WO2022264544A1 - 漏電検知回路、漏電遮断器及び分電盤 - Google Patents

漏電検知回路、漏電遮断器及び分電盤 Download PDF

Info

Publication number
WO2022264544A1
WO2022264544A1 PCT/JP2022/009772 JP2022009772W WO2022264544A1 WO 2022264544 A1 WO2022264544 A1 WO 2022264544A1 JP 2022009772 W JP2022009772 W JP 2022009772W WO 2022264544 A1 WO2022264544 A1 WO 2022264544A1
Authority
WO
WIPO (PCT)
Prior art keywords
contact portion
terminal
leakage detection
earth leakage
contact
Prior art date
Application number
PCT/JP2022/009772
Other languages
English (en)
French (fr)
Inventor
翔 毛
紘平 宮川
義也 中道
Original Assignee
パナソニックホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックホールディングス株式会社 filed Critical パナソニックホールディングス株式会社
Priority to CN202280042464.1A priority Critical patent/CN117501396A/zh
Publication of WO2022264544A1 publication Critical patent/WO2022264544A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/52Testing for short-circuits, leakage current or ground faults
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H83/00Protective switches, e.g. circuit-breaking switches, or protective relays operated by abnormal electrical conditions otherwise than solely by excess current
    • H01H83/02Protective switches, e.g. circuit-breaking switches, or protective relays operated by abnormal electrical conditions otherwise than solely by excess current operated by earth fault currents
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02BBOARDS, SUBSTATIONS OR SWITCHING ARRANGEMENTS FOR THE SUPPLY OR DISTRIBUTION OF ELECTRIC POWER
    • H02B1/00Frameworks, boards, panels, desks, casings; Details of substations or switching arrangements
    • H02B1/26Casings; Parts thereof or accessories therefor
    • H02B1/40Wall-mounted casings; Parts thereof or accessories therefor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/16Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to fault current to earth, frame or mass

Definitions

  • the present disclosure relates to an earth leakage detection circuit, an earth leakage breaker, and a distribution board, and more particularly to an earth leakage detection circuit, an earth leakage breaker, and a distribution board having an overcurrent protection function.
  • Patent Document 1 a first contact portion that cuts off a main circuit, a second contact portion that cuts off a power supply circuit to a leakage detection portion that detects a leakage current, and a surge absorption element through which an overcurrent due to a lightning surge or the like flows are provided.
  • a circuit breaker is disclosed.
  • the present disclosure is made in view of the above reasons, and provides an earth leakage detection circuit, an earth leakage circuit breaker, and a distribution board that can protect a contact portion that cuts off a power supply line to an earth leakage detection unit from overcurrent (surge current). With the goal.
  • An earth leakage detection circuit includes a first terminal, a second terminal, a third terminal, a fourth terminal, a first electrical path, a second electrical path, a first contact portion, and a second contact. a section, an earth leakage detection section, a third contact section, and a surge absorber.
  • the first terminal and the second terminal are connected to a first connection target that is one of a power supply and a load.
  • the third terminal and the fourth terminal are connected to a second connection target, which is the other of the power supply and the load.
  • the first electric circuit connects the first terminal and the third terminal.
  • the second electric circuit connects the second terminal and the fourth terminal.
  • a said 1st contact part and a said 2nd contact part are provided in a said 1st electric circuit and a said 2nd electric circuit, respectively.
  • the electric leakage detection section includes a first input section provided between the first contact section and the first terminal, and a second input section provided between the second contact section and the fourth terminal. connected between The leakage detection unit switches the first contact unit and the second contact unit from on to off when detecting occurrence of a leakage current.
  • the third contact portion includes a first end and a second end that is the other end of the first end, and the first end is connected to the first input portion or the second input portion. , the second end is connected to the leakage detection unit.
  • the third contact portion switches on/off in conjunction with on/off switching of the first contact portion and the second contact portion.
  • the surge absorber is connected between the first electric circuit and the second electric circuit without the third contact portion interposed therebetween.
  • a ground fault circuit breaker includes the ground fault detection circuit.
  • a distribution board includes the earth leakage circuit breaker.
  • FIG. 1 is a schematic circuit diagram of an earth leakage detection circuit according to an embodiment.
  • FIG. 2 is a schematic circuit diagram of the electric leakage detection circuit of the same.
  • FIG. 3 is a schematic circuit diagram of the electric leakage detection circuit of the same.
  • FIG. 4 is a schematic front view showing the inside of the distribution board according to the embodiment.
  • FIG. 5 is a schematic front view of the earth leakage circuit breaker according to the embodiment.
  • FIG. 6 is a schematic circuit diagram of an earth leakage detection circuit of Modification 1.
  • FIG. 7 is a schematic circuit diagram of an earth leakage detection circuit of Modification 2.
  • FIG. 8 is a schematic circuit diagram of an earth leakage detection circuit of Modification 3.
  • FIG. 1 is a schematic circuit diagram of an earth leakage detection circuit according to an embodiment.
  • FIG. 2 is a schematic circuit diagram of the electric leakage detection circuit of the same.
  • FIG. 3 is a schematic circuit diagram of the electric leakage detection circuit of the same.
  • FIG. 4 is a schematic
  • the earth leakage detection circuit 1, the earth leakage circuit breaker 11, and the distribution board 12 according to the embodiment of the present disclosure will be described in detail with reference to the drawings. Note that the embodiments and modifications described below are merely examples of the present disclosure, and the present disclosure is not limited to the embodiments and modifications. Other than this embodiment and modifications, various modifications can be made according to the design and the like within the scope of the technical idea of the present disclosure. Moreover, the following embodiments (including modifications) may be combined as appropriate and implemented.
  • the earth leakage detection circuit 1 includes a first terminal 41 and a second terminal 42 that are connected to a first connection target, which is one of the power supply 2 and the load 3 .
  • the first connection target is the power supply 2, for example.
  • the leakage detection circuit 1 also includes a third terminal 43 and a fourth terminal 44 that are connected to a second connection target, which is the other of the power supply 2 and the load 3 .
  • the second connection target is the load 3, for example.
  • the first terminal 41 and the second terminal 42 may be connected to the load 3
  • the third terminal 43 and the fourth terminal 44 may be connected to the power supply 2 .
  • the first terminal 41 and the third terminal 43 are connected by the first electric circuit C1, and the second terminal 42 and the fourth terminal 44 are connected by the second electric circuit C2. That is, the first electric line C1 and the second electric line C2 are power supply lines from the power source 2 to the load 3 .
  • a first contact portion S1 and a second contact portion S2 are provided on the first electric circuit C1 and the second electric circuit C2, respectively.
  • the earth leakage detection circuit 1 also includes an earth leakage detection portion 5, a third contact portion S3, and a surge absorber (first surge absorber 61).
  • the leakage detector 5 includes a first input portion 71 provided between the first contact portion S1 and the first terminal 41 and a second input portion provided between the second contact portion S2 and the fourth terminal 44. 72 and .
  • the leakage detection unit 5 operates by being supplied with power from the power source 2 .
  • the leakage detection unit 5 monitors the current flowing between the power supply 2 and the load 3 via the first electric circuit C1 and the second electric circuit C2, and when detecting the occurrence of leakage current, the first contact S1 and the second contact Each of the sections S2 is switched from on to off. As a result, power supply from the power source 2 to the load 3 can be stopped when leakage current occurs.
  • the third contact portion S3 includes a first end (end P1) and a second end (end P2) that is the other end of the first end (end P1).
  • the end P1 is connected to the first input section 71 .
  • the end portion P2 is connected to the leakage detection portion 5 . That is, the third contact portion S ⁇ b>3 is connected between the first input portion 71 and the earth leakage detection portion 5 .
  • the end portion P1 may be connected to the second input portion 72
  • the third contact portion S3 may be connected between the second input portion 72 and the leakage detection portion 5 .
  • the third contact portion S3 switches on/off in conjunction with the on/off switching of the first contact portion S1 and the second contact portion S2.
  • the third contact portion S3 when the first contact portion S1 and the second contact portion S2 are on, the third contact portion S3 is also on, and when the first contact portion S1 and the second contact portion S2 are off, the third contact portion S3 is on.
  • the contact portion S3 is also off.
  • the third contact portion S ⁇ b>3 when the third contact portion S ⁇ b>3 is on, power is supplied from the power source 2 to the leakage detection portion 5 .
  • the third contact portion S3 is switched off, power supply from the power supply 2 to the leakage detection portion 5 is stopped.
  • the first surge absorber 61 is connected between the first electric circuit C1 and the second electric circuit C2 without interposing the third contact portion S3.
  • the surge current flows through the first surge absorber 61 without passing through the third contact portion S3.
  • the third contact portion S3 can be protected from surge current.
  • FIG. 1 Details Details of the earth leakage detection circuit 1 and the earth leakage breaker 11 according to the embodiment will be described below with reference to FIGS. 1 to 5.
  • FIG. 1 Details Details of the earth leakage detection circuit 1 and the earth leakage breaker 11 according to the embodiment will be described below with reference to FIGS. 1 to 5.
  • FIG. 1 Details Details of the earth leakage detection circuit 1 and the earth leakage breaker 11 according to the embodiment will be described below with reference to FIGS. 1 to 5.
  • the earth leakage detection circuit 1 includes first terminals 41 to fourth terminals 44 .
  • the first terminal 41 and the second terminal 42 are connected to the power supply 2 .
  • the power supply 2 is, for example, a commercial AC power supply.
  • the third terminal 43 and the fourth terminal 44 are connected to the load 3 .
  • the AC power output by the power supply 2 is supplied to the load 3 via the first electric circuit C1 connecting the first terminal 41 and the third terminal 43 and the second electric circuit connecting the second terminal 42 and the fourth terminal 44. supplied.
  • the leakage detection circuit 1 can operate even when the first terminal 41 and the second terminal 42 are connected to the load 3 and the third terminal 43 and the fourth terminal 44 are connected to the power supply 2. is sometimes called a "reverse connection state".
  • a first contact portion S1 and a second contact portion S2 are provided on the first electric circuit C1 and the second electric circuit C2, respectively.
  • the ON/OFF switching operation of the first contact portion S1 and the second contact portion S2 will be described later.
  • the earth leakage detection circuit 1 includes an earth leakage detection portion 5, a third contact portion S3, and a first surge absorber 61.
  • the earth leakage detection circuit 1 further includes a trip mechanism section 8, a test section 9, and a zero-phase current transformer 10 (ZCT: Zero-phase Current Transformer).
  • the leakage detection unit 5 includes, for example, a rectifying circuit that rectifies the AC voltage input from the power supply 2 to a DC voltage, a smoothing circuit that smoothes the output voltage of the rectifying circuit, and a processor and memory provided after the smoothing circuit.
  • a rectifying circuit that rectifies the AC voltage input from the power supply 2 to a DC voltage
  • a smoothing circuit that smoothes the output voltage of the rectifying circuit
  • a processor and memory provided after the smoothing circuit.
  • the computer system functions as the earth leakage detector 5 by the processor executing the program stored in the memory.
  • the program executed by the processor is recorded in advance in the memory of the computer system here, but may be recorded in a recording medium such as a memory card and provided, or may be provided through an electric communication line such as the Internet.
  • the electric leakage detection unit 5 is not limited to the configuration of a digital IC such as a processor, and may be configured of an analog IC.
  • the leakage detector 5 includes a first input portion 71 provided between the first contact portion S1 and the first terminal 41 and a second input portion provided between the second contact portion S2 and the fourth terminal 44. 72 and .
  • the leakage detector 5 has terminals T1 to T4, the terminal T1 is connected to the first input section 71, and the terminal T2 is connected to the second input section 72.
  • the leakage detection unit 5 monitors the current flowing between the power source 2 and the load 3 via the first electric circuit C1 and the second electric circuit C2, and detects leakage current.
  • the third contact portion S3 is connected between the terminal T1 of the earth leakage detection portion 5 and the first input portion 71.
  • the third contact portion S3 includes an end portion P1 and an end portion P2, the end portion P1 being connected to the first input portion 71 and the end portion P2 being connected to the terminal T1.
  • the third contact portion S3 is switched on/off by the trip mechanism portion 8, which will be described later, in conjunction with the on/off switching of the first contact portion S1 and the second contact portion S2.
  • the first surge absorber 61 is a varistor, such as a ZNR (Zinc oxide Nonlinear Resistor), that protects the leakage detection unit 5 from surge voltage caused by a lightning strike or the like.
  • the first surge absorber 61 is not limited to a varistor, and may be a gas discharge tube (GDT), an avalanche diode, or the like.
  • the first surge absorber 61 is connected between the first electric circuit C1 and the second electric circuit C2 without interposing the third contact portion S3.
  • the first surge absorber 61 includes an end portion P3 and an end portion P4, the end portion P3 is connected between the second input portion 72 and an end portion P5 of the trip coil 81 described later, and the end portion P4 is It is connected to the first input section 71 .
  • the end P4 is also connected to the end P1 of the third contact portion S3. That is, the end P3 is connected to the second input portion 72, and the end P4 is connected between the first input portion 71 and the end P1 of the third contact portion S3.
  • the surge current generated between the first electric circuit C1 and the second electric circuit C2 flows through the first surge absorber 61 without passing through the third contact portion S3. can protect against surge currents.
  • the trip mechanism section 8 is connected between the terminal T2 of the earth leakage detection section 5 and the second input section 72 .
  • the trip mechanism part 8 has a function of switching (tripping) the first contact part S1, the second contact part S2 and the third contact part S3 from on to off when the leakage current is detected by the earth leakage detection part 5. have.
  • the trip mechanism section 8 includes, for example, a trip coil 81, a switching section 82, and a link section 83.
  • the trip coil 81 is a coil connected between the terminal T2 of the leakage detection section 5 and the second input section 72 .
  • the trip coil 81 includes an end portion P5 and an end portion P6, the end portion P5 is connected to the second input portion 72, and the end portion P6 is connected to the terminal T2 of the leakage detection portion 5.
  • the switching portion 82 switches the first contact portion S1 and the second contact portion S2 from on to off in accordance with the detection of the occurrence of an earth leakage current by the earth leakage detection portion 5 .
  • the switching portion 82 is, for example, a movable core made of a magnetic material, a pushing pin coupled to the movable core, and a switching mechanism that cooperates with the pushing pin to switch the first contact portion S1 and the second contact portion S2 from on to off. etc.
  • the earth leakage detector 5 detects the occurrence of leakage current based on the output of the zero-phase current transformer 10 , it supplies a drive current to the trip coil 81 .
  • the magnetic flux penetrating the movable iron core accommodated in the coil bobbin of the trip coil 81 changes, and the movable iron core moves in a direction that cancels out the change in the magnetic flux.
  • the pushing pin moves with the movable core.
  • the switching mechanism of the switching portion 82 switches the first contact portion S1 and the second contact portion S2 from on to off in cooperation with the movement of the pushing pin.
  • the link portion 83 switches the third contact portion S3 from on to off in conjunction with switching of the first contact portion S1 and the second contact portion S2 from on to off by the switching portion 82 . It should be noted that provision of the trip coil 81, the switching section 82, and the link section 83 is not an essential configuration of the trip mechanism section 8, and the function of the trip mechanism section 8 may be realized by a configuration other than this. .
  • the test section 9 is connected between the first input section 71 and the second input section 72 .
  • the test section 9 has a test switch 91 and a resistor 92 .
  • the test switch 91 includes ends P7 and P8, the end P7 being connected to the end P10 of the resistor 92, which will be described later, and the end P8 connecting the first input portion 71 and the third contact portion S3. is connected between the end P1 of the
  • the test switch 91 is a normally-off type switch, and is turned on by the user when testing the earth leakage detection function of the earth leakage detection section 5 and the trip function of the trip mechanism section 8 .
  • Resistor 92 includes ends P9 and P10, end P9 being connected between second input 72 and end P5 of trip coil 81, and end P10 being connected to end P7 of test switch 91. Connected. The test of the leakage detection function of the leakage detection unit 5 by the test switch 91 will be described in detail in "(2.2.2) Test operation".
  • the zero-phase current transformer 10 has an annular core 101 and a coil 102, and has a structure in which the coil 102 is wound around part of the annular core 101. Coil 102 is connected between terminal T3 and terminal T4 of earth leakage detector 5 .
  • a first electric circuit C1, a second electric circuit C2 and a third electric circuit C3 are passed through the holes of the annular core 101 .
  • the third electric line C3 is an electric line that connects the end P10 of the resistor 92 and the end P7 of the test switch 91 .
  • the first electric circuit C1 and the second electric circuit C2 are passed so that the directions of current flow are opposite to each other.
  • the operation of the zero-phase current transformer 10 will be described in detail in "(2.2.1) Leak Detection Operation”.
  • the leakage detection circuit 1 further includes a second surge absorber 62 in addition to the first surge absorber 61 .
  • the second surge absorber 62 includes an end P11 and an end P12, the end P11 is connected between the end P6 of the trip coil 81 and the terminal T2 of the earth leakage detector 5, and the end P12 is the third contact. It is connected between the end portion P2 of the portion S3 and the terminal T1 of the earth leakage detection portion 5 .
  • the first electric circuit C1 When the first contact portion S1, the second contact portion S2, and the third contact portion S3 are on, no leakage current is generated, and power is normally supplied from the power supply 2 to the load 3, the first electric circuit C1 is turned on. The flowing current I1 and the current I2 flowing through the second electric circuit C2 are equal.
  • the first electric circuit C1 and the second electric circuit C2 pass inside the annular core 101 of the zero-phase current transformer 10 so that the currents I1 and I2 flow in opposite directions. Therefore, the magnetic fluxes generated by the currents I1 and I2 cancel each other, and no current flows through the coil 102 .
  • the leakage detection unit 5 can detect the occurrence of leakage current.
  • the leakage current detection unit 5 When the leakage current detection unit 5 detects the occurrence of a leakage current, it causes a drive current to flow through the trip coil 81, and causes the trip mechanism unit 8 to turn the first contact portion S1, the second contact portion S2, and the third contact portion S3 from on to off. switch to When the first contact portion S1, the second contact portion S2, and the third contact portion S3 are switched from ON to OFF, power supply from the power source 2 to the load 3 is interrupted, so the load 3 can be protected.
  • the test unit 9 causes the pseudo leakage current I3 to flow through the third electric circuit C3 passing through the inner side of the annular core 101, and the trip mechanism unit 8 turns the first contact portion S1, the second contact portion S2 and the third contact portion S3 from ON to OFF. It is configured to switch to
  • the user of the earth leakage detection circuit 1 can see that the first contact portion S1, the second contact portion S2, and the third contact portion S3 are on, no leakage current is generated, and power is normally supplied from the power source 2 to the load 3. In this case, it is possible to test whether or not the earth leakage detection function and trip function of the earth leakage detection circuit 1 operate normally.
  • the user who conducts the test switches the test switch 91 from off to on, as shown in FIG.
  • a current flows from the power supply 2 through the test switch 91 and the resistor 92, and a pseudo leakage current I3 flows through the third electric circuit C3 passing inside the annular core 101.
  • the current I1 and the current I2 passing through the first electric circuit C1 and the second electric circuit C2 are in equilibrium, but the pseudo leakage current I3 flows through the third electric circuit C3.
  • I3 becomes unbalanced, and a current corresponding to the pseudo leakage current I3 flows through the coil 102 .
  • the leakage detector 5 can detect the pseudo leakage current by detecting the current flowing through the coil 102 .
  • the earth leakage detection unit 5 and the trip mechanism unit 8 are normal, the earth leakage detection unit 5, upon detecting a pseudo leakage current, causes the drive current to flow through the trip coil 81, and the trip mechanism unit 8 causes the first contact portion S1 and the second contact portion S1 to flow.
  • the contact portion S2 and the third contact portion S3 are switched from on to off. Therefore, the user can confirm whether the earth leakage detection function and the trip function operate normally.
  • the first contact portion S1, the second contact portion S2, and the third contact portion S3 are on, and the power is supplied from the power supply 2 to the load 3. Assume that a surge voltage is applied between the two electric lines C2.
  • the surge voltage applied between the first electric circuit C1 and the second electric circuit C2 is also applied to the first surge absorber 61.
  • the surge voltage is higher than the varistor voltage of the first surge absorber 61 which is a varistor, the electrical resistance of the first surge absorber 61 drops sharply and the surge current Is flows through the first surge absorber 61 .
  • the surge current Is that has flowed through the first surge absorber 61 flows to the power supply 2 via the first electric line C1 or the second electric line C2.
  • the surge current Is can be prevented from flowing to the leakage detector 5 .
  • the surge current Is can be passed without passing through the third contact portion S3, so that the third contact portion S3 can be protected from the surge current Is.
  • the earth leakage detection unit 5 may be configured so as to be able to detect the occurrence of the surge current Is. In this case, when the leakage detection unit 5 detects the occurrence of the surge current Is, the drive current is supplied to the trip coil 81, and the trip mechanism unit 8 connects the first contact portion S1, the second contact portion S2, and the third contact portion S3. switch from on to off.
  • the leakage detection circuit 1 includes the third contact portion S3, the first terminal 41 and the second terminal 42 are connected to the load 3, and the third terminal 43 and It is operable even in a reverse connection state in which the fourth terminal 44 is connected to the power source 2 .
  • the leakage detection circuit 1 does not have the third contact portion S3. If a ground fault or the like occurs on the side of the load 3 connected to the first terminal 41 and the second terminal 42 in the reverse connection state, even if the first contact portion S1 and the second contact portion S2 are off, the leakage current A ground fault current may flow through the detection unit 5 .
  • the leakage detection circuit 1 includes the third contact portion S3, and when the first contact portion S1 and the second contact portion S2 are turned off, the third contact portion S3 is also turned off. Even if a ground fault or the like occurs on the load 3 side, the ground fault current can be prevented from flowing through the third contact portion S3, thereby improving reliability.
  • FIG. 1 (2.4) Earth Leakage Circuit Breaker
  • FIG. 1 (2.4) Earth Leakage Circuit Breaker
  • the earth leakage circuit breaker 11 has the function of detecting a leakage current and interrupting the energization of the first electric circuit C1 and the second electric circuit C2, which are the electric supply lines from the power source 2 to the load 3, by being provided with the earth leakage detection circuit 1. ing.
  • the earth leakage circuit breaker 11 is used, for example, in a distribution board 12 installed in a house.
  • the place where the distribution board 12 is installed is not limited to a house, and may be a non-residential place such as an office, a store, a factory, or a hospital, for example.
  • the earth leakage breaker 11 is attached to the mounting surface 131 of the DIN rail 13 provided inside the distribution board 12 .
  • the mounting surface 131 is, for example, one surface of the DIN rail 13 that faces the earth leakage breaker 11 .
  • the earth leakage breaker 11 can be used for both a branch breaker and a main breaker, and as shown in FIG.
  • the earth leakage breaker 11 (11M) attached to the rightmost side is the main breaker, and the other earth leakage breakers 11 (11B) function as branch breakers.
  • illustration of the wiring in the distribution board 12 is omitted.
  • the earth leakage circuit breaker 11 has a first terminal 111 and a second terminal 112 at its upper end, and a third terminal 113 and a fourth terminal 114 at its lower end.
  • the earth leakage circuit breaker 11 also has an operation handle 115 and a test button 116 on the operation surface 110 .
  • the first terminal 111 to fourth terminal 114 correspond to the first terminal 41 to fourth terminal 44 of the leakage detection circuit 1 shown in FIG. 1, respectively. That is, the first terminal 111 and the second terminal 112 are connected to the power source 2 and the third terminal 113 and the fourth terminal 114 are connected to the load 3 .
  • the earth leakage breaker 11 can operate even when the first terminal 111 and the second terminal 112 are connected to the load 3 and the third terminal 113 and the fourth terminal 114 are connected to the power supply 2 .
  • the operation handle 115 is a part of the link portion 83 of the trip mechanism portion 8, and operates in conjunction with turning on/off the first contact portion S1 and the second contact portion S2. For example, when the first contact portion S1 and the second contact portion S2 are on, the operating handle 115 is in an upwardly inclined state (on state), and the first contact portion S1 and the second contact portion S2 are switched off. At this time, the operating handle 115 is in a downward tilted state (off state) as shown in FIG. Also, the third contact portion S3 is configured to operate in conjunction with the operation handle 115 . The third contact portion S3 is on when the operating handle 115 is in the on state, and the third contact portion S3 is off when the operating handle 115 is switched to the off state.
  • the leakage detection circuit 1 detects, for example, a leakage current
  • the first contact portion S1, the second contact portion S2, and the third contact portion S3 are switched from on to off
  • the operating handle 115 is switched from on to off. switch.
  • the operating handle 115 is switched from the ON state to the OFF state while the first contact portion S1, the second contact portion S2 and the third contact portion S3 are ON, the first contact portion S1, the second contact portion S2 and the third contact portion S3 are turned on.
  • the third contact portion S3 can be switched off.
  • the operating handle 115 when the operating handle 115 is switched from the OFF state to the ON state while the first contact portion S1, the second contact portion S2 and the third contact portion S3 are turned off, the first contact portion S1, the second contact portion S2 and the third contact portion S3 are turned off.
  • the third contact S3 can be switched on.
  • the leakage detection circuit 1 switches the first contact portion S1, the second contact portion S2, and the third contact portion S3 from on to off, for example, when the cause of the leakage current is identified and safety is confirmed, Then, the user can operate the operation handle 115 to restart the supply of power from the power source 2 to the load 3 .
  • the test button 116 switches the test switch 91 of the earth leakage detection circuit 1 on/off. By pressing the test button 116, the user of the earth leakage circuit breaker 11 can turn on the test switch 91 and test whether the earth leakage detection function and the trip function of the earth leakage detection circuit 1 operate normally. .
  • Modification 1 differs from the above-described embodiment in that the end portion P4 of the first surge absorber 61 is connected between the first contact portion S1 and the third terminal 43, as shown in FIG.
  • configurations similar to those of the embodiment are denoted by common reference numerals, and descriptions thereof are omitted as appropriate.
  • the third input portion 73 is provided between the first contact portion S1 and the third terminal 43, and the end P4 of the first surge absorber 61 is connected to the third input It is connected to the portion 73 .
  • the end P3 of the first surge absorber 61 is connected to the second input section 72, and the first surge absorber 61 is connected between the second input section 72 and the third input section 73.
  • the short-circuited first terminal 41 and the second terminal 42 and the short-circuited third terminal For example, a pulse voltage of several kV is applied between 43 and the fourth terminal 44 .
  • the first contact portion S1 and the second contact portion S2 are switched from on to off. This confirms whether dielectric breakdown occurs when the first contact portion S1 and the second contact portion S2 are turned off.
  • the end portion P3 of the first surge absorber 61 is connected to the second input portion 72, and the end portion P4 is connected to the third input portion 73. It is possible to prevent the pulse voltage from being applied to the first surge absorber 61 at that time.
  • Modification 2 differs from the above embodiment and Modification 1 in that the end portion P3 of the first surge absorber 61 is connected between the second contact portion S2 and the second terminal 42, as shown in FIG. differ from
  • the fourth input portion 74 is provided between the second contact portion S2 and the second terminal 42, and the end portion P3 of the first surge absorber 61 is connected to the fourth input 74.
  • the end P4 of the first surge absorber 61 is connected to the first input section 71, and the first surge absorber 61 is connected between the first input section 71 and the fourth input section 74.
  • the leakage detection circuit 1 according to Modification 2 performs the withstand voltage test of the first contact portion S1 and the second contact portion S2 in the same manner as described in Modification 1. has the advantage of being able to
  • the earth leakage detection unit 5 of the earth leakage detection circuit 1 in the present disclosure includes a computer system.
  • a computer system is mainly composed of a processor and a memory as hardware.
  • the function of the earth leakage detection circuit 1 of the present disclosure as the earth leakage detection unit 5 is realized by the processor executing a program recorded in the memory of the computer system.
  • the program may be recorded in advance in the memory of the computer system, may be provided through an electric communication line, or may be recorded in a non-temporary recording medium such as a computer system-readable memory card, optical disk, or hard disk drive. may be provided.
  • a processor in a computer system consists of one or more electronic circuits, including semiconductor integrated circuits (ICs) or large scale integrated circuits (LSIs).
  • Integrated circuits such as ICs or LSIs are called differently depending on the degree of integration, and include integrated circuits called system LSI, VLSI (Very Large Scale Integration), or ULSI (Ultra Large Scale Integration).
  • FPGAs Field-Programmable Gate Arrays
  • a plurality of electronic circuits may be integrated into one chip, or may be distributed over a plurality of chips.
  • a plurality of chips may be integrated in one device, or may be distributed in a plurality of devices.
  • a computer system includes a microcontroller having one or more processors and one or more memories. Accordingly, the microcontroller also consists of one or more electronic circuits including semiconductor integrated circuits or large scale integrated circuits.
  • the earth leakage detection circuit 1 it is not an essential configuration of the earth leakage detection circuit 1 that a plurality of functions of the earth leakage detection circuit 1 are integrated in one housing, and the components of the earth leakage detection circuit 1 are distributed over a plurality of housings. may be provided. Furthermore, at least a part of the functions of the earth leakage detection circuit 1, for example, a part of the functions of the earth leakage detection unit 5 may be realized by the cloud (cloud computing) or the like. Conversely, like the earth leakage circuit breaker 11 of the above embodiment, a plurality of functions of the earth leakage detection circuit 1 may be integrated in one housing.
  • the leakage detection circuit (1) includes the first terminal (41), the second terminal (42), the third terminal (43), the fourth terminal (44), the first electric circuit (C1), the second electric circuit (C2), the first contact portion (S1) and the second contact portion (S2), the leakage detection portion (5), and the third contact portion (S3) and a surge absorber (61).
  • a first terminal (41) and a second terminal (42) are connected to a first connection object, which is one of a power source (2) and a load (3).
  • a third terminal (43) and a fourth terminal (44) are connected to a second connection target, which is the other of the power source (2) and the load (3).
  • the first electric circuit (C1) connects the first terminal (41) and the third terminal (43).
  • the second electric circuit (C2) connects the second terminal (42) and the fourth terminal (44).
  • the first contact portion (S1) and the second contact portion (S2) are provided on the first electrical circuit (C1) and the second electrical circuit (C2), respectively.
  • the earth leakage detection part (5) includes a first input part (71) provided between the first contact part (S1) and the first terminal (41), the second contact part (S2) and the fourth terminal ( 44) and the second input section (72) provided between the input section (72).
  • the leakage detector (5) switches the first contact (S1) and the second contact (S2) from on to off when detecting the occurrence of leakage current.
  • the third contact portion (S3) includes a first end (P1) and a second end (P2) that is the other end of the first end (P1), and the first end (P1) is the first It is connected to the input section (71) or the second input section (72), and the second end (P2) is connected to the leakage detection section (5).
  • the third contact portion (S3) switches on/off in conjunction with the on/off switching of the first contact portion (S1) and the second contact portion (S2).
  • the surge absorber (61) is connected between the first electric line (C1) and the second electric line (C2) without the third contact portion (S3).
  • the third contact portion (S3) can be protected from surge current.
  • one end of the surge absorber (61) is connected to the first end (P1) of the third contact (S3).
  • the third contact portion (S3) can be protected from surge current.
  • one end of the surge absorber (61) is connected between the first contact portion (S1) and the third terminal (43), The other end of the surge absorber (61) is connected to the second input section (72).
  • a voltage is applied between the short-circuited first terminal (41) and second terminal (42) and the short-circuited third terminal (43) and fourth terminal (44).
  • a withstand voltage test can be performed on the first contact portion (S1) and the second contact portion (S2).
  • one end of the surge absorber (61) is connected between the second contact portion (S2) and the second terminal (42). and the other end of the surge absorber (61) is connected to the first input section (71).
  • a voltage is applied between the short-circuited first terminal (41) and second terminal (42) and the short-circuited third terminal (43) and fourth terminal (44).
  • a withstand voltage test can be performed on the first contact portion (S1) and the second contact portion (S2).
  • the earth leakage circuit breaker (11) according to the fifth aspect comprises the earth leakage detection circuit (1) according to any one of the first to fourth aspects.
  • the third contact portion (S3) can be protected from surge current.
  • the first contact portion (S1), the second contact portion (S2) and the third A switching mechanism for switching ON/OFF of the contact portion (S3) is provided.
  • the user of the earth leakage circuit breaker (11) can arbitrarily switch on/off the first contact portion (S1), the second contact portion (S2) and the third contact portion (S3).
  • the distribution board (12) according to the seventh aspect includes the earth leakage circuit breaker (11) according to the sixth aspect.
  • the third contact portion (S3) can be protected from surge current.
  • the second to fourth aspects are not essential configurations for the earth leakage detection circuit (1), and can be omitted as appropriate.
  • the sixth aspect is not an essential configuration for the earth leakage circuit breaker (11), and can be omitted as appropriate.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Breakers (AREA)
  • Distribution Board (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)

Abstract

課題は、漏電検知部(5)への給電路を遮断する第3接点部(S3)をサージ電流から保護することである。漏電検知回路(1)は、第1接点部(S1)及び第2接点部(S2)と、漏電検知部(5)と、第3接点部(S3)と、サージアブソーバ(61)と、を備える。漏電検知部(5)は、漏洩電流の発生を検知すると第1接点部(S1)及び第2接点部(S2)をそれぞれオンからオフに切り替える。第3接点部(S3)は、第1端部(P1)と、第1端部(P1)の他端である第2端部(P2)を含み、第1端部(P1)が第1入力部(71)又は第2入力部(72)に接続され、第2端部(P2)が漏電検知部(5)に接続される。第3接点部(S3)は、第1接点部(S1)及び第2接点部(S2)のオン/オフの切り替えに連動してオン/オフを切り替える。サージアブソーバ(61)は、第1電路(C1)及び第2電路(C2)の間に第3接点部(S3)を介さずに接続される。

Description

漏電検知回路、漏電遮断器及び分電盤
 本開示は、漏電検知回路、漏電遮断器及び分電盤に関し、より詳細には、過電流保護機能を有する漏電検知回路、漏電遮断器及び分電盤に関する。
 特許文献1では、主回路を遮断する第1接点部と、漏洩電流を検知する漏洩検知部への給電回路を遮断する第2接点部と、雷サージ等による過電流が流れるサージ吸収素子を備える回路遮断器が開示されている。
 特許文献1に記載されているような回路遮断器において、雷サージ等による過電流が、第2接点部に流れる可能性があった。
特開2020-167089号公報
 本開示は上記事由に鑑みてなされ、漏電検知部への給電路を遮断する接点部を過電流(サージ電流)から保護することができる漏電検知回路、漏電遮断器及び分電盤を提供することを目的とする。
 本開示の一態様に係る漏電検知回路は、第1端子と、第2端子と、第3端子と、第4端子と、第1電路と、第2電路と、第1接点部及び第2接点部と、漏電検知部と、第3接点部と、サージアブソーバと、を備える。前記第1端子及び前記第2端子は、電源及び負荷のうちの一方である第1接続対象と接続される。前記第3端子及び前記第4端子は、前記電源及び前記負荷のうちの他方である第2接続対象と接続される。前記第1電路は、前記第1端子と前記第3端子とを接続する。前記第2電路は、前記第2端子と前記第4端子とを接続する。前記第1接点部及び前記第2接点部は、前記第1電路及び前記第2電路にそれぞれ設けられる。前記漏電検知部は、前記第1接点部と前記第1端子との間に設けられた第1入力部と、前記第2接点部と前記第4端子との間に設けられた第2入力部との間に接続される。前記漏電検知部は、漏洩電流の発生を検知すると前記第1接点部及び前記第2接点部をそれぞれオンからオフに切り替える。前記第3接点部は、第1端部と、前記第1端部の他端である第2端部を含み、前記第1端部が前記第1入力部又は前記第2入力部に接続され、前記第2端部が前記漏電検知部に接続される。前記第3接点部は、前記第1接点部及び前記第2接点部のオン/オフの切り替えに連動してオン/オフを切り替える。前記サージアブソーバは、前記第1電路及び前記第2電路の間に前記第3接点部を介さずに接続される。
 本開示の一態様に係る漏電遮断器は、前記漏電検知回路を備える。
 本開示の一態様に係る分電盤は、前記漏電遮断器を備える。
図1は、実施形態に係る漏電検知回路の概略の回路図である。 図2は、同上の漏電検知回路の概略の回路図である。 図3は、同上の漏電検知回路の概略の回路図である。 図4は、実施形態に係る分電盤の内部を示す概略の正面図である。 図5は、実施形態に係る漏電遮断器の概略の正面図である。 図6は、変形例1の漏電検知回路の概略の回路図である。 図7は、変形例2の漏電検知回路の概略の回路図である。 図8は、変形例3の漏電検知回路の概略の回路図である。
 本開示の実施形態に係る漏電検知回路1、漏電遮断器11及び分電盤12について、図面を参照して詳細に説明する。なお、以下に説明する実施形態及び変形例は、本開示の一例に過ぎず、本開示は、実施形態及び変形例に限定されない。この実施形態及び変形例以外であっても、本開示の技術的思想を逸脱しない範囲であれば、設計等に応じて種々の変更が可能である。また、下記の実施形態(変形例を含む)は、適宜組み合わせて実現されてもよい。
 (1)概要
 まず、本実施形態に係る漏電検知回路1の概要について図1を参照して説明する。
 漏電検知回路1は、電源2及び負荷3のうちの一方である第1接続対象と接続される第1端子41及び第2端子42を備える。本実施形態では、第1接続対象は例えば電源2である。また漏電検知回路1は、電源2及び負荷3のうちの他方である第2接続対象と接続される第3端子43及び第4端子44を備える。本実施形態では、第2接続対象は例えば負荷3である。なお、第1端子41及び第2端子42が負荷3に接続され、第3端子43及び第4端子44が電源2に接続されてもよい。
 第1端子41と第3端子43とは第1電路C1によって接続され、第2端子42と第4端子44とは第2電路C2によって接続される。つまり、第1電路C1及び第2電路C2は、電源2から負荷3への給電路である。また、第1電路C1及び第2電路C2には第1接点部S1及び第2接点部S2がそれぞれ設けられる。
 また漏電検知回路1は、漏電検知部5と、第3接点部S3と、サージアブソーバ(第1サージアブソーバ61)と、を備える。
 漏電検知部5は、第1接点部S1と第1端子41との間に設けられた第1入力部71と、第2接点部S2と第4端子44との間に設けられた第2入力部72と、の間に接続される。漏電検知部5は、電源2から電力を供給されることで稼働する。漏電検知部5は、第1電路C1及び第2電路C2を介して電源2と負荷3との間に流れる電流を監視し、漏洩電流の発生を検知すると、第1接点部S1及び第2接点部S2をそれぞれオンからオフに切り替える。これにより、漏洩電流が発生したときに、電源2から負荷3への給電を停止することができる。
 第3接点部S3は、第1端部(端部P1)と、第1端部(端部P1)の他端である第2端部(端部P2)を含む。本実施形態では、端部P1は、第1入力部71に接続される。端部P2は漏電検知部5に接続される。つまり、第1入力部71と漏電検知部5との間に第3接点部S3が接続されている。なお、端部P1は、第2入力部72に接続されてもよく、第2入力部72と漏電検知部5との間に第3接点部S3が接続されてもよい。第3接点部S3は、第1接点部S1及び第2接点部S2のオン/オフの切り替えに連動してオン/オフを切り替える。例えば本実施形態では、第1接点部S1及び第2接点部S2がオンであるとき第3接点部S3もオンであり、第1接点部S1及び第2接点部S2がオフであるとき第3接点部S3もオフである。第3接点部S3がオンのとき、電源2から漏電検知部5に電力が供給される。第3接点部S3がオフに切り替わると、電源2から漏電検知部5への給電は停止する。
 第1サージアブソーバ61は、第1電路C1及び第2電路C2の間に、第3接点部S3を介さずに接続される。これにより、第1電路C1及び第2電路C2の間に、例えば落雷等によってサージ電圧が印加されたときに、サージ電流が第3接点部S3を介さずに第1サージアブソーバ61に流れるため、第3接点部S3をサージ電流から保護することができる。
 (2)詳細
 以下、実施形態に係る漏電検知回路1及び漏電遮断器11の詳細について、図1~図5を参照して説明する。
 (2.1)漏電検知回路の構成
 以下、漏電検知回路1の構成について、図1を参照して説明する。
 本実施形態に係る漏電検知回路1は、第1端子41~第4端子44を備える。第1端子41及び第2端子42は電源2に接続される。本実施形態では、電源2は例えば商用の交流電源である。第3端子43及び第4端子44は負荷3に接続される。電源2が出力する交流電力は、第1端子41と第3端子43とを接続する第1電路C1、及び第2端子42と第4端子44とを接続する第2電路を介して負荷3に供給される。なお、漏電検知回路1は、第1端子41及び第2端子42が負荷3に接続され、第3端子43及び第4端子44が電源2に接続された状態でも動作可能であり、この接続状態を「逆接続状態」と呼ぶこともある。
 第1電路C1及び第2電路C2には、第1接点部S1及び第2接点部S2がそれぞれ設けられる。第1接点部S1及び第2接点部S2のオン/オフの切り替え動作については後述する。
 漏電検知回路1は、漏電検知部5と、第3接点部S3と、第1サージアブソーバ61と、を備える。また漏電検知回路1は、トリップ機構部8、テスト部9及び零相変流器10(ZCT:Zero-phase Current Transformer)をさらに備える。
 漏電検知部5は、例えば、電源2から入力される交流電圧を直流電圧に整流する整流回路と、整流回路の出力電圧を平滑する平滑回路と、平滑回路の後段に設けられたプロセッサ及びメモリを有するコンピュータシステムを有している。そして、プロセッサがメモリに格納されているプログラムを実行することにより、コンピュータシステムが漏電検知部5として機能する。プロセッサが実行するプログラムは、ここではコンピュータシステムのメモリに予め記録されているが、メモリカード等の記録媒体に記録されて提供されてもよいし、インターネット等の電気通信回線を通じて提供されてもよい。また漏電検知部5は、プロセッサ等のデジタルICによる構成に限定されず、アナログICにより構成されてもよい。
 漏電検知部5は、第1接点部S1と第1端子41との間に設けられた第1入力部71と、第2接点部S2と第4端子44との間に設けられた第2入力部72と、の間に接続される。詳細には、漏電検知部5は端子T1~T4を有し、端子T1が第1入力部71に接続され、端子T2が第2入力部72に接続される。漏電検知部5は、第1電路C1及び第2電路C2を介して電源2と負荷3との間に流れる電流を監視し、漏洩電流を検知する。
 第3接点部S3は、漏電検知部5の端子T1と第1入力部71との間に接続される。詳細には、第3接点部S3は端部P1及び端部P2を含み、端部P1は第1入力部71に接続され、端部P2は端子T1に接続される。第3接点部S3は、後述するトリップ機構部8によって、第1接点部S1及び第2接点部S2のオン/オフの切り替えに連動してオン/オフを切り替えられる。
 第1サージアブソーバ61は、漏電検知部5を落雷等によるサージ電圧から保護するバリスタ(Varistor)であり、例えばZNR(Zinc oxide Nonlinear Resistor)である。なお、第1サージアブソーバ61はバリスタに限定されず、ガス放電管(Gas Discharge Tube: GDT)又はアバランシェダイオード等でもよい。
 第1サージアブソーバ61は、第1電路C1及び第2電路C2の間に、第3接点部S3を介さずに接続される。詳細には、第1サージアブソーバ61は端部P3及び端部P4を含み、端部P3は第2入力部72と後述するトリップコイル81の端部P5との間に接続され、端部P4は第1入力部71に接続される。また、端部P4は、第3接点部S3の端部P1にも接続される。つまり、端部P3は、第2入力部72に接続され、端部P4は、第1入力部71と第3接点部S3の端部P1との間に接続される。これにより、第1電路C1と第2電路C2との間に発生したサージ電流は、第3接点部S3を介さずに第1サージアブソーバ61に流れるため、漏電検知部5及び第3接点部S3をサージ電流から保護することができる。
 トリップ機構部8は、漏電検知部5の端子T2と第2入力部72との間に接続される。トリップ機構部8は、漏電検知部5によって漏洩電流の発生が検知されると、第1接点部S1、第2接点部S2及び第3接点部S3をオンからオフに切り替える(トリップする)機能を有する。
 トリップ機構部8は、例えばトリップコイル81と、切替部82と、リンク部83と、を備える。
 トリップコイル81は、漏電検知部5の端子T2と第2入力部72との間に接続されるコイルである。詳細には、トリップコイル81は端部P5及び端部P6を含み、端部P5は第2入力部72に接続され、端部P6は漏電検知部5の端子T2に接続される。
 切替部82は、漏電検知部5による漏電電流の発生の検知に伴って第1接点部S1及び第2接点部S2をオンからオフに切り替える。切替部82は、例えば、磁性材料から形成される可動鉄心、可動鉄心と結合されたプッシングピン、プッシングピンと協働して第1接点部S1及び第2接点部S2をオンからオフに切り替える切替機構等を備える。漏電検知部5は零相変流器10の出力に基づいて漏洩電流の発生を検知すると、トリップコイル81に駆動電流を流す。これによりトリップコイル81のコイルボビン内に収容される可動鉄心を貫く磁束が変化し、可動鉄心は磁束の変化を打ち消す方向に移動する。プッシングピンは、可動鉄心と共に移動する。切替部82の切替機構は、プッシングピンの移動と協働して第1接点部S1及び第2接点部S2をオンからオフに切り替える。
 リンク部83は、切替部82による第1接点部S1及び第2接点部S2のオンからオフへの切り替えと連動して第3接点部S3をオンからオフに切り替える。なおトリップコイル81と、切替部82と、リンク部83と、を備えることはトリップ機構部8に必須の構成ではなく、これとは別の構成によってトリップ機構部8の機能が実現されてもよい。
 テスト部9は、第1入力部71と第2入力部72との間に接続される。テスト部9はテストスイッチ91と抵抗器92を備える。詳細には、テストスイッチ91は端部P7及び端部P8を含み、端部P7は後述する抵抗器92の端部P10に接続され、端部P8は第1入力部71と第3接点部S3の端部P1との間に接続される。テストスイッチ91は、ノーマリーオフ型のスイッチであり、漏電検知部5の漏電検知機能及びトリップ機構部8のトリップ機能の試験を行うときにユーザによってオンにされる。抵抗器92は端部P9及び端部P10を含み、端部P9が第2入力部72とトリップコイル81の端部P5との間に接続され、端部P10がテストスイッチ91の端部P7に接続される。テストスイッチ91による漏電検知部5の漏電検知機能の試験については「(2.2.2)試験動作」において詳しく説明する。
 零相変流器10は、環状コア101とコイル102を有しており、環状コア101の一部にコイル102が巻かれている構造を有している。コイル102は、漏電検知部5の端子T3と端子T4との間に接続される。環状コア101の孔には、第1電路C1、第2電路C2及び第3電路C3が通されている。ここで第3電路C3は、抵抗器92の端部P10とテストスイッチ91の端部P7を接続する電路である。ここで、第1電路C1と第2電路C2とは、電流の流れる向きが互いに反対になるように通されている。零相変流器10の動作については「(2.2.1)漏電検知動作」において詳しく説明する。
 また本実施形態では、漏電検知回路1は、第1サージアブソーバ61とは別に、第2サージアブソーバ62を更に備える。第2サージアブソーバ62は、端部P11及び端部P12を含み、端部P11はトリップコイル81の端部P6と漏電検知部5の端子T2との間に接続され、端部P12は第3接点部S3の端部P2と漏電検知部5の端子T1との間に接続される。
 (2.2)漏電検知回路の動作
 以下、実施形態に係る漏電検知回路の各動作について図1~図3を参照して説明する。
 (2.2.1)漏電検知動作
 以下、漏電検知回路1における漏電検知の動作について図1を参照して説明する。
 第1接点部S1、第2接点部S2及び第3接点部S3がオンであり、漏洩電流の発生がなく、電源2から負荷3に電力が正常に供給されている場合、第1電路C1を流れる電流I1と、第2電路C2を流れる電流I2は等しくなる。ここで、上述したように、第1電路C1及び第2電路C2は、電流I1及び電流I2の流れる向きが互いに反対となるように、零相変流器10の環状コア101の内側を通る。よって、電流I1及び電流I2がそれぞれ作る磁束は相殺され、コイル102には電流が流れない。一方、漏洩電流が発生した場合、電流I1及び電流I2が不平衡となり、電流I1と電流I2との差に応じた電流がコイル102に流れる。漏電検知部5は、このコイル102に流れる電流を検知することにより、漏洩電流の発生を検知することができる。
 漏電検知部5は、漏洩電流の発生を検知すると、駆動電流をトリップコイル81に流し、トリップ機構部8に、第1接点部S1、第2接点部S2及び第3接点部S3をオンからオフに切り替えさせる。第1接点部S1、第2接点部S2及び第3接点部S3がオンからオフに切り替わると、電源2から負荷3への給電が遮断されるので、負荷3を保護できる。
 (2.2.2)試験動作
 次に、テスト部9による漏電検知機能及びトリップ機能の試験動作について図2を参照して説明する。
 テスト部9は、環状コア101の内側を通る第3電路C3に疑似漏洩電流I3を流し、トリップ機構部8に第1接点部S1、第2接点部S2及び第3接点部S3をオンからオフに切り替えさせるように構成されている。
 漏電検知回路1のユーザは、第1接点部S1、第2接点部S2及び第3接点部S3がオンであり、漏洩電流の発生がなく、電源2から負荷3に電力が正常に供給されている場合に、漏電検知回路1の漏電検知機能及びトリップ機能が正常に作動するか否かの試験を行うことができる。
 試験を行うユーザは、図2に示すように、テストスイッチ91をオフからオンに切り替える。テストスイッチ91がオフからオンに切り替えられると、電源2からテストスイッチ91及び抵抗器92を介して電流が流れ、環状コア101の内側を通る第3電路C3に疑似漏洩電流I3が流れる。このとき、第1電路C1及び第2電路C2のそれぞれを通る電流I1及び電流I2は平衡であるが、第3電路C3に疑似漏洩電流I3が流れることにより、電流I1、電流I2及び疑似漏洩電流I3が不平衡となり、疑似漏洩電流I3に応じた電流がコイル102に流れる。漏電検知部5は、このコイル102に流れる電流を検知することにより、疑似漏洩電流を検知することができる。
 漏電検知部5及びトリップ機構部8が正常であれば、漏電検知部5は、疑似漏洩電流を検知すると、駆動電流をトリップコイル81に流し、トリップ機構部8は第1接点部S1、第2接点部S2及び第3接点部S3をオンからオフに切り替える。したがって、ユーザは、漏電検知機能及びトリップ機能が正常に作動するか否かを確認することができる。
 (2.2.3)サージ電圧吸収動作
 以下、漏電検知回路1におけるサージ電圧の吸収動作について図3を参照して説明する。
 ここでは、第1接点部S1、第2接点部S2及び第3接点部S3がオンであり、電源2から負荷3に電力が供給されている状態で、例えば落雷等によって第1電路C1及び第2電路C2の間にサージ電圧が印加されたと想定する。
 第1電路C1及び第2電路C2の間に印加されたサージ電圧は、第1サージアブソーバ61にも印加される。このとき、サージ電圧が、バリスタである第1サージアブソーバ61のバリスタ電圧よりも大きい場合、第1サージアブソーバ61の電気抵抗は急激に低下し、第1サージアブソーバ61にサージ電流Isが流れる。第1サージアブソーバ61に流れたサージ電流Isは、第1電路C1又は第2電路C2を経由して電源2に流れる。これにより、サージ電流Isが漏電検知部5に流れることを防ぐことができる。またこのとき、サージ電流Isを第3接点部S3を介さずに流すことができるため、第3接点部S3をサージ電流Isから保護することができる。
 なお、漏電検知部5はサージ電流Isの発生を検知することができるように構成されてもよい。この場合、漏電検知部5は、サージ電流Isの発生を検知すると、駆動電流をトリップコイル81に流し、トリップ機構部8に第1接点部S1、第2接点部S2及び第3接点部S3をオンからオフに切り替えさせる。
 (2.3)逆接続状態について
 本実施形態に係る漏電検知回路1は、第3接点部S3を備えるため、第1端子41及び第2端子42が負荷3に接続され、第3端子43及び第4端子44が電源2に接続された逆接続状態においても動作可能である。
 ここで、仮に漏電検知回路1が第3接点部S3を備えていない場合を考察する。逆接続状態において第1端子41及び第2端子42に接続された負荷3側で地絡等が発生していると、第1接点部S1及び第2接点部S2がオフであっても、漏電検知部5を介して地絡電流が流れる可能性がある。
 対して、本実施形態では漏電検知回路1は、第3接点部S3を備えており、第1接点部S1及び第2接点部S2がオフの場合、第3接点部S3もオフになるので、負荷3側で地絡等が発生していても、第3接点部S3を介して地絡電流が流れるのを阻止することができ、信頼性が向上する。
 (2.4)漏電遮断器
 以下、漏電検知回路1を備える漏電遮断器11について図1、図4及び図5を参照して説明する。 
 漏電遮断器11は、漏電検知回路1を備えることにより、漏洩電流を検知し、電源2から負荷3への給電路である第1電路C1及び第2電路C2の通電を遮断する機能を有している。図4に示すように、漏電遮断器11は、例えば住宅内に設置される分電盤12において使用される。なお分電盤12が設置される場所は住宅内に限定されず、例えば、事務所、店舗、工場、及び病院等の非住宅であってもよい。漏電遮断器11は、分電盤12の盤内に設けられたDINレール13の取付面131に取り付けられる。取付面131は、例えば、DINレール13における、漏電遮断器11と対向する一面である。
 漏電遮断器11は、分岐ブレーカ及び主幹ブレーカのいずれの用途にも使用可能であり、図4に示すように、分電盤12のDINレール13に取り付けられた複数の漏電遮断器11のうち、例えばもっとも右側に取り付けられた漏電遮断器11(11M)が主幹ブレーカであり、それ以外の漏電遮断器11(11B)が分岐ブレーカとして機能する。なお図4においては、分電盤12内の配線の図示を省略している。
 漏電遮断器11は、図5に示すように、上端部に第1端子111及び第2端子112、下端部に第3端子113及び第4端子114を備える。また漏電遮断器11は、操作面110上に、操作ハンドル115と、テストボタン116と、を備える。
 第1端子111~第4端子114は、図1に示す漏電検知回路1の第1端子41~第4端子44にそれぞれ対応する。つまり第1端子111及び第2端子112は電源2に接続され、第3端子113及び第4端子114は負荷3に接続される。なお、漏電遮断器11は、第1端子111及び第2端子112が負荷3に接続され、第3端子113及び第4端子114が電源2に接続された状態でも動作可能である。
 操作ハンドル115は、トリップ機構部8のリンク部83の一部であり、第1接点部S1及び第2接点部S2のオン/オフと連動して動作する。例えば、第1接点部S1及び第2接点部S2がオンのとき、操作ハンドル115は上方に傾いた状態(オン状態)であり、第1接点部S1及び第2接点部S2がオフに切り替わったとき、操作ハンドル115は図5に示すような下方に傾いた状態(オフ状態)となる。また第3接点部S3は、操作ハンドル115と連動して動作するように構成されている。操作ハンドル115がオン状態のとき第3接点部S3はオンであり、操作ハンドル115がオフ状態に切り替えられたとき第3接点部S3はオフとなる。これにより、漏電検知回路1が例えば漏洩電流を検知すると、第1接点部S1、第2接点部S2、及び第3接点部S3がオンからオフに切り替わり、操作ハンドル115はオン状態からオフ状態に切り替わる。また、第1接点部S1、第2接点部S2及び第3接点部S3がオンのときに、操作ハンドル115をオン状態からオフ状態に切り替えると、第1接点部S1、第2接点部S2及び第3接点部S3をオフに切り替えることができる。これにより、例えば落雷等が発生する前に操作ハンドル115をオフ状態にすることで、サージ電流の発生を防止することができる。また、第1接点部S1、第2接点部S2及び第3接点部S3がオフのときに、操作ハンドル115をオフ状態からオン状態に切り替えると、第1接点部S1、第2接点部S2及び第3接点部S3をオンに切り替えることができる。これにより、漏電検知回路1が第1接点部S1、第2接点部S2及び第3接点部S3をオンからオフに切り替えた後に、例えば漏洩電流の発生の原因が特定され安全が確認された場合に、ユーザは操作ハンドル115を操作して、電源2から負荷3への電力の供給を再開することができる。
 テストボタン116は、漏電検知回路1のテストスイッチ91のオン/オフを切り替える。漏電遮断器11のユーザは、テストボタン116を押下することにより、テストスイッチ91をオンにし、漏電検知回路1の漏電検知機能及びトリップ機能が正常に作動するか否かの試験を行うことができる。
 (3)変形例
 上記実施形態は、本開示の様々な実施形態の一つに過ぎない。上記実施形態は、本開示の目的を達成できれば、設計等に応じて種々の変更が可能である。また、上記実施形態に係る漏電検知回路1と同様の機能は、漏電検知回路1の制御方法、コンピュータプログラム、又はコンピュータプログラムを記録した非一時的記録媒体等で具現化されてもよい。
 以下、上記実施形態の変形例を列挙する。以下に説明する変形例は、適宜組み合わせて適用可能である。
 (3.1)変形例1
 本変形例1は、図6に示すように、第1サージアブソーバ61の端部P4が、第1接点部S1と第3端子43との間に接続される点で上記実施形態と相違する。以下、実施形態と同様の構成については共通の符号を付して適宜説明を省略する。
 本変形例1では、図6に示すように、第3入力部73が第1接点部S1と第3端子43との間に設けられ、第1サージアブソーバ61の端部P4は、第3入力部73に接続される。第1サージアブソーバ61の端部P3は、第2入力部72に接続されており、第1サージアブソーバ61は第2入力部72と第3入力部73との間に接続されている。本変形例1に係る漏電検知回路1は上述したような構成を採用することにより、例えば以下のような方法で第1接点部S1及び第2接点部S2の耐電圧試験を行うことができるという利点がある。
 漏電検知回路1において、第1接点部S1及び第2接点部S2の耐電圧試験を行う際には、一例として、短絡させた第1端子41及び第2端子42と、短絡させた第3端子43及び第4端子44との間に、例えば数kVのパルス電圧を印加する。このとき、第1接点部S1、第2接点部S2はオンからオフに切り替えておく。これにより、第1接点部S1及び第2接点部S2がオフのときに絶縁破壊が発生するか否かを確認する。
 このとき、本変形例1においては、第1サージアブソーバ61の端部P3が第2入力部72に接続され、端部P4が第3入力部73に接続されていることによって、耐電圧試験の際に第1サージアブソーバ61にパルス電圧が印加されることを防止することができる。
 (3.2)変形例2
 本変形例2は、図7に示すように、第1サージアブソーバ61の端部P3が、第2接点部S2と第2端子42との間に接続される点で上記実施形態及び変形例1と相違する。
 本変形例2では、図7に示すように、第4入力部74が第2接点部S2と第2端子42との間に設けられ、第1サージアブソーバ61の端部P3は、第4入力部74に接続される。第1サージアブソーバ61の端部P4は、第1入力部71に接続されており、第1サージアブソーバ61は第1入力部71と第4入力部74との間に接続されている。本変形例2に係る漏電検知回路1は上述したような構成を採用することにより、変形例1で説明した内容と同じ方法で第1接点部S1及び第2接点部S2の耐電圧試験を行うことができるという利点がある。
 (3.3)変形例3
 本変形例3は、第3接点部S3の端部P1が、図8に示すように、第2入力部72に接続されており、第2入力部72と漏電検知部5との間に第3接点部S3が接続されている点で上記実施形態、変形例1及び変形例2と相違する。この場合、漏電検知部5の端子T1が第2入力部72に接続され、第3接点部S3は端子T1と第2入力部72との間に接続される。またこの場合、漏電検知部5の端子T2が第1入力部71に接続される。すなわち、トリップ機構部8は、端子T2と第1入力部71との間に接続される。なお、本変形例3のように、第3接点部S3の端部P1が第2入力部72に接続される場合も、電源2から供給される交流電力によって漏電検知部5は正常に動作する。
 (3.4)その他の変形例
 以下、実施形態のその他の変形例を列挙する。以下の変形例は、適宜組み合わせて実現されてもよい。
 本開示における漏電検知回路1の漏電検知部5は、コンピュータシステムを含んでいる。コンピュータシステムは、ハードウェアとしてのプロセッサ及びメモリを主構成とする。コンピュータシステムのメモリに記録されたプログラムをプロセッサが実行することによって、本開示における漏電検知回路1の漏電検知部5としての機能が実現される。プログラムは、コンピュータシステムのメモリに予め記録されてもよく、電気通信回線を通じて提供されてもよく、コンピュータシステムで読み取り可能なメモリカード、光学ディスク、ハードディスクドライブ等の非一時的記録媒体に記録されて提供されてもよい。コンピュータシステムのプロセッサは、半導体集積回路(IC)又は大規模集積回路(LSI)を含む1ないし複数の電子回路で構成される。ここでいうIC又はLSI等の集積回路は、集積の度合いによって呼び方が異なっており、システムLSI、VLSI(Very Large Scale Integration)、又はULSI(Ultra Large Scale Integration)と呼ばれる集積回路を含む。さらに、LSIの製造後にプログラムされる、FPGA(Field-Programmable Gate Array)、又はLSI内部の接合関係の再構成若しくはLSI内部の回路区画の再構成が可能な論理デバイスについても、プロセッサとして採用することができる。複数の電子回路は、1つのチップに集約されていてもよいし、複数のチップに分散して設けられていてもよい。複数のチップは、1つの装置に集約されていてもよいし、複数の装置に分散して設けられていてもよい。ここでいうコンピュータシステムは、1以上のプロセッサ及び1以上のメモリを有するマイクロコントローラを含む。したがって、マイクロコントローラについても、半導体集積回路又は大規模集積回路を含む1ないし複数の電子回路で構成される。
 また、漏電検知回路1における複数の機能が、1つの筐体内に集約されていることは漏電検知回路1に必須の構成ではなく、漏電検知回路1の構成要素は、複数の筐体に分散して設けられていてもよい。さらに、漏電検知回路1の少なくとも一部の機能、例えば、漏電検知部5の一部の機能がクラウド(クラウドコンピューティング)等によって実現されてもよい。反対に、上記実施形態の漏電遮断器11ように、漏電検知回路1の複数の機能が1つの筐体内に集約されていてもよい。
 (4)まとめ
 以上述べたように、第1の態様に係る漏電検知回路(1)は、第1端子(41)と、第2端子(42)と、第3端子(43)、第4端子(44)と、第1電路(C1)と、第2電路(C2)と、第1接点部(S1)及び第2接点部(S2)と、漏電検知部(5)と、第3接点部(S3)と、サージアブソーバ(61)と、を備える。第1端子(41)及び第2端子(42)は、電源(2)及び負荷(3)のうちの一方である第1接続対象と接続される。第3端子(43)及び第4端子(44)は、電源(2)及び負荷(3)のうちの他方である第2接続対象と接続される。第1電路(C1)は、第1端子(41)と第3端子(43)とを接続する。第2電路(C2)は、第2端子(42)と第4端子(44)とを接続する。第1接点部(S1)及び第2接点部(S2)は、第1電路(C1)及び第2電路(C2)にそれぞれ設けられる。漏電検知部(5)は、第1接点部(S1)と第1端子(41)との間に設けられた第1入力部(71)と、第2接点部(S2)と第4端子(44)との間に設けられた第2入力部(72)との間に接続される。漏電検知部(5)は、漏洩電流の発生を検知すると第1接点部(S1)及び第2接点部(S2)をそれぞれオンからオフに切り替える。第3接点部(S3)は、第1端部(P1)と、第1端部(P1)の他端である第2端部(P2)を含み、第1端部(P1)が第1入力部(71)又は第2入力部(72)に接続され、第2端部(P2)が漏電検知部(5)に接続される。第3接点部(S3)は、第1接点部(S1)及び第2接点部(S2)のオン/オフの切り替えに連動してオン/オフを切り替える。サージアブソーバ(61)は、第1電路(C1)及び第2電路(C2)の間に第3接点部(S3)を介さずに接続される。
 この態様によれば、第3接点部(S3)をサージ電流から保護することができる。
 第2の態様に係る漏電検知回路(1)は、第1の態様において、サージアブソーバ(61)の一端が第3接点部(S3)の第1端部(P1)に接続される。
 この態様によれば、第3接点部(S3)をサージ電流から保護することができる。
 第3の態様に係る漏電検知回路(1)は、第1の態様において、サージアブソーバ(61)の一端が、第1接点部(S1)と第3端子(43)との間に接続され、サージアブソーバ(61)の他端が、第2入力部(72)に接続される。
 この態様によれば、短絡させた第1端子(41)及び第2端子(42)と、短絡させた第3端子(43)及び第4端子(44)との間に電圧を印加する方式の第1接点部(S1)及び第2接点部(S2)の耐電圧試験を行うことができる。
 第4の態様に係る漏電検知回路(1)は、第1又は第2の態様において、サージアブソーバ(61)の一端が第2接点部(S2)と第2端子(42)との間に接続され、サージアブソーバ(61)の他端が、第1入力部(71)に接続される。
 この態様によれば、短絡させた第1端子(41)及び第2端子(42)と、短絡させた第3端子(43)及び第4端子(44)との間に電圧を印加する方式の第1接点部(S1)及び第2接点部(S2)の耐電圧試験を行うことができる。
 第5の態様に係る漏電遮断器(11)は、第1~第4のいずれかの態様の漏電検知回路(1)を備える。
 この態様によれば、第3接点部(S3)をサージ電流から保護することができる。
 第6の態様に係る漏電遮断器(11)は、第5の態様において、操作ハンドル(115)の切り替え操作に応じて、第1接点部(S1)、第2接点部(S2)及び第3接点部(S3)のオン/オフを切り替える切替機構を備える。
 この態様によれば、漏電遮断器(11)のユーザは任意に第1接点部(S1)、第2接点部(S2)及び第3接点部(S3)のオン/オフを切り替えることができる。
 第7の態様に係る分電盤(12)は、第6の態様の漏電遮断器(11)を備える。
 この態様によれば、第3接点部(S3)をサージ電流から保護することができる。
 なお、第2~第4の態様は漏電検知回路(1)に必須の構成ではなく、適宜省略が可能である。 
 また第6の態様は漏電遮断器(11)に必須の構成ではなく、適宜省略が可能である。
1 漏電検知回路
2 電源
3 負荷
5 漏電検知部
61 サージアブソーバ
11 漏電遮断器
12 分電盤
41 第1端子
42 第2端子
43 第3端子
44 第4端子
71 第1入力部
72 第2入力部
115 操作ハンドル
C1 第1電路
C2 第2電路
P1 第1端部
P2 第2端部
S1 第1接点部
S2 第2接点部
S3 第3接点部

Claims (7)

  1.  電源及び負荷のうちの一方である第1接続対象と接続される第1端子及び第2端子と、
     前記電源及び前記負荷のうちの他方である第2接続対象と接続される第3端子及び第4端子と、
     前記第1端子と前記第3端子とを接続する第1電路と、
     前記第2端子と前記第4端子とを接続する第2電路と、
     前記第1電路及び前記第2電路にそれぞれ設けられた第1接点部及び第2接点部と、
     前記第1接点部と前記第1端子との間に設けられた第1入力部と、前記第2接点部と前記第4端子との間に設けられた第2入力部との間に接続され、漏洩電流の発生を検知すると前記第1接点部及び前記第2接点部をそれぞれオンからオフに切り替える漏電検知部と、
     第1端部と、前記第1端部の他端である第2端部を含み、前記第1端部が前記第1入力部又は前記第2入力部に接続され、前記第2端部が前記漏電検知部に接続され、前記第1接点部及び前記第2接点部のオン/オフの切り替えに連動してオン/オフを切り替える第3接点部と、
     前記第1電路及び前記第2電路の間に前記第3接点部を介さずに接続されるサージアブソーバと、を備える
     漏電検知回路。
  2.  前記サージアブソーバの一端が前記第3接点部の前記第1端部に接続される
     請求項1に記載の漏電検知回路。
  3.  前記サージアブソーバの一端が、前記第1接点部と前記第3端子との間に接続され、
     前記サージアブソーバの他端が、前記第2入力部に接続される
     請求項1に記載の漏電検知回路。
  4.  前記サージアブソーバの一端が、前記第2接点部と前記第2端子との間に接続され、
     前記サージアブソーバの他端が、前記第1入力部に接続される
     請求項1又は2に記載の漏電検知回路。
  5.  請求項1~4のいずれか1項に記載の漏電検知回路を備える
     漏電遮断器。
  6.  操作ハンドルの切り替え操作に応じて、前記第1接点部、前記第2接点部及び前記第3接点部のオン/オフを切り替える切替機構を備える
     請求項5に記載の漏電遮断器。
  7.  請求項6に記載の漏電遮断器を備える
     分電盤。
PCT/JP2022/009772 2021-06-14 2022-03-07 漏電検知回路、漏電遮断器及び分電盤 WO2022264544A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280042464.1A CN117501396A (zh) 2021-06-14 2022-03-07 漏电检测器电路、漏电断路器和配电板

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021098900A JP2022190533A (ja) 2021-06-14 2021-06-14 漏電検知回路、漏電遮断器及び分電盤
JP2021-098900 2021-06-14

Publications (1)

Publication Number Publication Date
WO2022264544A1 true WO2022264544A1 (ja) 2022-12-22

Family

ID=84526063

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/009772 WO2022264544A1 (ja) 2021-06-14 2022-03-07 漏電検知回路、漏電遮断器及び分電盤

Country Status (3)

Country Link
JP (1) JP2022190533A (ja)
CN (1) CN117501396A (ja)
WO (1) WO2022264544A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11299082A (ja) * 1998-04-08 1999-10-29 Noritz Corp 過電圧保護機能付き漏電遮断装置
WO2002017458A1 (fr) * 2000-08-22 2002-02-28 Mitsubishi Denki Kabushiki Kaisha Interrupteur différentiel
JP2014068509A (ja) * 2012-09-27 2014-04-17 Hochiki Corp 太陽光発電システム
JP2018133254A (ja) * 2017-02-16 2018-08-23 河村電器産業株式会社 漏電遮断器
WO2018173066A1 (en) * 2017-03-21 2018-09-27 BAGGA, Rahul An electric circuit protection device
WO2020202794A1 (ja) * 2019-03-29 2020-10-08 パナソニックIpマネジメント株式会社 回路遮断器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11299082A (ja) * 1998-04-08 1999-10-29 Noritz Corp 過電圧保護機能付き漏電遮断装置
WO2002017458A1 (fr) * 2000-08-22 2002-02-28 Mitsubishi Denki Kabushiki Kaisha Interrupteur différentiel
JP2014068509A (ja) * 2012-09-27 2014-04-17 Hochiki Corp 太陽光発電システム
JP2018133254A (ja) * 2017-02-16 2018-08-23 河村電器産業株式会社 漏電遮断器
WO2018173066A1 (en) * 2017-03-21 2018-09-27 BAGGA, Rahul An electric circuit protection device
WO2020202794A1 (ja) * 2019-03-29 2020-10-08 パナソニックIpマネジメント株式会社 回路遮断器

Also Published As

Publication number Publication date
CN117501396A (zh) 2024-02-02
JP2022190533A (ja) 2022-12-26

Similar Documents

Publication Publication Date Title
US8570181B2 (en) Method and apparatus for supervisory circuit for ground fault circuit interrupt device
EP2545627B1 (en) Method and apparatus for supervisory circuit for ground fault circuit interrupt device
JPH05505301A (ja) 故障に耐える固体遮断システム
US20160109521A1 (en) Self-testing ground fault circuit interrupter
US20080013237A1 (en) Over voltage protection circuit for gfci devices
US8599522B2 (en) Circuit interrupter with improved surge suppression
US8705216B2 (en) High sensitivity leakage current detection interrupter
WO2022264544A1 (ja) 漏電検知回路、漏電遮断器及び分電盤
EP3012853B1 (en) Electrical safety device miswire detection
JP4604862B2 (ja) 漏電遮断器
JPH10191552A (ja) 漏電遮断器の過電圧検出回路
JP4715537B2 (ja) 漏電遮断器
KR101993558B1 (ko) 오결선 검출이 가능한 양방향 선택 지락 보호 계전기 및 시험 장치
US7978032B2 (en) Locking mechanism for protecting a ground fault circuit interrupter from faulty resetting
JPH11299082A (ja) 過電圧保護機能付き漏電遮断装置
US10396548B2 (en) Pneumatically operable current protection device for a fault current limiter
JP4395009B2 (ja) 漏電遮断器
JPH08273514A (ja) 漏電検出装置
US20230361560A1 (en) Electronic circuit breaker configured to provide a fail-safe mode
JP2001314031A (ja) 漏電遮断器
JP2010040326A (ja) 漏電遮断器
US11336086B2 (en) Current limiting circuit for limiting the magnitude of an alternating current
KR20160141517A (ko) 3상 누전 차단기의 누전 테스트 회로 및 테스트 방법
JPH1169605A (ja) 過電圧保護機能付漏電遮断器
JP2017091811A (ja) 漏電遮断器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22824544

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280042464.1

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22824544

Country of ref document: EP

Kind code of ref document: A1