WO2022266843A1 - 扬声器模组和电子设备 - Google Patents

扬声器模组和电子设备 Download PDF

Info

Publication number
WO2022266843A1
WO2022266843A1 PCT/CN2021/101550 CN2021101550W WO2022266843A1 WO 2022266843 A1 WO2022266843 A1 WO 2022266843A1 CN 2021101550 W CN2021101550 W CN 2021101550W WO 2022266843 A1 WO2022266843 A1 WO 2022266843A1
Authority
WO
WIPO (PCT)
Prior art keywords
speaker
communication port
cavity
partition
sound
Prior art date
Application number
PCT/CN2021/101550
Other languages
English (en)
French (fr)
Inventor
郑超学
张富坤
雷卫强
Original Assignee
海能达通信股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 海能达通信股份有限公司 filed Critical 海能达通信股份有限公司
Priority to PCT/CN2021/101550 priority Critical patent/WO2022266843A1/zh
Publication of WO2022266843A1 publication Critical patent/WO2022266843A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/60Substation equipment, e.g. for use by subscribers including speech amplifiers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R9/00Transducers of moving-coil, moving-strip, or moving-wire type
    • H04R9/02Details
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R9/00Transducers of moving-coil, moving-strip, or moving-wire type
    • H04R9/06Loudspeakers

Definitions

  • the present application relates to the technical field of loudspeakers, in particular to a loudspeaker module and electronic equipment.
  • the existing solution is to set the speaker cavity in the inner cavity of the electronic device (that is, the equipment inner cavity mentioned later) to control the sound waves generated on the side away from the sound outlet. Energy is absorbed. If the volume of the speaker cavity is too large, it will take up too much space; but if the volume of the speaker cavity is too small, the sound performance of the speaker will be affected.
  • the application at least provides a loudspeaker module and electronic equipment.
  • the application provides a loudspeaker module, comprising: a loudspeaker body with a first sound outlet; a loudspeaker housing including a bottom plate, side plates, a cover plate and a partition, and the bottom plate, side plates and cover plates are arranged to form a loudspeaker Inner chamber, the partition board divides the speaker inner chamber into at least two independent sub-cavities, the speaker body is arranged in one of the sub-cavities, the partition board is provided with a first communication port connecting the sub-cavities, and the first sound outlet of the speaker body One side is attached to the cover plate, and the cover plate is provided with a second sound outlet facing the first sound outlet.
  • the first communication ports provided on adjacent partitions are misaligned.
  • the side plate is provided with a second communication port, and the second communication port provided on the side plate is misaligned with the first communication port provided on the adjacent partition plate. After the sound wave passes through the last sub-cavity, it can be transmitted through the second communication port. out of the speaker cavity.
  • first communication port and the second communication port are holes or grooves.
  • the partition is a closed structure connected end to end, and one of the two adjacent partitions is arranged around the other.
  • the closed structure is arranged in a rectangular shape.
  • the surfaces of the adjacent partitions provided with the first communication ports are located on different sides of the bottom plate.
  • the separator is a non-closed structure.
  • the non-closed structure is arranged as a straight line segment.
  • At least one of the side plate and the partition plate is provided with a porous material on a side close to the loudspeaker body.
  • the present application provides an electronic device, which includes a device casing and the aforementioned speaker module, and the speaker module is arranged in the device inner cavity of the device casing.
  • the speaker module is provided with a second sound outlet, and the side of the speaker module away from the second sound outlet is attached to the device casing, and the device casing is provided with a third sound outlet facing the second sound outlet. sound outlet.
  • the speaker inner cavity is divided into at least two independent sub-cavities by a partition, and the partition is provided with a first communication port connecting the sub-cavities, so that sound waves in the speaker cavity can propagate to different sub-cavities through the first communication port. sub cavity.
  • the present application can improve the sound generation performance of the speaker body without increasing the volume of the rear cavity of the speaker.
  • Fig. 1 is a schematic structural view of an embodiment of the speaker module of the present application
  • Fig. 2 is a schematic diagram of an exploded structure of an embodiment of the loudspeaker module in Fig. 1;
  • Fig. 3 is a schematic cross-sectional structure diagram of an embodiment of the speaker module in Fig. 1 along the direction y1-y2;
  • Fig. 4 is a schematic cross-sectional structure diagram of an embodiment of the speaker module in Fig. 1 along the z1-z2 direction;
  • Fig. 5 is a schematic diagram of the dislocation of the first communication port provided by the adjacent partition
  • Fig. 6 is another schematic diagram of the misalignment of the first communication ports provided by adjacent partitions
  • Fig. 7 is another schematic diagram of the misalignment of the first communication ports provided by adjacent partitions
  • Fig. 8 is another schematic diagram of the misalignment of the first communication ports provided by adjacent partitions
  • Fig. 9 is a schematic diagram of an exploded structure of another embodiment of the speaker module in Fig. 1;
  • Fig. 10 is a schematic cross-sectional structure diagram of another embodiment of the speaker module in Fig. 1 along the z1-z2 direction;
  • Fig. 11 is another schematic diagram of the misalignment of the first communication ports provided by adjacent partitions
  • Fig. 12 is another schematic diagram of the misalignment of the first communication ports provided by adjacent partitions
  • FIG. 13 is a schematic structural diagram of an embodiment of the electronic device of the present application.
  • Fig. 14 is a schematic cross-sectional structure diagram of the electronic device in Fig. 13 along the y1-y2 direction;
  • Fig. 15 is a schematic diagram of the internal structure of the electronic device in Fig. 13;
  • Fig. 16 is a diagram of the test results of the sound generation performance of the speaker.
  • Figure 1 is a schematic structural diagram of an embodiment of the speaker module of the present application
  • Figure 2 is a schematic diagram of an exploded structure of an embodiment of the speaker module in Figure 1
  • Figure 3 is a schematic diagram of the speaker module in Figure 1 along y1 -
  • FIG. 4 is a schematic cross-sectional structural schematic diagram of an embodiment of the speaker module in FIG. 1 along the z1-z2 direction.
  • the speaker module 10 includes a speaker body 11 and a speaker housing 12 .
  • the speaker body 11 is provided with a first sound outlet 111 .
  • the side of the first sound outlet 111 and the side away from the first sound outlet 111 of the speaker body 11 can generate sound waves with equal magnitude and 180-degree phase difference.
  • the speaker housing 12 includes a bottom plate 121 , a side plate 122 , a cover plate 123 and a partition 124 .
  • the bottom plate 121 , the side plate 122 and the cover plate 123 enclose a speaker cavity 125 .
  • the partition 124 divides the speaker cavity 125 into at least two independent sub-cavities (not shown in the figure), and the partition 124 is in contact with both the cover plate 123 and the bottom plate 121 , and the speaker body 11 is disposed in one of the sub-cavities.
  • the partition 124 is provided with a first communication port 1241 communicating with the sub-cavities, that is, among at least two independent sub-cavities, two adjacent sub-cavities are communicated through the first communication port 1241 . Therefore, the sound wave emitted from the side of the speaker body 11 away from the first sound outlet 111 can be transmitted to different sub-cavities through the first communication port 1241 .
  • the number of partitions 124 can be 1, 2, 3, etc., which can be specifically set according to sound absorption requirements. In this embodiment, the number of partitions 124 is 2.
  • at least two independent sub-cavities include a first sub-cavity 1251 , a second sub-cavity 1252 and a third sub-cavity 1253 .
  • the first subcavity 1251 and the second subcavity 1252, and the second subcavity 1252 and the third subcavity 1253 communicate through the first communication port 1241.
  • the speaker body 11 is arranged in the first sub-cavity 1251, so that the sound waves emitted from the side of the speaker body 11 away from the first sound outlet 111 can sequentially pass through the first sub-cavity 1251 and the second through the first communication port 1241.
  • the air will rub against the boundary of the first communication port 1241 to generate air viscous resistance, so that the surrounding air of the first communication port 1241 and the The boundary of the first communication port 1241 forms a thermoviscous effect due to heat conduction. That is, the movement speed of the surrounding air molecules near the boundary of the first communication port 1241 is very slow, and the movement speed of the air molecules on the boundary of the first communication port 1241 approaches 0, and the movement speed of the air molecules far away from the boundary of the first communication port 1241 is according to Euler's equations move at standard acoustic velocities.
  • thermoviscous effect air molecules are "sticky" to the boundary of the first communication port 1241, and the velocity of the air molecules in the boundary of the first communication port 1241 tends to 0, and the adjacent boundaries of the first communication port 1241 The speed of the air molecules is also slowed down, so that the overall energy of the sound wave is consumed (sound absorption), that is, part of the sound energy is converted into heat energy.
  • the partition 124 is a closed structure connected end to end, and the closed structure may be arranged in a rectangular shape, a circular shape, or the like. If the number of partitions 124 is greater than 1, one of two adjacent partitions 124 is arranged around the other. Moreover, adjacent partitions 124 may be arranged in parallel or non-parallel. Taking the baffles 124 as a rectangular closed structure and adjacent baffles 124 in parallel as an example, the propagation of sound waves in the speaker cavity 125 will be described.
  • the speaker body 11 is arranged in the first sub-cavity 1251, so that the sound waves emitted by the speaker body 11 away from the first sound outlet 111 can pass through the first sub-cavity 1251, the second sub-cavity 1252 and the second sub-cavity 1252 in sequence.
  • Three lumens 1253 (arrows indicate direction of propagation).
  • the number of partitions 124 is greater than 1, the first communication ports 1241 provided on adjacent partitions 124 are misaligned.
  • the misalignment of the first communication ports 1241 provided on adjacent partitions 124 can be divided into two cases.
  • the first situation is that the area 1 where one partition 124 is provided with the first communication port 1241 is partially or completely opposite to the area 2 where the other partition 124 is provided with the first communication port 1241, but the first communication port on area 1
  • the port 1241 and the first communication port 1241 on the area 2 are not aligned/misaligned.
  • the partition 124 is a closed structure arranged in a rectangle. Face to face, that is, the surface a and the surface A are located on the same side of the bottom plate 121, and the three first communication ports 1241 provided on the surface A are misaligned with the three first communication ports 1241 provided on the surface a.
  • the second situation is that the area where one partition 124 is provided with the first communication port 1241 is completely misaligned with the area where the other partition 124 is provided with the first communication port 1241 , so that the first communication port 1241 provided on the adjacent partition dislocation. It will be described in conjunction with Figures 6-8.
  • the partitions 124 are rectangular closed structures, wherein one partition 124 includes surfaces a to d, and the other partition 124 includes surfaces A to D, and a is directly opposite to A, that is, a and A is located on the same side of the bottom plate 121, a is completely misaligned with B ⁇ D, that is, a and B ⁇ D are located on different sides of the bottom plate 121; b is directly opposite to B (b is completely misaligned with A, C, and D); Right (c is completely misaligned with A, B, D); d is rightly aligned with D (d is completely misaligned with A ⁇ C).
  • a and c in FIG. 6 are provided with a first communication port 1241
  • A, B, c and d in FIG. 7 are provided with a first communication port 1241
  • A, b, c and d in FIG. 8 are provided with a first communication port 1241.
  • the setting of the offset makes one or multiple resonant sound-absorbing structures (Helmholtz resonant cavities) connected in parallel between two adjacent side plates 122 and partition plates 124 , resulting in a resonant sound-absorbing effect. Therefore, when the frequency of the sound wave coincides with the natural frequency (Helmholtz resonance frequency) of the resonant sound absorbing structure 127, resonance occurs and the amplitude is maximized, thereby consuming the energy of the sound wave. In other words, under the resonant sound absorption effect, after the sound wave enters the first communication port 1241 , the air molecules in the speaker cavity 125 are excited to vibrate, which can further consume the energy of the sound wave during the propagation of the sound wave in the speaker cavity 125 .
  • Helmholtz resonance frequency the natural frequency
  • a porous material is provided on a side of the partition 124 close to the speaker body 11 . If the areas where two adjacent partitions 124 are provided with the first communication port 1241 are completely misaligned, when the sound wave is incident on the porous material on the partition 124, a thermal viscous effect will also be generated, so that the sound wave will propagate in the speaker cavity 125 The acoustic energy is further consumed in the process. Please refer to the previous description for the relevant introduction of the thermoviscous effect, and will not repeat it here.
  • the side plate 122 is provided with a second communication port 1221 .
  • the speaker cavity 125 can communicate with the device cavity (not shown) where the speaker cavity 125 is located through the second communication port 1221 .
  • the second communication port 1221 can be regarded as an exhaust hole or an air pressure balance hole between the speaker cavity 125 and the device cavity. After passing through the last sub-cavity (third sub-cavity 1253 ) on the propagation path, the sound wave can pass out of the speaker cavity 125 through the second communication port 1221 , that is, enter the device cavity. Therefore, the volume of the speaker inner cavity 125 is increased in a disguised form, that is, the device inner cavity is regarded as an extended part of the speaker inner cavity 125 .
  • the second communication port 1221 provided on the side plate 122 and the first communication port 1241 provided on the adjacent partition plate 124 are misaligned, so as not to affect the Helmholm between the side plate 122 and the adjacent partition plate 124 .
  • a thermal viscous effect can also be formed, so as to realize further absorption of sound wave energy.
  • the size of the first communicating port 1241 may be set based on at least one of the aperture and power of the speaker body 11 .
  • the sound absorption coefficient can be modified by adjusting the diameter of the first communication port 1241, and the sound absorption frequency band can also be modified by adjusting the gap between different first communication ports 1241 provided on the same partition 124. Width, the position of the resonant sound absorption peak can also be modified by adjusting the distance between the first communication port 1241 on the current partition 124 and the next partition 124/side plate 122 on the sound wave propagation path, so as not to affect the propagation of the sound wave In this case, the effect of slowing down the noise cancellation and reducing the output volume is achieved.
  • the acoustic impedance ratio can be calculated by the following formula:
  • z is the acoustic impedance ratio
  • r is the acoustic resistance
  • j ⁇ m is the acoustic reactance
  • m is the acoustic mass
  • t is the thickness of the partition 124 provided with the first communication port 1241
  • d is the diameter of the first communication port 1241 .
  • the Helmholtz resonance frequency can be calculated by the following formula:
  • f0 is the Helmholtz resonance frequency
  • c is the speed of sound
  • S is the cross-sectional area of the first communication port 1241
  • d is the diameter of the first communication port 1241
  • l is the diameter of the two plates (adjacent partition plates) in the resonant sound-absorbing structure.
  • V is the volume of the Helmholtz resonant cavity.
  • a porous material is provided on the side of the side plate 122 close to the speaker body 11 . If the second communication port 1221 provided on the side plate 122 is completely misaligned with the area where the first communication port 1241 is provided on the adjacent partition 124, when the sound wave is incident on the porous material on the side plate 12, a thermal viscous effect will occur, The energy of the sound wave is further consumed during the propagation of the sound wave in the cavity 125 of the speaker. Please refer to the previous description for the relevant introduction of the thermoviscous effect, and will not repeat it here.
  • the speaker body 11 is attached to the cover plate 123 on one side of the first sound outlet 111, and the cover plate 123 is provided with a second sound outlet 1231 facing the first sound outlet 111, and the second sound outlet
  • the size of the opening 1231 is greater than or equal to that of the first sound outlet 111 . Therefore, the sound wave emitted by the speaker body 11 through the first sound outlet 111 can be transmitted to the outside of the speaker housing 12 through the second sound outlet 1231.
  • the present application utilizes a partition to divide the loudspeaker cavity into at least two independent sub-cavities, and the partition is provided with a first communication port connecting the sub-cavities, so that sound waves can propagate to different sub-cavities through the first communication port.
  • a thermal viscous effect will be formed, so that the sound wave energy is consumed/absorbed.
  • the partition and the side plate can form a Helmholtz resonant cavity, and the resonant cavity can form a resonant sound absorption effect, so that the sound wave propagates in the inner cavity of the speaker. Energy can be further consumed.
  • the propagation path of the sound wave in the speaker cavity can be increased, so that the sound wave energy is further consumed during the propagation of the sound wave in the speaker cavity.
  • the present application can improve the sound generation performance of the speaker body without increasing the volume of the rear cavity of the speaker.
  • the present application further provides a second communication port on the side plate, so that the inner cavity of the speaker communicates with the inner cavity of the device.
  • the second communication port balances the air pressure inside and outside the speaker cavity, and increases the volume of the speaker rear cavity in disguise. If a porous material is provided on the side of the side plate close to the speaker body, and the second communication port provided on the side plate is completely misaligned with the area where the first communication port is provided on the adjacent partition, then when the sound wave propagates in the speaker cavity, The acoustic energy is further dissipated.
  • the sound wave energy has been absorbed to a large extent when the sound wave propagates in the inner cavity of the speaker, the sound wave cannot form effective vibration when it enters the inner cavity of the device through the speaker inner cavity, reducing the risk of abnormal sound and echo. Therefore, compared with the second solution, the sound generation performance of the speaker body can be improved.
  • the separator 124 in this embodiment is a non-closed structure.
  • the non-closed structure can be arranged as a line segment, as an arc, and so on.
  • Adjacent separators 124 may be arranged in parallel or non-parallel.
  • the adjacent partitions 124 are non-closed structures arranged in straight line segments, and the adjacent partitions 124 are parallel to each other as an example for illustration.
  • FIG. 9 is a schematic exploded view of another embodiment of the speaker module in FIG. 1
  • FIG. 10 is a schematic cross-sectional view of another embodiment of the speaker module in FIG. 1 along the z1-z2 direction.
  • the bottom plate 121 , the side plate 122 and the cover plate 123 form a loudspeaker cavity 125 .
  • the partition 124 divides the speaker cavity 125 into at least two independent sub-cavities (not shown).
  • the number of partitions 124 can be 1, 2, 3, etc. In this embodiment, the number of partitions 124 is 3 for illustration.
  • the at least two independent sub-cavities include a first sub-cavity 1251 , a second sub-cavity 1252 , a third sub-cavity 1253 and a fourth sub-cavity 1254 .
  • the partition 124 is provided with a first communication port 1241 communicating with the sub-chambers.
  • the first communication ports 1241 provided on adjacent partitions 124 are dislocated.
  • the misalignment of the first communication ports 1241 provided on adjacent partitions 124 can be divided into two situations.
  • the first situation is that the entire surface of the adjacent partition 124 is provided with the first communication port 1241, but the first communication port 1241 on one partition 124 is not aligned with the first communication port 1241 on the other partition 124. right/wrong.
  • FIG. 11 as shown in FIG. 11 , among two adjacent partitions 124 , the three first communication ports 1241 provided on one partition 124 are connected to the three first communicating ports 1241 provided on the other partition 124 .
  • the communication port 1241 is misplaced.
  • the second situation is that the area where one partition 124 is provided with the first communication port 1241 is completely misaligned with the area where the other partition 124 is provided with the first communication port 1241 , so that the first communication port provided by the adjacent partition 124 1241 Misalignment.
  • one partition 124 includes regions M and N, and the other partition 124 includes regions m and n. M and m are completely aligned (M and n are completely misaligned), and N and n are completely aligned (N and m are completely misaligned). M and n are provided with a first communication port 1241 .
  • the side plate 122 is provided with a second communication port 1221 , and the second communication port 1221 provided on the side plate 122 is misaligned with the second communication port 1221 provided on the adjacent partition 124 .
  • the speaker housing 12 includes three partitions 124 , the three partitions 124 are non-closed structures arranged in straight line segments, and adjacent partitions 124 are parallel.
  • the three partitions 124 divide the speaker cavity 125 into four independent sub-cavities (the first sub-cavity 1251 , the second sub-cavity 1252 , the third sub-cavity 1253 and the fourth sub-cavity 1254 ).
  • the speaker body 11 is arranged in the first sub-cavity 1251, so that the sound waves emitted by the speaker body 11 away from the first sound outlet 111 can pass through the first sub-cavity 1251, the second sub-cavity 1252, the third inner cavity 1253 and The fourth sub-cavity 1254 (the arrow indicates the propagation direction) is used to propagate out of the inner cavity 125 of the speaker.
  • FIG. 13 is a schematic structural view of an embodiment of the electronic device of the present application
  • FIG. 14 is a schematic cross-sectional structural view of the electronic device in FIG. 13 along the y1-y2 direction.
  • the electronic device 1 involved in this application may be a mobile phone, a walkie-talkie, a smart watch, and the like.
  • the electronic device 1 includes a speaker module 10 and a device casing 20 .
  • the speaker module 10 is disposed in the equipment cavity 21 of the equipment casing 20 .
  • the speaker module 10 is provided with a second sound outlet 1231 .
  • One side of the second sound outlet 1231 of the speaker module 10 is attached to the device casing 20 , and the device casing 20 is provided with a third sound outlet 21 facing the second sound outlet 1231 .
  • the size of the third sound outlet 21 is greater than or equal to the size of the second sound outlet 1231, so that the sound waves emitted by the second sound outlet 1231 of the speaker module 10 can be further transmitted out of the electronic device 1 through the third sound outlet 21, for the user to hear.
  • the device inner cavity 21 is regarded as an extended part of the speaker inner cavity.
  • the inner cavity 21 of the device may also be provided with a microphone (receiver) 30 .
  • the electronic device 1 includes a speaker module 10 , a device casing 20 and a microphone 30 .
  • the device housing 20 is provided with a device inner cavity 21
  • the speaker module 10 includes a speaker body 11 and a speaker housing 12
  • the speaker body 11 is disposed in a speaker inner cavity 125 provided in the speaker housing 12 .
  • Fig. 16 is a diagram of the test results of the sound generation performance of the speaker.
  • I in Fig. 16 is under the existing loudspeaker module (comprising the loudspeaker body that specification is 20*40mm), the voice signal diagram that loudspeaker body sends out, and II is the loudspeaker module of the present application (comprising the loudspeaker body that specification is 13*38mm) Under the main body), the voice signal diagram emitted by the main body of the speaker.
  • the test results show that, in the case of replacing the speaker body with a smaller specification, the II has an average improvement of 4-6dB compared with the I, and the low frequency is increased by 5-10dB.

Abstract

本申请公开了一种扬声器模组和电子设备。该扬声器模组包括:扬声器本体,设有第一出音口;扬声器壳体,包括底板、侧板、盖板和隔板,底板、侧板和盖板围设成扬声器内腔,隔板将扬声器内腔划分为至少两个独立的子腔,扬声器本体设于其中一个子腔,隔板设有连通子腔的第一连通口,扬声器本体的第一出音口的一侧贴设于盖板,盖板在正对第一出音口处设有第二出音口。通过上述方式,能够提高扬声器本体的发声性能。

Description

扬声器模组和电子设备 【技术领域】
本申请涉及扬声器技术领域,特别是涉及一种扬声器模组和电子设备。
【背景技术】
电子设备通过扬声器(又名喇叭)振动发声。扬声器在发声时,其出音口一侧和背离出音口的一侧产生大小相等且相位相差180度的声波。其中出音口一侧发出的声波为有益的(最终通过电子设备传出以供用户听见的),背离出音口的一侧产生的声波为无益的。
针对背离出音口一侧的声波,现有的解决办法是在电子设备的内腔(即后文提及的设备内腔)设置扬声器内腔来对背离出音口的一侧产生的声波的能量进行吸收。如果设置的扬声器内腔容积太大,会占用过多的空间;但如果设置的扬声器内腔容积过小,会影响扬声器的发声性能。
【发明内容】
本申请至少提供一种扬声器模组和电子设备。
本申请提供了一种扬声器模组,包括:扬声器本体,设有第一出音口;扬声器壳体,包括底板、侧板、盖板和隔板,底板、侧板和盖板围设成扬声器内腔,隔板将扬声器内腔划分为至少两个独立的子腔,扬声器本体设于其中一个子腔,隔板设有连通子腔的第一连通口,扬声器本体的第一出音口的一侧贴设于盖板,盖板在正对第一出音口处设有第二出音口。
其中,相邻的隔板设有的所述第一连通口错位。
其中,侧板设有第二连通口,侧板设有的第二连通口与其相邻的隔板设有的第一连通口错位,声波经过最后一个子腔之后,能够通过第二连通口传出扬声器内腔。
其中,第一连通口和第二连通口为孔或者凹槽。
其中,隔板为首尾连接的封闭结构,相邻的两个隔板中的一个围绕另一个设置。
其中,封闭结构呈矩形设置。
其中,相邻的隔板设有第一连通口的面位于底板的不同侧。
其中,相邻的隔板呈平行设置。
其中,隔板为非封闭结构。
其中,非封闭结构呈直线段设置。
其中,侧板和隔板中的至少一个靠近扬声器本体的一侧设有多孔材料。
本申请提供了一种电子设备,包括设备壳体和前述的扬声器模组,扬声器模组设于设备壳体的设备内腔。
其中,扬声器模组设有第二出音口,扬声器模组的背离第二出音口的一侧贴设于设备壳体,且设备壳体在正对第二出音口处设有第三出音口。
上述方案,利用隔板将扬声器内腔分为至少两个独立的子腔,隔板设有连通子腔的第一连通口,从而声波在扬声器内腔中能够通过第一连通口传播至不同的子腔。其中,声波经过第一连通口时会形成热粘性效应,使得声波能量被消耗/吸收。因此,本申请能够在未增加扬声器后腔容积的情况下,提升扬声器本体的发声性能。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,而非限制本申请。
【附图说明】
此处的附图被并入说明书中并构成本说明书的一部分,这些附图示出了符合本申请的实施例,并与说明书一起用于说明本申请的技术方案。
图1是本申请扬声器模组一实施例的结构示意图;
图2是图1中扬声器模组一实施例的分解结构示意图;
图3是图1中扬声器模组沿y1-y2方向一实施例的截面结构示意图;
图4是图1中扬声器模组沿z1-z2方向一实施例的截面结构示意图;
图5是相邻的隔板设置的第一连通口错位的一示意图;
图6是相邻的隔板设置的第一连通口错位的另一示意图;
图7是相邻的隔板设置的第一连通口错位的另一示意图;
图8是相邻的隔板设置的第一连通口错位的另一示意图;
图9是图1中扬声器模组另一实施例的分解结构示意图;
图10是图1中扬声器模组沿z1-z2方向另一实施例的截面结构示意图;
图11是相邻的隔板设置的第一连通口错位的又一示意图;
图12是相邻的隔板设置的第一连通口错位的又一示意图;
图13是本申请电子设备一实施例的结构示意图;
图14是图13中电子设备沿y1-y2方向的截面结构示意图;
图15是图13中电子设备的内部结构示意图;
图16是扬声器的发声性能测试结果图。
【具体实施方式】
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,以下各实施例中不冲突的可以相互结合。显然,所描述的实施例仅是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
实施例一
结合参阅图1-4,图1是本申请扬声器模组一实施例的结构示意图,图2是图1中扬声器模组一实施例的分解结构示意图,图3是图1中扬声器模组沿y1-y2方向一实施例的截面结构示意图,图4是图1中扬声器模组沿z1-z2方向一实施例的截面结构示意图。
如图1-4所示,扬声器模组10包括扬声器本体11和扬声器壳体12。扬声器本体11设有第一出音口111。扬声器本体11发声时,扬声器本体11的第一出音口111的一侧与背离第一出音口111的一侧可以产生大小相等且相位相差180度的声波。
扬声器壳体12包括底板121、侧板122、盖板123和隔板124。底板121、侧板122和盖板123围设成扬声器内腔125。隔板124将扬声器内腔125划分为至少两个独立的子腔(图未示),且隔板124与盖板123和底板121均接触,扬声器本体11设于其中一个子腔。隔板124设有连通子腔的第一连通口1241,即至少两个独立的子腔中,相邻的两个子腔通过第一连通口1241连通。从而使得扬声器本体11的背离第一出音口111的一侧发出的声波能够通过第一连通口1241传播至不同的子腔。
隔板124的数量可以为1、2、3等等,具体可以根据吸声需求设定。本实施例以隔板124数量为2进行说明,在此情况下至少两个独立的子腔包括第一个子腔1251、第二个子腔1252和第三个子腔1253。第一个子腔1251和第二个 子腔1252、以及第二个子腔1252和第三个子腔1253通过第一连通口1241连通。扬声器本体11设于其中第一个子腔1251,从而扬声器本体11的背离第一出音口111的一侧发出的声波能够通过第一连通口1241依序经过第一个子腔1251、第二个子腔1252和第三个子腔1253。
扬声器本体11背离第一出音口111的一侧的声波经过第一连通口1241时,空气与第一连通口1241的边界摩擦而产生空气粘滞阻力,使得第一连通口1241的周围空气与第一连通口1241的边界由于热传导形成热粘性效应。也即靠近第一连通口1241的边界的周围空气分子运动速度很慢,且在第一连通口1241的边界上空气分子运动速度趋近于0,远离第一连通口1241的边界的空气分子按照欧拉方程以标准的声学速度运动。因此在热粘性效应下,空气分子被“粘”到第一连通口1241的边界上,在第一连通口1241的边界内空气分子速度趋近于0,且第一连通口1241的边界邻近的空气分子速度也慢了下来,使得声波总体能量被消耗(吸声),即部分声能转化为了热能。
进一步地,隔板124为首尾连接的封闭结构,封闭结构可以呈矩形设置、呈圆形设置等等。若隔板124的数量大于1,相邻的两个隔板124中的一个围绕另一个设置。并且,相邻的隔板124可以呈平行设置,也可以呈非平行设置。以隔板124为呈矩形设置的封闭结构、相邻的隔板124平行为例,对声波在扬声器内腔125中的传播进行说明。如图4所示,扬声器本体11设于第一个子腔1251,从而扬声器本体11背离第一出音口111发出的声波可以依序经过第一个子腔1251、第二个子腔1252和第三个内腔1253(箭头表示传播方向)。
进一步地,若隔板124的数量大于1,相邻的隔板124设置的第一连通口1241错位。
相邻的隔板124设置的第一连通口1241错位可分为两种情况。第一种情况是其中一个隔板124设有第一连通口1241的区域1与另一个隔板124设有第一连通口1241的区域2部分或完全正对,但区域1上的第一连通口1241与区域2上的第一连通口1241不正对/错位。结合图5进行说明,如图5所示,隔板124为呈矩形设置的封闭结构,相邻的两个隔板124中,其中一个隔板124的面a与另一个隔板124的面A正对,即面a与面A位于底板121的同侧,面A设有的三个第一连通口1241与面a设置的三个第一连通口1241错位。
第二种情况是其中一个隔板124设有第一连通口1241的区域与另一个隔板124设有第一连通口1241的区域完全错位,从而相邻的隔板设置的第一连通口 1241错位。结合图6-8进行说明。如图6-8所示,隔板124为呈矩形设置的封闭结构,其中一个隔板124包括面a~d,另一个隔板124包括面A~D,a与A正对,即a与A位于底板121的同侧,a与B~D完全错位,即a与B~D位于底板121的不同侧;b与B正对(b与A、C、D完全错位);c与C正对(c与A、B、D完全错位);d与D正对(d与A~C完全错位)。图6中A、c设有第一连通口1241,图7中A、B、c、d设有第一连通口1241,图8中A、b、c、d设有第一连通口1241。
该错位的设置使得侧板122和隔板124中相邻的两个之间形成一个或并联的多个共振吸声结构(亥姆霍兹共振腔),产生共振吸声效应。从而当声波的频率与共振吸声结构127的自振频率(亥姆霍兹共振频率)一致时,发生共振,并使振幅达到最大,从而消耗声波的能量。换句话说,在共振吸声效应下,声波进入第一连通口1241后激发扬声器内腔125内空气分子振动,能够使得声波在扬声器内腔125传播的过程中声波能量被进一步消耗。
并且,当相邻的两个隔板124设有第一连通口1241的区域完全错位时,声波在扬声器内腔125中的传播路径增加,使得声波在扬声器内腔125传播的过程中声波能量被更进一步消耗。
进一步地,隔板124靠近扬声器本体11的一侧设有多孔材料。若相邻的两个隔板124设有第一连通口1241的区域完全错位,当声波入射到隔板124上的多孔材料上时,也会产生热粘性效应,使得声波在扬声器内腔125传播过程中声波能量进一步被消耗。关于热粘性效应的相关介绍请参考前面的说明,在此不赘述。
进一步地,侧板122设有第二连通口1221。扬声器内腔125能够通过第二连通口1221与扬声器内腔125所在的设备内腔(图未示)连通。第二连通口1221可以被视为扬声器内腔125与设备内腔的排气孔或者气压平衡孔。声波经过其传播路径上最后一个子腔(第三个子腔1253)之后,能够通过第二连通口1221传出扬声器内腔125,即进入设备内腔。从而变相增大了扬声器内腔125的容积,即设备内腔被视为扬声器内腔125的扩展部分。并且,侧板122设有的第二连通口1221与其相邻的隔板124设有的第一连通口1241错位,从而不会影响侧板122与其相邻的隔板124之间的亥姆霍兹共振腔的形成。并且,声波在通过第二连通口1221时也能够形成热粘性效应,实现进一步吸收声波能量。
进一步地,第一连通口1241的大小可以是基于扬声器本体11的口径、功 率中的至少之一设置的。并且,针对不同的扬声器本体11,可以通过调整第一连通口1241的直径来修改吸声系数,还可以通过调整同一隔板124上设置的不同第一连通口1241的间隙来修改吸声频带的宽度,还可以通过调整声波传播路径上当前隔板124上的第一连通口1241与下一隔板124/侧板122的距离来修改共振吸声峰的位置,以在不影响声波的传播的情况下,实现减缓消音、降低输出音量的效果。
共振吸声效应下,声阻抗比可以通过下式计算:
z=r+jωm
Figure PCTCN2021101550-appb-000001
Figure PCTCN2021101550-appb-000002
Figure PCTCN2021101550-appb-000003
其中,z为声阻抗比,r为声阻,jωm为声抗,m为声质量,t为设有第一连通口1241的隔板124的厚度,d为第一连通口1241的直径。
亥姆霍兹共振频率可以通过下式计算:
Figure PCTCN2021101550-appb-000004
其中,f0为亥姆霍兹共振频率,c为声速,S为第一连通口1241的截面积,d为第一连通口1241的直径,l是共振吸声结构中两板(相邻隔板124/侧板122)之间的距离,V为亥姆霍兹共振腔容积。
进一步地,侧板122靠近扬声器本体11的一侧设有多孔材料。若侧板122设有的第二连通口1221与其相邻的隔板124设有第一连通口1241的区域完全错位,当声波入射到侧板12上的多孔材料上,会产生热粘性效应,使得声波在扬声器内腔125传播过程中声波能量进一步被消耗。关于热粘性效应的相关介绍请参考前面的说明,在此不赘述。
进一步地,扬声器本体11在第一出音口111的一侧贴设于盖板123,且盖板123在正对第一出音口111处设有第二出音口1231,第二出音口1231的尺寸大于或者等于第一出音口111。从而扬声器本体11通过第一出音口111发出的 声波可以通过第二出音口1231传播至扬声器壳体12之外。
本实施例能够达到的技术效果如下:
可以理解的是,(方案一)在设备内腔设置扬声器内腔来吸收声波能量的方式,由于设置在设备内腔的扬声器内腔容积过小,会影响扬声器本体的发声性能;设置在设备内腔的扬声器内腔容积过大,会占用过多的设备内腔空间。(方案二)将扬声器内腔与设备内腔连通,以将设备内腔作为扬声器内腔的扩展部分、变相扩展扬声器内腔容积的方式,声波经过扬声器内腔进入设备内腔,会产生异音和回声,即当声波在设备内腔引起其他元器件震动,则会产生异音;当声波传递到设备内腔麦克风处时,则会产生回声,由此影响扬声器发声性能影响扬声器性能。
为此,本申请利用隔板将扬声器内腔分为至少两个独立的子腔,隔板设有连通子腔的第一连通口,从而声波能够通过第一连通口传播至不同的子腔。其中,声波在经过第一连通口时会形成热粘性效应,使得声波能量被消耗/吸收。
并且,如果相邻的隔板设有的第一连通口错位,隔板与侧板能够形成亥姆霍兹共振腔,共振腔能够形成共振吸声效应,使得声波在扬声器内腔传播过程中声波能量能够被进一步消耗。并且,如果相邻的隔板设有第一连通口的区域完全错位,能够增加声波在扬声器内腔中的传播路径,使得声波在扬声器内腔传播过程中声波能量被更进一步消耗。并且,如果隔板靠近扬声器本体的一侧设有多孔材料,能够使得声波在扬声器内腔传播过程中声波能量被再进一步消耗。故,相较于方案一,本申请能够在未增加扬声器后腔容积的情况下,提升扬声器本体的发声性能。
其次,本申请进一步在侧板上设置第二连通口,以使扬声器内腔和设备内腔连通。第二连通口平衡了扬声器内腔内外气压,变相增大了扬声器后腔的容积。如果侧板靠近扬声器本体的一侧设有多孔材料,且侧板设有的第二连通口与其相邻的隔板设有第一连通口的区域完全错位,那么声波在扬声器内腔传播时,声波能量被进一步消耗。且由于声波在扬声器内腔传播时,声波能量已经在较大程度上被吸收,因此声波在经过扬声器内腔进入设备内腔时无法形成有效振动,减少了异音和回声的风险。故,相较于方案二,能够提升扬声器本体的发声性能。
实施例二
在本实施例中与前述实施例一相同的部分不再详述。与前述实施例一相区 别的是,本实施例隔板124为非封闭结构。非封闭结构可以呈线段设置、呈弧设置等。相邻的隔板124可以为平行或非平行设置。本实施例以相邻的隔板124为呈直线段设置的非封闭结构,且相邻的隔板124平行为例进行说明。
结合参阅图9-10,图9是图1中扬声器模组另一实施例的分解结构示意图,图10是图1中扬声器模组沿z1-z2方向另一实施例的截面结构示意图。
如图9-10所示,底板121、侧板122和盖板123围设成扬声器内腔125。隔板124将扬声器内腔125划分为至少两个独立的子腔(图未示)。隔板124的数量可以为1、2、3等等,本实施例以隔板124的数量为3进行说明。至少两个独立的子腔包括第一个子腔1251、第二个子腔1252、第三个子腔1253和第四个子腔1254。
隔板124设有连通子腔的第一连通口1241。当隔板124有多个时,相邻的隔板124设有的第一连通口1241错位。相邻的隔板124设有的第一连通口1241错位可分为两种情况。第一种情况是相邻的隔板124的整个面均设有第一连通口1241,但其中一个隔板124上的第一连通口1241与另一个隔板124上的第一连通口1241不正对/错位。结合图11进行说明,如图11所示,相邻的两个隔板124中,其中一个隔板124设有的三个第一连通口1241与另一个隔板124设有的三个第一连通口1241错位。
第二种情况是其中一个隔板124设有第一连通口1241的区域与另一个隔板124设有第一连通口1241的区域完全错位,从而相邻的隔板124设置的第一连通口1241错位。结合图12进行说明,如图12所示,其中一个隔板124包括区域M、N,另一个隔板124包括区域m、n。M和m完全正对(M和n完全错位),N和n完全正对(N和m完全错位)。M、n上设有第一连通口1241。
进一步地,侧板122设有第二连通口1221,侧板122设有的第二连通口1221与其相邻的隔板124设有的第二连通口1221错位。
如图10所示,扬声器壳体12包括的隔板124数量为3,三个隔板124为呈直线段设置的非封闭结构,且相邻的隔板124平行。三个隔板124将扬声器内腔125划分为四个独立的子腔(分别是第一个子腔1251、第二个子腔1252、第三个子腔1253和第四个子腔1254)。扬声器本体11设于第一个子腔1251,从而扬声器本体11背离第一出音口111发出的声波可以依序经过第一个子腔1251、第二个子腔1252、第三个内腔1253和第四个子腔1254(箭头表示传播方向),以传播至扬声器内腔125之外。
实施例三
结合参阅图13-14,图13是本申请电子设备一实施例的结构示意图,图14是图13中电子设备沿y1-y2方向的截面结构示意图。本申请涉及的电子设备1可以是手机、对讲机、智能手表等等。如图13所示,电子设备1包括扬声器模组10和设备壳体20。扬声器模组10设于设备壳体20的设备内腔21。
扬声器模组10的相关说明请参考前面的实施例,在此不赘述。
扬声器模组10设有第二出音口1231。扬声器模组10的第二出音口1231的一侧贴设于设备壳体20,且设备壳体20在正对第二出音口1231处设有第三出音口21。第三出音口21的尺寸大于或者等于第二出音口1231的尺寸,从而扬声器模组10的第二出音口1231发出的声波能够进一步通过第三出音口21传出电子设备1,供用户听见。
在扬声器模组10的背离第二出音口1231一侧发出的声波进入设备内腔21的情况下,设备内腔21被视为扬声器内腔的扩展部分。
此外,设备内腔21还可以设置有麦克风(受话器)30。在此情况下,结合参阅图15,图15是图13中电子设备的内部结构示意图。如图15所示,电子设备1包括扬声器模组10、设备壳体20和麦克风30。设备壳体20设有设备内腔21,扬声器模组10包括扬声器本体11和扬声器壳体12,扬声器本体11设于扬声器壳体12设有的扬声器内腔125。
图16是扬声器的发声性能测试结果图。图16中的I为现有的扬声器模组(包括规格为20*40mm的扬声器本体)下,扬声器本体发出的语音信号图,II为本申请的扬声器模组(包括规格为13*38的扬声器本体)下,扬声器本体发出的语音信号图。测试结果表明,在替换为规格更小的扬声器本体的情况下,II相对于I,具有平均4~6dB的提升,其中低频提升5~10dB。
以上仅为本申请的实施方式,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (13)

  1. 一种扬声器模组,其特征在于,包括:
    扬声器本体,设有第一出音口;
    扬声器壳体,包括底板、侧板、盖板和隔板,所述底板、所述侧板和所述盖板围设成扬声器内腔,所述隔板将所述扬声器内腔划分为至少两个独立的子腔,所述扬声器本体设于其中一个所述子腔,所述隔板设有连通所述子腔的第一连通口,所述扬声器本体的所述第一出音口的一侧贴设于所述盖板,所述盖板在正对所述第一出音口处设有第二出音口。
  2. 根据权利要求1所述的扬声器模组,其特征在于,相邻的所述隔板设有的所述第一连通口错位。
  3. 根据权利要求1所述的扬声器模组,其特征在于,所述侧板设有第二连通口,所述侧板设有的所述第二连通口与其相邻的所述隔板设有的所述第一连通口错位,所述声波经过最后一个所述子腔之后,能够通过所述第二连通口传出所述扬声器内腔。
  4. 根据权利要求3所述的扬声器模组,其特征在于,所述第一连通口和所述第二连通口为孔或者凹槽。
  5. 根据权利要求1所述的扬声器模组,其特征在于,所述隔板为首尾连接的封闭结构,相邻的两个所述隔板中的一个围绕另一个设置。
  6. 根据权利要求5所述的扬声器模组,其特征在于,所述封闭结构呈矩形设置。
  7. 根据权利要求6所述的扬声器模组,其特征在于,相邻的所述隔板设有所述第一连通口的面位于所述底板的不同侧。
  8. 根据权利要求1所述的扬声器模组,其特征在于,相邻的所述隔板呈平行设置。
  9. 根据权利要求1所述的扬声器模组,其特征在于,所述隔板为非封闭结构。
  10. 根据权利要求9所述的扬声器模组,其特征在于,所述非封闭结构呈直线段设置。
  11. 根据权利要求1所述的扬声器模组,其特征在于,所述侧板和所述隔板中的至少一个靠近所述扬声器本体的一侧设有多孔材料。
  12. 一种电子设备,其特征在于,包括:
    设备壳体;
    如权利要求1-11中任一项所述的扬声器模组,所述扬声器模组设于所述设备壳体的设备内腔。
  13. 根据权利要求12所述的电子设备,其特征在于,所述扬声器模组设有第二出音口,所述扬声器模组的背离所述第二出音口的一侧贴设于所述设备壳体,且所述设备壳体在正对所述第二出音口处设有第三出音口。
PCT/CN2021/101550 2021-06-22 2021-06-22 扬声器模组和电子设备 WO2022266843A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/101550 WO2022266843A1 (zh) 2021-06-22 2021-06-22 扬声器模组和电子设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/101550 WO2022266843A1 (zh) 2021-06-22 2021-06-22 扬声器模组和电子设备

Publications (1)

Publication Number Publication Date
WO2022266843A1 true WO2022266843A1 (zh) 2022-12-29

Family

ID=84543810

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/101550 WO2022266843A1 (zh) 2021-06-22 2021-06-22 扬声器模组和电子设备

Country Status (1)

Country Link
WO (1) WO2022266843A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2302623Y (zh) * 1997-06-02 1998-12-30 邹雷 障板式全吸收音箱
US20080130932A1 (en) * 2005-06-09 2008-06-05 Schultz Roland P Driver and enclosure combination
CN206341399U (zh) * 2016-10-27 2017-07-18 瑞声科技(新加坡)有限公司 发声器件
CN108810766A (zh) * 2018-08-01 2018-11-13 歌尔股份有限公司 发声装置及便携终端
CN208638568U (zh) * 2018-08-09 2019-03-22 瑞声科技(新加坡)有限公司 扬声器箱
CN112533114A (zh) * 2019-09-18 2021-03-19 华为技术有限公司 一种发声器件和电子设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2302623Y (zh) * 1997-06-02 1998-12-30 邹雷 障板式全吸收音箱
US20080130932A1 (en) * 2005-06-09 2008-06-05 Schultz Roland P Driver and enclosure combination
CN206341399U (zh) * 2016-10-27 2017-07-18 瑞声科技(新加坡)有限公司 发声器件
CN108810766A (zh) * 2018-08-01 2018-11-13 歌尔股份有限公司 发声装置及便携终端
CN208638568U (zh) * 2018-08-09 2019-03-22 瑞声科技(新加坡)有限公司 扬声器箱
CN112533114A (zh) * 2019-09-18 2021-03-19 华为技术有限公司 一种发声器件和电子设备

Similar Documents

Publication Publication Date Title
CN203574855U (zh) 扬声器模组
WO2021218581A1 (zh) 扬声器模组及电子设备
WO2016033860A1 (zh) 扬声器模组
JPH11220789A (ja) 電気音響変換装置
TW200527878A (en) Resonation chambers within a cell phone
TW201349885A (zh) 具有揚聲器的電子裝置
TW201813416A (zh) 抗噪耳機
WO2020140548A1 (zh) 发声器件及电子设备
CN110958509A (zh) 一种发声装置模组和电子产品
WO2022266843A1 (zh) 扬声器模组和电子设备
CN207304902U (zh) 扬声器模组以及电子设备
WO2023226843A1 (zh) 吸振装置及电子设备
US20240048898A1 (en) Speaker and electronic device
WO2023284709A1 (zh) 扬声器模组及电子设备
CN113938788A (zh) 音频输出装置与电子设备
TWI669967B (zh) 低音揚聲器的擴展系統及其設計方法
CN114615592A (zh) 电子设备
CN115515059A (zh) 扬声器模组和电子设备
CN215345037U (zh) 一种大动态卸压式倒相管以及倒相箱
CN111083618B (zh) 一种发声装置模组和电子产品
CN218299360U (zh) 一种迷宫型消声单元、消声复合结构及音箱设备
JP7371216B1 (ja) スピーカ及び電子機器
CN116055966A (zh) 扬声器和电子设备
CN213522356U (zh) 一种超薄型扬声器
US11570532B2 (en) Electronic device with loudspeaker module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21946345

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE