WO2022265250A1 - 파라계 아라미드 섬유 및 이의 제조 방법 - Google Patents

파라계 아라미드 섬유 및 이의 제조 방법 Download PDF

Info

Publication number
WO2022265250A1
WO2022265250A1 PCT/KR2022/007457 KR2022007457W WO2022265250A1 WO 2022265250 A1 WO2022265250 A1 WO 2022265250A1 KR 2022007457 W KR2022007457 W KR 2022007457W WO 2022265250 A1 WO2022265250 A1 WO 2022265250A1
Authority
WO
WIPO (PCT)
Prior art keywords
para
aramid
polymer
aramid fiber
fiber according
Prior art date
Application number
PCT/KR2022/007457
Other languages
English (en)
French (fr)
Inventor
이효진
Original Assignee
코오롱인더스트리 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 코오롱인더스트리 주식회사 filed Critical 코오롱인더스트리 주식회사
Priority to JP2023572954A priority Critical patent/JP2024519161A/ja
Priority to CN202280038793.9A priority patent/CN117396643A/zh
Priority to EP22825176.5A priority patent/EP4332282A1/en
Priority to US18/559,026 priority patent/US20240240364A1/en
Publication of WO2022265250A1 publication Critical patent/WO2022265250A1/ko

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/58Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
    • D01F6/60Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyamides
    • D01F6/605Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyamides from aromatic polyamides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/26Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
    • C08G69/28Preparatory processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/26Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
    • C08G69/32Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids from aromatic diamines and aromatic dicarboxylic acids with both amino and carboxylic groups aromatically bound
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D1/00Treatment of filament-forming or like material
    • D01D1/02Preparation of spinning solutions
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D1/00Treatment of filament-forming or like material
    • D01D1/10Filtering or de-aerating the spinning solution or melt
    • D01D1/106Filtering
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/06Wet spinning methods
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/02Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyamides
    • D10B2331/021Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyamides aromatic polyamides, e.g. aramides
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/06Load-responsive characteristics
    • D10B2401/063Load-responsive characteristics high strength

Definitions

  • the present invention relates to para-aramid fibers and a manufacturing method thereof.
  • para-aramid fibers such as polyparaphenylene terephthalamide (PPTA) fibers
  • the present invention provides a para-aramid fiber and a manufacturing method thereof.
  • the crystallinity is 67% or more
  • the 110 plane standard crystal size is 5.8 to 7.0 nm
  • the total fineness is 200 to 1,600 de
  • the tensile strength A para-aramid fiber having a strength of 22 g/d or more is provided.
  • a method for producing the para-aramid fiber filtering the reaction raw material to remove impurities; forming a slurry by adding aromatic diamine to a mixed solvent containing an organic solvent and an inorganic salt; Forming a para-aramid polymer by adding and reacting an aromatic diacid halide three or more times in a reactor containing the slurry; And a step of spinning the spinning dope containing the para-aramid polymer to prepare a fiber, wherein in the step of forming the polymer, cooling water for cooling the reactor during the first and second addition of the aromatic diacid halide.
  • a method for producing para-aramid fibers in which the temperature difference between the cooling water at the inlet and the drain is controlled to within 50 ° C.
  • physical properties such as tensile properties of para-aramid fibers or measured values for microstructure are values measured for fibers obtained after normal spinning, coagulation, and drying, which can be added to the fiber manufacturing method This is a measured value for fibers in a state where the heat treatment process has not been performed.
  • the present inventors discovered through experiments that para-aramid fibers that can exhibit excellent tensile properties due to their large crystal size and high crystallinity can be provided when using a para-aramid polymer prepared through a specific polymerization method, and the present invention completed.
  • the reaction raw materials include organic solvents, inorganic salts, aromatic diamines and aromatic diacid halides.
  • impurities included in the raw material may be removed by filtering at least one of the listed reaction raw materials.
  • an organic solvent, an inorganic salt, an aromatic diamine, and an aromatic diecid halide may be filtered to prepare a reaction raw material from which impurities are removed.
  • the reaction raw material may be filtered using a filter having a diameter of 0.01 to 1.0 ⁇ m, 0.03 to 0.7 ⁇ m, or 0.05 to 0.5 ⁇ m.
  • the diameter may be the length of the major axis of the filtration hole of the filter.
  • the order in which the step of removing impurities by filtering the reaction raw material is performed is not particularly limited. Specifically, the step of filtering the reaction raw material to remove impurities may be performed before the step of forming the slurry or during the step of forming the slurry. For example, when the step of filtering the reaction raw materials to remove impurities is performed during the step of forming the slurry, a mixed solvent containing an organic solvent and an inorganic salt is prepared and filtered to prepare a mixed solvent, and the mixture A slurry may be formed by adding aromatic diamine from which impurities are removed by filtering separately to the solvent.
  • a mixed solvent may be prepared by adding an inorganic salt to an organic solvent in order to increase the degree of polymerization of the para-aramid polymer.
  • the inorganic salt included in the mixed solvent may include an alkali metal halide salt or an alkaline earth metal halide salt.
  • the inorganic salt may include at least one selected from the group consisting of CaCl 2 , LiCl, NaCl, KCl, LiBr, and KBr.
  • the inorganic salt may be included in an amount of 0.01 to 15 wt%, 0.05 to 13 wt%, 0.1 to 11 wt%, or 1 to 10 wt% based on the total weight of the mixed solvent.
  • the organic solvent included in the mixed solvent is N-methyl-2-pyrrolidone, N,N-dimethylacetamide, hexamethylphosphoramide, N,N,N',N'-tetramethyl urea, N,N - It may contain at least one selected from the group consisting of dimethylformamide and dimethyl sulfoxide.
  • the organic solvent may be included in a residual amount excluding the inorganic salt based on the total weight of the mixed solvent.
  • a mixed solvent and aromatic diamine may be mixed so that the content of aromatic diamine in the slurry is 0.5 to 10% by weight.
  • aromatic diamine 1 selected from the group consisting of p-phenylenediamine, 4,4'-oxydianiline, 2,6-naphthalenediamine, 1,5-naphthalenediamine, and 4,4'-diaminobenzanilide; More than one species may be used.
  • the para-aramid polymer may be prepared by adding an aromatic diacid halide to the previously prepared slurry and reacting thereto.
  • aromatic die-acid halide examples include terephthaloyl dichloride, [1,1'-biphenyl]-4,4'-dicarbonyl dichloride, 4,4'-oxybis(benzoyl chloride), naphthalene-2, At least one selected from the group consisting of 6-dicarbonyl dichloride and naphthalene-1,5-dicarbonyl dichloride may be used.
  • the molar ratio of the aromatic diacid halide to the aromatic diamine may be about 0.9 to 1.1.
  • the difference in degree of polymerization between polymers is not only small, but also large, by using reaction raw materials from which impurities are removed, further from the conventional method, and controlling the input conditions and input method of the reaction raw materials. It is possible to provide para-aramid fibers having crystal size and high crystallinity.
  • the aromatic diacid halide is dividedly added three or more times instead of the conventional method in which the aromatic diacid halide is divided and added in two times, and the aromatic diacid halide is first and secondly added. It is possible to provide para-aramid fibers having a desired large crystal size and high crystallinity by controlling the temperature difference of the cooling water entering and exiting the reactor within 50 ° C.
  • a reactor through which cooling water can enter and exit is used.
  • the slurry may be prepared in a reactor or may be introduced into a reactor after being prepared in a container other than the reactor.
  • an aromatic diacid halide is dividedly added three or more times to the reactor containing the slurry.
  • the aromatic diacid halide may be first and secondly added in a state where the cooling water temperature difference between the cooling water inlet and the drain of the reactor is controlled to 0 ° C to 50 ° C.
  • the temperature difference of the cooling water at the cooling water inlet and outlet is controlled to 0 ° C to 50 ° C, 0 ° C to 40 ° C, 0 ° C to 35 ° C, or 0 ° C to 30 ° C. It can be.
  • the temperature difference of the cooling water at the cooling water inlet and the outlet may be controlled to 0 ° C to 50 ° C, 0 ° C to 40 ° C, 0 ° C to 35 ° C, or 0 ° C to 30 ° C. there is.
  • the stirring speed of the reactor is 10 to 1000 rpm, 10 to 900 rpm, 10 to 700 rpm, or 10 to 700 rpm in a state where the cooling water is circulating in the reactor. It can be adjusted to 500 rpm.
  • the amount of the aromatic diacid halide that is primarily added may be adjusted to 20 to 40 mol% or 25 to 35 mol% based on the total amount of the aromatic diecid halide to be added. Within this range, a prepolymer having a molecular chain of an appropriate length can be formed.
  • prepolymerization may be performed by stirring at a temperature of 0° C. to 45° C. for 1 minute to 30 minutes or 5 minutes to 15 minutes.
  • the stirring speed of the reactor is set to 10 to 1000 rpm, 10 to 900 rpm, 10 to 700 rpm, or 10 to 500 rpm.
  • the amount of the secondary added aromatic diecid halide may be adjusted to 20 to 75 mol%, 40 to 75 mol%, or 50 to 70 mol% based on the total amount of the aromatic diecid halide to be added. Within this range, it is possible to form a polymer capable of providing fibers having a large crystal size and high crystallinity while minimizing the difference in degree of polymerization between the polymers.
  • polymerization may be performed by stirring at a temperature of 0 °C to 45 °C for 1 minute to 30 minutes or 5 minutes to 15 minutes.
  • the aromatic diecid halide of the remaining content is dividedly added one or more times, and then additional polymerization is performed to finally prepare a para-aramid polymer.
  • the additional polymerization may be carried out by stirring at a temperature of 0 °C to 45 °C for 5 minutes to 1 hour or 10 minutes to 40 minutes.
  • any one or more steps of separating the produced polymer from the polymerization reaction system, washing the polymer, neutralizing the polymer, and pulverizing the polymer are performed in the order described. can do.
  • the para-aramid polymer may have an intrinsic viscosity of 4.0 dl/g or more, 5.0 dl/g or more, or 5.3 dl/g or more and 9.0 dl/g or less.
  • the para-aramid polymer may have an intrinsic viscosity deviation of 1.0 dl/g or less, 0.9 dl/g or less, or 0.8 dl/g or less.
  • the intrinsic viscosity deviation was determined by dividing the washed and dried para-aramid polymer into a group of 2 mm or more, a group of 1 mm or more and less than 2 mm, and a group of less than 1 mm using standard sieves having eye sizes of 1 mm and 2 mm, respectively. After measuring the intrinsic viscosity of , it can be obtained by calculating the difference between the maximum and minimum values of the average intrinsic viscosity of the three groups.
  • the para-aramid polymer may have very little or no inorganic impurities remaining in the polymer as it is prepared from reaction raw materials from which impurities are removed.
  • the content of inorganic impurities in the polymer may be 50 ppb or less.
  • the para-aramid polymer is poly (para-phenylene terephthalamide), poly (4,4'-benzanilide terephthalamide), poly (para-phenylene-4,4'-biphenylene-dicarbonyl amide), poly(paraphenylene-2,6-naphthalenedicarbonyl amide) or copolymers thereof.
  • the para-aramid polymer may be poly(para-phenylene terephthalamide).
  • fibers are provided by spinning a spinning dope containing the polymer prepared in the step of forming the polymer.
  • Sulfuric acid having a concentration of 97 to 102% by weight may be used as a solvent of the spinning dope.
  • chlorosulfuric acid or fluorosulfuric acid may be used instead of sulfuric acid.
  • the viscosity of the spinning dope for producing fibers increases as the concentration of the para-aramid polymer in the spinning dope increases. However, when the concentration of the para-aramid polymer exceeds the critical concentration, the viscosity of the spinning dope rapidly decreases. At this time, the radiation dope changes from optical isotropic to optical anisotropic without forming a solid phase. Optically anisotropic dope can provide high-strength para-aramid fibers without a separate stretching process due to its structural and functional properties. Therefore, it is preferable that the concentration of the para-aramid polymer in the spinning dope exceeds the critical concentration, but if the concentration is too high, the viscosity of the spinning dope may be too low. Accordingly, the spinning dope may include the para-aramid polymer in an amount of 10 to 25% by weight based on the total weight of the spinning dope.
  • a spinning process of spinning the spinning dope may be performed.
  • the spinning dope may be spun in the form of a filament through wet spinning.
  • the air-gap wet spinning is a method in which an air-gap is placed between the spinneret and the surface of the coagulation bath.
  • the spinning dope may be spun into a coagulation bath containing a coagulant liquid through an air gap through a spinneret.
  • the thickness of the fiber can be controlled through the pressure and spinning speed during extrusion of the spinning dope through the spinneret.
  • the spinneret may have a plurality of holes through which the spinning dope is emitted.
  • the spinneret may have 50 to 3000 holes, 100 to 2000 holes, 120 to 1500 holes, or 500 to 1200 holes. It is possible to provide a para-aramid fiber exhibiting excellent tensile properties by having a large crystal size and high crystallinity within this range.
  • the diameter of the hole formed in the spinneret should be adjusted to an appropriate size so that both the molecular orientation on the surface and inside the filament can be improved.
  • the diameter of the hole of the spinneret may be adjusted to 100 ⁇ m or less while being 50 ⁇ m or more.
  • the spinning dope may be spun at a spinning speed of 80 m/min or more and 800 m/min or less.
  • the spinning dope is 80 to 800 m/min, 100 to 800 m/min, 300 to 800 m/min, 500 to 700 m/min, 550 to 660 m/min, 580 to 650 m/min, 580 to 640 m/min or 590 to 610 m/min. It is possible to provide a para-aramid fiber exhibiting excellent tensile properties by having a large crystal size and high crystallinity within this range.
  • the dope spun through the spinneret is obtained as an unsolidified filament in which sulfuric acid is distributed on a matrix in which a para-aramid polymer is homogeneously distributed.
  • These uncoagulated filaments may be coagulated while passing through the coagulation tank containing the coagulating solution through the air gap.
  • the air gap may be an air layer or an inert gas layer.
  • the air gap may be a nitrogen layer supplied with dry nitrogen (dry N 2 ).
  • dry N 2 dry nitrogen
  • the length of the air gap may be adjusted to 0.1 to 15 cm.
  • the dope spun from the spinneret and passes through the air gap forms filaments as sulfuric acid therein is removed in the process of passing through the coagulation bath.
  • the coagulation solution contained in the coagulation tank is an aqueous solution of sulfuric acid containing sulfuric acid.
  • the coagulation liquid contained in the coagulation bath may be an aqueous solution of sulfuric acid in which sulfuric acid is added to water.
  • monohydric alcohol such as methanol, ethanol or propanol in the coagulation solution, if necessary; dihydric alcohols (diols) such as ethylene glycol or propylene glycol; Alternatively, trihydric alcohol such as glycerol may be additionally added.
  • the temperature of the coagulating solution is preferably 1 to 10 °C.
  • the temperature of the coagulating liquid is too low, it may be difficult for sulfuric acid to escape from the filament. If the temperature of the coagulating solution is too high, sulfuric acid is rapidly released from the filament, and the uniformity of the filament may be deteriorated.
  • a coagulation tube may be formed under the coagulation bath.
  • the coagulation tube is connected to the coagulation bath, and a plurality of injection ports may be formed in the coagulation tube.
  • the jetting hole is connected to a predetermined jet device, so that the coagulating liquid injected from the jetting device is jetted to the filament passing through the coagulation tube through the jetting hole.
  • the plurality of injection ports are aligned so that the coagulating liquid can be symmetrically injected with respect to the filaments.
  • the spraying angle of the coagulant solution is preferably 0 to 85° with respect to the axial direction of the filament, and in particular, a spraying angle of 20 to 40° is appropriate in a commercial production process.
  • a water washing process for removing sulfuric acid remaining in the coagulated filaments may be performed following the coagulation process.
  • the water washing process may be performed by spraying water or a mixed solution of water and an alkali solution onto the coagulated filaments.
  • the washing process may be performed in multiple steps.
  • the coagulated filament may be first washed with 0.1 to 1.5% by weight of an aqueous caustic solution, and then washed secondarily with a dilute aqueous caustic solution.
  • a drying process for adjusting the moisture content remaining in the filament may be performed following the coagulation and washing process.
  • the drying process may be performed by adjusting the contact time of the filament to the heated drying roll or by adjusting the temperature of the drying roll.
  • the monofilament constituting the finally obtained para-aramid fiber may have a fineness of 1.0 to 2.5 de (denier).
  • the para-aramid fiber may include a plurality of the monofilaments and have a total fineness of 200 to 1,600 de, 200 to 400 de, 800 to 1,000 de, 1,000 to 1,100 de, or 1,400 to 1,600 de.
  • Para-aramid fibers prepared according to this manufacturing method have a large crystal size, and exhibit high crystallinity and orientation to exhibit excellent tensile properties.
  • the para-aramid fiber may have an increased crystal size as it is prepared according to the above manufacturing method.
  • the para-aramid fiber may have a crystal size of 5.8 nm or more, 5.9 nm or more, 6.0 nm or more, or 6.2 nm or more and 7.0 nm or less, 6.8 nm or less, or 6.6 nm or less based on 110 plane.
  • the para-aramid fiber may have a crystal size of 5.0 nm or more, 5.5 nm or more, or 5.6 nm or more and 6.5 nm or less, 6.4 nm or less, or 6.2 nm or less based on 200 planes.
  • the crystal size is a crystal size analyzed from an X-ray diffraction pattern, and a more detailed measurement method may refer to the method described in Test Examples to be described later.
  • the para-aramid fiber may have a high crystallinity as it is prepared according to the manufacturing method.
  • the para-aramid fiber has a crystallinity of 67% or more, 68% or more, 68.5% or more, 69% or more, 70% or more, 71% or more, 72% or more or 72.5% or more and 78% or less, 75% or less or 73% or less.
  • the crystallinity is a degree of crystallinity analyzed from an X-ray diffraction pattern, and a more detailed measurement method may refer to the method described in Test Examples to be described later.
  • the para-aramid fiber may exhibit a high degree of orientation as it is prepared according to the above manufacturing method. That is, the para-aramid fibers may have a small orientation angle with a high degree of orientation.
  • the para-aramid fibers have an orientation angle of 2 ° or more, 5 ° or more, or 7 ° or more based on the 110 plane, and 12 ° or less, 11 ° or less, 10.5 ° or less, 10 ° or less, 9.5 ° or less, or 9.3 ° or less. , may be less than or equal to 9.1° or less than or equal to 9.0°.
  • the para-aramid fibers have an orientation angle of 2 ° or more, 5 ° or more, or 8 ° or more based on 200 planes, and 13 ° or less, 12 ° or less, 11.5 ° or less, 11.2 ° or less, 11 ° or less, 10.5 ° or less, or It may be 10.3° or less.
  • the orientation angle is an orientation angle analyzed from an X-ray diffraction pattern, and a more detailed measurement method may refer to a method described in a test example to be described later.
  • the para-aramid fiber can minimize crystal defects (Paracrystalline parameter) as it is manufactured according to the manufacturing method.
  • the para-aramid fibers may have crystal defects of 1.00% or more or 1.30% or more and 1.85% or less, 1.80% or less, 1.70% or less, or 1.60% or less.
  • the crystal defect is a crystal defect analyzed from an X-ray diffraction pattern, and a more detailed measurement method may refer to a method described in a test example to be described later.
  • the para-aramid fiber may exhibit excellent tensile properties as it has a large crystal size and high crystallinity.
  • the para-aramid fiber has a tensile strength of 22 g/d or more, 22.5 g/d or more, 23 g/d or more, 23.5 g/d or more, 24 g/d or more, or 25 g/d or more and 30 g /d or less or 28 g/d or less.
  • the para-aramid fiber has a Young's modulus of 750 g/d or more, 760 g/d or more, 780 g/d or more, 790 g/d or more, 800 g/d or more, or 810 g/d or more and 900 g/d or more. d or less, 880 g/d or less, or 860 g/d or less.
  • the para-aramid fiber may have an elongation of 2.0% or more, 2.5% or more, 3.0% or more, 3.1% or more, 3.2% or more, 3.3% or more or 3.4% or more and 4.5% or less or 4.0% or less.
  • Tensile properties such as tensile strength, Young's modulus, and elongation are tensile properties measured according to the ASTM D885 standard test method for a sample having a twist multiplier of 1.1, and a more detailed measurement method is described in the test example to be described later. can refer to.
  • Para-aramid fibers according to one embodiment of the present invention may exhibit excellent tensile properties due to a large crystal size and high crystallinity.
  • the intrinsic viscosity of the polymer was measured according to Equation 1 below.
  • Equation 1 ln is a natural logarithmic function
  • C concentration of the polymer solution (a solution obtained by dissolving 0.5 g of the polymer in 100 mL of 98% by weight concentrated sulfuric acid)
  • ⁇ rel relative viscosity
  • the water-washed and dried polymers were divided into a group of 2 mm or more, a group of 1 mm or more and less than 2 mm, and a group of less than 1 mm using standard sieves having eye sizes of 1 mm and 2 mm, respectively.
  • the deviation of the intrinsic viscosity of the polymer was obtained by calculating the difference between the maximum and minimum values of the average intrinsic viscosity of the three groups.
  • the inorganic impurity content in the para-aramid polymer was measured by the following method. After completely decomposing 1 g of the sample by acid treatment, the concentration of inorganic impurities remaining in the sample after being ionized in the sample was measured using an inductively coupled plasma spectrophotometer.
  • NMP N-methyl-2-pyrrolidone
  • CaCl 2 CaCl 2
  • PPD p-phenylenediamine
  • TPC terephthaloyl chloride
  • NMP as an organic solvent and CaCl 2 as an inorganic salt were mixed in a weight ratio of 92:8 in a reactor under a nitrogen atmosphere, and PPD was added so that the concentration of PPD in the slurry was 5% by weight to prepare a slurry.
  • TPC corresponding to 30 mol% of the number of moles of PPD was added to a reactor cooled to 30° C. and reacted for 10 minutes.
  • the stirring speed of the reactor was adjusted to about 200 rpm so that the cooling water temperature difference between the cooling water inlet and the outlet was about 20 °C.
  • TPC corresponding to 60 mol% of the number of moles of PPD was added to the reactor cooled to 30 ° C and reacted for 30 minutes.
  • the stirring speed of the reactor was adjusted to about 200 rpm so that the temperature difference between the cooling water inlet and the outlet was about 20 °C.
  • the acid was neutralized by adding water and NaOH to the solution containing the para-aramid polymer. Then, after crushing the para-aramid polymer, water was used to extract the polymerization solvent contained in the para-aramid polymer, followed by dehydration and drying to finally obtain PPTA-1.
  • the intrinsic viscosity of PPTA-1 thus prepared was 5.4 dl/g, and the content of inorganic impurities in the polymer was 48 ppb.
  • a standard sieve having an eye size of 1 mm and 2 mm, respectively it is classified into a group of 2 mm or more, a group of 1 mm or more and less than 2 mm, and a group of less than 1 mm, and the intrinsic viscosity of each group is measured.
  • the intrinsic viscosity deviation calculated as the difference between the maximum and minimum values of viscosity was 0.85 dl/g.
  • a slurry was prepared by adding a mixed solvent of NMP as an organic solvent and CaCl 2 as an inorganic salt in a weight ratio of 86:14 into a reactor under a nitrogen atmosphere, and adding PPD so that the concentration of PPD in the slurry was 3% by weight.
  • TPC corresponding to 30 mol% of the number of moles of PPD was added to a reactor cooled to 0 °C and reacted at 5 °C for 30 minutes.
  • the temperature difference between the inlet and outlet of the cooling water was 65 ° C, and after adding TPC corresponding to 60 mol% of the number of moles of PPD to the reactor, the reaction was performed at 5 ° C for 20 minutes, and the mole of PPD was added to the reactor. After adding TPC corresponding to 10 mol% of the number, the reaction was continued at 5 ° C. for 5 minutes to prepare a para-aramid polymer.
  • the acid was neutralized by adding water and NaOH to the solution containing the para-aramid polymer. Then, after pulverizing the para-aramid polymer, water was used to extract the polymerization solvent contained in the para-aramid polymer, followed by dehydration and drying to finally obtain PPTA-2.
  • the intrinsic viscosity of PPTA-2 thus prepared was 5.4 dl/g, and the inorganic impurity content in the polymer was 3150 ppb.
  • a standard sieve having an eye size of 1 mm and 2 mm, respectively it is classified into a group of 2 mm or more, a group of 1 mm or more and less than 2 mm, and a group of less than 1 mm, and the intrinsic viscosity of each group is measured.
  • Intrinsic viscosity deviation calculated as the difference between the maximum and minimum values of average intrinsic viscosity was 1.3 dl/g.
  • a spinning dope was prepared by dissolving 19% by weight of PPTA-1 obtained in Synthesis Example 1 in 99.8% by weight sulfuric acid based on the total weight of the spinning dope.
  • the spinning dope was spun at a speed of 650 m/min through a spinneret having 133 holes and solidified in a coagulation bath through an air gap to prepare a filament.
  • the coagulated filaments were washed with water to remove sulfuric acid remaining on the filaments, dried, and then wound to obtain para-aramid fibers having a monofilament fineness of 1.47 de and a total fineness of 213 de.
  • a spinning dope was prepared by dissolving 19% by weight of PPTA-1 obtained in Synthesis Example 1 in 99.8% by weight sulfuric acid based on the total weight of the spinning dope.
  • the spinning dope was spun at a speed of 620 m/min through a spinneret having 665 holes and solidified in a coagulation bath through an air gap to prepare a filament.
  • the coagulated filaments were washed with water to remove sulfuric acid remaining on the filaments, dried, and then wound to obtain para-aramid fibers having a monofilament fineness of 1.43 de and a total fineness of 988 de.
  • a spinning dope was prepared by dissolving 20% by weight of PPTA-1 obtained in Synthesis Example 1 in 99.8% by weight sulfuric acid based on the total weight of the spinning dope.
  • a filament was prepared by spinning the spinning dope at a speed of 600 m/min through a spinneret having 665 holes and solidifying it in a coagulation bath through an air gap.
  • the coagulated filaments were washed with water to remove sulfuric acid remaining on the filaments, dried, and then wound to obtain para-aramid fibers having a monofilament fineness of 1.50 de and a total fineness of 1022 de.
  • a spinning dope was prepared by dissolving 19% by weight of PPTA-1 obtained in Synthesis Example 1 in 99.8% by weight sulfuric acid based on the total weight of the spinning dope.
  • a filament was prepared by spinning the spinning dope at a speed of 650 m/min through a spinneret having 1000 holes and solidifying it in a coagulation bath through an air gap.
  • the coagulated filaments were washed with water to remove sulfuric acid remaining on the filaments, dried, and then wound to obtain para-aramid fibers having a monofilament fineness of 1.54 de and a total fineness of 1550 de.
  • a spinning dope was prepared by dissolving 19% by weight of PPTA-2 obtained in Synthesis Example 2 in 99.8% by weight sulfuric acid based on the total weight of the spinning dope.
  • a filament was prepared by spinning the spinning dope at a speed of 600 m/min through a spinneret having 1000 holes and solidifying it in a coagulation bath through an air gap.
  • the coagulated filaments were washed with water to remove sulfuric acid remaining on the filaments, dried, and then wound to obtain para-aramid fibers having a monofilament fineness of 1.49 de and a total fineness of 1527 de.
  • Fineness is measured according to ASTM D 1577 as denier (de) expressed as weight (g) of 9000 m yarn.
  • Para-aramid fibers prepared in Examples and Comparative Examples were cut to a length of 250 mm to prepare a sample twisted with TM (twist multiplier) 1.1, and the sample was 14 at a relative humidity of 55% and a temperature of 23 ° C. stored for an hour.
  • the sample was mounted on INSTRON's tester (Instron Engineering Corp, Canton, Mass), one side of the fiber was fixed, and the initial load was 1/30 g of the fineness (fineness X 1/30 g), and then the other side was stretched at a rate of 25 mm/min to measure the tensile load (g) and strain when the fiber was broken.
  • Strength (g / d) was obtained by dividing the measured tensile load by the fineness, and the Young's modulus was obtained from the slope of the stress-strain curve of the para-aramid fiber obtained under the tensile load measurement conditions.
  • the microstructure of the para-aramid fibers prepared in Examples and Comparative Examples was analyzed through X-ray diffraction patterns.
  • the para-aramid fibers prepared in Examples and Comparative Examples were cut to a length of 20 to 30 mm, arranged as neatly as possible, and then attached to a holder to prepare a sample.
  • the prepared sample was hung on the sample attachment to bring the ⁇ -position to 0°.
  • the voltage and current of the XRD measuring device were gradually raised to the measurement conditions of 50 kV and 180 mA, and the equatorial pattern was measured.
  • the main measurement conditions were set as follows.
  • the 2 ⁇ positions of two peaks appearing between 20 and 21 ° and 22 and 23 ° in the profile where scanning was performed were measured.
  • the measured profile was processed with a multi peak separation method program.
  • the apparent crystal size (apparent crystal size; ACS) was obtained.
  • the crystallite size means the average size of the corresponding plane crystal.
  • Crystallinity was obtained through the ratio of the crystalline peak and the amorphous peak using the X-ray diffraction pattern.
  • the para-aramid fibers prepared in Examples and Comparative Examples were cut to a length of 20 to 30 mm, arranged as neatly as possible, and then attached to a holder to prepare a sample.
  • the prepared sample was hung on the sample attachment to bring the ⁇ -position to 0°.
  • the voltage and current of the XRD measuring device were gradually raised to the measurement conditions of 50 kV and 180 mA, and the meridional pattern was measured.
  • the main measurement conditions were set as follows.
  • Goniometer continuous scan mode, scan angle range: 10 to 40°, scan speed: 0.5 [step/scan time is insignificant because the intensity of the peak, Give sufficient beam exposure time to produce 2,000 CPS].
  • the 2 ⁇ position of the peak (002 plane) appearing between 10 and 15 ° in the profile where scanning was performed was measured.
  • the paracrystalline parameter was derived by substituting the measured profile into the HOSEMANN equation of Equation 2 below.
  • Equation 2 ⁇ s is the dispersion of the diffraction peak, L is the crystal size, d is the spacing of the lattice plane, and m is the order of the diffraction peak.
  • Example 1 Example 2 Example 3 Example 4 Comparative Example 1 tensile properties Strength (g/d) 23.2 22.7 27.4 23.9 22.3 Young's Modulus (g/d) 798 767 820 751 742 Confidence (%) 3.02 3.17 3.44 3.49 3.32 XRD * Crystal size (nm) 5.9 (110) 5.7 (200) 5.8 (110) 5.5 (200) 6.4 (110) 5.8 (200) 6.0 (110) 5.7 (200) 5.7 (110) 5.5 (200) Crystallinity (%) 72.3 68.5 72.8 69.5 68.3 Orientation angle (°) 8.6 (110) 9.8 (200) 10.2 (110) 11.4 (200) 9.0 (110) 10.2 (200) 9.9 (110) 11.1 (200) 12.1 (110) 13.4 (200) crystal defects (%) 1.66 1.82 1.55 1.49 1.52
  • the crystal size in Table 1 means the 110 plane standard crystal size and the 200 plane standard crystal size
  • the orientation angle means the 110 plane standard orientation angle and the 200 plane standard orientation angle.
  • the para-aramid fiber according to one embodiment is formed from a para-aramid polymer prepared by controlling the input conditions and input method of the reaction raw material using the reaction raw material from which impurities are removed, and thus of various grades. It is confirmed that high-quality para-aramid fibers can be provided.
  • Examples 1, 2, and 4 and Comparative Example 1 which provide standard tenacity aramid fibers having a strength of about 20 to 24 g/d
  • Examples 1, 2, and 4 crystals larger than those of Comparative Example 1 Size, high crystallinity and high degree of orientation are shown, and it is confirmed that the Young's modulus is also better.
  • Example 3 which provides high tenacity aramid fibers having a strength of 25 g / d or more, also shows a large crystal size, high crystallinity and high degree of orientation, and it is confirmed that the tensile properties are excellent.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Artificial Filaments (AREA)
  • Manufacturing & Machinery (AREA)
  • Polyamides (AREA)

Abstract

본 발명은 파라계 아라미드 섬유 및 이의 제조 방법에 관한 것이다. 상기 파라계 아라미드 섬유는 큰 결정 크기 및 높은 결정화도를 가져 우수한 인장 특성을 나타낼 수 있다.

Description

파라계 아라미드 섬유 및 이의 제조 방법
[관련 출원(들)과의 상호 인용]
본 출원은 2021년 6월 17일자 한국 특허 출원 제 10-2021-0078796 호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 파라계 아라미드 섬유 및 이의 제조 방법에 관한 것이다.
방향족 디카르복실산 성분과 방향족 디아민 성분으로 구성되는 아라미드 섬유, 특히 폴리파라페닐렌 테레프탈아미드(PPTA) 섬유 등의 파라계 아라미드 섬유는 강도, 탄성률 및 내열성이 우수하여 산업 용도, 의료 용도 등에 넓게 이용되고 있다. 그렇지만, 섬유의 강도, 탄성률 등의 기계적 물성이 이용되는 용도에 따라 아직 충분하지 않아 보다 우수한 물성의 섬유를 제공하기 위한 노력이 계속 시도되고 있다.
본 발명은 파라계 아라미드 섬유 및 이의 제조 방법을 제공한다.
이하 발명의 구체적인 구현예에 따른 파라계 아라미드 섬유 및 이의 제조 방법에 대해 설명하기로 한다.
발명의 일 구현예에 따르면, 복수의 모노필라멘트를 포함하는 파라계 아라미드 섬유로서, 결정화도가 67 % 이상이며, 110 plane 기준 결정 크기가 5.8 내지 7.0 nm이고, 총 섬도가 200 내지 1,600 de이고, 인장 강도가 22 g/d 이상인 파라계 아라미드 섬유가 제공된다.
발명의 다른 일 구현예에 따르면, 상기 파라계 아라미드 섬유의 제조 방법으로서, 반응 원료를 여과하여 불순물을 제거하는 단계; 유기 용매 및 무기염을 포함하는 혼합 용매에 방향족 디아민을 첨가하여 슬러리를 형성하는 단계; 상기 슬러리가 담긴 반응기에 방향족 디에시드 할라이드를 3 회 이상 분할 첨가하고 반응시켜 파라계 아라미드 중합체를 형성하는 단계; 및 상기 파라계 아라미드 중합체를 포함하는 방사 도프를 방사하여 섬유를 제조하는 단계를 포함하고, 상기 중합체를 형성하는 단계에서 상기 방향족 디에시드 할라이드의 1 차 및 2 차 첨가 시에 반응기를 냉각시키기 위한 냉각수 투입구 및 배수구에서의 냉각수 온도 차이가 50 ℃ 이내로 제어되는 파라계 아라미드 섬유의 제조 방법이 제공된다.
본 명세서에서 특별히 한정하지 않는 한 파라계 아라미드 섬유의 인장 특성이나 미세 구조에 대한 측정 값 등의 물성은 통상의 방사, 응고 및 건조 후 얻어지는 섬유에 대하여 측정한 값으로 섬유 제조 방법에 부가될 수 있는 열처리 공정을 수행하지 않은 상태의 섬유에 대한 측정 값이다.
본 발명자는 특정 중합 방법을 통해 제조된 파라계 아라미드 중합체를 이용하는 경우 큰 결정 크기 및 높은 결정화도를 가져 우수한 인장 특성을 나타낼 수 있는 파라계 아라미드 섬유를 제공할 수 있음을 실험을 통해 발견하고 본 발명을 완성하였다.
이하, 상기 파라계 아라미드 섬유의 제조 방법(이하, 간략히 '제조 방법'으로 호칭)과 이로부터 제조된 파라계 아라미드 섬유에 대해 상세히 설명한다.
상기 제조 방법에서는 반응 원료에서 불순물을 제거하는 단계를 통해 최종 중합체 내의 무기 불순물 잔류량을 최소화하여 기계적 강도가 우수한 파라계 아라미드 섬유를 제공할 수 있다.
상기 반응 원료에는 유기 용매, 무기염, 방향족 디아민 및 방향족 디에시드 할라이드가 포함된다. 상기 반응 원료를 여과하여 불순물을 제거하는 단계에서는 나열한 반응 원료 중 적어도 어느 하나의 원료를 여과하여 해당 원료에 포함된 불순물을 제거할 수 있다. 일 예로, 상기 반응 원료를 여과하여 불순물을 제거하는 단계에서는 유기 용매, 무기염, 방향족 디아민 및 방향족 디에시드 할라이드 각각을 여과하여 불순물이 제거된 반응 원료를 준비할 수 있다.
상기 반응 원료를 여과하여 불순물을 제거하는 단계에서는 직경이 0.01 내지 1.0 ㎛, 0.03 내지 0.7 ㎛ 또는 0.05 내지 0.5 ㎛인 필터를 이용하여 반응 원료를 여과할 수 있다. 상기 직경은 필터의 여과 홀의 장축 길이일 수 있다. 이러한 직경을 가지는 필터를 이용함으로써 반응계 내의 무기 불순물의 함량을 1 ppm 이하로 낮출 수 있다. 또한, 상기 직경의 필터를 이용함으로써 중합된 중합체 내의 무기 불순물의 함량을 50 ppb 이하로 낮출 수 있다. 상기 무기 불순물 함량의 하한은 0 ppb 이상일 수 있다.
상기 반응 원료를 여과하여 불순물을 제거하는 단계가 수행되는 순서는 특별히 한정되지 않는다. 구체적으로, 상기 반응 원료를 여과하여 불순물을 제거하는 단계는 상기 슬러리를 형성하는 단계 전에 수행되거나 혹은 슬러리를 형성하는 단계 중에 수행될 수 있다. 일 예로, 상기 반응 원료를 여과하여 불순물을 제거하는 단계를 슬러리를 형성하는 단계 중에 수행하는 경우에는 유기 용매 및 무기염을 포함하는 혼합 용매를 제조한 후 이를 여과하여 혼합 용매를 준비하고, 상기 혼합 용매에 별도로 여과하여 불순물이 제거된 방향족 디아민을 첨가하여 슬러리를 형성할 수 있다.
한편, 상기 슬러리를 형성하는 단계에서는 파라계 아라미드 중합체의 중합도를 증가시키기 위해 유기 용매에 무기염을 첨가하여 혼합 용매를 제조할 수 있다.
상기 혼합 용매에 포함되는 무기염은 할로겐화 알칼리 금속염 또는 할로겐화 알칼리 토금속염을 포함할 수 있다. 일 예로, 상기 무기염은 CaCl2, LiCl, NaCl, KCl, LiBr 및 KBr로 이루어진 군에서 선택된 1 종 이상을 포함할 수 있다. 이러한 무기염은 상기 혼합 용매 총 중량을 기준으로 0.01 내지 15 중량%, 0.05 내지 13 중량%, 0.1 내지 11 중량% 또는 1 내지 10 중량%로 포함될 수 있다.
상기 혼합 용매에 포함되는 유기 용매는 N-메틸-2-피롤리돈, N,N-디메틸아세트아미드, 헥사메틸포스포아미드, N,N,N',N'-테트라메틸 우레아, N,N-디메틸포름아미드 및 디메틸설폭사이드로 이루어진 군에서 선택된 1 종 이상을 포함할 수 있다. 상기 유기 용매는 상기 혼합 용매 총 중량을 기준으로 상기 무기염을 제외한 잔량의 함량으로 포함될 수 있다.
상기 슬러리를 형성하는 단계에서는 슬러리 내의 방향족 디아민의 함량이 0.5 내지 10 중량%가 되도록 혼합 용매와 방향족 디아민을 혼합할 수 있다.
상기 방향족 디아민으로는 p-페닐렌디아민, 4,4'-옥시디아닐린, 2,6-나프탈렌디아민, 1,5-나프탈렌디아민 및 4,4'-디아미노벤즈아닐리드 등으로 이루어진 군에서 선택된 1 종 이상이 사용될 수 있다.
이어서, 상기 파라계 아라미드 중합체를 형성하는 단계에서는 앞서 제조된 슬러리에 방향족 디에시드 할라이드를 첨가하고 반응시켜 파라계 아라미드 중합체를 제조할 수 있다.
상기 방향족 디에시드 할라이드로는 테레프탈로일 디클로라이드, [1,1'-비페닐]-4,4'-디카르보닐 디클로라이드, 4,4'-옥시비스(벤조일 클로라이드), 나프탈렌-2,6-디카르보닐 디클로라이드 및 나프탈렌-1,5-디카르보닐 디클로라이드 등으로 이루어진 군에서 선택된 1 종 이상이 사용될 수 있다.
상기 방향족 디에시드 할라이드는 상기 방향족 디아민과 1:1의 몰 비로 반응하므로, 상기 방향족 디아민에 대한 상기 방향족 디에시드 할라이드의 몰 비는 약 0.9 내지 1.1 일 수 있다.
상기 방향족 디아민과 상기 방향족 디에시드 할라이드의 중합 반응은 발열과 함께 빠른 속도로 진행된다. 따라서, 종래에는 방향족 디에시드 할라이드의 일부를 먼저 첨가하여 예비 중합을 수행한 후 나머지 방향족 디에시드 할라이드를 첨가하여 최종적으로 얻어지는 중합체들 사이의 중합도 차이를 최소화하였다.
상기 다른 일 구현예에 따른 제조 방법에서는 종래 사용되던 방법에서 더 나아가 불순물이 제거된 반응 원료를 사용하고, 반응 원료의 투입 조건 및 투입 방법을 제어함에 따라 중합체들 사이의 중합도 차이가 적을 뿐 아니라 큰 결정 크기 및 높은 결정화도를 갖는 파라계 아라미드 섬유를 제공할 수 있다.
구체적으로, 상기 다른 일 구현예에 따른 제조 방법에서는 종래 방향족 디에시드 할라이드를 2 회에 나누어 첨가하는 방식 대신 방향족 디에시드 할라이드를 3 회 이상 분할 첨가하며, 방향족 디에시드 할라이드의 1 차 및 2 차 첨가 시 반응기에 출입하는 냉각수의 온도 차를 50 ℃ 이내로 제어하여 목적하는 큰 결정 크기 및 높은 결정화도를 갖는 파라계 아라미드 섬유를 제공할 수 있다.
구체적으로, 상기 중합체를 형성하는 단계에서는 냉각수가 출입할 수 있는 반응기를 사용한다.
상기 슬러리를 형성하는 단계에서 슬러리는 반응기에서 제조되거나 혹은 반응기 외의 다른 용기에서 제조된 후 반응기로 투입될 수 있다.
상기 중합체를 형성하는 단계에서는 상기 슬러리가 담긴 반응기에 방향족 디에시드 할라이드를 3 회 이상 분할 첨가한다. 특히, 반응기의 냉각수 투입구와 배수구에서의 냉각수 온도 차이가 0 ℃ 내지 50 ℃로 제어된 상태에서 방향족 디에시드 할라이드를 1 차 및 2 차로 첨가할 수 있다.
보다 구체적으로, 상기 방향족 디에시드 할라이드의 1 차 첨가 시 냉각수 투입구 및 배수구에서의 냉각수의 온도 차이는 0 ℃ 내지 50 ℃, 0 ℃ 내지 40 ℃, 0 ℃ 내지 35 ℃ 또는 0 ℃ 내지 30 ℃로 제어될 수 있다.
또한, 상기 방향족 디에시드 할라이드의 2 차 첨가 시 냉각수 투입구 및 배수구에서의 냉각수의 온도 차이는 0 ℃ 내지 50 ℃, 0 ℃ 내지 40 ℃, 0 ℃ 내지 35 ℃ 또는 0 ℃ 내지 30 ℃로 제어될 수 있다.
상기 냉각수의 투입구 및 배수구에서의 냉각수 온도 차를 50 ℃ 이내로 제어하기 위해, 반응기 내 냉각수가 순환되고 있는 상태에서 반응기의 교반 속도를 10 내지 1000 rpm, 10 내지 900 rpm, 10 내지 700 rpm 또는 10 내지 500 rpm 으로 조절할 수 있다.
상기 1 차로 투입되는 방향족 디에시드 할라이드의 함량은 전체 투입될 방향족 디에시드 할라이드의 총 함량에 대해 20 내지 40 몰% 또는 25 내지 35 몰%로 조절될 수 있다. 이러한 범위 내에서 적절한 길이의 분자 사슬을 갖는 예비 중합체를 형성할 수 있다.
1 차로 방향족 디에시드 할라이드를 첨가한 후에는 0 ℃ 내지 45 ℃의 온도에서 1 분 내지 30 분 또는 5 분 내지 15 분 정도 교반하여 예비 중합을 수행할 수 있다.
이어서, 상기 냉각수 투입구 및 배수구의 냉각수 온도 차를 다시 50 ℃ 이내로 제어하기 위해, 반응기 내 냉각수가 순환되고 있는 상태에서 반응기의 교반 속도를 10 내지 1000 rpm, 10 내지 900 rpm, 10 내지 700 rpm 또는 10 내지 500 rpm 으로 조절할 수 있다.
상기 2 차로 투입되는 방향족 디에시드 할라이드의 함량은 전체 투입될 방향족 디에시드 할라이드의 총 함량에 대해 20 내지 75 몰%, 40 내지 75 몰% 또는 50 내지 70 몰%로 조절될 수 있다. 이러한 범위 내에서 중합체들 사이의 중합도 차이를 최소화하면서 큰 결정 크기 및 높은 결정화도를 갖는 섬유를 제공할 수 있는 중합체를 형성할 수 있다.
2 차로 방향족 디에시드 할라이드를 첨가한 후에는 0 ℃ 내지 45 ℃의 온도에서 1 분 내지 30 분 또는 5 분 내지 15 분 정도 교반하여 중합을 수행할 수 있다.
이후, 나머지 함량의 방향족 디에시드 할라이드를 1 회 이상 분할 첨가한 후 추가 중합을 수행하여 최종적으로 파라계 아라미드 중합체를 제조할 수 있다. 상기 추가 중합은 0 ℃ 내지 45 ℃의 온도에서 5 분 내지 1 시간 또는 10 분 내지 40 분 정도 교반하여 수행될 수 있다.
상기 중합체를 형성하는 단계 이후에는, 생성된 중합체를 중합 반응 계로부터 분리하는 단계, 중합체를 세척하는 단계, 중합체를 중화하는 단계 및 중합체를 분쇄하는 단계 중 어느 하나 이상의 단계를 기재된 순서에 상관 없이 수행할 수 있다.
상기 파라계 아라미드 중합체는 고유 점도가 4.0 dl/g 이상, 5.0 dl/g 이상 또는 5.3 dl/g 이상이면서 9.0 dl/g 이하일 수 있다.
또한, 상기 파라계 아라미드 중합체는 고유 점도 편차가 1.0 dl/g 이하, 0.9 dl/g 이하 또는 0.8 dl/g 이하일 수 있다. 상기 파라계 아라미드 중합체의 고유 점도 편차는 적을수록 유리하므로, 고유 점도 편차의 하한은 0 dl/g 이상일 수 있다.
상기 고유 점도 편차는 수세 및 건조가 완료된 파라계 아라미드 중합체를 눈 크기가 각각 1 mm와 2 mm인 표준체를 이용하여 2 mm 이상인 그룹, 1 mm 이상 2mm 미만인 그룹, 및 1 mm 미만인 그룹으로 나누어 각 그룹의 고유 점도를 측정한 후, 세 그룹의 평균 고유 점도의 최댓값과 최솟값의 차이를 계산하여 구할 수 있다.
상기 파라계 아라미드 중합체는 불순물이 제거된 반응 원료로부터 제조됨에 따라 중합체 내 잔류하는 무기 불순물이 매우 적거나 없을 수 있다. 일 예로, 상기 중합체 내 무기 불순물의 함량은 50 ppb 이하일 수 있다.
상기 파라계 아라미드 중합체는 폴리(파라-페닐렌 테레프탈아미드), 폴리(4,4'-벤즈아닐리드 테레프탈아미드), 폴리(파라페닐렌-4,4'-비페닐렌-디카르보닐 아미드), 폴리(파라페닐렌-2,6-나프탈렌디카르보닐 아미드) 또는 이들의 공중합체일 수 있다. 일 예로, 상기 파라계 아라미드 중합체는 폴리(파라-페닐렌 테레프탈아미드)일 수 있다.
한편, 상기 섬유를 제조하는 단계에서는 상기 중합체를 형성하는 단계에서 제조된 중합체를 포함하는 방사 도프를 방사하여 섬유를 제공한다.
상기 방사 도프의 용매로는 97 내지 102 중량%의 농도를 갖는 황산이 사용될 수 있다. 상기 용매로 황산 대신 클로로 황산 또는 플루오로 황산 등이 사용될 수도 있다.
섬유를 제조하기 위한 방사 도프의 점도는 방사 도프 내의 파라계 아라미드 중합체의 농도가 증가할수록 증가한다. 그러나, 파라계 아라미드 중합체의 농도가 임계 농도를 넘어서면 방사 도프의 점도는 급격히 감소하게 된다. 이때, 방사 도프는 고체상을 형성하지 않으면서 광학적 등방성에서 광학적 이방성으로 변화한다. 광학적 이방성 도프는 구조적, 기능적 특성으로 인해 별도의 연신 공정 없이도 고강도의 파라계 아라미드 섬유를 제공할 수 있다. 따라서, 상기 방사 도프 내의 파라계 아라미드 중합체의 농도는 임계 농도를 초과하는 것이 바람직하지만, 그 농도가 지나치게 높을 경우 방사 도프의 점도가 지나치게 낮아질 수 있다. 이에 상기 방사 도프는 방사 도프 전체 중량에 대하여 10 내지 25 중량%의 함량으로 파라계 아라미드 중합체를 포함할 수 있다.
상기 섬유를 제조하는 단계에서는 상기 방사 도프를 방사하는 방사 공정을 수행할 수 있다.
상기 방사 공정에서는 기격 습식 방사를 통해 상기 방사 도프를 필라멘트 형태로 방사할 수 있다.
상기 기격 습식 방사(air-gap wet spinning)는 방사 구금과 응고욕 표면 사이에 기격(air-gap)을 두는 방식이다. 이러한 기격 습식 방사 방식에 따라, 상기 방사 도프는 방사 구금을 통해 에어 갭을 거쳐 응고액이 담긴 응고조로 방사될 수 있다.
상기 방사 공정에서는 방사 구금을 통한 방사 도프의 압출 시의 압력 및 방사 속도를 통해 섬유의 굵기를 제어할 수 있다.
상기 방사 구금은 방사 도프를 방사할 수 있는 다수의 홀을 구비할 수 있다.
구체적으로 상기 방사 구금은 50 내지 3000 개, 100 내지 2000 개, 120 내지 1500 개 또는 500 내지 1200 개의 홀을 구비할 수 있다. 이러한 범위 내에서 큰 결정 크기와 높은 결정화도를 가져 우수한 인장 특성을 나타내는 파라계 아라미드 섬유를 제공할 수 있다.
방사 구금에 형성된 홀의 직경은 적절한 크기로 조절되어야 필라멘트 표면과 내부에서 분자 배향성이 모두 개선될 수 있다. 이러한 측면에서, 상기 방사 구금의 홀의 직경은 50 ㎛ 이상이면서 100 ㎛ 이하로 조절될 수 있다.
상기 방사 공정에서는 상기 방사 도프를 80 m/min 이상이면서 800 m/min 이하의 방사 속도로 방사할 수 있다.
구체적으로, 상기 방사 도프는 80 내지 800 m/min, 100 내지 800 m/min, 300 내지 800 m/min, 500 내지 700 m/min, 550 내지 660 m/min, 580 내지 650 m/min, 580 내지 640 m/min 또는 590 내지 610 m/min의 방사 속도로 방사할 수 있다. 이러한 범위 내에서 큰 결정 크기와 높은 결정화도를 가져 우수한 인장 특성을 나타내는 파라계 아라미드 섬유를 제공할 수 있다.
상기 방사 구금을 통해 방사된 도프는 파라계 아라미드 중합체가 균질하게 분포하는 매트릭스 상에 황산이 분포한 미응고 필라멘트로 얻어진다. 이러한 미응고 필라멘트는 에어 갭을 거쳐 응고액이 담긴 응고조를 통과하며 응고될 수 있다.
상기 에어 갭은 공기층이거나 혹은 불활성 기체층일 수 있다. 일 예로, 상기 에어 갭은 드라이 질소(dry N2)를 공급한 질소층일 수 있다. 상기 에어 갭의 길이는 0.1 내지 15 cm로 조절될 수 있다.
방사 구금에서 방사되어 에어 갭을 거친 도프는 응고조를 통과하는 과정에서 그 내부의 황산이 제거되면서 필라멘트를 형성한다. 이때 황산이 필라멘트 표면으로부터 급격히 제거되면 그 내부에 함유된 황산이 미쳐 빠져나가기 전에 필라멘트 표면이 응고되어 필라멘트 내외부의 균일도가 떨어질 수 있다. 따라서, 상기 응고조에 담기는 응고액은 황산을 포함하는 황산 수용액인 것이 바람직하다.
구체적으로, 상기 응고조에 담기는 응고액은 물에 황산이 첨가된 황산 수용액일 수 있다. 또한, 상기 응고액에는 필요에 따라 메탄올, 에탄올 또는 프로판올 등의 1가 알코올(monol); 에틸렌 글리콜 또는 프로필렌 글리콜 등의 2가 알코올(diol); 또는 글리세롤 등의 3가 알코올(triol)이 추가로 첨가될 수 있다.
상기 응고액의 온도는 1 내지 10 ℃인 것이 바람직하다. 상기 응고액의 온도가 너무 낮을 경우 필라멘트로부터 황산이 빠져나가는 것이 어려울 수 있다. 상기 응고액의 온도가 너무 높을 경우 필라멘트에서 황산이 급격히 빠져나가 필라멘트의 균일도가 저하할 수 있다.
상기 응고조 하부에는 응고 튜브가 형성되어 있을 수 있다. 상기 응고 튜브는 응고조와 연결되어 있으며, 상기 응고 튜브에는 다수의 분사구가 형성될 수 있다. 이 경우, 상기 분사구는 소정의 분사 장치(jet device)와 연결되어 있어, 상기 분사 장치에서 분사된 응고액은 상기 분사구를 통해 상기 응고 튜브를 통과하는 필라멘트에 분사되게 된다. 상기 다수의 분사구는 응고액이 필라멘트에 대하여 대칭으로 분사될 수 있도록 정렬되는 것이 바람직하다. 응고액의 분사 각도는 필라멘트의 축방향에 대하여 0 내지 85°가 바람직하며, 특히 상업적 생산 공정에 있어서는 20 내지 40°의 분사 각도가 적당하다.
상기 섬유를 제조하는 단계에서는 상기 응고 공정에 이어, 응고된 필라멘트에 잔존하는 황산을 제거하기 위한 수세 공정이 수행될 수 있다.
상기 수세 공정은 물, 또는 물과 알칼리 용액의 혼합 용액을 상기 응고된 필라멘트에 분사하는 방법으로 수행될 수 있다.
상기 수세 공정은 다단계로 수행될 수 있다. 예를 들어, 상기 응고된 필라멘트를 0.1 내지 1.5 중량%의 가성 수용액(aqueous caustic solution)으로 1 차 수세하고, 이어서 더 묽은 가성 수용액으로 2 차 수세할 수 있다.
상기 섬유를 제조하는 단계에서는 상기 응고 및 수세 공정에 이어, 상기 필라멘트에 잔류하는 수분 함량을 조절하기 위한 건조 공정이 수행될 수 있다.
상기 건조 공정은 가열된 건조 롤에 상기 필라멘트가 닿는 시간을 조절하거나, 상기 건조 롤의 온도를 조절하는 방법으로 수행될 수 있다.
최종적으로 얻어지는 상기 파라계 아라미드 섬유를 구성하는 모노필라멘트는 1.0 내지 2.5 de (denier)의 섬도를 가질 수 있다.
그리고, 상기 파라계 아라미드 섬유는 복수의 상기 모노필라멘트를 포함하고, 200 내지 1,600 de, 200 내지 400 de, 800 내지 1,000 de, 1,000 내지 1,100 de 또는 1,400 내지 1,600 de의 총 섬도를 가질 수 있다.
이러한 제조 방법에 따라 제조된 파라계 아라미드 섬유는 큰 결정 크기를 가지며, 높은 결정화도 및 배향성을 나타내 우수한 인장 특성을 나타낼 수 있다.
상기 파라계 아라미드 섬유는 상기 제조 방법에 따라 제조됨에 따라 증가된 결정 크기를 가질 수 있다.
일 예로, 상기 파라계 아라미드 섬유는 110 plane 기준 결정 크기가 5.8 nm 이상, 5.9 nm 이상, 6.0 nm 이상 또는 6.2 nm 이상이면서 7.0 nm 이하, 6.8 nm 이하 또는 6.6 nm 이하일 수 있다. 또한, 상기 파라계 아라미드 섬유는 200 plane 기준 결정 크기가 5.0 nm 이상, 5.5 nm 이상 또는 5.6 nm 이상이면서 6.5 nm 이하, 6.4 nm 이하 또는 6.2 nm 이하일 수 있다.
상기 결정 크기는 X-ray 회절 패턴으로부터 분석된 결정 크기이며, 보다 자세한 측정 방법은 후술하는 시험예에 기재된 방법을 참고할 수 있다. 또한, 상기 파라계 아라미드 섬유는 상기 제조 방법에 따라 제조됨에 따라 높은 결정화도를 가질 수 있다.
구체적으로, 상기 파라계 아라미드 섬유는 결정화도가 67 % 이상, 68 % 이상, 68.5 % 이상, 69 % 이상, 70 % 이상, 71 % 이상, 72 % 이상 또는 72.5 % 이상이면서 78 % 이하, 75 % 이하 또는 73 % 이하일 수 있다.
상기 결정화도는 X-ray 회절 패턴으로부터 분석된 결정화도이며, 보다 자세한 측정 방법은 후술하는 시험예에 기재된 방법을 참고할 수 있다.
상기 파라계 아라미드 섬유는 상기 제조 방법에 따라 제조됨에 따라 높은 배향도를 나타낼 수 있다. 즉, 상기 파라계 아라미드 섬유는 높은 배향도로 작은 배향각을 가질 수 있다.
일 예로, 상기 파라계 아라미드 섬유는 110 plane 기준 배향각이 2 ° 이상, 5 ° 이상 또는 7 ° 이상이면서 12 ° 이하, 11 ° 이하, 10.5 ° 이하, 10 ° 이하, 9.5 ° 이하, 9.3 ° 이하, 9.1 ° 이하 또는 9.0 ° 이하일 수 있다. 또한, 상기 파라계 아라미드 섬유는 200 plane 기준 배향각이 2 ° 이상, 5 ° 이상 또는 8 ° 이상이면서 13 ° 이하, 12 ° 이하, 11.5 ° 이하, 11.2 ° 이하, 11 ° 이하, 10.5 ° 이하 또는 10.3 ° 이하일 수 있다.
상기 배향각은 X-ray 회절 패턴으로부터 분석된 배향각이며, 보다 자세한 측정 방법은 후술하는 시험예에 기재된 방법을 참고할 수 있다.
상기 파라계 아라미드 섬유는 상기 제조 방법에 따라 제조됨에 따라 결정 결함(Paracrystalline parameter)을 최소화할 수 있다.
일 예로, 상기 파라계 아라미드 섬유는 결정 결함이 1.00 % 이상 또는 1.30 % 이상이면서 1.85 % 이하, 1.80 % 이하, 1.70 % 이하 또는 1.60 % 이하일 수 있다.
상기 결정 결함는 X-ray 회절 패턴으로부터 분석된 결정 결함이며, 보다 자세한 측정 방법은 후술하는 시험예에 기재된 방법을 참고할 수 있다.
상기 파라계 아라미드 섬유는 큰 결정 크기 및 높은 결정화도를 가짐에 따라 우수한 인장 특성을 나타낼 수 있다.
일 예로, 상기 파라계 아라미드 섬유는 인장 강도가 22 g/d 이상, 22.5 g/d 이상, 23 g/d 이상, 23.5 g/d 이상, 24 g/d 이상 또는 25 g/d 이상이면서 30 g/d 이하 또는 28 g/d 이하일 수 있다. 또한, 상기 파라계 아라미드 섬유는 영 탄성률이 750 g/d 이상, 760 g/d 이상, 780 g/d 이상, 790 g/d 이상, 800 g/d 이상 또는 810 g/d 이상이면서 900 g/d 이하, 880 g/d 이하 또는 860 g/d 이하일 수 있다. 상기 파라계 아라미드 섬유는 신도가 2.0 % 이상, 2.5 % 이상, 3.0 % 이상, 3.1 % 이상, 3.2 % 이상, 3.3 % 이상 또는 3.4 % 이상이면서 4.5 % 이하 또는 4.0 % 이하일 수 있다.
상기 인장 강도, 영 탄성률 및 신도와 같은 인장특성은 꼬임 상수(twist multiplier)가 1.1인 샘플에 대하여 ASTM D885 표준 시험법에 따라 측정된 인장 특성이며, 보다 자세한 측정 방법은 후술하는 시험예에 기재된 방법을 참고할 수 있다.
발명의 일 구현예에 따른 파라계 아라미드 섬유는 큰 결정 크기 및 높은 결정화도를 가져 우수한 인장 특성을 나타낼 수 있다.
이하 발명의 구체적인 실시예를 통해 발명의 작용, 효과를 보다 구체적으로 설명하기로 한다. 다만, 이는 발명의 예시로서 제시된 것으로 이에 의해 발명의 권리범위가 어떠한 의미로든 한정되는 것은 아니다.
시험예 1: 파라계 아라미드 중합체의 물성 평가
하기 합성예에서 얻어진 파라계 아라미드 중합체의 물성을 하기 기재된 방법에 따라 측정하였다.
(1) 고유 점도 측정
중합체의 고유 점도는 하기 식 1에 따라 측정되었다.
[식 1]
I.V. = ln(ηrel)/C
상기 식 1에서, ln은 자연 대수 함수이고, C는 중합체 용액의 농도(98 중량%의 농황산 100 mL에 중합체 0.5 g을 용해시킨 용액)이고, 상대 점도(ηrel)는 30 ℃에서 모세관 점도계로 측정한 중합체 용액과 용매 사이의 유동 시간의 비이다.
(2) 고유 점도 편차 측정
수세 및 건조가 완료된 중합체를 눈 크기가 각각 1 mm와 2 mm인 표준체를 이용하여 2 mm 이상인 그룹, 1 mm 이상 2 mm 미만인 그룹, 및 1 mm 미만인 그룹으로 나누었다.
이후, 각 그룹의 고유 점도를 측정한 후, 세 그룹의 평균 고유 점도의 최댓값과 최솟값의 차이를 계산하여 중합체의 고유 점도 편차를 구하였다.
(3) 무기 불순물 함량
파라계 아라미드 중합체 내 무기 불순물 함량은 다음의 방법으로 측정하였다. 1g의 시료를 산처리하여 완전히 분해시킨 후, 유도결합 플라즈마 원자방출 분광광도계(Inductively Coupled Plasma Spectrophotometer)를 사용하여 시료 내에 이온화되어 잔류하는 무기 불순물의 농도를 측정하였다.
합성예 1: 파라계 아라미드 중합체(PPTA-1)의 제조
반응 원료로서, N-메틸-2-피롤리돈(NMP), CaCl2, p-페닐렌디아민(PPD) 및 테레프탈로일 클로라이드(TPC)를 0.1 ㎛의 직경을 가지는 필터를 통과시켜 반응 원료 내 불순물을 제거하였다.
질소 분위기 하에서 반응기 내에 유기 용매로서 NMP 및 무기염으로서 CaCl2을 92:8의 중량비로 혼합한 혼합 용매를 넣고, 슬러리 내의 PPD의 농도가 5 중량%가 되도록 PPD를 첨가하여 슬러리를 제조하였다.
이어서, 30 ℃로 냉각된 반응기에 PPD의 몰 수의 30 몰%에 해당하는 TPC를 첨가한 후 10 분간 반응시켰다. 이때, 반응기의 교반 속도를 약 200 rpm 으로 조절하여 냉각수 투입구 및 배수구에서의 냉각수 온도 차이가 약 20 ℃가 되도록 제어하였다.
이후, 다시 30 ℃로 냉각된 반응기에 PPD의 몰 수의 60 몰%에 해당하는 TPC를 첨가한 후 30 분간 반응시켰다. 이때, 반응기의 교반 속도를 약 200 rpm 으로 조절하여 냉각수의 투입구 및 배수구의 온도 차이가 약 20 ℃가 되도록 제어하였다.
마지막으로, 30 ℃로 냉각된 반응기에 PPD의 몰 수의 10 몰%에 해당하는 TPC를 첨가한 후 30 분간 반응시켜 파라계 아라미드 중합체를 제조하였다.
상기 파라계 아라미드 중합체를 포함한 용액에 물과 NaOH를 첨가하여 산을 중화시켰다. 이어서 파라계 아라미드 중합체를 분쇄한 후 물을 사용하여 파라계 아라미드 중합체에 함유된 중합 용매를 추출하고, 탈수 및 건조하여 최종적으로 PPTA-1를 얻었다.
이렇게 제조된 PPTA-1의 고유 점도는 5.4 dl/g이고, 중합체 내의 무기 불순물 함량은 48 ppb이었다. 또한, 눈 크기가 각각 1 mm와 2 mm인 표준체를 이용하여 2mm 이상인 그룹, 1 mm 이상 2mm 미만인 그룹, 및 1 mm 미만인 그룹으로 분급하여 각 그룹의 고유 점도를 측정한 후, 세 그룹의 평균 고유 점도의 최댓값과 최솟값의 차이를 계산한 고유 점도 편차는 0.85 dl/g였다.
합성예 2: 파라계 아라미드 중합체(PPTA-2)의 제조
질소 분위기 하에서 반응기 내에 유기 용매로서 NMP 및 무기염으로서 CaCl2을 86:14의 중량비로 혼합한 혼합 용매를 넣고, 슬러리 내의 PPD의 농도가 3 중량%가 되도록 PPD를 첨가하여 슬러리를 제조하였다.
이어서, 0 ℃로 냉각된 반응기에 PPD의 몰 수의 30 몰%에 해당하는 TPC를 첨가한 후 5 ℃에서 30 분간 반응시켰다.
30 분 후, 냉각수의 투입구 및 배수구의 온도 차이는 65 ℃이었으며, 상기 반응기에 PPD의 몰 수의 60 몰%에 해당하는 TPC를 첨가한 후 5 ℃에서 20 분간 반응시키고, 상기 반응기에 PPD의 몰 수의 10 몰%에 해당하는 TPC를 첨가한 후 계속해서 5 ℃에서 5 분간 반응시켜 파라계 아라미드 중합체를 제조하였다.
상기 파라계 아라미드 중합체를 포함한 용액에 물과 NaOH를 첨가하여 산을 중화시켰다. 이어서 파라계 아라미드 중합체를 분쇄한 후 물을 사용하여 파라계 아라미드 중합체에 함유된 중합 용매를 추출하고, 탈수 및 건조하여 최종적으로 PPTA-2를 얻었다.
이렇게 제조된 PPTA-2의 고유 점도는 5.4 dl/g이고, 중합체 내의 무기 불순물 함량은 3150 ppb이었다. 또한, 눈 크기가 각각 1 mm와 2 mm인 표준체를 이용하여 2 mm 이상인 그룹, 1 mm 이상 2 mm 미만인 그룹, 및 1 mm 미만인 그룹으로 분급하여 각 그룹의 고유 점도를 측정한 후, 세 그룹의 평균 고유 점도의 최댓값과 최솟값의 차이를 계산한 고유 점도 편차는 1.3 dl/g였다.
실시예 1: 파라계 아라미드 섬유의 제조
99.8 중량% 황산에 상기 합성예 1에서 얻은 PPTA-1을 방사 도프 전체 중량 대비 19 중량%로 용해시켜 방사 도프를 준비하였다.
상기 방사 도프를 홀(Hole) 개수가 133 개인 방사 구금을 통해 650 m/min의 속도로 방사하고 에어 갭을 거쳐 응고조 내에서 응고시킴으로써 필라멘트를 제조하였다.
상기 응고된 필라멘트들을 물로 수세하여 상기 필라멘트 상에 잔존하는 황산 등을 제거한 다음 이를 건조한 후 권취하여 모노필라멘트의 섬도가 1.47 de이며, 총 섬도가 213 de인 파라계 아라미드 섬유를 얻었다.
실시예 2: 파라계 아라미드 섬유의 제조
99.8 중량% 황산에 상기 합성예 1에서 얻은 PPTA-1을 방사 도프 전체 중량 대비 19 중량%로 용해시켜 방사 도프를 준비하였다.
상기 방사 도프를 홀(Hole) 개수가 665 개인 방사 구금을 통해 620 m/min의 속도로 방사하고 에어 갭을 거쳐 응고조 내에서 응고시킴으로써 필라멘트를 제조하였다.
상기 응고된 필라멘트들을 물로 수세하여 상기 필라멘트 상에 잔존하는 황산 등을 제거한 다음 이를 건조한 후 권취하여 모노필라멘트의 섬도가 1.43 de이며, 총 섬도가 988 de인 파라계 아라미드 섬유를 얻었다.
실시예 3: 파라계 아라미드 섬유의 제조
99.8 중량% 황산에 상기 합성예 1에서 얻은 PPTA-1을 방사 도프 전체 중량 대비 20 중량%로 용해시켜 방사 도프를 준비하였다.
상기 방사 도프를 홀(Hole) 개수가 665 개인 방사 구금을 통해 600 m/min의 속도로 방사하고 에어 갭을 거쳐 응고조 내에서 응고시킴으로써 필라멘트를 제조하였다.
상기 응고된 필라멘트들을 물로 수세하여 상기 필라멘트 상에 잔존하는 황산 등을 제거한 다음 이를 건조한 후 권취하여 모노필라멘트의 섬도가 1.50 de이며, 총 섬도가 1022 de인 파라계 아라미드 섬유를 얻었다.
실시예 4: 파라계 아라미드 섬유의 제조
99.8 중량% 황산에 상기 합성예 1에서 얻은 PPTA-1을 방사 도프 전체 중량 대비 19 중량%로 용해시켜 방사 도프를 준비하였다.
상기 방사 도프를 홀(Hole) 개수가 1000 개인 방사 구금을 통해 650 m/min의 속도로 방사하고 에어 갭을 거쳐 응고조 내에서 응고시킴으로써 필라멘트를 제조하였다.
상기 응고된 필라멘트들을 물로 수세하여 상기 필라멘트 상에 잔존하는 황산 등을 제거한 다음 이를 건조한 후 권취하여 모노필라멘트의 섬도가 1.54 de이며, 총 섬도가 1550 de인 파라계 아라미드 섬유를 얻었다.
비교예 1: 파라계 아라미드 섬유의 제조
99.8 중량% 황산에 상기 합성예 2에서 얻은 PPTA-2를 방사 도프 전체 중량 대비 19 중량%로 용해시켜 방사 도프를 준비하였다.
상기 방사 도프를 홀(Hole) 개수가 1000 개인 방사 구금을 통해 600 m/min의 속도로 방사하고 에어 갭을 거쳐 응고조 내에서 응고시킴으로써 필라멘트를 제조하였다.
상기 응고된 필라멘트들을 물로 수세하여 상기 필라멘트 상에 잔존하는 황산 등을 제거한 다음 이를 건조한 후 권취하여 모노필라멘트의 섬도가 1.49 de이며, 총 섬도가 1527 de인 파라계 아라미드 섬유를 얻었다.
참고로, 합성예 2에서 얻은 PPTA-2의 방사 속도를 실시예 4와 동일하게 할 경우 제반 물성이 열악하여, 실시예 4의 파라계 아라미드 섬유와 같은 수준의 섬도를 갖도록 제조하되, 방사 속도는 합성예 2에서 얻은 PPTA-2에 최적화한 속도로 조절하였다.
시험예 2: 파라계 아라미드 섬유의 물성 평가
상기 실시예 및 비교예에서 얻어진 파라계 아라미드 섬유의 물성을 하기 기재된 방법에 따라 측정하고 그 결과를 표 1에 기재하였다.
(1) 섬도 (denier, de)
섬도는 9000 m 사의 중량 (g)으로 표시되는 denier (de)로서 ASTM D 1577에 따라 측정되었다.
(2) 인장 특성
실시예 및 비교예를 통해 제조된 파라계 아라미드 섬유를 250 mm의 길이로 잘라 TM(twist multiplier) 1.1로 꼬임을 준 샘플을 준비하고, 상기 샘플을 55 %의 상대 습도 및 23 ℃의 온도에서 14 시간 동안 보관하였다.
이어서, ASTM D885 표준 시험법에 따라 상기 샘플을 INSTRON사의 시험기(Instron Engineering Corp, Canton, Mass)에 장착한 후 섬유의 한 쪽은 고정하고 초하중을 섬도의 1/30 g (섬도 X 1/30 g)으로 설정한 후 다른 한 쪽을 25 mm/min의 속도로 인장시켜 섬유가 끊어질 때의 인장 하중(g)과 신도(strain)를 측정하였다. 상기 측정된 인장 하중을 섬도로 나누어 강도(g/d)를 구하였으며, 상기 인장 하중 측정 조건에서 얻어지는 파라계 아라미드 섬유의 응력-변형 곡선의 기울기로부터 영 탄성률을 구하였다.
(3) X-ray 회절(XRD) 분석
실시예 및 비교예를 통해 제조된 파라계 아라미드 섬유의 미세 구조를 X-ray 회절 패턴을 통해 분석하였다.
실시예 및 비교예를 통해 제조된 파라계 아라미드 섬유를 20 내지 30 mm의 길이로 잘라 최대한 가지런하게 배열한 후 홀더에 붙여 샘플을 준비하였다. 준비된 샘플을 sample attachment에 걸어 β-position이 0°에 오게 하였다. Warming-up을 마친 XRD 측정 기기의 전압 및 전류를 측정 조건인 50 ㎸ 및 180 ㎃로 서서히 올리고, 적도의 패턴(Equatorial pattern)을 측정하였다. 그리고, 주요 측정 조건을 아래와 같이 설정하였다.
각도계(Goniometer), 연속적인 스캔 모드(Continuous scan mode), 스캔 각도 범위(Scan angle range): 10 내지 40°, 스캔 스피드(Scan speed): 2.
스캐닝을 수행한 프로파일(Profile)에서 20 내지 21° 및 22 내지 23°사이에서 나타나는 두 개 피크(Peak)의 2θ 위치(Position)을 측정하였다. 측정된 프로파일(Profile)을 가지고 멀티피크 세퍼레이션 방식 프로그램(Multi peak separation method program)으로 처리하였다.
2θ 15 내지 35°까지 일직선으로 백 그라운드(Back ground)를 지정한 후, 2 개의 결정 피크(Peak)를 분리하여 X-ray 회절 패턴을 얻었다.
a) 결정 크기(Apparent crystal size; ACS)
상기 X-ray 회절 패턴을 사용하여 팩터[2θ Position, 강도(Intensity) 반가폭(Full Width at Half Maximum; FWHM)]를 가지고 Scherrer equation에 의해 각각의 결정면의 K가 1 일 때 미결정 사이즈(apparent crystal size; ACS)를 구하였다. 여기서 미결정 사이즈(ACS)는 해당 면 결정의 평균크기를 의미한다.
b) 결정화도(Crystallinity; Xc)
상기 X-ray 회절 패턴을 사용하여 결정 피크와 무정형 피크의 비를 통해 결정화도를 구하였다.
c) 배향각(Orientation angle; OA)
상기 X-ray 회절 패턴의 각면의 위치에서 Azimutal scan(방위각의 스캔)을 한 후 각 피크의 반가폭(Full Width at Half Maximum; FWHM)]을 구하여 배향각을 구하였다.
d) 결정 결함(Paracrystalline parameter; gII)
실시예 및 비교예를 통해 제조된 파라계 아라미드 섬유를 20 내지 30 mm의 길이로 잘라 최대한 가지런하게 배열한 후 홀더에 붙여 샘플을 준비하였다. 준비된 샘플을 sample attachment에 걸어 β-position이 0°에 오게 하였다. Warming-up을 마친 XRD 측정 기기의 전압 및 전류를 측정 조건인 50 ㎸ 및 180 ㎃로 서서히 올리고, 경선의 패턴(Meridional pattern)을 측정하였다. 그리고, 주요 측정 조건을 아래와 같이 설정하였다.
각도계(Goniometer), 연속적인 스캔 모드(Continuous scan mode), 스캔 각도 범위(Scan angle range): 10 내지 40°, 스캔 스피드(Scan speed): 0.5 [스텝/스캔 시간은 피크의 강도가 미미함으로, 2,000 CPS가 나올 수 있도록 충분한 빔(Beam) 노출 시간을 준다].
스캐닝을 수행한 프로파일(Profile)에서 10 내지 15° 사이에서 나타나는 피크(002 plane)의 2θ 위치(Position)을 측정하였다. 측정된 프로파일(Profile)을 가지고 하기 식 2의 HOSEMANN 방정식에 대입하여 paracrystalline parameter를 도출하였다.
[식 2]
Figure PCTKR2022007457-appb-img-000001
상기 식 2에서, δs 회절피크(Diffraction peak)의 분산도이고, L은 결정크기(Crystal size)이고, d는 격자면의 공간(Spacing)이고, m은 회절피크의 차수(order)이다.
실시예 1 실시예 2 실시예 3 실시예 4 비교예 1
인장 특성 강도 (g/d) 23.2 22.7 27.4 23.9 22.3
영 탄성률 (g/d) 798 767 820 751 742
신도 (%) 3.02 3.17 3.44 3.49 3.32
XRD* 결정크기 (㎚) 5.9 (110)
5.7 (200)
5.8 (110)
5.5 (200)
6.4 (110)
5.8 (200)
6.0 (110)
5.7 (200)
5.7 (110)
5.5 (200)
결정화도 (%) 72.3 68.5 72.8 69.5 68.3
배향각 (°) 8.6 (110)
9.8 (200)
10.2 (110)
11.4 (200)
9.0 (110)
10.2 (200)
9.9 (110)
11.1 (200)
12.1 (110)
13.4 (200)
결정 결함 (%) 1.66 1.82 1.55 1.49 1.52
* 상기 표 1의 결정 크기는 110 plane 기준 결정 크기, 200 plane 기준 결정 크기를 의미하며, 배향각은 110 plane 기준 배향각, 200 plane 기준 배향각을 의미한다.
상기 표 1을 참조하면, 일 구현예에 따른 파라계 아라미드 섬유는 불순물이 제거된 반응 원료를 사용하여 반응 원료의 투입 조건 및 투입 방법을 제어하여 제조된 파라계 아라미드 중합체로부터 형성됨에 따라 다양한 그레이드의 고품질 파라계 아라미드 섬유로 제공될 수 있다는 것이 확인된다.
구체적으로, 강도가 20 내지 24 g/d 정도인 standard tenacity 아라미드 섬유를 제공하는 실시예 1, 2 및 4 및 비교예 1을 비교하면, 실시예 1, 2 및 4에서는 비교예 1에 비하여 큰 결정 크기, 높은 결정화도 및 높은 배향도를 보이며, 영 탄성률도 더욱 우수한 것이 확인된다.
또한, 강도가 25 g/d 이상인 high tenacity 아라미드 섬유를 제공하는 실시예 3도 큰 결정 크기, 높은 결정화도 및 높은 배향도를 보이며, 인장 특성이 우수한 것이 확인된다.

Claims (15)

  1. 복수의 모노필라멘트를 포함하는 파라계 아라미드 섬유로서,
    상기 파라계 아라미드 섬유는 결정화도가 67 % 이상이며,
    110 plane 기준 결정 크기가 5.8 내지 7.0 nm이고,
    총 섬도가 200 내지 1,600 de이고, 인장 강도가 22 g/d 이상인, 파라계 아라미드 섬유.
  2. 제 1 항에 있어서, 고유 점도가 4.0 내지 9.0 dl/g인 파라계 아라미드 중합체를 포함하는, 파라계 아라미드 섬유.
  3. 제 1 항에 있어서, 고유 점도 편차가 1.0 dl/g 이하인 파라계 아라미드 중합체를 포함하는, 파라계 아라미드 섬유.
  4. 제 1 항에 있어서, 중합체 내 무기 불순물의 함량이 50 ppb 이하인 파라계 아라미드 중합체를 포함하는, 파라계 아라미드 섬유.
  5. 제 1 항에 있어서, 200 plane 기준 결정 크기가 5.0 내지 6.5 nm인, 파라계 아라미드 섬유.
  6. 제 1 항에 있어서, 결정화도가 67 내지 78 %인, 파라계 아라미드 섬유.
  7. 제 1 항에 있어서, 110 plane 기준 배향각이 2 내지 12 °인, 파라계 아라미드 섬유.
  8. 제 1 항에 있어서, 200 plane 기준 배향각이 2 내지 13 °인, 파라계 아라미드 섬유.
  9. 제 1 항에 있어서, 결정 결함이 1.00 내지 1.85 %인, 파라계 아라미드 섬유.
  10. 제 1 항에 있어서, 영 탄성률이 750 내지 900 g/d인, 파라계 아라미드 섬유.
  11. 제 1 항에 있어서, 신도가 2 내지 4 % 인, 파라계 아라미드 섬유.
  12. 제 1 항의 파라계 아라미드 섬유의 제조 방법으로서,
    반응 원료를 여과하여 불순물을 제거하는 단계;
    유기 용매 및 무기염을 포함하는 혼합 용매에 방향족 디아민을 첨가하여 슬러리를 형성하는 단계;
    상기 슬러리가 담긴 반응기에 방향족 디에시드 할라이드를 3 회 이상 분할 첨가하고 반응시켜 파라계 아라미드 중합체를 형성하는 단계; 및
    상기 파라계 아라미드 중합체를 포함하는 방사 도프를 방사하여 섬유를 제조하는 단계를 포함하고,
    상기 중합체를 형성하는 단계에서 상기 방향족 디에시드 할라이드의 1 차 및 2 차 첨가 시에 반응기를 냉각시키기 위한 냉각수 투입구 및 배수구에서의 냉각수 온도 차이가 50 ℃ 이내로 제어되는, 파라계 아라미드 섬유의 제조 방법.
  13. 제 12 항에 있어서, 상기 반응 원료를 직경이 0.01 내지 1.0 ㎛인 필터를 이용하여 여과하는, 파라계 아라미드 섬유의 제조 방법.
  14. 제 12 항에 있어서, 상기 방향족 디에시드 할라이드 1차 첨가 시 반응기의 교반 속도를 10 내지 1000 rpm으로 조절하는, 파라계 아라미드 섬유의 제조 방법.
  15. 제 12 항에 있어서, 상기 방향족 디에시드 할라이드의 2 차 첨가 시 반응기의 교반 속도를 10 내지 1000 rpm 으로 조절하는, 파라계 아라미드 섬유의 제조 방법.
PCT/KR2022/007457 2021-06-17 2022-05-25 파라계 아라미드 섬유 및 이의 제조 방법 WO2022265250A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2023572954A JP2024519161A (ja) 2021-06-17 2022-05-25 パラ系アラミド繊維およびその製造方法
CN202280038793.9A CN117396643A (zh) 2021-06-17 2022-05-25 对位芳纶纤维和制备其的方法
EP22825176.5A EP4332282A1 (en) 2021-06-17 2022-05-25 Para-aramid fiber and preparation method therefor
US18/559,026 US20240240364A1 (en) 2021-06-17 2022-05-25 Para-aramid fiber and preparation method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0078796 2021-06-17
KR1020210078796A KR102454478B1 (ko) 2021-06-17 2021-06-17 파라계 아라미드 섬유 및 이의 제조 방법

Publications (1)

Publication Number Publication Date
WO2022265250A1 true WO2022265250A1 (ko) 2022-12-22

Family

ID=83598219

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/007457 WO2022265250A1 (ko) 2021-06-17 2022-05-25 파라계 아라미드 섬유 및 이의 제조 방법

Country Status (6)

Country Link
US (1) US20240240364A1 (ko)
EP (1) EP4332282A1 (ko)
JP (1) JP2024519161A (ko)
KR (1) KR102454478B1 (ko)
CN (1) CN117396643A (ko)
WO (1) WO2022265250A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070005504A (ko) * 2005-07-06 2007-01-10 주식회사 코오롱 전방향족 폴리아미드 필라멘트 및 그의 제조방법
JP2007238695A (ja) * 2006-03-07 2007-09-20 Toray Ind Inc 芳香族ポリアミド及びその製造方法、それからなるフィルム
KR100924910B1 (ko) * 2008-05-29 2009-11-03 주식회사 코오롱 향상된 내변색성을 갖는 아라미드 섬유 및 그 제조방법
KR20100086996A (ko) * 2007-10-09 2010-08-02 이 아이 듀폰 디 네모아 앤드 캄파니 고 선밀도, 고 모듈러스, 고 강인도의 얀 및 그 얀의 제조 방법
KR20170037967A (ko) * 2014-07-31 2017-04-05 이 아이 듀폰 디 네모아 앤드 캄파니 개선된 강력 유지율을 갖는 사의 제조 방법 및 그에 의해서 제조된 사

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070005504A (ko) * 2005-07-06 2007-01-10 주식회사 코오롱 전방향족 폴리아미드 필라멘트 및 그의 제조방법
JP2007238695A (ja) * 2006-03-07 2007-09-20 Toray Ind Inc 芳香族ポリアミド及びその製造方法、それからなるフィルム
KR20100086996A (ko) * 2007-10-09 2010-08-02 이 아이 듀폰 디 네모아 앤드 캄파니 고 선밀도, 고 모듈러스, 고 강인도의 얀 및 그 얀의 제조 방법
KR100924910B1 (ko) * 2008-05-29 2009-11-03 주식회사 코오롱 향상된 내변색성을 갖는 아라미드 섬유 및 그 제조방법
KR20170037967A (ko) * 2014-07-31 2017-04-05 이 아이 듀폰 디 네모아 앤드 캄파니 개선된 강력 유지율을 갖는 사의 제조 방법 및 그에 의해서 제조된 사

Also Published As

Publication number Publication date
KR102454478B9 (ko) 2023-05-11
EP4332282A1 (en) 2024-03-06
US20240240364A1 (en) 2024-07-18
KR102454478B1 (ko) 2022-10-12
CN117396643A (zh) 2024-01-12
JP2024519161A (ja) 2024-05-08

Similar Documents

Publication Publication Date Title
WO2009134063A2 (ko) 아라미드 타이어 코드 및 그 제조방법
WO2016144105A1 (ko) 고강도 합성섬유의 제조방법 및 그로부터 제조된 고강도 합성섬유
KR100749962B1 (ko) 전방향족 폴리아미드 필라멘트 및 그의 제조방법
WO2014196689A1 (ko) 비대칭성 폴리비닐리덴플루오라이드 중공사막의 제조방법 및 이로부터 제조된 중공사막
WO2022265249A1 (ko) 파라계 아라미드 섬유 및 이의 제조 방법
WO2019225848A1 (ko) 아라미드 나노 섬유 분산액의 제조방법
WO2015102297A1 (ko) 공중합 아라미드 원착사 및 그의 제조방법
WO2018124832A1 (ko) 라이오셀 섬유, 이를 포함하는 부직 섬유 집합체 및 이를 포함하는 마스크팩 시트
WO2022265250A1 (ko) 파라계 아라미드 섬유 및 이의 제조 방법
WO2019190141A1 (ko) 고강도 원사를 제조하기 위한 방사팩, 원사의 제조장치 및 원사의 제조방법
WO2022086062A1 (ko) 습식 부직포용 폴리에스테르 단섬유, 이를 포함하는 습식 부직포 및 이의 제조방법
WO2021066438A1 (ko) 아라미드 나노섬유를 포함하는 고분자 복합소재 및 이의 제조방법
WO2022203183A1 (ko) 타이어 코드
WO2024049185A1 (ko) 코드 및 이의 제조 방법
WO2024076102A1 (ko) 우수한 열적 특성을 갖는 폴리에틸렌 원사 및 그 제조 방법
KR20240037042A (ko) 파라계 아라미드 섬유 및 이의 제조 방법
KR20240037041A (ko) 파라계 아라미드 섬유 및 이의 제조 방법
WO2023277428A1 (ko) 후가공성이 향상된 폴리에틸렌 원사 및 이를 포함하는 원단
WO2023106796A1 (ko) 원착 폴리에틸렌 원사 및 이를 포함하는 기능성 원단
WO2024225681A1 (ko) 타이어 코드 및 그 제조방법
WO2024053782A1 (ko) 고강도 시스코어형 합성섬유의 제조방법 및 그로부터 제조된 고강도 시스코어형 합성섬유
WO2022075803A1 (ko) 수축율이 향상된 고강도 폴리에틸렌 원사 및 이의 제조방법
KR20240048270A (ko) 파라계 아라미드 섬유 및 이의 제조 방법
KR20240048271A (ko) 파라계 아라미드 섬유 및 이의 제조 방법
KR20240048272A (ko) 파라계 아라미드 섬유 및 이의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22825176

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18559026

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2023572954

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2022825176

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 202280038793.9

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2022825176

Country of ref document: EP

Effective date: 20231128

NENP Non-entry into the national phase

Ref country code: DE