WO2022265007A1 - プラズマ発生ユニット、プラズマ発生装置及び殺菌システム - Google Patents

プラズマ発生ユニット、プラズマ発生装置及び殺菌システム Download PDF

Info

Publication number
WO2022265007A1
WO2022265007A1 PCT/JP2022/023785 JP2022023785W WO2022265007A1 WO 2022265007 A1 WO2022265007 A1 WO 2022265007A1 JP 2022023785 W JP2022023785 W JP 2022023785W WO 2022265007 A1 WO2022265007 A1 WO 2022265007A1
Authority
WO
WIPO (PCT)
Prior art keywords
plasma
electrode
plasma generation
generation unit
electrodes
Prior art date
Application number
PCT/JP2022/023785
Other languages
English (en)
French (fr)
Inventor
英孝 宮▲崎▼
晃俊 沖野
Original Assignee
日本未来科学研究所合同会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本未来科学研究所合同会社 filed Critical 日本未来科学研究所合同会社
Publication of WO2022265007A1 publication Critical patent/WO2022265007A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/16Disinfection, sterilisation or deodorisation of air using physical phenomena
    • A61L9/18Radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma

Definitions

  • the present invention relates to a plasma generation unit, a plasma generator and a sterilization system.
  • Patent Literature 1 relates to an air cleaning device using plasma, and states, "In a housing provided with an air inlet and an outlet for plasma treatment, the air flow is made into a turbulent state and a dielectric barrier discharge narrow gap plasma is generated. A large number of electrodes are arranged in a matrix (matrix), and the plasma generated by the electrodes and the air containing viruses, pathogens, mycotoxins, etc. are efficiently contacted and mixed” (abstract). doing.
  • the present invention has been made to solve the above-mentioned and other problems, and takes in a fluid such as ambient air, and highly efficiently performs a sterilization treatment on the taken-in fluid based on the generation of atmospheric pressure low temperature plasma.
  • An object of the present invention is to provide a plasma generation unit, a plasma generator, and a sterilization system that enable
  • one aspect of the present invention provides a first electrode formed by forming a plate-shaped conductive material into a cylindrical shape, and a plate-shaped conductive material formed into a cylindrical shape.
  • a second electrode arranged to surround the outer periphery of the first electrode with a predetermined gap; and a cylindrical dielectric arranged to be interposed between the first electrode and the second electrode. and a body layer, and applying a predetermined AC voltage between the first and second electrodes of the plasma generating part to generate the first and second electrodes of each of the plasma generating parts a plasma generation unit for generating an atmospheric pressure low temperature plasma through the dielectric layer during
  • a first plasma generation unit and a second plasma generation unit having configurations equivalent to those of the plasma generation unit are provided, and the first plasma generation unit and the second plasma generation unit are concentrically arranged in the
  • the first electrode of the second plasma generation section is arranged to maintain a predetermined gap from the second electrode of the first plasma generation section, and the first and second plasma generation sections of the first and second plasma generation sections are Also a plasma generation unit for generating atmospheric pressure low temperature plasma between the first and second electrodes of each of the plasma generating units through the dielectric layer by applying a predetermined alternating voltage between the second electrodes.
  • the first electrode is formed of a punching metal plate obtained by providing a plurality of pores in a metal plate
  • the second electrode is formed of a metal mesh material formed by braiding fine metal wires.
  • a dielectric layer made of a dielectric material may be formed between the electrodes.
  • a plasma generation unit and a plasma power supply section configured to apply a predetermined AC voltage between the first and second electrodes of each of the plasma generation sections provided in the plasma generation unit.
  • Plasma generators are also within the scope of the present invention.
  • a sterilization system includes the plasma generator, a blower unit arranged to face a gap in the plasma generating section of the plasma generator, and the gap and the blower unit. and an ozonolysis filter placed between the
  • a plasma generation unit comprises a first electrode formed by forming a flat plate-shaped conductive material into a cylindrical shape, and a flat plate-shaped conductive material formed into a cylindrical shape, and the first electrode and a cylindrical dielectric layer interposed between the first electrode and the second electrode. and a communication path that connects a gap between the first and second electrodes with a space inside the first electrode and a space outside the second electrode, wherein the plasma Atmospheric pressure low temperature plasma is generated between the first and second electrodes of each plasma generation unit through the dielectric layer by applying a predetermined AC voltage between the first and second electrodes of the generation unit.
  • the fluid introduced from the space outside the second electrode to the gap between the first and second electrodes through the communication path is treated with atmospheric pressure low temperature plasma to generate a multi-plasma gas and to generate multi-plasma gas.
  • a multi-plasma gas is caused to flow into the cylindrical space inside the first electrode through the communicating passage.
  • a plasma generation unit and a plasma power supply section configured to apply a predetermined AC voltage between the first and second electrodes of each of the plasma generation sections provided in the plasma generation unit. Also within the scope of the present invention is a plasma generator.
  • a fluid stirring means may be provided in the space inside the first electrode of the plasma generation unit.
  • a plasma generation unit a plasma generator, and a plasma generation unit that can take in a fluid such as ambient air and perform highly efficient sterilization treatment on the taken fluid based on the generation of atmospheric pressure low-temperature plasma.
  • a sterilization system is provided.
  • FIG. 1 is an exploded perspective view showing a configuration example of a plasma generation unit according to one embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of the main parts of the plasma generation unit of FIG.
  • FIG. 3 is a cross-sectional view of main parts showing a modification of the plasma generation unit of FIG.
  • FIG. 4 is a diagram showing a circuit configuration example of a plasma generator using the plasma generation unit of FIG.
  • FIG. 5 is a diagram showing a configuration example of a sterilization system using the plasma generation unit of this embodiment.
  • 6 is a diagram showing a configuration example of a control circuit included in the sterilization system of FIG. 5.
  • FIG. FIG. 7 is a diagram showing a configuration example of a desktop air cleaner using the sterilization system of FIG.
  • FIG. 1 is an exploded perspective view showing a configuration example of a plasma generation unit according to one embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of the main parts of the plasma generation unit of FIG.
  • FIG. 8 is an exploded perspective view showing a configuration example of a pipe-shaped plasma generation unit according to another embodiment of the present invention.
  • 9 is a cross-sectional view of the pipe-shaped plasma generation unit of FIG. 8.
  • FIG. 10 is a schematic diagram showing a state in which the pipe-shaped plasma generation unit of FIG. 8 is mounted on a pipe.
  • FIG. 1 and 2 show an example of a plasma generation unit 10 according to one embodiment of the present invention.
  • FIG. 1 is an exploded perspective view of a plasma generation unit 10 according to this embodiment
  • FIG. 2 is a cross-sectional view of main parts of the plasma generation unit 10.
  • FIG. 2 shows the structure shown in FIG. 1 with the exterior body 19 removed (the same applies to FIG. 3 according to the modification).
  • the plasma generation unit 10 of this embodiment is formed by concentrically combining a plurality of cylindrical members. These cylindrical members are the first electrode 16a, the dielectric layer 14, the second electrode 16b, and the exterior body 19 from the inside.
  • FIG. 1 is an exploded perspective view of a plasma generation unit 10 according to this embodiment
  • FIG. 2 is a cross-sectional view of main parts of the plasma generation unit 10.
  • FIG. 2 shows the structure shown in FIG. 1 with the exterior body 19 removed (the same applies to FIG. 3 according to the modification).
  • the plasma generation unit 10 of this embodiment is formed by concentrically combining a plurality
  • these cylindrical members are illustrated in a state in which they are displaced from each other in the axial direction for easy viewing, but as the plasma generation unit 10, cylindrical members of the same length are arranged concentrically. , resulting in a cylindrical device as a whole. Since the cylindrical dielectric layer 14 is provided between the first electrode 16a and the second electrode 16b so as to be in contact with the second electrode 16b, an AC voltage is applied between the first electrode 16a and the second electrode 16b. Dielectric barrier discharge can be induced by applying . Plasma is generated in the gap between the first electrode 16a and the dielectric layer 14 by this dielectric barrier discharge. This gap is hereinafter referred to as "plasma generation layer P".
  • the plasma generation unit 10 of the present embodiment can also be configured to have a cross-sectional shape other than circular.
  • the first electrode 16a is one electrode for plasma generation, and is configured as a cylindrical punching metal tube with a thickness of 0.5 to 1 mm in this embodiment.
  • a conductive metal plate such as a stainless steel plate is preferably used as the material of the first electrode 16a.
  • the holes provided in the punching metal plate have a diameter of, for example, 1 mm and can be provided at intervals of about 5 mm, but are not particularly limited to this. As will be described later, the dimensions are such that the plasma gas containing various active species generated between the first electrode 16a and the second electrode 16b is efficiently introduced into the perforated metal tube through the pores. It should be placed.
  • a mesh-like metal material for example, a metal mesh material obtained by braiding stainless steel fine wires can be used.
  • a glass tube forming the dielectric layer 14 is arranged inside the metal mesh material as the second electrode 16b.
  • the dielectric layer 14 has a thickness of about 2 mm, and the plasma generation layer P is formed by providing a gap of about 2 mm between the dielectric layer 14 and the first electrode 16a.
  • the cylindrical plasma generation unit 10 illustrated in FIGS. 1 and 2 can be set to have an axial length of about 50 mm and a diameter of the second electrode 16b of about 45 mm. Such dimensions are taken into consideration for application to a desktop-type sterilization system, which will be described later, and the dimensions of the plasma generation unit 10 are not particularly restricted by this.
  • FIG. 3 exemplifies a cross-sectional view of main parts of the plasma generation unit 10 according to the modification.
  • the plasma generation unit 10 illustrated in FIG. 3 has a cylindrical shape as a whole similar to that in FIGS. The difference is that another set of similar combinations is provided outside the combination.
  • the first electrode 16a, the dielectric layer 14, and the second electrode 16b of the second group are provided outside the second electrode 16b belonging to the first group with the gap 17 therebetween. It is The gap 17 also serves as an electrical insulating layer between the second electrode 16b of the first set and the first electrode 16a of the second set.
  • a second plasma generation layer P is arranged in the gap between the first electrode 16a of the second set and the dielectric layer 14 .
  • the second set of first electrode 16a, dielectric layer 14, and second electrode 16b are configured similarly to the first set of first electrode 16a, dielectric layer 14, and second electrode 16b, respectively. Therefore, the multi-plasma gas containing various active species generated between the second set of first electrode 16a and second electrode 16b is efficiently directed to the gap 17 through the pores of the first electrode 16a, which is a punching metal tube. be introduced systematically.
  • atmospheric pressure low temperature plasma is generated in the plasma generation layer P between the first electrode 16a and the second electrode 16b.
  • a discharge is generated and acts on the air and water vapor in the plasma generation layer P to generate, as is known, singlet oxygen ( 1 O 2 ), ozone (O 3 ), hydroxyl radical (OH), superoxide anion radical Reactive oxygen species are generated including various radicals such as (O 2 ⁇ ), hydroperoxy radical (HO 2 ), hydrogen peroxide (H 2 O 2 ).
  • the air passing through each plasma generating layer P of the plasma generating unit 10 flows while being in contact with the plasma discharge generated in each plasma generating layer P in a continuous planar manner.
  • Microorganisms such as viruses and bacteria contained in the ambient air sucked into each plasma generation layer P are destroyed in a very short time on the order of microseconds by coming into contact with the plasma discharge in the plasma generation layer P.
  • Inactivation of viruses and sterilization of microorganisms are performed by being mixed with the multi-plasma gas containing the reactive oxygen species.
  • the surrounding air to be sterilized can be sterilized. It is possible to increase the flow rate of , and it is possible to flexibly cope with the required sterilization amount according to the spatial volume of the object to be sterilized.
  • FIG. 4 shows a configuration example of a plasma generation circuit applied to the plasma generation unit 10 according to the modified example of this embodiment illustrated in FIG. For simplification of illustration, FIG. 4 shows a part of the plasma generation unit 10 of FIG.
  • the plasma generation circuit includes a plasma power supply unit 20 having a booster unit 24 connected to each electrode pair consisting of a first electrode 16a and a second electrode 16b, and an inverter 22 for supplying alternating current to the booster unit 24.
  • a general neon transformer used for lighting a neon tube can be adopted as the plasma power supply unit 20 .
  • the configuration of this plasma generation circuit is the same for the plasma generation unit 10 of FIG.
  • the inverter 22 of the plasma power supply unit 20 receives DC 12V from an external power supply.
  • the inverter 22 outputs an AC voltage controlled according to the input DC voltage and supplies the voltage to the booster 24 .
  • the control method, the type of switching element, and the like may be appropriately selected.
  • the function of the inverter 22 is to output an AC voltage corresponding to the input DC voltage.
  • the output voltage is controlled by parameters such as the distance between the electrodes, the material of the electrodes, the planar dimension, and the thickness. Note that the AC frequency may be appropriately determined.
  • the plasma generation unit 10 uses a dielectric barrier discharge, but if the voltage between the electrodes is low, the discharge will not occur. This leads to a decrease in seed generation efficiency and electrode breakage due to the concentration of discharge at a specific location.
  • stable barrier discharge is maintained by controlling the AC voltage applied between the electrodes. Also, by controlling the AC voltage applied between the electrodes, it is configured to efficiently generate multi-plasma gas containing active oxygen species while suppressing generation of harmful ozone (O 3 ).
  • the plasma generation unit 10 By applying a predetermined AC voltage between the first electrode 16a and the second electrode 16b of the plasma generation unit 10, a dielectric barrier discharge is generated between them via the dielectric layer 14, and the first electrode
  • the air and water vapor present in the plasma generation layer P between 16a and dielectric layer 14 are plasmatized to generate various active species as exemplified above.
  • the multi-plasma gas containing the generated active species flows into the cylindrical space A and the gap 17 inside the first electrode 16a through the pores provided in the first electrode 16a.
  • FIG. 5 shows a configuration example of a sterilization system 100 using the plasma generation unit 10 of this embodiment.
  • the sterilization system 100 of FIG. 5 is configured by arranging a cylindrical plasma generation unit 10, an ozone decomposition filter 130, an ozone sensor 140, and an electric fan 150 coaxially.
  • FIG. 5 shows these components simply arranged along the flow path of the ambient air, but these components can be housed in, for example, a cylindrical housing to provide a sterilization system 100. can be realized.
  • the ozone decomposition filter 130 disposed downstream of the plasma generation unit 10 removes ozone (O 3 ), which is harmful to the human body and has a unique odor among various active species generated by the plasma of the plasma generation unit 10, into the system. It is provided for the purpose of preventing outflow to the outside of 100 .
  • ozone decomposition filter 130 a general-purpose ozone decomposition filter used in copiers or the like can be appropriately selected and employed.
  • the shape and size of the ozone decomposition filter 130 may also be determined according to the specifications of the sterilization system 100 to be applied.
  • An ozone decomposition filter 130 may also be provided on the upstream side of the plasma generation unit 10 so that ozone flows back through the flow path from the plasma generation unit 10 to prevent ozone from escaping to the outside.
  • the ozone sensor 140 is a sensor device that measures the concentration of ozone contained in the exhaust downstream of the ozone decomposition filter 130 in the rear stage of the plasma generation unit 10 .
  • a highly sensitive semiconductor gas sensor can be preferably used. Recommendation (FY 2020)" Journal of Occupational Hygiene, 2020; 62(5): 198-230).
  • the electric fan 150 functions as an exhaust fan for the sterilization system 100.
  • the ambient air introduced into the cylindrical space inside the first electrode 16a is mixed with the multi-plasma gas containing active species, sterilized, and discharged into the ambient space by the electric fan 150.
  • active species contained in the multi-plasma gas are also released into the surrounding space, exhibiting a further sterilizing effect.
  • FIG. 6 shows a configuration example of a control circuit in the sterilization system 100 of FIG.
  • the control circuit includes a DC power supply section 60, a plasma power supply section 20, a control section 70, and an input/output section 80.
  • the control circuit includes a DC power supply section 60, a plasma power supply section 20, a control section 70, and an input/output section 80.
  • a 100 V AC, 50/60 Hz commercial power supply is supplied to the sterilization system 100 .
  • the DC power supply section 60 generates 24 V DC and 5 V DC, which are power supplies for the control circuit, and 12 V DC, which is the operating power supply for the plasma generation unit 10 .
  • the control unit 70 is a functional unit that manages operation control of the entire sterilization system 100, and can be configured using a microprocessor module, for example.
  • the input/output unit 80 can include input devices such as operation buttons and touch pads, and output devices such as LED lamps and liquid crystal displays.
  • control unit 70 ⁇ ON/OFF control of the plasma power supply unit 20 based on the input signal from the input/output unit 80 ⁇ ON/OFF control of the plasma power supply unit 20 based on the concentration signal from the ozone sensor 140 ⁇ Output voltage control of the plasma power supply unit 20 based on detection of the plasma current value
  • the atmospheric pressure low-temperature plasma generated by the plasma generation unit 10 can efficiently sterilize the surrounding air. Moreover, since the output voltage of the plasma power supply unit 20 is controlled according to the state of the generated plasma, it is possible to continuously generate stable atmospheric pressure low temperature plasma.
  • FIG. 7 illustrates a desktop air purifier 1 using the sterilization system 100 whose configuration example is shown in FIG.
  • the desktop air purifying device 1 is formed in a cylindrical shape as a whole, and the sterilization system 100 including the plasma generation unit 10 is in the upper half, and the plasma power supply unit 20, the DC power supply unit 60, and the control unit 70 are in the lower half. is housed.
  • the plasma generation unit 10 of the sterilization system 100 is placed on a partition plate 160 that partitions the inside of the cylindrical housing.
  • the partition plate 160 is provided with an opening at a portion corresponding to the cylindrical space A and the gap 17 inside the first electrode 16 a of the plasma generation unit 10 .
  • a slit-shaped intake port IN is provided in the outer plate of the housing along the circumferential direction at the middle part in the height direction of the desktop air cleaning device 1, and a cylindrical space inside the first electrode 16a of the plasma generation unit 10 is formed. A, communicating with the gap 17;
  • an opening OUT is provided on the upper surface of the housing corresponding to the electric fan 150 at the upper end of the sterilization system 100, and serves as a flow path for exhaust air from the electric fan 150.
  • this opening OUT is formed as a radial slit provided in the top plate of the desktop air purifier 1, but it is not limited to this.
  • the plasma power supply unit 20, the DC power supply unit 60, and the control unit 70 have substantially the same configurations and functions as the sterilization system 100 of the first embodiment.
  • a commercial power supply of AC 100 V, 50/60 Hz is supplied to the DC power supply unit 60 through the power cord 40 .
  • the AC voltage applied between the first electrode 16a and the second electrode 16b by the plasma power source 20 may be determined according to the plasma generation unit 10 having the configuration of this embodiment.
  • the control of the AC voltage according to the properties of the generated plasma may also be customized according to the plasma generation unit 10 of this embodiment.
  • An operation display panel corresponding to the input/output unit 80 of the first embodiment is provided at an appropriate location on the lower half of the peripheral surface of the desktop air cleaner 1 .
  • the operation display panel is provided with a power on/off switch for plasma generation and a power lamp.
  • the operation display panel is not limited to this, and an operation display section such as a liquid crystal display section and a timer setting section may be provided.
  • the desktop air cleaner 1 when the power is turned on, an AC voltage is applied between the first electrode 16a and the second electrode 16b of the plasma generation unit 10 from the plasma power supply unit 20, and the plasma generation layer P A plasma is generated by a dielectric barrier discharge.
  • a multi-plasma gas containing various active species generated by plasma is introduced into the inner cylindrical space A through the pores provided in the first electrode 16a, as shown in FIG.
  • ambient air is introduced into the housing of the tabletop air cleaning device 1 from the intake port IN on the peripheral surface of the tabletop air cleaning device 1, reaches the space inside the first electrode 16a, and multiplies the air. mixed with the plasma gas.
  • Ambient air is thereby sterilized in the cylindrical space A inside the first electrode 16a and discharged as clean air to the surrounding space by the electric fan 150 via the ozone decomposition filter 130 .
  • part of the multi-plasma gas is also discharged to the surrounding space by the electric fan 150 together with the active species, and has the effect of sterilizing the surrounding air.
  • the sterilization system 100 of the present embodiment efficiently generates atmospheric pressure low temperature plasma by the dielectric barrier discharge that is continuously generated planarly between the first electrode 16a and the second electrode 16b concentrically opposed to each other. can be continuously generated.
  • Plasma gas is introduced from the plasma generation layer P into the cylindrical space A or into the gap 17 through the pores of the first electrode 16a.
  • the desktop air purifier 1 using the sterilization system 100 brings ambient air into contact with the plasma in the plasma generation layer P and mixes it with the multi-plasma gas in the cylindrical space A to achieve efficient sterilization. be able to.
  • two sets of the first electrode 16a, the dielectric layer 14, and the second electrode 16b are provided concentrically (in a nested manner). good too.
  • the plasma generation unit 10 used in the tabletop air cleaning device 1 may also be provided with two or more sets of the first electrode 16a, the dielectric layer 14, and the second electrode 16b.
  • Embodiment 2 Next, a sterilization system 100 according to a second embodiment of the invention will be described.
  • This sterilization system 100 has a configuration similar to that of the cylindrical sterilization system 100 of Embodiment 1, but differs from Embodiment 1 in that it is formed in a longer pipe shape.
  • the electrode configuration for plasma generation is also different from that of the first embodiment.
  • plasma pipe the differences and features of the sterilization system of this embodiment (hereinafter referred to as "plasma pipe" for simplicity) will be described below.
  • symbol is attached
  • FIG. 8 shows a partially exploded perspective view of the plasma pipe 100 of this embodiment
  • FIG. 9 shows its cross-sectional view.
  • the plasma pipe 100 has a function of sterilizing the fluid flowing in the flow path with atmospheric pressure low temperature plasma by providing it in the middle of the flow path of various fluids.
  • the plasma pipe 100 is formed in a long pipe shape, and the first electrode 16a, the dielectric layer 14, the second electrode 16b, and the exterior body 19, which are pipe-shaped elements, are arranged inside. are concentrically arranged from
  • the first electrode 16a and the second electrode 16b are each made of an aluminum plate or a stainless steel plate with a thickness of about 1 mm and formed in a pipe shape. is provided.
  • the dielectric layer 14 can be formed by selecting an appropriate material in consideration of workability and a required dielectric constant, for example, a glass layer.
  • the inner peripheral surface of the dielectric layer 14 and the outer peripheral surface of the first electrode 16a face each other, and a gap of about 3 mm is defined as a plasma generating layer P between them.
  • ultrasonic oscillators SS are installed at positions facing each other in the radial direction of the plasma pipe 100 .
  • this ultrasonic oscillator SS employs a vibrator made of thin piezoelectric ceramics in this embodiment, there is no particular limitation on the form of the vibrator.
  • Ultrasonic waves are radiated into the plasma generation layer P by applying a high-frequency AC voltage to the ultrasonic oscillator SS. This radiated ultrasonic wave has the effect of accelerating the active oxygen species generation process in the plasma generation layer P by plasma.
  • the AC voltage to be supplied to the ultrasonic oscillator element SS is set to an appropriate frequency for the ultrasonic oscillator element SS by providing a voltage supply control circuit to the ultrasonic oscillator element SS in the controller 70 shown in FIG. 6 of Embodiment 1, for example.
  • a voltage supply control circuit to the ultrasonic oscillator element SS in the controller 70 shown in FIG. 6 of Embodiment 1, for example.
  • the amplitude and frequency of the AC voltage may be set according to the plasma generation specifications of the plasma pipe 100 . Note that the installation position of the ultrasonic oscillator SS can be changed without being limited to the above configuration example.
  • an exterior body 19 is provided at an appropriate interval to form the outer periphery of the plasma pipe 100.
  • a circulator CR which is fluid agitation means, is installed for exerting an agitation action on the inner space of the first electrode 16a.
  • the circulator CR is in the form of a cylindrical member extending along the axis of the plasma pipe 100, and is provided therein with rotating blades for the stirring action and a driving mechanism for rotationally driving the blades. (not shown).
  • the configuration of the circulator CR is not limited to a specific configuration as long as it exhibits the function of agitating the fluid in the cylindrical space A surrounded by the first electrodes 16a.
  • an elongated hollow duct D is provided so as to penetrate the second electrode 16b, the dielectric layer 14, and the first electrode 16a.
  • a duct D which is a communication path, is formed of a member such as a thin stainless steel tube, and is located between the annular space R between the second electrode 16b and the exterior body 19 and the plasma generation layer P, and between the plasma generation layer P and the cylindrical space A. are communicated with each other.
  • FIGS. 8 and 9 an appropriate number of ducts D can be provided at appropriate intervals along the axial direction of the plasma pipe 100 in practice.
  • the duct D functions as a flow path for causing the fluid in the annular space R to flow into the plasma generation layer P, be processed by plasma, and further flow into the cylindrical space A together with various active oxygen species generated as a result.
  • Cylindrical space A serves as a flow path for the fluid to be treated introduced from the outside of plasma pipe 100 .
  • the fluid to be treated flowing in the cylindrical space A is subjected to plasma treatment in the plasma generation layer P through the duct D, and the plasma-treated fluid containing various active oxygen species is introduced.
  • the fluid to be treated and the fluid containing active oxygen species from the duct D are stirred and mixed by the circulator CR, and the fluid to be treated is sterilized by the active oxygen species.
  • the plasma power source section 20 described with reference to FIG. Plasma is generated by dielectric barrier discharge in the plasma generation layer P formed between the first electrode 16a and the second electrode 16b, which are cylindrical members formed with the dielectric layer 14 interposed therebetween.
  • the AC voltage applied between the first electrode 16a and the second electrode 16b by the plasma power supply unit 20 is controlled by the configuration of the control unit 70 described with regard to the first embodiment so that plasma generation is performed stably.
  • the fluid (eg, air) in the annular space R is introduced into the plasma generation layer P through the duct D.
  • the introduced fluid comes into contact with the plasma in the plasma generation layer P and becomes multi-plasma gas containing gas-phase active oxygen species.
  • the multi-plasma gas generated in this plasma generation layer P is further introduced into the inner cylindrical space A through a duct D.
  • the outside air taken into the plasma pipe 100 of the present embodiment is guided into the cylindrical space A and flows, and when passing through the cylindrical space A, the multi-plasma gas containing active oxygen species from the plasma generation layer P and Mixed and sterilized.
  • the circulator CR accelerates the mixing of the introduced outside air and the multi-plasma gas in the cylindrical space A by agitation, thereby accelerating the sterilization process.
  • the introduced outside air comes into direct contact with the plasma in the plasma generation layer P and is mixed with the multi-plasma gas in the cylindrical space A. can be sterilized.
  • FIG. 10 schematically shows a state in which a plasma pipe 100, which is a sterilization system according to this embodiment, is installed in the middle of a pipeline that constitutes a fluid flow path.
  • the plasma pipe 100 is provided with a plasma power supply unit, a control unit, a power supply unit for driving the circulator CR, and the like as described in the previous embodiment. As shown in FIG.
  • the atmospheric pressure low-temperature plasma continuously generated in the plasma generation layer P and the multi-layer plasma generated continuously in the plasma generation layer P are generated for various fluids flowing in the flow path.
  • Contact with the plasma gas enables continuous and efficient sterilization.
  • FIG. 10 when liquid is introduced into the plasma pipe 100, the liquid to be treated is introduced into the cylindrical space A and not into the plasma generation layer P.
  • Outside air is first introduced into the annular space R, enters the plasma generation layer P through the duct D, and is plasma-processed into multi-plasma gas containing active oxygen species. This multi-plasma gas is further introduced into the liquid in the cylindrical space A through the duct D, where it is mixed with the liquid to be treated for sterilization.
  • the material of the exterior body 19 may be determined according to the form of the flow path in which the plasma pipe 100 is installed and the type and properties of the fluid flowing through the flow path.
  • a vinyl chloride pipe can be suitably used
  • a metal pipe such as a stainless steel pipe can be suitably used.
  • the fluid flowing through the flow channel is brought into continuous contact with the plasma or the multi-plasma gas containing active oxygen species, so that the fluid can be efficiently sterilization treatment is possible.
  • Plasma generation unit Dielectric layer 16a First electrode 16b Second electrode 19 Exterior body 20
  • Plasma power supply unit Inverter 24
  • Boosting unit 100
  • Plasma generator 130 Ozone decomposition filter 140
  • Ozone sensor 150
  • Electric fan 60
  • Control unit 80
  • Input/output unit 100 Sterilization system
  • P Plasma generation layer R Annular space A Cylindrical space D Duct CR Circulator SS Ultrasonic oscillator

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Toxicology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Plasma Technology (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Apparatus For Disinfection Or Sterilisation (AREA)

Abstract

周囲空気等の流体を取り込んで、取り込んだ流体に対して大気圧低温プラズマの生成に基づく殺菌処理を高効率で実施することを可能とする。 平板状の導電材料を筒状に形成してなる第1電極と、平板状の導電材料を筒状に形成してなり、前記第1電極の外周を所定の間隙をおいて取り囲むように配置されている第2電極と、前記第1電極と前記第2電極との間に介在するように配置された筒状の誘電体層とが設けられてなるプラズマ生成部を備え、前記プラズマ生成部の第1及び第2電極の間に所定の交流電圧を印加することにより、各前記プラズマ生成部の第1及び第2電極の間に前記誘電体層を介して大気圧低温プラズマを生成させるプラズマ発生ユニットである。

Description

プラズマ発生ユニット、プラズマ発生装置及び殺菌システム
 本発明は、プラズマ発生ユニット、プラズマ発生装置及び殺菌システムに関する。
 新型コロナウイルスの世界的な感染拡大に伴って、ウイルスの不活化を含む様々な殺菌処理に対するニーズが高まっている。特に新型コロナウイルスでは飛沫感染、エアロゾル感染が主要な感染ルートの一つと考えられており、環境空気中に浮遊するウイルスを効果的に不活化する技術が求められている。従来、プラズマガスを処理対象物の表面に照射することによって殺菌処理を実現する技術が知られている。またプラズマガスに周囲空気を接触させることで空気中のウイルスを不活化したり細菌を死滅させたりする環境殺菌処理も提案されている。
 例えば特許文献1はプラズマを用いた空気清浄装置に関し、「プラズマ処理対象の空気入口と吹き出し口を備えた筐体に、空気流れを乱流状態にし、かつ、誘電体バリア放電ナローギャッププラズマを発生する多数の電極をマトリクス(行列)状に配置し、該電極が生成するプラズマと、ウイルス、病原菌、カビ毒等を含む空気と、を効率よく、接触、混合させる」(要約書)構成を提案している。
特開2020-171777号公報
 しかしながら、特許文献1に記載されている装置では、棒状の電極周囲にプラズマを発生させて周囲空気との混合を図るため、依然としてプラズマガスと電極周囲を流れる空気との接触・混合が不十分であり、プラズマ処理がなされていない空気が装置下流に排出されてしまうおそれがあるという問題が考えられる。
 本発明は、上記の及び他の課題を解決するためになされたもので、周囲空気等の流体を取り込んで、取り込んだ流体に対して大気圧低温プラズマの生成に基づく殺菌処理を高効率で実施することを可能とするプラズマ発生ユニット、プラズマ発生装置及び殺菌システムを提供することを一つの目的としている。
 上記の及び他の目的を達成するための、本発明の一態様は、平板状の導電材料を筒状に形成してなる第1電極と、平板状の導電材料を筒状に形成してなり、前記第1電極の外周を所定の間隙をおいて取り囲むように配置されている第2電極と、前記第1電極と前記第2電極との間に介在するように配置された筒状の誘電体層とが設けられてなるプラズマ生成部を備え、前記プラズマ生成部の第1及び第2電極の間に所定の交流電圧を印加することにより、各前記プラズマ生成部の第1及び第2電極の間に前記誘電体層を介して大気圧低温プラズマを生成させるプラズマ発生ユニットである。
 前記プラズマ生成部とそれぞれ同等の構成を有する第1のプラズマ生成部と第2のプラズマ生成部とを備え、前記第1のプラズマ生成部と前記第2のプラズマ生成部とは同心状に、前記第2のプラズマ生成部の第1電極が前記第1のプラズマ生成部の第2電極から所定の間隙を保持するように配置されており、前記第1及び第2のプラズマ生成部の第1及び第2電極の間に所定の交流電圧を印加することにより、各前記プラズマ生成部の第1及び第2電極の間に前記誘電体層を介して大気圧低温プラズマを生成させるプラズマ発生ユニットもまた本発明の一態様である
 前記第1電極は金属板に複数の細孔を設けてなるパンチングメタル板によって形成され、前記第2電極は金属細線を編組してなる金属メッシュ材によって形成され、前記第1電極と前記第2電極との間に、誘電体材料からなる誘電体層が形成されているものとすることができる。
 前記態様に係るプラズマ発生ユニットと、前記プラズマ発生ユニットが備える各前記プラズマ生成部の第1及び第2電極間に所定の交流電圧を印加するように構成されているプラズマ電源部とを備えているプラズマ発生装置も本発明の範囲内である。
 また本発明の他の態様に係る殺菌システムは、前記プラズマ発生装置と、前記プラズマ発生装置の前記プラズマ生成部にある間隙に対向するように配置された送風ユニットと、前記間隙と前記送風ユニットとの間に配置されたオゾン分解フィルターとを備えている。
 本発明のさらに他の態様に係るプラズマ発生ユニットは、平板状の導電材料を筒状に形成してなる第1電極と、平板状の導電材料を筒状に形成してなり、前記第1電極の外周を所定の間隙をおいて取り囲むように配置されている第2電極と、前記第1電極と前記第2電極との間に介在するように配置された筒状の誘電体層とが設けられてなるプラズマ生成部と、前記第1及び第2電極の間にある間隙と前記第1電極内方の空間及び前記第2電極外方の空間とを連通させる連通路とを備え、前記プラズマ生成部の第1及び第2電極の間に所定の交流電圧を印加することにより、各前記プラズマ生成部の第1及び第2電極の間に前記誘電体層を介して大気圧低温プラズマを生成させ、前記第2電極外方の空間から前記第1及び第2電極の間にある間隙へ前記連通路を通じて導入される流体を、大気圧低温プラズマにより処理してマルチプラズマガスを生成するとともに当該マルチプラズマガスを、前記連通路を通じて前記第1電極内方の円筒状空間に流入させる構成を有する。
 前記他の態様に係るプラズマ発生ユニットと、前記プラズマ発生ユニットが備える各前記プラズマ生成部の第1及び第2電極間に所定の交流電圧を印加するように構成されているプラズマ電源部とを備えているプラズマ発生装置も本発明の範囲内にある。
 前記プラズマ発生装置において、前記プラズマ発生ユニットの第1電極内方空間に流体撹拌手段を備えてもよい。
 本発明によれば、周囲空気等の流体を取り込んで、取り込んだ流体に対して大気圧低温プラズマの生成に基づく殺菌処理を高効率で実施することを可能とするプラズマ発生ユニット、プラズマ発生装置及び殺菌システムが提供される。
図1は、本発明の一実施形態に係るプラズマ発生ユニットの構成例を示す分解斜視図である。 図2は、図1のプラズマ発生ユニットの主要部横断面図である。 図3は、図1のプラズマ発生ユニットの変形例を示す主要部横断面図である。 図4は、図3のプラズマ発生ユニットを用いたプラズマ発生装置の回路構成例を示す図である。 図5は、本実施形態のプラズマ発生ユニットを用いた殺菌システムの構成例を示す図である。 図6は、図5の殺菌システムが備える制御回路の構成例を示す図である。 図7は、図6の殺菌システムを用いた卓上空気清浄装置の構成例を示す図である。 図8は、本発明の他の実施形態によるパイプ形プラズマ発生ユニットの構成例を示す分解斜視図である。 図9は、図8のパイプ形プラズマ発生ユニットの横断面図である。 図10は、図8のパイプ形プラズマ発生ユニットを配管に実装した状態を示す模式図である。
 以下、本発明につき、その実施形態に即して図面を用いて説明する。
[実施形態1]
 図1、図2に、本発明の一実施形態に係るプラズマ発生ユニット10の一例を示している。図1は本実施形態によるプラズマ発生ユニット10の分解斜視図、図2はプラズマ発生ユニット10の主要部横断面図である。図2においては図1に図示の構成から外装体19を除いて示している(変形例に係る図3も同様)。図1に示すように、本実施形態のプラズマ発生ユニット10は、複数の円筒状の部材を同心状に組み合わせて形成されている。これらの円筒状の部材は、内側から第1電極16a、誘電体層14、第2電極16b、外装体19である。なお、図1では、これらの各円筒部材を見やすくするために軸方向に互いにずらした状態で図示しているが、プラズマ発生ユニット10としては、同一長さの円筒部材が同心状に配置された、全体として円筒状の装置となる。第1電極16aと第2電極16bとの間に第2電極16bと接するように円筒状の誘電体層14が設けられているため、第1電極16aと第2電極16bとの間に交流電圧を印加することによって誘電体バリア放電を誘起させることができる。この誘電体バリア放電により、第1電極16aと誘電体層14との間の間隙にプラズマが生成される。以下この間隙を「プラズマ生成層P」と呼ぶ。なお、本実施形態のプラズマ発生ユニット10は、横断面形状が円形以外となるように構成することも可能である。
 第1電極16aはプラズマ生成用の一方の電極であり、本実施形態では0.5~1mm厚の円筒状パンチングメタル管として構成されている。第1電極16aの材質としては導電性の金属板、例えばステンレス板が好適に用いられる。パンチングメタル板に設けられる細孔は、例えば直径1mmとされ、5mm程度の間隔で設けることができるが、特にこれに制約されるものではない。後述するように第1電極16a、第2電極16bの間に生成される、種々の活性種を含んだプラズマガスがパンチングメタル管の内方へ細孔を通じて効率的に導入されるような寸法と配置とすればよい。
 第2電極16bはメッシュ状の金属材、例えばステンレス細線を編組してなる金属メッシュ材を用いることができる。図1に示すように、第2電極16bとしての金属メッシュ材の内側には、誘電体層14を構成するガラス管が配置されている。本実施形態では誘電体層14の厚さは2mm程度とされ、誘電体層14と第1電極16aとの間に2mm程度の間隙が設けられてプラズマ生成層Pを形成している。
 図1、図2に例示する円筒形のプラズマ発生ユニット10は、一例として軸方向の長さが50mm程度、第2電極16bの直径が45mm程度に設定することができる。このような形状寸法は、後述する卓上タイプの殺菌システムへの適用を考慮したものであり、特にこれによってプラズマ発生ユニット10としての形状寸法が制約されるものではない。
 次に、本実施形態のプラズマ発生ユニット10の変形例を説明する。図3は、変形例に係るプラズマ発生ユニット10の主要部横断面図を例示している。図3に例示するプラズマ発生ユニット10は、全体としての形状は図1,2と同様の円筒状であるが、図1,2における第1電極16a、誘電体層14、及び第2電極16bの組み合わせの外方に同様の組み合わせをもう一組備えている点が異なっている。言い換えると、図3に示すように、第1の組に属する第2電極16bの外方に間隙17を隔てて2組目の第1電極16a、誘電体層14、及び第2電極16bが設けられている。間隙17は、1組目の第2電極16bと2組目の第1電極16aと間で電気絶縁層としての役割も果たしている。
 2組目の第1電極16aと誘電体層14の間隙に第2のプラズマ生成層Pが配置されている。2組目の第1電極16a、誘電体層14、及び第2電極16bは、それぞれ第1の組の第1電極16a、誘電体層14、及び第2電極16bと同様に構成されている。したがって、2組目の第1電極16a、第2電極16bの間に生成される、種々の活性種を含んだマルチプラズマガスは、パンチングメタル管である第1電極16a細孔を通じて間隙17へ効率的に導入される。
 後述するように、第1電極16aと第2電極16bとの間に所定の交流電圧を印加することにより、第1電極16aと第2電極16bとの間のプラズマ生成層Pにおいて大気圧低温プラズマ放電が発生し、プラズマ生成層P内の空気、水蒸気に作用して、公知のように、例えば一重項酸素()、オゾン(O)、ヒドロキシラジカル(OH)、スーパーオキシドアニオンラジカル(O )、ヒドロペルオキシラジカル(HO)、過酸化水素(H)のような種々のラジカルを含む活性酸素種が生成される。プラズマ発生ユニット10の各プラズマ生成層Pを通過する空気は各プラズマ生成層P内で連続的に面状に広がって発生するプラズマ放電に接触しながら流れる。各プラズマ生成層Pに吸入される周囲空気に含まれているウイルス、細菌等の微生物は、プラズマ生成層P内でプラズマ放電と接触することで、マイクロ秒オーダーのごく短時間で構造が破壊され、また前記活性酸素種を含むマルチプラズマガスと混合されることでウイルスの不活化、微生物の殺菌が行われる。
 またプラズマ発生ユニット10の第1電極16a、誘電体層14,及び第2電極16bからなる基本構成単位を同心状に2以上設けて入れ子状の積層構成とすることにより、殺菌処理すべき周囲空気の流量を増大させることができ、殺菌処理対象の空間容積等に対応して所要の殺菌処理量に柔軟に対応することができる。
 図4に、図3に例示した本実施形態の変形例に係るプラズマ発生ユニット10に適用されるプラズマ発生回路の構成例を示している。図示を簡略化するため、図4には図3のプラズマ発生ユニット10の一部を取り出して示している。プラズマ発生回路は、第1電極16aと第2電極16bとからなる各電極対に接続された昇圧部24と、昇圧部24に交流電流を供給するインバータ22とを有するプラズマ電源部20を備える。プラズマ電源部20としては、ネオン管の点灯に用いられる一般的なネオントランスを採用することができる。このプラズマ発生回路の構成は、図1のプラズマ発生ユニット10についても同様である。
 プラズマ電源部20のインバータ22には、外部電源からDC12Vが入力される。インバータ22は、入力直流電圧に応じて制御された交流電圧を出力して昇圧部24に供給する。インバータ22は、制御すべき電力に見合った容量が確保されていれば、制御方式、スイッチング素子の形式等は適宜選択すればよい。本実施形態では、インバータ22の機能として、入力直流電圧に応じた交流電圧を出力するものとし、例えばDC1V印加時にAC1kV、DC9V印加時にAC9kVを出力すると言ったように、入力電圧に比例した交流電圧を出力するように構成することができる。具体的には、電極間距離、電極の材質、平面寸法、厚さ等のパラメータによって出力電圧を制御するように構成する。なお、交流周波数は適宜決定すればよい。
 本プラズマ発生ユニット10では誘電体バリア放電を使用しているが、電極間電圧が低いと放電が発生せず、また電極間電圧が高いと火花放電やアーク放電に移行してしまい、プラズマによる活性種の生成効率低下、放電が特定箇所に集中することによる電極の破損につながる。本実施形態では、電極間に印加する交流電圧を制御することで安定したバリア放電を維持するようにしている。また、電極間に印加する交流電圧を制御することで、有害なオゾン(O)の生成を抑制しながら活性酸素種を含むマルチプラズマガスを効率的に生成するように構成している。
 プラズマ発生ユニット10の第1電極16aと第2電極16bとの間に所定の交流電圧を印加することにより、両者の間に誘電体層14を介して誘電体バリア放電が発生し、第1電極16aと誘電体層14との間のプラズマ生成層P内に存在する空気、水蒸気がプラズマ化し、先に例示したような種々の活性種が生成される。生成された活性種を含むマルチプラズマガスは、第1電極16aに設けられている細孔を通じて第1電極16aの内側の円筒状空間A及び間隙17に流入する。
 次に、以上のプラズマ発生ユニット10を用いた殺菌システムについて説明する。図5に、本実施形態のプラズマ発生ユニット10を用いた殺菌システム100の構成例を示している。図5の殺菌システム100は、円筒形のプラズマ発生ユニット10、オゾン分解フィルター130、オゾンセンサ140、電動ファン150を同軸上に配置して構成されている。図5には、これらの構成要素を周囲空気の流路に沿って配置した状態を簡易的に示しているが、これらの構成要素を、例えば筒状のハウジングに収装することにより殺菌システム100を実現することができるものである。
 プラズマ発生ユニット10の下流側に配置されるオゾン分解フィルター130は、プラズマ発生ユニット10のプラズマによって生成される様々な活性種のうち、人体に有害で独特の臭気を伴うオゾン(O)がシステム100の外部に流出することを防止する目的で設けられる。オゾン分解フィルター130としては、コピー機などに利用されている汎用のオゾン分解フィルターから適宜選択して採用することができる。オゾン分解フィルター130の形状寸法も、適用する殺菌システム100の仕様に応じて定めればよい。なお、プラズマ発生ユニット10の上流側にもオゾン分解フィルター130を設けて、プラズマ発生ユニット10から流路を逆流してオゾンが外部に出ないようにしてもよい。
 オゾンセンサ140は、プラズマ発生ユニット10の後段にあるオゾン分解フィルター130の下流側において排気に含まれるオゾン濃度を測定するセンサデバイスである。オゾンセンサ140としては、高感度の半導体式ガスセンサを好適に採用することができ、その出力をモニタすることによって、作業環境における許容濃度である0.1ppm以下(日本産業衛生学会「許容濃度等の勧告(2020年度)」産業衛生学雑誌、2020; 62(5): 198-230)となるようにプラズマ発生ユニット10の運転・停止を制御するように構成することができる。
 電動ファン150は、殺菌システム100の排気ファンとして機能する。
 図5の構成例では、電動ファン150を排気方向に動作させることで、周囲空気がプラズマ発生ユニット10の底部から、各プラズマ生成層Pと、第1電極16a内方の円筒状空間A及び間隙17に導入される(図3参照)。プラズマ生成層Pに導入された空気は生成されているプラズマに接触することで、マイクロ秒オーダーの短時間で殺菌される。また導入された周囲空気は円筒状空間A及び間隙17においてプラズマ生成層Pからのマルチプラズマガスと混合され、オゾン分解フィルター130を介して電動ファン150により外部へ放出される。この過程で、第1電極16a内方の円筒状空間に導入された周囲空気は活性種を含んだマルチプラズマガスと混合されて殺菌処理がなされ、電動ファン150により周囲空間に放出される。この際、マルチプラズマガスに含まれる活性種も周囲空間に放出され、さらなる殺菌効果を発揮する。
 図6には、図5の殺菌システム100における制御回路の構成例を示している。図6に示すように、制御回路には、DC電源部60、プラズマ電源部20、制御部70、入出力部80が設けられている。
 殺菌システム100にはAC100V、50/60Hzの商用電源が供給され、まずDC電源部60によって制御回路用電源であるDC24V、DC5V、プラズマ発生ユニット10の動作電源であるDC12Vが生成される。制御部70は殺菌システム100全体の動作制御を管理する機能部であり、例えばマイクロプロセッサモジュールを用いて構成することができる。入出力部80は操作ボタン、タッチパッド等の入力デバイスと、LEDランプ、液晶ディスプレイ等の出力デバイスとを含むことができる。
 制御部70による制御内容としては、次のような事項が考えられる。
・入出力部80からの入力信号によるプラズマ電源部20のオンオフ制御
・オゾンセンサ140からの濃度信号に基づくプラズマ電源部20のオンオフ制御
・プラズマ電流値検出に基づくプラズマ電源部20の出力電圧制御
 もちろん上記以外の制御を実行するように構成してもよい。
 以上説明した実施形態の殺菌システム100によれば、プラズマ発生ユニット10により生成される大気圧低温プラズマにより周囲空気を効率的に殺菌することができる。また、生成されるプラズマの状態に応じてプラズマ電源部20の出力電圧が制御されるので、安定した大気圧低温プラズマを継続して生成することができる。
 図7に、図5に構成例を示した殺菌システム100を用いた卓上空気清浄装置1を例示している。卓上空気清浄装置1は全体として円筒状に形成されており、その上半部にプラズマ発生ユニット10を含む殺菌システム100が、下半部にプラズマ電源部20、DC電源部60、及び制御部70が収装されている。
 殺菌システム100のプラズマ発生ユニット10は円筒状筐体の内部を仕切る仕切り板160の上に載置されている。仕切り板160には、プラズマ発生ユニット10の第1電極16a内方の円筒状空間A、間隙17に対応する部分に開口部が設けられている。卓上空気清浄装置1の高さ方向の中間部には周方向に沿って筐体外板にスリット状の吸気口INが設けられ、内部においてプラズマ発生ユニット10の第1電極16a内方の円筒状空間A、間隙17に連通している。
 一方、殺菌システム100の上端にある電動ファン150に対応して筐体上面に開口部OUTが設けられ、電動ファン150からの排気の流路となっている。図7の例では、この開口部OUTは卓上空気清浄装置1の上面板に設けられた放射状のスリットとして形成されているが、これに限定されるものではない。
 プラズマ電源部20、DC電源部60、制御部70は、実質的に実施形態1の殺菌システム100と同等の構成、機能を備えている。DC電源部60には、電源コード40により商用電源のAC100V、50/60Hzが供給される。プラズマ電源部20によって第1電極16aと第2電極16bとの間に印加される交流電圧は、本実施形態の構成を有するプラズマ発生ユニット10に対応して決定すればよい。発生するプラズマ性状に応じた交流電圧の制御も、本実施形態のプラズマ発生ユニット10に合わせてカスタマイズしてもよい。
 卓上空気清浄装置1の周面下半部の適宜の箇所に、実施形態1の入出力部80に相当する操作表示パネルが設けられている。本実施形態では、操作表示パネルにはプラズマ発生のための電源オンオフスイッチと電源ランプとが設けられている。操作表示パネルには、これに限られず、液晶表示部、タイマー設定部などの操作表示部を設けることもできる。
 以上の構成を有する卓上空気清浄装置1では、電源投入によりプラズマ電源部20から交流電圧がプラズマ発生ユニット10の第1電極16aと第2電極16bとの間に印加されて、プラズマ生成層Pに誘電体バリア放電によるプラズマが生成される。プラズマにより生成された種々の活性種が含まれるマルチプラズマガスは、図2に示したように、第1電極16aに設けられている細孔を通じて内方の円筒状空間Aに導入される。一方、電動ファン150の排気動作によって卓上空気清浄装置1の周面にある吸気口INから周囲空気が卓上空気清浄装置1の筐体内に導入され、第1電極16a内方の空間に達してマルチプラズマガスと混合される。周囲空気はこれにより第1電極16a内方の円筒状空間Aにおいて殺菌処理されてオゾン分解フィルター130を介して電動ファン150によって周囲空間に清浄空気として排出される。同時にマルチプラズマガスの一部も活性種とともに電動ファン150によって周囲空間に排出され、周囲空気を殺菌する効果を奏する。
 このように、本実施形態の殺菌システム100は、同心状に対向する第1電極16aと第2電極16bとの間で面状に連続的に発生する誘電体バリア放電により大気圧低温プラズマを効率的に連続発生させることができる。また、プラズマガスはプラズマ生成層Pから第1電極16aの細孔を通じて円筒状空間A内へ、あるいは間隙17内に導入される。殺菌システム100を用いた卓上空気清浄装置1は、周囲空気をプラズマ生成層Pにおいてプラズマと接触させ、また円筒状空間A内でマルチプラズマガスと混合することで、効率的な殺菌処理を実現することができる。
 なお、図3の変形例では第1電極16a、誘電体層14、及び第2電極16bからなる組を同心状に(入れ子状に)2組設けているが、3組以上を組み合わせるようにしてもよい。卓上空気清浄装置1に用いるプラズマ発生ユニット10にも、2以上の第1電極16a、誘電体層14、及び第2電極16bからなる組を設けてもよい。
[実施形態2]
 次に、本発明の第2の実施形態に係る殺菌システム100について説明する。本殺菌システム100は、実施形態1の円筒形殺菌システム100と類似した構成を有しているが、実施形態1と比較して、より長尺なパイプ状に形成されている点が異なる。またプラズマ生成用の電極構成についても実施形態1とは異なる。以下、実施形態1の構成を念頭に、本実施形態の殺菌システム(以下簡便のため「プラズマパイプ」と呼称)の相違点、特徴を説明する。なお、実施形態1の要素と同等の要素には同一の符号を付している。
 図8に本実施形態のプラズマパイプ100の部分分解斜視図を、図9にその横断面図を示している。このプラズマパイプ100は、種々の流体の流路途中に設けることにより、流路内を流れる流体に対して大気圧低温プラズマによる殺菌処理を施す機能を備える。
 前記したように、プラズマパイプ100は長尺なパイプ状に形成されており、それぞれがパイプ状の要素である第1電極16a、誘電体層14、第2電極16b、及び外装体19が内方から同心状に配置されてなる。第1電極16aと第2電極16bとはそれぞれ1mm厚程度のアルミニウム板又はステンレス板によってパイプ状に形成され、外側の第2電極16bの内周面に接して約3mm厚の誘電体層14が設けられている。誘電体層14は加工性、所要の誘電率を考慮して適宜の材料を選択して形成することができ、例えばガラス層とすることができる。誘電体層14の内周面と第1電極16aの外周面とが対向して、その間の約3mm程度の間隙がプラズマ生成層Pとされている。プラズマ生成層Pに面する誘電体層14の表面には、プラズマパイプ100の径方向において相対向する位置に超音波発振素子SSが設置されている。この超音波発振素子SSは、本実施形態では薄い圧電セラミックスからなる振動子を採用しているが、特に振動子の形式に制約はない。超音波発振素子SSに高周波の交流電圧を印加することで、プラズマ生成層P内に超音波が放射される。この放射される超音波は、プラズマ生成層Pにおけるプラズマによる活性酸素種生成プロセスを促進させる効果を奏する。超音波発振素子SSへ供給する交流電圧は、例えば実施形態1の図6に図示する制御部70内に超音波発振素子SSへの電圧供給制御回路を設けて超音波発振素子SSに適当な周波数の交流電圧を供給するように構成することができる。交流電圧の振幅、周波数は、プラズマパイプ100のプラズマ生成に関する仕様に応じて設定すればよい。なお、超音波発振素子SSの設置位置は、上記の構成例に限定されることなく変更することができる。
 第2電極16bの外方には、適宜の間隔を置いて外装体19が設けられ、プラズマパイプ100の外周を形成している。またプラズマパイプ100の中心部には、第1電極16a内方空間に撹拌作用を及ぼすための、流体撹拌手段であるサーキュレータCRが設置されている。サーキュレータCRはプラズマパイプ100の軸線に沿って延在する筒状の部材の形態を取っており、その内部には前記撹拌作用のための回転羽根とそれを回転駆動するための駆動機構が設けられている(図示略)。サーキュレータCRの構成は、第1電極16aに囲まれた円筒状空間A内の流体を撹拌する機能を発揮するものであれば、特定の構成に限定されるものではない。
 第2電極16bの外周とプラズマ生成層Pとの間には、第2電極16b及び誘電体層14、第1電極16aを貫通するように細長い中空のダクトDが設けられている。連通路であるダクトDは細いステンレスチューブ等の部材で形成され、第2電極16bと外装体19との間の環状空間Rとプラズマ生成層Pとの間、プラズマ生成層Pと円筒状空間Aとの間をそれぞれ連通させている。図8,9にはダクトDを一つのみ図示しているが、実際にはプラズマパイプ100の軸線方向に沿って適宜の間隔で適宜の数だけ設けることができる。ダクトDは、環状空間R内の流体をプラズマ生成層P内へ流入させてプラズマにより処理させ、その結果生成された種々の活性酸素種とともにさらに円筒状空間A内へと流入させる流路の機能を果たす。円筒状空間Aは、プラズマパイプ100の外部から取り入れられる被処理流体の流路となっている。円筒状空間A内を流れる被処理流体に、ダクトDを通じてプラズマ生成層Pにおいてプラズマ処理がなされ、種々の活性酸素種を含んだプラズマ処理済み流体が導入される。円筒状空間A内では、サーキュレータCRにより被処理流体とダクトDからの活性酸素種を含む流体が撹拌、混合され、被処理流体が活性酸素種により殺菌処理される。
 図示する第1電極16aと第2電極16bとの間には、実施形態1の図4等に関して述べたプラズマ電源部20が接続され、それぞれが導電性材料(アルミニウム板、ステンレス板等)で形成された円筒状部材である第1電極16aと第2電極16bとの間に誘電体層14を介して形成されているプラズマ生成層Pにおいて誘電体バリア放電によるプラズマを生成する。プラズマ電源部20が第1電極16aと第2電極16bの間に印加する交流電圧は、実施形態1に関して説明した制御部70の構成により、プラズマ生成が安定して行われるように制御される。
 前記したように、環状空間R内の流体(例えば空気)は、ダクトDをプラズマ生成層Pへ導入される。導入された流体はプラズマ生成層Pにおいプラズマに接触して、気相活性酸素種を含むマルチプラズマガスとなる。このプラズマ生成層Pで生成されたマルチプラズマガスは、さらにダクトDを通じて内方の円筒状空間Aに導入される。本実施形態のプラズマパイプ100に取り入れられた外気は円筒状空間A内に誘導されて流れ、円筒状空間Aを通過する際に、プラズマ生成層Pからの活性酸素種を含んだマルチプラズマガスと混合され殺菌処理される。サーキュレータCRは、円筒状空間Aにおいて、導入された外気とマルチプラズマガスとの混合を撹拌により促進し、殺菌処理を加速させる作用を果たす。また外気の一部が分流されて環状空間Rに入るが、この外気は前記のようにダクトDを通じてプラズマ生成層Pに導入されるので、プラズマ生成層P全体に発生しているプラズマに直接接触することで含まれているウイルス、微生物等はごく短時間でその構造が破壊される。
 以上のように、本実施形態のプラズマパイプ100によれば、導入された外気がプラズマ生成層Pにおいて直接プラズマに接触し、また円筒状空間Aにおいてマルチプラズマガスと混合されることにより、効率的に殺菌処理を行うことができる。
 なお、以上の説明では、本実施形態のプラズマパイプ100を空気(気体)の殺菌処理に用いる場合について説明した。これに限定されることなく、本実施形態のプラズマパイプ100は、液体の殺菌処理にも適用することができる。図10に、本実施形態に係る殺菌システムであるプラズマパイプ100を、流体流路を構成する管路の途中に設置した状態を模式的に示している。図示を省略しているが、プラズマパイプ100に付帯して、先の実施形態において説明したようなプラズマ電源部、制御部、サーキュレータCRの駆動用電源部などが設けられる。図10に示すように、このプラズマパイプ100を流路途中に設けることで、流路内を流れる各種流体について、プラズマ生成層Pにおいて継続的に生成される大気圧低温プラズマ、及び生成されるマルチプラズマガスとの接触により、連続的に効率よく殺菌処理を行うことができる。図10において、プラズマパイプ100に導入されるのが液体である場合には、処理対象である液体は、円筒状空間A内に導入され、プラズマ生成層Pには導入されない。外気はまず環状空間Rに導入され、ダクトDからプラズマ生成層Pに入ってプラズマ処理されることにより活性酸素種を含むマルチプラズマガスとなる。このマルチプラズマガスがさらにダクトDを通って円筒状空間A内の液体中に導入され、そこで処理対象の液体と混合して殺菌処理を行う。
 なお、外装体19は、プラズマパイプ100が設置される流路の形態、流路を流れる流体の種類、性状に応じて材質等を決めればよい。例えば、流体が排水等の液体の場合は塩化ビニル管を、空気等の気体の場合はステンレス管等の金属管を好適に用いることができる。
 以上のように、本実施形態の殺菌システムであるプラズマパイプ100によれば、流路を流れる流体をプラズマ、あるいは活性酸素種を含むマルチプラズマガスと連続的に接触させることにより、流体の効率的な殺菌処理を可能としている。
 なお、本発明の技術的範囲は上記の実施形態に限定されることはなく、他の変形例、応用例等も、特許請求の範囲に記載した事項の範囲内に含まれるものである。
1 卓上空気清浄装置
10 プラズマ発生ユニット
14 誘電体層
16a 第1電極
16b 第2電極
19 外装体
20 プラズマ電源部
22 インバータ
24 昇圧部
100 プラズマ発生装置
130 オゾン分解フィルター
140 オゾンセンサ
150 電動ファン
60 DC電源部
70 制御部
80 入出力部
100 殺菌システム
P プラズマ生成層
R 環状空間
A 円筒状空間
D ダクト
CR サーキュレータ
SS 超音波発振素子

Claims (8)

  1.  平板状の導電材料を筒状に形成してなる第1電極と、平板状の導電材料を筒状に形成してなり、前記第1電極の外周を所定の間隙をおいて取り囲むように配置されている第2電極と、前記第1電極と前記第2電極との間に介在するように配置された筒状の誘電体層とが設けられてなるプラズマ生成部を備え、
     前記プラズマ生成部の第1及び第2電極の間に所定の交流電圧を印加することにより、各前記プラズマ生成部の第1及び第2電極の間に前記誘電体層を介して大気圧低温プラズマを生成させる、
    プラズマ発生ユニット。
  2.  それぞれ、平板状の導電材料を筒状に形成してなる第1電極と、平板状の導電材料を筒状に形成してなり、前記第1電極の外周を所定の間隙をおいて取り囲むように配置されている第2電極と、前記第1電極と前記第2電極との間に介在するように配置された筒状の誘電体層とが設けられてなる、第1のプラズマ生成部と第2のプラズマ生成部とを備え、前記第1のプラズマ生成部と前記第2のプラズマ生成部とは同心状に、前記第2のプラズマ生成部の第1電極が前記第1のプラズマ生成部の第2電極から所定の間隙を保持するように配置されており、
     前記第1及び第2のプラズマ生成部の第1及び第2電極の間に所定の交流電圧を印加することにより、各前記プラズマ生成部の第1及び第2電極の間に前記誘電体層を介して大気圧低温プラズマを生成させる、
    プラズマ発生ユニット。
  3.  前記第1電極は金属板に複数の細孔を設けてなるパンチングメタル板によって形成され、前記第2電極は金属細線を編組してなる金属メッシュ材によって形成され、前記第1電極と前記第2電極との間に、誘電体材料からなる誘電体層が形成されている、請求項1又は2に記載のプラズマ発生ユニット。
  4.  請求項1又は2に記載のプラズマ発生ユニットと、
     前記プラズマ発生ユニットが備える各前記プラズマ生成部の第1及び第2電極間に所定の交流電圧を印加するように構成されているプラズマ電源部と
    を備えているプラズマ発生装置。
  5.  請求項4に記載のプラズマ発生装置と、
     前記プラズマ発生装置の前記プラズマ生成部にある間隙に対向するように配置された送風ユニットと、
     前記間隙と前記送風ユニットとの間に配置されたオゾン分解フィルターと
    を備えている殺菌システム。
  6.  平板状の導電材料を筒状に形成してなる第1電極と、平板状の導電材料を筒状に形成してなり、前記第1電極の外周を所定の間隙をおいて取り囲むように配置されている第2電極と、前記第1電極と前記第2電極との間に介在するように配置された筒状の誘電体層とが設けられてなるプラズマ生成部と、
     前記第1及び第2電極の間にある間隙と前記第1電極内方の空間及び前記第2電極外方の空間とを連通させる連通路と
    を備え、
     前記プラズマ生成部の第1及び第2電極の間に所定の交流電圧を印加することにより、各前記プラズマ生成部の第1及び第2電極の間に前記誘電体層を介して大気圧低温プラズマを生成させ、
     前記第2電極外方の空間から前記第1及び第2電極の間にある間隙へ前記連通路を通じて導入される流体を、大気圧低温プラズマにより処理してマルチプラズマガスを生成するとともに、当該マルチプラズマガスを前記連通路を通じて前記第1電極内方の円筒状空間に流入させる、
    プラズマ発生ユニット。
  7.  請求項6に記載のプラズマ発生ユニットと、
     前記プラズマ発生ユニットが備える各前記プラズマ生成部の第1及び第2電極間に所定の交流電圧を印加するように構成されているプラズマ電源部と
    を備えているプラズマ発生装置。
  8.  前記プラズマ発生ユニットの第1電極内方空間に流体撹拌手段を備えている、請求項7に記載のプラズマ発生装置。
PCT/JP2022/023785 2021-06-14 2022-06-14 プラズマ発生ユニット、プラズマ発生装置及び殺菌システム WO2022265007A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021098813A JP2022190473A (ja) 2021-06-14 2021-06-14 プラズマ発生ユニット、プラズマ発生装置及び殺菌システム
JP2021-098813 2021-06-14

Publications (1)

Publication Number Publication Date
WO2022265007A1 true WO2022265007A1 (ja) 2022-12-22

Family

ID=84526501

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/023785 WO2022265007A1 (ja) 2021-06-14 2022-06-14 プラズマ発生ユニット、プラズマ発生装置及び殺菌システム

Country Status (2)

Country Link
JP (1) JP2022190473A (ja)
WO (1) WO2022265007A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020076366A1 (en) * 2000-12-19 2002-06-20 Nelson David Emil Single dielectric barrier non-thermal plasma reactor and method-planar and swept shapes
JP2003500195A (ja) * 1999-05-21 2003-01-07 アクセンタス パブリック リミテッド カンパニー 非軸流式の誘電体バリアのガス反応器
JP2019155006A (ja) * 2018-03-16 2019-09-19 株式会社東芝 ガス処理装置
JP2020189172A (ja) * 2020-08-24 2020-11-26 村田 正義 プラズマを用いた空気清浄装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003500195A (ja) * 1999-05-21 2003-01-07 アクセンタス パブリック リミテッド カンパニー 非軸流式の誘電体バリアのガス反応器
US20020076366A1 (en) * 2000-12-19 2002-06-20 Nelson David Emil Single dielectric barrier non-thermal plasma reactor and method-planar and swept shapes
JP2019155006A (ja) * 2018-03-16 2019-09-19 株式会社東芝 ガス処理装置
JP2020189172A (ja) * 2020-08-24 2020-11-26 村田 正義 プラズマを用いた空気清浄装置

Also Published As

Publication number Publication date
JP2022190473A (ja) 2022-12-26

Similar Documents

Publication Publication Date Title
ES2544591T3 (es) Dispositivo de descontaminación del aire
KR20190067633A (ko) 플라즈마와 광촉매를 이용한 공기 살균탈취장치
EP1923356A1 (en) Water disinfection apparatus
KR20150126612A (ko) 대상물의 세정을 위한 방법 및 장치
JP2008289801A (ja) ガス浄化装置
WO2022265006A1 (ja) プラズマ発生ユニット、プラズマ発生装置及び殺菌システム
KR101866545B1 (ko) 복 수개의 봉형 전극과 유전관을 이용하여 활성종을 생산하는 플라즈마 살균기
US20230414811A1 (en) Liquid processing apparatus with atmospheric, low-temperature plasma activation
EP1716728A2 (en) Plasma-generating device and method of treating a gaseous medium
US20210033293A1 (en) Air treatment system, method and apparatus
CA3220522A1 (en) Plasma source for hand disinfection
RU2670654C2 (ru) Способ получения дезинфицирующего агента и устройство для его осуществления
WO2022265007A1 (ja) プラズマ発生ユニット、プラズマ発生装置及び殺菌システム
KR101669185B1 (ko) 배관용 플라즈마 살균장치
JP2023523809A (ja) プラズマ及びヒドロキシラジカルを生成する滅菌装置
WO2014136063A2 (en) Systems and methods for generating and collecting reactive species
KR20220099702A (ko) 상압 플라즈마를 이용한 공기 청정 장치
Osman et al. Plasma-activated vapor for sanitization of hands
KR101647480B1 (ko) 고농도 과산화수소 증기 제거용 대기압 플라즈마 장치
KR20220056216A (ko) 코로나 방전 구역 내 성분의 오존 프리 분리하기 위한 디바이스 및 방법
CN104276627A (zh) 一种非热电弧等离子体污水处理厂出水杀菌的方法
EP3981743A1 (en) Method and device for disinfection of liquid
JPH06327749A (ja) オゾン・フォガー
WO2023282089A1 (ja) 二酸化炭素処理システム及び二酸化炭素処理方法
JP2022537179A (ja) プラズマ処理

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22824995

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22824995

Country of ref document: EP

Kind code of ref document: A1