WO2022266836A1 - 散热结构、可移动平台以及散热控制方法 - Google Patents

散热结构、可移动平台以及散热控制方法 Download PDF

Info

Publication number
WO2022266836A1
WO2022266836A1 PCT/CN2021/101489 CN2021101489W WO2022266836A1 WO 2022266836 A1 WO2022266836 A1 WO 2022266836A1 CN 2021101489 W CN2021101489 W CN 2021101489W WO 2022266836 A1 WO2022266836 A1 WO 2022266836A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat dissipation
heat
air
temperature value
flow
Prior art date
Application number
PCT/CN2021/101489
Other languages
English (en)
French (fr)
Inventor
欧阳磊
高诗经
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2021/101489 priority Critical patent/WO2022266836A1/zh
Priority to CN202180087370.1A priority patent/CN116761757A/zh
Publication of WO2022266836A1 publication Critical patent/WO2022266836A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D63/00Motor vehicles or trailers not otherwise provided for
    • B62D63/02Motor vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/04Helicopters
    • B64C27/08Helicopters with two or more rotors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating

Definitions

  • the present application relates to the technical field of electronic equipment, in particular to a heat dissipation structure, a movable platform and a heat dissipation control method.
  • Mobile platforms such as unmanned aerial vehicles and unmanned vehicles have become indispensable technological products in the process of people's life, work and entertainment.
  • the application environment is more and more complex.
  • Most of the mobile platforms integrate multi-directional vision, infrared sensing, laser ranging, ultra-long-distance radio frequency and other functions, and have Higher moving speed also requires the movable platform to have better heat dissipation performance.
  • the present application provides a heat dissipation structure, a movable platform and a heat dissipation control method.
  • the heat dissipation structure can reduce the power consumption of the movable platform.
  • the embodiment of the present application provides a heat dissipation structure, including a heat dissipation support, an air flow generating component, and a flow distribution component; at least two heat dissipation air passages are arranged in the heat dissipation support, each heat dissipation air passage includes an air inlet end, and the heat dissipation air
  • the side wall of the channel is provided with a first installation part for installing the first heat dissipation component;
  • the airflow generation component is arranged on the heat dissipation bracket for generating heat dissipation airflow, the airflow generation component includes an air outlet part, and the air outlet part faces at least two heat dissipation
  • the air inlet end of the air duct is arranged;
  • the splitter assembly is arranged between the air outlet part and the air inlet ends of at least two heat dissipation air ducts through the heat dissipation bracket, so as to control the flow rate of the heat dissipation airflow
  • the first component to be dissipated can be arranged on the side wall of the heat dissipation air duct, and the heat generated during its operation can be transferred to the heat dissipation air duct for heat dissipation through the heat dissipation air duct.
  • the airflow generation component is arranged on the heat dissipation bracket, which can provide heat dissipation airflow for the heat dissipation air duct, so as to improve the heat dissipation efficiency of the heat dissipation air duct, and then make the heat dissipation effect of the first heat dissipation component better;
  • the flow rate of the heat dissipation airflow of each heat dissipation air duct is reasonably distributed to the heat dissipation airflow, and then the heat dissipation airflow can be fully utilized to dissipate heat from the first component to be cooled.
  • the heat dissipation structure can make full use of the heat dissipation airflow, improve the utilization rate of heat dissipation, and help reduce the power consumption of the movable platform.
  • the embodiment of the present application also provides a movable platform, including a fuselage, a first heat dissipation component and the above-mentioned heat dissipation structure, and the first heat dissipation component is arranged on the side wall of the heat dissipation air duct through the first mounting part , the heat dissipation structure is arranged on the fuselage.
  • the first component to be dissipated can be arranged on the side wall of the cooling air channel, and the heat generated during its operation can be transferred to the cooling air channel, and the cooling air channel can be used to dissipate heat.
  • the airflow generating component is arranged on the heat dissipation bracket, which can provide heat dissipation airflow for the heat dissipation air duct, so as to improve the heat dissipation efficiency of the heat dissipation air duct, and then make the heat dissipation effect of the first heat dissipation component better;
  • the flow rate of the heat dissipation airflow of each heat dissipation air duct is reasonably distributed to the heat dissipation airflow, and then the heat dissipation airflow can be fully utilized to dissipate heat from the first component to be cooled.
  • the embodiment of the present application also provides a heat dissipation control method, including:
  • the shunt component is controlled to act to increase the temperature. Maximize the flow rate of the heat dissipation airflow entering the heat dissipation air duct whose temperature value is greater than the preset temperature value, and reduce the flow rate of the heat dissipation air flow entering the heat dissipation air duct with the temperature value lower than the preset temperature value.
  • the action of the shunt component is controlled to increase the flow rate of the heat dissipation airflow entering the heat dissipation air duct whose temperature value is greater than the preset temperature value, and reduce the heat dissipation.
  • Fig. 1 is a schematic structural diagram of a movable platform shown in an embodiment.
  • Fig. 2 is a schematic top view of the movable platform shown in an embodiment (the top parts of the fuselage are removed).
  • FIG. 3 is a schematic top view of a heat dissipation structure shown in an embodiment.
  • FIG. 4 is a schematic cross-sectional view of A-A of the heat dissipation structure shown in FIG. 3 .
  • FIG. 5 is an enlarged schematic diagram of A shown in FIG. 4 .
  • FIG. 6 is an enlarged schematic diagram of B shown in FIG. 4 .
  • FIG. 7 is a structural schematic diagram of the heat dissipation structure shown in FIG. 3 .
  • FIG. 8 is a structural schematic diagram of the heat dissipation structure shown in FIG. 7 after the cover plate is removed.
  • FIG. 9 is an exploded schematic view of the structure shown in FIG. 8 .
  • FIG. 10 is a schematic structural diagram of a heat dissipation structure shown in an embodiment.
  • Fig. 11 is a schematic diagram of the hardware structure connection of the mobile platform shown in an embodiment.
  • FIG. 12 is a schematic flowchart of a heat dissipation control method shown in an embodiment.
  • the vapor chamber (Vapor Chamber, abbreviated as VC) is a vacuum cavity with a fine structure and has a good heat dissipation function. Its materials include but are not limited to copper, stainless steel, titanium alloy, etc.
  • Airflow generation components may include micro turbofans or axial fans, blowers, air compressors, and negative pressure sound generators.
  • TEL Thermal Interface Material
  • TEL Thermal Interface Material
  • Loop Heat Pipe (LHP), a closed loop heat pipe with good heat dissipation function.
  • the heat dissipation part a passive heat dissipation component, has sheet-shaped heat dissipation teeth.
  • Components to be dissipated including resistance-capacitance components (such as resistors, capacitors, etc.), or circuit boards and resistance-capacitance components set on the circuit board, etc.
  • Mobile platforms such as unmanned aerial vehicles and unmanned vehicles have become indispensable technological products in the process of people's life, work and entertainment.
  • mobile platforms there are many brands of mobile platforms, so that there are many products for consumers to choose from. How to win consumers' favor and improve product competitiveness has attracted more and more attention from mobile platform manufacturers.
  • mobile platform products with similar functions or performances the smaller the size of the mobile platform, the more favored it will be by consumers or medical institutions such as medical examination centers. Therefore, the development of miniaturization of mobile platforms has become an issue that manufacturers of mobile platforms pay more and more attention to.
  • the overall volume of the heat dissipation structure of the traditional movable platform is large and heavy, which is not conducive to the development of miniaturization of the movable platform.
  • the present application provides a heat dissipation structure.
  • the heat dissipation structure can make full use of the heat dissipation airflow, which is beneficial to reduce the power consumption of the movable platform.
  • FIG. 1 to FIG. 7 are structural diagrams of the movable platform and its heat dissipation structure shown in some embodiments.
  • FIG. 1 is a schematic structural diagram of a movable platform shown in an embodiment.
  • Fig. 2 is a schematic top view of the movable platform shown in an embodiment (the top parts of the fuselage are removed).
  • FIG. 3 is a schematic top view of a heat dissipation structure shown in an embodiment.
  • FIG. 4 is a schematic cross-sectional view of A-A of the heat dissipation structure shown in FIG. 3 .
  • FIG. 5 is an enlarged schematic diagram of A shown in FIG. 4 .
  • FIG. 6 is an enlarged schematic diagram of B shown in FIG. 4 .
  • FIG. 7 is a structural schematic diagram of the heat dissipation structure shown in FIG. 3 .
  • the embodiment of the present application provides a movable platform, including a body 10 , a heat dissipation structure 20 and a first heat-dissipated component 30 , and the heat dissipation structure 20 is disposed on the body 10 .
  • the heat dissipation structure 20 includes a heat dissipation support 100 , an airflow generation component 200 and a flow distribution component 300 .
  • the cooling support 100 is provided with at least two cooling air ducts 110, and each cooling air duct 110 includes an air inlet end 111, and the side wall of the cooling air duct 110 is provided with a first installation part 120 for installing the first heat-dissipated component.
  • the airflow generating assembly 200 is disposed on the heat dissipation bracket 100 for generating heat dissipation airflow.
  • the airflow generating assembly 200 includes an air outlet 210 , and the air outlet 210 is disposed toward the air inlets 111 of at least two heat dissipation air ducts 110 .
  • the splitter assembly 300 is disposed between the air outlet portion 210 and the air inlet ends 111 of at least two cooling air ducts 110 through the cooling bracket 100 to control the flow rate of the cooling airflow entering each cooling air duct 110 .
  • the flow distribution component 300 can control the flow rate of the cooling airflow entering each cooling air duct 110 , reasonably distribute the cooling airflow, and then make full use of the cooling airflow to dissipate heat from the first heat-dissipated component 30 and improve the cooling efficiency.
  • the first heat-dissipated component 30 can be arranged on the side wall of the heat dissipation air duct 110 , and transfer the heat generated during its operation to the heat dissipation air duct 110 , and use the heat dissipation air duct 110 to dissipate heat.
  • the airflow generating component 200 is arranged on the heat dissipation bracket 100, which can provide heat dissipation airflow for the heat dissipation air duct 110, so as to improve the heat dissipation efficiency of the heat dissipation air duct 110, thereby enabling the first heat dissipation component 30 to have a good heat dissipation effect; in addition, using The distribution component 300 can control the flow rate of the heat dissipation airflow entering each heat dissipation air duct 110 , reasonably distribute the heat dissipation airflow, and then make full use of the heat dissipation airflow to dissipate heat from the first component to be dissipated 30 .
  • the heat dissipation requirements on different heat dissipation air ducts 110 are met by adjusting the distribution of the heat dissipation airflow; under the same conditions, there is no need to increase the power of the airflow generating component 200 to meet the heat dissipation requirements, which in turn helps to reduce the power consumption of the movable platform and improve battery life ability.
  • the heat dissipation structure 20 of the present application does not need to increase the power of the airflow generating assembly 200 to generate more heat dissipation airflow, and the distribution assembly 300 can be used to adjust the distribution of the heat dissipation airflow to reduce the excessive heat dissipation airflow
  • the flow rate of the heat dissipation airflow in the heat dissipation passage is increased, and the flow rate of the heat dissipation airflow in the heat dissipation air passage 110 needs to be increased. in this way.
  • the utilization rate of the heat dissipation airflow can be improved, and the power consumption of
  • the first heat-resistance component 30 with higher heat-resistant temperature can be arranged on one heat dissipation flow channel, and the first heat-resistant component 30 with lower heat-resistant temperature A heat dissipation component 30 is disposed on the other heat dissipation channel. In this way, more heat-dissipating airflow is sent to the flow channel where the first heat-dissipating component 30 with a lower heat-resistant temperature is located by using the flow-distributing component 300 . Furthermore, it is also possible to make full use of the heat dissipation airflow for heat dissipation and reduce the power consumption of heat dissipation.
  • the mobile platform may also include a car, remote controlled vehicle, robot or camera.
  • the body is the body of the car.
  • the car may be an automatic driving car or a semi-automatic driving car, which is not limited here.
  • the lidar is applied to a remote control car, the body is the body of the remote control car.
  • the laser radar is applied to a robot, the main body is the fuselage 10 of the robot.
  • lidar is applied to a camera, the ontology is the camera itself.
  • the movable platform is an unmanned aerial vehicle
  • the heat dissipation structure 20 is arranged on the fuselage 10 to improve the heat dissipation utilization rate of the unmanned aerial vehicle and reduce the power consumption of the unmanned aerial vehicle. It is conducive to improving the endurance of unmanned aerial vehicles.
  • airflow generating components 200 can be flexibly set according to the number of cooling air ducts 110 .
  • one airflow generating component 200 may correspond to two cooling air ducts 110 .
  • the first heat-dissipated component 30 that requires high heat dissipation can also be integrated into the heat dissipation bracket 100 to make full use of the heat dissipation air duct 110 for heat dissipation, which can make the structure of the movable platform more compact and facilitate the miniaturization of the movable platform.
  • the first heat-dissipated component 30 is arranged on the heat-dissipating support 100, and the heat-dissipating support 100 can be used as a mounting part, which facilitates the modular assembly of the first heat-dissipated component 30 in the fuselage 10, which is beneficial to improve the assembly process. efficiency.
  • the heat dissipation structure 20 includes an airflow generation component 200 , and the airflow generation component 200 is installed on the heat dissipation support 100 .
  • the heat dissipation structure 20 is more compact and lighter in weight, which is beneficial to the miniaturization and lightweight development of the movable platform.
  • packaging materials can be reduced, thereby reducing packaging costs, which is also beneficial to reducing costs.
  • the smaller the volume the more difficult it is to carry, which can improve the user experience; moreover, it takes up less space, and can store more materials with the same storage space, reducing the storage and transportation costs of the mobile platform.
  • the protection level of some mobile platforms is required to be at IP45 and above.
  • the traditional heat dissipation structure 20 usually needs to be equipped with multiple cooling fans to dissipate heat from the circuit boards in different regions, which requires a lot of space, resulting in the overall volume of the movable platform. Larger and more cumbersome, it is not conducive to the development of miniaturization of mobile platforms.
  • the heat dissipation structure 20 of the present application has a compact structure and a high utilization rate of the heat dissipation airflow, which can reduce the power of the airflow generating assembly 200 and further reduce the volume of the airflow generating assembly 200 . It can not only meet the protection requirements and heat dissipation requirements of the mobile platform, but also adapt to the miniaturization development needs of the mobile platform.
  • At least one first installation portion 120 is disposed on each cooling air duct 110 .
  • the heat dissipation air duct 110 can be fully utilized to dissipate heat from the first heat dissipation component 30, so as to improve the heat dissipation efficiency of the movable platform , to improve reliability.
  • the fuselage 10 is provided with an accommodating chamber 11, and the first installation part 120 is arranged on the outer side wall of the cooling air channel 110, so that the first heat-dissipated device is arranged in the accommodating chamber within 11.
  • disposing the first heat-dissipated device in the accommodation cavity 11 is beneficial to improving the protection level of the movable platform, reducing protection coordination, and further facilitating the development of miniaturization of the movable platform.
  • the heat dissipation bracket 100 is sealed and connected to the body 10 so that the accommodating cavity 11 forms a closed space, and the first heat-dissipated device is disposed in the closed space through the first mounting portion 120 .
  • the protection capability of the first heat-dissipated component can be improved, which is beneficial to improving the protection level of the movable platform.
  • the heat dissipation bracket 100 is in a cylindrical structure and disposed through the fuselage 10 so that the heat dissipation air duct 110 flows through the accommodating chamber 11 and is disposed.
  • the heat dissipation bracket 100 with a cylindrical structure is convenient for modular installation through the fuselage 10 , so that the heat dissipation air duct 110 flows through the accommodating chamber 11 , and the heat dissipation structure 20 can improve the heat dissipation capability of the fuselage 10 .
  • airflow generation assembly 200 There are many specific ways to implement the airflow generation assembly 200, including bladeless fans and bladed fans, and other deformation structures that use motors to drive disturbances to generate heat dissipation airflow, such as negative pressure generators, positive pressure generators, electric inflators, etc. Pumps, fans, air compressors, etc.
  • the airflow generating assembly 200 includes an axial fan.
  • the volume of the heat dissipation structure 20 can be reduced, which is beneficial to the miniaturization of the movable platform.
  • a heat conduction layer is provided between the first heat dissipation component 30 and the side wall of the heat dissipation air duct 110, so as to facilitate the rapid transfer of the first heat dissipation component 30 to the heat dissipation air duct 110 through the heat conduction layer To dissipate heat.
  • components that generate more heat in the first heat-dissipated component 30 can also use a vapor chamber or a loop heat pipe to dissipate heat, so as to ensure that the corresponding components meet the requirements of the use environment.
  • the first heat-dissipated component 30 includes a first assembly circuit board. In this way, more electronic devices can be integrated on the circuit board, making the internal structure of the movable platform more compact, which is beneficial to reduce the connection lines and facilitate the miniaturization of the movable platform.
  • the first heat-dissipated component 30 includes a circuit board and a chip arranged on the circuit board, and a loop heat pipe or a vapor chamber is arranged between the chip and the circuit board to facilitate the use of the circuit board for heat dissipation and avoid the first heat-dissipated component 30 Localized overheating.
  • the air outlet direction of the air outlet part 210 and the air inlet direction of the air inlet end 111 are set at an obtuse angle. In this way, it is convenient to carry out shunting.
  • the aforementioned windward part 311 it is convenient to introduce more heat dissipation airflow into the heat dissipation air duct 110 far away from the bottom of the fuselage 10, that is, the first flow channel, which is enough to improve the performance of the first heat-dissipated device with poor heat resistance. cooling airflow.
  • the other heat dissipation airflow is introduced into the heat dissipation air passage 110 near the bottom of the fuselage 10 , that is, the second flow passage, so as to improve the heat dissipation utilization rate of the heat dissipation airflow.
  • the heat dissipation bracket 100 includes a mounting pipe body 180 communicating with at least two heat dissipation air ducts 110 , one end of the mounting pipe body 180 is provided with an air inlet 181 , and the air flow generating component 200 is arranged on the mounting pipe body 180 .
  • the airflow generating component 200 is installed by using the installation pipe body 180, and the air inlet 181 is formed by using one end of the installation pipe body 180, so as to facilitate the installation of the heat dissipation bracket 100 on the fuselage 10, and the heat dissipation structure 20 can be integrated into the fuselage 10. , which is conducive to improving the assembly efficiency of the movable platform.
  • the "installation pipe body 180" can be one of the parts of the "radiation support 100" module, that is, it can be assembled into a module with “other components of the heat dissipation support 100", and then modularly assembled; it can also be It is relatively independent from the “other components of the heat dissipation support 100" and can be installed separately, that is, it can be integrated with the “other components of the heat dissipation support 100" in this device.
  • the components included in the "units”, “components”, “structures” and “device” of this application can also be combined flexibly, so that modular production can be carried out according to the actual situation, and modular assembly can be carried out as an independent module; They can be assembled separately to form a module in this device.
  • the division of the above-mentioned components in this application is only one of the embodiments. For the convenience of reading, it is not intended to limit the scope of protection of this application. As long as the above-mentioned components are included and have the same function, it should be understood as an equivalent technical solution of this application.
  • the heat dissipation bracket 100 further includes a first heat dissipation portion 130 disposed in the heat dissipation air duct 110 , and the first heat dissipation portion 130 is disposed opposite to the first installation portion 120 . In this way, the heat dissipation efficiency of the heat dissipation air channel 110 can be improved by using the first heat dissipation portion 130 .
  • the first heat dissipation portion 130 may be realized in various forms, including but not limited to passive heat dissipation structures 20 such as dissipating heat dissipation layers (such as graphene coatings), heat dissipation fins, and heat dissipation protrusions.
  • passive heat dissipation structures 20 such as dissipating heat dissipation layers (such as graphene coatings), heat dissipation fins, and heat dissipation protrusions.
  • the first heat dissipation portion 130 includes at least one first heat dissipation fin 131 , and the first heat dissipation fin 131 is protrudingly disposed in the heat dissipation air duct 110 .
  • the first heat dissipation fins 131 are used to enlarge the heat dissipation area, which facilitates sufficient contact with the heat dissipation airflow, and improves the heat dissipation efficiency of the heat dissipation airflow while improving the heat dissipation utilization rate of the heat dissipation airflow.
  • At least two cooling air channels 110 are sequentially arranged along a predetermined direction. In this way, more heat dissipation of the first heat-dissipated component 30 can be performed by using the heat-dissipating air duct 110 .
  • the first heat-dissipated components 30 with different heat-resistant properties can be classified, and then installed on the preset heat-dissipating air duct 110, and then the supply of the required heat-dissipating airflow can be realized by using the splitter component 300, which is beneficial Take advantage of cooling airflow even further.
  • the flow passage area of the heat dissipation air passage 110 corresponding to the first heat dissipation component 30 with higher heat resistance performance is smaller. In this way, it is convenient for the movable platform to use the heat dissipation structure 20 to reasonably arrange the first heat-dissipated components 30 , and the heat dissipation air from the airflow generation component 200 can be reasonably transported to each heat dissipation air duct 110 through the flow distribution component 300 , improving the heat dissipation utilization rate of the heat dissipation airflow.
  • the heat dissipation support 100 includes two heat dissipation air passages 110 adjacently arranged in the vertical direction, and one of the heat dissipation air passages 110 is the first flow passage, and the other heat dissipation air passage 110 It is the second flow channel; the first flow channel is arranged above the second flow channel, and the flow channel area of the first flow channel is larger than the flow channel area of the second flow channel.
  • the first heat-dissipated component 30 with better heat resistance performance on the second flow channel, and the first heat-dissipated component 30 with poor heat resistance performance is disposed on the first flow channel, thereby improving the heat dissipation utilization rate of the heat dissipation airflow.
  • the first flow channel includes an air outlet end 112 , and the first flow channel is provided with at least two first installation parts arranged at intervals along the direction from the air inlet end 111 to the air outlet end 112 120.
  • at least two first heat-dissipated components 30 can be further installed on the first flow channel according to the difference in heat resistance performance, so as to further improve the heat dissipation utilization rate of the heat dissipation airflow.
  • At least two first heat-dissipated components 30 are arranged on the first flow channel, and the first heat-dissipated component 30 with poor heat resistance is arranged close to the air inlet end 111, while the first heat-dissipated component 30 with better heat-resistant performance Set near the air outlet 112.
  • the air outlet end 112 includes at least one air outlet
  • the air inlet channel includes at least one air inlet 181 .
  • the air outlet end 112 includes three air outlets, some of which are used to form a circulating air duct.
  • each cooling air duct 110 further includes an air outlet end 112, and there are at least two first installation parts 120, which are arranged at intervals along the direction from the air inlet end 111 to the air outlet end 112 on the cooling air duct 110. outside.
  • at least two first heat-dissipated components 30 can be further installed on the heat dissipation air duct 110 according to the difference in heat resistance performance, so as to further improve the heat dissipation efficiency of the heat dissipation airflow.
  • first radiated components 30 are arranged on the second flow channel, and the first radiated component 30 with poor heat resistance is arranged close to the air inlet end 111, and the first radiated component 30 with better heat resistance
  • the heat dissipation assembly 30 is disposed close to the air outlet 112 .
  • flow distribution assembly 300 there may be various ways to implement the flow distribution assembly 300 , including flow distribution grills, flow distribution fan blades, etc., as long as it can realize the flow distribution of the airflow.
  • the flow diversion assembly 300 includes a flow guide 310, and the flow guide 310 is arranged between two adjacent cooling air ducts 110, for In order to change the size of the heat dissipation airflow entering the heat dissipation air duct 110 .
  • the air guide 310 arranged between two adjacent heat dissipation air passages 110, by changing the positional relationship with the adjacent heat dissipation air passages 110, the size of the heat dissipation airflow entering the heat dissipation air passage 110 can be changed, which is easy to implement. And the distribution of cooling airflow is more precise.
  • the air guide 310 can be disposed between the cooling air ducts 110 in various ways, such as supporting components, connecting components, installing components, partitioning components and the like.
  • the deflector 310 includes a windward part 311 disposed toward the wind outlet 210 , and the angle between the windward part 311 and the wind outlet 210 is adjustable. . In this way, by adjusting the angle between the windward part 311 and the air outlet part 210 , the size of the heat dissipation airflow entering the heat dissipation air duct 110 can be changed.
  • the windward portion 311 may be in the shape of an arc (such as rounded corners), or in the shape of a cone (such as an acute angle, a right angle or an obtuse angle).
  • one of the two adjacent cooling air channels 110 is a first flow channel, and the other is a second flow channel;
  • the windward part 311 includes a first air guide surface 301 and a second air guide surface.
  • the surface 302, the first air guide surface 301 is arranged close to the first flow channel, and is used to guide the heat dissipation airflow to the first flow channel, and the second air guide surface 302 is arranged near the second flow channel, and is used to guide the heat dissipation airflow to the second flow channel.
  • the first flow guide surface 301 is used to guide the heat dissipation airflow into the first flow channel
  • the second flow guide surface 302 is used to guide the heat dissipation airflow into the second flow channel, which is beneficial to reduce turbulent flow and achieve a more accurate flow guide distribution effect.
  • the deflector 310 includes a first deflector 312 and a second deflector 313, the first deflector 312 One end of the first guide body 313 intersects with one end of the second guide body 313 to form a windward part 311 , and the other end of the first guide body 312 and the other end of the second guide body 313 are respectively fixedly connected to the heat dissipation bracket 100 .
  • the air guide 310 is movably disposed on the heat dissipation support 100 to realize dynamic distribution of heat dissipation airflow. Furthermore, the position of the air guide 310 can be changed according to the heat dissipation requirements of different positions to realize the dynamic distribution of the heat dissipation airflow.
  • the material of the air guide 310 is a memory metal, and can be changed according to the temperature of the first heat-dissipated component 30 , so that the angle between the windward part 311 and the air outlet part 210 can be adjusted.
  • the air guide 310 is made of a memory metal material, and the air guide 310 is arranged between two adjacent cooling air ducts 110. Since the first heat dissipation component 30 is arranged on the corresponding cooling air duct 110, and uses The heat dissipation air duct 110 performs heat dissipation.
  • the air guide 310 can automatically adjust according to the temperature change, so that the windward part 311 and the air outlet The angles between the parts 210 can be adjusted to distribute more heat dissipation airflow to the corresponding heat dissipation air ducts 110 .
  • the material of the deflector 310 is memory metal
  • the shunt assembly 300 further includes a heating element 320 (not shown), which is arranged on the deflector 310 to adjust the windward part 311 and the outlet.
  • the angle between the wind parts 210 In this way, the temperature change of the first heat-dissipated component 30 can be acquired actively.
  • the heating element 320 When the temperature value is greater than the preset heat-resistant temperature, the heating element 320 will generate heat, and the deflector 310 will be deformed, so that the position of the windward part 311 will change, realizing the windward part.
  • the angle between 311 and the air outlet part 210 is adjusted to distribute more cooling airflow to the corresponding cooling air channel 110 .
  • the flow distribution assembly 300 further includes a transmission unit 330 (not shown), and the air guide 310 is movably arranged on the heat dissipation support 100 through the transmission unit 330, so that the windward part 311 and the air outlet part 210 The angle between them is adjustable. In this way, the temperature change of the first heat-dissipated component 30 can be acquired actively.
  • the transmission unit 330 will act so that the angle between the windward part 311 and the air outlet part 210 will change, and the temperature will be higher. More cooling airflows are distributed to corresponding cooling air ducts 110 .
  • the transmission unit 330 includes servo motors, rotary hydraulic cylinders and other power equipment that directly drive the flow guide 310 to rotate, so that the angle between the windward part 311 and the wind outlet 210 can be adjusted; it also includes other power equipment that indirectly drives the flow guide 310 to rotate.
  • Mechanisms such as pneumatic rod + rack and pinion assembly, hydraulic rod + crank rocker assembly or crank slider assembly, servo motor + gearbox, servo motor + flexible transmission assembly. All of the above can be implemented in conventional technologies, and details will not be repeated here.
  • At least two cooling air passages 110 on the heat dissipation support 100 there may be various ways to implement at least two cooling air passages 110 on the heat dissipation support 100 , such as using at least two pipes arranged side by side, or separated by passages, and so on.
  • the cooling bracket 100 further includes a partition 140 , and two adjacent cooling air ducts 110 are separated by the partition 140 .
  • the heat dissipation air passages 110 are separated and formed by the partition member 140 , so that the structure between the heat dissipation air passages 110 is more compact.
  • the movable platform further includes a second heat-dissipated component 40
  • the heat dissipation support 100 further includes a partition 140
  • the partition 140 is provided with a second mounting portion. 141 , at least part of the second mounting portion 141 is disposed in one of the cooling air channels 110 , and the second heat-dissipated component 40 is disposed on the partition 140 through the second mounting portion 141 .
  • the second heat sink component is integrally installed on the partition 140 by using the second mounting portion 141, and the heat dissipation airflow in the heat dissipation air duct 110 can be fully utilized to dissipate heat from the second heat dissipation component, further improving the heat dissipation utilization of the heat dissipation airflow. Rate.
  • second heat dissipation components that have low protection requirements but high heat dissipation requirements, they can be arranged in the heat dissipation air duct 110 through the separator 140, so as to directly use the heat dissipation airflow to dissipate heat and improve the heat dissipation of the second heat dissipation components. efficiency.
  • the second installation portion 141 is provided with an installation cavity 101 for accommodating the second heat-dissipated component 40 .
  • the installation cavity 101 facilitates the installation of the second heat-dissipated component 40 in the partition 140 , improving the reliability of installation and fixing.
  • the second heat dissipation portion 103 may be realized in various ways, including but not limited to passive heat dissipation structures 20 such as heat dissipation layers (such as graphene coatings), heat dissipation fins, and heat dissipation protrusions.
  • passive heat dissipation structures 20 such as heat dissipation layers (such as graphene coatings), heat dissipation fins, and heat dissipation protrusions.
  • the second heat dissipation portion 103 includes at least one second heat dissipation fin 1031 , and the second heat dissipation fin 1031 is protrudingly disposed in the heat dissipation air duct 110 .
  • the second heat dissipation fins 1031 are used to expand the heat dissipation area, which facilitates full contact with the heat dissipation airflow, and improves the heat dissipation efficiency of the heat dissipation airflow while improving the heat dissipation utilization rate of the heat dissipation airflow.
  • a heat conduction layer is provided between the second heat dissipation component 40 and the side wall of the sealing plate 102, so that the second heat dissipation component 40 can be quickly transferred to the sealing plate through the heat conduction layer.
  • the board 102 and the spacer 140 dissipate heat.
  • components that generate more heat in the second heat-dissipated component 40 can also use a vapor chamber or a loop heat pipe to dissipate heat, so as to ensure that the corresponding components meet the requirements of the use environment.
  • the second heat-dissipated component 40 includes a second assembly circuit board. In this way, more electronic devices can be integrated on the circuit board, making the internal structure of the movable platform more compact, which is beneficial to reduce the connection lines and facilitate the miniaturization of the movable platform.
  • the second heat-dissipated component 40 includes a circuit board and a sensor arranged on the circuit board, and a loop heat pipe or a vapor chamber is arranged between the sensor and the circuit board to facilitate the use of the circuit board for heat dissipation and avoid the second heat-dissipated component 40 Localized overheating.
  • the flow distribution assembly 300 is disposed on the partition 140 .
  • the flow distribution assembly 300 includes a flow guide 310 , and the flow guide 310 is disposed at one end of the partition 140 and disposed between two adjacent cooling air ducts 110 .
  • the air guide 310 can be arranged between two adjacent heat dissipation air passages 110, and by changing the positional relationship with the adjacent heat dissipation air passages 110, the flow into the heat dissipation air passage 110 can be changed.
  • the size of the heat dissipation airflow inside is easy to implement, and the distribution of heat dissipation airflow is more precise.
  • the deflector 310 includes a windward portion 311 disposed toward the wind outlet 210 , and an angle between the windward portion 311 and the wind outlet 210 is adjustable. In this way, by adjusting the angle between the windward part 311 and the air outlet part 210 , the size of the heat dissipation airflow entering the heat dissipation air duct 110 can be changed.
  • one of the two adjacent cooling air passages 110 is a first flow passage, and the other is a second flow passage;
  • the windward part 311 includes a first flow guide surface 301 and a second flow guide surface 302, the second flow guide surface A flow guiding surface 301 is disposed close to the first channel for guiding the heat dissipation airflow to the first flow channel, and a second flow guiding surface 302 is located close to the second flow channel for guiding the heat dissipation airflow to the second flow channel.
  • the first flow guide surface 301 is used to guide the heat dissipation airflow into the first flow channel
  • the second flow guide surface 302 is used to guide the heat dissipation airflow into the second flow channel, which is beneficial to reduce turbulent flow and achieve a more accurate flow guide distribution effect.
  • the deflector 310 includes a first deflector 312 and a second deflector 313, one end of the first deflector 312 intersects with one end of the second deflector 313 to form a windward part 311, the first deflector 312
  • the other end and the other end of the second guide body 313 are respectively fixedly connected to the separator 140 .
  • the intersecting first guide body 312 and the second guide body 313 intersect to form the windward part 311, so that the windward part 311 is in the shape of a cone angle, which is beneficial to reduce turbulent flow, so as to achieve a more accurate and reliable guide distribution effect .
  • the material of the first guide body 312 and the second guide body 313 are memory metal, and the windward part 311 can be adjusted according to the temperature change of the first heat-dissipated component 30 The angle between the outlet part 210 and the outlet part 210.
  • the first guide body 312 and the second guide body 313 are made of a memory metal material, and the guide member 310 is arranged between two adjacent heat dissipation air channels 110, and the first guide body 312 can guide the heat dissipation airflow close to it.
  • the second guide body 313 can guide the heat dissipation airflow into the heat dissipation air duct 110 disposed close to it, so that the angle of the windward part 311 can be set according to the flow diversion requirement, so as to achieve a more accurate and reliable air guide distribution effect .
  • the temperature of the first guide body 312 or the second guide body 313 corresponding to the corresponding heat dissipation air channel 110 will be relatively high, Further, it will be deformed according to the temperature change, and automatically adjusted, so that the angle between the windward part 311 and the air outlet part 210 can be adjusted, and more heat dissipation airflow is distributed to the corresponding heat dissipation air duct 110 .
  • the material of the first guide body 312 and the second guide body 313 is memory metal
  • the shunt assembly 300 further includes a heating element 320
  • both the first guide body 312 and the second guide body 313 are provided with heating elements 320 to adjust the angle between the windward part 311 and the wind outlet part 210 .
  • the temperature detection element or other detection elements of the first heat dissipation component 30 can be used to detect the first heat dissipation component 30 in time.
  • the heating element 320 on the first guide body 312 or the second guide body 313 can generate heat actively, so that the flow guide member 310 is deformed according to the temperature change, and the position of the windward part 311 is automatically adjusted to realize the windward part 311 and the wind outlet part 210. The angle between them is adjusted to distribute more heat dissipation airflow to the corresponding heat dissipation air duct 110 .
  • the flow distribution assembly 300 further includes a transmission unit 330 , and the deflector 310 is movably disposed on the partition 140 through the transmission unit 330 , so that the angle between the windward part 311 and the wind outlet part 210 can be adjusted.
  • the transmission unit 330 can also be integrated into the separator 140 to improve the assembly efficiency of the heat dissipation structure 20 . It is also convenient to use the transmission unit 330 to change the position of the deflector 310 to realize the angle adjustment between the windward part 311 and the wind outlet part 210.
  • the heat dissipation support 100 includes a heat dissipation housing 150, a cover plate 160, and a partition 140, and the heat dissipation housing 150 is provided with The heat dissipation channel 151 and the cover plate 160 are disposed on the heat dissipation housing 150 so that the heat dissipation channel 151 forms a heat dissipation duct, and the partition 140 is disposed in the heat dissipation duct to divide the heat dissipation duct into two heat dissipation air ducts 110 .
  • the partition 140 is arranged in the heat dissipation channel 151 of the heat dissipation casing 150, and then the heat dissipation casing 150 and the cover plate 160 are used to form a heat dissipation pipe, and the partition 140 is used to form two heat dissipation air passages on the heat dissipation pipe. 110, such as the first flow channel and the second flow channel.
  • joints of the heat dissipation pipes can be welded and sealed directly, or waterproof rubber rings can be used for waterproof sealing.
  • connection between the cooling bracket 100 and the body 10 can also be directly welded and sealed, or can be waterproofed by using a waterproof rubber ring to improve the waterproof level of the accommodation chamber 11 .
  • the heat-insulating material is used to isolate the heat-dissipating device on the heat-dissipating structure 20 to reduce heat from entering the accommodating cavity 11 .
  • At least one first installation portion 120 is disposed on the cover plate 160 ; the heat dissipation housing 150 includes a first side wall opposite to the cover plate 160 , and the at least one first installation portion 120 is disposed on the first side wall. In this way, using the first mounting portion 120 facilitates disposing the first heat-dissipated component 30 on the cover plate 160 , which is beneficial to improve the assembly efficiency of the movable platform.
  • the flow channel area of the heat dissipation air channel 110 disposed close to the cover plate 160 is greater than the flow channel area of the heat dissipation air channel 110 disposed away from the cover plate 160 . That is to say, the closer to the bottom of the receiving chamber 11 the heat resistance of the first heat-dissipated component 30 is stronger, and the closer to the bottom of the receiving chamber 11 the flow channel area of the cooling air channel 110 is smaller. In this way, the first heat-resisting component 30 with better heat resistance, such as the electric panel, can be arranged at the bottom of the containing phase;
  • the ESC Since the ESC mainly generates heat during flight, and the heating power is directly proportional to the flight power consumption. Therefore, it is arranged separately on the lower heat dissipation air passage 110, that is, the second flow passage, which is beneficial to dynamically adjust the air volume distribution according to the flight conditions.
  • the cooling bracket 100 further includes a support 170 for connecting with the fuselage 10 .
  • the heat dissipation structure 20 is integrated on the fuselage 10 by using the support member 170 .
  • the heat dissipation bracket 100 can be used for support to form a rib structure, which can improve the strength of the fuselage 10 .
  • the movable platform further includes a control device 50 , and the control device 50 is communicatively connected with the airflow generating assembly 200 to control the airflow generated by the airflow generating assembly 200 to generate heat dissipation.
  • the control device 50 can be used to control the on-off of the airflow generating assembly 200 .
  • control device 50 is communicatively connected with the distribution assembly 300 to adjust the size of the heat dissipation airflow between different heat dissipation air ducts 110 . In this way, the movement of the splitter assembly 300 can be controlled by the control device 50 to realize the adjustment of heat dissipation flow distribution.
  • control device 50 is in communicative connection with the heating element 320 or the transmission unit 330 .
  • the movable platform further includes a temperature detection device 60 for detecting temperature information of the first heat-dissipated component 30 and sending the temperature information to the control device 50 .
  • the temperature detection device 60 can actively acquire the temperature information of the first heat-dissipated component 30, improve the response speed, effectively ensure that the first heat-dissipated component 30 operates within the heat-resistant temperature range, and improve reliability.
  • the temperature detection device 60 may be implemented in various ways, including but not limited to contact temperature detection devices 60 such as temperature sensors, and non-contact temperature detection devices 60 such as infrared temperature detectors.
  • control device 50 includes a processor and a memory for storing computer programs, and the processor is used to run the computer programs stored in the memory to implement the following heat dissipation control method:
  • the control shunt component 300 acts , to increase the flow rate of the heat dissipation airflow entering the heat dissipation air duct 110 whose temperature value is greater than the preset temperature value, and decrease the flow rate of the heat dissipation air flow entering the heat dissipation air duct 110 whose temperature value is lower than the preset temperature value.
  • control device can use the heat dissipation control method to combine the temperature of the first heat dissipation component to control the splitter component to realize the automatic distribution of heat dissipation airflow, so that the first heat dissipation components operate within their respective heat-resistant temperature ranges. It is beneficial to improve the reliability of the movable platform.
  • the action of the shunt component is controlled to increase the flow rate of the heat dissipation airflow entering the heat dissipation air duct whose temperature value is greater than the preset temperature value, and reduce the flow rate of the heat dissipation air flow entering the heat dissipation air duct whose temperature value is lower than the preset temperature value, and then Without changing the power of the airflow generating component, making full use of the heat dissipation airflow generated by it is beneficial to reduce the power consumption of heat dissipation.
  • Memory includes: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disk or optical disk and other media that can store program codes.
  • the processor may be a micro-controller unit (Micro-controller Unit, MCU), a central processing unit (Central Processing Unit, CPU) or a digital signal processor (Digital Signal Processor, DSP), etc.
  • MCU Micro-controller Unit
  • CPU Central Processing Unit
  • DSP Digital Signal Processor
  • the preset temperature value is set according to the maximum heat-resistant temperature of the first heat-dissipated component, and its specific value can be selected according to actual conditions. For example, it is 1°C or 2°C lower than the maximum heat-resistant temperature.
  • control device and/or the temperature detection device may be integrated in the first heat-dissipated component.
  • the heat dissipation structure includes two heat dissipation air channels, one of which is the first flow channel, and the other heat dissipation air channel is the second flow channel; when the temperature value of the first heat dissipation component corresponding to the first flow channel When the temperature value is greater than the preset temperature value, and the temperature value of the first heat-dissipated component corresponding to the second flow channel is lower than the preset temperature value, the flow diversion component is controlled to increase the flow rate of the cooling air flow entering the first flow channel and reduce the flow rate of the cooling air flow entering the second flow channel.
  • the control device can be used to realize more precise split control of the heat-dissipating airflow, so as to ensure that the first heat-dissipated component operates within the heat-resistant temperature range.
  • the preset temperature value includes a first temperature value and a second temperature value greater than the first temperature value; when the temperature value of the first heat-dissipated component corresponding to the first flow channel is greater than the first temperature value, and When the temperature value of the first heat-dissipated component corresponding to the second flow path is lower than the second temperature value, the flow diversion component is controlled to increase the flow rate of the heat dissipation airflow entering the first flow path and reduce the flow rate of the heat dissipation airflow entering the second flow path.
  • Flow rate when the temperature value of the first heat-dissipated component corresponding to the first flow channel is less than the first temperature value, and the temperature value of the first heat-dissipated component corresponding to the second flow channel is greater than the second temperature value, control the action of the shunt component to Increase the flow rate of the heat dissipation airflow entering the second flow channel, and decrease the flow rate of the heat dissipation airflow entering the first flow channel.
  • different heat-resistant temperatures that is, the first temperature value is different from the second temperature value
  • different heat-resistant temperatures can be set for the first heat-dissipated components in different heat dissipation air ducts, so as to make full use of the heat dissipation airflow for heat dissipation, which is beneficial to reduce the air flow generation components. power, thereby reducing the heat dissipation power consumption of the mobile platform and improving battery life.
  • the heat dissipation control method further includes:
  • the flow rate of the heat dissipation airflow generated by the airflow generation component is increased. Furthermore, by monitoring the heat-resistant temperature values of all the components to be radiated on the cooling air duct, if only one of the first passive cooling components reaches the preset temperature, the control of the shunt component is given priority, and the cooling air flow is controlled by the shunt component to reduce the first passive cooling component. A passive heat dissipation component. If there is only the first flow channel or the heat dissipation airflow of the second flow channel is insufficient, the splitter assembly should be adjusted first.
  • the flow rate of the heat dissipation airflow generated by the airflow generation component is increased, that is, the rotation speed of the airflow generation component is adjusted. Specifically, the rotational speed of the axial flow fan may be adjusted. In this way, it is finally realized that under various working conditions, the airflow generating components give priority to the lowest speed to ensure that all the heat-dissipated components are kept working with a little margin, achieving the best power consumption and the lowest noise control.
  • a heat dissipation control method includes:
  • the shunt component is controlled to act to increase the temperature. Maximize the flow rate of the heat dissipation airflow entering the heat dissipation air duct whose temperature value is greater than the preset temperature value, and reduce the flow rate of the heat dissipation air flow entering the heat dissipation air duct with the temperature value lower than the preset temperature value.
  • control device can use the heat dissipation control method to combine the temperature of the first heat dissipation component to control the splitter component to realize the automatic distribution of heat dissipation airflow, so that the first heat dissipation components operate within their respective heat-resistant temperature ranges. It is beneficial to improve the reliability of the movable platform.
  • the action of the shunt component is controlled to increase the flow rate of the heat dissipation airflow entering the heat dissipation air duct whose temperature value is greater than the preset temperature value, and reduce the flow rate of the heat dissipation air flow entering the heat dissipation air duct whose temperature value is lower than the preset temperature value, and then Without changing the power of the airflow generating component, making full use of the heat dissipation airflow generated by it is beneficial to reduce the power consumption of heat dissipation.
  • the heat dissipation control method can be applied to a movable platform, and can also be applied to a heat dissipation structure. That is, a sub-control module and a temperature detection device are provided in the heat dissipation structure to realize the control of the shunt assembly.
  • the heat dissipation structure includes two heat dissipation air channels, one of which is the first flow channel, and the other heat dissipation air channel is the second flow channel; when the temperature value of the first heat dissipation component corresponding to the first flow channel When the temperature value is greater than the preset temperature value, and the temperature value of the first heat-dissipated component corresponding to the second flow channel is lower than the preset temperature value, the flow diversion component is controlled to increase the flow rate of the cooling air flow entering the first flow channel and reduce the flow rate of the cooling air flow entering the second flow channel.
  • the control device can be used to realize more precise split control of the heat-dissipating airflow, so as to ensure that the first heat-dissipated component operates within the heat-resistant temperature range.
  • the preset temperature value includes a first temperature value and a second temperature value greater than the first temperature value; when the temperature value of the first heat-dissipated component corresponding to the first channel is greater than the first temperature value, And when the temperature value of the first heat-dissipated component corresponding to the second flow channel is lower than the second temperature value, the flow diversion component is controlled to increase the flow rate of the cooling air flow entering the first flow channel and reduce the cooling air flow entering the second flow channel flow rate; when the temperature value of the first heat-dissipated component corresponding to the first flow channel is less than the first temperature value, and the temperature value of the first heat-dissipated component corresponding to the second flow channel is greater than the second temperature value, the diversion component is controlled to act, In order to increase the flow rate of the heat dissipation airflow entering the second flow channel and decrease the flow rate of the heat dissipation airflow entering the first flow channel.
  • different heat-resistant temperatures that is, the first temperature value is different from the second temperature value
  • different heat-resistant temperatures can be set for the first heat-dissipated components in different heat dissipation air ducts, so as to make full use of the heat dissipation airflow for heat dissipation, which is beneficial to reduce the air flow generation components. power, thereby reducing the heat dissipation power consumption of the mobile platform and improving battery life.
  • the heat dissipation control method further includes:
  • the flow rate of the heat dissipation airflow generated by the airflow generation component is increased. Furthermore, by monitoring the heat-resistant temperature values of all the components to be radiated on the cooling air duct, if only one of the first passive cooling components reaches the preset temperature, the control of the shunt component is given priority, and the cooling air flow is controlled by the shunt component to reduce the first passive cooling component. A passive heat dissipation component. If there is only the first flow channel or the heat dissipation airflow of the second flow channel is insufficient, the splitter assembly should be adjusted first.
  • the flow rate of the heat dissipation airflow generated by the airflow generation component is increased, that is, the rotation speed of the airflow generation component is adjusted. Specifically, the rotational speed of the axial flow fan may be adjusted. In this way, it is finally realized that under various working conditions, the airflow generating components give priority to the lowest speed to ensure that all the heat-dissipated components are kept working with a little margin, achieving the best power consumption and the lowest noise control.
  • first”, “second”, etc. are used for descriptive purposes only, and should not be understood as indicating or implying relative importance or implicitly specifying the quantity of the indicated technical features.
  • a feature defined with “first”, “second”, etc. may expressly or implicitly include at least one of that feature.
  • “plurality” means at least two, such as two, three, etc., unless otherwise specifically defined.
  • a first feature being "on” or “under” a second feature may mean that the first and second features are in direct contact, or that the first and second features are indirect through an intermediary. touch.
  • “above”, “above” and “above” the first feature on the second feature may mean that the first feature is directly above or obliquely above the second feature, or simply means that the first feature is higher in level than the second feature.
  • “Below”, “beneath” and “beneath” the first feature may mean that the first feature is directly below or obliquely below the second feature, or simply means that the first feature is less horizontally than the second feature.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

一种散热结构、可移动平台以及散热控制方法。该散热结构包括散热支架(100)、气流产生组件(200)以及分流组件(300)。散热支架内设有至少两条散热风道(110),每条散热风道分别包括进风端(111),散热风道的侧壁设有第一安装部(120),用于安装第一被散热组件(30)。气流产生组件设置于散热支架,用于产生散热气流,气流产生组件包括出风部(210),出风部朝向至少两条散热风道的进风端设置。分流组件通过散热支架设置于出风部与至少两条散热风道的进风端之间,以控制进入每条散热风道的散热气流的流量大小。该散热结构能够充分利用散热气流,有利于降低可移动平台的功耗。

Description

散热结构、可移动平台以及散热控制方法 技术领域
本申请涉及电子设备技术领域,特别是涉及一种散热结构、可移动平台以及散热控制方法。
背景技术
无人飞行器、无人车等可移动平台已经成为人们生活、工作和娱乐过程中必不可少的科技产品。目前,随着可移动平台的应用越来越广,应用的环境越越来越复杂,大部分可移动平台集合了多向视觉,红外感应,激光测距,超远距离射频等功能,并且具备较高的移动速度,这也要求可移动平台具有较好的散热性能。
但传统的可移动平台的散热结构结构不合理,导致部分散热气流被浪费,不利于降低可移动平台的功耗。
发明内容
本申请提供一种散热结构、可移动平台以及散热控制方法。该散热结构能够降低可移动平台的功耗。
第一方面,本申请实施例提供一种散热结构,包括散热支架、气流产生组件以及分流组件;散热支架内设有至少两条散热风道,每条散热风道分别包括进风端,散热风道的侧壁设有第一安装部,用于安装第一被散热组件;气流产生组件设置于散热支架,用于产生散热气流,气流产生组件包括出风部,出风部朝向至少两条散热风道的进风端设置;分流组件通过散热支架设置于出风部与至少两条散热风道的进风端之间,以控制进入每条散热风道的散热气流的流量大小。
该散热结构应用于可移动平台时,第一被散热组件可以设置于散热风道的侧壁上,将其运行时产生的热量传递到散热风道上,利用散热风道进行散热。同时,气流产生组件设置于散热支架上,能够为散热风道提供散热气流,以提高散热风道的散热效率, 进而能够使得第一被散热组件的散热效果好;此外,利用分流组件可以控制进入每条散热风道的散热气流的流量大小,对散热气流进行合理的分配,进而能够充分利用散热气流对第一被散热组件进行散热。如此,该散热结构能够充分利用散热气流,提高散热利用率,有利于降低可移动平台的功耗。
第二方面,本申请实施例还提供了一种可移动平台,包括机身、第一被散热组件以及上述的散热结构,第一被散热组件通过第一安装部设置于散热风道的侧壁,散热结构设置于机身。
本申请的实施例提供的技术方案可以包括以下有益效果:
该可移动平台使用时,第一被散热组件可以设置于散热风道的侧壁上,将其运行时产生的热量传递到散热风道上,利用散热风道进行散热。同时,气流产生组件设置于散热支架上,能够为散热风道提供散热气流,以提高散热风道的散热效率,进而能够使得第一被散热组件的散热效果好;此外,利用分流组件可以控制进入每条散热风道的散热气流的流量大小,对散热气流进行合理的分配,进而能够充分利用散热气流对第一被散热组件进行散热。如此,通过调整散热气流的分配来满足不同散热风道上的散热需求;同等条件下,无需提高气流产生组件的功率来满足散热需求,进而有利于降低可移动平台的功耗。
第三方面,本申请实施例还提供了一种散热控制方法,包括:
获取至少两条散热风道的第一被散热组件的温度信息;
当有一条散热通道对应的第一被散热组件的温度值大于预设温度值,且有一条散热通道对应的第一被散热组件的温度值小于预设温度值时,控制分流组件动作,以增大进入温度值大于预设温度值的散热风道的散热气流的流量,减小进入温度值小于预设温度值的散热风道的散热气流的流量。
该散热控制方法应用时,根据不同散热风道上的第一被散热组件的温度信息,控制分流组件动作,以实现增大进入温度值大于预设温度值的散热风道的散热气流的流量,减小进入温度值小于预设温度值的散热风道的散热气流的流量,进而在不改变气流产生组件的功率的情况下,充分利用其产生的散热气流,有利于降低散热的功耗,提高可移动平台的续航能力。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本申请。
附图说明
图1为一实施例中所示的可移动平台的结构示意图。
图2为一实施例中所示的可移动平台的俯视示意图(去除了机身顶部零件)。
图3为一实施例中所示的散热结构的俯视示意图。
图4为图3所示的散热结构的A-A剖视示意图。
图5为图4所示的A的放大示意图。
图6为图4所示的B的放大示意图。
图7为图3所示的散热结构的结构示意图。
图8为图7所示的去除盖板后的散热结构的结构示意图。
图9为图8所示的结构的爆炸示意图。
图10为一实施例中所示的散热结构的结构示意图。
图11为一实施例中所示的可移动平台的硬件结构连接示意图。
图12为一实施例中所示的散热控制方法的流程示意图。
附图标记说明:
10、机身;11、容纳腔;20、散热结构;100、散热支架;110、散热风道;111、进风端;112、出风端;120、第一安装部;130、第一散热部;131、第一散热翅片;140、分隔件;141、第二安装部;101、安装腔;102、密封板;103、第二散热部;1031、第二散热翅片;150、散热壳体;151、散热通槽;160、盖板;170、支撑件;180、安装管体;181、进风口;200、气流产生组件;210、出风部;300、分流组件;310、导流件;311、迎风部;301、第一导流面;302、第二导流面;312、第一导流体;313、第二导流体;320、发热件;330、传动单元;136、第四螺纹孔;30、第一被散热组件;40、第二被散热组件;50、控制装置;60、温度检测装置
具体实施方式
以下结合附图及具体实施方式,对本申请进行进一步的详细说明。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。在本申请的说明书中所使用的术语只是为了描述具体的实施方式的目的,不是旨在于限制本申请。
为方便理解,下面先对本申请实施例中所涉及的技术术语进行解释和描述。
均热板(Vapor Chamber,英文缩写为VC),具有微细结构的真空腔体,具有良好的散热功能,其材质包括但不限于铜、不锈钢、钛合金等。
气流产生组件可以包括微型涡轮风扇或轴流风扇、风机、空气压缩机以及负压发声器等。
导热层(Thermal Interface Material,英文缩写为TEL),具有良好的导热性能,其具体实现方式包括但不限于导热硅脂、导热胶、导热垫片等。
环路热管(Loop Heat Pipe,英文缩写为LHP),闭合回路的环型热管,具有良好的散热功能。
散热部,被动散热部件,具有片状的散热齿。
被散热组件,可移动平台运行过程中,容易产生发热的电子器件,包括阻容元件(如电阻、电容类元件等)、或者电路板以及设置于电路板上的阻容元件等。
无人飞行器、无人车等可移动平台已经成为人们生活、工作和娱乐过程中必不可少的科技产品。然而,可移动平台的品牌繁多,使得可供消费者选择产品很多,如何获得消费者的青睐,提升产品竞争力越来越受到可移动平台厂家的重视。在功能或性能相近的可移动平台产品中,可移动平台的体积越小,越能获得消费者或体检中心等医疗机构的青睐。因此,可移动平台小型化的发展,成了可移动平台厂家越来越重视的问题。
但传统的可移动平台的散热结构整体体积较大且比较笨重,不利于可移动平台小型化的发展。
基于此,本申请提供一种散热结构。该散热结构能够充分利用散热气流,有利于降低可移动平台的功耗。
为了更好地理解本申请的散热结构,通过应用了该散热结构的可移动平台进行阐述。
如图1至图7为一些实施例中所示可移动平台及其散热结构的结构示图。其中,图1为一实施例中所示的可移动平台的结构示意图。图2为一实施例中所示的可移动平台的俯视示意图(去除了机身顶部零件)。图3为一实施例中所示的散热结构的俯视示意图。图4为图3所示的散热结构的A-A剖视示意图。图5为图4所示的A的放大示意图。图6为图4所示的B的放大示意图。图7为图3所示的散热结构的结构示意图。
如图1至图3所示,本申请的实施例提供一种可移动平台,包括机身10、散热结构20以及第一被散热组件30,散热结构20设置于机身10。
其中,如图3至图6所示,散热结构20包括散热支架100、气流产生组件200以及分流组件300。散热支架100内设有至少两条散热风道110,每条散热风道110分别包括进风端111,散热风道110的侧壁设有第一安装部120,用于安装第一被散热组件30。气流产生组件200设置于散热支架100,用于产生散热气流,气流产生组件200包括出风部210,出风部210朝向至少两条散热风道110的进风端111设置。分流组件300通过散热支架100设置于出风部210与至少两条散热风道110的进风端111之间,以控制进入每条散热风道110的散热气流的流量大小。如此,利用分流组件300可以控制进入每条散热风道110的散热气流的流量大小,对散热气流进行合理的分配,进而能够充分利用散热气流对第一被散热组件30进行散热,提高散热效率。
该可移动平台使用时,第一被散热组件30可以设置于散热风道110的侧壁上,将其运行时产生的热量传递到散热风道110上,利用散热风道110进行散热。同时,气流产生组件200设置于散热支架100上,能够为散热风道110提供散热气流,以提高散热风道110的散热效率,进而能够使得第一被散热组件30的散热效果好;此外,利用分流组件300可以控制进入每条散热风道110的散热气流的流量大小,对散热气流进行合理的分配,进而能够充分利用散热气流对第一被散热组件30进行散热。如此,通过调整散热气流的分配来满足不同散热风道110上的散热需求;同等条件下,无需提高气流产生组件200的功率来满足散热需求,进而有利于降低可移动平台的功耗,提高续航能力。
可以理解地,当有散热风道110内的散热气流不足,而又有散热风道110内的散热气流过量(也即,在该散热风道110上的第一被散热组件30的温度还未到达额定耐 热温度);此时,利用本申请的散热结构20无需提高气流产生组件200的功率来产生更多散热气流,可以先利用分流组件300来调整散热气流的分配来降低进入散热气流过量的散热通道内的散热气流的流量,而提高需要增加散热气流的散热风道110内的散热气流的流量。如此。可以提高散热气流的利用率,而降低散热的功耗。
或者,可以根据多个第一被散热组件30之间的耐热能力的不同,将耐热温度较高的第一被散热组件30设置于一个散热流道上,而将耐热温度较低的第一被散热组件30设置于另一个散热流道上。如此,利用分流组件300将更多地散热气流送入耐热温度较低的第一被散热组件30所在流道上。进而也能够实现充分利用散热气流进行散热,降低散热的功耗。
在某些实施方式中,可移动平台还可以包括汽车、遥控车、机器人或相机。当激光雷达应用于汽车时,本体为汽车的车身。该汽车可以是自动驾驶汽车或者半自动驾驶汽车,在此不做限制。当激光雷达应用于遥控车时,本体为遥控车的车身。当激光雷达应用于机器人时,本体为机器人的机身10。当激光雷达应用于相机时,本体为相机的本身。
示例性的,如图1及图2所示,可移动平台为无人飞行器,该散热结构20设置于机身10,以提高无人飞行器的散热利用率,降低无人飞行器的功耗,而有利于提高无人飞行器的续航能力。
需要说明的是,气流产生组件200的具体数量可以根据散热风道110的数量灵活进行设置。可选地,一个气流产生组件200可以对应两个散热风道110。
对于散热要求较高的第一被散热组件30,亦可以集成到散热支架100上来,充分利用散热风道110进行散热,可以使可移动平台的结构更加紧凑,有利于可移动平台小型化。
再者,将至少部分第一被散热组件30设置于散热支架100上,可以利用散热支架100作为安装件使用,便于将第一被散热组件30模块化组装于机身10内,有利于提高组装效率。
示例性的,如图4所示,散热结构20包括一个气流产生组件200,并将该气流产生组件200安设于散热支架100上。如此,使得散热结构20更加紧凑,且重量更轻,有利于可移动平台小型化和轻量化发展。进而,可以减少包装材料,进而降低包装成本,进而也是有利于降低成本。此外,体积越小,越能够降低搬运难度,进而能够提 高用户体验;而且,占用空间小,在同等存储空间情况下,可以存储更多的物料,降低可移动平台的仓储成本及运输成本。
目前,随着可移动平台的应用越来越广,应用的环境越越来越复杂,对可移动平台防护等级也提出了越来越高的要求,如部分可移动平台的防护等级要求在IP45及以上。为了满足防护等级较高的可移动平台的散热需求,传统的散热结构20通常要设置多个散热风扇对不同区域的电路板进行散热,这需要占用较多的空间,导致可移动平台的整体体积较大且比较笨重,不利于可移动平台小型化的发展。
而利用本申请的散热结构20,结构紧凑且散热气流利用率高,能够减少气流产生组件200的功率,进而减小气流产生组件200的体积。既能够满足可移动平台的防护要求以及散热要求,又能够适应可移动平台小型化发展需求。
如图4所示,在一些实施例中,每条散热风道110上均设有至少一个第一安装部120。如此,利用第一安装部120将在每条散热风道110上安装第一被散热组件30,可以充分利用散热风道110对第一被散热组件30进行散热,以提高可移动平台的散热效率,提高可靠性。
参照图2及图7所示,在一些实施例中,机身10设有容纳腔11,第一安装部120设置于散热风道110的外侧壁,以使第一被散热器件设置于容纳腔11内。如此,将第一被散热器件设置于容纳腔11内,有利于提高可移动平台的防护等级,有利于减少防护配合,进一步有利于可移动平台小型化发展。
可选地,散热支架100与机身10之间密封连接,以使容纳腔11形成一个密闭空间,第一被散热器件通过第一安装部120设置于密闭空间内。如此,可以提高对第一被散热器件的防护能力,有利于提升可移动平台的防护等级。
如图7所示,在一些实施例中,散热支架100呈筒状结构,并贯穿机身10设置,以使散热风道110流经容纳腔11设置。如此,利用筒状结构的散热支架100,便于模块化贯穿机身10设置,使得散热风道110流经容纳腔11,进而能够散热结构20提高机身10的散热能力。同时也便于散热支架100与机身10密封配合,以满足防护要求。
气流产生组件200的具体实现方式可以有多种,包括无叶风扇和有叶风扇,还包括利用电机带动扰动件产生散热气流的其他变形结构,如负压发生器、正压发生器、电动充气泵、风机、空气压缩机等。
可选地,气流产生组件200包括轴流风机。如此,可以进一步提高散热效率的同 时,减小散热结构20的体积,有利于可移动平台小型化。
为了提高第一被散热组件30的散热效率,第一被散热组件30与散热风道110侧壁之间设有导热层,便于将第一被散热组件30通过导热层快速传递给散热风道110进行散热。
对应的,第一被散热组件30中发热量更多的器件,还可以利用均热板或环路热管进行散热,以保证对应的器件满足使用环境要求。
在一些实施例中,第一被散热组件30包括第一装配线路板。如此,可以将更多电子器件集成到电路板上,使得可移动平台的内部结构更加紧凑,有利于减少连接线路,有利于可移动平台小型化。
例如,第一被散热组件30包括电路板以及设置于电路板上的芯片,芯片与电路板之间设有环路热管或均热板,便于利用电路板进行散热,避免第一被散热组件30局部过热。
如图4所示,在一些实施例中,出风部210的出风方向与进风端111的进风方向呈钝角设置。如此,便于进行分流。特别地,与前述迎风部311结合,便于将更多的散热气流导入远离机身10底部的散热风道110内,也即第一流道,为耐热性较差的第一被散热器件提高足够的散热气流。而将其他散热气流导入靠近机身10底部的散热风道110内,也即第二流道,以提高散热气流的散热利用率。
如图4所示,在一些实施例中,散热支架100包括与至少两条散热风道110连通的安装管体180,安装管体180的一端设有进风口181,气流产生组件200设置于安装管体180内。如此,利用安装管体180安装气流产生组件200,并利用安装管体180的一端形成进风口181,便于将散热支架100安装于机身10,即可实现将散热结构20集成到机身10上,有利于提高可移动平台的组装效率。
需要说明的是,该“安装管体180”可以为“散热支架100”这一模块的其中一个零件,即与“散热支架100的其他构件”组装成一个模块,再进行模块化组装;也可以与“散热支架100的其他构件”相对独立,可分别进行安装,即可在本装置中与“散热支架100的其他构件”构成一个整体。
等同的,本申请“单元”、“组件”、“结构”、“装置”所包含的构件亦可灵活进行组合,即可根据实际进行模块化生产,作为一个独立的模块进行模块化组装;也可以分别进行组装,在本装置中构成一个模块。本申请对上述构件的划分,仅是其 中一个实施例,为了方便阅读,而不是对本申请的保护的范围的限制,只要包含了上述构件且作用相同应当理解是本申请等同的技术方案。
如图8及图9所示,在一些实施例中,散热支架100还包括设置于散热风道110内的第一散热部130,第一散热部130与第一安装部120相对设置。如此,利用第一散热部130可以提高散热风道110的散热效率。
该第一散热部130的实现形式可以有多种,包括但不限于设置散热层(如石墨烯涂层等)、散热翅片、散热凸起等被动散热结构20。
如图9所示,示例性的,第一散热部130包括至少一片第一散热翅片131,第一散热翅片131凸出设置于散热风道110内。如此,利用第一散热翅片131来扩大散热面积,便于与散热气流充分接触,在提高散热效率的同时,提高散热气流的散热利用率。
在上述任一实施例的基础上,在一些实施例中,至少两条散热风道110沿预设方向依次排布。如此,可以利用散热风道110进行更多的第一被散热组件30的散热。同时可以根据需要,将不同耐热性能的第一被散热组件30进行分类,然后安设到预设的散热风道110上,进而可以利用分流组件300实现所需的散热气流的供给,有利于进一步利用散热气流。
一些示例性中,耐热性能越高的第一被散热组件30所对应的散热风道110的流道面积越小。如此,便于可移动平台利用散热结构20合理地排布第一被散热组件30,可以将气流产生组件200散热气流经分流组件300合理输送至各散热风道110,提高散热气流的散热利用率。
如图4所示,进一步地,示例性的,散热支架100包括沿竖直方向相邻设置的两个散热风道110,且其中一条散热风道110为第一流道,另一条散热风道110为第二流道;第一流道设置于第二流道的上方,且第一流道的流道面积大于第二流道的流道面积。如此,便于将耐热性能较好的第一被散热组件30设置于第二流道上,而耐热性能较差的第一被散热组件30设置于第一流道上,提高散热气流的散热利用率。
如图4所示,进一步地,在一些实施例中,第一流道包括出风端112,第一流道设有沿进风端111至出风端112方向间隔设置的至少两个第一安装部120。如此,在第一流道上可以进一步根据耐热性能的不同来安装至少两个第一被散热组件30,进一步提高散热气流的散热利用率。
如,至少两个第一被散热组件30设置于第一流道上,将耐热性能较差的第一被散 热组件30靠近进风端111设置,而耐热性能较好的第一被散热组件30靠近出风端112设置。
需要说明的是,出风端112包括至少一个出风口,进风道包括至少一个进风口181。
一些实施例中,出风端112包括三个出风口,部分出风口用于形成循环风道。
在另一些实施例中,每条散热风道110分别还包括出风端112,第一安装部120至少为两个,并沿进风端111至出风端112方向间隔设置于散热风道110的外侧。如此,在散热风道110上可以进一步根据耐热性能的不同来安装至少两个第一被散热组件30,进一步提高散热气流的散热效率。
可参照第一流道的排布方式。或者,如,至少两个第一被散热组件30设置于第二流道上,将耐热性能较差的第一被散热组件30靠近进风端111设置,而耐热性能较好的第一被散热组件30靠近出风端112设置。
需要说明的是,分流组件300的实现方式可以有多种,包括分流格栅、分流扇叶等等,能够实现气流的分流即可。
如图4所示,在上述任一实施例的基础上,在一些实施例中,分流组件300包括导流件310,导流件310设置于两个相邻的散热风道110之间,用于改变进入散热风道110内的散热气流大小。如此,利用导流件310设置于两个相邻散热风道110之间,通过改变与相邻散热风道110的位置关系,即可改变进入散热风道110内的散热气流大小,易于实施,且散热气流的分配更加精确。
该导流件310可以通过多种方式设置于散热风道110之间,如支撑部件、连接部件、安装部件、分隔部件等。
在上述实施例的基础上,如图5所示,在一些实施例中,导流件310包括朝向出风部210设置的迎风部311,迎风部311与出风部210之间的角度可调。如此,通过调整迎风部311与出风部210的角度,即可改变进入散热风道110的散热气流大小。
该迎风部311可以呈弧角状(如倒圆角结构),也可以呈锥角状(如呈锐角、直角或钝角状)。
如图4所示,示例性的,两个相邻的散热风道110中其中一条为第一流道,另一条为第二流道;迎风部311包括第一导流面301以及第二导流面302,第一导流面301靠近第一流道设置,用于将散热气流导向第一流道,第二导流面302靠近第二流道设 置,用于将散热气流导向第二流道。如此,利用第一导流面301将散热气流导入第一流道内,利用第二导流面302将散热气流导入第二流道内,有利于减少紊流,实现更加精确的导流分配效果。
在上述任一迎风部311的实施例基础上,如图4及图5所示,在一些实施例中,导流件310包括第一导流体312以及第二导流体313,第一导流体312的一端与第二导流体313的一端相交形成迎风部311,第一导流体312的另一端以及第二导流体313的另一端分别与散热支架100固定连接。如此,利用相交设置的第一导流体312以及第二导流体313相交形成迎风部311,使得该迎风部311呈锥角状,有利于减少紊流;且便于根据分流需求设置迎风部311的角度,以实现更加精确且可靠的导流分配效果。
一些实施例中,导流件310可动设置于散热支架100上,以实现散热气流的动态分配。进而可以根据不同位置的散热需要,改变导流件310的位置来实现散热气流动态分配。
示例性的,导流件310的材质为记忆金属,且能够根据第一被散热组件30的温度变化,以使迎风部311与出风部210之间的角度可调。如此,利用记忆金属材料制作得到导流件310,将导流件310设置于相邻两个散热风道110之间,由于第一被散热组件30设置于对应的散热风道110上,并利用散热风道110进行散热。当某一第一被散热组件30散热量较大,对应的散热风道110的温度会相对较高,此时导流件310可以根据该温度变化,自动进行调整,使得迎风部311与出风部210之间的角度可调,将更多的散热气流分配给对应的散热风道110。
进一步地,在一些实施例中,导流件310的材质为记忆金属,分流组件300还包括发热件320(未示出),发热件320设置于导流件310,以调整迎风部311与出风部210之间的角度。如此,可以主动获取第一被散热组件30的温度变化,当其温度值大于预设耐热温度时,发热件320发热,导流件310发生形变,使得迎风部311的位置变化,实现迎风部311与出风部210之间的角度调整,将更多的散热气流分配给对应的散热风道110。
或者,在另一些实施例中,分流组件300还包括传动单元330(未示出),导流件310通过传动单元330可动设置于散热支架100,以使迎风部311与出风部210之间的角度可调。如此,可以主动获取第一被散热组件30的温度变化,当其温度值大于预设耐热温度时,传动单元330动作,使得迎风部311与出风部210之间的角度发生变化,将更多的散热气流分配给对应的散热风道110。
该传动单元330包括伺服电机、旋转液压缸等直接带动导流件310转动的动力设备,使得迎风部311与出风部210之间的角度可调;也包括其他间接带动导流件310转动的机构,如气压杆+齿轮齿条组件,液压杆+曲柄摇杆组件或曲柄滑块组件、伺服电机+减速箱、伺服电机+柔性传动组件。以上均可在传统技术中实现,在此不再一一赘述。
需要说明的是,散热支架100上设置至少两条散热风道110的实现方式可以有多种,如利用至少两条管道并列排布形成,或者利用通道分隔而成等等。
如图4所示,在一些实施例中,散热支架100还包括分隔件140,相邻两个散热风道110通过分隔件140分隔而成。如此,利用分隔件140分隔形成散热风道110,使得散热风道110之间的结构更加紧凑。
在上述实施例的基础上,如图4所示,在一些实施例中,可移动平台还包括第二被散热组件40,散热支架100还包括分隔件140,分隔件140设有第二安装部141,至少部分第二安装部141设置于其中一条散热风道110内,第二被散热组件40通过第二安装部141设置于分隔件140。如此,利用第二安装部141将第二被散热器件集成安装到分隔件140上,进而可以充分利用散热风道110内的散热气流对第二被散热器件进行散热,进一步提高散热气流的散热利用率。
特别地,对应一些防护要求不高,但散热要求较高的第二被散热器件可以通过分隔件140设置于散热风道110内,以直接利用散热气流进行散热,提高第二被散热器件的散热效率。
如图4及图5所示,可选地,在一些实施例中,第二安装部141设有容纳第二被散热组件40的安装腔101。如此,利用安装腔101,便于将第二被散热组件40安装于分隔件140中,提高安装固定的可靠性。
再者,进一步地,第二安装部141包括用于密封安装腔101的密封板102,密封板102的外侧壁设有设置于散热风道110内的第二散热部103。进而利用密封板102与安装腔101配合,可以将第二被散热器件密封防护设置于分隔件140上。如此,对应防护要求较高的第二被散热组件40也可以利用分隔件140进行散热,充分利用散热风道110侧壁进行散热。此外,利用第二散热部103可以提高密封板102的散热性能。
该第二散热部103的实现形式可以有多种,包括但不限于设置散热层(如石墨烯涂层等)、散热翅片、散热凸起等被动散热结构20。
如图8及图9所示,示例性的,第二散热部103包括至少一片第二散热翅片1031,第二散热翅片1031凸出设置于散热风道110内。如此,利用第二散热翅片1031来扩大散热面积,便于与散热气流充分接触,在提高散热效率的同时,提高散热气流的散热利用率。
进一步地,为了提高第一被散热组件30的散热效率,第二被散热组件40与密封板102的侧壁之间设有导热层,便于将第二被散热组件40通过导热层快速传递给密封板102以及分隔件140进行散热。
对应的,第二被散热组件40中发热量更多的器件,还可以利用均热板或环路热管进行散热,以保证对应的器件满足使用环境要求。
在一些实施例中,第二被散热组件40包括第二装配线路板。如此,可以将更多电子器件集成到电路板上,使得可移动平台的内部结构更加紧凑,有利于减少连接线路,有利于可移动平台小型化。
如,第二被散热组件40包括电路板以及设置于电路板上的传感器,传感器与电路板之间设有环路热管或均热板,便于利用电路板进行散热,避免第二被散热组件40局部过热。
如图4所示,示例性的,分流组件300设置于分隔件140上。如此,便于将分流组件300集成到分隔件140中,然后再模块化组装到散热风道110上,有利于提高散热结构20的组装效率。
进一步地,在一些实施例中,分流组件300包括导流件310,导流件310设置于分隔件140的一端部,且设置于两个相邻的散热风道110之间。如此,完成分隔件140的安装,即可将导流件310设置于两个相邻散热风道110之间,通过改变与相邻散热风道110的位置关系,即可改变进入散热风道110内的散热气流大小,易于实施,且散热气流的分配更加精确。
可选地,在一些实施例中,导流件310包括朝向出风部210设置的迎风部311,迎风部311与出风部210之间的角度可调。如此,通过调整迎风部311与出风部210的角度,即可改变进入散热风道110的散热气流大小。
在一些实施例中,两个相邻的散热风道110中其中一条为第一流道,另一条为第二流道;迎风部311包括第一导流面301以及第二导流面302,第一导流面301靠近第一流道设置,用于将散热气流导向第一流道,第二导流面302靠近第二流道设置, 用于将散热气流导向第二流道。如此,利用第一导流面301将散热气流导入第一流道内,利用第二导流面302将散热气流导入第二流道内,有利于减少紊流,实现更加精确的导流分配效果。
在一些实施例中,导流件310包括第一导流体312以及第二导流体313,第一导流体312的一端与第二导流体313的一端相交形成迎风部311,第一导流体312的另一端以及第二导流体313的另一端分别与分隔件140固定连接。如此,利用相交设置的第一导流体312以及第二导流体313相交形成迎风部311,使得该迎风部311呈锥角状,有利于减少紊流,以实现更加精确且可靠的导流分配效果。
在上述实施例的基础上,在一些实施例中,第一导流体312的材质和第二导流体313的材质为记忆金属,且能够根据第一被散热组件30的温度变化,调整迎风部311与出风部210之间的角度。如此,利用记忆金属材料制作得到第一导流体312以及第二导流体313,将导流件310设置于相邻两个散热风道110之间,第一导流体312能够将散热气流导向靠近其设置的散热风道110内,第二导流体313能够将散热气流导向靠近其设置的散热风道110内,便于根据分流需求设置迎风部311的角度,以实现更加精确且可靠的导流分配效果。
如,当某一第一被散热组件30散热量较大,其温度较高,导致其对应的散热风道110所对应的第一导流体312或第二导流体313的温度会相对较高,进而会根据该温度变化发生变形,自动进行调整,使得迎风部311与出风部210之间的角度可调,将更多的散热气流分配给对应的散热风道110。
在一些实施例中,第一导流体312的材质和第二导流体313的材质为记忆金属,分流组件300还包括发热件320,第一导流体312和第二导流体313均设有发热件320,以调整迎风部311与出风部210之间的角度。如此,利用第一被散热组件30自带的温度检测元件或其他检测元件能够及时检测第一被散热组件30,当其温度大于预设耐热值时,其对应的散热风道110所对应的第一导流体312或第二导流体313上的发热件320可以主动发热,使导流件310根据该温度变化发生变形,自动进行迎风部311的位置调整,实现迎风部311与出风部210之间的角度调整,将更多的散热气流分配给对应的散热风道110。
在一些实施例中,分流组件300还包括传动单元330,导流件310通过传动单元330可动设置于分隔件140,以使迎风部311与出风部210之间的角度可调。如此,传动单元330也可以集成到分隔件140上,提高散热结构20的组装效率。也便于利用 传动单元330改变导流件310的位置,实现迎风部311与出风部210之间的角度调整。
在上述任一实施例的基础上,如图4、图7至图9所示,一实施例中,散热支架100包括散热壳体150、盖板160以及分隔件140,散热壳体150设有散热通槽151,盖板160设置于散热壳体150,以使散热通槽151形成散热管道,分隔件140设置于散热管道内,将散热管道分隔成两个散热风道110。如此,将分隔件140设置于散热壳体150的散热通槽151中,然后再利用散热壳体150与盖板160组合成散热管道,并利用分隔件140在散热管道上形成两个散热风道110,如第一流道以及第二流道。
可选地,散热管道的拼接处可以直接焊接密封,也可以利用防水胶圈等进行进行防水密封。
此外,散热支架100与机身10之间的连接处也可以直接焊接密封,也可以利用防水胶圈等进行进行防水密封,以提高容纳腔11的防水等级。
进一步地,利用隔热材料将被散热器件隔离在散热结构20上,减少热量进入容纳腔11中。
在一些实施例中,至少一个第一安装部120设置于盖板160;散热壳体150包括与盖板160相对设置的第一侧壁,至少一个第一安装部120设置于第一侧壁。如此,利用第一安装部120,便于将第一被散热组件30设置于盖板160上,有利于提高可移动平台组装效率。
在一些实施例中,靠近盖板160设置的散热风道110的流道面积大于远离盖板160设置的散热风道110的流道面积。也即,越靠近容纳腔11的底部设置的第一被散热组件30的耐热能力越强,越靠近容纳腔11的底部设置的散热风道110的流道面积越小。如此,可以将耐热性能较好的第一被散热组件30,如电调板设置于容纳相的底部;而将耐热性能较差的第一被散热组件30设置于盖板160上。
由于电调板主要在飞行时产热,且发热功率与飞行功耗成正比。因此单独将其布置在下侧的散热风道110,也即第二流道上,有利于根据飞行工况动态调整其风量分配。
如图10所示,在一些实施例中,散热支架100还包括支撑件170,支撑件170用于与机身10连接。如此,利用支撑件170将散热结构20集成到机身10上。同时可以散热支架100进行支撑,形成加强筋结构,可以提高机身10的强度。
如图11所示,在一些实施例中,可移动平台还包括控制装置50,控制装置50 与气流产生组件200通信连接,以控制气流产生组件200的产生散热气流。如此,利用控制装置50可以控制气流产生组件200的通断。
进一步地,在一些实施例中,控制装置50与分流组件300通信连接,以调整不同散热风道110之间的散热气流大小。如此,利用控制装置50可以控制分流组件300进行运动,以实现散热流量分配调整。
结合前述的主动分流组件300的实施例,控制装置50与发热件320或传动单元330通信连接。
更进一步地,在一些实施例中,可移动平台还包括温度检测装置60,温度检测装置60用于检测第一被散热组件30的温度信息,并将温度信息发送给控制装置50。如此,利用温度检测装置60可以主动获取第一被散热组件30的温度信息,提高反应速度,有效保证第一被散热组件30在耐热温度范围内运行,提高可靠性。
温度检测装置60的具体实现方式可以有多种,包括但不限于温度传感器等接触式温度检测装置60、红外线温度检测器等非接触式温度检测装置60。
再进一步地,如图11所示,在一些实施例中,控制装置50包括处理器以及用于存储计算机程序的存储器,处理器用于运行存储器中存储的计算机程序以实现如下的散热控制方法:
获取至少两条散热风道110的第一被散热组件30的温度信息;
当有一条散热通道对应的第一被散热组件30的温度值大于预设温度值,且有一条散热通道对应的第一被散热组件30的温度值小于预设温度值时,控制分流组件300动作,以增大进入温度值大于预设温度值的散热风道110的散热气流的流量,减小进入温度值小于预设温度值的散热风道110的散热气流的流量。
如此,控制装置利用该散热控制方法,能够结合第一被散热组件的温度的大小,控制分流组件实现散热气流的自动分配,以使第一被散热组件在各自的耐热温度范围内运行,有利于提高可移动平台的可靠性。
此外,控制分流组件动作,以实现增大进入温度值大于预设温度值的散热风道的散热气流的流量,减小进入温度值小于预设温度值的散热风道的散热气流的流量,进而在不改变气流产生组件的功率的情况下,充分利用其产生的散热气流,有利于降低散热的功耗。
存储器包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁盘或者光盘等各种可以存储程序代码的介质。
处理器可以是微控制单元(Micro-controller Unit,MCU)、中央处理器(Central Processing Unit,CPU)或者数字信号处理器(Digital Signal Processor,DSP)等等。
预设温度值根据第一被散热组件的最大耐热温度进行设定,且其具体大小可以根据实际情况进行选择。如,比最大耐热温度小1℃、2℃等。
一些实施例中,控制装置和/或温度检测装置可以集成在第一被散热组件中。
在一些实施例中,散热结构包括两条散热风道,其中一条散热风道为第一流道,另一条散热风道为第二流道;当第一流道对应的第一被散热组件的温度值大于预设温度值,且第二流道对应的第一被散热组件的温度值小于预设温度值时,控制分流组件动作,以增大进入第一流道的散热气流的流量,减小进入第二流道的散热气流的流量;当第一流道对应的第一被散热组件的温度值小于预设温度值,且第二流道对应的第一被散热组件的温度值大于预设温度值时,控制分流组件动作,以增大进入第二流道的散热气流的流量,减小进入第一流道的散热气流的流量。如此,利用控制装置可以实现更加精确的散热气流的分流控制,以保证第一被散热组件在耐热温度范围内运行。
进一步地,一些实施例中,预设温度值包括第一温度值以及大于第一温度值的第二温度值;当第一流道对应的第一被散热组件的温度值大于第一温度值,且第二流道对应的第一被散热组件的温度值小于第二温度值时,控制分流组件动作,以增大进入第一流道的散热气流的流量,减小进入第二流道的散热气流的流量;当第一流道对应的第一被散热组件的温度值小于第一温度值,且第二流道对应的第一被散热组件的温度值大于第二温度值时,控制分流组件动作,以增大进入第二流道的散热气流的流量,减小进入第一流道的散热气流的流量。如此,可以针对在不同散热风道的第一被散热组件设置不同的耐热温度(也即第一温度值与第二温度值不同),以充分利用散热气流进行散热,有利于降低气流产生组件的功率,进而降低可移动平台的散热功耗,提高续航能力。
在上述散热控制方法的任一实施例的基础上,一些实施例中,散热控制方法还包括:
当所有散热通道的第一被散热组件的温度均大于预设温度值时,增大气流产生 组件产生的散热气流的流量。进而通过监测散热风道上所有被散热组件的耐热温度值,若只有某一第一被动散热组件到达预设温度时,优先进行分流组件的控制,利用分流组件进行散热气流控制,以降低该第一被动散热组件。如只存在第一流道或者第二流道的散热气流不足,则优先调整分流组件。而当所有散热通道的第一被散热组件的温度均大于预设温度值则增大气流产生组件产生的散热气流的流量,也即调整气流产生组件转速。具体可为,调整轴流风机的转速。如此,最终实现在各种工况下,气流产生组件优先以最低转速保证所有被散热器件均保持在有一点余量下进行工作,实现最佳功耗和最低噪声控制。
如图12所示,在本申请的实施例中,一种散热控制方法,包括:
获取至少两条散热风道的第一被散热组件的温度信息;
当有一条散热通道对应的第一被散热组件的温度值大于预设温度值,且有一条散热通道对应的第一被散热组件的温度值小于预设温度值时,控制分流组件动作,以增大进入温度值大于预设温度值的散热风道的散热气流的流量,减小进入温度值小于预设温度值的散热风道的散热气流的流量。
如此,控制装置利用该散热控制方法,能够结合第一被散热组件的温度的大小,控制分流组件实现散热气流的自动分配,以使第一被散热组件在各自的耐热温度范围内运行,有利于提高可移动平台的可靠性。
此外,控制分流组件动作,以实现增大进入温度值大于预设温度值的散热风道的散热气流的流量,减小进入温度值小于预设温度值的散热风道的散热气流的流量,进而在不改变气流产生组件的功率的情况下,充分利用其产生的散热气流,有利于降低散热的功耗。
一些实施例中,散热控制方法可以应用于可移动平台中,也可以应用于散热结构中。也即,在散热结构中设置子控制模块,以及温度检测装置,实现对分流组件的控制。
在一些实施例中,散热结构包括两条散热风道,其中一条散热风道为第一流道,另一条散热风道为第二流道;当第一流道对应的第一被散热组件的温度值大于预设温度值,且第二流道对应的第一被散热组件的温度值小于预设温度值时,控制分流组件动作,以增大进入第一流道的散热气流的流量,减小进入第二流道的散热气流的流量;当第一流道对应的第一被散热组件的温度值小于预设温度值,且第二流道对应的第一 被散热组件的温度值大于预设温度值时,控制分流组件动作,以增大进入第二流道的散热气流的流量,减小进入第一流道的散热气流的流量。如此,利用控制装置可以实现更加精确的散热气流的分流控制,以保证第一被散热组件在耐热温度范围内运行。
进一步地,在一些实施例中,预设温度值包括第一温度值以及大于第一温度值的第二温度值;当第一流道对应的第一被散热组件的温度值大于第一温度值,且第二流道对应的第一被散热组件的温度值小于第二温度值时,控制分流组件动作,以增大进入第一流道的散热气流的流量,减小进入第二流道的散热气流的流量;当第一流道对应的第一被散热组件的温度值小于第一温度值,且第二流道对应的第一被散热组件的温度值大于第二温度值时,控制分流组件动作,以增大进入第二流道的散热气流的流量,减小进入第一流道的散热气流的流量。如此,可以针对在不同散热风道的第一被散热组件设置不同的耐热温度(也即第一温度值与第二温度值不同),以充分利用散热气流进行散热,有利于降低气流产生组件的功率,进而降低可移动平台的散热功耗,提高续航能力。
在上述散热控制方法的任一实施例的基础上,一些实施例中,散热控制方法还包括:
当所有散热通道的第一被散热组件的温度均大于预设温度值时,增大气流产生组件产生的散热气流的流量。进而通过监测散热风道上所有被散热组件的耐热温度值,若只有某一第一被动散热组件到达预设温度时,优先进行分流组件的控制,利用分流组件进行散热气流控制,以降低该第一被动散热组件。如只存在第一流道或者第二流道的散热气流不足,则优先调整分流组件。而当所有散热通道的第一被散热组件的温度均大于预设温度值则增大气流产生组件产生的散热气流的流量,也即调整气流产生组件转速。具体可为,调整轴流风机的转速。如此,最终实现在各种工况下,气流产生组件优先以最低转速保证所有被散热器件均保持在有一点余量下进行工作,实现最佳功耗和最低噪声控制。
在本申请的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件 必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
此外,术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”等的特征可以明示或者隐含地包括至少一个该特征。在本申请的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本申请中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
需要说明的是,当元件被称为“固定于”、“设置于”、“固设于”或“安设于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。
以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。

Claims (54)

  1. 一种散热结构,其特征在于,包括:
    散热支架,内设有至少两条散热风道,每条所述散热风道分别包括进风端,所述散热风道的侧壁设有第一安装部,用于安装第一被散热组件;
    气流产生组件,设置于所述散热支架,用于产生散热气流,所述气流产生组件包括出风部,所述出风部朝向所述至少两条散热风道的进风端设置;以及
    分流组件,通过所述散热支架设置于所述出风部与所述至少两条散热风道的进风端之间,以控制进入每条所述散热风道的所述散热气流的流量大小。
  2. 根据权利要求1所述的散热结构,其特征在于,至少两条所述散热风道沿预设方向依次排布。
  3. 根据权利要求2所述的散热结构,其特征在于,所述散热支架包括沿竖直方向相邻设置的两个散热风道,且其中一条所述散热风道为第一流道,另一条所述散热风道为第二流道;所述第一流道设置于所述第二流道的上方,且所述第一流道的流道面积大于所述第二流道的流道面积。
  4. 根据权利要求3所述的散热结构,其特征在于,每条所述散热风道分别还包括出风端,所述第一流道设有沿所述进风端至所述出风端方向间隔设置的至少两个所述第一安装部。
  5. 根据权利要求1所述的散热结构,其特征在于,每条所述散热风道上均设有至少一个所述第一安装部。
  6. 根据权利要求1所述的散热结构,其特征在于,每条所述散热风道分别还包括出风端,所述第一安装部至少为两个,并沿所述进风端至所述出风端方向间隔设置于所述散热风道的侧壁。
  7. 根据权利要求1所述的散热结构,其特征在于,所述散热支架还包括设置于所述散热风道内的第一散热部,所述第一散热部与所述第一安装部相对设置。
  8. 根据权利要求7所述的散热结构,其特征在于,所述第一散热部包括至少一片第一散热翅片,所述第一散热翅片凸出设置于所述散热风道内。
  9. 根据权利要求1所述的散热结构,其特征在于,所述散热支架还包括分隔件,相邻两个所述散热风道通过所述分隔件分隔而成。
  10. 根据权利要求9所述的散热结构,其特征在于,所述分隔件设有用于安装第二被散热组件的第二安装部。
  11. 根据权利要求10所述的散热结构,其特征在于,所述第二安装部设有容纳所 述第二被散热组件的安装腔。
  12. 根据权利要求11所述的散热结构,其特征在于,所述第二安装部包括用于密封所述安装腔的密封板,所述密封板的外侧壁设有设置于所述散热风道内的第二散热部。
  13. 根据权利要求12所述的散热结构,其特征在于,所述第二散热部包括至少一片第二散热翅片,所述第二散热翅片凸出设置于所述散热风道内。
  14. 根据权利要求9所述的散热结构,其特征在于,所述分流组件设置于所述分隔件上。
  15. 根据权利要求14所述的散热结构,其特征在于,所述分流组件包括导流件,所述导流件设置于所述分隔件的一端部,且设置于两个相邻的所述散热风道之间。
  16. 根据权利要求15所述的散热结构,其特征在于,所述导流件包括朝向所述出风部设置的迎风部,所述迎风部与所述出风部之间的角度可调。
  17. 根据权利要求16所述的散热结构,其特征在于,所述两个相邻的散热风道中其中一条为第一流道,另一条为第二流道;所述迎风部包括第一导流面以及第二导流面,所述第一导流面靠近所述第一流道设置,用于将所述散热气流导向所述第一流道,所述第二导流面靠近所述第二流道设置,用于将所述散热气流导向所述第二流道。
  18. 根据权利要求16所述的散热结构,其特征在于,所述导流件包括第一导流体以及第二导流体,所述第一导流体的一端与所述第二导流体的一端相交形成所述迎风部,所述第一导流体的另一端以及所述第二导流体的另一端分别与所述分隔件固定连接。
  19. 根据权利要求18所述的散热结构,其特征在于,所述第一导流体的材质和所述第二导流体的材质为记忆金属,且能够根据所述第一被散热组件的温度变化,调整所述迎风部与所述出风部之间的角度。
  20. 根据权利要求18所述的散热结构,其特征在于,所述第一导流体的材质和所述第二导流体的材质为记忆金属,所述分流组件还包括发热件,所述第一导流体和所述第二导流体均设有所述发热件,以调整所述迎风部与所述出风部之间的角度。
  21. 根据权利要求16所述的散热结构,其特征在于,所述分流组件还包括传动单元,所述导流件通过所述传动单元可动设置于所述分隔件,以使所述迎风部与所述出风部之间的角度可调。
  22. 根据权利要求1所述的散热结构,其特征在于,所述分流组件包括导流件,所述导流件设置于两个相邻的所述散热风道之间,用于改变进入所述散热风道内的散热 气流大小。
  23. 根据权利要求22所述的散热结构,其特征在于,所述导流件包括朝向所述出风部设置的迎风部,所述迎风部与所述出风部之间的角度可调。
  24. 根据权利要求23所述的散热结构,其特征在于,所述两个相邻的散热风道中其中一条为第一流道,另一条为第二流道;所述迎风部包括第一导流面以及第二导流面,所述第一导流面靠近所述第一流道设置,用于将所述散热气流导向所述第一流道,所述第二导流面靠近所述第二流道设置,用于将所述散热气流导向所述第二流道。
  25. 根据权利要求23所述的散热结构,其特征在于,所述导流件包括第一导流体以及第二导流体,所述第一导流体的一端与所述第二导流体的一端相交形成所述迎风部,所述第一导流体的另一端以及所述第二导流体的另一端分别与所述散热支架固定连接。
  26. 根据权利要求23所述的散热结构,其特征在于,所述导流件的材质为记忆金属,且能够根据所述第一被散热组件的温度变化,以使所述迎风部与所述出风部之间的角度可调。
  27. 根据权利要求23所述的散热结构,其特征在于,所述导流件的材质为记忆金属,所述分流组件还包括发热件,所述发热件设置于所述导流件,以调整所述迎风部与所述出风部之间的角度。
  28. 根据权利要求23所述的散热结构,其特征在于,所述分流组件还包括传动单元,所述导流件通过所述传动单元可动设置于所述散热支架,以使所述迎风部与所述出风部之间的角度可调。
  29. 根据权利要求1所述的散热结构,其特征在于,所述散热支架包括散热壳体、盖板以及分隔件,所述散热壳体设有散热通槽,所述盖板设置于所述散热壳体,以使所述散热通槽形成散热管道,所述分隔件设置于所述散热管道内,将所述散热管道分隔成两个所述散热风道。
  30. 根据权利要求29所述的散热结构,其特征在于,至少一个所述第一安装部设置于所述盖板;所述散热壳体包括与所述盖板相对设置的第一侧壁,至少一个所述第一安装部设置于所述第一侧壁。
  31. 根据权利要求29所述的散热结构,其特征在于,靠近所述盖板设置的所述散热风道的流道面积大于远离所述盖板设置的所述散热风道的流道面积。
  32. 根据权利要求1所述的散热结构,其特征在于,所述散热支架还包括支撑件,所述支撑件用于与机身连接。
  33. 根据权利要求1所述的散热结构,其特征在于,所述气流产生组件包括轴流风机。
  34. 根据权利要求1所述的散热结构,其特征在于,所述出风部的出风方向与所述进风端的进风方向呈钝角设置。
  35. 根据权利要求1所述的散热结构,其特征在于,所述第一安装部设置于所述散热风道的外侧壁。
  36. 根据权利要求1至35任一项所述的散热结构,其特征在于,所述散热支架包括与所述至少两条散热风道连通的安装管体,所述安装管体的一端设有进风口,所述气流产生组件设置于所述安装管体内。
  37. 一种可移动平台,其特征在于,包括机身、第一被散热组件以及权利要求1至36任一项所述的散热结构,所述第一被散热组件通过所述第一安装部设置于所述散热风道的侧壁,所述散热结构设置于所述机身。
  38. 根据权利要求37所述的可移动平台,其特征在于,所述第一被散热组件包括第一装配线路板。
  39. 根据权利要求37所述的可移动平台,其特征在于,所述可移动平台还包括第二被散热组件,所述散热支架还包括分隔件,所述分隔件设有第二安装部,至少部分所述第二安装部设置于其中一条散热风道内,所述第二被散热组件通过所述第二安装部设置于所述分隔件。
  40. 根据权利要求39所述的可移动平台,其特征在于,所述第二被散热组件包括第二装配线路板。
  41. 根据权利要求37所述的可移动平台,其特征在于,所述机身设有容纳腔,所述第一安装部设置于所述散热风道的外侧壁,以使所述第一被散热器件设置于所述容纳腔内。
  42. 根据权利要求41所述的可移动平台,其特征在于,所述散热支架呈筒状结构,并贯穿所述机身设置,以使所述散热风道流经所述容纳腔设置。
  43. 根据权利要求41所述的可移动平台,其特征在于,越靠近所述容纳腔的底部设置的第一被散热组件的耐热能力越强,越靠近所述容纳腔的底部设置的散热风道的流道面积越小。
  44. 根据权利要求37至43任一项所述的可移动平台,其特征在于,所述可移动平台还包括控制装置,所述控制装置与所述气流产生组件通信连接,以控制所述气流产生组件的产生所述散热气流。
  45. 根据权利要求44所述的可移动平台,其特征在于,所述控制装置与所述分流组件通信连接,以调整不同所述散热风道之间的散热气流大小。
  46. 根据权利要求45所述的可移动平台,其特征在于,所述可移动平台还包括温度检测装置,所述温度检测装置用于检测所述第一被散热组件的温度信息,并将所述温度信息发送给所述控制装置。
  47. 根据权利要求46所述的可移动平台,其特征在于,所述控制装置包括处理器以及用于存储计算机程序的存储器,所述处理器用于运行所述存储器中存储的计算机程序以实现如下的散热控制方法:
    获取所述至少两条散热风道的第一被散热组件的温度信息;
    当有一条所述散热通道对应的第一被散热组件的温度值大于预设温度值,且有一条所述散热通道对应的第一被散热组件的温度值小于所述预设温度值时,控制分流组件动作,以增大进入温度值大于所述预设温度值的散热风道的散热气流的流量,减小进入温度值小于所述预设温度值的散热风道的散热气流的流量。
  48. 根据权利要求47所述的可移动平台,其特征在于,所述散热结构包括两条散热风道,其中一条所述散热风道为第一流道,另一条所述散热风道为第二流道;
    当所述第一流道对应的第一被散热组件的温度值大于预设温度值,且所述第二流道对应的第一被散热组件的温度值小于所述预设温度值时,控制所述分流组件动作,以增大进入所述第一流道的散热气流的流量,减小进入所述第二流道的散热气流的流量;
    当所述第一流道对应的第一被散热组件的温度值小于预设温度值,且所述第二流道对应的第一被散热组件的温度值大于所述预设温度值时,控制所述分流组件动作,以增大进入所述第二流道的散热气流的流量,减小进入所述第一流道的散热气流的流量。
  49. 根据权利要求48所述的可移动平台,其特征在于,所述预设温度值包括第一温度值以及大于所述第一温度值的第二温度值;
    当所述第一流道对应的第一被散热组件的温度值大于所述第一温度值,且所述第二流道对应的第一被散热组件的温度值小于所述第二温度值时,控制所述分流组件动作,以增大进入所述第一流道的散热气流的流量,减小进入所述第二流道的散热气流的流量;
    当所述第一流道对应的第一被散热组件的温度值小于所述第一温度值,且所述第二流道对应的第一被散热组件的温度值大于所述第二温度值时,控制所述分流组件动 作,以增大进入所述第二流道的散热气流的流量,减小进入所述第一流道的散热气流的流量。
  50. 根据权利要求47至49任一项所述的可移动平台,其特征在于,所述散热控制方法还包括:
    当所有所述散热通道的第一被散热组件的温度均大于所述预设温度值时,增大所述气流产生组件产生的散热气流的流量。
  51. 一种散热控制方法,其特征在于,包括:
    获取至少两条散热风道的第一被散热组件的温度信息;
    当有一条所述散热通道对应的第一被散热组件的温度值大于预设温度值,且有一条所述散热通道对应的第一被散热组件的温度值小于所述预设温度值时,控制分流组件动作,以增大进入温度值大于所述预设温度值的散热风道的散热气流的流量,减小进入温度值小于所述预设温度值的散热风道的散热气流的流量。
  52. 根据权利要求51所述的散热控制方法,其特征在于,散热风道为两条,其中一条所述散热风道为第一流道,另一条所述散热风道为第二流道;
    当所述第一流道对应的第一被散热组件的温度值大于预设温度值,且所述第二流道对应的第一被散热组件的温度值小于所述预设温度值时,控制所述分流组件动作,以增大进入所述第一流道的散热气流的流量,减小进入所述第二流道的散热气流的流量;
    当所述第一流道对应的第一被散热组件的温度值小于预设温度值,且所述第二流道对应的第一被散热组件的温度值大于所述预设温度值时,控制所述分流组件动作,以增大进入所述第二流道的散热气流的流量,减小进入所述第一流道的散热气流的流量。
  53. 根据权利要求52所述的散热控制方法,其特征在于,所述预设温度值包括第一温度值以及大于所述第一温度值的第二温度值;
    当所述第一流道对应的第一被散热组件的温度值大于所述第一温度值,且所述第二流道对应的第一被散热组件的温度值小于所述第二温度值时,控制所述分流组件动作,以增大进入所述第一流道的散热气流的流量,减小进入所述第二流道的散热气流的流量;
    当所述第一流道对应的第一被散热组件的温度值小于所述第一温度值,且所述第二流道对应的第一被散热组件的温度值大于所述第二温度值时,控制所述分流组件动作,以增大进入所述第二流道的散热气流的流量,减小进入所述第一流道的散热气流 的流量。
  54. 根据权利要求51至53任一项所述的散热控制方法,其特征在于,所述散热控制方法还包括:
    当所有所述散热通道的第一被散热组件的温度均大于所述预设温度值时,增大所述气流产生组件产生的散热气流的流量。
PCT/CN2021/101489 2021-06-22 2021-06-22 散热结构、可移动平台以及散热控制方法 WO2022266836A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2021/101489 WO2022266836A1 (zh) 2021-06-22 2021-06-22 散热结构、可移动平台以及散热控制方法
CN202180087370.1A CN116761757A (zh) 2021-06-22 2021-06-22 散热结构、可移动平台以及散热控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/101489 WO2022266836A1 (zh) 2021-06-22 2021-06-22 散热结构、可移动平台以及散热控制方法

Publications (1)

Publication Number Publication Date
WO2022266836A1 true WO2022266836A1 (zh) 2022-12-29

Family

ID=84543805

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/101489 WO2022266836A1 (zh) 2021-06-22 2021-06-22 散热结构、可移动平台以及散热控制方法

Country Status (2)

Country Link
CN (1) CN116761757A (zh)
WO (1) WO2022266836A1 (zh)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040156298A1 (en) * 2003-02-11 2004-08-12 Hung-Chu Chu Heat dissipation system
US6899164B1 (en) * 2004-02-27 2005-05-31 Datech Technology Co., Ltd. Heat sink with guiding fins
CN201160255Y (zh) * 2008-02-03 2008-12-03 陈国金 多冷却风道结构的变频器
CN103079386A (zh) * 2012-12-31 2013-05-01 迈普通信技术股份有限公司 一种机架式通信设备的散热结构
CN103629780A (zh) * 2012-08-29 2014-03-12 鸿富锦精密工业(深圳)有限公司 散热系统及散热方法
CN204438231U (zh) * 2015-01-26 2015-07-01 佛山市顺德区美的电热电器制造有限公司 烹饪电器
CN109287018A (zh) * 2018-09-11 2019-01-29 深圳市鑫汇科股份有限公司 电磁感应加热模块及散热结构
CN208597234U (zh) * 2018-08-16 2019-03-12 深圳市大疆创新科技有限公司 散热组件、散热模组和无人飞行器
CN110139544A (zh) * 2016-09-26 2019-08-16 深圳市大疆创新科技有限公司 散热机构及具有该散热机构的无人飞行器
CN211128732U (zh) * 2019-09-24 2020-07-28 深圳市大疆创新科技有限公司 无人机及其壳体
CN111614140A (zh) * 2020-05-27 2020-09-01 维沃移动通信有限公司 无线充电座
CN212231753U (zh) * 2020-04-27 2020-12-25 九阳股份有限公司 一种易散热的电磁加热装置
CN112996348A (zh) * 2018-06-26 2021-06-18 深圳市大疆创新科技有限公司 无人飞行器

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040156298A1 (en) * 2003-02-11 2004-08-12 Hung-Chu Chu Heat dissipation system
US6899164B1 (en) * 2004-02-27 2005-05-31 Datech Technology Co., Ltd. Heat sink with guiding fins
CN201160255Y (zh) * 2008-02-03 2008-12-03 陈国金 多冷却风道结构的变频器
CN103629780A (zh) * 2012-08-29 2014-03-12 鸿富锦精密工业(深圳)有限公司 散热系统及散热方法
CN103079386A (zh) * 2012-12-31 2013-05-01 迈普通信技术股份有限公司 一种机架式通信设备的散热结构
CN204438231U (zh) * 2015-01-26 2015-07-01 佛山市顺德区美的电热电器制造有限公司 烹饪电器
CN110139544A (zh) * 2016-09-26 2019-08-16 深圳市大疆创新科技有限公司 散热机构及具有该散热机构的无人飞行器
CN112996348A (zh) * 2018-06-26 2021-06-18 深圳市大疆创新科技有限公司 无人飞行器
CN208597234U (zh) * 2018-08-16 2019-03-12 深圳市大疆创新科技有限公司 散热组件、散热模组和无人飞行器
CN109287018A (zh) * 2018-09-11 2019-01-29 深圳市鑫汇科股份有限公司 电磁感应加热模块及散热结构
CN211128732U (zh) * 2019-09-24 2020-07-28 深圳市大疆创新科技有限公司 无人机及其壳体
CN212231753U (zh) * 2020-04-27 2020-12-25 九阳股份有限公司 一种易散热的电磁加热装置
CN111614140A (zh) * 2020-05-27 2020-09-01 维沃移动通信有限公司 无线充电座

Also Published As

Publication number Publication date
CN116761757A (zh) 2023-09-15

Similar Documents

Publication Publication Date Title
US20100220439A1 (en) Flat heat pipe radiator and application thereof
JP2006210863A (ja) ウエハ式放熱モジュール及びその放熱方法
JP2007234957A (ja) 遠心ファン付ヒートシンク
US8248799B2 (en) Data center
WO2022266836A1 (zh) 散热结构、可移动平台以及散热控制方法
CN111414059A (zh) 一种计算机机箱水冷散热装置
CN207674759U (zh) 一种半导体制冷装置
CN212211742U (zh) 风冷散热器及电子器件
JP2005044857A (ja) 冷却機構
US20230354548A1 (en) Air cooling, latent heat cooling, and power supply cooling
US20170052576A1 (en) Forced and natural convection liquid cooler for personal computer
CN208242071U (zh) 一种充电桩散热装置
CN215935354U (zh) 散热结构以及可移动平台
CN111741657B (zh) 一种电子设备
CN216290463U (zh) 一种开关磁阻调速电机的散热结构
CN217238697U (zh) 终端电子设备
JP2009077611A (ja) 電動機装置
JPWO2019150560A1 (ja) 電力変換装置
CN210579857U (zh) 一种模式转换器及其冷却结构
CN114449841A (zh) 散热器机柜
CN203775010U (zh) 变频器
US11085709B2 (en) Heat exchange device for closed electrical apparatus
CN214314874U (zh) 一种液冷电机
CN206672004U (zh) 一种外表面散热装置
CN218673284U (zh) 一种散热风扇模组

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21946338

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180087370.1

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21946338

Country of ref document: EP

Kind code of ref document: A1