WO2022266852A1 - 发光器件及其制作方法、显示装置 - Google Patents

发光器件及其制作方法、显示装置 Download PDF

Info

Publication number
WO2022266852A1
WO2022266852A1 PCT/CN2021/101604 CN2021101604W WO2022266852A1 WO 2022266852 A1 WO2022266852 A1 WO 2022266852A1 CN 2021101604 W CN2021101604 W CN 2021101604W WO 2022266852 A1 WO2022266852 A1 WO 2022266852A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
quantum dots
electrode
layer
film layer
Prior art date
Application number
PCT/CN2021/101604
Other languages
English (en)
French (fr)
Inventor
王好伟
Original Assignee
京东方科技集团股份有限公司
北京京东方技术开发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方技术开发有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US18/030,090 priority Critical patent/US20230371295A1/en
Priority to PCT/CN2021/101604 priority patent/WO2022266852A1/zh
Priority to CN202180001582.3A priority patent/CN115735426A/zh
Priority to EP21946354.4A priority patent/EP4207327A4/en
Publication of WO2022266852A1 publication Critical patent/WO2022266852A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/115OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising active inorganic nanostructures, e.g. luminescent quantum dots
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/38Devices specially adapted for multicolour light emission comprising colour filters or colour changing media [CCM]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/125OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/876Arrangements for extracting light from the devices comprising a resonant cavity structure, e.g. Bragg reflector pair
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/40Thermal treatment, e.g. annealing in the presence of a solvent vapour
    • H10K71/421Thermal treatment, e.g. annealing in the presence of a solvent vapour using coherent electromagnetic radiation, e.g. laser annealing
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/331Nanoparticles used in non-emissive layers, e.g. in packaging layer

Definitions

  • the present disclosure relates to the field of display technology, in particular to a light emitting device, a manufacturing method thereof, and a display device.
  • Quantum dots also known as semiconductor nanocrystals and semiconductor nanoparticles, refer to nano-solid materials whose size is on the order of nanometers in three dimensions of space or composed of them as basic units. A collection of atoms and molecules. A light-emitting diode based on quantum dot materials is called a quantum dot light-emitting diode (QLED), which is a new type of light-emitting device.
  • QLED quantum dot light-emitting diode
  • a light-emitting device provided by an embodiment of the present disclosure includes a plurality of pixel units, each of which includes at least n sub-pixels capable of emitting light of n different colors, wherein,
  • Each of the sub-pixels includes:
  • the light-emitting layer of at least one sub-pixel includes host quantum dots and at least one light emitting color that is compatible with the host quantum dots. Different residual quantum dots;
  • the color filter layer located on the side of the first electrode or the second electrode away from the light-emitting layer, the color filter layer is configured to pass through the light emitted by the host quantum dots and prevent the residual quantum dots from The emitted light passes through.
  • the surface of the host quantum dots is connected with a structure as shown in general formula X:
  • A is a coordination unit
  • B' is a residual unit
  • the coordination unit includes at least one of a mercapto group, a hydroxyl group, an amino group, an amino group, a carboxyl group, a phosphoric acid group, a phosphoester group and a sulfonic acid group;
  • the residual unit includes at least one of the structures shown in the following formula
  • R is selected from hydrogen, alkoxy, alkyl or aryl ;
  • R is selected from hydrogen , alkoxy, alkyl or aryl;
  • R 3 is selected from hydrogen, alkylene or arylene
  • R 4 is selected from hydrogen, alkylene or arylene
  • R 5 is selected from hydrogen, alkylene or arylene
  • R 6 is selected from hydrogen, alkylene R is selected from hydrogen, alkylene or arylene
  • R is selected from hydrogen, alkylene or arylene.
  • the surface of the host quantum dots is connected with a cross-linked network.
  • the cross-linking network is formed by cross-linking the group pair R9 and R10, and the R9 and the R10 are respectively the cross-linking on the surface of the host quantum dots.
  • Cross-linkable ligands preceding the network are formed by cross-linking the group pair R9 and R10, and the R9 and the R10 are respectively the cross-linking on the surface of the host quantum dots.
  • the cross-linked network can be formed by cross-linking with a cross-linking agent and a group R11, and the R11 is the Cross-linkable ligands.
  • the molar ratio of the residual quantum dots to all quantum dots is less than 10%.
  • each pixel unit includes a red sub-pixel, a green sub-pixel, and a blue sub-pixel
  • the red sub-pixel includes a red host quantum dot
  • the green The subpixels include green host quantum dots and the blue subpixels include blue host quantum dots.
  • the molar ratio of the residual quantum dots in the red sub-pixel to all quantum dots is , the molar ratio of the residual quantum dots in the green sub-pixel to all quantum dots and the molar ratio of the residual quantum dots in the blue sub-pixel to all quantum dots decrease in sequence.
  • the color filter layer includes a plurality of color resists of different colors corresponding one-to-one to each sub-pixel emitting light of different colors.
  • the color filter layer includes a plurality of optical modulation parts corresponding to each of the sub-pixels, and each of the sub-pixels includes one optical modulation part ;
  • the optical modulation part corresponding to the red sub-pixel is a first long-pass filter, and the starting wavelength of the first long-pass filter is smaller than the wavelength corresponding to the luminous peak of the red main body quantum dots, and greater than the wavelength corresponding to the luminous peak of the green main body quantum dots
  • the optical modulation part corresponding to the blue sub-pixel is a short-pass filter, and the cut-off wavelength of the short-pass filter is smaller than the wavelength corresponding to the luminous peak of the green main quantum dot, and greater than the wavelength corresponding to the luminous peak of the blue main quantum dot;
  • the optical modulation part corresponding to the green sub-pixel is a second long-pass filter, and the starting wavelength of the second long-pass filter is smaller than the wavelength corresponding to the luminescence peak of the green main quantum dot, and greater than the wavelength corresponding to the luminescence peak of the blue main quantum dot .
  • the color filter layer includes a plurality of optical modulation parts corresponding to each of the sub-pixels, and each of the sub-pixels includes one optical modulation part ;
  • the optical modulation part corresponding to the red sub-pixel is a first band-pass filter, and the starting wavelength of the first band-pass filter is smaller than the wavelength corresponding to the luminous peak of the red host quantum dot, and larger than the wavelength corresponding to the green host quantum dot.
  • the wavelength corresponding to the luminescence peak; the cut-off wavelength of the first bandpass filter is greater than the wavelength corresponding to the luminescence peak of the red host quantum dot;
  • the optical modulation part corresponding to the green sub-pixel is a second band-pass filter, and the starting wavelength of the second band-pass filter is smaller than the wavelength corresponding to the luminescence peak of the green host quantum dot, and greater than the wavelength corresponding to the blue host quantum dot.
  • the dot luminescence peak corresponds to the wavelength, and the cut-off wavelength of the second bandpass filter is greater than the corresponding wavelength of the green host quantum dot luminescence peak, and smaller than the corresponding wavelength of the red host quantum dot luminescence peak;
  • the optical modulation part corresponding to the blue sub-pixel is a third band-pass filter, the starting wavelength of the third band-pass filter is smaller than the wavelength corresponding to the luminescence peak of the blue host quantum dot, and the third band-pass filter
  • the cut-off wavelength of the filter is greater than the wavelength corresponding to the luminescence peak of the blue host quantum dots and smaller than the wavelength corresponding to the luminescence peak of the green host quantum dots.
  • the color filter layer includes a plurality of optical modulation parts corresponding to each of the sub-pixels, and each of the sub-pixels includes two Optical modulation part; one of the optical modulation parts in the red sub-pixel prevents the transmission of blue light, and the other optical modulation part prevents the transmission of green light; one of the optical modulation parts in the green sub-pixel prevents the transmission of blue light The other optical modulation part prevents red light from passing through; one of the optical modulation parts in the blue sub-pixel prevents red light from passing through, and the other optical modulation part prevents green light from passing through.
  • the optical modulation part includes at least one first film layer and at least one second film layer arranged alternately;
  • the refractive index is different from the refractive index of the second film layer.
  • the first electrode is a transparent electrode
  • the second electrode is a reflective electrode; side of the electrode.
  • the first electrode is a reflective electrode, and the second electrode partially reflects light in the visible light band; the optical modulation part is located at the first The second electrode is away from the side of the first electrode.
  • the materials of the first film layers in the optical modulation parts that reflect light of different colors are the same, and the materials of the second film layers in the optical modulation parts that reflect light of different colors are the same.
  • the material of the film layer is the same;
  • the thickness of the first film layer is the same, the thickness of the second film layer in the optical modulation part reflecting red light, the thickness of the second film layer in the optical modulation part reflecting green light, and the thickness of the second film layer in the optical modulation part reflecting blue light
  • the thickness of the second film layer decreases sequentially; or,
  • the thickness of the second film layer is the same, the thickness of the first film layer in the optical modulation part reflecting red light, the thickness of the first film layer in the optical modulation part reflecting green light, and the thickness of the first film layer in the optical modulation part reflecting blue light
  • the thickness of the first film layer decreases sequentially.
  • the material of the first film layer includes InGaAsP, InAlGaN, SiO2, TiO2, Si3N4, Au or Ag
  • the material of the second film layer includes InGaAsP, InAlGaN, SiO2, TiO2, Si3N4, Au or Ag
  • the materials of the first film layer and the second film layer are different.
  • the optical modulation part includes at least one first film layer and at least one second film layer arranged in alternate layers;
  • the first electrode is a reflective electrode
  • the second electrode reflects part of the light in the visible light band
  • the optical modulation part is located on the side of the second electrode away from the first electrode
  • the material of the first film layer is SiO2
  • the material of the second film layer is Si3N4
  • the first layer closest to the second electrode The thickness of the film layer is 5nm-15nm, and the thickness of the second film layer closest to the second electrode is approximately 35nm-45nm;
  • the material of the first film layer is SiO2
  • the material of the second film layer is Si3N4
  • the first film closest to the second electrode The thickness of the layer is 55nm-65nm, and the thickness of the second film layer closest to the second electrode is approximately 55nm-65nm;
  • the material of the first film layer is SiO2
  • the material of the second film layer is Si3N4
  • the first film closest to the second electrode The thickness of the layer is approximately 15nm-25nm, and the thickness of the second film layer closest to the second electrode is approximately 55nm-65nm.
  • the above-mentioned light-emitting device further includes: an electron transport layer located between the first electrode and the light-emitting layer, located between the light-emitting layer and the second electrode A hole injection layer, and a hole transport layer located between the hole injection layer and the light-emitting layer; wherein, the material of the electron transport layer includes an inorganic electron transport material;
  • it also includes: a hole transport layer located between the first electrode and the light emitting layer, a hole injection layer located between the first electrode and the hole transport layer, and a hole injection layer located between the light emitting layer. layer and the electron transport layer between the second electrode; wherein the hole transport layer comprises an inorganic hole transport material.
  • the host quantum dots include CdS, CdSe, CdTe, ZnSe, InP, PbS, CuInS2, ZnO, CsPbCl3, CsPbBr3, CsPhI3, CdS/ZnS, CdSe/ At least one of ZnS, ZnSe, InP/ZnS, PbS/ZnS, InAs, InGaAs, InGaN, GaNk, ZnTe, Si, Ge, C, nanorods.
  • an embodiment of the present disclosure also provides a method for manufacturing the above-mentioned light-emitting device, including:
  • the light-emitting layer of at least one sub-pixel includes host quantum dots and at least one A residual quantum dot with a different luminescent color from the host quantum dot;
  • the color filter layer is located on the side of the first electrode or the second electrode away from the light-emitting layer, and the color filter layer is configured to transmit the light emitted by the host quantum dots and prevent the remaining The light emitted by the quantum dots passes through.
  • preparing the light-emitting layer specifically includes:
  • A is a coordination unit
  • B is a cracking unit
  • C is an adhesion adjustment unit
  • the coordination unit includes any one of a mercapto group, a hydroxyl group, an amino group, an amino group, a carboxyl group, a phosphoric acid group, a phosphoester group and a sulfonic acid group;
  • the cleavage unit has a structure as shown in formulas II-IV;
  • the adhesion regulating unit is a perfluoroalkyl group containing more than 3 carbon atoms, or a group containing more than 8 hydrophilic functional groups, or a molecular chain containing more than 8 hydrophilic functional groups; the hydrophilic The functional group is hydroxyl, aldehyde, ester or ether;
  • R is selected from hydrogen, alkoxy, alkyl or aryl ;
  • R is selected from hydrogen , alkoxy, alkyl or aryl;
  • R 3 is selected from hydrogen, alkylene or arylene
  • R 4 is selected from hydrogen, alkylene or arylene
  • R 5 is selected from hydrogen, alkylene or arylene
  • R 6 is selected from hydrogen, alkylene R is selected from hydrogen, alkylene or arylene
  • R is selected from hydrogen, alkylene or arylene; wherein, the structure shown in the general formula I, adhesion adjustment When the unit has a hydrophilic property, the substrate has a hydrophobic property; or when the adhesion regulating unit has a hydrophobic property, the substrate has a hydrophilic property;
  • the cleavage unit in the general formula I undergoes a photolysis reaction, wherein after decomposition, the molecular chain segment containing the adhesion adjustment unit falls off the surface of the quantum dot, and the The surface of the host quantum dots forms the structure of the general formula X;
  • the unexposed quantum dot film is removed by washing with an organic solvent, and after drying, a patterned light-emitting layer is formed.
  • preparing the light-emitting layer specifically includes:
  • the host quantum dots not irradiated by the light of the predetermined wavelength are removed to form a patterned light emitting layer in the reserved area.
  • an embodiment of the present disclosure also provides a display device, including the above-mentioned light emitting device.
  • FIG. 1 is a schematic structural diagram of a light emitting device provided by an embodiment of the present disclosure
  • FIG. 2 is a schematic structural diagram of another light emitting device provided by an embodiment of the present disclosure.
  • FIG. 3 is a schematic structural diagram of another light emitting device provided by an embodiment of the present disclosure.
  • FIG. 4 is a schematic structural diagram of another light emitting device provided by an embodiment of the present disclosure.
  • FIG. 5 is a schematic structural diagram of another light emitting device provided by an embodiment of the present disclosure.
  • FIG. 6A is a schematic structural diagram of another light-emitting device provided by an embodiment of the present disclosure.
  • FIG. 6B is a schematic structural diagram of another light emitting device provided by an embodiment of the present disclosure.
  • FIG. 7 is a schematic diagram of a crosslinking reaction of a crosslinkable quantum dot provided by an embodiment of the present disclosure
  • Fig. 8 is a schematic diagram of cross-linking reaction of another cross-linkable quantum dot provided by an embodiment of the present disclosure
  • FIG. 9 is a schematic structural diagram of a blue light emitting device provided by an embodiment of the present disclosure.
  • Fig. 10 is a schematic diagram of the influence of the thicknesses of the first film layer and the second film layer on the device efficiency in Fig. 9;
  • Fig. 11 is a schematic diagram of the influence of the thickness of the first film layer and the change of the thickness of the second film layer on the device efficiency;
  • Fig. 12 is a schematic structural diagram of another blue light-emitting device provided by an embodiment of the present disclosure.
  • Fig. 13 is a schematic diagram of the influence of the thicknesses of the first film layer and the second film layer away from the second electrode in Fig. 12 on the device efficiency;
  • FIG. 14 is a schematic structural diagram of a red light emitting device provided by an embodiment of the present disclosure.
  • Fig. 15 is a schematic diagram of the influence of the thicknesses of the first film layer and the second film layer on the device efficiency in Fig. 14;
  • Fig. 16 is a schematic structural diagram of a green light-emitting device provided by an embodiment of the present disclosure.
  • Fig. 17 is a schematic diagram of the influence of the thicknesses of the first film layer and the second film layer on the device efficiency corresponding to Fig. 16;
  • FIG. 18 is a schematic flow chart of a light-emitting layer patterning method provided by an embodiment of the present disclosure.
  • FIG. 19 is a schematic flowchart of another light-emitting layer patterning method provided by an embodiment of the present disclosure.
  • Quantum dot patterning is the key to realizing high-resolution, full-color QLED devices.
  • the colloidal solution of quantum dots can be patterned by printing, transfer printing, photolithography, etc., but the printing equipment is expensive and the resolution is limited, so photolithography can be used to realize the patterning of electronic materials (quantum dots).
  • quantum dots when patterning full-color QLEDs is realized by photolithography, it is easy to cause color mixing problems due to the residue of quantum dots (for example, red sub-pixels should only emit red light, but contain weak green or blue light peaks).
  • a light emitting device provided by an embodiment of the present disclosure includes a plurality of pixel units, and the plurality of pixel units may be distributed in an array.
  • each pixel unit includes at least n sub-pixels capable of emitting light of n different colors (each pixel unit includes a red sub-pixel R, a green sub-pixel G and The blue sub-pixel B is taken as an example, but of course it is not limited thereto), each sub-pixel includes:
  • the first electrode 1 and the second electrode 2 arranged oppositely;
  • the light-emitting layer 3 located between the first electrode 1 and the second electrode 2, in at least one pixel unit, the light-emitting layer 3 of at least one sub-pixel includes host quantum dots and at least one residual quantum dot that is different in color from the host quantum dots point; for example, the light-emitting layer 3 of the red sub-pixel R includes red host quantum dots R-QD and green residual quantum dots and/or blue residual quantum dots, and the light-emitting layer 3 of the green sub-pixel G includes green host quantum dots G-QD and Red residual quantum dots and/or blue residual quantum dots, the light emitting layer 3 of the blue sub-pixel B includes blue host quantum dots B-QD and red residual quantum dots and/or green residual quantum dots;
  • the color filter layer 4 located on the side away from the light-emitting layer 3 of the first electrode 1 or the second electrode 2 is configured to transmit the light emitted by the host quantum dots and prevent the light emitted by the residual quantum dots from passing through.
  • the way to prevent the light emitted by the residual quantum dots from passing through may be to absorb or reflect the light emitted by the residual quantum dots.
  • preventing the transmission of the light emitted by the residual quantum dots can be understood as the transmittance of the light emitted by the residual quantum dots in the color filter layer is less than or equal to 20%.
  • the color filter layer is configured to transmit the light emitted by the host quantum dots. It can be understood that the transmittance of the light emitted by the host quantum dots in the color filter layer is greater than or equal to 40%.
  • each pixel unit includes 3 sub-pixels (R, G, B) capable of emitting light of 3 different colors; wherein, the light-emitting layer 3 of the red sub-pixel R In addition to having the red host quantum dot R-QD, it also has at least one residual quantum dot (this disclosure uses two residual quantum dots, green residual quantum dot 02 and blue residual quantum dot 03, as an example); the green subpixel G In addition to the green host quantum dot G-QD, the light-emitting layer 3 also has at least one residual quantum dot (the present disclosure takes red residual quantum dot 01 and blue residual quantum dot 03 as an example); blue In addition to the blue host quantum dots B-QD, the light-emitting layer 3 of the sub-pixel B also has at least one residual quantum dot (this disclosure takes red residual quantum dot 01 and green residual quantum dot 02 as an example.
  • the color filter layer can filter out the green light emitted by the green residual quantum dots 02 and the blue light emitted by the blue residual quantum dots 03 in the red sub-pixel R, thereby solving the problem of color mixing in the red sub-pixel R and improving the efficiency of the red sub-pixel.
  • the color purity of R; the color filter layer can filter out the red light emitted by the red residual quantum dot 01 in the green sub-pixel G and the blue light emitted by the blue residual quantum dot 03, thereby solving the problem of color mixing in the green sub-pixel G and improving the green color.
  • the color purity of the sub-pixel G; the color filter layer can filter out the red light emitted by the red residual quantum dot 01 in the blue sub-pixel B and the green light emitted by the green residual quantum dot 02, thereby solving the problem of color mixing in the blue sub-pixel B
  • the problem is to improve the color purity of the blue sub-pixel B. Further, the color gamut of the light-emitting device can be improved, and the display effect can be improved.
  • the color filter layer on the side of the first electrode or the second electrode away from the light-emitting layer, on the one hand, it can eliminate the light with a color different from that emitted by the light-emitting layer, thereby solving the problem of using photolithography.
  • the problem of color mixing occurs when patterning quantum dots; on the other hand, the purity of luminous colors can be improved, thereby improving the color gamut of light-emitting devices.
  • red residual quantum dots 01, green residual quantum dots 02 and blue residual quantum dots 03 in Figure 1-6B are only schematic illustrations and do not represent the real patterns of these three residual quantum dots. When , these three residual quantum dots may remain irregularly in the host quantum dots.
  • the emission wavelength range of red host quantum dots R-QD can be 610nm-640nm
  • the emission wavelength range of green host quantum dots G-QD can be 510nm-540nm
  • the emission wavelength range of blue host quantum dots B-QD can be It is 420nm ⁇ 460nm.
  • the surface of host quantum dots (such as red host quantum dots R-QD, green host quantum dots G-QD, and blue host quantum dots B-QD) surfaces can be connected
  • host quantum dots such as red host quantum dots R-QD, green host quantum dots G-QD, and blue host quantum dots B-QD
  • A is a coordination unit
  • B' is a residual unit
  • the coordination unit includes at least one of a mercapto group, a hydroxyl group, an amino group, an amino group, a carboxyl group, a phosphoric acid group, a phosphoester group and a sulfonic acid group;
  • the residual unit includes at least one of the structures shown in the following formula
  • R is selected from hydrogen, alkoxy, alkyl or aryl ;
  • R is selected from hydrogen , alkoxy, alkyl or aryl;
  • R 3 is selected from hydrogen, alkylene or arylene
  • R 4 is selected from hydrogen, alkylene or arylene
  • R 5 is selected from hydrogen, alkylene or arylene
  • R 6 is selected from hydrogen, alkylene R is selected from hydrogen, alkylene or arylene
  • R is selected from hydrogen, alkylene or arylene.
  • the above-mentioned residual unit may be a group generated after the cleavage unit (described later) is cleaved after being irradiated with ultraviolet light.
  • the light-emitting layer provided by the embodiments of the present disclosure can use quantum dots with photolytic ligands to be cleaved by ultraviolet light after the photolytic ligands are cleaved, and the solubility of the quantum dots is different before and after cleavage, thereby realizing photolithographic patterning.
  • the surface of host quantum dots (such as red host quantum dots R-QD, green host quantum dots G-QD, and blue host quantum dots B-QD) surfaces can be connected There is a cross-linked network.
  • the cross-linked network can be formed by cross-linking the group pair R9 and R10, and R9 and R10 are respectively the cross-linkable Ligand.
  • R9 is at least one selected from mercapto, alkenyl, and dienyl
  • R10 corresponding to R9 is at least one selected from alkenyl, dienyl, alkynyl, and dienyl.
  • FIG. 7 shows a schematic diagram of the crosslinking reaction principle of such quantum dots.
  • formula I represents a cross-linkable quantum dot having a group pair R9 and R10 that can react to form a cross-linked network.
  • hv light irradiation
  • the cross-linked network can also be formed by cross-linking with a cross-linking agent and a group R11, and R11 is a cross-linkable cross-linking network before forming a cross-linking network on the surface of the host quantum dots.
  • Ligand Specifically, R11 is at least one selected from mercapto, alkenyl, and dienyl, and the crosslinking agent is at least one selected from C4-C20 diene or C4-C20 diyne.
  • FIG. 8 shows a schematic diagram of the cross-linking reaction principle of such quantum dots.
  • formula II represents a crosslinkable quantum dot having a group R11 that can be crosslinked by a crosslinking agent to form a crosslinking network
  • R12—R12 is a crosslinking agent
  • hv light irradiation
  • red host quantum dots R-QD red host quantum dots
  • green residual quantum dots 02 green residual quantum dots 02
  • the light-emitting layer 3 of the green sub-pixel G has green host quantum dots G-QD, red residual quantum dots 01 and Blue residual quantum dots 03
  • the light-emitting layer 3 of the blue sub-pixel B has blue host quantum dots B-QD, red residual quantum dots 01 and green residual quantum dots 02, in each sub-pixel (for example, red sub-pixel R)
  • the molar ratio of residual quantum dots (such as green residual quantum dots 02 and blue residual quantum dots 03) to all quantum dots (including red host quantum dots R-QD, green residual quantum dots 02 and blue residual quantum dots 03) is less than 10%
  • the residual quantum dots (such as red residual quantum dots 01 and blue residual quantum dots 03) in each sub-pixel (such as green sub-pixel G) are compared with all quantum dots (including green host quantum dots G-QD, red residual quantum dots
  • the molar ratio of quantum dots 01 and blue residual quantum dots 03) is less than 10%
  • red quantum dots are prepared last.
  • Light-emitting devices are generally divided into upright structure and inverted structure. In the upright structure, the quantum dots are generally fabricated on the hole transport layer. In the inverted structure, the quantum dots are generally fabricated on the electron transport layer.
  • quantum dots are more likely to remain on other quantum dots, so the red subpixel R has the most residual quantum dots, the green subpixel G takes the second place, and the blue subpixel B has the least residual quantum dots , in the above-mentioned light-emitting device provided by the embodiment of the present disclosure, as shown in FIG. 1-FIG.
  • the molar ratio of R-QD, 02 and 03), the molar ratio of the residual QDs (including 01 and 03) to the total QDs (including G-QD, 01 and 03) in the green subpixel G and the blue subpixel B The molar ratio of the residual quantum dots (including 01 and 02) to all the quantum dots (including B-QD, 01 and 02) in decreases sequentially.
  • the color filter layer 4 may include: a red color resistance 101 corresponding to the red sub-pixel R, a green color resistance 102 corresponding to the green sub-pixel G, and a blue color resistance 103 corresponding to the blue sub-pixel B;
  • the color resistance 101 allows red light to pass through and prevents green light and blue light from passing through, thereby solving the problem of color mixing in the red sub-pixel R;
  • the green color resistance 102 allows green light to pass through while preventing red light and blue light from passing through, thereby solving the problem of green light
  • the blue color-resistor 103 only allows blue light to pass through but prevents the transmission of green light and red light, thereby solving the problem of color mixing in the blue sub-pixel B.
  • the material of the color resistance may be a color resin material, preferably, the material of the color resistance is a mixture of a propionate polymer and a pigment.
  • red color resistance is to add red pigment to resin
  • green color resistance is to add green pigment to resin
  • blue color resistance is to add blue pigment to resin.
  • the color filter layer 4 includes a plurality of optical modulation parts (51, 52) corresponding to each sub-pixel (R, G, B). , 53), and each sub-pixel corresponds to an optical modulation unit;
  • the optical modulation part 51 corresponding to the red sub-pixel R is a first long-pass filter, and the starting wavelength of the first long-pass filter is smaller than the wavelength corresponding to the luminescence peak of the red host quantum dot R-QD, and larger than the wavelength corresponding to the green host quantum dot R-QD.
  • the wavelength corresponding to the G-QD luminescence peak; the optical modulation part 53 corresponding to the blue sub-pixel B is a short-pass filter, and the cut-off wavelength of the short-pass filter is smaller than the wavelength corresponding to the G-QD luminescence peak of the green host quantum dot, and greater than the wavelength of the blue host quantum dot.
  • the corresponding wavelength of the quantum dot B-QD luminescence peak; the optical modulation part 52 corresponding to the green sub-pixel B is a second long-pass filter, and the starting wavelength of the second long-pass filter is smaller than the wavelength corresponding to the green main quantum dot G-QD luminescence peak , and greater than the wavelength corresponding to the blue host quantum dot B-QD luminescence peak.
  • the starting wavelength of the long-pass filter refers to the corresponding wavelength when the transmittance increases to 1/2 of the peak value in the long-pass filter
  • the cut-off wavelength of the short-pass filter refers to the The wavelength corresponding to when the transmittance in the chip decreases to 1/2 of the peak value.
  • the initial wavelength of the first long-pass filter is smaller than the wavelength corresponding to the luminescence peak of the red host quantum dots, and greater than the wavelength corresponding to the luminescence peak of the green host quantum dots, which is beneficial for the light emitted by the red quantum dots to pass through the color filter layer, while preventing the green
  • the light emitted by the quantum dots and the light emitted by the blue quantum dots pass through the color filter layer to increase the light purity of the red sub-pixel R
  • the cut-off wavelength of the short-pass filter is smaller than the corresponding wavelength of the quantum dot luminescence peak of the green body, and greater than that of the blue body
  • the quantum dot luminescence peak corresponds to the wavelength, which is beneficial for the light emitted by the blue quantum dots to pass through the color filter layer, while preventing the light emitted by the green quantum dots and the light emitted by the red quantum dots from passing through the color filter layer, so as to increase the light output of the blue sub-pixel B Purity
  • the optical modulator 51 corresponding to the red sub-pixel R is a first long-pass filter, and the starting wavelength of the first long-pass filter is less than or equal to the minimum value of the light emission band of the red host quantum dot R-QD, and greater than or It is equal to the maximum value of the G-QD emission band of the green main body quantum dot;
  • the optical modulation part 53 corresponding to the blue sub-pixel B is a short-pass filter, and the cut-off wavelength of the short-pass filter is less than or equal to the green main body quantum dot G-QD light emission band and greater than or equal to the maximum value of the blue host quantum dot B-QD light-emitting band;
  • the optical modulation part 52 corresponding to the green sub-pixel B is the second long-pass filter, and the start wavelength of the second long-pass filter Less than or equal to the minimum value of the green host quantum dot G-QD luminescence band, and greater than or equal to the maximum value of the blue host quantum dot B-QD lumi
  • the quantum dot luminous wavelength band can be understood as the wavelength band corresponding to the wavelength of the luminous intensity greater than or equal to 20% of the quantum dot luminous peak value.
  • the starting wavelength of the first long-pass filter is less than or equal to 610nm and greater than or equal to 540nm; the cut-off wavelength of the short-pass filter is less than or equal to 510nm and greater than or equal to 460nm; the The starting wavelength of the second long-pass filter is less than or equal to 510nm and greater than or equal to 460nm.
  • first long-pass filter short-pass filter
  • second long-pass filter can be adjusted and designed to realize respective corresponding functions.
  • the color filter layer 4 includes a plurality of optical modulation parts (61, 62) corresponding to each sub-pixel (R, G, B). , 63), and each sub-pixel corresponds to an optical modulation unit;
  • the optical modulator 61 corresponding to the red sub-pixel R is a first band-pass filter, and the starting wavelength of the first band-pass filter is smaller than the wavelength corresponding to the luminescence peak of the red host quantum dot R-QD, and larger than the wavelength corresponding to the green host quantum dot R-QD.
  • the wavelength corresponding to the G-QD luminescence peak; the cut-off wavelength of the first bandpass filter is greater than the wavelength corresponding to the R-QD luminescence peak of the red host quantum dot;
  • the optical modulation part 62 corresponding to the green sub-pixel G is a second band-pass filter, and the starting wavelength of the second band-pass filter is smaller than the wavelength corresponding to the luminescence peak of the green host quantum dot G-QD and greater than that of the blue host quantum dot B-QD
  • the luminescence peak corresponds to the wavelength
  • the cut-off wavelength of the second bandpass filter is greater than the wavelength corresponding to the luminescence peak of the green host quantum dot G-QD and smaller than the wavelength corresponding to the luminescence peak of the red host quantum dot R-QD;
  • the optical modulation part 63 corresponding to the blue sub-pixel is a third band-pass filter, the starting wavelength of the third band-pass filter is smaller than the corresponding wavelength of the blue host quantum dot B-QD luminescence peak, and the cut-off of the third band-pass filter The wavelength is greater than the wavelength corresponding to the luminescence peak of the blue host quantum dot B-QD and smaller than the corresponding wavelength of the luminescence peak of the green host quantum dot G-QD.
  • the starting wavelength of the band-pass filter refers to the wavelength corresponding to when the transmittance in the band-pass filter increases to 1/2 of the peak value
  • the cut-off wavelength of the band-pass filter refers to the The wavelength corresponding to when the transmittance in the chip decreases to 1/2 of the peak value.
  • first optical modulator 61 the second optical modulator 62 , and the third optical modulator 63 can increase the light purity of the red sub-pixel R, the green sub-pixel G, and the blue sub-pixel B respectively.
  • the starting wavelength of the first bandpass filter is less than or equal to the minimum value of the red host quantum dot R-QD luminescent band, and greater than or equal to the maximum value of the green host quantum dot G-QD luminescent band; the first bandpass The cut-off wavelength of the filter is greater than or equal to the maximum value of the red host quantum dot R-QD luminescence band;
  • the optical modulation part 62 corresponding to the green sub-pixel G is a second band-pass filter, and the starting wavelength of the second band-pass filter is less than or equal to the minimum value of the light-emitting band of the green host quantum dot G-QD and greater than or equal to the blue host quantum dot G-QD.
  • the maximum value of the quantum dot B-QD light-emitting band, the cut-off wavelength of the second band-pass filter is greater than or equal to the maximum value of the green main body quantum dot G-QD light-emitting band and less than or equal to the minimum of the red main body quantum dot R-QD light-emitting band value;
  • the optical modulation part 63 corresponding to the blue sub-pixel B is a third bandpass filter, the starting wavelength of the third bandpass filter is less than or equal to the minimum value of the blue host quantum dot B-QD light emission band, and the third bandpass filter
  • the cut-off wavelength of the filter is greater than or equal to the maximum value of the blue host quantum dot B-QD luminescence band and less than or equal to the minimum value of the green host quantum G-QD dot luminescence band.
  • the starting wavelength of the first bandpass filter is less than or equal to 610nm, and the cutoff wavelength is greater than or equal to 640nm; the starting wavelength of the second bandpass filter is less than or equal to 510nm, and the cutoff wavelength is greater than or equal to equal to 640nm; the starting wavelength of the third bandpass filter is less than or equal to 420nm, and the cutoff wavelength is greater than or equal to 460nm.
  • first band-pass filter second band-pass filter and third band-pass filter can be adjusted and designed to realize respective corresponding functions.
  • the color filter layer 4 includes a plurality of optical modulation parts corresponding to each sub-pixel, and each sub-pixel is corresponding to a stacked layer to prevent residual quantum dots from emitting The light passes through the n-1 optical modulators. Specifically, as shown in FIGS.
  • each pixel unit including three sub-pixels of red, green and blue as an example, and each sub-pixel corresponds to two optical modulators arranged in layers, for example, red
  • the sub-pixel R corresponds to the first optical modulation part 41 that prevents the light emitted by the green residual quantum dot 02 from passing through, and the second optical modulation part 42 that prevents the light emitted from the blue residual quantum dot 03 from passing through
  • the green sub-pixel G corresponds to the block that prevents the red
  • the third optical modulation part 43 through which the light emitted by the residual quantum dot 01 passes and the second optical modulation part 42 that prevents the light emitted by the blue residual quantum dot 03 from passing through
  • the third optical modulation part 43 through which the light passes and the first optical modulation part 41 which prevents the light emitted by the green residual quantum dots 02 from passing through.
  • the optical modulation part shown in FIGS. 1-6B may be a distributed Bragg reflector (Distributed Bragg Reflector, DBR). By setting a Distributed Bragg Reflector (DBR). Through the design of the distributed Bragg reflector, the control of the output light band is realized.
  • the color filter layer in the embodiment of the present disclosure may be a plurality of distributed Bragg reflectors, so as to realize that each sub-pixel only emits light of a certain color.
  • the distributed Bragg reflector corresponding to the red sub-pixel R by designing the distributed Bragg reflector corresponding to the red sub-pixel R, the distributed Bragg reflector emits red light, and prevents the light emitted by the green residual quantum dot 02 and the light emitted by the blue residual quantum dot 03 from exiting, thereby Realize and solve the problem of red sub-pixel R color mixing.
  • the distributed Bragg reflector corresponding to the green sub-pixel G and a distributed Bragg reflector corresponding to the blue sub-pixel B the problem of color mixing between the green sub-pixel G and the blue sub-pixel B can be solved.
  • the above-mentioned light-emitting device provided by the embodiment of the present disclosure, as shown in FIG. 1 and FIG. 2 , it also includes a substrate 5 located on the side of the first electrode 1 away from the second electrode 2, and the first electrode 1 is transparent. Electrodes, the second electrode 2 is a reflective electrode; the optical modulation part is located on the side of the first electrode 1 away from the second electrode 2 . That is, the light output mode of the light emitting device shown in FIG. 1 and FIG. 2 is bottom light output.
  • the first electrode 1 is a reflective electrode
  • the second electrode 2 is partially reflective for light transmission in the visible light band
  • the optical modulator is located on the side of the second electrode 2 away from the first electrode 1 . That is, the light output mode of the light emitting device shown in FIG. 3 , FIG. 4 , FIG. 6A and FIG. 6B is top output light.
  • Fig. 2 Fig. 4-Fig.
  • the device is an inverted structure; wherein, the material of the electron transport layer 6 includes an inorganic electron transport material;
  • a hole transport layer 8 positioned between the first electrode 1 and the light-emitting layer 3, a hole injection layer positioned between the first electrode 1 and the hole transport layer 8 7, and the electron transport layer 6 located between the light emitting layer 3 and the second electrode 2, that is, the light emitting device shown in Fig. 1 and Fig. 3 is an upright structure; wherein, the hole transport layer 8 includes an inorganic hole transport material.
  • the above-mentioned inorganic electron transport materials include but are not limited to at least one of zinc oxide, magnesium zinc oxide, aluminum zinc oxide, zinc oxide lithium zinc, titanium oxide, and aluminum oxide; the above-mentioned inorganic hole transport materials include but are not limited to nickel oxide , at least one of tungsten oxide, cuprous oxide, and molybdenum oxide.
  • FIG. 5 , FIG. 6A , and FIG. 6B in this disclosure are illustrated by taking an inverted top emission as an example, and of course, an inverted bottom emission, a positive top emission, or a positive bottom emission structure may also be used, which is not limited here.
  • the materials of the host quantum dots in the light-emitting layer include but are not limited to CdS, CdSe, CdTe, ZnSe, InP, PbS, CuInS2, ZnO, CsPbCl3, CsPbBr3, At least one of CsPbI3, CdS/ZnS, CdSe/ZnS, ZnSe, InP/ZnS, PbS/ZnS, InAs, InGaAs, InGaN, GaNk, ZnTe, Si, Ge, C, nanorods.
  • the embodiments of the present disclosure use cadmium-free and lead-free quantum dot materials to achieve no pollution to the environment.
  • Fig. 6A and Fig. , 62, 63 may include at least one first film layer 10 and at least one second film layer 20 alternately stacked; the refractive index of the first film layer 10 is different from that of the second film layer 20 .
  • the optical modulators (41, 42, 43, 51, 52, 53, 61, 62, 63) can be composed of two kinds of A periodic structure composed of materials with different rates arranged alternately in an ABAB manner, and Fresnel reflection occurs at each interface of the two materials.
  • the result of light intensity reflection for certain specific wavelengths can be achieved.
  • Fresnel reflection occurs at each interface of the first film layer and the second film layer in the reflection unit, all reflected light at the interface undergoes destructive interference, resulting in strong reflection.
  • Reflectivity is determined by the number of layers of material and the difference in refractive index between materials. Therefore, by changing the refractive index and thickness of the material, the target reflectivity of light in different wavelength bands can be obtained as required.
  • FIG. 1-FIG. The material of the first film layer 10 is the same, the material of the second film layer 20 in each optical modulation part (41, 42, 43) reflecting light of different colors is the same, and the thickness of the first film layer 10 is fixed.
  • the blue light is the shortest, so the red light needs to travel a longer optical path to achieve the effect of cancellation.
  • the thickness of the second film layer 20 in the third optical modulation part 43 that reflects red light, and the first film layer 20 that reflects green light decrease sequentially, so that each optical modulation part reflects light of different colors.
  • the The material of the first film layer 10 is the same, the material of the second film layer 20 in each optical modulation part (41, 42, 43) reflecting different colors of light is the same, the thickness of the second film layer 20 is fixed, and the red light is reflected.
  • the thickness of the film layer 10 decreases sequentially, so that each optical modulation part reflects light of different colors.
  • the materials of the first film layer 10 and the material of the second film layer 20 in each optical modulation part (41, 42, 43) are the same, and the first film layer 20 is changed.
  • the thickness of one of the film layer 10 and the second film layer 20 is used to realize the reflection of light of different colors by each optical modulator as an example for illustration.
  • the material of at least one of the film layers 20 is used to realize that each optical modulation part reflects light of different colors.
  • the material of the second film layer 20 includes but not limited to InGaAsP, InAlGaN, SiO2, TiO2, Si3N4, Au or Ag, and the materials of the first film layer 10 and the second film layer 20 are different.
  • the thickness of the first film layer 10 and the thickness of the second film layer 20 may both be 1 nm to 200 nm.
  • the specific thicknesses of the first film layer 10 and the second film layer 20 are designed according to the device structure, so as to achieve the optimal light extraction efficiency of the device.
  • the first electrode is a reflective electrode
  • the second electrode partially reflects light in the visible light band
  • the optical modulation unit is located at a side of the second electrode away from the first electrode. Side; fix the material of the first film layer and the material of the second film layer, and when the colors of the light emitted by the host quantum dots in the light-emitting layer are blue, red, and green, obtain the corresponding first light-emitting device when the light-emitting efficiency is the best.
  • the thickness of the film layer and the second film layer fix the material of the first film layer and the material of the second film layer.
  • the first electrode 1 adopts ITO/Ag/ITO stacked, and the second electrode 2 adopts Ag.
  • the Ag in the first electrode 1 is thicker for reflection, and the Ag in the second electrode 2 is thicker.
  • Thin (about 8nm) plays a light-transmitting role, the material of the hole injection layer 6 is PEDOT, the material of the hole transport layer 7 is TFB, the material of the electron transport layer 5 is ZnO, and the color of the light emitted by the host quantum dots in the light emitting layer 3 It is blue (ie blue host quantum dot B-QD), the material of the first film layer 10 closest to the second electrode 2 is SiO2, and the material of the second film layer closest to the second electrode 2 is Si3N4.
  • Fig. 10 is a graph showing the effect of thickness changes of SiO2 and Si3N4 on the efficiency of the light-emitting device shown in Fig. 9. It can be seen that the efficiency of the light-emitting device is better when the thickness of SiO2 is 5nm-15nm. As shown in Figure 11, Figure 11 shows the effect of changing the thickness of Si3N4 on device efficiency when the thickness of SiO2 is fixed at 10nm.
  • the thickness of the first film layer 10 in the blue light-emitting device is 5nm-15nm, and the thickness of the second film layer 20 is approximately 35nm-45nm.
  • Figure 9 is an example that includes only one layer of the first film layer and one layer of the second film layer.
  • the intensity for certain specific wavelengths can be achieved by adjusting the number of layers of the first film layer and the second film layer.
  • Figure 12 is to add a layer of first film layer 10 and a layer of second film layer 20 on the basis of Figure 9, that is, Figure 12 adopts double-layer optical modulation
  • the thickness of the first film layer 10 (SiO2) closest to the second electrode 2 is fixed at 10 nm
  • the thickness of the second film layer 20 (Si3N4) closest to the second electrode 2 is fixed at 40 nm
  • the thickness of the first film layer 20 (Si3N4) closest to the second electrode 2 is fixed at 40 nm.
  • the dotted line curve in Figure 13 represents one layer of the first film layer 10 and a layer in Figure 11
  • the efficiency change of the device when layering the second film layer 20 other solid line curves represent the first film layer 10 and the second film layer 20 added on the basis of Fig. 9, change the first film layer 10 and the second film layer 20 that increase
  • the influence of the thickness variation of the second film layer 20 on the device efficiency can be seen that, compared with the single-layer DBR shown in FIG. 9 , the double-layer DBR further improves the device efficiency.
  • Figure 9 and Figure 12 respectively take the single-layer and double-layer optical modulation parts as examples to study the influence on the efficiency of the light-emitting device.
  • more layers of the first film layer and the second The alternate structure of the two film layers is used to improve the light extraction efficiency of the light emitting device, which is not specifically described in the embodiments of the present disclosure.
  • the first electrode 1 adopts ITO/Ag/ITO stacked
  • the second electrode 2 adopts Ag
  • the Ag in the first electrode 1 is thicker for reflection
  • the Ag in the second electrode 2 is thicker.
  • Thin (about 8nm) plays a light-transmitting role
  • the material of the hole injection layer 6 is PEDOT
  • the material of the hole transport layer 7 is TFB
  • the material of the electron transport layer 5 is ZnO
  • the material of the first film layer 10 is SiO2
  • the material of the second film layer is Si3N4.
  • Figure 15 is a graph showing the influence of SiO2 and Si3N4 thickness changes on the efficiency of the light-emitting device shown in Figure 14. It can be seen that the SiO2 thickness is 55nm-65nm, and the Si3N4 thickness is 55nm-65nm. The efficiency of the light-emitting device better. Therefore, in a possible implementation manner, the thickness of the first film layer 10 in the red light emitting device provided by the embodiment of the present disclosure is 55nm-65nm, and the thickness of the second film layer 20 is approximately 55nm-65nm. Therefore, the efficiency of the red positive top-emitting structure device can be effectively improved through the rational design of the distributed Bragg reflector.
  • the first electrode 1 adopts ITO/Ag/ITO stacked, and the second electrode 2 adopts Ag.
  • the Ag in the first electrode 1 is thicker for reflection, and the Ag in the second electrode 2 is thicker.
  • Thin (about 8nm) plays a light-transmitting role, the material of the hole injection layer 6 is PEDOT, the material of the hole transport layer 7 is TFB, the material of the electron transport layer 5 is ZnO, and the color of the light emitted by the host quantum dots in the light emitting layer 3 It is green (that is, the green host quantum dot R-QD), the material of the first film layer 10 is SiO2, and the material of the second film layer is Si3N4.
  • Figure 17 is a graph of the influence of SiO2 and Si3N4 thickness changes on the efficiency of the light-emitting device shown in Figure 16. It can be seen that the SiO2 thickness is 15nm-25nm, and the Si3N4 thickness is 55nm-65nm. The efficiency of the light-emitting device better. Therefore, in a possible implementation manner, the thickness of the first film layer 10 in the green light-emitting device provided by the embodiment of the present disclosure is 15nm-25nm, and the thickness of the second film layer 20 is 55nm-65nm. Therefore, the efficiency of the green positive top-emitting structure device can be effectively improved through a reasonable design of the optical modulation part.
  • the light-emitting devices shown in FIG. 14 and FIG. and a second film layer 20 to further enhance device efficiency.
  • an embodiment of the present disclosure also provides a method for manufacturing the above-mentioned light-emitting device, including:
  • a first electrode, a second electrode, a light-emitting layer, and a color filter layer are respectively prepared in each sub-pixel; wherein, in at least one pixel unit, the light-emitting layer of at least one sub-pixel includes host quantum dots and at least one kind of host quantum dot Residual quantum dots with different luminescent colors;
  • the color filter layer is located on the side of the first electrode or the second electrode away from the light-emitting layer, and the color filter layer is configured to transmit the light emitted by the host quantum dots and prevent the light emitted by the residual quantum dots from passing through.
  • preparing a light-emitting layer may specifically include:
  • A is a coordination unit
  • B is a cracking unit
  • C is an adhesion adjustment unit
  • the coordination unit includes any one of mercapto, hydroxyl, amine, amino, carboxyl, phosphoric acid, phosphoester and sulfonic acid;
  • the cleavage unit has the structure shown in formula II ⁇ IV;
  • the adhesion regulating unit is a perfluoroalkyl group containing more than 3 carbon atoms, or a group containing more than 8 hydrophilic functional groups, or a molecular chain containing more than 8 hydrophilic functional groups; the hydrophilic functional groups are hydroxyl, Aldehyde, ester or ether groups;
  • R is selected from hydrogen, alkoxy, alkyl or aryl ;
  • R is selected from hydrogen , alkoxy, alkyl or aryl;
  • R 3 is selected from hydrogen, alkylene or arylene
  • R 4 is selected from hydrogen, alkylene or arylene
  • R 5 is selected from hydrogen, alkylene or arylene
  • R 6 is selected from hydrogen, alkylene R is selected from hydrogen, alkylene or arylene
  • R is selected from hydrogen, alkylene or arylene; wherein, in the structure shown in general formula I, the adhesion adjustment unit has When the property is hydrophilic, the substrate has a hydrophobic property; or when the adhesion regulating unit has a hydrophobic property, the substrate has a hydrophilic property;
  • the cleavage unit in the general formula I undergoes a photolysis reaction, wherein the molecular chain segment containing the adhesion adjustment unit is detached from the surface of the quantum dot after decomposition, and the The surface of the host quantum dot forms a structure of general formula X;
  • preparing a light-emitting layer may specifically include:
  • the preparation method of the light-emitting device shown in FIG. 1 to FIG. 4 provided by the embodiments of the present disclosure will be briefly described below through specific examples.
  • the preparation method of each film layer in the light emitting device includes but not limited to one or more of spin coating method, evaporation method, chemical vapor deposition method, physical vapor deposition method, magnetron sputtering method and the like.
  • Substrate 5 was ultrasonically cleaned with isopropanol, water, and acetone, and treated with UV for 5-10 minutes. Then the first electrode 1 is fabricated on the substrate 5 .
  • a hole injection layer 7 is prepared by spin coating, evaporation, or inkjet printing.
  • the hole injection layer 7 can be selected from PEDOT:PSS 4083 (poly 3,4-ethylenedioxythiophene/polystyrene sulfonate) or other commercial compounds suitable for the hole injection layer 7, etc.
  • the film-forming temperature of PEDOT is 130-150° C. in air.
  • the speed of the homogenizer is set at 500-2500rpm to adjust the thickness of the film layer.
  • a hole transport layer 8 is prepared by spin coating, evaporation, or inkjet printing.
  • the light-emitting layer 3 comprising quantum dots of three colors is prepared through the aforementioned steps S1401-S404, and the quantum dots include CdS, CdSe, CdTe, ZnSe, InP, PbS, CuInS2, ZnO, CsPbCl3, CsPbBr3, CsPhI3, CdS/ZnS, CdSe/ZnS, ZnSe, InP/ZnS, PbS/ZnS, InAs, InGaAs, InGaN, GaNk, ZnTe, Si, Ge, C and other nanoscale materials with the above compositions, such as nanorods, nano piece.
  • the quantum dots are cadmium-free quantum dots.
  • an electron transport layer 6 can be introduced, and a zinc oxide nanoparticle film, or a zinc oxide sol-gel film, etc. can be selected.
  • Zinc oxide nanoparticle thin film for example, 90-120 ⁇ L of 10-30 mg/mL zinc oxide nanoparticles is added dropwise on the above-mentioned glass substrate, and the speed of the homogenizer is set to 500-2500 rpm and spin-coated to form a film, and Film formation at room temperature or heating (25-120°C). to adjust the thickness of the zinc oxide film layer.
  • Sol-gel film Add 2g of zinc acetate to a solvent containing 10mL of ethanolamine and n-butanol, spin-coat to form a film at a speed of 1000-4000rpm, and heat on a hot stage at 180-250°C to form a film.
  • the electron transport layer material can also choose ion-doped zinc oxide nanoparticles, such as Mg, In, Al, Ga-doped magnesium oxide nanoparticles and the like.
  • the material of the second electrode 2 is introduced, such as evaporating an Al film, an Ag film, sputtering an IZO film or a MgAg alloy film, to prepare a light-emitting device.
  • Reflecting units are respectively introduced into pixel areas corresponding to RGB to prepare a full-color device.
  • the light-emitting device provided by the embodiments of the present disclosure also includes other functional film layers well known to those skilled in the art, which will not be described in detail here.
  • an embodiment of the present disclosure further provides a display device, including the above-mentioned light emitting device provided by the embodiment of the present disclosure.
  • the display device may be any product or component with a display function such as a mobile phone, a tablet computer, a television, a monitor, a notebook computer, a digital photo frame, a navigator, and the like.
  • Other essential components of the display device should be understood by those of ordinary skill in the art, and will not be repeated here, nor should they be used as limitations on the present disclosure.
  • the problem-solving principle of the display device is similar to that of the aforementioned light-emitting device, so the implementation of the display device can refer to the implementation of the aforementioned light-emitting device, and repeated descriptions will not be repeated here.
  • the light-emitting device its manufacturing method, and display device provided by the embodiments of the present disclosure, by providing a color filter layer on the side of the first electrode or the second electrode away from the light-emitting layer, on the one hand, it can eliminate light of a color different from that emitted by the light-emitting layer, thereby Solve the problem of color mixing when photolithography is used to prepare patterned quantum dots; on the other hand, it can improve the purity of luminescent color, thereby improving the color gamut of light-emitting devices.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本公开实施例公开了一种发光器件及其制作方法、显示装置,包括阵列分布的多个像素单元,每一像素单元包括能够发出n种不同颜色光的至少n个子像素,其中,每一个子像素包括:相对设置的第一电极和第二电极;位于第一电极和第二电极之间的发光层,在至少一个像素单元中,至少一个子像素的发光层包括主体量子点以及至少一种与主体量子点发光颜色不同的残留量子点;位于第一电极或第二电极远离发光层一侧的滤色层,滤色层被配置为透过主体量子点发射的光,并且阻止残留量子点发射的光透过。

Description

发光器件及其制作方法、显示装置 技术领域
本公开涉及显示技术领域,特别涉及一种发光器件及其制作方法、显示装置。
背景技术
量子点(Quantum dots,QDs),又名半导体纳米晶、半导体纳米颗粒,是指尺寸在空间三个维度上均处于纳米数量级或由它们作为基本单元构成的纳米固体材料,是在纳米尺度上的原子和分子的集合体。基于量子点材料的发光二极管被称为量子点发光二极管(Quantum dot light-emitting diode,QLED),是一种新型的发光器件。
发明内容
本公开实施例提供的一种发光器件,包括多个像素单元,每一所述像素单元包括能够发出n种不同颜色光的至少n个子像素,其中,
每一个所述子像素包括:
相对设置的第一电极和第二电极;
位于所述第一电极和所述第二电极之间的发光层,在至少一个所述像素单元中,至少一个子像素的发光层包括主体量子点以及至少一种与所述主体量子点发光颜色不同的残留量子点;
位于所述第一电极或所述第二电极远离所述发光层一侧的滤色层,所述滤色层被配置为透过所述主体量子点发射的光,并且阻止所述残留量子点发射的光透过。
可选地,在本公开实施例提供的上述发光器件中,所述主体量子点表面连接有如通式X所示的结构:
A-B’(X);
其中,A为配位单元,B’为残余单元;
所述配位单元包括巯基、羟基、胺基、氨基、羧基、磷酸基、磷酯基和磺酸基中的至少一种;
所述残余单元包括如下式所示的结构中的至少一种;
Figure PCTCN2021101604-appb-000001
-R 5-OH、-R 6-H、-R 7-OH、或-R 8-H;
其中,R 1选自氢、烷氧基、烷基或者芳香基;R 2选自氢、烷氧基、烷基或者芳香基;
R 3选自氢、亚烷基或者亚芳香基;R 4选自氢、亚烷基或者亚芳香基;R 5选自氢、亚烷基或者亚芳香基;R 6选自氢、亚烷基或者亚芳香基;R 7选自氢、亚烷基或者亚芳香基;R 8选自氢、亚烷基或者亚芳香基。
可选地,在本公开实施例提供的上述发光器件中,所述主体量子点表面连接有交联网络。
可选地,在本公开实施例提供的上述发光器件中,所述交联网络由基团对R9和R10交联形成,所述R9和所述R10分别为所述主体量子点表面形成交联网络之前的可交联配体。
可选地,在本公开实施例提供的上述发光器件中,所述交联网络由可由交联剂和基团R11交联形成,所述R11为所述主体量子点表面形成交联网络之前的可交联配体。
可选地,在本公开实施例提供的上述发光器件中,在包括所述残留量子 点的所述子像素的发光层中,所述残留量子点与全部量子点的摩尔比小于10%。
可选地,在本公开实施例提供的上述发光器件中,每一所述像素单元包括红色子像素、绿色子像素和蓝色子像素,所述红色子像素包括红色主体量子点,所述绿色子像素包括绿色主体量子点,所述蓝色子像素包括蓝色主体量子点。
可选地,在本公开实施例提供的上述发光器件中,在包括所述残留量子点的所述子像素的发光层中,所述红色子像素中的残留量子点与全部量子点的摩尔比、所述绿色子像素中的残留量子点与全部量子点的摩尔比和所述蓝色子像素中的残留量子点与全部量子点的摩尔比依次减小。
可选地,在本公开实施例提供的上述发光器件中,所述滤色层包括与发出不同颜色光的各子像素一一对应的不同颜色的多个色阻。
可选地,在本公开实施例提供的上述发光器件中,所述滤色层包括与各所述子像素对应的多个光学调制部,且每一所述子像素包括一个所述光学调制部;
所述红色子像素对应的光学调制部为第一长通滤波片,所述第一长通滤波片的起始波长小于红色主体量子点发光峰对应波长,且大于绿色主体量子点发光峰对应波长;所述蓝色子像素对应的光学调制部为短通滤波片,所述短通滤波片的截止波长小于绿色主体量子点发光峰对应波长,且大于蓝色主体量子点发光峰对应波长;所述绿色子像素对应的光学调制部为第二长通滤波片,所述第二长通滤波片的起始波长小于绿色主体量子点发光峰对应波长,且大于蓝色主体量子点发光峰对应波长。
可选地,在本公开实施例提供的上述发光器件中,所述滤色层包括与各所述子像素对应的多个光学调制部,且每一所述子像素包括一个所述光学调制部;
所述红色子像素对应的光学调制部为第一带通滤波片,所述第一带通滤波片的起始波长小于所述红色主体量子点发光峰对应波长,且大于所述绿色 主体量子点发光峰对应波长;所述第一带通滤波片的截止波长大于所述红色主体量子点发光峰对应波长;
所述绿色子像素对应的光学调制部为第二带通滤波片,所述第二带通滤波片的起始波长小于所述绿色主体量子点发光峰对应波长,且大于所述蓝色主体量子点发光峰对应波长,所述第二带通滤波片的截止波长大于所述绿色主体量子点发光峰对应波长,且小于所述红色主体量子点发光峰对应波长;
所述蓝色子像素对应的光学调制部为第三带通滤波片,所述第三带通滤波片的起始波长小于所述蓝色主体量子点发光峰对应波长,所述第三带通滤波片的截止波长大于所述蓝色主体量子点发光峰对应波长且小于所述绿色主体量子点发光峰对应波长。
可选地,在本公开实施例提供的上述发光器件中,所述滤色层包括与各所述子像素对应的多个光学调制部,且每一所述子像素包括叠层设置的2个光学调制部;所述红色子像素中的一个所述光学调制部阻止蓝光透过,另一个所述光学调制部阻止绿光透过;所述绿色子像素中的一个所述光学调制部阻止蓝光透过,另一个所述光学调制部阻止红光透过;所述蓝色子像素中的一个所述光学调制部阻止红光透过,另一个所述光学调制部阻止绿光透过。
可选地,在本公开实施例提供的上述发光器件中,所述光学调制部包括交替叠层设置的至少一层第一膜层和至少一层第二膜层;所述第一膜层的折射率和所述第二膜层的折射率不同。
可选地,在本公开实施例提供的上述发光器件中,所述第一电极为透明电极,所述第二电极为反射电极;所述光学调制部位于所述第一电极远离所述第二电极的一侧。
可选地,在本公开实施例提供的上述发光器件中,所述第一电极为反射电极,所述第二电极在可见光波段对光部分透过部分反射;所述光学调制部位于所述第二电极远离所述第一电极的一侧。
可选地,在本公开实施例提供的上述发光器件中,反射不同颜色的光的各光学调制部中的第一膜层的材料相同,反射不同颜色的光的各光学调制部 中的第二膜层的材料相同;
所述第一膜层的厚度相同,反射红色光的光学调制部中的第二膜层的厚度、反射绿色光的光学调制部中的第二膜层的厚度、反射蓝色光的光学调制部中的第二膜层的厚度依次减小;或者,
所述第二膜层的厚度相同,反射红色光的光学调制部中的第一膜层的厚度、反射绿色光的光学调制部中的第一膜层的厚度、反射蓝色光的光学调制部中的第一膜层的厚度依次减小。
可选地,在本公开实施例提供的上述发光器件中,所述第一膜层的材料包括InGaAsP、InAlGaN、SiO2、TiO2、Si3N4、Au或Ag,所述第二膜层的材料包括InGaAsP、InAlGaN、SiO2、TiO2、Si3N4、Au或Ag,且所述第一膜层和所述第二膜层的材料不同。
可选地,在本公开实施例提供的上述发光器件中,所述光学调制部包括交替叠层设置的至少一层第一膜层和至少一层第二膜层;
所述第一电极为反射电极,所述第二电极在可见光波段对光部分透过部分反射,所述光学调制部位于所述第二电极远离所述第一电极的一侧;
当所述发光层中主体量子点发出光的颜色为蓝色时,所述第一膜层的材料为SiO2,所述第二膜层的材料为Si3N4,最靠近所述第二电极的第一膜层的厚度为5nm~15nm,最靠近所述第二电极的第二膜层的厚度大致为35nm~45nm;
当所述发光层中主体量子点发出光的颜色为红色时,所述第一膜层的材料为SiO2,所述第二膜层的材料为Si3N4,最靠近所述第二电极的第一膜层的厚度为55nm~65nm,最靠近所述第二电极的第二膜层的厚度大致为55nm~65nm;
当所述发光层中主体量子点发出光的颜色为绿色时,所述第一膜层的材料为SiO2,所述第二膜层的材料为Si3N4,最靠近所述第二电极的第一膜层的厚度大致为15nm~25nm,最靠近所述第二电极的第二膜层的厚度大致为55nm~65nm。
可选地,在本公开实施例提供的上述发光器件中,还包括:位于所述第一电极和所述发光层之间的电子传输层,位于所述发光层和所述第二电极之间的空穴注入层,以及位于所述空穴注入层和所述发光层之间的空穴传输层;其中,所述电子传输层的材料包括无机电子传输材料;
或者,还包括:位于所述第一电极和所述发光层之间的空穴传输层,位于所述第一电极和所述空穴传输层之间的空穴注入层,以及位于所述发光层和所述第二电极之间的电子传输层;其中,所述空穴传输层包括无机空穴传输材料。
可选地,在本公开实施例提供的上述发光器件中,所述主体量子点包括CdS、CdSe、CdTe、ZnSe、InP、PbS、CuInS2、ZnO、CsPbCl3、CsPbBr3、CsPhI3、CdS/ZnS、CdSe/ZnS、ZnSe、InP/ZnS、PbS/ZnS、InAs、InGaAs、InGaN、GaNk、ZnTe、Si、Ge、C、纳米棒至少其中之一。
相应地,本公开实施例还提供了一种用于制作上述发光器件的制作方法,包括:
在每一个所述子像素内分别制备第一电极、第二电极、发光层和滤色层;其中,在至少一个所述像素单元中,至少一个子像素的发光层包括主体量子点以及至少一种与所述主体量子点发光颜色不同的残留量子点;
所述滤色层位于所述第一电极或所述第二电极远离所述发光层的一侧,所述滤色层被配置为透过所述主体量子点发射的光,并且阻止所述残留量子点发射的光透过。
可选地,在本公开实施例提供的上述制作方法中,制备所述发光层,具体包括:
提供一基底;
在所述基底上涂覆含有主体量子点的混合物,形成量子点膜;所述主体量子点表面连接有如通式I所示的结构;
A-B-C(I);
其中,A为配位单元,B为裂解单元,C为粘附力调节单元;
所述配位单元包括巯基、羟基、胺基、氨基、羧基、磷酸基、磷酯基和磺酸基中的任意一种;
所述裂解单元具有如式II~IV所示的结构;
所述粘附力调节单元为含有3个碳原子以上的全氟烷基、或者含有8个以上亲水性官能团的基团或者含有8个以上亲水性官能团的分子链;所述亲水性官能团为羟基、醛基、酯基或醚基;
Figure PCTCN2021101604-appb-000002
-R 5-N=N-R 6-   (III);
-R 7-O-O-R 8-   (IV);
其中,R 1选自氢、烷氧基、烷基或者芳香基;R 2选自氢、烷氧基、烷基或者芳香基;
R 3选自氢、亚烷基或者亚芳香基;R 4选自氢、亚烷基或者亚芳香基;R 5选自氢、亚烷基或者亚芳香基;R 6选自氢、亚烷基或者亚芳香基;R 7选自氢、亚烷基或者亚芳香基;R 8选自氢、亚烷基或者亚芳香基;其中,所述通式I所示的结构,粘附力调节单元具有亲水性质时,所述基底具有疏水性质;或者所述粘附力调节单元具有疏水性质时,所述基底具有亲水性质;
利用紫外光对预设区域内的量子点膜进行曝光处理,所述通式I中的裂解单元发生光解反应,其中分解后含有粘附力调节单元的分子链段由量子点表面脱落,在所述主体量子点表面形成所述通式X的结构;
采用有机溶剂洗涤去除未经过曝光处理的量子点膜,干燥后,形成图案化的发光层。
可选地,在本公开实施例提供的上述制作方法中,制备所述发光层,具体包括:
提供一基底;
在所述基底上形成可交联主体量子点的膜层;
采用预设波长的光照射所述膜层的保留区域;其中,在所述预设波长的光照射下,所述可交联主体量子点表面发生交联形成交联网络;
去除未被所述预设波长的光照射的主体量子点,以在所述保留区域形成图案化的发光层。
相应地,本公开实施例还提供了一种显示装置,包括上述所述的发光器件。
附图说明
图1为本公开实施例提供的一种发光器件的结构示意图;
图2为本公开实施例提供的又一种发光器件的结构示意图;
图3为本公开实施例提供的又一种发光器件的结构示意图;
图4为本公开实施例提供的又一种发光器件的结构示意图;
图5为本公开实施例提供的又一种发光器件的结构示意图;
图6A为本公开实施例提供的又一种发光器件的结构示意图;
图6B为本公开实施例提供的又一种发光器件的结构示意图;
图7是本公开实施例提供的一种可交联量子点发生交联反应的示意图;
图8是本公开实施例提供的又一种可交联量子点发生交联反应的示意图;
图9为本公开实施例提供的一种蓝色发光器件的结构示意图;
图10为图9对应第一膜层和第二膜层的厚度对器件效率的影响示意图;
图11为固定第一膜层厚度,第二膜层厚度变化对器件效率的影响示意图;
图12为本公开实施例提供的又一种蓝色发光器件的结构示意图;
图13为图12中远离第二电极的第一膜层和第二膜层的厚度对器件效率的影响示意图;
图14为本公开实施例提供的一种红色发光器件的结构示意图;
图15为图14对应第一膜层和第二膜层的厚度对器件效率的影响示意图;
图16为本公开实施例提供的一种绿色发光器件的结构示意图;
图17为图16对应第一膜层和第二膜层的厚度对器件效率的影响示意图;
图18为本公开实施例提供的一种发光层图案化方法的流程示意图;
图19为本公开实施例提供的又一种发光层图案化方法的流程示意图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。并且在不冲突的情况下,本公开中的实施例及实施例中的特征可以相互组合。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“内”、“外”、“上”、“下”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
需要注意的是,附图中各图形的尺寸和形状不反映真实比例,目的只是示意说明本公开内容。并且自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。
量子点图案化是实现高分辨、全彩QLED器件的关键。量子点的胶体溶液可以采用打印、转印、光刻等方式进行图案化,但是打印设备昂贵且分辨率有限,因此可以采用光刻方式实现电子材料(量子点)的图案化。然而采用光刻方式实现图案化全彩QLED时容易由于量子点的残留而造成混色问题 (比如红色子像素中理应只发射红光,却含有微弱的绿光或者蓝光峰)。
有鉴于此,本公开实施例提供的一种发光器件,包括多个像素单元,多个像素单元可以是阵列分布的。以一个像素单元为例,如图1-图6B所示,每一像素单元包括能够发出n种不同颜色光的至少n个子像素(以每一像素单元包括红色子像素R、绿色子像素G和蓝色子像素B为例,当然不限于此),每一个子像素包括:
相对设置的第一电极1和第二电极2;
位于第一电极1和第二电极2之间的发光层3,在至少一个像素单元中,至少一个子像素的发光层3包括主体量子点以及至少一种与主体量子点发光颜色不同的残留量子点;例如红色子像素R的发光层3包括红色主体量子点R-QD以及绿色残留量子点和/或蓝色残留量子点,绿色子像素G的发光层3包括绿色主体量子点G-QD以及红色残留量子点和/或蓝色残留量子点,蓝色子像素B的发光层3包括蓝色主体量子点B-QD以及红色残留量子点和/或绿色残留量子点;
位于第一电极1或第二电极2远离发光层3一侧的滤色层4,滤色层4被配置为透过主体量子点发射的光,并且阻止残留量子点发射的光透过。
需要说明的是,阻止残留量子点发射的光透过的方式,可以是对残留量子点发射的光进行吸收或者反射。具体地,阻止残留量子点发射的光透过可以理解为残留量子点发射的光在滤色层的透过率小于或等于20%。具体地,滤色层被配置为透过主体量子点发射的光,可以理解为主体量子点发射的光在滤色层的透过率大于或等于40%。
具体地,本公开实施例是以n=3为例,即每一像素单元包括能够发出3种不同颜色光的3个子像素(R、G、B);其中,红色子像素R的发光层3除具有红色主体量子点R-QD外,还具有至少一种残留量子点(本公开以具有绿色残留量子点02和蓝色残留量子点03两种残留量子点为例);绿色子像素G的发光层3除具有绿色主体量子点G-QD外,还具有至少一种残留量子点(本公开以具有红色残留量子点01和蓝色残留量子点03两种残留量子点为 例);蓝色子像素B的发光层3除具有蓝色主体量子点B-QD外,还具有至少一种残留量子点(本公开以具有红色残留量子点01和绿色残留量子点02两种残留量子点为例)。具体地,滤色层可以滤掉红色子像素R中的绿色残留量子点02发出的绿光和蓝色残留量子点03发出的蓝光,从而解决红色子像素R中混色的问题,提高红色子像素R的色纯度;滤色层可以滤掉绿色子像素G中的红色残留量子点01发出的红光和蓝色残留量子点03发出的蓝光,从而解决绿色子像素G中混色的问题,提高绿色子像素G的色纯度;滤色层可以滤掉蓝色子像素B中的红色残留量子点01发出的红光和绿色残留量子点02发出的绿光,从而解决蓝色子像素B中混色的问题,提高蓝色子像素B的色纯度。进一步地,可以提高发光器件的色域,提升显示效果。
本公开实施例提供的上述发光器件,通过在第一电极或第二电极远离发光层一侧设置滤色层,一方面可以消除与发光层发出光颜色不同的光,从而解决采用光刻法制备图案化的量子点时发生混色的问题;另一方面,可以提高发光色纯度,进而提高发光器件的色域。
需要说明的是,图1-图6B中的红色残留量子点01、绿色残留量子点02和蓝色残留量子点03仅是示意性说明,不代表这三种残留量子点的真实图案,实际制作时,这三种残留量子点可能是无规律地残留在主体量子点内。
具体地,红色主体量子点R-QD的发光波长范围可以为610nm~640nm,绿色主体量子点G-QD的发光波长范围可以为510nm~540nm,蓝色主体量子点B-QD的发光波长范围可以为420nm~460nm。
在具体实施时,在本公开实施例提供的上述发光器件中,主体量子点(例如红色主体量子点R-QD、绿色主体量子点G-QD和蓝色主体量子点B-QD)表面可以连接有如通式X所示的结构:
A-B’(X);
其中,A为配位单元,B’为残余单元;
配位单元包括巯基、羟基、胺基、氨基、羧基、磷酸基、磷酯基和磺酸基中的至少一种;
残余单元包括如下式所示的结构中的至少一种;
Figure PCTCN2021101604-appb-000003
-R 5-OH、-R 6-H、-R 7-OH、或-R 8-H;
其中,R 1选自氢、烷氧基、烷基或者芳香基;R 2选自氢、烷氧基、烷基或者芳香基;
R 3选自氢、亚烷基或者亚芳香基;R 4选自氢、亚烷基或者亚芳香基;R 5选自氢、亚烷基或者亚芳香基;R 6选自氢、亚烷基或者亚芳香基;R 7选自氢、亚烷基或者亚芳香基;R 8选自氢、亚烷基或者亚芳香基。
具体地,上述残余单元可以为裂解单元(后续介绍)经紫外光照射后,裂解后生成的基团。这样本公开实施例提供的发光层可以采用具有光解型配体的量子点通过紫外光照射后,光解型配体发生裂解,裂解前后量子点的溶解性不同,从而实现光刻图案化。
在具体实施时,在本公开实施例提供的上述发光器件中,主体量子点(例如红色主体量子点R-QD、绿色主体量子点G-QD和蓝色主体量子点B-QD)表面可以连接有交联网络。
在具体实施时,在本公开实施例提供的上述发光器件中,交联网络可以由基团对R9和R10交联形成,R9和R10分别为主体量子点表面形成交联网络之前的可交联配体。具体地,R9为选自巯基、烯基、二烯基中的至少一种;与R9对应的R10为选自烯基、二烯基、炔基、二炔基中的至少一种。
具体地,对于具有可发生反应从而形成交联网络的基团对R9和R10的可交联量子点,图7示出了这种量子点的交联反应原理示意图。在图7中,式I 表示具有可发生反应从而形成交联网络的基团对R9和R10的可交联量子点,通过使用光照射(hv),该可交联的量子点之间形成交联网络IA。
在具体实施时,在本公开实施例提供的上述发光器件中,交联网络还可以由可由交联剂和基团R11交联形成,R11为主体量子点表面形成交联网络之前的可交联配体。具体地,R11为选自巯基、烯基、二烯基中的至少一种,交联剂为选自C4-C20二烯烃或C4-C20二炔烃中的至少一种。
具体地,对于具有可由交联剂交联从而形成交联网络的基团R11的可交联量子点,图8示出了这种量子点的交联反应原理示意图。在图8中,式II表示具有可由交联剂交联从而形成交联网络的基团R11的可交联量子点,R12—R12是交联剂,通过使用光照射(hv),该可交联的量子点通过与该交联剂反应形成交联网络IIA。
在具体实施时,在本公开实施例提供的上述发光器件中,如图1-图6B所示,在包括残留量子点的子像素的发光层中,本公开以红色子像素R的发光层3具有红色主体量子点R-QD、绿色残留量子点02和蓝色残留量子点03两种残留量子点,绿色子像素G的发光层3具有绿色主体量子点G-QD、红色残留量子点01和蓝色残留量子点03,蓝色子像素B的发光层3具有蓝色主体量子点B-QD、红色残留量子点01和绿色残留量子点02,每一子像素(例如红色子像素R)中的残留量子点(例如绿色残留量子点02和蓝色残留量子点03)与全部量子点(包括红色主体量子点R-QD、绿色残留量子点02和蓝色残留量子点03)的摩尔比小于10%,每一子像素(例如绿色子像素G)中的残留量子点(例如红色残留量子点01和蓝色残留量子点03)与全部量子点(包括绿色主体量子点G-QD、红色残留量子点01和蓝色残留量子点03)的摩尔比小于10%,每一子像素(例如蓝色子像素B)中的残留量子点(例如红色残留量子点01和绿色残留量子点02)与全部量子点(包括蓝色主体量子点B-QD、红色残留量子点01和绿色残留量子点02)的摩尔比小于10%。
在一个具体实施例中,由于红色量子点的粒径较大,绿色次之,蓝色最小,在光刻法图案化的各个步骤中粒径越大,稳定性更好,因此优先制备红 色量子点,绿色量子点次之,蓝色量子点最后制备。发光器件一般分为正置结构和倒置结构,正置结构时,量子点一般制作在空穴传输层上,倒置结构时,量子点一般制作在电子传输层上,相比于电子传输层和空穴传输层,量子点更容易在其他量子点上残留,因此红色子像素R中的残留量子点最多,绿色子像素G中的残留量子点次之,蓝色子像素B中的残留量子点最少,在本公开实施例提供的上述发光器件中,如图1-图6B所示,在每一个子像素中,红色子像素R中的残留量子点(包括02和03)与全部量子点(包括R-QD、02和03)的摩尔比、绿色子像素G中的残留量子点(包括01和03)与全部量子点(包括G-QD、01和03)的摩尔比和蓝色子像素B中的残留量子点(包括01和02)与全部量子点(包括B-QD、01和02)的摩尔比依次减小。
在具体实施时,在本公开实施例提供的上述发光器件中,如图5所示,滤色层4可以是包括与发出不同颜色光的各子像素(R、G、B)一一对应的不同颜色的多个色阻(101、102、103)。具体地,滤色层4可以包括:与红色子像素R对应的红色色阻101,与绿色子像素G对应的绿色色阻102,与蓝色子像素B对应的蓝色色阻103;其中,红色色阻101允许红色光透过而阻止绿光和蓝光透过,从而实现解决红色子像素R中混色的问题;绿色色阻102允许绿色光透过而阻止红光和蓝光透过,从而解决绿色子像素G中混色的问题;蓝色色阻103只允许蓝色光透过而阻止绿光和红光透过,从而解决蓝色子像素B中混色的问题。
具体地,色阻的材料可以为彩色树脂材料,优选地,色阻的材料为丙酸酯聚合物和颜料的混合物。例如,红色色阻是在树脂里添加红色颜料,绿色色阻是在树脂里添加绿色颜料,蓝色色阻是在树脂里添加蓝色颜料。
在具体实施时,在本公开实施例提供的上述发光器件中,如图6A所示,滤色层4包括与各子像素(R、G、B)对应的多个光学调制部(51、52、53),且每一子像素对应一个光学调制部;
具体地,红色子像素R对应的光学调制部51为第一长通滤波片,第一长通滤波片的起始波长小于红色主体量子点R-QD发光峰对应波长,且大于绿 色主体量子点G-QD发光峰对应波长;蓝色子像素B对应的光学调制部53为短通滤波片,短通滤波片的截止波长小于绿色主体量子点G-QD发光峰对应波长,且大于蓝色主体量子点B-QD发光峰对应波长;绿色子像素B对应的光学调制部52为第二长通滤波片,第二长通滤波片的起始波长小于绿色主体量子点G-QD发光峰对应波长,且大于蓝色主体量子点B-QD发光峰对应波长。
具体地,长通滤光片的起始波长是指在长通滤光片中透射率增加至峰值的1/2时所对应的波长;短通滤光片截止波长是指在短通滤光片中透射率降低至峰值的1/2时所对应的波长。
具体地,第一长通滤波片的起始波长小于红色主体量子点发光峰对应波长,且大于绿色主体量子点发光峰对应波长,有利于红色量子点发出的光透过滤色层,而阻止绿色量子点发出的光和蓝色量子点发出的光透过滤色层,以增加红色子像素R的出光纯度;短通滤波片的截止波长小于绿色主体量子点发光峰对应波长,且大于蓝色主体量子点发光峰对应波长,有利于蓝色量子点发出的光透过滤色层,而阻止绿色量子点发出的光和红色量子点发出的光透过滤色层,以增加蓝色子像素B的出光纯度;第二长通滤波片的起始波长小于绿色主体量子点发光峰对应波长,且大于蓝色主体量子点发光峰对应波长,有利于绿色量子点发出的光透过滤色层,而阻止蓝色量子点发出的光透过滤色层;第二长通滤波片也可以使红色残余量子点发出的光透过滤色层,然而,根据所述具体实施例,红色残余量子点相比于蓝色残余量子点的残留量可以相对较少,透过红色残余量子点发出的光对绿色发光器件的色纯度影响较小,因此光学调制部52可以设计为第二长通滤波片,以保证发光器件的色域。
优选地,红色子像素R对应的光学调制部51为第一长通滤波片,第一长通滤波片的起始波长小于或等于红色主体量子点R-QD发光波段的最小值,且大于或等于绿色主体量子点G-QD发光波段的最大值;蓝色子像素B对应的光学调制部53为短通滤波片,短通滤波片的截止波长小于或等于绿色主体 量子点G-QD发光波段的最小值,且大于或等于蓝色主体量子点B-QD发光波段的最大值;绿色子像素B对应的光学调制部52为第二长通滤波片,第二长通滤波片的起始波长小于或等于绿色主体量子点G-QD发光波段的最小值,且大于或等于蓝色主体量子点B-QD发光峰发光波段的最大值。
具体地,量子点发光波段可以理解为大于或等于量子点发光峰值20%的发光强度的波长所对应的波段。
在一个具体实施例中,第一长通滤波片的起始波长小于或等于610nm,且大于或等于540nm;所述短通滤波片的截止波长小于或等于510nm,且大于或等于460nm;所述第二长通滤波片的起始波长小于或等于510nm,且大于或等于460nm。
需要说明的是,可以通过调节设计上述第一长通滤波片、短通滤波片和第二长通滤波片以实现各自对应的功能。
在具体实施时,在本公开实施例提供的上述发光器件中,如图6B所示,滤色层4包括与各子像素(R、G、B)对应的多个光学调制部(61、62、63),且每一子像素对应一个光学调制部;
具体地,红色子像素R对应的光学调制部61为第一带通滤波片,第一带通滤波片的起始波长小于红色主体量子点R-QD发光峰对应波长,且大于绿色主体量子点G-QD发光峰对应波长;第一带通滤波片的截止波长大于红色主体量子点R-QD发光峰对应波长;
绿色子像素G对应的光学调制部62为第二带通滤波片,第二带通滤波片的起始波长小于绿色主体量子点G-QD发光峰对应波长且大于蓝色主体量子点B-QD发光峰对应波长,第二带通滤波片的截止波长大于绿色主体量子点G-QD发光峰对应波长且小于红色主体量子点R-QD发光峰对应波长;
蓝色子像素对应的光学调制部63为第三带通滤波片,第三带通滤波片的起始波长小于蓝色主体量子点B-QD发光峰对应波长,第三带通滤波片的截止波长大于蓝色主体量子点B-QD发光峰对应波长且小于绿色主体量子G-QD点发光峰对应波长。
具体地,带通滤光片的起始波长是指在带通滤光片中透射率增加至峰值的1/2时所对应的波长;带通滤光片截止波长是指在带通滤光片中透射率降低至峰值的1/2时所对应的波长。
可以理解的是,第一光学调制部61、第二光学调制部62、第三光学调制部63可以分别增加红色子像素R、绿色子像素G、蓝色子像素B的出光纯度。
优选地,第一带通滤波片的起始波长小于或等于红色主体量子点R-QD发光波段的最小值,且大于或等于绿色主体量子点G-QD发光波段的最大值;第一带通滤波片的截止波长大于或等于红色主体量子点R-QD发光波段的最大值;
绿色子像素G对应的光学调制部62为第二带通滤波片,第二带通滤波片的起始波长小于或等于绿色主体量子点G-QD发光波段的最小值且大于或等于蓝色主体量子点B-QD发光波段的最大值,第二带通滤波片的截止波长大于或等于绿色主体量子点G-QD发光波段的最大值且小于或等于红色主体量子点R-QD发光波段的最小值;
蓝色子像素B对应的光学调制部63为第三带通滤波片,第三带通滤波片的起始波长小于或等于蓝色主体量子点B-QD发光波段的最小值,第三带通滤波片的截止波长大于或等于蓝色主体量子点B-QD发光波段的最大值且小于或等于绿色主体量子G-QD点发光波段的最小值。
在一个具体实施例中,第一带通滤波片的起始波长小于或等于610nm,且截止波长大于或等于640nm;第二带通滤波片的起始波长小于或等于510nm,且截止波长大于或等于640nm;第三带通滤波片的起始波长小于或等于420nm,截至波长大于或等于460nm。
需要说明的是,可以通过调节设计上述第一带通滤波片、第二带滤波片和第三带通滤波片以实现各自对应的功能。
在一些实施例中,在本公开实施例提供的上述发光器件中,滤色层4包括与各子像素对应的多个光学调制部,且每一子像素对应叠层设置的阻止残留量子点发射的光透过的n-1个光学调制部。具体地,如图1-图4所示,本 公开实施例以每一像素单元包括红绿蓝三种子像素为例,则每一子像素对应包括叠层设置的两个光学调制部,例如红色子像素R对应包括阻止绿色残留量子点02发出的光通过的第一光学调制部41和阻止蓝色残留量子点03发出的光通过的第二光学调制部42;绿色子像素G对应包括阻止红色残留量子点01发出的光通过的第三光学调制部43和阻止蓝色残留量子点03发出的光通过的第二光学调制部42;蓝色子像素B对应包括阻止红色残留量子点01发出的光通过的第三光学调制部43和阻止绿色残留量子点02发出的光通过的第一光学调制部41。
具体地,图1-图6B所示的光学调制部可以是分布式布拉格反射器(Distributed Bragg Reflector,DBR)。通过设置分布式布拉格反射器(DBR)。通过对分布式布拉格反射器的设计,实现对出光波段的控制。本公开实施例中的滤色层可以是多个分布式布拉格反射器,以实现每一子像素仅出射某种颜色的光。例如,通过设计红色子像素R对应的分布式布拉格反射器,以实现分布式布拉格反射器出射红光,而阻止绿色残留量子点02发出的光和蓝色残留量子点03发出的光出射,从而实现解决红色子像素R混色的问题。类似地,通过设计绿色子像素G对应的分布式布拉格反射器,以及设计蓝色子像素B对应的分布式布拉格反射器,可以实现解决绿色子像素G和蓝色子像素B混色的问题。
在具体实施时,在本公开实施例提供的上述发光器件中,如图1和图2所示,还包括位于第一电极1远离第二电极2一侧的基底5,第一电极1为透明电极,第二电极2为反射电极;光学调制部位于第一电极1远离第二电极2的一侧。即图1和图2所示的发光器件的出光方式为底出光。
在具体实施时,在本公开实施例提供的上述发光器件中,如图3、图4、图6A和图6B所示,还包括位于第一电极1远离第二电极2一侧的基底5,第一电极1为反射电极,第二电极2为在可见光波段对光部分透过部分反射;光学调制部位于第二电极2远离第一电极1的一侧。即图3、图4、图6A和图6B所示的发光器件的出光方式为顶出光。在具体实施时,在本公开实施例 提供的上述发光器件中,如图2、图4-图6B所示,还包括:位于第一电极1和发光层3之间的电子传输层6,位于发光层3和第二电极2之间的空穴注入层7,以及位于空穴注入层7和发光层3之间的空穴传输层8,即图2、图4-图6B所示的发光器件为倒置结构;其中,电子传输层6的材料包括无机电子传输材料;
或者,如图1和图3所示,还包括:位于第一电极1和发光层3之间的空穴传输层8,位于第一电极1和空穴传输层8之间的空穴注入层7,以及位于发光层3和第二电极2之间的电子传输层6,即图1和图3所示的发光器件为正置结构;其中,空穴传输层8包括无机空穴传输材料。
具体地,上述无机电子传输材料包括但不限于氧化锌、氧化镁锌、氧化铝锌、氧化锌锂锌、氧化钛、氧化铝的至少一种;上述无机空穴传输材料包括但不限于氧化镍,氧化钨,氧化亚铜,氧化钼中的至少一种。
需要说明的是,本公开图5和图6A、图6B是以倒置顶发射为例进行说明的,当然也可以为倒置底发射、正置顶发射或正置底发射结构,在此不做限定。
在具体实施时,在本公开实施例提供的上述发光器件中,发光层中的主体量子点的材料包括但不限于CdS、CdSe、CdTe、ZnSe、InP、PbS、CuInS2、ZnO、CsPbCl3、CsPbBr3、CsPbI3、CdS/ZnS、CdSe/ZnS、ZnSe、InP/ZnS、PbS/ZnS、InAs、InGaAs、InGaN、GaNk、ZnTe、Si、Ge、C、纳米棒至少其中之一。优选地,本公开实施例采用无镉无铅量子点材料以实现对环境无污染。
在具体实施时,在本公开实施例提供的上述发光器件中,如图1-图4、图6A和图6B所示,各光学调制部(41、42、43、51、52、53、61、62、63)可以包括交替叠层设置的至少一层第一膜层10和至少一层第二膜层20;第一膜层10的折射率和第二膜层20的折射率不同。
根据本公开的实施例,如图1-图4、图6A和图6B所示,光学调制部(41、42、43、51、52、53、61、62、63)可以是由两种折射率不同材料以ABAB 的方式交替排列组成的周期性结构,在两种材料的每个界面处都发生菲涅尔反射。通过调节布拉格反射器的周期数量和各膜层厚度,可以达到对某些特定波长的光强反射的结果。在具体实施时,由于反射单元中的第一膜层和第二膜层的每个界面处都发生菲涅尔反射,在界面处的所有反射光发生相消干涉,得到很强的反射。反射率是由材料的层数和材料之间的折射率差决定的。因此通过改变材料的折射率和厚度可以根据需要获得对不同波段光的目标反射率。在一种可能的实施方式中,在本公开实施例提供的上述发光器件中,如图1-图4所示,反射不同颜色的光的各光学调制部(41、42、43)中的第一膜层10的材料相同,反射不同颜色的光的各光学调制部(41、42、43)中的第二膜层20的材料相同,固定第一膜层10的厚度,由于红光波长最长,蓝光最短,所以红光需要的走的光程长一些才能达到相消的效果,因此反射红色光的第三光学调制部43中的第二膜层20的厚度、反射绿色光的第一光学调制部41中的第二膜层20的厚度、反射蓝色光的第二光学调制部42中的第二膜层20的厚度依次减小,从而实现每一光学调制部反射不同颜色的光。
在另一种可能的实施方式中,在本公开实施例提供的上述发光器件中,如图1-图4所示,反射不同颜色的光的各光学调制部(41、42、43)中的第一膜层10的材料相同,反射不同颜色的光的各光学调制部(41、42、43)中的第二膜层20的材料相同,固定第二膜层20的厚度,反射红色光的第三光学调制部43中的第一膜层10的厚度、反射绿色光的第一光学调制部41中的第一膜层10的厚度、反射蓝色光的第二光学调制部42中的第一膜层10的厚度依次减小,从而实现每一光学调制部反射不同颜色的光。
需要说明的是,本公开实施例提供的上述发光器件是以各光学调制部(41、42、43)中的第一膜层10的材料相同、第二膜层20的材料相同,改变第一膜层10和第二膜层20其中之一膜层的厚度来实现各光学调制部反射不同颜色的光为例进行说明的。当然,在具体实施时,也可以固定各光学调制部(41、42、43)中的第一膜层10的厚度相同、第二膜层20的厚度相同,改变第一膜层10和第二膜层20至少之一膜层的材料来实现各光学调制部反射不同颜 色的光。
在具体实施时,在本公开实施例提供的上述发光器件中,如图1-图4所示,第一膜层10的材料包括但不限于InGaAsP、InAlGaN、SiO2、TiO2、Si3N4、Au或Ag,第二膜层20的材料包括但不限于InGaAsP、InAlGaN、SiO2、TiO2、Si3N4、Au或Ag,且第一膜层10和第二膜层20的材料不同。
在具体实施时,在本公开实施例提供的上述发光器件中,如图1-图4所示,第一膜层10的厚度和第二膜层20的厚度可以均为1nm~200nm。
具体地,第一膜层10和第二膜层20的具体厚度根据器件结构进行设计,以实现器件获得最优的出光效率。
在一些实施例中,在正置顶发射结构的发光器件中,第一电极为反射电极,第二电极在可见光波段对光部分透过部分反射,光学调制部位于第二电极远离第一电极的一侧;固定第一膜层的材料、第二膜层的材料,分别对发光层中主体量子点发出光的颜色为蓝色、红色、绿色时,获取发光器件出光效率最佳时对应的第一膜层和第二膜层的厚度。
如图9所示,第一电极1采用叠层设置的ITO/Ag/ITO,第二电极2采用的Ag,第一电极1中的Ag较厚起反射作用,第二电极2中的Ag较薄(8nm左右)起透光作用,空穴注入层6的材料为PEDOT,空穴传输层7的材料为TFB,电子传输层5的材料为ZnO,发光层3中主体量子点发出光的颜色为蓝色(即蓝色主体量子点B-QD),最靠近第二电极2的第一膜层10的材料为SiO2,最靠近第二电极2的第二膜层的材料为Si3N4。如图10所示,图10为SiO2和Si3N4的厚度变化对图9所示的发光器件效率的影响曲线图,可以看出SiO2厚度为5nm~15nm时发光器件的效率较佳。如图11所示,图11为固定SiO2厚度为10nm时,改变Si3N4的厚度对器件效率的影响,可以看出,当SiO2厚度为10nm,Si3N4厚度为35nm~45nm时,器件有较好的效率,因此在一种可能的实施方式中,本公开实施例提供的蓝色发光器件中的第一膜层10的厚度为5nm~15nm,第二膜层20的厚度大致为35nm~45nm。
图9是以仅包括一层第一膜层和一层第二膜层为例,由前文可知,可以 通过调节第一膜层和第二膜层的层数来达到对某些特定波长的强反射以实现提高发光器件的效率,如图12所示,图12为在图9的基础上再增加一层第一膜层10和一层第二膜层20,即图12采用双层光学调制部,最靠近第二电极2的第一膜层10(SiO2)厚度固定为10nm,最靠近第二电极2的第二膜层20(Si3N4)厚度固定为40nm,改变远离第二电极2的第一膜层10(SiO2)和第二膜层20(Si3N4)的厚度对发光器件效率的影响,如图13所示,图13中的虚线曲线代表图11中一层第一膜层10和一层第二膜层20时器件的效率变化,其它实线曲线代表在图9的基础上增加的一层第一膜层10和一层第二膜层20,改变增加的第一膜层10和第二膜层20的厚度变化对器件效率的影响,可以看出,相较于图9所示的单层分布式布拉格反射器,双层分布式布拉格反射器对于器件效率有进一步的提升。
需要说明的是,上述图9和图12分别是以单层和双层光学调制部为例研究对发光器件的效率影响,当然,在具体实施时,可以设计更多层第一膜层和第二膜层的交替结构,以实现提高发光器件的出光效率,本公开实施例对此不作具体阐述。
如图14所示,第一电极1采用叠层设置的ITO/Ag/ITO,第二电极2采用的Ag,第一电极1中的Ag较厚起反射作用,第二电极2中的Ag较薄(8nm左右)起透光作用,空穴注入层6的材料为PEDOT,空穴传输层7的材料为TFB,电子传输层5的材料为ZnO,发光层3中主体量子点发出光的颜色为红色(即红色主体量子点R-QD),第一膜层10的材料为SiO2,第二膜层的材料为Si3N4。如图15所示,图15为SiO2和Si3N4的厚度变化对图14所示的发光器件效率的影响曲线图,可以看出SiO2厚度为55nm~65nm,Si3N4厚度为55nm~65nm时发光器件的效率较佳。因此在一种可能的实施方式中,本公开实施例提供的红色发光器件中的第一膜层10的厚度为55nm~65nm,第二膜层20的厚度大致为55nm~65nm。因此可以通过分布式布拉格反射器的合理设计,有效提升红色正置顶发射结构器件的效率。
如图16所示,第一电极1采用叠层设置的ITO/Ag/ITO,第二电极2采用 的Ag,第一电极1中的Ag较厚起反射作用,第二电极2中的Ag较薄(8nm左右)起透光作用,空穴注入层6的材料为PEDOT,空穴传输层7的材料为TFB,电子传输层5的材料为ZnO,发光层3中主体量子点发出光的颜色为绿色(即绿色主体量子点R-QD),第一膜层10的材料为SiO2,第二膜层的材料为Si3N4。如图17所示,图17为SiO2和Si3N4的厚度变化对图16所示的发光器件效率的影响曲线图,可以看出SiO2厚度为15nm~25nm,Si3N4厚度为55nm~65nm时发光器件的效率较佳。因此在一种可能的实施方式中,本公开实施例提供的绿色发光器件中的第一膜层10的厚度为15nm~25nm,第二膜层20的厚度为55nm~65nm。因此可以通过光学调制部的合理设计,有效提升绿色正置顶发射结构器件的效率。
在具体实施时,在本公开实施例提供的上述发光器件中,图14和图16所示的发光器件还可以在第二膜层20远离基底5的一侧再设置一层第一膜层10和一层第二膜层20,以进一步增强器件效率。
基于同一发明构思,本公开实施例还提供了一种上述发光器件的制作方法,包括:
在每一个子像素内分别制备第一电极、第二电极、发光层和滤色层;其中,在至少一个像素单元中,至少一个子像素的发光层包括主体量子点以及至少一种与主体量子点发光颜色不同的残留量子点;
滤色层位于第一电极或第二电极远离发光层的一侧,滤色层被配置为透过主体量子点发射的光,并且阻止残留量子点发射的光透过。
在具体实施时,在本公开实施例提供的上述制作方法中,如图18所示,制备发光层,具体可以包括:
S1801、提供一基底;
S1802、在基底上涂覆含有主体量子点的混合物,形成量子点膜;主体量子点表面连接有如通式I所示的结构;
A-B-C(I);
其中,A为配位单元,B为裂解单元,C为粘附力调节单元;
配位单元包括巯基、羟基、胺基、氨基、羧基、磷酸基、磷酯基和磺酸基中的任意一种;
裂解单元具有如式II~IV所示的结构;
粘附力调节单元为含有3个碳原子以上的全氟烷基、或者含有8个以上亲水性官能团的基团或者含有8个以上亲水性官能团的分子链;亲水性官能团为羟基、醛基、酯基或醚基;
Figure PCTCN2021101604-appb-000004
-R 5-N=N-R 6-   (III);
-R 7-O-O-R 8-   (IV);
其中,R 1选自氢、烷氧基、烷基或者芳香基;R 2选自氢、烷氧基、烷基或者芳香基;
R 3选自氢、亚烷基或者亚芳香基;R 4选自氢、亚烷基或者亚芳香基;R 5选自氢、亚烷基或者亚芳香基;R 6选自氢、亚烷基或者亚芳香基;R 7选自氢、亚烷基或者亚芳香基;R 8选自氢、亚烷基或者亚芳香基;其中,通式I所示的结构,粘附力调节单元具有亲水性质时,基底具有疏水性质;或者粘附力调节单元具有疏水性质时,基底具有亲水性质;
S1803、利用紫外光对预设区域内的量子点膜进行曝光处理,通式I中的裂解单元发生光解反应,其中分解后含有粘附力调节单元的分子链段由量子点表面脱落,在主体量子点表面形成通式X的结构;
S1804、采用有机溶剂洗涤去除未经过曝光处理的量子点膜,干燥后,形成图案化的发光层。
在具体实施时,在本公开实施例提供的上述制作方法中,如图19所示,制备发光层,具体可以包括:
S1901、提供一基底;
S1902、在基底上形成可交联主体量子点的膜层;
S1903、采用预设波长的光照射膜层的保留区域;其中,在预设波长的光照射下,可交联主体量子点表面发生交联形成交联网络;
S1904、去除未被预设波长的光照射的主体量子点,以在保留区域形成图案化的发光层。
下面通过具体实施例对本公开实施例提供的图1-图4所示的发光器件的制备方法进行简单说明。具体地,发光器件中各膜层的制备方法包括但不限于旋涂法、蒸镀法、化学气相沉积法、物理气相沉积法、磁控溅射法等中的一种或多种。
制备图1所示的发光器件的步骤如下:
(1)清洗。将基底5分别采用异丙醇、水、丙酮超声清洗,并紫外UV处理5-10min。然后在基底5上制作第一电极1。
(2)引入空穴注入层。在上述第一电极1上,通过旋涂、蒸镀、或喷墨打印等方式制备空穴注入层7。空穴注入层7可以选择PEDOT:PSS 4083(聚3,4-乙烯二氧噻吩/聚苯乙烯磺酸盐)或者其它商业化适用于空穴注入层7的化合物等。其中,PEDOT的成膜温度为空气130-150℃等。匀胶机转速设置为500-2500rpm,以调整膜层的厚度。
(3)引入空穴传输层。在上述空穴注入层7上,通过旋涂、蒸镀、或喷墨打印等方式制备空穴传输层8。
(4)引入发光层。在上述空穴传输层8上,通过前述步骤S1401-S404制备包括三种颜色量子点的发光层3,量子点包括CdS、CdSe、CdTe、ZnSe、InP、PbS、CuInS2、ZnO、CsPbCl3、CsPbBr3、CsPhI3、CdS/ZnS、CdSe/ZnS、ZnSe、InP/ZnS、PbS/ZnS、InAs、InGaAs、InGaN、GaNk、ZnTe、Si、Ge、C以及具有上述成分的其他纳米尺度材料,例如纳米棒、纳米片。优选的,量子点为不含镉的量子点。
(5)引入电子传输层。在上述旋涂有发光层的导电玻璃上,引入电子传 输层6,可以选择氧化锌纳米粒子薄膜,或氧化锌溶胶凝胶薄膜等。
(a)氧化锌纳米粒子薄膜:例如,将90-120μL的10-30mg/mL的氧化锌纳米粒子滴加至上述玻璃基板上,设置匀胶机转速为500-2500rpm并旋涂成膜,并室温或加热成膜(25-120℃)。以调整氧化锌膜层的厚度。
(b)溶胶凝胶薄膜:将2g醋酸锌加入至含有10mL乙醇胺和正丁醇组成溶剂中,旋涂成膜,转速1000-4000rpm,并于180-250℃热台加热成膜。
电子传输层材料还可以选择离子掺杂型氧化锌纳米粒子,如Mg,In,Al,Ga掺杂氧化镁纳米粒子等。
(6)引入第二电极。最后引入第二电极2材料,例如蒸镀Al膜、Ag膜、溅射IZO膜或者MgAg合金膜,制备发光器件。
(7)引入分布式布拉格反射器。分别在RGB对应的像素区域引入反射单元,制备成全彩器件。
制备图2、图3和图4所示的发光器件中各膜层的工艺与制备图1所示的器件结构中各膜层的工艺相同,图2、图3和图4与图1所示的制备方法区别在于膜层制作的顺序不同,在此不做详述。
具体实施时,本公开实施例提供的发光器件还包括本领域技术人员熟知的其它功能膜层,在此不做详述。
基于同一公开构思,本公开实施例还提供了一种显示装置,包括本公开实施例提供的上述发光器件。该显示装置可以为:手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。对于该显示装置的其它必不可少的组成部分均为本领域的普通技术人员应该理解具有的,在此不做赘述,也不应作为对本公开的限制。该显示装置解决问题的原理与前述发光器件相似,因此该显示装置的实施可以参见前述发光器件的实施,重复之处在此不再赘述。
本公开实施例提供的发光器件及其制作方法、显示装置,通过在第一电极或第二电极远离发光层一侧设置滤色层,一方面可以消除与发光层发出光颜色不同的光,从而解决采用光刻法制备图案化的量子点时发生混色的问题; 另一方面,可以提高发光色纯度,进而提高发光器件的色域。
尽管已描述了本公开的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本公开范围的所有变更和修改。
显然,本领域的技术人员可以对本公开实施例进行各种改动和变型而不脱离本公开实施例的精神和范围。这样,倘若本公开实施例的这些修改和变型属于本公开权利要求及其等同技术的范围之内,则本公开也意图包含这些改动和变型在内。

Claims (24)

  1. 一种发光器件,包括多个像素单元,每一所述像素单元包括能够发出n种不同颜色光的至少n个子像素,其中,
    每一个所述子像素包括:
    相对设置的第一电极和第二电极;
    位于所述第一电极和所述第二电极之间的发光层,在至少一个所述像素单元中,至少一个子像素的发光层包括主体量子点以及至少一种与所述主体量子点发光颜色不同的残留量子点;
    位于所述第一电极或所述第二电极远离所述发光层一侧的滤色层,所述滤色层被配置为透过所述主体量子点发射的光,并且阻止所述残留量子点发射的光透过。
  2. 如权利要求1所述的发光器件,其中,所述主体量子点表面连接有如通式X所示的结构:
    A-B’  (X);
    其中,A为配位单元,B’为残余单元,
    所述配位单元包括巯基、羟基、胺基、氨基、羧基、磷酸基、磷酯基和磺酸基中的至少一种;
    所述残余单元包括如下式所示的结构中的至少一种;
    Figure PCTCN2021101604-appb-100001
    -R 5-OH、-R 6-H、-R 7-OH、或-R 8-H;
    其中,R 1选自氢、烷氧基、烷基或者芳香基;R 2选自氢、烷氧基、烷基或者芳香基;
    R 3选自氢、亚烷基或者亚芳香基;R 4选自氢、亚烷基或者亚芳香基;R 5选自氢、亚烷基或者亚芳香基;R 6选自氢、亚烷基或者亚芳香基;R 7选自氢、亚烷基或者亚芳香基;R 8选自氢、亚烷基或者亚芳香基。
  3. 如权利要求1所述的发光器件,其中,所述主体量子点表面连接有交联网络。
  4. 如权利要求3所述的发光器件,其中,所述交联网络由基团对R9和R10交联形成,所述R9和所述R10分别为所述主体量子点表面形成交联网络之前的可交联配体。
  5. 如权利要求3或4所述的发光器件,其中,所述交联网络由可由交联剂和基团R11交联形成,所述R11为所述主体量子点表面形成交联网络之前的可交联配体。
  6. 如权利要求1所述的发光器件,其中,在包括所述残留量子点的所述子像素的发光层中,所述残留量子点与全部量子点的摩尔比小于10%。
  7. 如权利要求1所述的发光器件,其中,每一所述像素单元包括红色子像素、绿色子像素和蓝色子像素,所述红色子像素包括红色主体量子点,所述绿色子像素包括绿色主体量子点,所述蓝色子像素包括蓝色主体量子点。
  8. 如权利要求7所述的发光器件,其中,所述红色子像素中的残留量子点与全部量子点的摩尔比、所述绿色子像素中的残留量子点与全部量子点的摩尔比和所述蓝色子像素中的残留量子点与全部量子点的摩尔比依次减小。
  9. 如权利要求1-8任一项所述的发光器件,其中,所述滤色层包括与发出不同颜色光的各子像素一一对应的不同颜色的多个色阻。
  10. 如权利要求7所述的发光器件,其中,所述滤色层包括与各所述子像素对应的多个光学调制部,且每一所述子像素包括一个所述光学调制部;
    所述红色子像素对应的光学调制部为第一长通滤波片,所述第一长通滤波片的起始波长小于红色主体量子点发光峰对应波长,且大于绿色主体量子 点发光峰对应波长;所述蓝色子像素对应的光学调制部为短通滤波片,所述短通滤波片的截止波长小于绿色主体量子点发光峰对应波长,且大于蓝色主体量子点发光峰对应波长;所述绿色子像素对应的光学调制部为第二长通滤波片,所述第二长通滤波片的起始波长小于绿色主体量子点发光峰对应波长,且大于蓝色主体量子点发光峰对应波长。
  11. 如权利要求7所述的发光器件,其中,所述滤色层包括与各所述子像素对应的多个光学调制部,且每一所述子像素包括一个所述光学调制部;
    所述红色子像素对应的光学调制部为第一带通滤波片,所述第一带通滤波片的起始波长小于所述红色主体量子点发光峰对应波长,且大于所述绿色主体量子点发光峰对应波长;所述第一带通滤波片的截止波长大于所述红色主体量子点发光峰对应波长;
    所述绿色子像素对应的光学调制部为第二带通滤波片,所述第二带通滤波片的起始波长小于所述绿色主体量子点发光峰对应波长,且大于所述蓝色主体量子点发光峰对应波长,所述第二带通滤波片的截止波长大于所述绿色主体量子点发光峰对应波长,且小于所述红色主体量子点发光峰对应波长;
    所述蓝色子像素对应的光学调制部为第三带通滤波片,所述第三带通滤波片的起始波长小于所述蓝色主体量子点发光峰对应波长,所述第三带通滤波片的截止波长大于所述蓝色主体量子点发光峰对应波长且小于所述绿色主体量子点发光峰对应波长。
  12. 如权利要求7所述的发光器件,其中,所述滤色层包括与各所述子像素对应的多个光学调制部,且每一所述子像素包括叠层设置的2个光学调制部;所述红色子像素中的一个所述光学调制部阻止蓝光透过,另一个所述光学调制部阻止绿光透过;所述绿色子像素中的一个所述光学调制部阻止蓝光透过,另一个所述光学调制部阻止红光透过;所述蓝色子像素中的一个所述光学调制部阻止红光透过,另一个所述光学调制部阻止绿光透过。
  13. 如权利要求10-12任一项所述的发光器件,其中,所述光学调制部包括交替叠层设置的至少一层第一膜层和至少一层第二膜层;所述第一膜层的 折射率和所述第二膜层的折射率不同。
  14. 如权利要求10-12任一项所述的发光器件,其中,所述第一电极为透明电极,所述第二电极为反射电极;所述光学调制部位于所述第一电极远离所述第二电极的一侧。
  15. 如权利要求10-12任一项所述的发光器件,其中,所述第一电极为反射电极,所述第二电极在可见光波段对光部分透过部分反射;所述光学调制部位于所述第二电极远离所述第一电极的一侧。
  16. 如权利要求12所述的发光器件,其中,反射不同颜色的光的各光学调制部中的第一膜层的材料相同,反射不同颜色的光的各光学调制部中的第二膜层的材料相同;
    所述第一膜层的厚度相同,反射红色光的光学调制部中的第二膜层的厚度、反射绿色光的光学调制部中的第二膜层的厚度、反射蓝色光的光学调制部中的第二膜层的厚度依次减小;或者,
    所述第二膜层的厚度相同,反射红色光的光学调制部中的第一膜层的厚度、反射绿色光的光学调制部中的第一膜层的厚度、反射蓝色光的光学调制部中的第一膜层的厚度依次减小。
  17. 如权利要求12所述的发光器件,其中,所述第一膜层的材料包括InGaAsP、InAlGaN、SiO2、TiO2、Si3N4、Au或Ag,所述第二膜层的材料包括InGaAsP、InAlGaN、SiO2、TiO2、Si3N4、Au或Ag,且所述第一膜层和所述第二膜层的材料不同。
  18. 如权利要求12所述的发光器件,其中,所述光学调制部包括交替叠层设置的至少一层第一膜层和至少一层第二膜层;
    所述第一电极为反射电极,所述第二电极在可见光波段对光部分透过部分反射,所述光学调制部位于所述第二电极远离所述第一电极的一侧;
    当所述发光层中主体量子点发出光的颜色为蓝色时,所述第一膜层的材料为SiO2,所述第二膜层的材料为Si3N4,最靠近所述第二电极的第一膜层的厚度为5nm~15nm,最靠近所述第二电极的第二膜层的厚度大致为 35nm~45nm;
    当所述发光层中主体量子点发出光的颜色为红色时,所述第一膜层的材料为SiO2,所述第二膜层的材料为Si3N4,最靠近所述第二电极的第一膜层的厚度为55nm~65nm,最靠近所述第二电极的第二膜层的厚度大致为55nm~65nm;
    当所述发光层中主体量子点发出光的颜色为绿色时,所述第一膜层的材料为SiO2,所述第二膜层的材料为Si3N4,最靠近所述第二电极的第一膜层的厚度大致为15nm~25nm,最靠近所述第二电极的第二膜层的厚度大致为55nm~65nm。
  19. 如权利要求1所述的发光器件,其中,
    还包括:位于所述第一电极和所述发光层之间的电子传输层,位于所述发光层和所述第二电极之间的空穴注入层,以及位于所述空穴注入层和所述发光层之间的空穴传输层;其中,所述电子传输层的材料包括无机电子传输材料;
    或者,还包括:位于所述第一电极和所述发光层之间的空穴传输层,位于所述第一电极和所述空穴传输层之间的空穴注入层,以及位于所述发光层和所述第二电极之间的电子传输层;其中,所述空穴传输层包括无机空穴传输材料。
  20. 如权利要求1所述的发光器件,其中,所述主体量子点包括CdS、CdSe、CdTe、ZnSe、InP、PbS、CuInS2、ZnO、CsPbCl3、CsPbBr3、CsPhI3、CdS/ZnS、CdSe/ZnS、ZnSe、InP/ZnS、PbS/ZnS、InAs、InGaAs、InGaN、GaNk、ZnTe、Si、Ge、C、纳米棒至少其中之一。
  21. 一种用于制作如权利要求1-20任一项所述的发光器件的制作方法,其中,包括:
    在每一个所述子像素内分别制备第一电极、第二电极、发光层和滤色层;其中,在至少一个所述像素单元中,至少一个子像素的发光层包括主体量子点以及至少一种与所述主体量子点发光颜色不同的残留量子点;
    所述滤色层位于所述第一电极或所述第二电极远离所述发光层的一侧,所述滤色层被配置为透过所述主体量子点发射的光,并且阻止所述残留量子点发射的光透过。
  22. 如权利要求21所述的制作方法,其中,制备所述发光层,具体包括:
    提供一基底;
    在所述基底上涂覆含有主体量子点的混合物,形成量子点膜;所述主体量子点表面连接有如通式I所示的结构,
    A-B-C  (I);
    其中,A为配位单元,B为裂解单元,C为粘附力调节单元;
    所述配位单元包括巯基、羟基、胺基、氨基、羧基、磷酸基、磷酯基和磺酸基中的任意一种;
    所述裂解单元具有如式II~IV所示的结构;
    所述粘附力调节单元为含有3个碳原子以上的全氟烷基、或者含有8个以上亲水性官能团的基团或者含有8个以上亲水性官能团的分子链;所述亲水性官能团为羟基、醛基、酯基或醚基;
    Figure PCTCN2021101604-appb-100002
    -R 5-N=N-R 6-  (III);
    -R 7-O-O-R 8-  (IV);
    其中,R 1选自氢、烷氧基、烷基或者芳香基;R 2选自氢、烷氧基、烷基或者芳香基;
    R 3选自氢、亚烷基或者亚芳香基;R 4选自氢、亚烷基或者亚芳香基;R 5选自氢、亚烷基或者亚芳香基;R 6选自氢、亚烷基或者亚芳香基;R 7选自氢、亚烷基或者亚芳香基;R 8选自氢、亚烷基或者亚芳香基;其中,所述通式I 所示的结构,粘附力调节单元具有亲水性质时,所述基底具有疏水性质;或者所述粘附力调节单元具有疏水性质时,所述基底具有亲水性质;
    利用紫外光对预设区域内的量子点膜进行曝光处理,所述通式I中的裂解单元发生光解反应,其中分解后含有粘附力调节单元的分子链段由量子点表面脱落,在所述主体量子点表面形成所述通式X的结构;
    采用有机溶剂洗涤去除未经过曝光处理的量子点膜,干燥后,形成图案化的发光层。
  23. 如权利要求21所述的制作方法,其中,制备所述发光层,具体包括:
    提供一基底;
    在所述基底上形成可交联主体量子点的膜层;
    采用预设波长的光照射所述膜层的保留区域;其中,在所述预设波长的光照射下,所述可交联主体量子点表面发生交联形成交联网络;
    去除未被所述预设波长的光照射的主体量子点,以在所述保留区域形成图案化的发光层。
  24. 一种显示装置,其中,包括如权利要求1-20任一项所述的发光器件。
PCT/CN2021/101604 2021-06-22 2021-06-22 发光器件及其制作方法、显示装置 WO2022266852A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US18/030,090 US20230371295A1 (en) 2021-06-22 2021-06-22 Light-emitting device and manufacturing method therefor, and display device
PCT/CN2021/101604 WO2022266852A1 (zh) 2021-06-22 2021-06-22 发光器件及其制作方法、显示装置
CN202180001582.3A CN115735426A (zh) 2021-06-22 2021-06-22 发光器件及其制作方法、显示装置
EP21946354.4A EP4207327A4 (en) 2021-06-22 2021-06-22 LIGHT EMITTING DEVICE AND PRODUCTION METHOD THEREOF AND DISPLAY DEVICE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/101604 WO2022266852A1 (zh) 2021-06-22 2021-06-22 发光器件及其制作方法、显示装置

Publications (1)

Publication Number Publication Date
WO2022266852A1 true WO2022266852A1 (zh) 2022-12-29

Family

ID=84543855

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/101604 WO2022266852A1 (zh) 2021-06-22 2021-06-22 发光器件及其制作方法、显示装置

Country Status (4)

Country Link
US (1) US20230371295A1 (zh)
EP (1) EP4207327A4 (zh)
CN (1) CN115735426A (zh)
WO (1) WO2022266852A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103278876A (zh) * 2013-05-28 2013-09-04 京东方科技集团股份有限公司 量子点彩色滤光片及其制作方法、显示装置
CN104465911A (zh) * 2013-09-23 2015-03-25 三星显示有限公司 量子点发光装置及显示设备
US20180219183A1 (en) * 2017-02-02 2018-08-02 Samsung Display Co., Ltd. Organic light emitting diode display device
CN109411512A (zh) * 2017-08-17 2019-03-01 三星电子株式会社 显示面板和使用该显示面板的显示装置
CN109656050A (zh) * 2018-03-28 2019-04-19 友达光电股份有限公司 液晶显示设备及其制造方法
CN111430444A (zh) * 2020-04-30 2020-07-17 武汉华星光电半导体显示技术有限公司 量子点显示面板及其制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106356463B (zh) * 2016-10-11 2017-12-29 深圳市华星光电技术有限公司 Qled显示装置的制作方法
KR20210018567A (ko) * 2019-08-05 2021-02-18 삼성디스플레이 주식회사 양자점 조성물, 발광 소자 및 이를 포함하는 표시 장치
CN110590549A (zh) * 2019-09-30 2019-12-20 京东方科技集团股份有限公司 配体、量子点及量子点层的图案化方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103278876A (zh) * 2013-05-28 2013-09-04 京东方科技集团股份有限公司 量子点彩色滤光片及其制作方法、显示装置
CN104465911A (zh) * 2013-09-23 2015-03-25 三星显示有限公司 量子点发光装置及显示设备
US20180219183A1 (en) * 2017-02-02 2018-08-02 Samsung Display Co., Ltd. Organic light emitting diode display device
CN109411512A (zh) * 2017-08-17 2019-03-01 三星电子株式会社 显示面板和使用该显示面板的显示装置
CN109656050A (zh) * 2018-03-28 2019-04-19 友达光电股份有限公司 液晶显示设备及其制造方法
CN111430444A (zh) * 2020-04-30 2020-07-17 武汉华星光电半导体显示技术有限公司 量子点显示面板及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4207327A4 *

Also Published As

Publication number Publication date
EP4207327A4 (en) 2024-01-10
EP4207327A1 (en) 2023-07-05
US20230371295A1 (en) 2023-11-16
CN115735426A (zh) 2023-03-03

Similar Documents

Publication Publication Date Title
US11236270B2 (en) Quantum dots, a composition or composite including the same, and an electronic device including the same
Yang et al. Light extraction efficiency enhancement of colloidal quantum dot light‐emitting diodes using large‐scale nanopillar arrays
US10991900B2 (en) Crosslinked emissive layer containing quantum dots for light-emitting device and method for making same
US10720591B2 (en) Crosslinked emissive layer containing quantum dots for light-emitting device and method for making same
TWI605626B (zh) 電激發光裝置
KR101611650B1 (ko) 나노입자 코팅을 갖는 광 추출 필름
JP2009087781A (ja) エレクトロルミネッセンス素子およびその製造方法
US8043793B2 (en) Method for manufacturing electroluminescence element
US11180695B2 (en) Cadmium free quantum dots, and composite and display device including the same
US11674078B2 (en) Quantum dots, a composition or composite including the same, and an electronic device including the same
US10826011B1 (en) QLED fabricated by patterning with phase separated emissive layer
JP2010533932A (ja) 有機発光ダイオードディスプレイ装置のための光抽出フィルム
CN109239967B (zh) 量子点彩膜的制备方法、彩膜基板、显示面板和显示装置
CN111769200A (zh) 量子点发光器件、量子点层图案化的方法及显示装置
CN112952014B (zh) 发光二极管及其制备方法、显示面板及其制备方法
WO2022266852A1 (zh) 发光器件及其制作方法、显示装置
CN113871437A (zh) 显示器件及其制备方法和显示装置
WO2015111351A1 (ja) 有機エレクトロルミネッセンス素子
KR20210128040A (ko) 양자점, 복합체, 그리고 이를 포함하는 소자
Lee et al. High-Resolution Multicolor Patterning of InP Quantum Dot Films by Atomic Layer Deposition of ZnO
CN114365583A (zh) 显示装置以及显示装置的制造方法
WO2023122999A1 (zh) 发光器件及其制备方法、显示面板、显示装置
WO2021258885A1 (zh) 量子点发光面板、显示装置和制作方法
WO2024026658A1 (zh) 阵列基板及其制造方法、显示装置
US20230403923A1 (en) Method for patterning quantum dot layer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21946354

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021946354

Country of ref document: EP

Effective date: 20230331

NENP Non-entry into the national phase

Ref country code: DE