WO2022264498A1 - Physical quantity detection device - Google Patents

Physical quantity detection device Download PDF

Info

Publication number
WO2022264498A1
WO2022264498A1 PCT/JP2022/005450 JP2022005450W WO2022264498A1 WO 2022264498 A1 WO2022264498 A1 WO 2022264498A1 JP 2022005450 W JP2022005450 W JP 2022005450W WO 2022264498 A1 WO2022264498 A1 WO 2022264498A1
Authority
WO
WIPO (PCT)
Prior art keywords
fixing
physical quantity
detection device
resin portion
quantity detection
Prior art date
Application number
PCT/JP2022/005450
Other languages
French (fr)
Japanese (ja)
Inventor
瑞紀 芝田
孝之 余語
琳琳 張
Original Assignee
日立Astemo株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立Astemo株式会社 filed Critical 日立Astemo株式会社
Priority to JP2023529493A priority Critical patent/JPWO2022264498A1/ja
Priority to CN202280032604.7A priority patent/CN117242321A/en
Publication of WO2022264498A1 publication Critical patent/WO2022264498A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/684Structural arrangements; Mounting of elements, e.g. in relation to fluid flow

Definitions

  • the present disclosure relates to a physical quantity detection device.
  • Patent Document 1 discloses a thermal flow meter attached to a main passage, which has a sub passage, a flow detection element, a support, and a circuit board (summary, claim Item 1).
  • the secondary passage takes in part of the gas to be measured flowing through the main passage.
  • the flow rate detection element is arranged in the secondary passage.
  • the support supports the flow rate detection element.
  • the circuit board is fixed to the support.
  • the flow rate detection element has a detection surface for detecting the flow rate of the gas to be measured, and the detection surface is arranged to face the circuit board.
  • the support for supporting the flow rate detection element is fixed to the circuit board, and the detection surface of the flow rate detection element is arranged to face the circuit board.
  • a decrease in accuracy, a decrease in reliability, and an increase in cost can be reduced compared to the conventional art (Patent Document 1, paragraph 0012).
  • the conventional thermal flowmeter described above has a circuit package that constitutes a support that supports the flow rate detection element.
  • the circuit package has a structure of a resin package in which a part of the flow rate detection element, a lead frame on which the flow rate detection element is mounted, a part of the input/output terminals, and circuit components are integrally sealed with a resin material. ing.
  • the lead frame has outer leads. Outer leads protruding from the ends of the circuit package are connected and fixed to the substrate by soldering (Patent Document 1, paragraphs 0059 to 0060).
  • the circuit package is formed with a concave groove for forming a sub-passage.
  • the flow rate measuring part is exposed from the resin material on the bottom surface of the concave groove.
  • the concave groove is recessed in the surface of the circuit package facing the substrate, and forms a secondary passage in cooperation with the substrate (Patent Document 1, paragraph 0063).
  • This conventional thermal flow meter has room for improvement in suppressing misalignment between the circuit package and the substrate in reflow soldering, in which solder is melted on the substrate to join the outer leads of the circuit package to the substrate.
  • the present disclosure provides a physical quantity detection device capable of suppressing misalignment due to reflow soldering between a chip package including a flow rate detection unit and a circuit board.
  • One aspect of the present disclosure is a physical quantity detection device that detects a physical quantity of a gas to be measured flowing through a main passage, comprising: a housing installed in the main passage; a circuit board accommodated in the housing; a chip package to be mounted, wherein the housing has a circuit chamber in which the circuit board is accommodated, and a sub-passage for taking in part of the gas to be measured flowing through the main passage, the circuit board has a plurality of lands and one or a plurality of fixing lands, and the chip package includes a first resin portion arranged in the sub-passage and the sub-portion provided in the first resin portion.
  • a flow rate detecting portion for detecting the flow rate of the gas to be measured flowing through the passage; a second resin portion provided integrally with the first resin portion and arranged in the circuit chamber; A plurality of outer leads protruding to both sides and one or a plurality of fixing leads protruding from the second resin portion are provided, and the tip portion of each outer lead of the plurality of outer leads is the tip portion.
  • Each of the plurality of lands having a dimension in the width direction of the chip package larger than the width of the chip package is joined via solder to each of the one or more fixing leads.
  • One or a plurality of fixing lands are joined to each fixing land via soldering, and a dimensional difference between the tip portion of each of the fixing leads and each of the fixing lands in the width direction is and the physical quantity detection device is characterized in that the dimensional difference is smaller than the dimensional difference between the tip of each outer lead and each land.
  • a physical quantity detection device capable of suppressing misalignment due to reflow soldering between a chip package including a flow rate detection unit and a circuit board.
  • FIG. 1 is a system diagram showing an embodiment of a flow rate detection device according to the present disclosure
  • FIG. FIG. 2 is a front view of the physical quantity detection device of FIG. 1
  • FIG. 2 is a rear view of the physical quantity detection device of FIG. 1
  • FIG. 2 is a left side view of the physical quantity detection device of FIG. 1
  • FIG. 2 is a right side view of the physical quantity detection device of FIG. 1
  • FIG. 2 is a top view of the physical quantity detection device of FIG. 1
  • FIG. 3 is a front view of the physical quantity detection device of FIG. 2 with the sealing material removed
  • FIG. 4 is a rear view of the physical quantity detection device of FIG. 3 with the cover removed;
  • FIG. 9 is a cross-sectional view of the physical quantity detection device taken along line IX-IX in FIG. 8;
  • FIG. 3 is a cross-sectional view of the physical quantity detection device taken along line XX of FIG. 2;
  • FIG. 9 is a front view of a circuit board of the physical quantity detection device of FIG. 8; Sectional drawing of the circuit board which follows the XII-XII line of FIG.
  • FIG. 12 is an enlarged front view of the chip package mounted on the circuit board of FIG. 11;
  • FIG. 14 is a front view of the lead frame of the chip package of FIG. 13;
  • FIG. 14 is a schematic diagram showing the relationship between outer leads and lands of the chip package of FIG. 13;
  • FIG. 14 is a schematic diagram showing the relationship between outer leads and lands of the chip package of FIG. 13;
  • FIG. 17 is an enlarged front view showing Modification 1 of the embodiment of the physical quantity detection device of FIGS. 1 to 16;
  • FIG. 17 is an enlarged front view showing Modification 2 of the embodiment of the physical quantity detection device of FIGS. 1 to 16;
  • FIG. 1 is a system diagram showing one embodiment of the physical quantity detection device according to the present disclosure.
  • the physical quantity detection device 100 of the present embodiment is used, for example, in an electronic fuel injection type internal combustion engine control system 1 .
  • the internal combustion engine control system 1 includes, for example, an internal combustion engine 10, a physical quantity detection device 100, a throttle valve 25, a throttle angle sensor 26, an idle air control valve 27, an oxygen sensor 28, and a control device 4. there is
  • the physical quantity detection device 100 is inserted into the interior of the main passage 22 through a mounting hole provided in the passage wall of the intake body, which is the main passage 22, and is used in a state of being fixed to the passage wall of the main passage 22.
  • the physical quantity detection device 100 detects the physical quantity of the intake air, which is the measured gas 2 that is taken in through the air cleaner 21 and flows through the main passage 22 , and outputs the physical quantity to the control device 4 .
  • the physical quantity detection device 100 protrudes in the radial direction of the main passage 22 from the passage wall of the main passage 22 toward the center line 22a of the main passage 22 along the main flow direction of the gas 2 to be measured flowing through the main passage 22 . That is, the direction in which the physical quantity detection device 100 protrudes from the main passage 22 is, for example, the direction perpendicular to the center line 22a of the main passage 22 .
  • the throttle valve 25 is built in, for example, a throttle body 23 arranged upstream of the intake manifold 24 in the flow direction of the gas 2 to be measured.
  • the control device 4 changes the opening of the throttle valve 25 based on the operation amount of the accelerator pedal, and controls the flow rate of the intake air as the measured gas 2 flowing into the combustion chamber in the cylinder 11 of the internal combustion engine 10. do.
  • a throttle angle sensor 26 measures the opening degree of the throttle valve 25 and outputs it to the control device 4 .
  • the idle air control valve 27 controls the amount of air bypassing the throttle valve 25 .
  • the internal combustion engine 10 includes, for example, a cylinder 11, a piston 12, a spark plug 13, a fuel injection valve 14, an intake valve 15, an exhaust valve 16, and a rotation angle sensor 17.
  • the intake air passes through the intake manifold 24 , the fuel injection valve 14 provided in the intake port, and flows into the combustion chamber inside the cylinder 11 via the intake valve 15 .
  • the control device 4 controls the fuel injection valve 14 based on the physical quantity of the intake air as the measured gas 2 input from the physical quantity detection device 100 to inject fuel into the intake air.
  • the intake air that has passed through the intake manifold 24 is mixed with the fuel injected from the fuel injection valve 14 and led to the combustion chamber in the form of an air-fuel mixture.
  • the control device 4 explosively combusts the air-fuel mixture in the combustion chamber by spark ignition of the spark plug 13 to cause the internal combustion engine 10 to generate mechanical energy.
  • the rotation angle sensor 17 detects information about the positions and states of the piston 12, the intake valve 15, and the exhaust valve 16, as well as the rotation speed of the internal combustion engine 10, and outputs the information to the control device 4.
  • the gas generated by combustion is discharged from the combustion chamber of the cylinder 11 to the exhaust pipe through the exhaust valve 16, and is discharged as the exhaust gas 3 from the exhaust pipe to the outside of the vehicle.
  • the oxygen sensor 28 is provided in the exhaust pipe, measures the oxygen concentration of the exhaust gas 3 flowing through the exhaust pipe, and outputs the result to the control device 4 .
  • the control device 4 controls each part of the internal combustion engine control system 1 based on the physical quantity of the intake air as the measured gas 2 flowing through the main passage 22 detected by the physical quantity detection device 100, for example, the flow rate, temperature, humidity, pressure, etc. to control. Specifically, when the controller 4 controls the opening of the throttle valve 25 based on the amount of operation of the accelerator pedal, the flow rate of the intake air as the measured gas 2 flowing through the main passage 22 changes. The control device 4 controls the supply amount of fuel injected from the fuel injection valve 14 based on the flow rate of the gas 2 to be measured detected by the physical quantity detection device 100, for example. Thereby, the mechanical energy generated by the internal combustion engine 10 is controlled.
  • the control device 4 calculates the fuel injection amount and ignition timing based on the physical quantity of the intake air, which is the output of the physical quantity detection device 100, and the rotation speed of the internal combustion engine 10 measured based on the output of the rotation angle sensor 17. do. Based on these calculation results, the control device 4 controls the fuel injection amount by the fuel injection valve 14 and the ignition timing of the spark plug 13 .
  • control device 4 further determines the fuel based on the temperature of the gas 2 to be measured, the state of change in the degree of opening of the throttle valve 25, the state of change in the rotation speed of the internal combustion engine 10, and the state of the air-fuel ratio of the exhaust gas 3. It finely controls the supply amount and ignition timing.
  • the control device 4 further controls the amount of air bypassing the throttle valve 25 when the internal combustion engine 10 is idling, using an idle air control valve 27, thereby controlling the rotation speed of the internal combustion engine 10 when the engine is idling.
  • the fuel supply amount and ignition timing which are the main control amounts of the internal combustion engine 10, are both calculated using the output of the physical quantity detection device 100 as a main parameter. Therefore, improving the measurement accuracy of the physical quantity detection device 100, suppressing changes over time, and improving reliability are important for improving vehicle control accuracy and ensuring reliability.
  • the demand for fuel efficiency of vehicles is very high, and the demand for exhaust gas purification is also very high.
  • a vehicle equipped with the physical quantity detection device 100 is used in an environment with large changes in temperature and humidity. It is desirable that the physical quantity detection device 100 is also designed to deal with changes in temperature and humidity in the environment in which it is used, as well as with respect to dust and contaminants.
  • the physical quantity detection device 100 is attached to an intake pipe that is affected by heat generated from the internal combustion engine. Therefore, the heat generated by the internal combustion engine 10 is transmitted to the physical quantity detection device 100 via the intake pipe. Since the physical quantity detection device 100 detects the flow rate of the gas 2 to be measured by conducting heat transfer with the gas 2 to be measured, it is important to suppress the influence of heat from the outside as much as possible.
  • FIG. 2 to 6 are a front view, a rear view, a left side view, a right side view, and a top view, respectively, of the physical quantity detection device 100 of FIG.
  • Physical quantity detection device 100 includes, for example, housing 110 and cover 120 .
  • the housing 110 is manufactured, for example, by injection molding a synthetic resin material.
  • the cover 120 is, for example, a plate-like member made of metal or synthetic resin.
  • a synthetic resin molded product can be used for the cover 120.
  • the housing 110 and the cover 120 form a housing of the physical quantity detection device 100 arranged inside the main passage 22 .
  • Housing 110 has, for example, flange 111 , connector 112 , and measuring section 113 .
  • the flange 111 has a generally rectangular plate-like shape and has a pair of fixing portions 111a at diagonal corners.
  • the fixed portion 111a has a cylindrical through-hole 111b in the central portion that penetrates the flange 111 and allows a fixing screw to pass therethrough.
  • the measuring section 113 is inserted into the mounting hole provided in the main passage 22 .
  • the fixing screw inserted through the through hole 111 b of the flange 111 is screwed into the screw hole of the main passage 22 to fix the flange 111 to the passage wall of the main passage 22 .
  • the physical quantity detection device 100 is fixed to the main passage 22 , which is the intake body, and the housing 110 is set to the main passage 22 .
  • the connector 112 protrudes from the flange 111, is arranged outside the main passage 22, which is the intake body, and is connected to an external device. As shown in FIG. 5, inside the connector 112, a plurality of external terminals 112a and correction terminals 112b are provided. External terminals 112 a include, for example, output terminals for physical quantities such as flow rate and temperature, which are measurement results of physical quantity detection device 100 , and power terminals for supplying DC power for operating physical quantity detection device 100 .
  • the correction terminal 112b is used to measure the physical quantity after the physical quantity detection device 100 is manufactured, obtain the correction value for each physical quantity detection device 100, and store the correction value in the internal memory of the physical quantity detection device 100. In subsequent physical quantity measurement by the physical quantity detection device 100, the correction data based on the correction value stored in the memory is used, and the correction terminal 112b is not used.
  • the measuring portion 113 extends from a flange 111 fixed to the passage wall of the main passage 22 toward the center line 22a of the main passage 22 so as to protrude in the radial direction of the main passage 22 orthogonal to the center line 22a.
  • the measurement unit 113 has a generally rectangular parallelepiped flat square shape.
  • the measuring part 113 has a length in the projecting direction (X-axis direction) of the measuring part 113 in the main passage 22, and a width in the main flow direction (Y-axis direction) of the gas 2 to be measured in the main passage 22.
  • the measuring part 113 has a thickness in the projecting direction (X-axis direction) and in the direction (Z-axis direction) orthogonal to the main flow direction (Y-axis direction) of the gas 2 to be measured. In this way, the measuring part 113 has a flat shape along the main flow direction of the gas 2 to be measured, so that the fluid resistance to the gas 2 to be measured can be reduced.
  • the measurement unit 113 has a front surface 113a, a rear surface 113b, an upstream side surface 113c, a downstream side surface 113d, and a lower surface 113e.
  • the front surface 113a and the rear surface 113b are larger in area than the other surfaces of the measurement unit 113, and are generally parallel to the projecting direction of the measurement unit 113 (X-axis direction) and the center line 22a of the main passage 22 (Y-axis direction).
  • the side surface 113c on the upstream side and the side surface 113d on the downstream side have an elongated shape with an area smaller than that of the front surface 113a and the rear surface 113b, and are substantially perpendicular to the center line 22a (Y-axis direction) of the main passage 22.
  • the lower surface 113e has a smaller area than the other surfaces of the measuring section 113, is generally parallel to the center line 22a (Y-axis direction) of the main passage 22, and is generally orthogonal to the projecting direction (X-axis direction) of the measuring section 113. .
  • the measurement unit 113 has a sub-passage entrance 114 on the upstream side surface 113c, and has a first outlet 115 and a second outlet 116 on the downstream side surface 113d.
  • the auxiliary passage inlet 114, the first outlet 115, and the second outlet 116 are provided at the tip of the measuring section 113 on the tip side of the center of the measuring section 113 in the projecting direction (X-axis direction).
  • the gas to be measured 2 near the central portion of the main passage 22 away from the inner wall surface of the main passage 22 can be taken in from the sub-passage inlet 114 . Therefore, the physical quantity detection device 100 can suppress deterioration in measurement accuracy due to the heat of the internal combustion engine 10 .
  • FIG. 7 is a front view of the physical quantity detection device 100 of FIG. 2 before the sealing material 119 is arranged.
  • FIG. 8 is a rear view of the physical quantity detection device 100 of FIG. 1 before the cover 120 is attached.
  • FIG. 9 is a cross-sectional view of physical quantity detection device 100 taken along line IX-IX in FIG.
  • FIG. 10 is a cross-sectional view of physical quantity detection device 100 taken along line XX of FIG.
  • the external terminals 112a of the connector 112 shown in FIG. 5 are connected to pads of the circuit board 140 via bonding wires 143, for example, as shown in FIG.
  • Circuit board 140 has, for example, protection circuit 144 mounted on the surface to which bonding wires 143 are connected, and housed in housing 110 . Protection circuit 144 stabilizes the voltage in the circuit and removes noise.
  • These bonding wires 143 and protection circuit 144 are covered and sealed with a sealing material 119, as shown in FIG.
  • a sealing material 119 for example, a silicone gel or an epoxy-based sealing material having higher rigidity than a silicone-based sealing material can be used.
  • the housing 110 has a recessed secondary passage groove 117 and a recessed circuit chamber 118 on the side of the back surface 113b of the measuring section 113.
  • Circuit chamber 118 accommodates circuit board 140 .
  • the sub-passage groove 117 forms a sub-passage 130 together with the cover 120 by closing the opening with the cover 120 .
  • the secondary passage 130 takes in a part of the gas 2 to be measured flowing through the main passage 22 and makes a detour. A part of the gas 2 to be measured flowing through the main passage 22 is taken into the sub passage 130 from the sub passage inlet 114 opening on the upstream side surface 113c of the measuring section 113, for example, as shown in FIG.
  • the sub-passage groove 117 has, for example, a first sub-passage groove 117a and a second sub-passage groove 117b. As shown in FIG. 8, the first sub-passage groove 117a extends from the sub-passage inlet 114 opening on the upstream side surface 113c of the measuring section 113 to the first outlet 115 opening on the downstream side surface 113d of the measuring section 113. , along the center line 22 a (Y-axis direction) of the main passage 22 . First sub-passage groove 117a forms first sub-passage 131 with cover 120, for example, as shown in FIG. The first sub-passage 131 returns the measured gas 2 taken in from the sub-passage inlet 114 to the main passage 22 through the first outlet 115 .
  • the second sub-passage groove 117b branches from the middle of the first sub-passage groove 117a and extends toward the flange 111 along the projecting direction (X-axis direction) of the measuring portion 113. . Further, the second sub-passage groove 117b curves in a U-shape so as to be folded back in the opposite direction and extends toward the tip portion of the measuring portion 113 along the projecting direction (X-axis direction) of the measuring portion 113 .
  • the second sub-passage groove 117b is curved in the direction along the center line 22a (Y-axis direction) of the main passage 22 at the tip of the measuring portion 113, and is a second outlet that opens on the side surface 113d on the downstream side of the measuring portion 113. 116.
  • second subpassage groove 117 b forms second subpassage 132 with cover 120 by closing the opening with cover 120 .
  • Sub-passage 130 includes a first sub-passage 131 and a second sub-passage 132 .
  • the circuit chamber 118 is provided in a concave shape on the base end side of the measuring section 113 connected to the flange 111 on the rear surface 113b side of the measuring section 113 of the housing 110 and accommodates the circuit board 140 .
  • the circuit chamber 118 is located on the base end side of the measuring section 113 relative to the first sub-passage groove 117a of the sub-passage groove 117, and is the second sub-passage in the main flow direction (Y-axis direction) of the gas to be measured 2 flowing through the main passage 22. It is provided adjacent to the upstream side of the groove 117b.
  • FIG. 11 is a front view of the circuit board 140 of the physical quantity detection device 100 shown in FIG.
  • FIG. 12 is a cross-sectional view of circuit board 140 taken along line XII-XII in FIG. 13 is an enlarged front view of the chip package 150 mounted on the circuit board 140 of FIG. 11.
  • FIG. 14 is a front view of the lead frame 153 of the chip package 150 shown in FIG. 13.
  • the chip package 150 is mounted on the surface of the circuit board 140 .
  • the chip package 150 has a first resin portion 150a and a second resin portion 150b.
  • the first resin portion 150a and the second resin portion 150b are, for example, resin sealing portions integrally formed by transfer molding of thermosetting resin.
  • the first resin portion 150a is arranged in the sub passage 130 of the housing 110
  • the second resin portion 150b is arranged in the circuit chamber 118 of the housing 110.
  • FIGS. 8 and 9 the first resin portion 150a is arranged in the sub passage 130 of the housing 110
  • the second resin portion 150b is arranged in the circuit chamber 118 of the housing 110.
  • the width direction Dw of the chip package 150 is, for example, parallel to the projection direction (X-axis direction) of the physical quantity detection device 100, as shown in FIG.
  • the longitudinal direction Dl of the chip package 150 orthogonal to the width direction Dw of the chip package 150 is parallel to the width direction (Y-axis direction) of the measuring section 113, that is, the center line 22a of the main passage 22, for example.
  • the chip package 150 has a flow rate detector 151, as shown in FIGS.
  • the flow rate detecting portion 151 is provided in the first resin portion 150 a and detects the flow rate of the gas to be measured 2 flowing through the secondary passage 130 .
  • the flow detection unit 151 is, for example, a thermal flow sensor, and as shown in FIG. 12, includes a semiconductor substrate 151a, a diaphragm 151d formed on the surface side of the semiconductor substrate 151a and exposed from the first resin portion 150a, have.
  • the diaphragm 151d includes, for example, a pair of temperature sensors arranged upstream and downstream in the flow direction of the gas 2 to be measured, and a heater arranged between the pair of temperature sensors.
  • the flow rate detection unit 151 measures the flow rate of the gas 2 to be measured by, for example, detecting a temperature difference with a pair of temperature sensors of the diaphragm 151d.
  • the flow rate detection unit 151 measures the flow rate of the gas to be measured 2 flowing through the measurement channel 132a formed between the circuit board 140 and the concave groove 150c of the chip package 150.
  • Measurement flow path 132a is formed, for example, in second sub-passage groove 117b of sub-passage groove 117, that is, second sub-passage 132 of sub-passage 130, as shown in FIGS.
  • the chip package 150 has an electronic component 152 and a lead frame 153, for example.
  • Electronic component 152 is mounted on lead frame 153 together with flow rate detector 151 .
  • the electronic component 152 is, for example, an LSI, is connected to the flow rate detection section 151 via a bonding wire, and drives the flow rate detection section 151 .
  • the lead frame 153 has, for example, a die pad 154, a plurality of outer leads 155, and a pair of fixing leads 156, as shown in FIG. Note that the lead frame 153 may have one or three or more fixing leads 156 .
  • the die pad 154 for example, has the flow rate detection unit 151 and the electronic component 152 mounted thereon, is sealed with the first resin portion 150a and the second resin portion 150b, and is embedded in the first resin portion 150a and the second resin portion 150b. .
  • a plurality of outer leads 155 are connected, for example, to the die pad 154 via bonding wires (not shown), and connected to the flow rate detector 151 or the electronic component 152 .
  • the plurality of outer leads 155 protrude from the second resin portion 150b of the chip package 150 to both sides in the width direction Dw of the chip package 150, as shown in FIG.
  • One or more fixing leads 156 are directly connected to the die pad 154 without bonding wires, for example. Specifically, in the example shown in FIG. 14, a pair of fixing leads 156 are directly connected to the die pad 154 . 13, the pair of fixing leads 156 are arranged on both sides of the second resin portion 150b in the width direction Dw at positions closer to the first resin portion 150a than the plurality of outer leads 155. ing.
  • the pair of fixing leads 156 protrude from the second resin portion 150b of the chip package 150 in the width direction Dw, similarly to the outer leads 155 .
  • the direction in which one or more fixing leads 156 protrude from the second resin portion 150b is arbitrary, and is not limited to the width direction Dw.
  • the circuit board 140 has, for example, multiple lands 145 and one or multiple fixing lands 146 .
  • circuit board 140 has a pair of fixing lands 146 .
  • Each land 145 is connected to, for example, wiring that constitutes the circuit of the circuit board 140 .
  • the fixing land 146 is not connected to the circuit of the circuit board 140, or is connected to the ground wiring, for example.
  • the plurality of lands 145 are arranged, for example, on both sides of the second resin portion 150b in the width direction Dw of the chip package 150, and arranged at equal intervals in the longitudinal direction Dl of the chip package 150.
  • the pair of fixing lands 146 are arranged on both sides of the chip package 150 in the width direction Dw at positions closer to the first resin portion 150 a than the plurality of lands 145 .
  • the circuit board 140 may have only one fixing land 146 or may have three or more fixing lands 146 .
  • each land 145 has the same shape and size. It has a rectangular shape with the longitudinal direction Dl of 150 as the lateral direction.
  • Each fixing land 146 has a rectangular shape like each land 145 , but the dimension in the width direction Dw of the chip package 150 is smaller than that of the land 145 .
  • each land 145 and each fixing land 146 have approximately the same dimension in the longitudinal direction Dl of the chip package 150.
  • the dimension of each fixing land 146 may be smaller than the dimension of each land 145 in the longitudinal direction Dl of the chip package 150 .
  • each outer lead 155 of the plurality of outer leads 155 of the chip package 150 is joined to each of the plurality of lands 145 with solder S.
  • One or a plurality of fixing lands 146 specifically, a tip of each fixing land 146 of a pair of fixing lands 146 is connected to one or a plurality of fixing leads 156, specifically a pair of fixing lands 146. It is joined to each fixing lead 156 via solder S. As shown in FIG.
  • Solder S is formed, for example, by a reflow method in which solder paste is printed on lands 145 and fixing lands 146, and tips of outer leads 155 and fixing leads 156 of chip package 150 are placed thereon and heated. It is reflow solder.
  • the dimensional difference between the tip of each fixing lead 156 and each fixing land 146 in the width direction Dw of the chip package 150 is equal to that of the tip of each outer lead 155. It is smaller than the dimensional difference with each land 145 .
  • dimension a is the width of land 145 or fixing land 146 in longitudinal direction Dl of chip package 150 .
  • a dimension L1 is a length in the width direction Dw of the chip package 150 of the land 145 or the tip of the outer lead 155 or the fixing lead 156 reflow-soldered to the land 145 .
  • a dimension L2 is the width of the tip of the outer lead 155 or the fixing lead 156 in the longitudinal direction Dl of the chip package 150 .
  • the surface of the circuit board 140 is covered with a solder resist SR except for a part.
  • the solder resist SR has openings SRo at positions corresponding to the lands 145 .
  • a dimension r1 is a distance between one end of the opening SRo of the solder resist SR and one end of the land 145 and the fixing land 146 in the width direction Dw of the chip package 150 .
  • a dimension r2 is the length of the portion of the other end of the land 145 and the fixing land 146 covered with the solder resist SR in the width direction Dw of the chip package 150 .
  • the dimension ⁇ 1 is the distance from the edge covered with the solder resist SR outside the land 145 or the fixing land 146 to the tip of the outer lead 155 or the fixing lead 156 in the width direction Dw of the chip package 150 .
  • Dimension ⁇ 2 is the distance from the inner edge of land 145 or fixing land 146 to the tip of outer lead 155 or fixing lead 156 in width direction Dw of chip package 150 .
  • the length of the non-overlapping portion between the exposed portion of the land 145 exposed from the opening SRo of the solder resist SR and the tip portion of the outer lead 155 is ( ⁇ 1 ⁇ r2+ ⁇ 2).
  • the exposed portion of land 145 and the tip of outer lead 155 satisfy the relationship of ( ⁇ 1 ⁇ r2+ ⁇ 2)/L1 ⁇ 2 in width direction Dw of chip package 150, for example. That is, in the width direction Dw of the chip package 150, the length ( ⁇ 1 ⁇ r2+ ⁇ 2) of the non-overlapping portion between the exposed portion of the land 145 and the tip of the outer lead 155 is, for example, the length L1 of the tip of the outer lead 155. is more than twice as large as
  • the exposed portions of the fixing lands 146 exposed from the openings SRo of the solder resist SR and the tip portions of the fixing leads 156 are arranged in the width direction Dw of the chip package 150 as follows, for example: It satisfies the relationship ( ⁇ 1 ⁇ r2+ ⁇ 2)/L1 ⁇ 2. That is, in the width direction Dw of the chip package 150, the length ( ⁇ 1 ⁇ r2+ ⁇ 2) of the non-overlapping portion between the exposed portion of the fixing land 146 and the tip of the fixing lead 156 is, for example, the tip of the fixing lead 156. is less than twice the length L1 of .
  • the land 145 and the tip of the outer lead 155 satisfy the relationship a/L2 ⁇ 1, for example. That is, the width a of the land 145 is equal to or greater than the width L2 of the outer lead 155 in the longitudinal direction Dl of the chip package 150 .
  • the fixing land 146 and the tip portion of the fixing lead 156 satisfy the relationship a/L2 ⁇ 1 or a/L2 ⁇ 1, for example. That is, in the longitudinal direction Dl of the chip package 150, the width a of the fixing land 146 may be equal to or greater than the width L2 of the outer lead 155, but may be smaller than the width L2 of the outer lead 155.
  • the dimension ( ⁇ 1 ⁇ r2+ ⁇ 2) of the non-overlapping portion between the land 145 and the tip of the outer lead 155 in the width direction Dw of the chip package 150 is the tip of the land 145 and the tip of the outer lead 155 in the longitudinal direction Dl of the chip package 150. is larger than the dimension (a ⁇ L2) of the non-overlapping portion with
  • the dimension (a ⁇ L2) of the non-overlapping portion between the fixing land 146 and the fixing lead 156 is the dimension of the non-overlapping portion between the land 145 and the tip of the outer lead 155. It may be smaller than (a ⁇ L2).
  • the dimension a of the fixing land 146 may be larger than the dimension L2 of the fixing lead 156, but may be less than or equal to the dimension L2 of the fixing lead 156.
  • a temperature sensor 160 In addition to the chip package 150 having the flow rate detection unit 151, at least one of a temperature sensor 160, a pressure sensor 170, and a humidity sensor 180 is mounted on the circuit board 140, as shown in FIG. .
  • These flow rate sensor, temperature sensor 160 , pressure sensor 170 , and humidity sensor 180 are sensor units that detect the physical quantity of the gas 2 to be measured taken into the secondary passage 130 of the physical quantity detection device 100 .
  • the sensor section of the physical quantity detection device 100 including the chip package 150, the temperature sensor 160, the pressure sensor 170, and the humidity sensor 180 is attached to the surface of the circuit board 140 and mounted on the circuit board 140. It should be noted that the circuit board 140 does not need to include all of the temperature sensor 160, the pressure sensor 170, and the humidity sensor 180 in addition to the flow rate detection unit 151, and any one of the sensor units may be omitted. It is possible.
  • the temperature sensor 160 is, for example, a chip-type temperature sensor mounted on the circuit board 140 .
  • temperature sensor 160 is arranged at the tip of extension portion 140c of circuit board 140 that extends toward the tip of measurement portion 113 in the projecting direction (X-axis direction) of measurement portion 113. there is The temperature sensor 160 is arranged in the temperature measurement passage 190 of the measurement section 113 shown in FIG.
  • the temperature measurement passage 190 has an entrance on the side surface 113c on the upstream side of the measurement section 113, and as shown in FIGS. have an exit.
  • the temperature measurement passage 190 takes in the gas to be measured 2 flowing through the main passage 22 from an inlet opening on the upstream side surface 113c of the measuring unit 113, and passes through an outlet opening on the front surface 113a and the rear surface 113b of the measuring unit 113. 22.
  • Such a configuration can improve the heat dissipation of the temperature sensor 160 .
  • the pressure sensor 170 is mounted on the surface of the circuit board 140 and arranged inside the circuit chamber 118 .
  • the circuit chamber 118 communicates with the folded portion of the second sub-passage groove 117 b that curves in a U shape near the flange 111 , that is, the folded portion of the second sub-passage 132 . This makes it possible to measure the pressure of the gas 2 to be measured taken into the secondary passage 130 by the pressure sensor 170 arranged in the circuit chamber 118 .
  • the humidity sensor 180 is mounted on the surface of the circuit board 140 as shown in FIG. This partitioned area communicates with, for example, the second sub-passage 132 of the sub-passage 130 . Thereby, the humidity sensor 180 detects the humidity of the gas 2 to be measured taken into the secondary passage 130 .
  • the physical quantity detection device 100 of this embodiment detects the physical quantity of the measured gas 2 flowing through the main passage 22 as described above.
  • the physical quantity detection device 100 includes a housing 110 installed in the main passage 22 , a circuit board 140 accommodated in the housing 110 , and a chip package 150 mounted on the circuit board 140 .
  • the housing 110 has a circuit chamber 118 in which a circuit board 140 is accommodated, and a secondary passage 130 that takes in part of the gas 2 to be measured flowing through the main passage 22 .
  • the circuit board 140 has multiple lands 145 and one or multiple fixing lands 146 .
  • the chip package 150 includes a first resin portion 150a arranged in the sub-passage 130, a flow rate detection portion 151 provided in the first resin portion 150a for detecting the flow rate of the gas 2 to be measured flowing through the sub-passage 130, A second resin portion 150b provided integrally with the first resin portion 150a and arranged in the circuit chamber 118, a plurality of outer leads 155 projecting from the second resin portion 150b to both sides in the width direction Dw, and the second resin portion. and one or more fixation leads 156 protruding from 150b.
  • each outer lead 155 of the plurality of outer leads 155 is joined via solder S to each of the lands 145 having a larger dimension in the width direction Dw of the chip package 150 than the tip of the outer lead 155 .
  • the tip of each of the one or more fixing leads 156 is joined via solder S to each of the one or more fixing lands 146 .
  • the dimensional difference between the tip of each fixing lead 156 and each fixing land 146 is the dimensional difference between the tip of each outer lead 155 and each land 145. less than
  • the physical quantity detection device 100 having such a configuration is manufactured by reflow soldering the plurality of outer leads 155 of the chip package 150 to the plurality of lands 145 of the circuit board 140, and mounting the chip package 150 on the circuit board 140. be.
  • one or more fixing leads 156 are also reflow soldered to one or more fixing lands 146 .
  • a solder paste containing solder particles and cream flux is placed on the land 145 and the fixing land 146 by printing or the like. Furthermore, when the solder paste is heated and the solder melts and flows on the land 145 , the tip of the outer lead 155 tries to move on the land 145 .
  • the chip package 150 has the outer leads 155 in the second resin portion 150b instead of the first resin portion 150a in which the flow rate detection portion 151 is provided, the positional deviation due to the rotational moment increases.
  • the dimensional difference between the tip of each fixing lead 156 and each fixing land 146 is smaller than the dimensional difference between the tip of each outer lead 155 and each land 145 .
  • the relative movement between the tip of each fixing lead 156 and each fixing land 146 is smaller than the relative movement between the tip of each outer lead 155 and each land 145 .
  • relative movement between the tip of each outer lead 155 and each land 145 is restrained, and displacement of the chip package 150 with respect to the circuit board 140, including displacement caused by rotational moment acting on the chip package 150, is prevented. is prevented.
  • the mounting position accuracy of the chip package 150 with respect to the circuit board 140 is improved, and the first resin portion 150a can be arranged at a predetermined position within the sub-passage 130 . Thereby, the formation accuracy of the measurement flow path 132a formed between the first resin portion 150a and the circuit board 140 within the sub-passage 130 is improved.
  • the physical quantity detection device 100 of the present embodiment in addition to improving the reliability by improving the fillet formation of the solder S that joins the outer lead 155 to the land 145, the flow rate of the gas to be measured 2 flowing through the measurement channel 132a is detected. It is possible to improve the detection characteristics of the flow rate detection unit 151 that does so.
  • the chip package 150 has a die pad 154 on which the flow rate detection section 151 is mounted and which is embedded in the first resin section 150a and the second resin section 150b.
  • a plurality of outer leads 155 are connected to the die pad 154 via bonding wires, and one or more fixing leads 156 are directly connected to the die pad 154 .
  • the physical quantity detection device 100 of this embodiment can prevent the die pad 154 from being misaligned with respect to the circuit board 140 by the fixing lead 156 directly connected to the die pad 154 .
  • the mounting position accuracy of the flow rate detection unit 151 mounted on the die pad 154 on the circuit board 140 can be improved, and variations in the detection characteristics of the flow rate detection unit 151 can be suppressed.
  • the one or more fixing lands 146 are a pair of fixing lands 146
  • the one or more fixing leads 156 are a pair of fixing leads.
  • the pair of fixing lands 146 and the pair of fixing leads 156 are closer to the first resin portion 150a than the plurality of lands 145 and the plurality of outer leads 155 on both sides of the second resin portion 150b in the width direction Dw of the chip package 150. placed in position.
  • the physical quantity detection device 100 of the present embodiment attaches the chip package 150 to the first resin portion 150a by the pair of fixing leads 156 projecting from the second resin portion 150b in the width direction Dw of the chip package 150.
  • the physical quantity detection device 100 capable of suppressing positional deviation due to reflow soldering between the chip package 150 including the flow rate detection unit 151 and the circuit board 140. can.
  • the physical quantity detection device according to the present disclosure is not limited to the configuration of the physical quantity detection device 100 of this embodiment.
  • the physical quantity detection device 100 may have one fixing lead 156 between multiple outer leads 155 .
  • FIG. 17 is an enlarged front view corresponding to FIG. 13 showing Modification 1 of the physical quantity detection device 100 of the above embodiment.
  • one or a plurality of fixing lands 146 and one or a plurality of fixing leads 156 are provided on both sides of the second resin portion 150b in the width direction Dw. They are a fixing land 146 and a pair of fixing leads 156 .
  • one fixing land 146 and one fixing lead 156 are located on one side of the second resin portion 150b in the width direction Dw and are aligned with the plurality of lands 145.
  • the other fixing land 146 and the other fixing lead 156 are provided at positions closer to the first resin portion 150a than the plurality of outer leads 155, and the other fixing land 146 and the other fixing lead 156 are provided on the other side of the second resin portion 150b in the width direction Dw. It is arranged at a position farther from the first resin portion 150 a than the land 145 and the plurality of outer leads 155 .
  • the physical quantity detection device 100 of this modified example can also achieve the same effect as the physical quantity detection device 100 of the above-described embodiment.
  • FIG. 18 is an enlarged front view corresponding to FIG. 13 showing modification 2 of the physical quantity detection device 100 described above.
  • the one or more fixation leads 156 are one fixation lead 156 .
  • the one fixing lead 156 is provided at the end of the second resin portion 150b opposite to the first resin portion 150a in the longitudinal direction Dl orthogonal to the width direction Dw of the chip package 150, It protrudes in the direction opposite to the first resin portion 150a from the central portion in the direction Dw.
  • the physical quantity detection device 100 of this modified example can also achieve the same effect as the physical quantity detection device 100 of the above-described embodiment.

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)

Abstract

This invention provides a physical quantity detection device that is capable of suppressing positional deviation of reflow soldering between a chip package comprising a flow rate detection unit and a circuit board. This physical quantity detection device comprises a circuit board 140 and a chip package 150. The circuit board 140 comprises a plurality of lands 145 and a fixing land 146. The chip package 150 comprises a flow rate detection unit for detecting the flow rate of a gas under measurement, a plurality of outer leads 155 that protrude from both sides of the chip package 150 in the width direction Dw, and a fixing lead 156 that protrudes from the chip package 150. The distal ends of the outer leads 155 are joined via solder S to the lands 145, which are larger. The distal end of the fixing lead 156 is joined via solder S to the fixing lead 156. In the width direction Dw, the difference in length between the distal end of the fixing lead 156 and the fixing land 146 is smaller than the difference in length between the distal ends of the outer leads 155 and the lands 145.

Description

物理量検出装置physical quantity detector
 本開示は、物理量検出装置に関する。 The present disclosure relates to a physical quantity detection device.
 従来から主通路を流れる被計測気体の質量流量を計測する装置として熱式流量計が知られている(下記特許文献1を参照)。特許文献1は、主通路に取り付けられる熱式流量計であって、副通路と、流量検出素子と、支持体と、回路基板と、を有する熱式流量計を開示している(要約、請求項1)。 Conventionally, a thermal flow meter is known as a device for measuring the mass flow rate of the gas to be measured flowing through the main passage (see Patent Document 1 below). Patent Document 1 discloses a thermal flow meter attached to a main passage, which has a sub passage, a flow detection element, a support, and a circuit board (summary, claim Item 1).
 前記副通路は、前記主通路を流れる被計測気体の一部を取り込む。前記流量検出素子は、前記副通路内に配置される。前記支持体は、前記流量検出素子を支持する。前記回路基板は、前記支持体が固定される。前記流量検出素子は、前記被計測気体の流量を検出する検出面を有し、該検出面が前記回路基板に対向して配置される。 The secondary passage takes in part of the gas to be measured flowing through the main passage. The flow rate detection element is arranged in the secondary passage. The support supports the flow rate detection element. The circuit board is fixed to the support. The flow rate detection element has a detection surface for detecting the flow rate of the gas to be measured, and the detection surface is arranged to face the circuit board.
 この従来の熱式流量計によれば、流量検出素子を支持する支持体が、回路基板に固定され、流量検出素子の検出面が回路基板に対向して配置される構成とすることで、流量精度の低下および信頼性の低下、また、コスト増加を従来よりも低減させることができる(特許文献1、第0012段落)。 According to this conventional thermal flow meter, the support for supporting the flow rate detection element is fixed to the circuit board, and the detection surface of the flow rate detection element is arranged to face the circuit board. A decrease in accuracy, a decrease in reliability, and an increase in cost can be reduced compared to the conventional art (Patent Document 1, paragraph 0012).
国際公開第2019/049513号WO2019/049513
 上記従来の熱式流量計は、流量検出素子を支持する支持体を構成する回路パッケージを有している。回路パッケージは、流量検出素子の一部と、流量検出素子が搭載されるリードフレームと、入出力端子の一部と、回路部品とを樹脂材で一体に封止した樹脂パッケージの構成を有している。リードフレームは、アウターリードを有している。回路パッケージの端部から突出するアウターリードは、基板にはんだにより接続されて固定されている(特許文献1、第0059段落-第0060段落)。 The conventional thermal flowmeter described above has a circuit package that constitutes a support that supports the flow rate detection element. The circuit package has a structure of a resin package in which a part of the flow rate detection element, a lead frame on which the flow rate detection element is mounted, a part of the input/output terminals, and circuit components are integrally sealed with a resin material. ing. The lead frame has outer leads. Outer leads protruding from the ends of the circuit package are connected and fixed to the substrate by soldering (Patent Document 1, paragraphs 0059 to 0060).
 また、上記従来の熱式流量計において、回路パッケージには、副通路を構成するための凹部溝が形成されている。凹部溝の底面には、樹脂材から流量計測部が露出している。凹部溝は、回路パッケージの基板に対向する面に凹設されており、基板と協働して副通路を形成する(特許文献1、第0063段落)。この従来の熱式流量計は、基板上ではんだを溶融させて回路パッケージのアウターリードを基板に接合するリフローはんだ付けにおいて、回路パッケージと基板との位置ずれの抑制に改善の余地がある。 In addition, in the above conventional thermal flowmeter, the circuit package is formed with a concave groove for forming a sub-passage. The flow rate measuring part is exposed from the resin material on the bottom surface of the concave groove. The concave groove is recessed in the surface of the circuit package facing the substrate, and forms a secondary passage in cooperation with the substrate (Patent Document 1, paragraph 0063). This conventional thermal flow meter has room for improvement in suppressing misalignment between the circuit package and the substrate in reflow soldering, in which solder is melted on the substrate to join the outer leads of the circuit package to the substrate.
 本開示は、流量検出部を含むチップパッケージと回路基板とのリフローはんだ付けによる位置ずれを抑制することが可能な物理量検出装置を提供する。 The present disclosure provides a physical quantity detection device capable of suppressing misalignment due to reflow soldering between a chip package including a flow rate detection unit and a circuit board.
 本開示の一態様は、主通路を流れる被計測気体の物理量を検出する物理量検出装置であって、前記主通路に設置されるハウジングと、該ハウジングに収容される回路基板と、該回路基板に実装されるチップパッケージと、を備え、前記ハウジングは、前記回路基板が収容される回路室と、前記主通路を流れる前記被計測気体の一部を取り込む副通路と、を有し、前記回路基板は、複数のランドと、一つまたは複数の固定用ランドと、を有し、前記チップパッケージは、前記副通路に配置される第1樹脂部と、該第1樹脂部に設けられて前記副通路を流れる前記被計測気体の流量を検出する流量検出部と、前記第1樹脂部と一体に設けられて前記回路室に配置される第2樹脂部と、該第2樹脂部から幅方向の両側へ突出する複数のアウターリードと、前記第2樹脂部から突出する一つまたは複数の固定用リードと、を有し、前記複数のアウターリードの各々のアウターリードの先端部は、該先端部よりも前記チップパッケージの幅方向における寸法が大きい前記複数のランドの各々のランドに、はんだを介して接合され、前記一つまたは複数の固定用リードの各々の固定用リードの先端部は、前記一つまたは複数の固定用ランドの各々の固定用ランドに、はんだを介して接合され、前記幅方向において、前記各々の固定用リードの前記先端部と前記各々の固定用ランドとの寸法差が、前記各々のアウターリードの前記先端部と前記各々のランドとの寸法差よりも小さいことを特徴とする物理量検出装置である。 One aspect of the present disclosure is a physical quantity detection device that detects a physical quantity of a gas to be measured flowing through a main passage, comprising: a housing installed in the main passage; a circuit board accommodated in the housing; a chip package to be mounted, wherein the housing has a circuit chamber in which the circuit board is accommodated, and a sub-passage for taking in part of the gas to be measured flowing through the main passage, the circuit board has a plurality of lands and one or a plurality of fixing lands, and the chip package includes a first resin portion arranged in the sub-passage and the sub-portion provided in the first resin portion. a flow rate detecting portion for detecting the flow rate of the gas to be measured flowing through the passage; a second resin portion provided integrally with the first resin portion and arranged in the circuit chamber; A plurality of outer leads protruding to both sides and one or a plurality of fixing leads protruding from the second resin portion are provided, and the tip portion of each outer lead of the plurality of outer leads is the tip portion. Each of the plurality of lands having a dimension in the width direction of the chip package larger than the width of the chip package is joined via solder to each of the one or more fixing leads. One or a plurality of fixing lands are joined to each fixing land via soldering, and a dimensional difference between the tip portion of each of the fixing leads and each of the fixing lands in the width direction is and the physical quantity detection device is characterized in that the dimensional difference is smaller than the dimensional difference between the tip of each outer lead and each land.
 本開示の上記一態様によれば、流量検出部を含むチップパッケージと回路基板とのリフローはんだ付けによる位置ずれを抑制することが可能な物理量検出装置を提供することができる。 According to the above aspect of the present disclosure, it is possible to provide a physical quantity detection device capable of suppressing misalignment due to reflow soldering between a chip package including a flow rate detection unit and a circuit board.
本開示に係る流量検出装置の一実施形態を示すシステム図。1 is a system diagram showing an embodiment of a flow rate detection device according to the present disclosure; FIG. 図1の物理量検出装置の正面図。FIG. 2 is a front view of the physical quantity detection device of FIG. 1; 図1の物理量検出装置の背面図。FIG. 2 is a rear view of the physical quantity detection device of FIG. 1; 図1の物理量検出装置の左側面図。FIG. 2 is a left side view of the physical quantity detection device of FIG. 1; 図1の物理量検出装置の右側面図。FIG. 2 is a right side view of the physical quantity detection device of FIG. 1; 図1の物理量検出装置の上面図。FIG. 2 is a top view of the physical quantity detection device of FIG. 1; 図2の物理量検出装置の封止材を取り除いた状態の正面図。FIG. 3 is a front view of the physical quantity detection device of FIG. 2 with the sealing material removed; 図3の物理量検出装置のカバーを取り外した状態の背面図。FIG. 4 is a rear view of the physical quantity detection device of FIG. 3 with the cover removed; 図8のIX-IX線に沿う物理量検出装置の断面図。FIG. 9 is a cross-sectional view of the physical quantity detection device taken along line IX-IX in FIG. 8; 図2のX-X線に沿う物理量検出装置の断面図。FIG. 3 is a cross-sectional view of the physical quantity detection device taken along line XX of FIG. 2; 図8の物理量検出装置の回路基板の正面図。FIG. 9 is a front view of a circuit board of the physical quantity detection device of FIG. 8; 図11のXII-XII線に沿う回路基板の断面図。Sectional drawing of the circuit board which follows the XII-XII line of FIG. 図11の回路基板に実装されたチップパッケージの拡大正面図。FIG. 12 is an enlarged front view of the chip package mounted on the circuit board of FIG. 11; 図13のチップパッケージのリードフレームの正面図。FIG. 14 is a front view of the lead frame of the chip package of FIG. 13; 図13のチップパッケージのアウターリードとランドの関係を示す模式図。FIG. 14 is a schematic diagram showing the relationship between outer leads and lands of the chip package of FIG. 13; 図13のチップパッケージのアウターリードとランドの関係を示す模式図。FIG. 14 is a schematic diagram showing the relationship between outer leads and lands of the chip package of FIG. 13; 図1から図16の物理量検出装置の実施形態の変形例1を示す拡大正面図。FIG. 17 is an enlarged front view showing Modification 1 of the embodiment of the physical quantity detection device of FIGS. 1 to 16; 図1から図16の物理量検出装置の実施形態の変形例2を示す拡大正面図。FIG. 17 is an enlarged front view showing Modification 2 of the embodiment of the physical quantity detection device of FIGS. 1 to 16;
 以下、図面を参照して本開示に係る物理量検出装置の実施形態を説明する。 An embodiment of a physical quantity detection device according to the present disclosure will be described below with reference to the drawings.
 図1は、本開示に係る物理量検出装置の一実施形態を示すシステム図である。本実施形態の物理量検出装置100は、たとえば、電子燃料噴射方式の内燃機関制御システム1に使用される。内燃機関制御システム1は、たとえば、内燃機関10と、物理量検出装置100と、スロットルバルブ25と、スロットル角度センサ26と、アイドルエアコントロールバルブ27と、酸素センサ28と、制御装置4とを備えている。 FIG. 1 is a system diagram showing one embodiment of the physical quantity detection device according to the present disclosure. The physical quantity detection device 100 of the present embodiment is used, for example, in an electronic fuel injection type internal combustion engine control system 1 . The internal combustion engine control system 1 includes, for example, an internal combustion engine 10, a physical quantity detection device 100, a throttle valve 25, a throttle angle sensor 26, an idle air control valve 27, an oxygen sensor 28, and a control device 4. there is
 物理量検出装置100は、たとえば、主通路22である吸気ボディの通路壁に設けられた取り付け孔から主通路22の内部に挿入され、主通路22の通路壁に固定された状態で使用される。物理量検出装置100は、エアクリーナ21を通して取り込まれて主通路22を流れる被計測気体2である吸入空気の物理量を検出して制御装置4へ出力する。 For example, the physical quantity detection device 100 is inserted into the interior of the main passage 22 through a mounting hole provided in the passage wall of the intake body, which is the main passage 22, and is used in a state of being fixed to the passage wall of the main passage 22. The physical quantity detection device 100 detects the physical quantity of the intake air, which is the measured gas 2 that is taken in through the air cleaner 21 and flows through the main passage 22 , and outputs the physical quantity to the control device 4 .
 物理量検出装置100は、主通路22の通路壁から主通路22を流れる被計測気体2の主流れ方向に沿う主通路22の中心線22aへ向けて主通路22の径方向に突出している。すなわち、主通路22における物理量検出装置100の突出方向は、たとえば、主通路22の中心線22aに直交する方向である。 The physical quantity detection device 100 protrudes in the radial direction of the main passage 22 from the passage wall of the main passage 22 toward the center line 22a of the main passage 22 along the main flow direction of the gas 2 to be measured flowing through the main passage 22 . That is, the direction in which the physical quantity detection device 100 protrudes from the main passage 22 is, for example, the direction perpendicular to the center line 22a of the main passage 22 .
 以下の各図では、図1に示す主通路22における物理量検出装置100の突出方向に平行なX軸、主通路22の中心線22aに平行なY軸、および物理量検出装置100の厚さ方向に平行なZ軸からなる直交座標系を示す。なお、以下の説明では、主通路22の中心線22a(Y軸)に沿って被計測気体2が流れるものとする。 In each of the following figures, the X-axis parallel to the protruding direction of the physical quantity detection device 100 in the main passage 22 shown in FIG. A Cartesian coordinate system consisting of parallel Z-axes is shown. In the following description, it is assumed that the measured gas 2 flows along the center line 22a (Y-axis) of the main passage 22. As shown in FIG.
 スロットルバルブ25は、たとえば、被計測気体2の流れ方向において、吸気マニホールド24の上流側に配置されたスロットルボディ23に内蔵されている。制御装置4は、たとえば、アクセルペダルの操作量に基づいてスロットルバルブ25の開度を変化させ、内燃機関10のシリンダ11内の燃焼室へ流入する被計測気体2としての吸入空気の流量を制御する。スロットル角度センサ26は、スロットルバルブ25の開度を計測して制御装置4へ出力する。アイドルエアコントロールバルブ27は、スロットルバルブ25をバイパスする空気量を制御する。 The throttle valve 25 is built in, for example, a throttle body 23 arranged upstream of the intake manifold 24 in the flow direction of the gas 2 to be measured. The control device 4, for example, changes the opening of the throttle valve 25 based on the operation amount of the accelerator pedal, and controls the flow rate of the intake air as the measured gas 2 flowing into the combustion chamber in the cylinder 11 of the internal combustion engine 10. do. A throttle angle sensor 26 measures the opening degree of the throttle valve 25 and outputs it to the control device 4 . The idle air control valve 27 controls the amount of air bypassing the throttle valve 25 .
 内燃機関10は、たとえば、シリンダ11と、ピストン12と、点火プラグ13と、燃料噴射弁14と、吸気弁15と、排気弁16と、回転角度センサ17と、を備えている。内燃機関10のピストン12の動作に基づいてエアクリーナ21を通して取り込まれた吸入空気は、主通路22を流れ、スロットルボディ23においてスロットルバルブ25により流量が制御される。スロットルボディ23を通過した吸入空気は、吸気マニホールド24を通過し、さらに吸気ポートに設けられた燃料噴射弁14を通過して、吸気弁15を介してシリンダ11内の燃焼室へ流入する。 The internal combustion engine 10 includes, for example, a cylinder 11, a piston 12, a spark plug 13, a fuel injection valve 14, an intake valve 15, an exhaust valve 16, and a rotation angle sensor 17. Intake air taken in through an air cleaner 21 based on the movement of the piston 12 of the internal combustion engine 10 flows through the main passage 22 and the flow rate is controlled by the throttle valve 25 in the throttle body 23 . After passing through the throttle body 23 , the intake air passes through the intake manifold 24 , the fuel injection valve 14 provided in the intake port, and flows into the combustion chamber inside the cylinder 11 via the intake valve 15 .
 制御装置4は、物理量検出装置100から入力された被計測気体2としての吸入空気の物理量に基づいて燃料噴射弁14を制御して、吸入空気へ燃料を噴射させる。これにより、吸気マニホールド24を通過した吸入空気は、燃料噴射弁14から噴射された燃料と混合され、混合気の状態で燃焼室へ導かれる。制御装置4は、点火プラグ13の火花着火により燃焼室内の混合気を爆発的に燃焼させ、内燃機関10に機械エネルギを発生させる。 The control device 4 controls the fuel injection valve 14 based on the physical quantity of the intake air as the measured gas 2 input from the physical quantity detection device 100 to inject fuel into the intake air. As a result, the intake air that has passed through the intake manifold 24 is mixed with the fuel injected from the fuel injection valve 14 and led to the combustion chamber in the form of an air-fuel mixture. The control device 4 explosively combusts the air-fuel mixture in the combustion chamber by spark ignition of the spark plug 13 to cause the internal combustion engine 10 to generate mechanical energy.
 回転角度センサ17は、ピストン12、吸気弁15、および排気弁16の位置や状態、さらに内燃機関10の回転速度に関する情報を検出して制御装置4へ出力する。燃焼により発生したガスは、シリンダ11の燃焼室から排気弁16を介して排気管へ排出され、排気ガス3として排気管から車外へ排出される。酸素センサ28は、排気管に設けられ、排気管を流れる排気ガス3の酸素濃度を計測して制御装置4へ出力する。 The rotation angle sensor 17 detects information about the positions and states of the piston 12, the intake valve 15, and the exhaust valve 16, as well as the rotation speed of the internal combustion engine 10, and outputs the information to the control device 4. The gas generated by combustion is discharged from the combustion chamber of the cylinder 11 to the exhaust pipe through the exhaust valve 16, and is discharged as the exhaust gas 3 from the exhaust pipe to the outside of the vehicle. The oxygen sensor 28 is provided in the exhaust pipe, measures the oxygen concentration of the exhaust gas 3 flowing through the exhaust pipe, and outputs the result to the control device 4 .
 制御装置4は、物理量検出装置100によって検出された主通路22を流れる被計測気体2としての吸入空気の物理量、たとえば、流量、温度、湿度、圧力などに基づいて、内燃機関制御システム1の各部を制御する。具体的には、制御装置4がアクセルペダルの操作量に基づいてスロットルバルブ25の開度を制御すると、主通路22を流れる被計測気体2としての吸入空気の流量が変化する。制御装置4は、たとえば物理量検出装置100によって検出された被計測気体2の流量に基づいて、燃料噴射弁14から噴射する燃料の供給量を制御する。これにより、内燃機関10が発生する機械エネルギが制御される。 The control device 4 controls each part of the internal combustion engine control system 1 based on the physical quantity of the intake air as the measured gas 2 flowing through the main passage 22 detected by the physical quantity detection device 100, for example, the flow rate, temperature, humidity, pressure, etc. to control. Specifically, when the controller 4 controls the opening of the throttle valve 25 based on the amount of operation of the accelerator pedal, the flow rate of the intake air as the measured gas 2 flowing through the main passage 22 changes. The control device 4 controls the supply amount of fuel injected from the fuel injection valve 14 based on the flow rate of the gas 2 to be measured detected by the physical quantity detection device 100, for example. Thereby, the mechanical energy generated by the internal combustion engine 10 is controlled.
 制御装置4は、物理量検出装置100の出力である吸入空気の物理量と、回転角度センサ17の出力に基づいて計測された内燃機関10の回転速度とに基づいて、燃料噴射量や点火時期を演算する。これらの演算結果に基づいて、制御装置4は、燃料噴射弁14による燃料噴射量や、点火プラグ13の点火時期を制御する。 The control device 4 calculates the fuel injection amount and ignition timing based on the physical quantity of the intake air, which is the output of the physical quantity detection device 100, and the rotation speed of the internal combustion engine 10 measured based on the output of the rotation angle sensor 17. do. Based on these calculation results, the control device 4 controls the fuel injection amount by the fuel injection valve 14 and the ignition timing of the spark plug 13 .
 制御装置4は、実際には、さらに被計測気体2の温度、スロットルバルブ25の開度の変化状態、内燃機関10の回転速度の変化状態、排気ガス3の空燃比の状態に基づいて、燃料供給量や点火時期をきめ細かく制御している。制御装置4は、さらに内燃機関10のアイドル運転状態において、スロットルバルブ25をバイパスする空気量をアイドルエアコントロールバルブ27により制御し、アイドル運転状態での内燃機関10の回転速度を制御する。 In practice, the control device 4 further determines the fuel based on the temperature of the gas 2 to be measured, the state of change in the degree of opening of the throttle valve 25, the state of change in the rotation speed of the internal combustion engine 10, and the state of the air-fuel ratio of the exhaust gas 3. It finely controls the supply amount and ignition timing. The control device 4 further controls the amount of air bypassing the throttle valve 25 when the internal combustion engine 10 is idling, using an idle air control valve 27, thereby controlling the rotation speed of the internal combustion engine 10 when the engine is idling.
 内燃機関10の主要な制御量である燃料供給量や点火時期は、いずれも物理量検出装置100の出力を主パラメータとして演算される。したがって、物理量検出装置100の測定精度の向上や、経時変化の抑制、信頼性の向上が、車両の制御精度の向上や信頼性の確保に関して重要である。 The fuel supply amount and ignition timing, which are the main control amounts of the internal combustion engine 10, are both calculated using the output of the physical quantity detection device 100 as a main parameter. Therefore, improving the measurement accuracy of the physical quantity detection device 100, suppressing changes over time, and improving reliability are important for improving vehicle control accuracy and ensuring reliability.
 特に近年、車両の省燃費に関する要望が非常に高く、また排気ガス浄化に関する要望が非常に高い。これらの要望に応えるには、物理量検出装置100により検出される吸入空気の物理量の検出精度の向上が極めて重要である。また、物理量検出装置100が高い信頼性を維持していることも大切である。 Especially in recent years, the demand for fuel efficiency of vehicles is very high, and the demand for exhaust gas purification is also very high. In order to meet these demands, it is extremely important to improve the detection accuracy of the physical quantity of intake air detected by the physical quantity detection device 100 . It is also important that the physical quantity detection device 100 maintains high reliability.
 物理量検出装置100が搭載される車両は、温度や湿度の変化が大きい環境で使用される。物理量検出装置100は、その使用環境における温度や湿度の変化への対応や、塵埃や汚染物質などへの対応も、考慮されていることが望ましい。 A vehicle equipped with the physical quantity detection device 100 is used in an environment with large changes in temperature and humidity. It is desirable that the physical quantity detection device 100 is also designed to deal with changes in temperature and humidity in the environment in which it is used, as well as with respect to dust and contaminants.
 また、物理量検出装置100は、内燃機関からの発熱の影響を受ける吸気管に装着される。このため、内燃機関10の発熱が吸気管を介して物理量検出装置100に伝わる。物理量検出装置100は、被計測気体2と熱伝達を行うことにより被計測気体2の流量を検出するので、外部からの熱の影響をできるだけ抑制することが重要である。 Also, the physical quantity detection device 100 is attached to an intake pipe that is affected by heat generated from the internal combustion engine. Therefore, the heat generated by the internal combustion engine 10 is transmitted to the physical quantity detection device 100 via the intake pipe. Since the physical quantity detection device 100 detects the flow rate of the gas 2 to be measured by conducting heat transfer with the gas 2 to be measured, it is important to suppress the influence of heat from the outside as much as possible.
 以下、図2から図16を参照して、本実施形態の物理量検出装置100について、より詳細に説明する。図2から図6は、それぞれ、図1の物理量検出装置100の正面図、背面図、左側面図、右側面図、および上面図である。物理量検出装置100は、たとえば、ハウジング110とカバー120とを備えている。 The physical quantity detection device 100 of the present embodiment will be described in more detail below with reference to FIGS. 2 to 16. FIG. 2 to 6 are a front view, a rear view, a left side view, a right side view, and a top view, respectively, of the physical quantity detection device 100 of FIG. Physical quantity detection device 100 includes, for example, housing 110 and cover 120 .
 ハウジング110は、たとえば、合成樹脂材料を射出成型することによって製造される。カバー120は、たとえば、金属や合成樹脂を素材とする板状の部材である。カバー120は、たとえば、合成樹脂材料の成形品を使用することができる。ハウジング110とカバー120は、主通路22内に配置される物理量検出装置100の筐体を構成する。ハウジング110は、たとえば、フランジ111と、コネクタ112と、計測部113とを有している。 The housing 110 is manufactured, for example, by injection molding a synthetic resin material. The cover 120 is, for example, a plate-like member made of metal or synthetic resin. For the cover 120, for example, a synthetic resin molded product can be used. The housing 110 and the cover 120 form a housing of the physical quantity detection device 100 arranged inside the main passage 22 . Housing 110 has, for example, flange 111 , connector 112 , and measuring section 113 .
 フランジ111は、図6に示すように、おおむね矩形の板状の形状を有し、対角線上の角部に一対の固定部111aを有している。固定部111aは、中央部にフランジ111を貫通して、固定ねじを挿通させる円筒状の貫通孔111bを有している。物理量検出装置100を主通路22に固定するには、主通路22に設けられた取り付け孔に計測部113を挿入する。そして、フランジ111の貫通孔111bに挿通させた固定ねじを主通路22のねじ穴に螺入して、フランジ111を主通路22の通路壁に固定する。これにより、物理量検出装置100が吸気ボディである主通路22に固定され、ハウジング110が主通路22に設定される。 As shown in FIG. 6, the flange 111 has a generally rectangular plate-like shape and has a pair of fixing portions 111a at diagonal corners. The fixed portion 111a has a cylindrical through-hole 111b in the central portion that penetrates the flange 111 and allows a fixing screw to pass therethrough. To fix the physical quantity detection device 100 to the main passage 22 , the measuring section 113 is inserted into the mounting hole provided in the main passage 22 . Then, the fixing screw inserted through the through hole 111 b of the flange 111 is screwed into the screw hole of the main passage 22 to fix the flange 111 to the passage wall of the main passage 22 . As a result, the physical quantity detection device 100 is fixed to the main passage 22 , which is the intake body, and the housing 110 is set to the main passage 22 .
 コネクタ112は、フランジ111から突出し、吸気ボディである主通路22の外部に配置され、外部機器に接続される。図5に示すように、コネクタ112の内部には、複数の外部端子112aと補正用端子112bが設けられている。外部端子112aは、たとえば、物理量検出装置100の計測結果である流量や温度などの物理量の出力端子と、物理量検出装置100を動作させる直流電力を供給するための電源端子とを含む。 The connector 112 protrudes from the flange 111, is arranged outside the main passage 22, which is the intake body, and is connected to an external device. As shown in FIG. 5, inside the connector 112, a plurality of external terminals 112a and correction terminals 112b are provided. External terminals 112 a include, for example, output terminals for physical quantities such as flow rate and temperature, which are measurement results of physical quantity detection device 100 , and power terminals for supplying DC power for operating physical quantity detection device 100 .
 補正用端子112bは、物理量検出装置100の製造後に物理量の計測を行い、それぞれの物理量検出装置100に対する補正値を求め、物理量検出装置100の内部のメモリに補正値を記憶するのに使用する。その後の物理量検出装置100による物理量の計測では、上記メモリに記憶された補正値に基づく補正データが使用され、補正用端子112bは使用されない。 The correction terminal 112b is used to measure the physical quantity after the physical quantity detection device 100 is manufactured, obtain the correction value for each physical quantity detection device 100, and store the correction value in the internal memory of the physical quantity detection device 100. In subsequent physical quantity measurement by the physical quantity detection device 100, the correction data based on the correction value stored in the memory is used, and the correction terminal 112b is not used.
 計測部113は、主通路22の通路壁に固定されるフランジ111から主通路22の中心線22aに向けて、中心線22aに直交する主通路22の径方向に突出するように延びている。計測部113は、おおむね直方体形状の扁平な角形の形状を有している。計測部113は、主通路22における計測部113の突出方向(X軸方向)に長さを有し、主通路22における被計測気体2の主流れ方向(Y軸方向)に幅を有している。また、計測部113は、突出方向(X軸方向)および被計測気体2の主流れ方向(Y軸方向)に直交する方向(Z軸方向)に厚さを有している。このように、計測部113が被計測気体2の主流れ方向に沿う扁平な形状を有することで、被計測気体2に対する流体抵抗を低減することができる。 The measuring portion 113 extends from a flange 111 fixed to the passage wall of the main passage 22 toward the center line 22a of the main passage 22 so as to protrude in the radial direction of the main passage 22 orthogonal to the center line 22a. The measurement unit 113 has a generally rectangular parallelepiped flat square shape. The measuring part 113 has a length in the projecting direction (X-axis direction) of the measuring part 113 in the main passage 22, and a width in the main flow direction (Y-axis direction) of the gas 2 to be measured in the main passage 22. there is Moreover, the measuring part 113 has a thickness in the projecting direction (X-axis direction) and in the direction (Z-axis direction) orthogonal to the main flow direction (Y-axis direction) of the gas 2 to be measured. In this way, the measuring part 113 has a flat shape along the main flow direction of the gas 2 to be measured, so that the fluid resistance to the gas 2 to be measured can be reduced.
 計測部113は、正面113a、背面113b、上流側の側面113c、下流側の側面113d、および下面113eを有している。正面113aと背面113bは、計測部113の他の面よりも面積が大きく、計測部113の突出方向(X軸方向)および主通路22の中心線22a(Y軸方向)におおむね平行である。上流側の側面113cと下流側の側面113dは、正面113aと背面113bよりも面積が小さい細長い形状を有し、主通路22の中心線22a(Y軸方向)におおむね直交している。下面113eは、計測部113の他の面よりも面積が小さく、主通路22の中心線22a(Y軸方向)におおむね平行で計測部113の突出方向(X軸方向)におおむね直交している。 The measurement unit 113 has a front surface 113a, a rear surface 113b, an upstream side surface 113c, a downstream side surface 113d, and a lower surface 113e. The front surface 113a and the rear surface 113b are larger in area than the other surfaces of the measurement unit 113, and are generally parallel to the projecting direction of the measurement unit 113 (X-axis direction) and the center line 22a of the main passage 22 (Y-axis direction). The side surface 113c on the upstream side and the side surface 113d on the downstream side have an elongated shape with an area smaller than that of the front surface 113a and the rear surface 113b, and are substantially perpendicular to the center line 22a (Y-axis direction) of the main passage 22. As shown in FIG. The lower surface 113e has a smaller area than the other surfaces of the measuring section 113, is generally parallel to the center line 22a (Y-axis direction) of the main passage 22, and is generally orthogonal to the projecting direction (X-axis direction) of the measuring section 113. .
 計測部113は、上流側の側面113cに副通路入口114を有し、下流側の側面113dに第1出口115および第2出口116を有している。副通路入口114、第1出口115、および、第2出口116は、計測部113の突出方向(X軸方向)における中央よりも先端側の計測部113の先端部に設けられている。これにより、主通路22の内壁面から離れた主通路22の中央部付近の被計測気体2を副通路入口114から取り込むことができる。そのため、物理量検出装置100は、内燃機関10の熱の影響による計測精度の低下を抑制できる。 The measurement unit 113 has a sub-passage entrance 114 on the upstream side surface 113c, and has a first outlet 115 and a second outlet 116 on the downstream side surface 113d. The auxiliary passage inlet 114, the first outlet 115, and the second outlet 116 are provided at the tip of the measuring section 113 on the tip side of the center of the measuring section 113 in the projecting direction (X-axis direction). As a result, the gas to be measured 2 near the central portion of the main passage 22 away from the inner wall surface of the main passage 22 can be taken in from the sub-passage inlet 114 . Therefore, the physical quantity detection device 100 can suppress deterioration in measurement accuracy due to the heat of the internal combustion engine 10 .
 図7は、図2の物理量検出装置100の封止材119を配置する前の正面図である。図8は、図1の物理量検出装置100のカバー120を取り付ける前の背面図である。図9は、図8のIX-IX線に沿う物理量検出装置100の断面図である。図10は、図2のX-X線に沿う物理量検出装置100の断面図である。 FIG. 7 is a front view of the physical quantity detection device 100 of FIG. 2 before the sealing material 119 is arranged. FIG. 8 is a rear view of the physical quantity detection device 100 of FIG. 1 before the cover 120 is attached. FIG. 9 is a cross-sectional view of physical quantity detection device 100 taken along line IX-IX in FIG. FIG. 10 is a cross-sectional view of physical quantity detection device 100 taken along line XX of FIG.
 図5に示すコネクタ112の外部端子112aは、たとえば、図7に示すように、ボンディングワイヤ143を介して回路基板140のパッドに接続されている。回路基板140は、たとえば、ボンディングワイヤ143が接続される面に、保護回路144が実装され、ハウジング110に収容されている。保護回路144は、回路内の電圧を安定させ、ノイズを除去する。これらボンディングワイヤ143および保護回路144は、図2に示すように、封止材119によって覆われて封止される。封止材119としては、たとえば、シリコーンゲルや、シリコーン系封止材よりも剛性が高いエポキシ系封止材を使用することができる。 The external terminals 112a of the connector 112 shown in FIG. 5 are connected to pads of the circuit board 140 via bonding wires 143, for example, as shown in FIG. Circuit board 140 has, for example, protection circuit 144 mounted on the surface to which bonding wires 143 are connected, and housed in housing 110 . Protection circuit 144 stabilizes the voltage in the circuit and removes noise. These bonding wires 143 and protection circuit 144 are covered and sealed with a sealing material 119, as shown in FIG. As the sealing material 119, for example, a silicone gel or an epoxy-based sealing material having higher rigidity than a silicone-based sealing material can be used.
 ハウジング110は、図8に示すように、計測部113の背面113b側に、凹状の副通路溝117と、凹状の回路室118とを有している。回路室118は、回路基板140を収容している。図10に示すように、副通路溝117は、開口部がカバー120によって閉鎖されることで、カバー120とともに副通路130を形成する。副通路130は、主通路22を流れる被計測気体2の一部を取り込んで迂回させる。主通路22を流れる被計測気体2の一部は、たとえば、図8に示すように、計測部113の上流側の側面113cに開口する副通路入口114から副通路130に取り込まれる。 As shown in FIG. 8, the housing 110 has a recessed secondary passage groove 117 and a recessed circuit chamber 118 on the side of the back surface 113b of the measuring section 113. As shown in FIG. Circuit chamber 118 accommodates circuit board 140 . As shown in FIG. 10 , the sub-passage groove 117 forms a sub-passage 130 together with the cover 120 by closing the opening with the cover 120 . The secondary passage 130 takes in a part of the gas 2 to be measured flowing through the main passage 22 and makes a detour. A part of the gas 2 to be measured flowing through the main passage 22 is taken into the sub passage 130 from the sub passage inlet 114 opening on the upstream side surface 113c of the measuring section 113, for example, as shown in FIG.
 副通路溝117は、たとえば、第1副通路溝117aと、第2副通路溝117bとを有している。第1副通路溝117aは、図8に示すように、計測部113の上流側の側面113cに開口する副通路入口114から、計測部113の下流側の側面113dに開口する第1出口115まで、主通路22の中心線22a(Y軸方向)に沿って延びている。第1副通路溝117aは、たとえば、図10に示すように、カバー120との間に第1副通路131を形成する。第1副通路131は、副通路入口114から取り込んだ被計測気体2を、第1出口115から主通路22へ戻す。 The sub-passage groove 117 has, for example, a first sub-passage groove 117a and a second sub-passage groove 117b. As shown in FIG. 8, the first sub-passage groove 117a extends from the sub-passage inlet 114 opening on the upstream side surface 113c of the measuring section 113 to the first outlet 115 opening on the downstream side surface 113d of the measuring section 113. , along the center line 22 a (Y-axis direction) of the main passage 22 . First sub-passage groove 117a forms first sub-passage 131 with cover 120, for example, as shown in FIG. The first sub-passage 131 returns the measured gas 2 taken in from the sub-passage inlet 114 to the main passage 22 through the first outlet 115 .
 第2副通路溝117bは、図8に示すように、第1副通路溝117aの途中から分岐して、計測部113の突出方向(X軸方向)に沿ってフランジ111へ向けて延びている。さらに、第2副通路溝117bは、反対方向へ折り返すようにU字状にカーブして計測部113の突出方向(X軸方向)に沿って計測部113の先端部へ向けて延びている。第2副通路溝117bは、計測部113の先端部で主通路22の中心線22a(Y軸方向)に沿う方向へカーブして、計測部113の下流側の側面113dに開口する第2出口116に接続されている。たとえば、図9に示すように、第2副通路溝117bは、開口部がカバー120によって閉鎖されることで、カバー120との間に第2副通路132を形成する。副通路130は、第1副通路131と第2副通路132とを含む。 As shown in FIG. 8, the second sub-passage groove 117b branches from the middle of the first sub-passage groove 117a and extends toward the flange 111 along the projecting direction (X-axis direction) of the measuring portion 113. . Further, the second sub-passage groove 117b curves in a U-shape so as to be folded back in the opposite direction and extends toward the tip portion of the measuring portion 113 along the projecting direction (X-axis direction) of the measuring portion 113 . The second sub-passage groove 117b is curved in the direction along the center line 22a (Y-axis direction) of the main passage 22 at the tip of the measuring portion 113, and is a second outlet that opens on the side surface 113d on the downstream side of the measuring portion 113. 116. For example, as shown in FIG. 9 , second subpassage groove 117 b forms second subpassage 132 with cover 120 by closing the opening with cover 120 . Sub-passage 130 includes a first sub-passage 131 and a second sub-passage 132 .
 回路室118は、ハウジング110の計測部113の背面113b側で、フランジ111に接続された計測部113の基端側に凹状に設けられ、回路基板140を収容している。回路室118は、副通路溝117の第1副通路溝117aよりも計測部113の基端側で、主通路22を流れる被計測気体2の主流れ方向(Y軸方向)における第2副通路溝117bの上流側に隣接して設けられている。 The circuit chamber 118 is provided in a concave shape on the base end side of the measuring section 113 connected to the flange 111 on the rear surface 113b side of the measuring section 113 of the housing 110 and accommodates the circuit board 140 . The circuit chamber 118 is located on the base end side of the measuring section 113 relative to the first sub-passage groove 117a of the sub-passage groove 117, and is the second sub-passage in the main flow direction (Y-axis direction) of the gas to be measured 2 flowing through the main passage 22. It is provided adjacent to the upstream side of the groove 117b.
 図11は、図8に示す物理量検出装置100の回路基板140の正面図である。図12は、図11のXII-XII線に沿う回路基板140の断面図である。図13は、図11の回路基板140に実装されるチップパッケージ150の拡大正面図である。図14は、図13に示すチップパッケージ150のリードフレーム153の正面図である。 11 is a front view of the circuit board 140 of the physical quantity detection device 100 shown in FIG. FIG. 12 is a cross-sectional view of circuit board 140 taken along line XII-XII in FIG. 13 is an enlarged front view of the chip package 150 mounted on the circuit board 140 of FIG. 11. FIG. 14 is a front view of the lead frame 153 of the chip package 150 shown in FIG. 13. FIG.
 チップパッケージ150は、回路基板140の表面に実装されている。チップパッケージ150は、第1樹脂部150aと、第2樹脂部150bと、を有している。第1樹脂部150aおよび第2樹脂部150bは、たとえば、熱硬化性樹脂のトランスファーモールドによって一体に成形された樹脂封止部である。図8および図9に示すように、第1樹脂部150aは、ハウジング110の副通路130に配置され、第2樹脂部150bは、ハウジング110の回路室118に配置される。 The chip package 150 is mounted on the surface of the circuit board 140 . The chip package 150 has a first resin portion 150a and a second resin portion 150b. The first resin portion 150a and the second resin portion 150b are, for example, resin sealing portions integrally formed by transfer molding of thermosetting resin. As shown in FIGS. 8 and 9, the first resin portion 150a is arranged in the sub passage 130 of the housing 110, and the second resin portion 150b is arranged in the circuit chamber 118 of the housing 110. As shown in FIGS.
 ここで、チップパッケージ150の幅方向Dwは、たとえば、図8に示すように、物理量検出装置100の突出方向(X軸方向)に平行である。また、チップパッケージ150の幅方向Dwに直交するチップパッケージ150の長手方向Dlは、たとえば、計測部113の幅方向(Y軸方向)すなわち主通路22の中心線22aに平行である。 Here, the width direction Dw of the chip package 150 is, for example, parallel to the projection direction (X-axis direction) of the physical quantity detection device 100, as shown in FIG. Also, the longitudinal direction Dl of the chip package 150 orthogonal to the width direction Dw of the chip package 150 is parallel to the width direction (Y-axis direction) of the measuring section 113, that is, the center line 22a of the main passage 22, for example.
 チップパッケージ150は、図9および図12に示すように、流量検出部151を有している。流量検出部151は、第1樹脂部150aに設けられ、副通路130を流れる被計測気体2の流量を検出する。流量検出部151は、たとえば、熱式流量センサであり、図12に示すように、半導体基板151aと、その半導体基板151aの表面側に形成されて第1樹脂部150aから露出したダイアフラム151dと、を有している。 The chip package 150 has a flow rate detector 151, as shown in FIGS. The flow rate detecting portion 151 is provided in the first resin portion 150 a and detects the flow rate of the gas to be measured 2 flowing through the secondary passage 130 . The flow detection unit 151 is, for example, a thermal flow sensor, and as shown in FIG. 12, includes a semiconductor substrate 151a, a diaphragm 151d formed on the surface side of the semiconductor substrate 151a and exposed from the first resin portion 150a, have.
 図示を省略するが、ダイアフラム151dは、たとえば、被計測気体2の流れ方向の上流側と下流側に配置された一対の温度センサと、その一対の温度センサの間に配置されたヒータと備えている。流量検出部151は、たとえば、ダイアフラム151dの一対の温度センサによって温度差を検出することで、被計測気体2の流量を測定する。 Although not shown, the diaphragm 151d includes, for example, a pair of temperature sensors arranged upstream and downstream in the flow direction of the gas 2 to be measured, and a heater arranged between the pair of temperature sensors. there is The flow rate detection unit 151 measures the flow rate of the gas 2 to be measured by, for example, detecting a temperature difference with a pair of temperature sensors of the diaphragm 151d.
 流量検出部151は、たとえば、図12に示すように、回路基板140とチップパッケージ150の凹溝150cとの間に形成された計測流路132aを流れる被計測気体2の流量を計測する。計測流路132aは、たとえば、図8および図9に示すように、副通路溝117の第2副通路溝117b内、すなわち副通路130の第2副通路132内に形成される。 For example, as shown in FIG. 12, the flow rate detection unit 151 measures the flow rate of the gas to be measured 2 flowing through the measurement channel 132a formed between the circuit board 140 and the concave groove 150c of the chip package 150. Measurement flow path 132a is formed, for example, in second sub-passage groove 117b of sub-passage groove 117, that is, second sub-passage 132 of sub-passage 130, as shown in FIGS.
 チップパッケージ150は、たとえば、電子部品152と、リードフレーム153、とを有している。電子部品152は、流量検出部151とともにリードフレーム153に実装される。電子部品152は、たとえば、LSIであり、ボンディングワイヤを介して流量検出部151に接続され、流量検出部151を駆動させる。 The chip package 150 has an electronic component 152 and a lead frame 153, for example. Electronic component 152 is mounted on lead frame 153 together with flow rate detector 151 . The electronic component 152 is, for example, an LSI, is connected to the flow rate detection section 151 via a bonding wire, and drives the flow rate detection section 151 .
 リードフレーム153は、たとえば、図14に示すように、ダイパッド154と、複数のアウターリード155と、一対の固定用リード156と、を有している。なお、リードフレーム153は、一つまたは3つ以上の固定用リード156を有してもよい。ダイパッド154は、たとえば、流量検出部151および電子部品152が実装されて第1樹脂部150aおよび第2樹脂部150bによって封止され、第1樹脂部150aおよび第2樹脂部150bに埋設されている。 The lead frame 153 has, for example, a die pad 154, a plurality of outer leads 155, and a pair of fixing leads 156, as shown in FIG. Note that the lead frame 153 may have one or three or more fixing leads 156 . The die pad 154, for example, has the flow rate detection unit 151 and the electronic component 152 mounted thereon, is sealed with the first resin portion 150a and the second resin portion 150b, and is embedded in the first resin portion 150a and the second resin portion 150b. .
 複数のアウターリード155は、たとえば、ダイパッド154に対し、図示を省略するボンディングワイヤを介して接続され、流量検出部151または電子部品152に接続される。複数のアウターリード155は、図13に示すように、チップパッケージ150の第2樹脂部150bから、チップパッケージ150の幅方向Dwの両側へ突出している。 A plurality of outer leads 155 are connected, for example, to the die pad 154 via bonding wires (not shown), and connected to the flow rate detector 151 or the electronic component 152 . The plurality of outer leads 155 protrude from the second resin portion 150b of the chip package 150 to both sides in the width direction Dw of the chip package 150, as shown in FIG.
 一つまたは複数の固定用リード156は、たとえば、ボンディングワイヤを介することなく、ダイパッド154に直接接続される。具体的には、図14に示す例では、一対の固定用リード156がダイパッド154に直接接続されている。また、一対の固定用リード156は、たとえば、図13に示すように、幅方向Dwにおける第2樹脂部150bの両側で、複数のアウターリード155よりも第1樹脂部150aに近い位置に配置されている。 One or more fixing leads 156 are directly connected to the die pad 154 without bonding wires, for example. Specifically, in the example shown in FIG. 14, a pair of fixing leads 156 are directly connected to the die pad 154 . 13, the pair of fixing leads 156 are arranged on both sides of the second resin portion 150b in the width direction Dw at positions closer to the first resin portion 150a than the plurality of outer leads 155. ing.
 また、一対の固定用リード156は、アウターリード155と同様に、チップパッケージ150の第2樹脂部150bから幅方向Dwへ突出している。なお、第2樹脂部150bから突出する一つまたは複数の固定用リード156の突出方向は任意であり、幅方向Dwに限定されない。 Also, the pair of fixing leads 156 protrude from the second resin portion 150b of the chip package 150 in the width direction Dw, similarly to the outer leads 155 . The direction in which one or more fixing leads 156 protrude from the second resin portion 150b is arbitrary, and is not limited to the width direction Dw.
 回路基板140は、たとえば、複数のランド145と、一つまたは複数の固定用ランド146と、を有している。図13に示す例において、回路基板140は、一対の固定用ランド146を有している。各々のランド145は、たとえば、回路基板140の回路を構成する配線に接続されている。これに対し、固定用ランド146は、たとえば、回路基板140の回路に接続されていないか、または、グランド配線に接続されている。 The circuit board 140 has, for example, multiple lands 145 and one or multiple fixing lands 146 . In the example shown in FIG. 13, circuit board 140 has a pair of fixing lands 146 . Each land 145 is connected to, for example, wiring that constitutes the circuit of the circuit board 140 . On the other hand, the fixing land 146 is not connected to the circuit of the circuit board 140, or is connected to the ground wiring, for example.
 複数のランド145は、たとえば、チップパッケージ150の幅方向Dwにおいて第2樹脂部150bの両側に配置され、チップパッケージ150の長手方向Dlにおいて等間隔に並んでいる。また、一対の固定用ランド146は、チップパッケージ150の幅方向Dwの両側で、複数のランド145よりも、第1樹脂部150aに近い位置に配置されている。なお、回路基板140は、一つの固定用ランド146のみを有してもよく、3つ以上の固定用ランド146を有してもよい。 The plurality of lands 145 are arranged, for example, on both sides of the second resin portion 150b in the width direction Dw of the chip package 150, and arranged at equal intervals in the longitudinal direction Dl of the chip package 150. The pair of fixing lands 146 are arranged on both sides of the chip package 150 in the width direction Dw at positions closer to the first resin portion 150 a than the plurality of lands 145 . The circuit board 140 may have only one fixing land 146 or may have three or more fixing lands 146 .
 各々のランド145は、たとえば、図13に示すように、形状および大きさが同一であり、回路基板140の表面に垂直な方向から見て、チップパッケージ150の幅方向Dwを長手方向、チップパッケージ150の長手方向Dlを短手方向とする長方形の形状を有している。各々の固定用ランド146は、各々のランド145と同様に長方形の形状を有しているが、チップパッケージ150の幅方向Dwにおける寸法が、ランド145よりも小さい。 For example, as shown in FIG. 13, each land 145 has the same shape and size. It has a rectangular shape with the longitudinal direction Dl of 150 as the lateral direction. Each fixing land 146 has a rectangular shape like each land 145 , but the dimension in the width direction Dw of the chip package 150 is smaller than that of the land 145 .
 図13に示す例において、各々のランド145と、各々の固定用ランド146とは、チップパッケージ150の長手方向Dlにおける寸法がほぼ等しい。しかし、チップパッケージ150の長手方向Dlにおいて、各々の固定用ランド146の寸法は、各々のランド145の寸法より小さくてもよい。 In the example shown in FIG. 13, each land 145 and each fixing land 146 have approximately the same dimension in the longitudinal direction Dl of the chip package 150. In the example shown in FIG. However, the dimension of each fixing land 146 may be smaller than the dimension of each land 145 in the longitudinal direction Dl of the chip package 150 .
 チップパッケージ150の複数のアウターリード155の各々のアウターリード155の先端部は、複数のランド145の各々のランド145に、はんだSを介して接合されている。一つまたは複数の固定用ランド146、具体的には、一対の固定用ランド146の各々の固定用ランド146の先端部は、一つまたは複数の固定用リード156、具体的には、一対の固定用リード156の各々の固定用リード156に、はんだSを介して接合されている。 The tip of each outer lead 155 of the plurality of outer leads 155 of the chip package 150 is joined to each of the plurality of lands 145 with solder S. One or a plurality of fixing lands 146, specifically, a tip of each fixing land 146 of a pair of fixing lands 146 is connected to one or a plurality of fixing leads 156, specifically a pair of fixing lands 146. It is joined to each fixing lead 156 via solder S. As shown in FIG.
 はんだSは、たとえば、ランド145および固定用ランド146にはんだペーストを印刷し、その上にチップパッケージ150のアウターリード155および固定用リード156の先端部を配置して加熱するリフロー方式によって形成されたリフローはんだである。本実施形態の物理量検出装置100は、チップパッケージ150の幅方向Dwにおいて、各々の固定用リード156の先端部と各々の固定用ランド146との寸法差が、各々のアウターリード155の先端部と各々のランド145との寸法差よりも小さい。 Solder S is formed, for example, by a reflow method in which solder paste is printed on lands 145 and fixing lands 146, and tips of outer leads 155 and fixing leads 156 of chip package 150 are placed thereon and heated. It is reflow solder. In the physical quantity detection device 100 of this embodiment, the dimensional difference between the tip of each fixing lead 156 and each fixing land 146 in the width direction Dw of the chip package 150 is equal to that of the tip of each outer lead 155. It is smaller than the dimensional difference with each land 145 .
 図15および図16は、それぞれ、図13のチップパッケージ150のアウターリード155の先端部とランド145の関係を示す模式的な正面図および断面図である。なお、図15において、はんだSの図示は省略している。ここで、寸法aは、チップパッケージ150の長手方向Dlにおけるランド145または固定用ランド146の幅である。また、寸法L1は、ランド145またはランド145にリフローはんだ付けされる、アウターリード155または固定用リード156の先端部のチップパッケージ150の幅方向Dwにおける長さである。また、寸法L2は、アウターリード155または固定用リード156の先端部のチップパッケージ150の長手方向Dlにおける幅である。 15 and 16 are a schematic front view and a cross-sectional view, respectively, showing the relationship between the tip of the outer lead 155 and the land 145 of the chip package 150 of FIG. 15, illustration of the solder S is omitted. Here, dimension a is the width of land 145 or fixing land 146 in longitudinal direction Dl of chip package 150 . A dimension L1 is a length in the width direction Dw of the chip package 150 of the land 145 or the tip of the outer lead 155 or the fixing lead 156 reflow-soldered to the land 145 . A dimension L2 is the width of the tip of the outer lead 155 or the fixing lead 156 in the longitudinal direction Dl of the chip package 150 .
 回路基板140の表面は、一部を除いてソルダーレジストSRに覆われている。ソルダーレジストSRは、ランド145に対応する位置に開口SRoを有している。寸法r1は、チップパッケージ150の幅方向Dwにおける、ソルダーレジストSRの開口SRoの一端と、ランド145および固定用ランド146の一端との間隔である。また、寸法r2は、チップパッケージ150の幅方向Dwにおける、ランド145および固定用ランド146の他端のソルダーレジストSRに覆われた部分の長さである。 The surface of the circuit board 140 is covered with a solder resist SR except for a part. The solder resist SR has openings SRo at positions corresponding to the lands 145 . A dimension r1 is a distance between one end of the opening SRo of the solder resist SR and one end of the land 145 and the fixing land 146 in the width direction Dw of the chip package 150 . A dimension r2 is the length of the portion of the other end of the land 145 and the fixing land 146 covered with the solder resist SR in the width direction Dw of the chip package 150 .
 また、寸法α1は、チップパッケージ150の幅方向Dwにおける、ランド145または固定用ランド146の外側のソルダーレジストSRに覆われた端縁からアウターリード155または固定用リード156の先端部までの距離である。また、寸法α2は、チップパッケージ150の幅方向Dwにおける、ランド145または固定用ランド146の内側の端縁からアウターリード155または固定用リード156の先端部までの距離である。 Also, the dimension α1 is the distance from the edge covered with the solder resist SR outside the land 145 or the fixing land 146 to the tip of the outer lead 155 or the fixing lead 156 in the width direction Dw of the chip package 150 . be. Dimension α2 is the distance from the inner edge of land 145 or fixing land 146 to the tip of outer lead 155 or fixing lead 156 in width direction Dw of chip package 150 .
 この場合、チップパッケージ150の幅方向Dwにおいて、ソルダーレジストSRの開口SRoから露出したランド145の露出部と、アウターリード155の先端部との非重複部分の長さは(α1-r2+α2)となる。また、ランド145の露出部と、アウターリード155の先端部とは、チップパッケージ150の幅方向Dwにおいて、たとえば、(α1-r2+α2)/L1≧2の関係を満たす。すなわち、チップパッケージ150の幅方向Dwにおいて、ランド145の露出部とアウターリード155の先端部との非重複部分の長さ(α1-r2+α2)は、たとえば、アウターリード155の先端部の長さL1の2倍以上である。 In this case, in the width direction Dw of the chip package 150, the length of the non-overlapping portion between the exposed portion of the land 145 exposed from the opening SRo of the solder resist SR and the tip portion of the outer lead 155 is (α1−r2+α2). . In addition, the exposed portion of land 145 and the tip of outer lead 155 satisfy the relationship of (α1−r2+α2)/L1≧2 in width direction Dw of chip package 150, for example. That is, in the width direction Dw of the chip package 150, the length (α1−r2+α2) of the non-overlapping portion between the exposed portion of the land 145 and the tip of the outer lead 155 is, for example, the length L1 of the tip of the outer lead 155. is more than twice as large as
 一方、チップパッケージ150の幅方向Dwにおいて、ソルダーレジストSRの開口SRoから露出した固定用ランド146の露出部と、固定用リード156の先端部とは、チップパッケージ150の幅方向Dwにおいて、たとえば、(α1-r2+α2)/L1<2の関係を満たす。すなわち、チップパッケージ150の幅方向Dwにおいて、固定用ランド146の露出部と固定用リード156の先端部との非重複部分の長さ(α1-r2+α2)は、たとえば、固定用リード156の先端部の長さL1の2倍より小である。 On the other hand, in the width direction Dw of the chip package 150, the exposed portions of the fixing lands 146 exposed from the openings SRo of the solder resist SR and the tip portions of the fixing leads 156 are arranged in the width direction Dw of the chip package 150 as follows, for example: It satisfies the relationship (α1−r2+α2)/L1<2. That is, in the width direction Dw of the chip package 150, the length (α1−r2+α2) of the non-overlapping portion between the exposed portion of the fixing land 146 and the tip of the fixing lead 156 is, for example, the tip of the fixing lead 156. is less than twice the length L1 of .
 また、チップパッケージ150の長手方向Dlにおいて、ランド145とアウターリード155の先端部とは、たとえば、a/L2≧1の関係を満たす。すなわち、チップパッケージ150の長手方向Dlにおいて、ランド145の幅aは、アウターリード155の幅L2以上である。一方、チップパッケージ150の長手方向Dlにおいて、固定用ランド146と固定用リード156の先端部とは、たとえば、a/L2≧1またはa/L2<1の関係を満たす。すなわち、チップパッケージ150の長手方向Dlにおいて、固定用ランド146の幅aは、アウターリード155の幅L2以上であってもよいが、アウターリード155の幅L2より小であってもよい。 In addition, in the longitudinal direction Dl of the chip package 150, the land 145 and the tip of the outer lead 155 satisfy the relationship a/L2≧1, for example. That is, the width a of the land 145 is equal to or greater than the width L2 of the outer lead 155 in the longitudinal direction Dl of the chip package 150 . On the other hand, in the longitudinal direction Dl of the chip package 150, the fixing land 146 and the tip portion of the fixing lead 156 satisfy the relationship a/L2≧1 or a/L2<1, for example. That is, in the longitudinal direction Dl of the chip package 150, the width a of the fixing land 146 may be equal to or greater than the width L2 of the outer lead 155, but may be smaller than the width L2 of the outer lead 155.
 また、チップパッケージ150の幅方向Dwにおけるランド145とアウターリード155の先端部との非重複部分の寸法(α1-r2+α2)は、チップパッケージ150の長手方向Dlにおけるランド145とアウターリード155の先端部との非重複部分の寸法(a-L2)よりも大きい。また、チップパッケージ150の長手方向Dlにおいて、固定用ランド146と固定用リード156との非重複部分の寸法(a-L2)は、ランド145とアウターリード155の先端部との非重複部分の寸法(a-L2)より小さくてもよい。また、チップパッケージ150の長手方向Dlにおいて、固定用ランド146の寸法aは、固定用リード156の寸法L2より大きくてもよいが、固定用リード156の寸法L2以下であってもよい。 In addition, the dimension (α1−r2+α2) of the non-overlapping portion between the land 145 and the tip of the outer lead 155 in the width direction Dw of the chip package 150 is the tip of the land 145 and the tip of the outer lead 155 in the longitudinal direction Dl of the chip package 150. is larger than the dimension (a−L2) of the non-overlapping portion with In addition, in the longitudinal direction Dl of the chip package 150, the dimension (a−L2) of the non-overlapping portion between the fixing land 146 and the fixing lead 156 is the dimension of the non-overlapping portion between the land 145 and the tip of the outer lead 155. It may be smaller than (a−L2). Also, in the longitudinal direction Dl of the chip package 150, the dimension a of the fixing land 146 may be larger than the dimension L2 of the fixing lead 156, but may be less than or equal to the dimension L2 of the fixing lead 156.
 また、回路基板140には、流量検出部151を有するチップパッケージ150の他に、たとえば、図11に示すように、温度センサ160、圧力センサ170、および湿度センサ180の少なくとも一つが実装されている。これら流量センサ、温度センサ160、圧力センサ170、および湿度センサ180は、物理量検出装置100の副通路130に取り込まれた被計測気体2の物理量を検出するセンサ部である。 In addition to the chip package 150 having the flow rate detection unit 151, at least one of a temperature sensor 160, a pressure sensor 170, and a humidity sensor 180 is mounted on the circuit board 140, as shown in FIG. . These flow rate sensor, temperature sensor 160 , pressure sensor 170 , and humidity sensor 180 are sensor units that detect the physical quantity of the gas 2 to be measured taken into the secondary passage 130 of the physical quantity detection device 100 .
 これらチップパッケージ150、温度センサ160、圧力センサ170、および湿度センサ180を含む物理量検出装置100のセンサ部は、回路基板140の表面に取り付けられ、回路基板140に実装されている。なお、回路基板140は、流量検出部151の他に、温度センサ160、圧力センサ170、および湿度センサ180のすべてのセンサ部を備えている必要はなく、いずれかのセンサ部を省略することも可能である。 The sensor section of the physical quantity detection device 100 including the chip package 150, the temperature sensor 160, the pressure sensor 170, and the humidity sensor 180 is attached to the surface of the circuit board 140 and mounted on the circuit board 140. It should be noted that the circuit board 140 does not need to include all of the temperature sensor 160, the pressure sensor 170, and the humidity sensor 180 in addition to the flow rate detection unit 151, and any one of the sensor units may be omitted. It is possible.
 温度センサ160は、たとえば、回路基板140に実装されたチップ型の温度センサである。温度センサ160は、たとえば、図8に示すように、計測部113の突出方向(X軸方向)において計測部113の先端へ向けて延びる回路基板140の延出部140cの先端部に配置されている。温度センサ160は、図4に示す計測部113の温度計測通路190に配置され、主通路22から温度計測通路190に取り込まれた被計測気体2の温度を測定する。 The temperature sensor 160 is, for example, a chip-type temperature sensor mounted on the circuit board 140 . For example, as shown in FIG. 8, temperature sensor 160 is arranged at the tip of extension portion 140c of circuit board 140 that extends toward the tip of measurement portion 113 in the projecting direction (X-axis direction) of measurement portion 113. there is The temperature sensor 160 is arranged in the temperature measurement passage 190 of the measurement section 113 shown in FIG.
 温度計測通路190は、図4に示すように、計測部113の上流側の側面113cに入口を有し、図2および図3に示すように、計測部113の正面113aと背面113bの双方に出口を有している。温度計測通路190は、主通路22を流れる被計測気体2を、計測部113の上流側の側面113cに開口する入口から取り込んで、計測部113の正面113aおよび背面113bに開口する出口から主通路22へ排出する。このような構成により、温度センサ160の放熱性を向上させることができる。 As shown in FIG. 4, the temperature measurement passage 190 has an entrance on the side surface 113c on the upstream side of the measurement section 113, and as shown in FIGS. have an exit. The temperature measurement passage 190 takes in the gas to be measured 2 flowing through the main passage 22 from an inlet opening on the upstream side surface 113c of the measuring unit 113, and passes through an outlet opening on the front surface 113a and the rear surface 113b of the measuring unit 113. 22. Such a configuration can improve the heat dissipation of the temperature sensor 160 .
 圧力センサ170は、たとえば、図8に示すように、回路基板140の表面に実装されて回路室118内に配置されている。回路室118は、フランジ111の近傍でU字状にカーブする第2副通路溝117bの折り返し部、すなわち第2副通路132の折り返し部に連通している。これにより、副通路130に取り込まれた被計測気体2の圧力を、回路室118に配置された圧力センサ170によって測定することが可能になる。 For example, as shown in FIG. 8, the pressure sensor 170 is mounted on the surface of the circuit board 140 and arranged inside the circuit chamber 118 . The circuit chamber 118 communicates with the folded portion of the second sub-passage groove 117 b that curves in a U shape near the flange 111 , that is, the folded portion of the second sub-passage 132 . This makes it possible to measure the pressure of the gas 2 to be measured taken into the secondary passage 130 by the pressure sensor 170 arranged in the circuit chamber 118 .
 湿度センサ180は、たとえば、図8に示すように、回路基板140の表面に実装され、回路室118よりも計測部113の先端側の区画された領域に配置されている。この区画された領域は、たとえば、副通路130の第2副通路132に連通している。これにより、湿度センサ180は、副通路130に取り込まれた被計測気体2の湿度を検出する。 For example, the humidity sensor 180 is mounted on the surface of the circuit board 140 as shown in FIG. This partitioned area communicates with, for example, the second sub-passage 132 of the sub-passage 130 . Thereby, the humidity sensor 180 detects the humidity of the gas 2 to be measured taken into the secondary passage 130 .
 以下、本実施形態の物理量検出装置100の作用を説明する。 The operation of the physical quantity detection device 100 of this embodiment will be described below.
 本実施形態の物理量検出装置100は、前述のように、主通路22を流れる被計測気体2の物理量を検出する。物理量検出装置100は、主通路22に設置されるハウジング110と、そのハウジング110に収容される回路基板140と、その回路基板140に実装されるチップパッケージ150と、を備えている。ハウジング110は、回路基板140が収容される回路室118と、主通路22を流れる被計測気体2の一部を取り込む副通路130と、を有している。回路基板140は、複数のランド145と、一つまたは複数の固定用ランド146と、を有している。チップパッケージ150は、副通路130に配置される第1樹脂部150aと、その第1樹脂部150aに設けられて副通路130を流れる被計測気体2の流量を検出する流量検出部151と、第1樹脂部150aと一体に設けられて回路室118に配置される第2樹脂部150bと、その第2樹脂部150bから幅方向Dwの両側へ突出する複数のアウターリード155と、第2樹脂部150bから突出する一つまたは複数の固定用リード156と、を有している。複数のアウターリード155の各々のアウターリード155の先端部は、その先端部よりもチップパッケージ150の幅方向Dwにおける寸法が大きい複数のランド145の各々のランド145に、はんだSを介して接合されている。一つまたは複数の固定用リード156の各々の固定用リード156の先端部は、一つまたは複数の固定用ランド146の各々の固定用ランド146に、はんだSを介して接合されている。そして、チップパッケージ150の幅方向Dwにおいて、各々の固定用リード156の先端部と各々の固定用ランド146との寸法差が、各々のアウターリード155の先端部と各々のランド145との寸法差よりも小さい。 The physical quantity detection device 100 of this embodiment detects the physical quantity of the measured gas 2 flowing through the main passage 22 as described above. The physical quantity detection device 100 includes a housing 110 installed in the main passage 22 , a circuit board 140 accommodated in the housing 110 , and a chip package 150 mounted on the circuit board 140 . The housing 110 has a circuit chamber 118 in which a circuit board 140 is accommodated, and a secondary passage 130 that takes in part of the gas 2 to be measured flowing through the main passage 22 . The circuit board 140 has multiple lands 145 and one or multiple fixing lands 146 . The chip package 150 includes a first resin portion 150a arranged in the sub-passage 130, a flow rate detection portion 151 provided in the first resin portion 150a for detecting the flow rate of the gas 2 to be measured flowing through the sub-passage 130, A second resin portion 150b provided integrally with the first resin portion 150a and arranged in the circuit chamber 118, a plurality of outer leads 155 projecting from the second resin portion 150b to both sides in the width direction Dw, and the second resin portion. and one or more fixation leads 156 protruding from 150b. The tip of each outer lead 155 of the plurality of outer leads 155 is joined via solder S to each of the lands 145 having a larger dimension in the width direction Dw of the chip package 150 than the tip of the outer lead 155 . ing. The tip of each of the one or more fixing leads 156 is joined via solder S to each of the one or more fixing lands 146 . In the width direction Dw of the chip package 150, the dimensional difference between the tip of each fixing lead 156 and each fixing land 146 is the dimensional difference between the tip of each outer lead 155 and each land 145. less than
 このような構成の物理量検出装置100は、製造時に、チップパッケージ150の複数のアウターリード155が、回路基板140の複数のランド145にリフローはんだ付けされて、チップパッケージ150が回路基板140に実装される。このとき、一つまたは複数の固定用リード156も、一つまたは複数の固定用ランド146にリフローはんだ付けされる。リフローはんだ付けでは、ランド145および固定用ランド146の上に、粒子状のはんだとクリーム状のフラックスとを含むはんだペーストが印刷等により配置される。さらに、はんだペーストが加熱され、はんだが熔融してランド145上で流動すると、アウターリード155の先端部が、ランド145上で移動しようとする。チップパッケージ150は、流量検出部151が設けられた第1樹脂部150aではなく、第2樹脂部150bにアウターリード155を有しているため、回転モーメントによる位置ずれの影響が大きくなる。これに対し、各々の固定用リード156の先端部と各々の固定用ランド146との寸法差が、各々のアウターリード155の先端部と各々のランド145との寸法差よりも小さくなっている。 The physical quantity detection device 100 having such a configuration is manufactured by reflow soldering the plurality of outer leads 155 of the chip package 150 to the plurality of lands 145 of the circuit board 140, and mounting the chip package 150 on the circuit board 140. be. At this time, one or more fixing leads 156 are also reflow soldered to one or more fixing lands 146 . In reflow soldering, a solder paste containing solder particles and cream flux is placed on the land 145 and the fixing land 146 by printing or the like. Furthermore, when the solder paste is heated and the solder melts and flows on the land 145 , the tip of the outer lead 155 tries to move on the land 145 . Since the chip package 150 has the outer leads 155 in the second resin portion 150b instead of the first resin portion 150a in which the flow rate detection portion 151 is provided, the positional deviation due to the rotational moment increases. On the other hand, the dimensional difference between the tip of each fixing lead 156 and each fixing land 146 is smaller than the dimensional difference between the tip of each outer lead 155 and each land 145 .
 そのため、各々の固定用リード156の先端部と各々の固定用ランド146との相対的な移動が、各々のアウターリード155の先端部と各々のランド145との相対的な移動よりも小さくなる。これにより、各々のアウターリード155の先端部と各々のランド145との相対的な移動が拘束され、チップパッケージ150に作用する回転モーメントによる位置ずれを含む、回路基板140に対するチップパッケージ150の位置ずれが防止される。その結果、回路基板140に対するチップパッケージ150の搭載位置精度が向上し、副通路130内の所定の位置に第1樹脂部150aを配置することが可能になる。これにより、副通路130内で第1樹脂部150aと回路基板140との間に形成される計測流路132aの形成精度が向上する。したがって、本実施形態の物理量検出装置100によれば、ランド145にアウターリード155を接合するはんだSのフィレット形成改善による信頼性向上に加え、計測流路132aを流れる被計測気体2の流量を検出する流量検出部151の検出特性の改善が可能になる。 Therefore, the relative movement between the tip of each fixing lead 156 and each fixing land 146 is smaller than the relative movement between the tip of each outer lead 155 and each land 145 . As a result, relative movement between the tip of each outer lead 155 and each land 145 is restrained, and displacement of the chip package 150 with respect to the circuit board 140, including displacement caused by rotational moment acting on the chip package 150, is prevented. is prevented. As a result, the mounting position accuracy of the chip package 150 with respect to the circuit board 140 is improved, and the first resin portion 150a can be arranged at a predetermined position within the sub-passage 130 . Thereby, the formation accuracy of the measurement flow path 132a formed between the first resin portion 150a and the circuit board 140 within the sub-passage 130 is improved. Therefore, according to the physical quantity detection device 100 of the present embodiment, in addition to improving the reliability by improving the fillet formation of the solder S that joins the outer lead 155 to the land 145, the flow rate of the gas to be measured 2 flowing through the measurement channel 132a is detected. It is possible to improve the detection characteristics of the flow rate detection unit 151 that does so.
 また、本実施形態の物理量検出装置100において、チップパッケージ150は、流量検出部151が実装されて第1樹脂部150aおよび第2樹脂部150bに埋設されたダイパッド154を有している。複数のアウターリード155は、ダイパッド154に対してボンディングワイヤを介して接続され、一つまたは複数の固定用リード156は、ダイパッド154に直接接続されている。 In addition, in the physical quantity detection device 100 of the present embodiment, the chip package 150 has a die pad 154 on which the flow rate detection section 151 is mounted and which is embedded in the first resin section 150a and the second resin section 150b. A plurality of outer leads 155 are connected to the die pad 154 via bonding wires, and one or more fixing leads 156 are directly connected to the die pad 154 .
 このような構成により、本実施形態の物理量検出装置100は、ダイパッド154に直接接続された固定用リード156によって、回路基板140に対するダイパッド154の位置ずれを防止することができる。これにより、ダイパッド154に実装された流量検出部151の回路基板140における搭載位置精度を向上させ、流量検出部151の検出特性の変動を抑制することができる。 With such a configuration, the physical quantity detection device 100 of this embodiment can prevent the die pad 154 from being misaligned with respect to the circuit board 140 by the fixing lead 156 directly connected to the die pad 154 . As a result, the mounting position accuracy of the flow rate detection unit 151 mounted on the die pad 154 on the circuit board 140 can be improved, and variations in the detection characteristics of the flow rate detection unit 151 can be suppressed.
 また、本実施形態の物理量検出装置100において、一つまたは複数の固定用ランド146は、一対の固定用ランド146であり、一つまたは複数の固定用リード156は、一対の固定用リードである。一対の固定用ランド146および一対の固定用リード156は、チップパッケージ150の幅方向Dwにおける第2樹脂部150bの両側で複数のランド145および複数のアウターリード155よりも第1樹脂部150aに近い位置に配置されている。 Further, in the physical quantity detection device 100 of this embodiment, the one or more fixing lands 146 are a pair of fixing lands 146, and the one or more fixing leads 156 are a pair of fixing leads. . The pair of fixing lands 146 and the pair of fixing leads 156 are closer to the first resin portion 150a than the plurality of lands 145 and the plurality of outer leads 155 on both sides of the second resin portion 150b in the width direction Dw of the chip package 150. placed in position.
 このような構成により、本実施形態の物理量検出装置100は、第2樹脂部150bからチップパッケージ150の幅方向Dwに突出する一対の固定用リード156により、チップパッケージ150を、第1樹脂部150aにより近い位置で回路基板140に拘束することができる。これにより、リフローはんだ付けの際に、チップパッケージ150に作用する回転モーメントによる回路基板140に対する位置ずれを、より効果的に抑制することができる。 With such a configuration, the physical quantity detection device 100 of the present embodiment attaches the chip package 150 to the first resin portion 150a by the pair of fixing leads 156 projecting from the second resin portion 150b in the width direction Dw of the chip package 150. can be constrained to the circuit board 140 at a position closer to the As a result, it is possible to more effectively suppress misalignment with respect to the circuit board 140 due to the rotational moment acting on the chip package 150 during reflow soldering.
 以上説明したように、本実施形態によれば、流量検出部151を含むチップパッケージ150と回路基板140とのリフローはんだ付けによる位置ずれを抑制することが可能な物理量検出装置100を提供することができる。なお、本開示に係る物理量検出装置は、本実施形態の物理量検出装置100の構成に限定されない。たとえば、物理量検出装置100は、複数のアウターリード155の間に、一つの固定用リード156を有していてもよい。以下、本実施形態の物理量検出装置100のいくつかの変形例を説明する。 As described above, according to the present embodiment, it is possible to provide the physical quantity detection device 100 capable of suppressing positional deviation due to reflow soldering between the chip package 150 including the flow rate detection unit 151 and the circuit board 140. can. Note that the physical quantity detection device according to the present disclosure is not limited to the configuration of the physical quantity detection device 100 of this embodiment. For example, the physical quantity detection device 100 may have one fixing lead 156 between multiple outer leads 155 . Several modifications of the physical quantity detection device 100 of this embodiment will be described below.
 図17は、前述の実施形態の物理量検出装置100の変形例1を示す図13に相当する拡大正面図である。この変形例1の物理量検出装置100において、一つまたは複数の固定用ランド146と一つまたは複数の固定用リード156は、それぞれ第2樹脂部150bの幅方向Dwの両側に設けられた一対の固定用ランド146と一対の固定用リード156である。一対の固定用ランド146と一対の固定用リード156のうち、一方の固定用ランド146と一方の固定用リード156は、幅方向Dwにおける第2樹脂部150bの一方側において、複数のランド145と複数のアウターリード155よりも第1樹脂部150aから近い位置に設けられ、他方の固定用ランド146と他方の固定用リード156は、幅方向Dwにおける第2樹脂部150bの他方側において、複数のランド145と複数のアウターリード155よりも第1樹脂部150aから遠い位置に配置されている。本変形例の物理量検出装置100においても、前述の実施形態の物理量検出装置100と同様の効果を奏することができる。 FIG. 17 is an enlarged front view corresponding to FIG. 13 showing Modification 1 of the physical quantity detection device 100 of the above embodiment. In the physical quantity detection device 100 of Modification 1, one or a plurality of fixing lands 146 and one or a plurality of fixing leads 156 are provided on both sides of the second resin portion 150b in the width direction Dw. They are a fixing land 146 and a pair of fixing leads 156 . Of the pair of fixing lands 146 and the pair of fixing leads 156, one fixing land 146 and one fixing lead 156 are located on one side of the second resin portion 150b in the width direction Dw and are aligned with the plurality of lands 145. The other fixing land 146 and the other fixing lead 156 are provided at positions closer to the first resin portion 150a than the plurality of outer leads 155, and the other fixing land 146 and the other fixing lead 156 are provided on the other side of the second resin portion 150b in the width direction Dw. It is arranged at a position farther from the first resin portion 150 a than the land 145 and the plurality of outer leads 155 . The physical quantity detection device 100 of this modified example can also achieve the same effect as the physical quantity detection device 100 of the above-described embodiment.
 図18は、前述の物理量検出装置100の変形例2を示す図13に相当する拡大正面図である。この変形例2の物理量検出装置100において、一つまたは複数の固定用リード156は、一つの固定用リード156である。この一つの固定用リード156は、チップパッケージ150の幅方向Dwに直交する長手方向Dlにおいて、第1樹脂部150aと反対側の第2樹脂部150bの端部に設けられ、この端部の幅方向Dwの中央部から第1樹脂部150aと反対方向へ突出している。本変形例の物理量検出装置100においても、前述の実施形態の物理量検出装置100と同様の効果を奏することができる。 FIG. 18 is an enlarged front view corresponding to FIG. 13 showing modification 2 of the physical quantity detection device 100 described above. In the physical quantity detection device 100 of Modification 2, the one or more fixation leads 156 are one fixation lead 156 . The one fixing lead 156 is provided at the end of the second resin portion 150b opposite to the first resin portion 150a in the longitudinal direction Dl orthogonal to the width direction Dw of the chip package 150, It protrudes in the direction opposite to the first resin portion 150a from the central portion in the direction Dw. The physical quantity detection device 100 of this modified example can also achieve the same effect as the physical quantity detection device 100 of the above-described embodiment.
 以上、図面を用いて本開示に係る物理量検出装置の実施形態とその変形例を詳述してきたが、具体的な構成はこの実施形態に限定されるものではなく、本開示の要旨を逸脱しない範囲における設計変更等があっても、それらは本開示に含まれるものである。 The embodiments and modifications thereof of the physical quantity detection device according to the present disclosure have been described in detail above with reference to the drawings, but the specific configuration is not limited to this embodiment and does not depart from the gist of the present disclosure. Even if there are design changes etc. within the scope, they are included in the present disclosure.
2    被計測気体
22   主通路
100  物理量検出装置
110  ハウジング
118  回路室
130  副通路
140  回路基板
145  ランド
146  固定用ランド
150  チップパッケージ
150a 第1樹脂部
150b 第2樹脂部
151  流量検出部
154  ダイパッド
155  アウターリード
156  固定用リード
Dw   幅方向
S    はんだ
2 gas to be measured 22 main passage 100 physical quantity detection device 110 housing 118 circuit chamber 130 sub passage 140 circuit board 145 land 146 fixing land 150 chip package 150a first resin portion 150b second resin portion 151 flow rate detection portion 154 die pad 155 outer lead 156 Fixing lead Dw Width direction S Solder

Claims (5)

  1.  主通路を流れる被計測気体の物理量を検出する物理量検出装置であって、
     前記主通路に設置されるハウジングと、該ハウジングに収容される回路基板と、該回路基板に実装されるチップパッケージと、を備え、
     前記ハウジングは、前記回路基板が収容される回路室と、前記主通路を流れる前記被計測気体の一部を取り込む副通路と、を有し、
     前記回路基板は、複数のランドと、一つまたは複数の固定用ランドと、を有し、
     前記チップパッケージは、前記副通路に配置される第1樹脂部と、該第1樹脂部に設けられて前記副通路を流れる前記被計測気体の流量を検出する流量検出部と、前記第1樹脂部と一体に設けられて前記回路室に配置される第2樹脂部と、該第2樹脂部から幅方向の両側へ突出する複数のアウターリードと、前記第2樹脂部から突出する一つまたは複数の固定用リードと、を有し、
     前記複数のアウターリードの各々のアウターリードの先端部は、該先端部よりも前記チップパッケージの幅方向における寸法が大きい前記複数のランドの各々のランドに、はんだを介して接合され、
     前記一つまたは複数の固定用リードの各々の固定用リードの先端部は、前記一つまたは複数の固定用ランドの各々の固定用ランドに、はんだを介して接合され、
     前記幅方向において、前記各々の固定用リードの前記先端部と前記各々の固定用ランドとの寸法差が、前記各々のアウターリードの前記先端部と前記各々のランドとの寸法差よりも小さいことを特徴とする物理量検出装置。
    A physical quantity detection device for detecting a physical quantity of a gas to be measured flowing through a main passage,
    a housing installed in the main passage, a circuit board accommodated in the housing, and a chip package mounted on the circuit board,
    The housing has a circuit chamber in which the circuit board is accommodated, and a secondary passage that takes in part of the gas to be measured flowing through the main passage,
    The circuit board has a plurality of lands and one or more fixing lands,
    The chip package includes: a first resin portion arranged in the sub-passage; a flow rate detecting portion provided in the first resin portion for detecting a flow rate of the gas to be measured flowing through the sub-passage; a second resin portion provided integrally with a portion and arranged in the circuit chamber; a plurality of outer leads projecting from the second resin portion to both sides in the width direction; a plurality of fixation leads;
    a tip of each of the plurality of outer leads is joined via solder to each of the plurality of lands having a larger dimension in the width direction of the chip package than the tip of the outer lead,
    a tip of each of the one or more fixing leads is joined to each of the one or more fixing lands via solder,
    In the width direction, the dimensional difference between the tip portion of each fixing lead and each fixing land is smaller than the dimensional difference between the tip portion of each outer lead and each land. A physical quantity detection device characterized by:
  2.  前記チップパッケージは、前記流量検出部が実装されて前記第1樹脂部および前記第2樹脂部に埋設されたダイパッドを有し、
     前記複数のアウターリードは、前記ダイパッドに対してボンディングワイヤを介して接続され、前記一つまたは複数の固定用リードは、前記ダイパッドに直接接続されていることを特徴とする請求項1に記載の物理量検出装置。
    The chip package has a die pad on which the flow rate detection unit is mounted and which is embedded in the first resin portion and the second resin portion,
    2. The method according to claim 1, wherein said plurality of outer leads are connected to said die pad via bonding wires, and said one or more fixing leads are directly connected to said die pad. Physical quantity detection device.
  3.  前記一つまたは複数の固定用ランドは、一対の固定用ランドであり、
     前記一つまたは複数の固定用リードは、一対の固定用リードであり、
     前記一対の固定用ランドおよび前記一対の固定用リードは、前記幅方向における第2樹脂部の両側で前記複数のランドおよび前記複数のアウターリードよりも前記第1樹脂部に近い位置に配置されていることを特徴とする請求項1に記載の物理量検出装置。
    The one or more fixing lands are a pair of fixing lands,
    The one or more fixation leads are a pair of fixation leads,
    The pair of fixing lands and the pair of fixing leads are arranged on both sides of the second resin portion in the width direction at positions closer to the first resin portion than the plurality of lands and the plurality of outer leads. 2. The physical quantity detection device according to claim 1, wherein the physical quantity detection device comprises:
  4.  前記一つまたは複数の固定用ランドと前記一つまたは複数の固定用リードは、それぞれ前記第2樹脂部の前記幅方向の両側に設けられた一対の固定用ランドと一対の固定用リードであり、
     前記一対の固定用ランドと前記一対の固定用リードのうち、一方の固定用ランドと一方の固定用リードは、前記幅方向における前記第2樹脂部の一方側において、前記複数のランドと前記複数のアウターリードよりも前記第1樹脂部から近い位置に設けられ、他方の固定用ランドと他方の固定用リードは、前記幅方向における前記第2樹脂部の他方側において、前記複数のランドと前記複数のアウターリードよりも前記第1樹脂部から遠い位置に配置されていることを特徴とする請求項1に記載の物理量検出装置。
    The one or more fixing lands and the one or more fixing leads are a pair of fixing lands and a pair of fixing leads respectively provided on both sides of the second resin portion in the width direction. ,
    Of the pair of fixing lands and the pair of fixing leads, one fixing land and one fixing lead are located on one side of the second resin portion in the width direction. The other fixing land and the other fixing lead are provided at a position closer to the first resin portion than the outer lead of the second resin portion, and the other fixing land and the other fixing lead are arranged on the other side of the second resin portion in the width direction so that the plurality of lands and the 2. The physical quantity detection device according to claim 1, wherein the physical quantity detection device is arranged at a position farther from the first resin portion than the plurality of outer leads.
  5.  前記一つまたは複数の固定用リードは、一つの固定用リードであり、
     前記一つの固定用リードは、前記チップパッケージの前記幅方向に直交する長手方向において、前記第1樹脂部と反対側の前記第2樹脂部の端部に設けられ、該端部の前記幅方向の中央部から前記第1樹脂部と反対方向へ突出していることを特徴とする請求項1に記載の物理量検出装置。
    the one or more fixation leads is one fixation lead,
    The one fixing lead is provided at an end portion of the second resin portion opposite to the first resin portion in a longitudinal direction perpendicular to the width direction of the chip package, and is provided at the end portion in the width direction. 2. The physical quantity detection device according to claim 1, wherein the physical quantity detection device projects from the central portion of the first resin portion in a direction opposite to the first resin portion.
PCT/JP2022/005450 2021-06-18 2022-02-10 Physical quantity detection device WO2022264498A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023529493A JPWO2022264498A1 (en) 2021-06-18 2022-02-10
CN202280032604.7A CN117242321A (en) 2021-06-18 2022-02-10 Physical quantity detecting device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021101510 2021-06-18
JP2021-101510 2021-06-18

Publications (1)

Publication Number Publication Date
WO2022264498A1 true WO2022264498A1 (en) 2022-12-22

Family

ID=84526986

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/005450 WO2022264498A1 (en) 2021-06-18 2022-02-10 Physical quantity detection device

Country Status (3)

Country Link
JP (1) JPWO2022264498A1 (en)
CN (1) CN117242321A (en)
WO (1) WO2022264498A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06252326A (en) * 1993-02-25 1994-09-09 Fujitsu Ten Ltd Multi-terminal component, wiring substrate and packaging structure of multi-terminal component
JP2001007491A (en) * 1999-06-18 2001-01-12 Toshiba Corp Electronic circuit device and manufacture of it
JP2010258178A (en) * 2009-04-24 2010-11-11 Fujikura Ltd Structure and method for mounting electronic component on circuit board
JP2015149328A (en) * 2014-02-05 2015-08-20 アズビル株式会社 Mounting structure of electronic component
WO2019049513A1 (en) * 2017-09-05 2019-03-14 日立オートモティブシステムズ株式会社 Thermal-type flowmeter

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06252326A (en) * 1993-02-25 1994-09-09 Fujitsu Ten Ltd Multi-terminal component, wiring substrate and packaging structure of multi-terminal component
JP2001007491A (en) * 1999-06-18 2001-01-12 Toshiba Corp Electronic circuit device and manufacture of it
JP2010258178A (en) * 2009-04-24 2010-11-11 Fujikura Ltd Structure and method for mounting electronic component on circuit board
JP2015149328A (en) * 2014-02-05 2015-08-20 アズビル株式会社 Mounting structure of electronic component
WO2019049513A1 (en) * 2017-09-05 2019-03-14 日立オートモティブシステムズ株式会社 Thermal-type flowmeter

Also Published As

Publication number Publication date
CN117242321A (en) 2023-12-15
JPWO2022264498A1 (en) 2022-12-22

Similar Documents

Publication Publication Date Title
JP6965358B2 (en) Thermal flow meter
JPWO2019064887A1 (en) Physical quantity detection device
US11965760B2 (en) Flow rate detecting device of intake air in an internal combustion engine
WO2020202791A1 (en) Physical quantity detection device
WO2020202722A1 (en) Physical-quantity detection device
WO2022264498A1 (en) Physical quantity detection device
JP2021067510A (en) Physical quantity detection device
JP7356957B2 (en) Physical quantity detection device
JP7265643B2 (en) Flow measurement device
JP7049277B2 (en) Physical quantity detector
WO2020003809A1 (en) Physical quantity detector
JP6995020B2 (en) Physical quantity detector
JP2019066329A (en) Physical quantity detection device
JPWO2020110820A1 (en) Physical quantity measuring device
WO2024028931A1 (en) Physical quantity detection device
WO2022064771A1 (en) Physical quantity measurement device
JP7350173B2 (en) flow measuring device
JP6775629B2 (en) Physical quantity detection element
JP6884926B2 (en) Physical quantity detector
WO2020202723A1 (en) Physical quantity detection device
WO2022254803A1 (en) Physical quantity detection device
JP7097324B2 (en) Physical quantity measuring device
US20210396561A1 (en) Physical quantity measurement device
JP2019207173A (en) Circuit package and flow rate measuring device
JP2020187062A (en) Flow rate measuring device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22824499

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023529493

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280032604.7

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22824499

Country of ref document: EP

Kind code of ref document: A1