WO2022265103A1 - センサ及び生体物質検出方法 - Google Patents
センサ及び生体物質検出方法 Download PDFInfo
- Publication number
- WO2022265103A1 WO2022265103A1 PCT/JP2022/024363 JP2022024363W WO2022265103A1 WO 2022265103 A1 WO2022265103 A1 WO 2022265103A1 JP 2022024363 W JP2022024363 W JP 2022024363W WO 2022265103 A1 WO2022265103 A1 WO 2022265103A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- electrode
- solid electrolyte
- film
- sensor
- semiconductor film
- Prior art date
Links
- 239000012620 biological material Substances 0.000 title claims description 18
- 238000000034 method Methods 0.000 title description 27
- 239000004065 semiconductor Substances 0.000 claims abstract description 94
- 239000007788 liquid Substances 0.000 claims abstract description 51
- 230000005684 electric field Effects 0.000 claims abstract description 18
- 239000007784 solid electrolyte Substances 0.000 claims description 158
- 239000000126 substance Substances 0.000 claims description 49
- 238000001514 detection method Methods 0.000 claims description 46
- 239000012528 membrane Substances 0.000 claims description 36
- 239000000758 substrate Substances 0.000 claims description 36
- 239000000523 sample Substances 0.000 claims description 26
- 229910044991 metal oxide Inorganic materials 0.000 claims description 25
- 150000004706 metal oxides Chemical class 0.000 claims description 25
- 125000004429 atom Chemical group 0.000 claims description 24
- 239000004020 conductor Substances 0.000 claims description 23
- 239000012085 test solution Substances 0.000 claims description 20
- 238000012360 testing method Methods 0.000 claims description 13
- VSZWPYCFIRKVQL-UHFFFAOYSA-N selanylidenegallium;selenium Chemical compound [Se].[Se]=[Ga].[Se]=[Ga] VSZWPYCFIRKVQL-UHFFFAOYSA-N 0.000 claims description 12
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 11
- 229910052739 hydrogen Inorganic materials 0.000 claims description 11
- 239000001257 hydrogen Substances 0.000 claims description 11
- 229910052799 carbon Inorganic materials 0.000 claims description 10
- 229910052761 rare earth metal Inorganic materials 0.000 claims description 8
- 229910052715 tantalum Inorganic materials 0.000 claims description 8
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 claims description 8
- 229910052738 indium Inorganic materials 0.000 claims description 3
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 claims description 3
- 125000004435 hydrogen atom Chemical class [H]* 0.000 claims 1
- 239000011248 coating agent Substances 0.000 abstract description 17
- 238000000576 coating method Methods 0.000 abstract description 17
- 239000007787 solid Substances 0.000 abstract 4
- 239000010408 film Substances 0.000 description 214
- 239000010410 layer Substances 0.000 description 26
- 108020004414 DNA Proteins 0.000 description 25
- 239000000243 solution Substances 0.000 description 25
- 239000002243 precursor Substances 0.000 description 21
- 229910003480 inorganic solid Inorganic materials 0.000 description 16
- 241000588724 Escherichia coli Species 0.000 description 15
- 230000000052 comparative effect Effects 0.000 description 15
- 230000035945 sensitivity Effects 0.000 description 15
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 11
- 230000015572 biosynthetic process Effects 0.000 description 10
- 150000002431 hydrogen Chemical class 0.000 description 10
- 238000004458 analytical method Methods 0.000 description 9
- 239000000463 material Substances 0.000 description 9
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 9
- 229910052746 lanthanum Inorganic materials 0.000 description 8
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 8
- 229910004298 SiO 2 Inorganic materials 0.000 description 7
- 239000013256 coordination polymer Substances 0.000 description 6
- 229920001795 coordination polymer Polymers 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 6
- 238000004528 spin coating Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 239000002356 single layer Substances 0.000 description 5
- 239000010409 thin film Substances 0.000 description 5
- 239000010936 titanium Substances 0.000 description 5
- WYTZZXDRDKSJID-UHFFFAOYSA-N (3-aminopropyl)triethoxysilane Chemical compound CCO[Si](OCC)(OCC)CCCN WYTZZXDRDKSJID-UHFFFAOYSA-N 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 238000001678 elastic recoil detection analysis Methods 0.000 description 4
- 239000010931 gold Substances 0.000 description 4
- 108020004999 messenger RNA Proteins 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 239000007769 metal material Substances 0.000 description 4
- 125000005575 polycyclic aromatic hydrocarbon group Chemical group 0.000 description 4
- 238000005001 rutherford backscattering spectroscopy Methods 0.000 description 4
- 238000004544 sputter deposition Methods 0.000 description 4
- KZMAWJRXKGLWGS-UHFFFAOYSA-N 2-chloro-n-[4-(4-methoxyphenyl)-1,3-thiazol-2-yl]-n-(3-methoxypropyl)acetamide Chemical compound S1C(N(C(=O)CCl)CCCOC)=NC(C=2C=CC(OC)=CC=2)=C1 KZMAWJRXKGLWGS-UHFFFAOYSA-N 0.000 description 3
- SXRSQZLOMIGNAQ-UHFFFAOYSA-N Glutaraldehyde Chemical compound O=CCCCC=O SXRSQZLOMIGNAQ-UHFFFAOYSA-N 0.000 description 3
- 108091028043 Nucleic acid sequence Proteins 0.000 description 3
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 3
- 230000000295 complement effect Effects 0.000 description 3
- 238000007641 inkjet printing Methods 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 229910021645 metal ion Inorganic materials 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 239000008363 phosphate buffer Substances 0.000 description 3
- 238000000206 photolithography Methods 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 238000003752 polymerase chain reaction Methods 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 108020004465 16S ribosomal RNA Proteins 0.000 description 2
- 229920003026 Acene Polymers 0.000 description 2
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 2
- 229910002367 SrTiO Inorganic materials 0.000 description 2
- 125000003172 aldehyde group Chemical group 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- MWPLVEDNUUSJAV-UHFFFAOYSA-N anthracene Chemical compound C1=CC=CC2=CC3=CC=CC=C3C=C21 MWPLVEDNUUSJAV-UHFFFAOYSA-N 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- XBDQKXXYIPTUBI-UHFFFAOYSA-N dimethylselenoniopropionate Natural products CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 2
- 238000000921 elemental analysis Methods 0.000 description 2
- 229910052735 hafnium Inorganic materials 0.000 description 2
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 2
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 2
- 229910017053 inorganic salt Inorganic materials 0.000 description 2
- 238000007481 next generation sequencing Methods 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 125000002524 organometallic group Chemical group 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 2
- 229920002120 photoresistant polymer Polymers 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- WOCIAKWEIIZHES-UHFFFAOYSA-N ruthenium(iv) oxide Chemical compound O=[Ru]=O WOCIAKWEIIZHES-UHFFFAOYSA-N 0.000 description 2
- 229910052814 silicon oxide Inorganic materials 0.000 description 2
- TXEYQDLBPFQVAA-UHFFFAOYSA-N tetrafluoromethane Chemical group FC(F)(F)F TXEYQDLBPFQVAA-UHFFFAOYSA-N 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- XNWFRZJHXBZDAG-UHFFFAOYSA-N 2-METHOXYETHANOL Chemical compound COCCO XNWFRZJHXBZDAG-UHFFFAOYSA-N 0.000 description 1
- AHYFYQKMYMKPKD-UHFFFAOYSA-N 3-ethoxysilylpropan-1-amine Chemical compound CCO[SiH2]CCCN AHYFYQKMYMKPKD-UHFFFAOYSA-N 0.000 description 1
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 1
- 229910052684 Cerium Inorganic materials 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 102000053602 DNA Human genes 0.000 description 1
- 102100033215 DNA nucleotidylexotransferase Human genes 0.000 description 1
- 102000016928 DNA-directed DNA polymerase Human genes 0.000 description 1
- 108010014303 DNA-directed DNA polymerase Proteins 0.000 description 1
- 229910052692 Dysprosium Inorganic materials 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 229910052691 Erbium Inorganic materials 0.000 description 1
- 229910052693 Europium Inorganic materials 0.000 description 1
- 229910052688 Gadolinium Inorganic materials 0.000 description 1
- 229910052689 Holmium Inorganic materials 0.000 description 1
- 101000800646 Homo sapiens DNA nucleotidylexotransferase Proteins 0.000 description 1
- 229910052765 Lutetium Inorganic materials 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 229920000557 Nafion® Polymers 0.000 description 1
- 229910052779 Neodymium Inorganic materials 0.000 description 1
- MUBZPKHOEPUJKR-UHFFFAOYSA-L Oxalate Chemical compound [O-]C(=O)C([O-])=O MUBZPKHOEPUJKR-UHFFFAOYSA-L 0.000 description 1
- 229910052777 Praseodymium Inorganic materials 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- 229910052772 Samarium Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 229910020923 Sn-O Inorganic materials 0.000 description 1
- 229910020994 Sn-Zn Inorganic materials 0.000 description 1
- 229910009069 Sn—Zn Inorganic materials 0.000 description 1
- 229910052771 Terbium Inorganic materials 0.000 description 1
- 229910052775 Thulium Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 229910052769 Ytterbium Inorganic materials 0.000 description 1
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 1
- 229910007610 Zn—Sn Inorganic materials 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 229910021417 amorphous silicon Inorganic materials 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- BSDOQSMQCZQLDV-UHFFFAOYSA-N butan-1-olate;zirconium(4+) Chemical compound [Zr+4].CCCC[O-].CCCC[O-].CCCC[O-].CCCC[O-] BSDOQSMQCZQLDV-UHFFFAOYSA-N 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 210000002421 cell wall Anatomy 0.000 description 1
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- CZWHMRTTWFJMBC-UHFFFAOYSA-N dinaphtho[2,3-b:2',3'-f]thieno[3,2-b]thiophene Chemical compound C1=CC=C2C=C(SC=3C4=CC5=CC=CC=C5C=C4SC=33)C3=CC2=C1 CZWHMRTTWFJMBC-UHFFFAOYSA-N 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- KBQHZAAAGSGFKK-UHFFFAOYSA-N dysprosium atom Chemical compound [Dy] KBQHZAAAGSGFKK-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000003487 electrochemical reaction Methods 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- UYAHIZSMUZPPFV-UHFFFAOYSA-N erbium Chemical compound [Er] UYAHIZSMUZPPFV-UHFFFAOYSA-N 0.000 description 1
- OGPBJKLSAFTDLK-UHFFFAOYSA-N europium atom Chemical compound [Eu] OGPBJKLSAFTDLK-UHFFFAOYSA-N 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- -1 for example Substances 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- UIWYJDYFSGRHKR-UHFFFAOYSA-N gadolinium atom Chemical compound [Gd] UIWYJDYFSGRHKR-UHFFFAOYSA-N 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 229910021389 graphene Inorganic materials 0.000 description 1
- KJZYNXUDTRRSPN-UHFFFAOYSA-N holmium atom Chemical compound [Ho] KJZYNXUDTRRSPN-UHFFFAOYSA-N 0.000 description 1
- 238000009396 hybridization Methods 0.000 description 1
- 150000002430 hydrocarbons Chemical group 0.000 description 1
- 230000003100 immobilizing effect Effects 0.000 description 1
- 229910003437 indium oxide Inorganic materials 0.000 description 1
- HVDZMISZAKTZFP-UHFFFAOYSA-N indium(3+) trinitrate trihydrate Chemical compound O.O.O.[In+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O HVDZMISZAKTZFP-UHFFFAOYSA-N 0.000 description 1
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- JLRJWBUSTKIQQH-UHFFFAOYSA-K lanthanum(3+);triacetate Chemical compound [La+3].CC([O-])=O.CC([O-])=O.CC([O-])=O JLRJWBUSTKIQQH-UHFFFAOYSA-K 0.000 description 1
- OHSVLFRHMCKCQY-UHFFFAOYSA-N lutetium atom Chemical compound [Lu] OHSVLFRHMCKCQY-UHFFFAOYSA-N 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- QEFYFXOXNSNQGX-UHFFFAOYSA-N neodymium atom Chemical compound [Nd] QEFYFXOXNSNQGX-UHFFFAOYSA-N 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 108020004707 nucleic acids Proteins 0.000 description 1
- 102000039446 nucleic acids Human genes 0.000 description 1
- 150000007523 nucleic acids Chemical class 0.000 description 1
- 230000001293 nucleolytic effect Effects 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- SLIUAWYAILUBJU-UHFFFAOYSA-N pentacene Chemical compound C1=CC=CC2=CC3=CC4=CC5=CC=CC=C5C=C4C=C3C=C21 SLIUAWYAILUBJU-UHFFFAOYSA-N 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000009719 polyimide resin Substances 0.000 description 1
- 229920005591 polysilicon Polymers 0.000 description 1
- PUDIUYLPXJFUGB-UHFFFAOYSA-N praseodymium atom Chemical compound [Pr] PUDIUYLPXJFUGB-UHFFFAOYSA-N 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 235000019260 propionic acid Nutrition 0.000 description 1
- IUVKMZGDUIUOCP-BTNSXGMBSA-N quinbolone Chemical compound O([C@H]1CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)CC[C@@]21C)C1=CCCC1 IUVKMZGDUIUOCP-BTNSXGMBSA-N 0.000 description 1
- 239000003870 refractory metal Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- YYMBJDOZVAITBP-UHFFFAOYSA-N rubrene Chemical compound C1=CC=CC=C1C(C1=C(C=2C=CC=CC=2)C2=CC=CC=C2C(C=2C=CC=CC=2)=C11)=C(C=CC=C2)C2=C1C1=CC=CC=C1 YYMBJDOZVAITBP-UHFFFAOYSA-N 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- KZUNJOHGWZRPMI-UHFFFAOYSA-N samarium atom Chemical compound [Sm] KZUNJOHGWZRPMI-UHFFFAOYSA-N 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000003980 solgel method Methods 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
- 125000000542 sulfonic acid group Chemical group 0.000 description 1
- 239000013076 target substance Substances 0.000 description 1
- GZCRRIHWUXGPOV-UHFFFAOYSA-N terbium atom Chemical compound [Tb] GZCRRIHWUXGPOV-UHFFFAOYSA-N 0.000 description 1
- FRNOGLGSGLTDKL-UHFFFAOYSA-N thulium atom Chemical compound [Tm] FRNOGLGSGLTDKL-UHFFFAOYSA-N 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- NAWDYIZEMPQZHO-UHFFFAOYSA-N ytterbium Chemical compound [Yb] NAWDYIZEMPQZHO-UHFFFAOYSA-N 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/28—Electrolytic cell components
- G01N27/30—Electrodes, e.g. test electrodes; Half-cells
- G01N27/333—Ion-selective electrodes or membranes
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M1/00—Apparatus for enzymology or microbiology
- C12M1/36—Apparatus for enzymology or microbiology including condition or time responsive control, e.g. automatically controlled fermentors
- C12M1/38—Temperature-responsive control
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6813—Hybridisation assays
- C12Q1/6816—Hybridisation assays characterised by the detection means
- C12Q1/6825—Nucleic acid detection involving sensors
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6813—Hybridisation assays
- C12Q1/6834—Enzymatic or biochemical coupling of nucleic acids to a solid phase
- C12Q1/6837—Enzymatic or biochemical coupling of nucleic acids to a solid phase using probe arrays or probe chips
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/28—Electrolytic cell components
- G01N27/30—Electrodes, e.g. test electrodes; Half-cells
- G01N27/327—Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/403—Cells and electrode assemblies
- G01N27/414—Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/403—Cells and electrode assemblies
- G01N27/414—Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS
- G01N27/4145—Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS specially adapted for biomolecules, e.g. gate electrode with immobilised receptors
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/416—Systems
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/543—Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
- G01N33/551—Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being inorganic
- G01N33/553—Metal or metal coated
Definitions
- the present invention relates to a sensor and a biological material detection method.
- This application claims priority based on Japanese Patent Application No. 2021-101728 filed in Japan on June 18, 2021, the content of which is incorporated herein.
- PCR polymerase chain reaction
- next generation sequencing are known methods for detecting biological substances from test solutions containing biological substances such as mRNA/DNA.
- the PCR method is a method of amplifying a specific region (target region) on a DNA sequence using a heat-stable DNA polymerase, and since it can be detected from a single DNA molecule, it can detect a specific DNA sequence with high sensitivity. is possible.
- Next-generation sequencing is a method in which DNA is fragmented to prepare a library, and the DNA fragments in the library are sequenced in parallel, making it possible to comprehensively decode all DNA sequences from a single molecule. It has become. These detection methods for biosubstances require a long detection time.
- Non-Patent Document 1 discloses a sensor having a thin film transistor structure in which a source electrode, a drain electrode, and a channel are covered with a dielectric.
- the test liquid which is the sample
- the test liquid which is the sample
- the thin-film transistor structure sensor described in Non-Patent Document 1 has a detection limit of about 1 ⁇ g/mL, and further improvement in sensitivity is desired. In order to improve the sensitivity of the sensor in the thin film transistor structure, it is conceivable to remove the dielectric to expose the source and drain electrodes and the channel.
- test liquid may enter the interface between the source and drain electrodes and the channel, which may become a new factor of instability.
- the present invention has been made in view of the circumstances described above, and an object of the present invention is to provide a sensor and a biological substance detection method which are excellent in selectivity to a detection target and have high sensitivity and a low detection limit. .
- the present inventors have found that, in a sensor having a thin film transistor structure having a first electrode, a second electrode, a third electrode, and a semiconductor film connecting the first electrode and the second electrode, the first electrode and the The second electrode and the semiconductor film are covered with a solid electrolyte film, and when the exposed surface exposed to the outside of the solid electrolyte film is in contact with the conductive liquid, the third electrode becomes the solid electrolyte through the conductive liquid.
- the present invention provides the following means in order to solve the above problems.
- the solid electrolyte film has an exposed surface exposed to the outside
- the third electrode is positioned so that an electric field can be applied to the exposed surface of the solid electrolyte film through the conductive liquid when the exposed surface of the solid electrolyte film is in contact with the conductive liquid.
- a sensor configured to be positioned.
- a conductive material film and a solid electrolyte film are laminated between the first electrode, the second electrode and the semiconductor film and the substrate, and the first electrode, the second electrode and the The sensor according to [2] above, wherein a semiconductor film is disposed on the solid electrolyte film.
- the solid electrolyte film is a metal oxide containing a rare earth element and zirconium (Zr) or a metal oxide containing a rare earth element and tantalum (Ta), wherein the carbon (C) content is 0. .5 atom % or more and 15 atom % or less, and a hydrogen (H) content of 2 atom % or more and 20 atom % or less, wherein the semiconductor film comprises a metal oxide containing at least indium (In);
- the sensor according to any one of [1] to [5] above, which is an inorganic semiconductor film that is a substance.
- a biological substance detection method using the sensor according to any one of [1] to [8] above a step of supplying a test solution containing a biological material to the exposed surface of the solid electrolyte film to trap the biological material on the exposed surface; replacing the test liquid with the conductive liquid; applying a voltage between the third electrode and the first electrode and measuring a current between the first electrode and the second electrode; and obtaining an amount of the biological material in the test solution based on the voltage and the current.
- the present invention it is possible to provide a sensor and a biological substance detection method that have excellent selectivity for detection targets, high sensitivity, and a low detection limit.
- FIG. 1 is a plan view showing an example of a sensor according to one embodiment of the invention.
- FIG. 2 is a sectional view taken along line II-II' of FIG.
- FIG. 3A is a schematic diagram for explaining a biological substance detection method using the sensor shown in FIG. 1, and is an enlarged cross-sectional view of the sensor as seen along line II-II' in FIG.
- FIG. 3B is an enlarged view of FIG. 3A.
- FIG. 4 is a plan view showing another example of the sensor according to one embodiment of the present invention.
- 5A is a schematic diagram for explaining a biological substance detection method using the sensor shown in FIG. 4, and is a cross-sectional view of the sensor as seen along line V-V' in FIG.
- FIG. 5B is an enlarged view of FIG. 5A.
- FIG. 6A is a V TG -I G curve measured in Inventive Example 1 and Comparative Examples 1 and 2.
- FIG. 6B is a V TG -I SD curve measured in Inventive Example 1 and Comparative Examples 1 and 2.
- FIG. 10 is a flow diagram showing a procedure for immobilizing probe DNA on the holding portion of the sensor in Example 2 of the present invention.
- 2 is a graph showing a V TG -I SD curve measured in Example 2 of the present invention.
- 2 is a graph showing a V TG -I SD curve measured in Example 3 of the present invention.
- FIG. 1 is a plan view showing an example of a sensor according to one embodiment of the present invention
- FIG. 2 is a cross-sectional view taken along line II-II' of FIG.
- the sensor 100 has a substrate 11, a first electrode 21, a second electrode 22, a third electrode 23, a semiconductor film 24, and a solid electrolyte film 25.
- FIG. The semiconductor film 24 is arranged at a position connecting the first electrode 21 and the second electrode 22 .
- the first electrode 21 , the second electrode 22 and the semiconductor film 24 form the sensor piece 20 .
- a conductive material film 12 and a solid electrolyte film 13 are laminated between the sensor piece 20 (the first electrode 21, the second electrode 22 and the semiconductor film 24), the third electrode 23, and the substrate 11, and the sensor A piece 20 and a third electrode 23 are arranged on the solid electrolyte membrane 13 .
- a solid electrolyte coating 25 covers the sensor piece 20 .
- the solid electrolyte film 25 has an exposed surface 25a exposed to the outside (upper side, that is, the side opposite to the sensor piece 20).
- the third electrode 23 is located at a position where an electric field can be applied to the exposed surface 25a of the solid electrolyte coating 25 via the conductive liquid Lq when the exposed surface 25a of the solid electrolyte coating 25 is in contact with the conductive liquid Lq.
- the conductive liquid Lq is a liquid having conductivity so that an electric field can be applied from the third electrode 23 to the exposed surface 25a.
- an aqueous solution containing an inorganic salt can be used as the conductive liquid Lq.
- the inorganic salt is not particularly limited as long as it is substantially inert to the substance to be detected and the solid electrolyte film 25 during use.
- the exposed surface 25 a of the solid electrolyte film 25 is preferably located at a position facing the semiconductor film 24 .
- the exposed surface 25a preferably has a capture substance immobilized thereon for capturing the detection target.
- probe molecules for capturing the biological substance may be immobilized.
- the exposed surface 25a and the third electrode 23 are surrounded by a holding portion 30 for holding the conductive liquid Lq.
- the shape of the holding part 30 is not limited, it is preferably wall-like, for example, as shown in FIGS.
- the first electrode 21 is connected to the first terminal 21b via the first lead wire 21a.
- the second electrode 22 is connected to a second terminal 22b via a second lead wire 22a.
- the third electrode 23 is connected to a third terminal 23b via a third lead wire 23a.
- first electrode 21, the second electrode 22, and the third electrode 23 metal materials and metal oxides can be used.
- metallic materials include refractory metals such as platinum (Pt) and alloys thereof.
- metal oxides include indium tin oxide (ITO) and ruthenium oxide (RuO 2 ).
- ITO indium tin oxide
- RuO 2 ruthenium oxide
- Each of the first electrode 21, the second electrode 22, and the third electrode 23 may be a single-layer body, or may be a multi-layer body in which a plurality of electrode material layers are laminated.
- the thicknesses of the first electrode 21, the second electrode 22, and the third electrode 23 may be, for example, within the range of 50 nm or more and 200 nm or less.
- the first lead wire 21a and the first terminal 21b may be made of the same material as the first electrode 21 and may have the same thickness.
- the second lead wire 22a and the second terminal 22b may be made of the same material as the second electrode 22 and may have the same thickness.
- the third lead wire 23a and the third terminal 23b may be made of the same material as the third electrode 23 and may have the same thickness.
- the semiconductor film 24 may be an inorganic semiconductor film or an organic semiconductor film.
- the inorganic semiconductor film contains an inorganic semiconductor.
- the inorganic semiconductor film is preferably formed only from an inorganic semiconductor.
- Inorganic semiconductors include, for example, indium oxide (In 2 O 3 ), zinc oxide (ZnO), In—Ga—Zn oxide (IGZO), In—Sn—Zn oxide (ITZO), Zn—Sn oxide (Zn —Sn—O), amorphous silicon ( ⁇ -Si), low temperature polysilicon (LTPS) and graphene. These inorganic semiconductors may be used individually by 1 type, and may be used in combination of 2 types. Also, the inorganic semiconductor may be in an amorphous phase or a nanocrystalline phase.
- An organic semiconductor film includes an organic semiconductor.
- the organic semiconductor film is preferably formed only from an organic semiconductor.
- the organic semiconductor is preferably a polycyclic aromatic hydrocarbon or a thienoacene-based compound.
- the polycyclic aromatic hydrocarbon preferably contains 4 or more benzene rings.
- the polycyclic aromatic hydrocarbon is preferably acene.
- Acene may have a substituent (for example, a phenyl group).
- Examples of polycyclic aromatic hydrocarbons include pentacene and rubrene.
- Examples of thienoacene-based compounds include BTBT, DNTT, C8-DNTT, and C10-DNBOT. These organic semiconductors may be used individually by 1 type, and may be used in combination of 2 types. Alternatively, the organic semiconductor may be in an amorphous phase or a nanocrystalline phase.
- the semiconductor film 24 may be a single-layer body, or may be a multi-layer body in which a plurality of semiconductor layers are laminated.
- the thickness of the semiconductor film 24 may be, for example, within the range of 5 nm or more and 80 nm or less.
- the length of the semiconductor film 24 (the distance between the first electrode 21 and the second electrode 22) is, for example, 50 ⁇ m or more and 200 ⁇ m or less.
- the width of the semiconductor film 24 (the length of contact with the first electrode 21 and the second electrode 22) may be, for example, in the range of 1 ⁇ m or more and 10000 ⁇ m or less.
- the solid electrolyte coating 25 may be proton conductive.
- the solid electrolyte film 25 may have an ionic conductivity of 1 ⁇ 10 ⁇ 8 S/cm or higher.
- the ion conductivity of the solid electrolyte film 25 may be 1 ⁇ 10 ⁇ 2 S/cm or less.
- the solid electrolyte film 25 may be an inorganic solid electrolyte film or an organic solid electrolyte film.
- the inorganic solid electrolyte film contains an inorganic solid electrolyte.
- the inorganic solid electrolyte film is preferably formed only from the inorganic solid electrolyte.
- the inorganic solid electrolyte film can be formed of, for example, a metal oxide containing a rare earth element and zirconium (Zr) or a metal oxide containing a rare earth element and tantalum (Ta).
- the content of carbon (C) in the inorganic solid electrolyte film may be in the range of 0.5 atom % or more and 15 atom % or less.
- the content of hydrogen (H) in the inorganic solid electrolyte film may be in the range of 2 atom % or more and 20 atom % or less.
- the inorganic solid electrolyte film is composed of the above metal oxide and the carbon (C) and hydrogen (H) contents are both within the above ranges, the sensor 100 becomes highly sensitive and the detection limit is greatly increased. Also, the stability of detection in the presence of moisture or the like is increased. From the viewpoint of further improving these characteristics, the content of carbon (C) is in the range of 1 atom% or more and 10 atom% or less, and the content of hydrogen (H) is in the range of 5 atom% or more and 18 atom% or less. good.
- the inorganic solid electrolyte film can be formed, for example, by any one of (A1) to (A5) below.
- (A1) metal oxide containing lanthanum (La) and zirconium (Zr) (A2) metal oxide containing lanthanum (La) and tantalum (Ta) (A3) cerium (Ce), praseodymium (Pr), neodymium (Nd), samarium (Sm), europium (Eu), gadolinium (Gd), terbium (Tb), dysprosium (Dy), holmium (Ho), erbium (Er), thulium (Tm), ytterbium (Yb), lutetium (Lu) and any metal element selected from the group consisting of yttrium (Y) and a metal oxide containing zirconium (Zr) or tantalum (Ta) (A4) hafnium (Hf), zirconium (Zr) and Metal oxide containing at least
- the inorganic solid electrolyte film is formed of a metal oxide containing lanthanum (La) and zirconium (Zr) (A1)
- the atomic ratio of lanthanum (La) and zirconium (Zr) is, for example, When lanthanum (La) is 1, zirconium (Zr) may be in the range of 0.43 or more and 2.33 or less, or may be in the range of 1.00 or more and 2.33 or less.
- the inorganic solid electrolyte film is formed of a metal oxide containing lanthanum (La) and tantalum (Ta) (A2)
- the atomic ratio of lanthanum (La) and tantalum (Ta) is also particularly It is not limited.
- the inorganic solid electrolyte film is formed of any one of the metal oxides (A3) to (A5) above, the atomic ratio of each metal element is not particularly limited.
- the inorganic solid electrolyte may be in an amorphous phase.
- the atomic composition ratio of the metal oxide can be determined by elemental analysis using Rutherford backscattering spectroscopy (RBS method) or the like.
- the content of carbon (C) and hydrogen (H) is determined by Rutherford Backscattering Spectrometry (RBS analysis method), Hydrogen Forward scattering Spectrometry (HFS analysis method), and nuclear reaction It can be obtained by performing an elemental analysis using an analysis method (Nuclear Reaction Analysis: NRA analysis method).
- the organic solid electrolyte film contains an organic solid electrolyte.
- the organic solid electrolyte film is preferably formed only from the organic solid electrolyte.
- the organic solid electrolyte is preferably proton conductive, for example.
- a polymer or an organometallic complex having a proton conductive group on a side chain may be used.
- the main chain of the polymer having proton-conducting groups in its side chains may be, for example, a hydrocarbon structure or a perfluorocarbon structure.
- a proton-conducting group may be, for example, a sulfonic acid group.
- Nafion (registered trademark) which is a perfluorocarbon sulfonic acid, can be used as the polymer having a proton-conducting group in the side chain.
- the organometallic complex can be, for example, a coordination polymer.
- the coordination polymer may be an oxalato-bridged coordination polymer represented by the following formula (1).
- M represents a divalent or trivalent metal ion.
- M represents a trivalent metal ion.
- M represents a trivalent metal ion.
- M contains a divalent metal ion, the oxalato-bridged coordination polymer becomes anionic, and a counterion may be incorporated into the oxalato-bridged coordination polymer.
- ox represents an oxalate ion (C 2 O 4 2 ⁇ ).
- the organic solid electrolyte may be used alone or in combination of two. Also, the organic solid electrolyte may be in an amorphous phase or a nanocrystalline phase.
- the solid electrolyte film 25 may be a single-layer body, or may be a multi-layer body in which a plurality of solid electrolyte layers are laminated.
- the thickness of the solid electrolyte film 25 may be, for example, within the range of 1 nm or more and 100 nm or less.
- an insulating substrate and a semiconductor substrate can be used.
- insulating substrates include high-heat-resistant glass, alumina (Al 2 O 3 ) substrates, STO (SrTiO) substrates, SiO 2 /Si substrates (Si substrates with SiO 2 films formed thereon), and Si substrate surfaces.
- semiconductor substrates include Si substrates, SiC substrates, and Ge substrates.
- the thickness of the substrate 11 is, for example, 10 ⁇ m or more and 1 mm or less.
- the conductive material film 12 is a conductive material film containing a conductive material.
- the conductive material film 12 may be made of only a conductive material.
- metal materials and metal oxides can be used as the conductive material.
- metal materials include platinum (Pt), gold (Au), silver (Ag), copper (Cu), aluminum (Al), molybdenum (Mo), palladium (Pd), ruthenium (Ru), iridium (Ir ), tungsten (W), titanium (Ti), and alloys of these metals.
- metal oxides include indium tin oxide (ITO) and ruthenium oxide (RuO 2 ).
- the conductive material film 12 may be a single layer or may be a multi-layer formed by laminating a plurality of conductive material films.
- the thickness of the conductive material film 12 is, for example, 50 nm or more and 200 nm or less.
- the solid electrolyte membrane 13 may be proton conductive.
- the solid electrolyte membrane 13 may have an ionic conductivity of 1 ⁇ 10 ⁇ 8 S/cm or higher.
- the ion conductivity of the solid electrolyte membrane 13 may be 1 ⁇ 10 ⁇ 2 S/cm or less.
- the solid electrolyte membrane 13 may be an inorganic solid electrolyte membrane or an organic solid electrolyte membrane. Examples of materials for the inorganic solid electrolyte membrane and the organic solid electrolyte membrane are the same as those for the solid electrolyte film 25 .
- the solid electrolyte membrane 13 may be a single-layer body, or may be a multi-layer body in which a plurality of solid electrolyte layers are laminated.
- the thickness of the solid electrolyte membrane 13 may be, for example, within the range of 50 nm or more and 300 nm or less.
- the material of the holding part 30 may be organic or inorganic.
- organic substances include polyimide and epoxy resin.
- inorganic substances include alumina and silica.
- the height of the holding portion 30 may be, for example, within a range of 0.10 mm or more and 5 mm or less.
- the thickness of the holding portion 30 may be, for example, in the range of 0.5 mm or more and 5 mm or less, preferably about 1 mm.
- 3A is a schematic diagram for explaining a biological substance detection method using the biological substance detection sensor shown in FIG. 1, and is an enlarged cross-sectional view of the biological substance detection sensor taken along line II-II' of FIG. 3B is an enlarged view of FIG. 3A.
- probe molecules 1 for capturing biological substances are fixed to the exposed surface 25a inside the holding portion 30 of the sensor 100 .
- Detection of biological substances using the sensor 100 is performed as follows. First, the probe molecules 1 immobilized on the exposed surface 25a of the sensor 100 capture the biological substance 2 to be detected. Specifically, the test liquid containing the biological material 2 is injected into the holding portion 30 of the sensor 100 to supply the exposed surface 25a of the solid electrolyte film 25 with the test liquid. As a result, the biological substance 2 to be detected is trapped on the exposed surface 25a via the probe molecules 1. As shown in FIG.
- the biological material 2 is, for example, nucleic acids such as DNA and mRNA.
- the probe molecule 1 is DNA or mRNA complementary to a part of the biomaterial 2 .
- the test liquid is replaced with the conductive liquid Lq.
- the exposed surface 25a is washed with a washing liquid to remove, for example, biological substances not captured by the probe molecules 1 (biological substances not intended for detection) or non-specifically captured biological substances. Remove.
- the conductive liquid Lq is injected into the holding portion 30 of the sensor 100 to bring the third electrode 23 and the exposed surface 25a into contact with the conductive liquid Lq.
- Phosphate buffer (PBS) for example, can be used as the conductive liquid Lq. This enables the third electrode 23 to apply an electric field to the exposed surface 25a via the conductive liquid.
- a voltage V SD is applied between the first electrode 21 and the second electrode 22 and a voltage V TG is applied between the first electrode 21 and the third electrode 23 .
- the electrical properties of the semiconductor film 24 change due to the electric field generated by the charges of the biological material 2 trapped on the exposed surface 25a via the probe molecules 1 being transmitted to the semiconductor film 24 . Therefore, when an electric field of voltage VSD is applied from the third electrode 23 to the exposed surface 25a, the current ISD flowing between the first electrode 21 and the second electrode 22 changes. Based on the relationship between the voltage VSD and the current ISD , the biological substance 2 captured by the probe molecule 1 can be quantified, and the amount of the biological substance in the test solution can be obtained.
- the sensor 100 can be manufactured, for example, as follows.
- the substrate 11 eg, SiO 2 /Si substrate.
- a sputtering method can be used as a method for forming the conductive material film 12.
- the solid electrolyte film 13 is formed on the conductive material film 12 .
- the solid electrolyte membrane 13 can be formed, for example, by applying a solid electrolyte membrane precursor solution onto the conductive material membrane 12 and heating the resulting coating film.
- a solid electrolyte membrane precursor solution a liquid in which the solid electrolyte material constituting the solid electrolyte membrane 13 is dissolved or dispersed can be used.
- a method for applying the solid electrolyte membrane precursor solution for example, a spin coating method, an inkjet printing method, a nanoimprint method, or the like can be used.
- the heating temperature of the coating film is not particularly limited as long as it is a temperature at which the solvent of the solid electrolyte membrane precursor solution volatilizes and the solid electrolyte membrane 13 is formed.
- a semiconductor film 24 is formed on the solid electrolyte film 13 .
- the semiconductor film 24 can be formed, for example, as follows. First, a patterned resist film is formed on the solid electrolyte film 13 by photolithography. Next, a semiconductor film is formed by applying a semiconductor film precursor solution onto the solid electrolyte film 13 on which the resist film has been formed, and heating the resulting coating film. After that, the resist film is removed.
- a semiconductor film precursor solution a liquid in which a semiconductor material constituting the semiconductor film 24 is dissolved or dispersed can be used.
- the semiconductor film precursor solution for example, a spin coating method, an inkjet printing method, a nanoimprint method, or the like can be used.
- the heating temperature of the coating film is not particularly limited as long as it is a temperature at which the solvent of the semiconductor film precursor solution volatilizes and the semiconductor film 24 is formed.
- electrode patterns (first electrode 21, first lead wire 21a, first terminal 21b, second electrode 22, second lead wire) are formed on the solid electrolyte film 13 and the semiconductor film 24. 22a, second terminal 22b, third electrode 23, third lead wire 23a, and third terminal 23b).
- the electrode pattern can be formed, for example, as follows. First, a resist film patterned by photolithography is formed on the solid electrolyte film 13 and the semiconductor film 24 . Next, an electrode film is formed on the solid electrolyte film 13 and the semiconductor film 24 on which the resist film is formed. After that, the resist film is removed. As a method for forming the electrode film, for example, a sputtering method can be used.
- the solid electrolyte film 25 is formed on the sensor piece 20 (the first electrode 21, the second electrode 22, and the semiconductor film 24).
- the solid electrolyte film 25 can be formed, for example, as follows. First, a resist film is formed on the first terminal 21b, the second terminal 22b and the third electrode 23. Then, as shown in FIG. Next, a solid electrolyte film is formed by applying a solid electrolyte film precursor solution and heating the resulting coating film. After that, the resist film is removed.
- a solid electrolyte film precursor solution a liquid in which the solid electrolyte material constituting the solid electrolyte film 25 is dissolved or dispersed can be used.
- the solid electrolyte film precursor solution for example, a spin coating method, an inkjet printing method, a nanoimprint method, or the like can be used.
- the heating temperature of the coating film is not particularly limited as long as it is a temperature at which the solvent of the solid electrolyte film precursor solution volatilizes and the solid electrolyte film 25 is formed.
- the third electrode 23 is formed on the solid electrolyte membrane 13 of the substrate 11, but the position of the third electrode 23 is not limited to this.
- the third electrode 23 is located at a position where an electric field can be applied to the exposed surface 25a of the solid electrolyte coating 25 via the conductive liquid Lq when the exposed surface 25a of the solid electrolyte coating 25 is in contact with the conductive liquid Lq. It may be arranged at a position other than above the solid electrolyte membrane 13 as long as it is configured to be arranged at a position above the solid electrolyte membrane 13 .
- FIG. 4 is a plan view showing another example of the sensor according to one embodiment of the invention
- FIG. 5 is a schematic diagram explaining a biosubstance detection method using the sensor shown in FIG. 4 is a cross-sectional view of the sensor taken along line VV' of FIG. 4, and
- FIG. 5B is an enlarged view of FIG. 5A.
- the sensor 101 shown in FIGS. 4 and 5 has a substrate 11, a first electrode 21, a second electrode 22, a third electrode 23, a semiconductor film 24, and a solid electrolyte film 25.
- a conductive material film 12 and a solid electrolyte film 13 are laminated between the sensor piece 20 (the first electrode 21, the second electrode 22 and the semiconductor film 24) and the substrate 11.
- An electrode 23 is arranged on the solid electrolyte membrane 13 .
- the sensor 101 is configured such that the third electrode 23 is separated from the substrate 11 and part of the third electrode 23 is immersed in the conductive liquid Lq held by the holding portion 30 .
- Other configurations are the same as those of the sensor 100 described above. For this reason, the same reference numerals are used for the same or similar parts in the sensor 101 shown in FIGS. 4 and 5 and the sensor 100 described above, and the description thereof will be omitted.
- Detection of a biological substance using the sensor 101 can be performed as follows. First, as in the case of the sensor 100 described above, a test liquid containing the biological material 2 is supplied to the exposed surface 25a of the solid electrolyte film 25 to trap the biological material 2 on the exposed surface 25a through the probe molecules 1. . Then, the test liquid is replaced with the conductive liquid Lq.
- Part of the third electrode 23 is immersed in the conductive liquid Lq injected into the holding portion 30 of the sensor 101 .
- This enables the third electrode 23 to apply an electric field to the exposed surface 25a via the conductive liquid.
- the first electrode 21 and the second electrode 22 are connected to the first voltage supply section 31
- the first electrode 21 and the third electrode 23 are connected to the second voltage supply section 32 .
- Quantitation of biological material 2 captured by probe molecules 1 can be performed in the same manner as for sensor 100 shown in FIGS. 1-3B. That is, the voltage VSD is applied between the first electrode 21 and the second electrode 22 using the first voltage supply section 31, and the voltage VSD is applied between the first electrode 21 and the third electrode 22 using the second voltage supply section 32.
- a voltage VTG is applied across the electrode 23 .
- the current ISD flowing between the first electrode 21 and the second electrode 22 changes.
- the biological substance 2 captured by the probe molecule 1 can be quantified from the relationship between the voltage VSD and the current ISD , and the amount of the biological substance in the test solution can be obtained from this.
- the voltage VSD is applied between the first electrode 21 and the second electrode 22, and the voltage VSD is applied between the first electrode 21 and the third electrode 23.
- a voltage VTG is applied between
- an electric field is applied to the semiconductor film 24 through the solution and the solid electrolyte, and a current ISD flows between the first electrode 21 and the second electrode 22 .
- the strength of the electric field applied to the semiconductor film 24 changes depending on the amount of the biological material 2 trapped on the exposed surface 25a, according to the sensors 100 and 101 of the present embodiment, the voltage V SD and the current I SD Based on the relationship, the biological material 2 captured on the exposed surface 25a can be selectively and highly sensitively quantified.
- the solid electrolyte film 25 since the first electrode 21, the second electrode 22 and the semiconductor film 24 are covered with the solid electrolyte film 25, the solid electrolyte from the third electrode 23 through the test liquid Lq When an electric field is applied to the exposed surface 25a of the film 25, generation of leak current is suppressed. By suppressing the occurrence of this leak current, the aforementioned instability caused by the leak current can be suppressed, and detection can be performed with higher sensitivity and a lower detection limit.
- the solid electrolyte film 25 is a solid electrolyte, it is possible to induce a larger amount of charge in the semiconductor film than when the solid electrolyte film 25 is made of an insulator or a dielectric. Mutual conductance (gm) also increases. This results in higher sensitivity and lower detection limits. Furthermore, since the electric field created by the charge of the biological substance 2 can be collected in the semiconductor film 24 from a wider range than just above the semiconductor film 24 through the solid electrolyte film 25, the object to be detected can be detected with higher sensitivity. , resulting in lower detection limits. In particular, when the ion conductivity of the solid electrolyte film 25 is 1 ⁇ 10 ⁇ 8 S/cm or more, these effects are observed more remarkably.
- the solid electrolyte film 25 is a metal oxide containing a rare earth element and zirconium (Zr) or a metal oxide containing a rare earth element and tantalum (Ta), and carbon (C ) is 0.5 atom % or more and 15 atom % or less, and the hydrogen (H) content is 2 atom % or more and 20 atom % or less.
- the electric field generated by the charge of the biomaterial 2 is easily transmitted to the semiconductor film 24 .
- the semiconductor film 24 is an inorganic semiconductor film that is a metal oxide containing at least indium (In)
- the amount of change in electrical characteristics due to transmission of an electric field increases. Therefore, the detection target can be detected with higher sensitivity, and the detection limit is further lowered.
- the selectivity for the detection target is further improved.
- the biological substance detection method of the present embodiment uses the sensors 100 and 101 described above, it is possible to detect the detection target with excellent selectivity, high sensitivity, and a low detection limit.
- the present invention is not limited to the above embodiments, and various modifications and changes can be made within the scope of the gist of the present invention described in the scope of claims. is possible.
- a biological substance was used as an example of a detection target, but the detection target is not limited to this.
- the sensors 100 and 101 of the present embodiment can detect any electric field transmitted to the semiconductor film 24 by being captured by the exposed surface 25 a of the solid electrolyte film 25 .
- the object to be detected for example, a charged ionic substance, or a substance that generates charges by being captured by the exposed surface 25a can be used.
- Objects to be detected may be organic or inorganic.
- the exposed surface 25a may be covered with a selectively permeable membrane so that only substances that have permeated the selectively permeable membrane are trapped on the exposed surface 25a.
- the conductive material film 12 and the solid electrolyte film 13 are laminated in this order between the sensor piece 20 (the first electrode 21, the second electrode 22 and the semiconductor film 24) and the substrate 11.
- the sensor piece 20 may be arranged directly on the substrate 11 .
- only the solid electrolyte membrane 13 may be arranged between the sensor piece 20 and the substrate 11 .
- a SiO 2 /Si substrate was prepared by forming a silicon oxide (SiO 2 ) film with a thickness of 500 nm on a silicon substrate.
- a 10 nm-thick Ti layer and a 200 nm-thick Pt layer were formed in this order on the silicon oxide film of the SiO 2 /Si substrate by a sputtering method to form a Pt/Ti two-layer conductive material film. was deposited.
- a solid electrolyte film was formed by a sol-gel method.
- a La 0.3 Zr 0.7 O solution as a solid electrolyte membrane precursor solution was applied by a spin coating method to form a solid electrolyte membrane precursor layer.
- the solid electrolyte membrane precursor layer is preliminarily baked at 250° C. in an oxygen-containing atmosphere, and then main baked at 400° C. to form a solid electrolyte membrane of La 0.3 Zr 0.7 O having a thickness of 250 nm. formed.
- the carbon (C) and hydrogen (H) contents of the obtained solid electrolyte membrane were measured by Rutherford backscattering spectroscopy, hydrogen forward scattering analysis, and nuclear reaction analysis. As a result, the water content of carbon (C) was 2.0 atom %, and the content of hydrogen (H) was 10.1 atom %. Also, the ionic conductivity of the solid electrolyte membrane was measured using an AC impedance measuring device (manufactured by Biologic, SP-300). As a result, the ionic conductivity was 6.0 ⁇ 10 ⁇ 7 S/cm.
- the La 0.3 Zr 0.7 O solution was prepared as follows. Lanthanum acetate 1.5-hydrate and zirconium butoxide were mixed at a ratio of 3:7 (molar ratio), and the resulting mixture was converted to a La 0.3 Zr 0.7 O concentration of 0.2 mol/kg. It was dissolved in propionic acid so that The resulting mixed solution was refluxed in an oil bath at 110° C. for 30 minutes and then filtered through a membrane filter with a pore size of 0.2 ⁇ m to obtain a 0.2 mol/kg La 0.3 Zr 0.7 O solution. Obtained.
- an In 2 O 3 solution as a semiconductor film precursor solution was applied onto the solid electrolyte film by a spin coating method to form a semiconductor film precursor layer.
- the semiconductor film precursor layer was sintered at 250° C. to form an inorganic semiconductor film made of In 2 O 3 , and the In 2 O 3 was processed into a channel shape by dry etching.
- the size of the semiconductor film was 300 ⁇ m wide ⁇ 50 ⁇ m long ⁇ 20 nm thick.
- the In 2 O 3 solution was prepared as follows. Indium nitrate trihydrate was dissolved in 2-methoxyethanol so as to have an In 2 O 3 concentration of 0.2 mol/kg. The resulting solution was refluxed in an oil bath at 110° C. for 30 minutes and then filtered through a membrane filter with a pore size of 0.2 ⁇ m to obtain an In 2 O 3 solution with a concentration of 0.2 mol/kg.
- a resist film patterned in the shape of a source electrode and a drain electrode was formed on the solid electrolyte film and the semiconductor film by photolithography.
- an ITO layer with a thickness of 50 nm and an Au layer with a thickness of 500 nm were formed in this order by sputtering on the solid electrolyte film and the semiconductor film on which the resist film was formed, and then the resist film was removed.
- a first electrode, a first lead wire, and a first terminal, and a second electrode, a second lead wire, and a second terminal having a two-layer structure of Au/ITO were formed.
- the size of each of the first electrode and the second electrode was 320 ⁇ m in width ⁇ 200 ⁇ m in length, and the distance between the first electrode and the second electrode was 50 ⁇ m.
- a La 0.3 Zr 0.7 O solution as a solid electrolyte film precursor solution is applied by a spin coating method to form a solid electrolyte film precursor. form the body layer.
- the precursor layer for a solid electrolyte film is pre-fired at 250° C. in an oxygen-containing atmosphere, and then main-fired at 400° C. to form a solid electrolyte film of La 0.3 Zr 0.7 O having a thickness of 20 nm. was formed, the resist film was removed.
- the content of carbon (C) and hydrogen (H) in the obtained solid electrolyte film was measured by Rutherford backscattering spectroscopy, hydrogen forward scattering analysis, and nuclear reaction analysis. was 2.0 atom %, and the hydrogen (H) content was 10.1 atom %.
- a sensor (the sensor shown in FIG. 4) was produced in which the first electrode, the second electrode, the semiconductor film, and the solid electrolyte film covering them were formed on the solid electrolyte film of the laminated plate.
- Comparative Example 2 A sensor was fabricated in the same manner as in Invention Example 1, except that a photoresist (TSMR, manufactured by Tokyo Ohka Kogyo Co., Ltd.) was used instead of the solid electrolyte film to form a resist film.
- TSMR photoresist
- a holding portion (5 mm ⁇ 10 mm) was formed around the solid electrolyte film covering the semiconductor film.
- holding portions (5 mm ⁇ 10 mm) were formed in the first electrode and the second electrode around the semiconductor film.
- a holding portion (5 mm ⁇ 10 mm) was formed on the photoresist film electrode around the semiconductor film.
- a 0.01 ⁇ phosphate buffer (PBS) was injected as a conductive liquid into the holder of the sensor.
- the third electrode is immersed in the PBS of the holding part of the sensor, and while applying a voltage VTG between the first electrode and the third electrode, the current value IG flowing through the third electrode and the first electrode
- the ISD that flowed between the second electrodes was measured.
- the voltage V TG was varied from 0.2V to 0.8V to obtain a V TG -I G curve and a V TG -I SD curve.
- the V TG -I G curve is shown in FIG. 6A and the V TG -I SD curve is shown in FIG. 6B.
- the sensor of Example 1 of the present invention in which the first electrode, the second electrode and the semiconductor film are coated with the solid electrolyte film, and the first electrode, the second electrode and the semiconductor film are coated with the resist film.
- the sensor of Comparative Example 2 shows almost no change in current value IG due to an increase in voltage VTG .
- the sensor of Comparative Example 1 in which the first electrode, the second electrode and the semiconductor film are not covered with the solid electrolyte film, it is found that the current value IG increases even when the voltage VTG increases.
- the current value IG is a leakage current value of the current flowing from the first electrode to the second electrode leaking to the third electrode. Therefore, from the graph of FIG. 6A , it can be seen that the sensor of Inventive Example 1 significantly suppresses the generation of leakage current as compared with the sensor of Comparative Example 1.
- the sensor of Example 1 of the present invention has a larger current value ISD at each voltage VTG than the sensor of Comparative Example 1, and the current value ISD due to an increase in voltage VTG It can be seen that the amount of change in is large.
- the current value ISD of the sensor of Comparative Example 1 is 310 ⁇ A
- the sensor of Example 1 of the present invention is 480 ⁇ A, which is about 1.5 times higher. Therefore, the sensor of Example 1 of the present invention has a higher gm than the sensor of Comparative Example 1, and high-sensitivity measurement is possible.
- the senor of Comparative Example 2 has a lower current value I SD at each voltage VTG , so compared to the sensor of Comparative Example 1, the gm is lower and the sensitivity is also lower. I know it's low.
- Escherichia coli was detected as follows using the sensor produced in Example 1 of the present invention.
- a holding portion (5 mm ⁇ 10 mm) was formed by providing a wall portion around the solid electrolyte film covering the semiconductor film of the sensor.
- a DNA complementary to a portion of E. coli 16s-rRNA was immobilized as a probe DNA (probe molecule) on the exposed surface within the holding portion of the sensor.
- the sequences of the probe DNA are shown in Table 1 below.
- the probe DNA was immobilized in the holder of the sensor according to the procedure shown in FIG. First, 3-aminopropyltriethoxysilane (APTES) was bonded to the inside of the holding portion (the solid electrolyte film 25). Then, the amino group of APTES was reacted with one of the aldehyde groups of glutaraldehyde to bind APTES and glutaraldehyde. Finally, the other aldehyde group of glutaraldehyde was allowed to react with the probe DNA to immobilize 100 nmol/L of the probe DNA.
- APTES 3-aminopropyltriethoxysilane
- test solution was prepared by mixing Escherichia coli and an aqueous solution of sodium dodecyl sulfate (SDS) with a concentration of 1% by mass.
- SDS sodium dodecyl sulfate
- the E. coli in the test solution has its cell walls and nucleolytic enzymes destroyed to release DNA and mRNA.
- a test solution having an E. coli concentration of 10.1 ⁇ 10 4 cells/ ⁇ L was prepared.
- test liquid 2 ⁇ L of the test liquid was dropped onto the holding portion of the sensor and incubated at room temperature for 5 minutes. Next, the test liquid was removed from the holding portion of the sensor, and pure water was poured into the holding portion to wash the exposed surface of the solid electrolyte film. After that, 0.01 ⁇ phosphate buffer (PBS) was injected as a conductive liquid into the holding portion to replace the test solution with 0.01 ⁇ PBS. Next, the third electrode was immersed in the PBS of the holding part of the sensor, and while applying a voltage VTG between the first electrode and the third electrode, the ISD flowed between the first electrode and the second electrode. was measured.
- PBS phosphate buffer
- V TG was varied from 0.2V to 0.8V to obtain V TG -ISD curves. The results are shown in FIG.
- 0.01 ⁇ PBS was injected into the holding portion of the sensor without dropping the test solution, and a V TG -I SD curve was similarly obtained. The results are shown in FIG.
- Example 3 Using the sensor produced in Example 1 of the present invention, the DNA measurement sensitivity was evaluated as follows. In the same manner as in Example 2 of the present invention, a DNA complementary to a portion of E. coli 16s-rRNA was immobilized as a probe DNA on the exposed surface of the holding portion of the sensor. The area of the exposed surface within the holding portion was 21 mm 2 (7 mm ⁇ 3 mm). Next, 2 ⁇ L of a test solution having an E. coli DNA concentration of 0.047 ⁇ g/mL was dropped onto the holding portion of the sensor and incubated at room temperature for 10 minutes. Next, the test liquid was removed from the holding portion of the sensor, and pure water was poured into the holding portion to wash the exposed surface of the solid electrolyte film.
- Example 2 of the present invention the third electrode was immersed in the PBS of the holding portion of the sensor, and while applying a voltage VTG between the first electrode and the third electrode, the first electrode and the second electrode was measured .
- a test solution (blank) with an E. coli DNA concentration of 0 ⁇ g/mL was used. The results are shown in FIG.
- the present invention can provide a sensor and a biological substance detection method that have excellent selectivity for detection targets, high sensitivity, and a low detection limit.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Molecular Biology (AREA)
- Immunology (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Analytical Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Pathology (AREA)
- Organic Chemistry (AREA)
- Electrochemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biotechnology (AREA)
- Genetics & Genomics (AREA)
- Microbiology (AREA)
- Biomedical Technology (AREA)
- General Engineering & Computer Science (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Biophysics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Medicinal Chemistry (AREA)
- Hematology (AREA)
- Urology & Nephrology (AREA)
- Sustainable Development (AREA)
- Plant Pathology (AREA)
- Inorganic Chemistry (AREA)
- Cell Biology (AREA)
- Food Science & Technology (AREA)
- Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
Abstract
Description
本願は、2021年6月18日に、日本に出願された特願2021-101728号に基づき優先権を主張し、その内容をここに援用する。
前記固体電解質皮膜は、外部に露出する露出面を有し、
前記第3電極は、前記固体電解質皮膜の前記露出面が導電性液と接触しているときに、前記導電性液を介して、前記固体電解質皮膜の前記露出面に電界を印加可能な位置に配置されるように構成されている、センサ。
前記固体電解質皮膜の前記露出面に生体物質を含む試験液を供給して、前記露出面に前記生体物質を捕捉させる工程と、
前記試験液を前記導電性液に置換する工程と、
前記第3電極と前記第1電極との間に電圧を印加すると共に、前記第1電極-前記第2電極間の電流を測定する工程と、
前記電圧と、前記電流とに基づいて前記試験液中の生体物質の量を取得する工程と、を含む、生体物質検出方法。
図1及び図2に示すように、センサ100は、基板11と、第1電極21と、第2電極22と、第3電極23と、半導体膜24、固体電解質皮膜25とを有する。半導体膜24は、第1電極21と第2電極22とを接続する位置に配置されている。第1電極21と第2電極22及び半導体膜24は、センサ片20を形成する。センサ片20(第1電極21と第2電極22と半導体膜24)及び第3電極23と、基板11との間に、導電性材料膜12と固体電解質膜13とが積層されていて、センサ片20及び第3電極23が固体電解質膜13の上に配置されている。固体電解質皮膜25は、センサ片20を被覆する。固体電解質皮膜25は、外部に(上側、すなわちセンサ片20と反対側に)露出した露出面25aを有する。第3電極23は、固体電解質皮膜25の露出面25aが導電性液Lqと接触しているときに、導電性液Lqを介して、固体電解質皮膜25の露出面25aに電界を印加可能な位置に配置されるように構成されている。つまり、第3電極23は、供給された導電性液Lqを介して、固体電解質皮膜25の露出面25aと電気的に接続されるように配置されている。導電性液Lqは、第3電極23から露出面25aに電界を印加可能なように導電性を有する液体である。導電性液Lqとしては、例えば、無機塩を含む水溶液を用いることができる。無機塩は、検出目的物と固体電解質皮膜25とに対して、使用時において実質的に不活性な物質であればよく、特に制限はない。
無機半導体膜は、無機半導体を含む。無機半導体膜は、無機半導体のみから形成されていることが好ましい。無機半導体は、例えば、酸化インジウム(In2O3)、酸化亜鉛(ZnO)、In-Ga-Zn酸化物(IGZO)、In-Sn-Zn酸化物(ITZO)、Zn-Sn酸化物(Zn-Sn-O)、アモルファスシリコン(α-Si)、低温ポリシリコン(LTPS)及びグラフェンからなる群より選ばれる少なくとも一種の無機物を含むことが好ましい。これらの無機半導体は、一種を単独で用いてもよいし、二種を組み合わせて用いてもよい。また、無機半導体は、アモルファス相あるいはナノ結晶相であってもよい。
固体電解質皮膜25は、無機固体電解質皮膜であってもよいし、有機固体電解質皮膜であってもよい。
(A1)ランタン(La)とジルコニウム(Zr)とを含む金属酸化物
(A2)ランタン(La)とタンタル(Ta)とを含む金属酸化物
(A3)セリウム(Ce)、プラセオジム(Pr)、ネオジム(Nd)、サマリウム(Sm)、ユウロピウム(Eu)、ガドリニウム(Gd)、テルビウム(Tb)、ジスプロシウム(Dy)、ホルミウム(Ho)、エルビウム(Er)、ツリウム(Tm)、イッテルビウム(Yb)、ルテチウム(Lu)及びイットリウム(Y)からなる群から選択されるいずれかの金属元素と、ジルコニウム(Zr)またはタンタル(Ta)とを含む金属酸化物
(A4)ハフニウム(Hf)、ジルコニウム(Zr)及びアルミニウム(Al)からなる群から選択される少なくとも1種類の金属元素を含む金属酸化物
(A5)ランタン(La)、ハフニウム(Hf)、ジルコニウム(Zr)を含有する金属酸化物
M2(ox)3・・・・(1)
上記の(1)において、Mは、2価又は3価の金属イオンを表す。Mが3価の金属イオンである場合、オキサラト架橋配位高分子は中性である。Mが2価の金属イオンを含む場合は、オキサラト架橋配位高分子はアニオン性となり、オキサラト架橋配位高分子にカウンターイオンが取り込まれていてもよい。
上記の(1)において、oxは、シュウ酸イオン(C2O4 2-)を表す。
図3Aは、図1に示す生体物質検出センサを用いた生体物質検出方法を説明する模式図であって、生体物質検出センサを図1のII-II’線に沿って見た拡大断面図であり、図3Bは、図3Aの拡大図である。図3Bにおいて、センサ100の保持部30の内側にある露出面25aには、生体物質を捕捉するためのプローブ分子1が固定されている。
先ず、センサ100の露出面25aに固定されているプローブ分子1に、検出目的の生体物質2を捕捉させる。具体的には、センサ100の保持部30に、生体物質2を含む試験液を注液して、固体電解質皮膜25の露出面25aに試験液を供給する。これにより、検出目的の生体物質2がプローブ分子1を介して露出面25aに捕捉される。生体物質2は、例えば、DNAやmRNAなどの核酸である。プローブ分子1は、それら生体物質2の一部と相補的になるDNAやmRNAである。
(1)導電性材料膜12の成膜
先ず基板11(例えば、SiO2/Si基板)上に、導電性材料膜12を成膜する。導電性材料膜12の成膜方法としては、スパッタリング法を用いることができる。
次に、導電性材料膜12の上に固体電解質膜13を成膜する。固体電解質膜13は、例えば、導電性材料膜12の上に固体電解質膜用前駆体溶液を塗布し、得られた塗布膜を加熱することによって形成することができる。固体電解質膜用前駆体溶液としては、固体電解質膜13を構成する固体電解質の材料が溶解もしくは分散されている液体を用いることができる。固体電解質膜用前駆体溶液の塗布方法としては、例えば、スピンコーティング法、インクジェット印刷法、ナノインプリント法などを用いることができる。塗布膜の加熱温度は、固体電解質膜用前駆体溶液の溶媒が揮発して、固体電解質膜13が生成する温度であれば特に制限はない。
次に、固体電解質膜13の上に、半導体膜24を成膜する。半導体膜24は、例えば、次のようにして成膜することができる。先ず、固体電解質膜13の上に、フォトリソグラフィー法によってパターニングされたレジスト膜を形成する。次いで、レジスト膜が形成された固体電解質膜13の上に半導体膜用前駆体溶液を塗布し、得られた塗布膜を加熱することによって半導体膜を形成する。その後、レジスト膜を除去する。半導体膜用前駆体溶液としては、半導体膜24を構成する半導体の材料が溶解もしくは分散されている液体を用いることができる。半導体膜用前駆体溶液の塗布方法としては、例えば、スピンコーティング法、インクジェット印刷法、ナノインプリント法などを用いることができる。塗布膜の加熱温度は、半導体膜用前駆体溶液の溶媒が揮発して、半導体膜24が生成する温度であれば特に制限はない。
次に、固体電解質膜13及び半導体膜24の上に、電極パターン(第1電極21、第1リード線21a、第1端子21b、第2電極22、第2リード線22a、第2端子22b、第3電極23、第3リード線23a、第3端子23b)を形成する。電極パターンは、例えば、次のようにして形成することができる。先ず、固体電解質膜13及び半導体膜24の上に、フォトリソグラフィー法によってパターニングされたレジスト膜を形成する。次いで、レジスト膜が形成された固体電解質膜13及び半導体膜24の上に電極膜を形成する。その後、レジスト膜を除去する。電極膜の形成方法としては、例えば、スパッタリング法を用いることができる。
次に、センサ片20(第1電極21と第2電極22と半導体膜24)の上に固体電解質皮膜25を成膜する。固体電解質皮膜25は、例えば、次のようにして成膜することができる。先ず、第1端子21bと第2端子22bと第3電極23の上にレジスト膜を形成する。次いで、固体電解質皮膜用前駆体溶液を塗布し、得られた塗布膜を加熱することによって固体電解質皮膜を形成する。その後、レジスト膜を除去する。固体電解質皮膜用前駆体溶液としては、固体電解質皮膜25を構成する固体電解質の材料が溶解もしくは分散されている液体を用いることができる。固体電解質皮膜用前駆体溶液の塗布方法としては、例えば、スピンコーティング法、インクジェット印刷法、ナノインプリント法などを用いることができる。塗布膜の加熱温度は、固体電解質皮膜用前駆体溶液の溶媒が揮発して、固体電解質皮膜25が生成する温度であれば特に制限はない。
先ず、上述のセンサ100の場合と同様に、固体電解質皮膜25の露出面25aに、生体物質2を含む試験液を供給して、プローブ分子1を介して露出面25aに生体物質2を捕捉させる。次いで、試験液を導電性液Lqに置換する。
第1電極21と第2電極22とは第1電圧供給部31に接続され、第1電極21と第3電極23とは第2電圧供給部32に接続される。プローブ分子1に捕捉された生体物質2の定量は、図1~図3Bに示すセンサ100の場合と同様に実施することができる。すなわち、第1電圧供給部31を用いて、第1電極21と第2電極22との間に電圧VSDを印加すると共に、第2電圧供給部32を用いて、第1電極21と第3電極23との間に電圧VTGを印加する。これにより、第1電極21と第2電極22との間を流れる電流ISDが変化する。そして、この電圧VSDと電流ISDと関係から、プローブ分子1に捕捉された生体物質2を定量することができ、これより試験液中の生体物質の量を取得することができる。
例えば、本実施形態では、検出目的物として生体物質を例に挙げて説明したが、これに限定されるものではない。本実施形態のセンサ100、101は、固体電解質皮膜25の露出面25aに捕捉されることによって、半導体膜24に電界を伝えるものであれば検出することが可能である。検出目的物としては、例えば、電荷を有するイオン性物質、露出面25aに捕捉されることによって電荷を生成する物質を用いることができる。検出目的物は、有機物であってもよいし、無機物であってもよい。
(導電性材料膜の成膜)
シリコン基板上に、厚さ500nmの酸化シリコン(SiO2)膜を形成したSiO2/Si基板を用意した。このSiO2/Si基板の酸化シリコン膜上に、厚さ10nmTi層と、厚さ200nmのPt層とを、この順でスパッタリング法により成膜してPt/Tiの2層構造の導電性材料膜を成膜した。
次に、得られた導電性材料膜のPt層の上に、ゾルゲル法により固体電解質膜を形成した。先ず、固体電解質膜用前駆体溶液としてLa0.3Zr0.7O溶液をスピンコーティング法により塗布して、固体電解質膜用前駆体層を形成した。次いで、その固体電解質膜用前駆体層を酸素含有雰囲気で、250℃で予備焼成した後、400℃で本焼成して、厚さ250nmのLa0.3Zr0.7Oからなる固体電解質膜を形成した。得られた固体電解質膜の炭素(C)と水素(H)の含有率を、ラザフォード後方散乱分光法、水素前方散乱分析法及び核反応解析法によりそれぞれ測定した。その結果、炭素(C)の含水率は、2.0atom%、水素(H)の含有率は10.1atom%であった。また、固体電解質膜のイオン伝導率を、交流インピーダンス測定装置(バイオロジック社製、SP-300)を用いて測定した。その結果、イオン伝導率は6.0×10-7S/cmであった。
酢酸ランタン1.5水和物とジルコニウムブトキシドとを3:7(モル比)の割合で混合し、得られた混合物をLa0.3Zr0.7O濃度に換算して0.2mol/kgとなるようにプロピオン酸に溶解させた。得られた混合溶液を110℃のオイルバスで30分間還流を行った後、孔径0.2μmのメンブレンフィルターでろ過することにより、0.2mol/kgのLa0.3Zr0.7O溶液を得た。
次に、固体電解質膜の上に、半導体膜用前駆体溶液としてIn2O3溶液をスピンコーティング法により塗布して、半導体膜用前駆体層を形成した。次いで、その半導体膜用前駆体層を250℃で本焼成して、In2O3からなる無機半導体膜を成膜した後、ドライエッチングによりIn2O3をチャネル形状に加工した。半導体膜のサイズは、幅300μm×長さ50μm×厚さ20nmとした。
なお、In2O3溶液は、次のようにして調製した。硝酸インジウム3水和物を、In2O3濃度に換算して0.2mol/kgとなるように2-メトキシエタノールに溶解させた。得られた溶液を110℃のオイルバスで30分間還流を行った後、孔径0.2μmのメンブレンフィルターでろ過することにより、濃度が0.2mol/kgのIn2O3溶液を得た。
固体電解質膜と半導体膜の上に、フォトリソグラフィー法によって、ソース電極とドレイン電極の形状にパターニングされたレジスト膜を形成した。次いで、そのレジスト膜を形成した固体電解質膜と半導体膜の上に、厚さ50nmのITO層と、厚さ500nmのAu層とを、この順にスパッタリング法により成膜した後、レジスト膜を除去した。Au/ITOの2層構造の第1電極、第1リード線、第1端子と第2電極、第2リード線、第2端子とを形成した。第1電極と第2電極のサイズは、それぞれ幅320μm×長さ200μmとし、第1電極と第2電極の間隔は50μmとした。
第1端子と第2端子との上にレジスト膜を形成した後、固体電解質皮膜用前駆体溶液としてLa0.3Zr0.7O溶液をスピンコーティング法により塗布して、固体電解質皮膜用前駆体層を形成した。次いで、その固体電解質皮膜用前駆体層を酸素含有雰囲気で、250℃で予備焼成した後、400℃で本焼成して、厚さ20nmのLa0.3Zr0.7Oからなる固体電解質皮膜を成膜し後、レジスト膜を除去した。得られた固体電解質皮膜の炭素(C)と水素(H)の含有率を、ラザフォード後方散乱分光法、水素前方散乱分析法及び核反応解析法によりそれぞれ測定したところ、炭素(C)の含水率は、2.0atom%、水素(H)の含有率は10.1atom%であった。
こうして、積層板の固体電解質膜の上に、第1電極、第2電極および半導体膜、並びにそれらを被覆する固体電解質皮膜が成膜されたセンサ(図4に示すセンサ)を作製した。
固体電解質皮膜を成膜しなかったこと以外は、本発明例1と同様にしてセンサを作製した。
固体電解質皮膜の代わりに、フォトレジスト(TSMR、東京応化工業株式会社製)を用いて、レジスト皮膜を成膜したこと以外は、本発明例1と同様にしてセンサを作製した。
本発明例1で作製したセンサは、半導体膜を被覆している固体電解質皮膜の周囲に、保持部(5mm×10mm)を形成した。比較例1で作製したセンサは、半導体膜の周囲の第1電極および第2電極に保持部(5mm×10mm)を形成した。比較例2で作製したセンサは、半導体膜の周囲のフォトレジスト皮膜極に保持部(5mm×10mm)を形成した。
センサの保持部に、導電性液として0.01xのリン酸バッファ(PBS)を注液した。次いで、センサの保持部のPBSに第3電極を浸漬し、第1電極と第3電極との間に電圧VTGを印加しながら、第3電極を流れた電流値IGと第1電極と第2電極との間を流れたISDを測定した。電圧VTGを0.2Vから0.8Vまで変化させ、VTG-IG曲線とVTG-ISD曲線とを得た。VTG-IG曲線を図6Aに、VTG-ISD曲線を図6Bに示す。
本発明例1で作製したセンサを用いて、大腸菌を次のようにして検出した。
センサの半導体膜を被覆している固体電解質皮膜の周囲に壁部を設けて保持部(5mm×10mm)を形成した。次いで、センサの保持部内の露出面に、プローブDNA(プローブ分子)として大腸菌の16s-rRNAの一部と相補性を持つDNAを固定化した。プローブDNAの配列を、下記の表1に示す。
先ず、保持部内(固体電解質皮膜25)に、3-アミノプロピルトリエトキシシラン(APTES)を結合させた。次いで、APTESのアミノ基とグルタルアルデヒドの一方のアルデヒド基とを反応させて、APTESとグルタルアルデヒドを結合した。そして最後に、グルタルアルデヒドの他方のアルデヒド基とプローブDNAとを反応させて、プローブDNA100nmol/Lを固定した。
大腸菌と濃度1質量%のドデシル硫酸ナトリウム(SDS)水溶液とを混合して、試験液を調製した。試験液中の大腸菌は、細胞壁ならびに核酸分解酵素が破壊されて、DNAとmRNAが遊離している。試験液としては、大腸菌濃度が10.1×104cell/μLのものを調製した。
センサの保持部に、試験液2μLを滴下し、室温で5分間、インキューベートした。次いで、センサの保持部から試験液を除去し、その保持部に純水を注液して、固体電解質皮膜の露出面を洗浄した。その後、その保持部に導電性液として0.01×リン酸バッファ(PBS)を注液して、試験液を0.01×PBSに置換した。
次いで、センサの保持部のPBSに第3電極を浸漬し、第1電極と第3電極との間に電圧VTGを印加しながら、第1電極と第2電極との間を流れたISDを測定した。電圧VTGを0.2Vから0.8Vまで変化させ、VTG-ISD曲線を得た。その結果を、図8に示す。また、センサの保持部に、試験液を滴下せずに、0.01×PBSを注液して同様にVTG-ISD曲線を得た。その結果を、図8に示す。
本発明例1で作製したセンサを用いて、DNAの測定感度を次のようにして評価した。本発明例2と同様にして、センサの保持部内の露出面に、プローブDNAとして大腸菌の16s-rRNAの一部と相補性を持つDNAを固定化した。保持部内の露出面の面積は、21mm2(7mm×3mm)であった。次いで、センサの保持部に、大腸菌DNAの濃度が0.047μg/mLの試験液2μLを滴下し、室温で10分間、インキューベートした。次いで、センサの保持部から試験液を除去し、その保持部に純水を注液して、固体電解質皮膜の露出面を洗浄した。その後、その保持部に導電性液として0.01×PBSを注液して、試験液を0.01×PBSに置換した。
次いで、本発明例2と同様に、センサの保持部のPBSに第3電極を浸漬し、第1電極と第3電極との間に電圧VTGを印加しながら、第1電極と第2電極との間を流れたISDを測定した。同様に大腸菌DNAの濃度が0μg/mLの試験液(ブランク)を用いて行った。その結果を、図9に示す。
2 生体物質
11 基板
12 導電性材料膜
13 固体電解質膜
21 第1電極
22 第2電極
23 第3電極
24 半導体膜
25 固体電解質皮膜
25a 露出面
30 保持部
31 第1電圧供給部
32 第2電圧供給部
100、101 センサ
Claims (9)
- 第1電極、第2電極、第3電極、前記第1電極と前記第2電極とを接続する半導体膜、前記第1電極と前記第2電極と前記半導体膜とを被覆する固体電解質皮膜を有し、
前記固体電解質皮膜は、外部に露出する露出面を有し、
前記第3電極は、前記固体電解質皮膜の前記露出面が導電性液と接触しているときに、前記導電性液を介して、前記固体電解質皮膜の前記露出面に電界を印加可能な位置に配置されるように構成されている、センサ。 - 前記第1電極、前記第2電極および前記半導体膜が、一つの基板の上に配置されている、請求項1に記載のセンサ。
- 前記第1電極、前記第2電極および前記半導体膜と前記基板との間に、導電性材料膜と固体電解質膜とが積層されていて、前記第1電極、前記第2電極および前記半導体膜が、前記固体電解質膜の上に配置されている、請求項2に記載のセンサ。
- 前記基板の上に、さらに前記第3電極が配置されている、請求項2または3に記載のセンサ。
- 前記固体電解質皮膜は、イオン伝導率が1×10-8S/cm以上である、請求項1~4のいずれか1項に記載のセンサ。
- 前記固体電解質皮膜は、希土類元素とジルコニウム(Zr)とを含む金属酸化物又は希土類元素とタンタル(Ta)とを含む金属酸化物であって、炭素(C)の含有率が、0.5atom%以上15atom%以下であり、且つ、水素(H)の含有率が2atom%以上20atom%以下である無機固体電解質皮膜であって、前記半導体膜は、少なくともインジウム(In)を含む金属酸化物である無機半導体膜である、請求項1~5のいずれか1項に記載のセンサ。
- 前記固体電解質皮膜の前記露出面に、生体物質を捕捉するためのプローブ分子が固定されている、請求項1~6のいずれか1項に記載のセンサ。
- 前記固体電解質皮膜の前記露出面の周囲に、前記導電性液を保持するための保持部を備える、請求項1~7のいずれか1項に記載のセンサ。
- 請求項1~8のいずれか1項に記載のセンサを用いた生体物質検出方法であって、
前記固体電解質皮膜の前記露出面に生体物質を含む試験液を供給して、前記露出面に前記生体物質を捕捉させる工程と、
前記試験液を前記導電性液に置換する工程と、
前記第3電極と前記第1電極との間に電圧を印加すると共に、前記第1電極-前記第2電極間の電流を測定する工程と、
前記電圧と、前記電流とに基づいて前記試験液中の生体物質の量を取得する工程と、を含む、生体物質検出方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US18/569,734 US20240280534A1 (en) | 2021-06-18 | 2022-06-17 | Sensor and method for detecting biological substance |
CN202280042317.4A CN117529657A (zh) | 2021-06-18 | 2022-06-17 | 传感器及生物材料检测方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021101728A JP2023000738A (ja) | 2021-06-18 | 2021-06-18 | センサ及び生体物質検出方法 |
JP2021-101728 | 2021-06-18 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022265103A1 true WO2022265103A1 (ja) | 2022-12-22 |
Family
ID=84527136
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/024363 WO2022265103A1 (ja) | 2021-06-18 | 2022-06-17 | センサ及び生体物質検出方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20240280534A1 (ja) |
JP (1) | JP2023000738A (ja) |
CN (1) | CN117529657A (ja) |
TW (1) | TW202313956A (ja) |
WO (1) | WO2022265103A1 (ja) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003046540A1 (en) * | 2001-11-30 | 2003-06-05 | Acreo Ab | Electrochemical sensor |
JP2005325124A (ja) * | 2004-05-15 | 2005-11-24 | Hc Starck Gmbh | 3,4−メチレンジオキシチオフェン繰返し単位を含む化合物 |
WO2015137022A1 (ja) * | 2014-03-14 | 2015-09-17 | ソニー株式会社 | 電子デバイス及びその製造方法 |
US20210117636A1 (en) * | 2019-10-18 | 2021-04-22 | Taiwan Semiconductor Manufacturing Co., Ltd. | Semiconductor device with biofet and biometric sensors |
-
2021
- 2021-06-18 JP JP2021101728A patent/JP2023000738A/ja active Pending
-
2022
- 2022-06-17 TW TW111122591A patent/TW202313956A/zh unknown
- 2022-06-17 US US18/569,734 patent/US20240280534A1/en active Pending
- 2022-06-17 CN CN202280042317.4A patent/CN117529657A/zh active Pending
- 2022-06-17 WO PCT/JP2022/024363 patent/WO2022265103A1/ja active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003046540A1 (en) * | 2001-11-30 | 2003-06-05 | Acreo Ab | Electrochemical sensor |
JP2005325124A (ja) * | 2004-05-15 | 2005-11-24 | Hc Starck Gmbh | 3,4−メチレンジオキシチオフェン繰返し単位を含む化合物 |
WO2015137022A1 (ja) * | 2014-03-14 | 2015-09-17 | ソニー株式会社 | 電子デバイス及びその製造方法 |
US20210117636A1 (en) * | 2019-10-18 | 2021-04-22 | Taiwan Semiconductor Manufacturing Co., Ltd. | Semiconductor device with biofet and biometric sensors |
Non-Patent Citations (1)
Title |
---|
WHITE SCOTT P., SREEVATSAN SRINAND, FRISBIE C. DANIEL, DORFMAN KEVIN D.: "Rapid, Selective, Label-Free Aptameric Capture and Detection of Ricin in Potable Liquids Using a Printed Floating Gate Transistor", ACS SENSORS, vol. 1, no. 10, 28 October 2016 (2016-10-28), US, pages 1213 - 1216, XP093015898, ISSN: 2379-3694, DOI: 10.1021/acssensors.6b00481 * |
Also Published As
Publication number | Publication date |
---|---|
US20240280534A1 (en) | 2024-08-22 |
TW202313956A (zh) | 2023-04-01 |
JP2023000738A (ja) | 2023-01-04 |
CN117529657A (zh) | 2024-02-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104205340B (zh) | 导电薄膜、用于形成导电薄膜的涂布液、场效应晶体管、以及用于生产场效应晶体管的方法 | |
US20090267057A1 (en) | Organic field-effect transistor for sensing applications | |
Cho et al. | Bond nature of active metal ions in SiO 2-based electrochemical metallization memory cells | |
KR20140021245A (ko) | 티올기를 갖는 물질이 부착된 금층을 포함한 나노포어를 갖는 장치를 제조하는 방법 및 그를 이용한 핵산 분석 방법 | |
US20120244667A1 (en) | Precursor composition for oxide semiconductor and method of manufacturing thin film transistor array panel using the same | |
Saha et al. | Effect of alumina addition on methane sensitivity of tin dioxide thick films | |
CN108780843A (zh) | 半导体元件、其制造方法、无线通信装置及传感器 | |
Pan et al. | Structural properties and sensing characteristics of Y2O3 sensing membrane for pH-ISFET | |
Pan et al. | Structural properties and sensing performance of TaOx/Ta stacked sensing films for extended-gate field-effect transistor pH sensors | |
WO2022265103A1 (ja) | センサ及び生体物質検出方法 | |
JP2000266715A (ja) | 電気化学的センサー | |
KR20130057056A (ko) | 탄소나노튜브를 이용한 이온 농도 측정용 센서 및 그 제조방법 | |
CN109952154B (zh) | 样本分析芯片及其制造方法 | |
EP4080584A1 (en) | Transistor sensor, and method for detecting biomaterials | |
JP2022154947A (ja) | 生体物質検出センサ及び生体物質検出方法 | |
KR20080052249A (ko) | 금속산화물 반도체 화학센서 및 이의 제조 방법 | |
Bag et al. | High performance sol–gel synthesized Ce 0.9 Sr 0.1 (Zr 0.53 Ti 0.47) O 4 sensing membrane for a solid-state pH sensor | |
JP2022154984A (ja) | 生体物質検出センサ及び生体物質検出方法 | |
JP2021099330A (ja) | トランジスタセンサ及び生体物質検出方法 | |
JP2022154953A (ja) | 生体物質検出センサ及び生体物質検出方法 | |
Pan et al. | Influence of praseodymium content and postdeposition annealing on the structural and sensing characteristics of PrTi x O y sensing films using the sol–gel spin-coating method | |
US9337320B2 (en) | Method of manufacturing zinc oxide thin film, method of manufacturing thin film transistor, zinc oxide thin film, thin film transistor, and transparent oxide wiring | |
US12123844B2 (en) | Transistor comprising a ceramic and an ionogel | |
Ghosh et al. | Electrical response of organic molecule supported preformed and in situ formed antimony sulfide nanoparticles under frequency conditions | |
US20210341414A1 (en) | Transistor comprising a ceramic and an ionogel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22825091 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202280042317.4 Country of ref document: CN Ref document number: 18569734 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22825091 Country of ref document: EP Kind code of ref document: A1 |