置内压力、时长不小于预设时长时,对 电化学装置进行至少一次放电-充电操作。
当电化学装置处于预设状态的时长大于或等于预设时长时,即使电化学装置的内压力小于预设电化学装置内压力也进行放电-充电操作,从而降低电化学装置进一步发生产气、鼓包所导致的性能降低或寿命降低等风险,延长电化学装置的寿命。
或者,当测量到时长小于预设时长、电化学装置内压力不小于预设电化学装置内压力时,对电化学装置进行至少一次放电-充电操作。
当电化学装置的内压力大于或等于预设内压力时,即使电化学装置处于预设状态的时长小于预设时长也进行放电-充电操作,从而降低电化学装置进一步发生产气、鼓包所导致的性能降低或寿命降低等风险。
或者,当测量到时长不小于预设时长、且电化学装置内压力不小于预设电化学装置内压力时,对电化学装置进行至少一次放电-充电操作。
在上述两个参数同时满足预设条件时对电化学装置进行放电-充电操作,通过对电化学装置多个维度下的参数的判断,能够更精准地确定放电-充电操作的时机,进一步降低电化学装置发生产气、鼓包所导致的性能降低或寿命降低等风险。同时在电化学装置产气不严重的的情况下不必频繁进行放电-充电操作,提高用户使用所述电化学装置的体验。
本申请实施例还提供了一种电化学装置管理方法,如图2所示,包括以下步骤:
S201:当电化学装置处于预设状态时,测量电化学装置的预定参数;
参见图4,状态检测装置301检测电化学装置的状态,当电化学装置处于预设状态时,预定参数测量装置302测量预定参数。
例如,当电子设备中的状态检测装置301检测到电化学装置处于预设状态时,状态检测装置301向预定参数测量装置302发送信号,预定参数测量装置302接收信号后,对电化学装置的预定参数进行测量。
该步骤与图1所示方法实施例的步骤S101相同,本申请实施例在此不再赘述。
S202:响应于预定参数满足预设条件,生成放电-充电操作提示信息,以提示用户电化学装置进入放电-充电操作状态;
例如,预定参数测量装置302对电化学装置的预定参数进行测量后,预定参数测量装置302响应于预定参数满足预设条件,向信息提示装置304发送信号,信息提示装置304接收信号后生成放电-充电操作提示信息,以提示用户电化学装置将要进入放电-充电操作状态。
该放电-充电操作提示信息可以包括但不限于:文字提示、语音提示、灯光提示、震动提示等提示方式中的至少一种,从而提示用户电化学装置是否进入放电-充电操作状态。
S203,接收到用户进行放电-充电操作的指令后,开始进行放电-充电操作。
例如,信息提示装置304接收到用户进行放电-充电操作的指令后,向放电-充电装置303发送信号,放电-充电装置303接收信号开始进行放电-充电操作。以上所示过程的操作仅出于说明的目的,另外,本申请实施例对所举的电子设备示例中的装置、模块仅出于说明的目的而非限制性的。
放电-充电装置可以在接收到用户进行放电-充电操作的指令后开始进行放电-充电操作,从而便于用户决定是否对当前电化学装置进行放电-充电操作,提高了用户体验。本申请实施例对用户发出的指令形式没有特别限制,例如可以是点击确认进行放电-充电操作按钮、发出确认进行放电-充电操作的语音指令等。
本申请实施例的电化学装置中的正极可以包括钴酸锂或磷酸铁锂中的至少一种。通常而言,不同体系的电化学装置会对应不同的第一电压阈值。
在一种实施方案中,当电化学装置为钴酸锂体系电化学装置时,即电化学装置中的正极包括钴酸锂时,电化学装置的第一电压阈值为4.3V至4.5V。
在一种实施方案中,当电化学装置为磷酸铁锂体系电化学装置时,即电化学装置中的正极包括磷酸铁锂时,电化学装置的第一电压阈值为3.5V至3.7V。
在一种实施方案中,当电化学装置为钴酸锂和磷酸铁锂混合体系时,即电化学装置中的正极包括钴酸锂和磷酸铁锂时,电化学装置的第一电压阈值为4.3V至4.5V。
本申请实施例通过对不同体系的电化学装置设置不同的第一电压阈值,能够更有针对性地对不同体系的电化学装置进行放电-充电操作,使不同体系的电化学装置都能保持在良好的健康状态,从而延长不同体系下的电化学装置的寿命。
本申请实施例还提供了一种电子设备300,如图3所示,该电子设备300包括:状态检测装置301、预定参数测量装置302和放电-充电装置303,其中,
状态检测装置301用于检测电化学装置的状态,预定参数测量装置302用于测量电化学装置的预定参数,放电-充电装置303用于对电化学装置进行至少一次放电-充电操作,当状态检测装置301检测到电化学装置处于预设状态时,通知预定参数测量装置302测量电化学装置的预定参数,当预定参数测量装置302测量到预定参数满足预设条件时,发出放电-充电操作通知,放电-充电装置303接收到放电-充电操作通知后,进行至少一次放电 -充电操作,该放电-充电操作包括:将电化学装置放电至第二电压阈值,其中第二电压阈值小于第一电压阈值;和将电化学装置充电至第三电压阈值,其中第三电压阈值与第一电压阈值的差异度不大于20%。
本申请实施例的电子设备中可以包括电化学装置。示例性地,该电子设备可以是移动电话、平板电脑等内置锂离子电池、具有数据处理能力的设备。本申请对状态检测装置301、预定参数测量装置302和放电-充电装置303没有特别限制,只要能够实现相应功能即可。
在一种实施方案中,预设状态包括:电化学装置的电压不小于第一电压阈值或电化学装置与充电设备电连接中的至少一个。
在一种实施方案中,预定参数测量装置包括厚度测量装置,和/或时长测量装置,和/或电化学装置内压力测量装置。其中,厚度测量装置用于测量电化学装置的厚度,时长测量装置用于测量电化学装置处于预设状态的时长,电化学装置内压力测量装置用于测量电化学装置的内压力。
在一种实施方案中,预定参数满足预设条件包括预定参数不小于预设阈值。
在一种实施方案中,如图4所示,本申请实施例的电子设备还可以包括信息提示装置304,用于接收放电-充电操作通知,并生成放电-充电操作提示信息,以提示用户电化学装置进入放电-充电操作状态。则放电-充电装置303接收到用户进行放电-充电操作的指令后,进行至少一次放电-充电操作。
在一种实施方案中,本申请实施例的电化学装置中的正极包括钴酸锂或磷酸铁锂中的至少一种。
在一种实施方案中,当电化学装置为钴酸锂体系电化学装置时,即电化学装置中的正极包括钴酸锂时,电化学装置的第一电压阈值为4.3V至4.5V;当电化学装置为磷酸铁锂体系电化学装置时,即电化学装置中的正极包括磷酸铁锂时,电化学装置的第一电压阈值为3.5V至3.7V;当电化学装置为钴酸锂和磷酸铁锂混合体系时,即电化学装置中的正极包括钴酸锂和磷酸铁锂时,电化学装置的第一电压阈值为4.3V至4.5V。
本申请实施例提供的一种电子设备,主要用于电化学装置处于正常使用状态、储存状态或者正常使用和储存交叉的状态下,其中状态检测装置用于检测电化学装置的状态,预定参数测量装置用于测量电化学装置的预定参数,放电-充电装置用于对电化学装置进行至少一次放电-充电操作,能够显著延缓电化学装置产气,从而延长电化学装置的寿命。
本申请实施例还提供了一种充电装置,如图5所示,该充电装置400包括处理器401 和机器可读存储介质402,该充电装置400还可以包括检测电路模块403、放电-充电电路404、接口405、电源接口406、整流电路407。其中,检测电路模块403用于对锂离子电池505的状态和/或参数进行检测,例如检测锂离子电池的电压,并将检测结果发送至处理器401;放电-充电电路404用于接收处理器401发出的指令,从而对锂离子电池505进行充电或放电操作;接口405用于与锂离子电池505电连接;电源接口406用于与外部电源连接;整流电路407用于对输入电流进行整流;机器可读存储介质402存储有能够被处理器执行的机器可执行指令,处理器401执行机器可执行指令时,实现上述任一实施方案所述的方法步骤,能够显著延缓电化学装置产气,从而延长电化学装置的寿命。
本申请实施例还提供了一种计算机可读存储介质,计算机可读存储介质内存储有计算机程序,计算机程序被处理器执行时,实现上述任一实施方案所述的方法步骤,能够显著延缓电化学装置产气,从而延长电化学装置的寿命。
本申请实施例还提供了一种电池系统,如图6所示,该电池系统500包括第二处理器501和第二机器可读存储介质502,该电池系统500还可以包括检测电路模块503、放电-充电电路504、锂离子电池505以及第二接口506。其中,检测电路模块503用于对锂离子电池505的状态和/或参数进行检测,例如检测锂离子电池的电压,并将检测结果发送至第二处理器501;放电-充电电路504用于接收第二处理器501发出的指令,从而对锂离子电池505进行充电或放电操作;第二接口506用于与外部充电器600的接口连接;外部充电器600用于提供电力;第二机器可读存储介质502存储有能够被处理器执行的机器可执行指令,第二处理器501执行机器可执行指令时,实现上述任一实施方案所述的方法步骤,能够显著延缓电化学装置产气,从而延长电化学装置的寿命。外部充电器600可以包括第一处理器601、第一机器可读存储介质602、第一接口603及相应的整流电路,该外部充电器可以是市售充电器,本申请实施例对其结构不做具体限定。
机器可读存储介质可以包括随机存取存储器(Random Access Memory,简称RAM),也可以包括非易失性存储器(non-volatile memory),例如至少一个磁盘存储器。可选的,存储器还可以是至少一个位于远离前述处理器的存储装置。
上述的处理器可以是通用处理器,包括中央处理器(Central Processing Unit,简称CPU)、网络处理器(Network Processor,简称NP)等;还可以是数字信号处理器(Digital Signal Processing,简称DSP)、专用集成电路(Application Specific Integrated Circuit,简称ASIC)、现场可编程门阵列(Field-Programmable Gate Array,简称FPGA)或者其他可编程逻辑器件、 分立门或者晶体管逻辑器件、分立硬件组件。
对于电子设备/充电装置/存储介质/电池系统实施例而言,由于其基本相似于方法实施例,所以描述的比较简单,相关之处参见方法实施例的部分说明即可。
制备例1
钴酸锂体系电化学装置的制备:
正极极片的制备:将正极活性材料钴酸锂、乙炔黑、聚偏氟乙烯(PVDF)按质量比94∶3∶3混合,然后加入N-甲基吡咯烷酮(NMP)作为溶剂,调配成固含量为75%的浆料,并搅拌均匀。将浆料均匀涂覆在厚度为12μm的铝箔的一个表面上,90℃条件下烘干,冷压后得到正极活性材料层厚度为100μm的正极极片,然后在该正极极片的另一个表面上重复以上步骤,得到双面涂覆有正极活性材料层的正极极片。将正极极片裁切成74mm×867mm的规格并焊接极耳后待用。
负极极片的制备:将负极活性材料人造石墨、乙炔黑、丁苯橡胶及羧甲基纤维素钠按质量比96∶1∶1.5∶1.5混合,然后加入去离子水作为溶剂,调配成固含量为70%的浆料,并搅拌均匀。将浆料均匀涂覆在厚度为8μm的铜箔的一个表面上,110℃条件下烘干,冷压后得到负极活性材料层厚度为150μm的单面涂覆负极活性材料层的负极极片,然后在该负极极片的另一个表面上重复以上涂覆步骤,得到双面涂覆有负极活性材料层的负极极片。将负极极片裁切成74mm×867mm的规格并焊接极耳后待用。
隔离膜的制备:以厚度为15μm的聚乙烯(PE)多孔聚合薄膜作为隔离膜。
电解液的制备:在含水量小于10ppm的环境下,将非水有机溶剂碳酸乙烯酯(EC)、碳酸亚丙酯(PC)、碳酸二乙酯(DEC)按照质量比1∶1∶1混合,然后向非水有机溶剂中加入六氟磷酸锂(LiPF 6)溶解并混合均匀,得到电解液,其中,LiPF 6的浓度为1.15mol/L。
电化学装置的制备:将上述制备的正极极片、隔离膜、负极极片按顺序叠好,使隔离膜处于正极极片和负极极片中间起到隔离的作用,并卷绕得到电极组件。将电极组件装入铝塑膜包装袋中,并在80℃下脱去水分,注入配好的电解液,经过真空封装、静置、化成、整形等工序得到电化学装置。
制备例2
磷酸铁锂体系电化学装置的制备:
正极极片的制备:将正极活性材料磷酸铁锂、乙炔黑、聚偏氟乙烯(PVDF)按质量比94∶3∶3混合,然后加入N-甲基吡咯烷酮(NMP)作为溶剂,调配成固含量为75%的 浆料,并搅拌均匀。将浆料均匀涂覆在厚度为12μm的铝箔的一个表面上,90℃条件下烘干,冷压后得到正极活性材料层厚度为100μm的正极极片,然后在该正极极片的另一个表面上重复以上步骤,得到双面涂覆有正极活性材料层的正极极片。将正极极片裁切成74mm×867mm的规格并焊接极耳后待用。
负极极片的制备、隔离膜的制备、电解液的制备、电化学装置的制备方法与制备例1相同。
制备例3
钴酸锂、磷酸铁锂混合体系电化学装置的制备:
正极极片的制备:将正极活性材料钴酸锂和磷酸铁锂、乙炔黑、聚偏氟乙烯(PVDF)按质量比94∶3∶3混合(其中钴酸锂与磷酸铁锂的质量比为1∶1),然后加入N-甲基吡咯烷酮(NMP)作为溶剂,调配成固含量为75%的浆料,并搅拌均匀。将浆料均匀涂覆在厚度为12μm的铝箔的一个表面上,90℃条件下烘干,冷压后得到正极活性材料层厚度为100μm的正极极片,然后在该正极极片的另一个表面上重复以上步骤,得到双面涂覆有正极活性材料层的正极极片。将正极极片裁切成74mm×867mm的规格并焊接极耳后待用。
负极极片的制备、隔离膜的制备、电解液的制备、电化学装置的制备方法与制备例1相同。
实施例1
钴酸锂体系电化学装置测试:
取制备例1制得的电化学装置,先以5A的充电电流将电化学装置恒流充电至4.4V,再恒压充电至电流为250mA,静置6天,使用厚度测量设备(英昊达PPG软包电池测厚仪,型号PPG1000)测量电化学装置的厚度,记为测试前厚度。
放电-充电操作:以5A的放电电流将电化学装置恒流放电至电压为3V,再以5A的充电电流将电化学装置恒流充电至电压为4.4V,静置2天。重复该放电-充电操作直至电化学装置产气,测量电化学装置的厚度,记为测试后厚度。
实施例2
磷酸铁锂体系电化学装置测试:
取制备例2制得的电化学装置,先以5A的充电电流将电化学装置恒流充电至3.6V,再恒压充电至电流为250mA,静置6天,测量电化学装置的厚度,记为测试前厚度。
放电-充电操作:以5A的放电电流将电化学装置恒流放电至电压为2.5V,再以5A的 充电电流将电化学装置恒流充电至电压为3.6V,静置2天。重复该放电-充电操作直至电化学装置产气,测量电化学装置的厚度,记为测试后厚度。
实施例3
钴酸锂、磷酸铁锂混合体系电化学装置测试:
取制备例3制得的电化学装置,先以5A的充电电流将电化学装置恒流充电至4.4V,再恒压充电至电流为250mA,静置6天,测量电化学装置的厚度,记为测试前厚度。
放电-充电操作:以5A的放电电流将电化学装置恒流放电至电压为3V,再以5A的充电电流将电化学装置恒流充电至电压为4.4V,静置2天。重复该放电-充电操作直至电化学装置产气,测量电化学装置的厚度,记为测试后厚度。
实施例4
取制备例1制得的电化学装置,先以5A的充电电流将电化学装置恒流充电至4.4V,再恒压充电至电流为250mA,静置6天,使用厚度测量设备(英昊达PPG软包电池测厚仪,型号PPG1000)测量电化学装置的厚度,记为测试前厚度。
放电-充电操作:以5A的放电电流将电化学装置恒流放电至电压为3V,再以5A的充电电流将电化学装置恒流充电至电压为4.4V,重复该放电-充电操作共2次,静置2天,记为一个放电-充电操作过程。重复该放电-充电操作过程直至电化学装置产气,测量电化学装置的厚度,记为测试后厚度。
实施例5
除了重复放电-充电操作过程共3次以外,其余与实施例4相同。
实施例6
除了重复放电-充电操作过程共4次以外,其余与实施例4相同。
实施例7
除了重复放电-充电操作过程共5次以外,其余与实施例4相同。
对比例1
取制备例1制备的钴酸锂体系电化学装置,以5A的充电电流将电化学装置恒流充电至电压为4.4V,再恒压充电至电流为250mA,静置6天,测量其厚度,记为测试前厚度。
然后再以5A的充电电流将电化学装置恒流充电至电压为4.4V,静置2天。重复该充电操作直至电化学装置产气,测量电化学装置的厚度,记为测试后厚度。
对比例2
取制备例2制备的磷酸铁锂体系电化学装置,以5A的充电电流将电化学装置恒流充电至电压为3.6V,再恒压充电至电流为250mA,静置6天,测量其厚度,记为测试前厚度。
然后再以5A的充电电流将电化学装置恒流充电至电压为3.6V,静置2天。重复该充电操作直至电化学装置产气,测量电化学装置的厚度,记为测试后厚度。
对比例3
取制备例3制备的钴酸锂、磷酸铁锂混合体系电化学装置,以5A的充电电流将电化学装置恒流充电至电压为4.4V,再恒压充电至电流为250mA,静置6天,测量其厚度,记为测试前厚度。
然后再以5A的充电电流将电化学装置恒流充电至电压为4.4V,静置2天。重复该充电操作直至电化学装置产气,测量电化学装置的厚度,记为测试后厚度。
通过以下表达式计算各实施例和对比例电化学装置的膨胀率:
膨胀率=(测试后电化学装置厚度-测试前电化学装置厚度)/测试前电化学装置厚度×100%。
实施例1至7和对比例1至3的性能数据如表1所示:
表1
组别 产气天数 测试前厚度(mm) 测试后厚度(mm) 膨胀率
实施例1 597 8.245 9.399 14%
实施例2 858 10.412 11.766 13%
实施例3 612 12.542 14.423 15%
实施例4 654 8.354 9.357 12%
实施例5 720 8.265 9.339 13%
实施例6 794 8.122 9.097 12%
实施例7 852 8.322 9.237 11%
对比例1 378 8.235 9.553 16%
对比例2 649 10.345 11.474 11%
对比例3 487 12.312 14.036 14%
从实施例1和对比例1、实施例2和对比例2、实施例3和对比例3可以看出,使用本申请的放电-充电操作后,电化学装置的产气天数明显延长,并且在循环天数明显延长的情况下,各类电化学装置的膨胀率非常接近,表明本申请的电化学装置管理方法能够显著 延缓电化学装置产气,延长电化学装置的寿命。
从实施例1至3可以看出,针对不同体系的电化学装置,使用本申请的放电-充电操作后,其产气天数均明显延长,表明本申请的电化学装置管理方法能够显著延缓电化学装置产气,从而延长不同体系电化学装置的寿命。
从实施例4至7可以看出,放电-充电操作的次数也会影响电化学装置的产气天数及膨胀率,但只要使得放电-充电操作次数在本申请范围内,就能够显著延缓电化学装置产气,延长电化学装置的寿命。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
本说明书中的各个实施例均采用相关的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。尤其,对于电子设备实施例而言,由于其基本相似于方法实施例,所以描述的比较简单,相关之处参见方法实施例的部分说明即可。
以上所述仅为本申请的较佳实施例而已,并非用于限定本申请的保护范围。凡在本申请的精神和原则之内所作的任何修改、等同替换、改进等,均包含在本申请的保护范围内。

Claims (21)

  1. 一种电化学装置管理方法,其中,所述方法包括:
    当电化学装置处于预设状态时,测量所述电化学装置的预定参数;
    响应于所述预定参数满足预设条件,对所述电化学装置进行至少一次放电-充电操作,所述放电-充电操作包括:
    将所述电化学装置放电至第二电压阈值,所述第二电压阈值小于第一电压阈值,所述第一电压阈值为所述电化学装置的充电限制电压;和
    将所述电化学装置充电至第三电压阈值,所述第三电压阈值与所述第一电压阈值的差异度不大于20%。
  2. 根据权利要求1所述的电化学装置管理方法,其中,所述响应于所述预定参数满足预设条件,对所述电化学装置进行至少一次放电-充电操作的步骤包括:
    响应于所述预定参数不小于预设阈值,对所述电化学装置进行至少一次放电-充电操作。
  3. 根据权利要求1所述的电化学装置管理方法,其中,所述预设状态包括:所述电化学装置的工作电压不小于第一电压阈值或所述电化学装置与充电设备电连接中的至少一个。
  4. 根据权利要求1所述的电化学装置管理方法,其中,所述测量所述电化学装置的预定参数的步骤包括测量所述电化学装置的厚度,所述响应于所述预定参数满足预设条件,对所述电化学装置进行至少一次放电-充电操作的步骤包括:
    响应于所述厚度不小于预设厚度,对所述电化学装置进行至少一次放电-充电操作。
  5. 根据权利要求1所述的电化学装置管理方法,其中,所述测量所述电化学装置的预定参数的步骤包括测量所述电化学装置处于预设状态的时长,所述响应于所述预定参数满足预设条件,对所述电化学装置进行至少一次放电-充电操作的步骤包括:
    响应于所述时长不小于预设时长,对所述电化学装置进行至少一次放电-充电操作。
  6. 根据权利要求1所述的电化学装置管理方法,其中,所述测量所述电化学装置的预定参数的步骤包括测量所述电化学装置内压力,所述响应于所述预定参数满足预设条件,对所述电化学装置进行至少一次放电-充电操作的步骤包括:
    当测量到所述电化学装置内压力不小于预设电化学装置内压力时,对所述电化学装置进行至少一次放电-充电操作。
  7. 根据权利要求1所述的电化学装置管理方法,其中,所述测量所述电化学装置的预 定参数的步骤包括测量所述电化学装置的厚度和所述电化学装置处于预设状态的时长,所述响应于所述预定参数满足预设条件,对所述电化学装置进行至少一次放电-充电操作的步骤包括以下步骤中的至少一个:
    当测量到所述厚度小于预设厚度、所述时长不小于预设时长时,对所述电化学装置进行至少一次放电-充电操作;
    当测量到所述时长小于预设时长、所述厚度不小于预设厚度时,对所述电化学装置进行至少一次放电-充电操作;或
    当测量到所述时长不小于预设时长、且所述厚度不小于预设厚度时,对所述电化学装置进行至少一次放电-充电操作。
  8. 根据权利要求1所述的电化学装置管理方法,其中,所述测量所述电化学装置的预定参数的步骤包括测量所述电化学装置内压力和所述电化学装置处于预设状态的时长,所述响应于所述预定参数满足预设条件,对所述电化学装置进行至少一次放电-充电操作的步骤包括以下步骤中的至少一个:
    当测量到所述电化学装置内压力小于预设电化学装置内压力、所述时长不小于预设时长时,对所述电化学装置进行至少一次放电-充电操作;
    当测量到所述时长小于预设时长、所述电化学装置内压力不小于预设电化学装置内压力时,对所述电化学装置进行至少一次放电-充电操作;或
    当测量到所述时长不小于预设时长、且所述电化学装置内压力不小于预设电化学装置内压力时,对所述电化学装置进行至少一次放电-充电操作。
  9. 根据权利要求1所述的电化学装置管理方法,其中,所述对所述电化学装置进行至少一次放电-充电操作之前,所述方法还包括:
    生成放电-充电操作提示信息,以提示用户所述电化学装置进入放电-充电操作状态;
    接收到用户进行放电-充电操作的指令后,开始进行所述放电-充电操作。
  10. 根据权利要求1所述的电化学装置管理方法,其中,所述电化学装置中的正极包括钴酸锂或磷酸铁锂中的至少一种。
  11. 根据权利要求10所述的电化学装置管理方法,其中,当所述电化学装置为钴酸锂体系电化学装置时,所述电化学装置的第一电压阈值为4.3V至4.5V;
    当所述电化学装置为磷酸铁锂体系电化学装置时,所述电化学装置的第一电压阈值为3.5V至3.7V;
    当所述电化学装置为钴酸锂和磷酸铁锂混合体系时,所述电化学装置的第一电压阈值为4.3V至4.5V。
  12. 一种充电装置,其中,包括处理器和机器可读存储介质,所述机器可读存储介质存储有能够被所述处理器执行的机器可执行指令,所述处理器执行所述机器可执行指令时,实现权利要求1-11任一项所述的方法。
  13. 一种计算机可读存储介质,其中,所述计算机可读存储介质内存储有计算机程序,所述计算机程序被处理器执行时实现权利要求1-11任一项所述的方法。
  14. 一种系统,其中,包括处理器和机器可读存储介质,所述机器可读存储介质存储有能够被所述处理器执行的机器可执行指令,所述处理器执行所述机器可执行指令时,实现权利要求1-11任一项所述的方法。
  15. 一种电子设备,其中,所述电子设备包括:状态检测装置、预定参数测量装置和放电-充电装置,其中,
    所述状态检测装置用于检测电化学装置的状态;
    所述预定参数测量装置用于测量所述电化学装置的预定参数;
    所述放电-充电装置用于对所述电化学装置进行至少一次放电-充电操作;
    当所述状态检测装置检测到所述电化学装置处于预设状态时,通知所述预定参数测量装置测量所述电化学装置的预定参数;
    响应于所述预定参数测量装置测量到所述预定参数满足预设条件,发出放电-充电操作通知;
    所述放电-充电装置接收到放电-充电操作通知后,进行所述至少一次放电-充电操作;
    所述放电-充电操作包括:
    将所述电化学装置放电至第二电压阈值,所述第二电压阈值小于第一电压阈值,所述第一电压阈值为所述电化学装置的充电限制电压;和
    将所述电化学装置充电至第三电压阈值,所述第三电压阈值与所述第一电压阈值的差异度不大于20%。
  16. 根据权利要求15所述的电子设备,其中,所述预设状态包括:所述电化学装置的电压不小于所述第一电压阈值或所述电化学装置与充电设备电连接中的至少一个。
  17. 根据权利要求15所述的电子设备,其中,所述预定参数测量装置包括厚度测量装置,和/或时长测量装置,和/或电化学装置内压力测量装置;
    所述厚度测量装置用于测量所述电化学装置的厚度;
    所述时长测量装置用于测量所述电化学装置处于预设状态的时长;
    所述电化学装置内压力测量装置用于测量所述电化学装置的内压力。
  18. 根据权利要求15所述的电子设备,其中,所述预定参数满足预设条件包括所述预定参数不小于预设阈值。
  19. 根据权利要求15所述的电子设备,其中,所述电子设备还包括:
    信息提示装置,用于接收放电-充电操作通知,并生成放电-充电操作提示信息,以提示用户所述电化学装置进入放电-充电操作状态;
    所述放电-充电装置接收到用户进行放电-充电操作的指令后,进行所述至少一次放电-充电操作。
  20. 根据权利要求15所述的电子设备,其中,所述电化学装置中的正极包括钴酸锂体系或磷酸铁锂中的至少一种。
  21. 根据权利要求15所述的电子设备,其中,当所述电化学装置为钴酸锂体系电化学装置时,所述电化学装置的第一电压阈值为4.3V至4.5V;
    当所述电化学装置为磷酸铁锂体系电化学装置时,所述电化学装置的第一电压阈值为3.5V至3.7V;
    当所述电化学装置为钴酸锂和磷酸铁锂混合体系时,所述电化学装置的第一电压阈值为4.3V至4.5V。
PCT/CN2021/102455 2021-06-25 2021-06-25 电化学装置管理方法、电子设备、充电装置及存储介质 WO2022267029A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2021/102455 WO2022267029A1 (zh) 2021-06-25 2021-06-25 电化学装置管理方法、电子设备、充电装置及存储介质
CN202180003023.6A CN113795965A (zh) 2021-06-25 2021-06-25 电化学装置管理方法、电子设备、充电装置及存储介质
US18/394,406 US20240128525A1 (en) 2021-06-25 2023-12-22 Management method of electrochemical device, electronic device, charging device and storage medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/102455 WO2022267029A1 (zh) 2021-06-25 2021-06-25 电化学装置管理方法、电子设备、充电装置及存储介质

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/394,406 Continuation US20240128525A1 (en) 2021-06-25 2023-12-22 Management method of electrochemical device, electronic device, charging device and storage medium

Publications (1)

Publication Number Publication Date
WO2022267029A1 true WO2022267029A1 (zh) 2022-12-29

Family

ID=78877405

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/102455 WO2022267029A1 (zh) 2021-06-25 2021-06-25 电化学装置管理方法、电子设备、充电装置及存储介质

Country Status (3)

Country Link
US (1) US20240128525A1 (zh)
CN (1) CN113795965A (zh)
WO (1) WO2022267029A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116799899A (zh) * 2023-05-29 2023-09-22 芜湖鑫锐信息科技有限公司 电池安全管理方法、装置、设备和存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101777669A (zh) * 2010-02-02 2010-07-14 江西联威新能源有限公司 锂离子电池的预充化成方法
CN109888853A (zh) * 2018-10-31 2019-06-14 中移物联网有限公司 一种充电控制方法、终端设备及存储介质
CN110970959A (zh) * 2018-09-30 2020-04-07 华为技术有限公司 充电管理方法、图形用户界面及相关装置
CN111954965A (zh) * 2020-03-24 2020-11-17 宁德新能源科技有限公司 电化学装置的充电方法、电子装置以及可读存储介质
CN110121812B (zh) * 2016-12-30 2021-03-30 华为技术有限公司 对电池充电的方法、充电装置及终端设备

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103515653B (zh) * 2012-06-28 2015-12-09 深圳市海盈科技股份有限公司 软包锂离子电池的化成方法
CN109167112A (zh) * 2018-08-13 2019-01-08 浙江衡远新能源科技有限公司 一种钛酸锂电池的高温夹具化成方法
JP7443350B2 (ja) * 2020-08-04 2024-03-05 寧徳新能源科技有限公司 電子設備、電気化学デバイスに使用される充電方法、端末及び記憶媒体

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101777669A (zh) * 2010-02-02 2010-07-14 江西联威新能源有限公司 锂离子电池的预充化成方法
CN110121812B (zh) * 2016-12-30 2021-03-30 华为技术有限公司 对电池充电的方法、充电装置及终端设备
CN110970959A (zh) * 2018-09-30 2020-04-07 华为技术有限公司 充电管理方法、图形用户界面及相关装置
CN109888853A (zh) * 2018-10-31 2019-06-14 中移物联网有限公司 一种充电控制方法、终端设备及存储介质
CN111954965A (zh) * 2020-03-24 2020-11-17 宁德新能源科技有限公司 电化学装置的充电方法、电子装置以及可读存储介质

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116799899A (zh) * 2023-05-29 2023-09-22 芜湖鑫锐信息科技有限公司 电池安全管理方法、装置、设备和存储介质
CN116799899B (zh) * 2023-05-29 2024-02-27 深圳市泰量电子有限公司 电池安全管理方法、装置、设备和存储介质

Also Published As

Publication number Publication date
US20240128525A1 (en) 2024-04-18
CN113795965A (zh) 2021-12-14

Similar Documents

Publication Publication Date Title
US8610408B2 (en) Lithium ion secondary battery charging method and battery pack
WO2019165796A1 (zh) 电池及电池放电后负极极片中剩余活性锂容量的测试方法
JP5810320B2 (ja) リチウムイオン電池の充電方法及び電池搭載機器
US10539627B2 (en) Method of restoring secondary battery and method of reusing secondary battery
US20100233524A1 (en) Cylindrical non-aqueous electrolyte secondary battery
JP2008192495A (ja) 電池の内部短絡評価方法および内部短絡評価装置並びに電池及び電池パックおよびそれらの製造法
US20240128525A1 (en) Management method of electrochemical device, electronic device, charging device and storage medium
WO2018082288A1 (zh) 一种修复电池的方法及装置
US20230207893A1 (en) Three-electrode battery and energy storage system
US20210313816A1 (en) Secondary battery charging system
TW201743497A (zh) 涓流充電電源系統
EP3793016B1 (en) Battery electrode sheet and preparation method therefor, battery management method and related apparatus
JP4329326B2 (ja) 温度保護素子ユニット付き二次電池及び二次電池パック
JP2017188430A (ja) リチウム二次電池
JP2005158643A (ja) リチウム二次電池の検査方法
JP3183139B2 (ja) 円筒形電池の短絡検出法
JP2000150000A (ja) バックアップ電源の管理方法
CN112039155A (zh) 充电盒充电控制方法、充电盒及计算机可读存储介质
WO2023070335A1 (zh) 一种电化学装置析锂检测方法、系统及电化学装置
WO2023197132A1 (zh) 电化学装置管理方法、装置、充电装置、电池系统及介质
CN116031513A (zh) 电化学装置管理方法、电子设备、充电装置及存储介质
WO2023184336A1 (zh) 电化学装置及其控制方法、电子设备和存储介质
JP4478856B2 (ja) 二次電池保護制御システムおよび二次電池保護制御方法
CN112838196B (zh) 二次电池及含有该二次电池的装置
CN116137354A (zh) 一种电化学装置管理方法、系统、电池模组及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21946522

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE