WO2022064771A1 - Physical quantity measurement device - Google Patents

Physical quantity measurement device Download PDF

Info

Publication number
WO2022064771A1
WO2022064771A1 PCT/JP2021/020476 JP2021020476W WO2022064771A1 WO 2022064771 A1 WO2022064771 A1 WO 2022064771A1 JP 2021020476 W JP2021020476 W JP 2021020476W WO 2022064771 A1 WO2022064771 A1 WO 2022064771A1
Authority
WO
WIPO (PCT)
Prior art keywords
physical quantity
lead frame
measuring device
quantity measuring
passage
Prior art date
Application number
PCT/JP2021/020476
Other languages
French (fr)
Japanese (ja)
Inventor
博幸 阿部
孝之 余語
ファハナー ビンティ ハリダン ファティン
瑞紀 伊集院
Original Assignee
日立Astemo株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立Astemo株式会社 filed Critical 日立Astemo株式会社
Publication of WO2022064771A1 publication Critical patent/WO2022064771A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/684Structural arrangements; Mounting of elements, e.g. in relation to fluid flow

Definitions

  • This disclosure relates to a physical quantity measuring device.
  • Patent Document 1 an invention relating to a thermal air flow sensor suitable for being installed in an intake system of an automobile engine to detect the intake air amount of the engine has been known (Patent Document 1 below).
  • the thermal flow rate sensor described in Patent Document 1 includes a flow rate detection element and a support member (claim 1, paragraph 0010).
  • the flow rate detecting element has a diaphragm provided by processing a semiconductor substrate, a heat generation resistor provided on the diaphragm, and a resistance temperature detector provided on the upstream side and the downstream side of the heat generation resistor, respectively. ..
  • the support member adheres and holds the flow rate detecting element via a sheet adhesive.
  • the support member has a communication hole at which one side opens in the cavity provided on the back surface side of the diaphragm.
  • the sheet adhesive has a ventilation hole, and the ventilation hole corresponds to the opening region of the communication hole of the support member so as to communicate the cavity and one opening of the communication hole. It is provided in the area of the adhesive.
  • Patent Document 2 discloses a resin package (claim 1, paragraph 0006) including a lead frame, a flow rate detecting element, a protective tape, and a sealing resin.
  • the flow rate detecting element is mounted on one side of the lead frame.
  • the protective tape is provided on the other side of the lead frame.
  • the sealing resin seals the detection portion of the flow rate detecting element and a part of the protective tape so as to expose at least a part thereof.
  • the support member is a lead frame (Claim 6, First Example, FIGS. 1 and 2)
  • the back surface side of the diaphragm is used.
  • the cavity portion provided in the above communicates with the outside through the communication hole of the lead frame.
  • the vibration of the air due to the sound pressure from the turbocharger may propagate to the cavity through the communication hole of the lead frame, and the diaphragm may vibrate to reduce the measurement accuracy of the air flow rate.
  • the present disclosure provides a physical quantity measuring device capable of suppressing a decrease in measurement accuracy of an air flow rate due to the influence of external sound pressure while suppressing an increase in the number of parts and an increase in the size of the device.
  • One aspect of the present disclosure is a lead frame, a resin encapsulation portion that partially seals the lead frame, a thermal flow sensor mounted on the surface of the lead frame, and an arrangement on the back surface of the lead frame.
  • a physical quantity measuring device including a passage forming member, further including a damping member arranged between the thermal flow sensor and the lead frame, and the thermal flow sensor includes a semiconductor substrate and the semiconductor.
  • a thin film portion formed on the front surface side of the substrate and exposed from the resin sealing portion, a flow rate detection portion provided on the front surface side of the thin film portion, and a back surface of the thin film portion formed on the back surface side of the semiconductor substrate.
  • the lead frame has a recess adjacent to the side, and the lead frame has a through hole communicating with the opening of the recess and a ventilation groove formed along the back surface through the through hole.
  • the passage forming member forms a ventilation passage that communicates the recess to the outside together with the through hole and the ventilation groove, and a portion that closes the through hole is exposed from the resin sealing portion.
  • the physical quantity measuring device is characterized by having a plurality of communication holes set to an opening ratio such that the resistance coefficient to the gas flowing between the ventilation passage and the recess is less than 2.76.
  • a physical quantity measuring device capable of suppressing a decrease in measurement accuracy due to the influence of external sound pressure while suppressing an increase in the number of parts and an increase in size of the device. Can be done.
  • FIG. 3B is a cross-sectional view of the physical quantity measuring device along the line III (C) -III (C) of FIG. 3B.
  • FIG. 2 is a cross-sectional view of the physical quantity measuring device along the line III (D) -III (D) of FIG. 2A.
  • FIG. 4A is a cross-sectional view of a circuit board along the IV (B) -IV (B) line of FIG. 4A.
  • FIG. 4B is an enlarged view of the IV (E) part of the chip package mounted on the circuit board.
  • the graph which shows the relationship between the resistance coefficient K and the attenuation factor A ⁇ .
  • the graph which shows the relationship between the diameter d and the pitch l of a communication hole, and the attenuation factor A ⁇ .
  • FIG. 1 is a system diagram showing an embodiment of the physical quantity measuring device according to the present disclosure.
  • the physical quantity measuring device 100 of the present embodiment is used, for example, in an electronic fuel injection type internal combustion engine control system 1.
  • the internal combustion engine control system 1 includes, for example, an internal combustion engine 10, a physical quantity measuring device 100, a throttle valve 25, a throttle angle sensor 26, an idle air control valve 27, an oxygen sensor 28, and a control device 4. There is.
  • the physical quantity measuring device 100 is used in a state of being inserted into the inside of the main passage 22 through a mounting hole provided in the passage wall of the intake body which is the main passage 22, and fixed to the passage wall of the main passage 22.
  • the physical quantity measuring device 100 detects the physical quantity of the intake air, which is the gas to be measured 2 taken in through the air cleaner 21 and flows through the main passage 22, and outputs the physical quantity to the control device 4.
  • the physical quantity measuring device 100 projects in the radial direction of the main passage 22 from the passage wall of the main passage 22 toward the center line 22a of the main passage 22 along the main flow direction of the gas to be measured 2 flowing through the main passage 22. That is, the protruding direction of the physical quantity measuring device 100 in the main passage 22 is, for example, a direction orthogonal to the center line 22a of the main passage 22.
  • the throttle valve 25 is built in, for example, the throttle body 23 arranged on the upstream side of the intake manifold 24 in the flow direction of the gas to be measured 2.
  • the control device 4 changes, for example, the opening degree of the throttle valve 25 based on the operation amount of the accelerator pedal, and controls the flow rate of the intake air as the measured gas 2 flowing into the combustion chamber in the cylinder 11 of the internal combustion engine 10. do.
  • the throttle angle sensor 26 measures the opening degree of the throttle valve 25 and outputs it to the control device 4.
  • the idle air control valve 27 controls the amount of air bypassing the throttle valve 25.
  • the internal combustion engine 10 includes, for example, a cylinder 11, a piston 12, a spark plug 13, a fuel injection valve 14, an intake valve 15, an exhaust valve 16, and a rotation angle sensor 17.
  • the intake air taken in through the air cleaner 21 based on the operation of the piston 12 of the internal combustion engine 10 flows through the main passage 22, and the flow rate is controlled by the throttle valve 25 in the throttle body 23.
  • the intake air that has passed through the throttle body 23 passes through the intake manifold 24, further passes through the fuel injection valve 14 provided in the intake port, and flows into the combustion chamber in the cylinder 11 via the intake valve 15.
  • the control device 4 controls the fuel injection valve 14 based on the physical quantity of the intake air as the gas to be measured 2 input from the physical quantity measuring device 100, and injects fuel into the intake air.
  • the intake air that has passed through the intake manifold 24 is mixed with the fuel injected from the fuel injection valve 14 and guided to the combustion chamber in the state of the air-fuel mixture.
  • the control device 4 explosively burns the air-fuel mixture in the combustion chamber by the spark ignition of the spark plug 13, and generates mechanical energy in the internal combustion engine 10.
  • the rotation angle sensor 17 detects the position and state of the piston 12, the intake valve 15, and the exhaust valve 16 and information on the rotation speed of the internal combustion engine 10 and outputs the information to the control device 4.
  • the gas generated by combustion is discharged from the combustion chamber of the cylinder 11 to the exhaust pipe through the exhaust valve 16, and is discharged from the exhaust pipe to the outside of the vehicle as exhaust gas 3.
  • the oxygen sensor 28 is provided in the exhaust pipe, measures the oxygen concentration of the exhaust gas 3 flowing through the exhaust pipe, and outputs the oxygen concentration to the control device 4.
  • the control device 4 is based on the physical quantity of the intake air as the gas to be measured 2 flowing through the main passage 22 detected by the physical quantity measuring device 100, for example, flow rate, temperature, humidity, pressure, and the like, and each part of the internal combustion engine control system 1. To control. Specifically, when the control device 4 controls the opening degree of the throttle valve 25 based on the operation amount of the accelerator pedal, the flow rate of the intake air as the gas to be measured 2 flowing through the main passage 22 changes. The control device 4 controls the supply amount of fuel injected from the fuel injection valve 14 based on, for example, the flow rate of the gas to be measured 2 detected by the physical quantity measuring device 100. As a result, the mechanical energy generated by the internal combustion engine 10 is controlled.
  • the control device 4 calculates the fuel injection amount and the ignition timing based on the physical quantity of the intake air which is the output of the physical quantity measuring device 100 and the rotation speed of the internal combustion engine 10 measured based on the output of the rotation angle sensor 17. do. Based on these calculation results, the control device 4 controls the fuel injection amount by the fuel injection valve 14 and the ignition timing of the spark plug 13.
  • the control device 4 actually further fuels the fuel based on the temperature of the gas to be measured 2, the change state of the opening degree of the throttle valve 25, the change state of the rotation speed of the internal combustion engine 10, and the air-fuel ratio state of the exhaust gas 3.
  • the supply amount and ignition timing are finely controlled.
  • the control device 4 controls the amount of air bypassing the throttle valve 25 by the idle air control valve 27 in the idle operation state of the internal combustion engine 10, and controls the rotation speed of the internal combustion engine 10 in the idle operation state.
  • the fuel supply amount and ignition timing which are the main control amounts of the internal combustion engine 10, are both calculated using the output of the physical quantity measuring device 100 as the main parameter. Therefore, it is important to improve the measurement accuracy of the physical quantity measuring device 100, suppress the change with time, and improve the reliability in order to improve the control accuracy and the reliability of the vehicle.
  • the vehicle equipped with the physical quantity measuring device 100 is used in an environment where changes in temperature and humidity are large. It is desirable that the physical quantity measuring device 100 also considers the response to changes in temperature and humidity in the usage environment and the response to dust and pollutants.
  • the physical quantity measuring device 100 is attached to the intake pipe affected by the heat generated from the internal combustion engine. Therefore, the heat generated by the internal combustion engine is transmitted to the physical quantity measuring device 100 via the intake pipe. Since the physical quantity measuring device 100 detects the flow rate of the measured gas 2 by conducting heat transfer with the measured gas 2, it is important to suppress the influence of heat from the outside as much as possible.
  • FIGS. 2A to 2E the physical quantity measuring device 100 of the present embodiment will be described in more detail with reference to FIGS. 2A to 2E, FIGS. 3A to 3D, and FIGS. 4A to 4E.
  • the X-axis parallel to the protruding direction of the physical quantity measuring device 100 in the main passage 22 shown in FIG. 1 the Y-axis parallel to the center line 22a of the main passage 22, and the thickness of the physical quantity measuring device 100.
  • a Cartesian coordinate system consisting of Z axes parallel to the direction is shown. In the following description, it is assumed that the gas to be measured 2 flows along the center line 22a (Y-axis) of the main passage 22.
  • the 2A to 2E are a front view, a rear view, a left side view, a right side view, and a top view of the physical quantity measuring device 100 of FIG. 1, respectively.
  • the physical quantity measuring device 100 includes, for example, a housing 110 and a cover 120.
  • the housing 110 is manufactured, for example, by injection molding a synthetic resin material.
  • the cover 120 is, for example, a plate-shaped member made of metal or synthetic resin.
  • As the cover 120 for example, a molded product made of a synthetic resin material can be used.
  • the housing 110 and the cover 120 constitute a housing of the physical quantity measuring device 100 arranged in the main passage 22.
  • the housing 110 has, for example, a flange 111, a connector 112, and a measuring unit 113.
  • the flange 111 has a substantially rectangular plate-like shape, and has a pair of fixing portions 111a at diagonal corners.
  • the fixing portion 111a has a cylindrical through hole 111b in the center portion through which the flange 111 is inserted and through which the fixing screw is inserted.
  • the measuring unit 113 is inserted into the mounting hole provided in the main passage 22.
  • the fixing screw inserted through the through hole 111b of the flange 111 is screwed into the screw hole of the main passage 22 to fix the flange 111 to the passage wall of the main passage 22.
  • the physical quantity measuring device 100 is fixed to the main passage 22 which is an intake body.
  • the connector 112 protrudes from the flange 111, is arranged outside the main passage 22 which is an intake body, and is connected to an external device. As shown in FIG. 2D, a plurality of external terminals 112a and correction terminals 112b are provided inside the connector 112.
  • the external terminal 112a includes, for example, an output terminal for a physical quantity such as a flow rate and a temperature, which is a measurement result of the physical quantity measuring device 100, and a power supply terminal for supplying DC power for operating the physical quantity measuring device 100.
  • the correction terminal 112b measures the physical quantity after the physical quantity measuring device 100 is manufactured, obtains a correction value for each physical quantity measuring device 100, and is used to store the correction value in the internal memory of the physical quantity measuring device 100. In the subsequent measurement of the physical quantity by the physical quantity measuring device 100, the correction data based on the correction value stored in the memory is used, and the correction terminal 112b is not used.
  • the measuring unit 113 extends from the flange 111 fixed to the passage wall of the main passage 22 toward the center line 22a of the main passage 22 so as to project in the radial direction of the main passage 22 orthogonal to the center line 22a.
  • the measuring unit 113 has a flat rectangular parallelepiped shape.
  • the measuring unit 113 has a length in the protruding direction (X-axis direction) of the measuring unit 113 in the main passage 22 and a width in the main flow direction (Y-axis direction) of the gas to be measured 2 in the main passage 22. There is.
  • the measuring unit 113 has a thickness in a direction (Z-axis direction) orthogonal to the protruding direction (X-axis direction) and the main flow direction (Y-axis direction) of the gas to be measured 2. As described above, since the measurement unit 113 has a flat shape along the main flow direction of the gas to be measured 2, the fluid resistance to the gas to be measured 2 can be reduced.
  • the measuring unit 113 has a front surface 113a, a back surface 113b, an upstream side surface 113c, a downstream side surface 113d, and a lower surface 113e.
  • the front surface 113a and the back surface 113b have a larger area than the other surfaces of the measuring unit 113, and are substantially parallel to the protruding direction (X-axis direction) of the measuring unit 113 and the center line 22a (Y-axis direction) of the main passage 22.
  • the upstream side surface 113c and the downstream side surface 113d have an elongated shape having a smaller area than the front surface 113a and the back surface 113b, and are substantially orthogonal to the center line 22a (Y-axis direction) of the main passage 22.
  • the lower surface 113e has a smaller area than the other surfaces of the measuring unit 113, is substantially parallel to the center line 22a (Y-axis direction) of the main passage 22, and is approximately orthogonal to the protruding direction (X-axis direction) of the measuring unit 113. ..
  • the measuring unit 113 has a sub-passage inlet 114 on the upstream side surface 113c and a first outlet 115 and a second outlet 116 on the downstream side surface 113d.
  • the sub-passage inlet 114, the first outlet 115, and the second outlet 116 are provided at the tip of the measuring unit 113 on the tip side of the center in the protruding direction (X-axis direction) of the measuring unit 113.
  • the gas to be measured 2 near the central portion of the main passage 22 away from the inner wall surface of the main passage 22 can be taken in from the sub-passage inlet 114. Therefore, the physical quantity measuring device 100 can suppress a decrease in measurement accuracy due to the influence of heat of the internal combustion engine 10.
  • FIG. 3A is a front view before arranging the sealing material 119 of the physical quantity measuring device 100 of FIG. 2A.
  • FIG. 3B is a rear view of the physical quantity measuring device 100 of FIG. 1 before attaching the cover 120.
  • FIG. 3C is a cross-sectional view of the physical quantity measuring device 100 along the line III (C) -III (C) of FIG. 3B.
  • FIG. 3D is a cross-sectional view of the physical quantity measuring device 100 along the line III (D) -III (D) of FIG. 2A.
  • the external terminal 112a of the connector 112 shown in FIG. 2D is connected to the pad of the circuit board 140 via the bonding wire 143, for example, as shown in FIG. 3A.
  • the protection circuit 144 is mounted on the surface to which the bonding wire 143 is connected.
  • the protection circuit 144 stabilizes the voltage in the circuit and eliminates noise.
  • the bonding wire 143 and the protection circuit 144 are covered and sealed by the encapsulant 119 as shown in FIG. 2A.
  • the encapsulant 119 for example, a silicone gel or an epoxy-based encapsulant having higher rigidity than the silicone-based encapsulant can be used.
  • the housing 110 has a concave sub-passage groove 117 and a concave circuit chamber 118 on the back surface 113b side of the measuring unit 113.
  • the sub-passage groove 117 forms the sub-passage 130 together with the cover 120 by closing the opening by the cover 120.
  • the sub-passage 130 takes in the gas to be measured 2 flowing through the main passage 22 and detours it.
  • the gas to be measured 2 flowing through the main passage 22 is taken into the sub-passage 130 from the sub-passage inlet 114 that opens on the side surface 113c on the upstream side of the measuring unit 113.
  • the sub-passage groove 117 has, for example, a first sub-passage groove 117a and a second sub-passage groove 117b. As shown in FIG. 3B, the first sub-passage groove 117a extends from the sub-passage inlet 114 opening on the upstream side surface 113c of the measuring unit 113 to the first outlet 115 opening on the downstream side surface 113d of the measuring unit 113. , Extends along the center line 22a (Y-axis direction) of the main passage 22. The first sub-passage groove 117a forms the first sub-passage 131 with the cover 120, for example, as shown in FIG. 3D. The first sub-passage 131 returns the gas to be measured 2 taken in from the sub-passage inlet 114 from the first outlet 115 to the main passage 22.
  • the second sub-passage groove 117b branches from the middle of the first sub-passage groove 117a and extends toward the flange 111 along the projecting direction (X-axis direction) of the measuring unit 113. .. Further, the second sub-passage groove 117b is curved in a U shape so as to be folded back in the opposite direction, and extends toward the tip end portion of the measuring unit 113 along the protruding direction (X-axis direction) of the measuring unit 113.
  • the second sub-passage groove 117b curves in the direction along the center line 22a (Y-axis direction) of the main passage 22 at the tip of the measuring unit 113, and opens to the side surface 113d on the downstream side of the measuring unit 113. It is connected to 116.
  • the second sub-passage groove 117b has an opening closed by the cover 120 to form a second sub-passage 132 with the cover 120.
  • the sub-passage 130 includes a first sub-passage 131 and a second sub-passage 132.
  • the circuit chamber 118 is provided in a concave shape on the back surface 113b side of the measurement unit 113 of the housing 110 and on the base end side of the measurement unit 113 connected to the flange 111, and accommodates the circuit board 140.
  • the circuit chamber 118 is a second sub-passage in the main flow direction (Y-axis direction) of the gas to be measured 2 flowing through the main passage 22 on the base end side of the measurement unit 113 with respect to the first sub-passage groove 117a of the sub-passage groove 117. It is provided adjacent to the upstream side of the groove 117b.
  • FIG. 4A is a front view of the circuit board 140 of the physical quantity measuring device 100 of FIG. 3B.
  • FIG. 4B is a cross-sectional view of the circuit board 140 along the IV (B) -IV (B) line of FIG. 4A.
  • 4C is a bottom view of the chip package 150 mounted on the circuit board 140 of FIG. 4A.
  • FIG. 4D is a plan view of the lead frame 154 of the chip package 150 shown in FIG. 4C.
  • FIG. 4E is an enlarged view of the IV (E) portion of the chip package 150 mounted on the circuit board 140 of FIG. 4B.
  • the chip package 150 includes a lead frame 154, a resin sealing portion 155 that partially seals the lead frame 154, and a thermal flow sensor 151 mounted on the surface of the lead frame 154. , Equipped with. Further, the chip package 150 further includes, for example, a passage forming member 156 arranged on the back surface of the lead frame 154 and a damping member 157 arranged between the thermal flow rate sensor 151 and the lead frame 154.
  • the chip package 150 has a configuration in which the thermal flow sensor 151 and the electronic component 152 are integrally sealed by, for example, a resin sealing portion 155 formed by a transfer mold of a thermosetting resin.
  • a resin sealing portion 155 formed by a transfer mold of a thermosetting resin.
  • the connection terminal 153 of the chip package 150 is mounted on the circuit board 140 via a bonding material such as solder.
  • the connection terminal 153 is sealed by the curable sealing material 141.
  • the connection terminal 153 of the chip package 150 is connected to, for example, the electronic component 152 shown in FIGS. 4B and 4D.
  • the chip package 150 drives the thermal flow sensor 151 by, for example, an electronic component 152.
  • the electronic component 152 is, for example, an LSI, which is connected to the thermal flow rate sensor 151 via a bonding wire to drive the thermal flow rate sensor 151.
  • the thermal flow sensor 151 has a semiconductor substrate 151a and a thin film portion 151d formed on the surface side of the semiconductor substrate 151a and exposed from the resin sealing portion 155. Further, the thermal flow rate sensor 151 has a flow rate detection unit 151b provided on the front surface side of the thin film portion 151d, and a recess 151c formed on the back surface side of the semiconductor substrate 151a and adjacent to the back surface side of the thin film portion 151d. is doing.
  • the flow rate detection unit 151b includes, for example, a pair of temperature sensors arranged on the upstream side and the downstream side in the flow direction of the gas to be measured 2, and a heater arranged between the pair of temperature sensors. I have.
  • the thermal flow rate sensor 151 measures the flow rate of the gas to be measured 2 by detecting the temperature difference by, for example, a pair of temperature sensors of the flow rate detection unit 151b.
  • the opening of the recess 151c has, for example, a square shape having a length and width of about 1 [mm] ⁇ 1 [mm].
  • the thermal flow rate sensor 151 measures the flow rate of the gas to be measured 2 flowing through the measurement passage 132a formed between the circuit board 140 and the concave groove 150c of the chip package 150. do.
  • the measurement passage 132a is formed, for example, in the second sub-passage groove 117b of the sub-passage groove 117, that is, in the second sub-passage 132 of the sub-passage 130, as shown in FIGS. 3B and 3D.
  • the lead frame 154 is formed along a through hole 154a communicating with the opening of the recess 151c of the semiconductor substrate 151a and communicating with the through hole 154a along the back surface of the lead frame 154. It has a ventilation groove 154b and.
  • the back surface of the lead frame 154 is the surface opposite to the front surface of the lead frame 154 on which the thermal flow sensor 151 and the electronic component 152 are mounted.
  • the through hole 154a is formed, for example, in a shape and size substantially equal to the opening of the recess 151c.
  • the lead frame 154 has, for example, a through hole 154c communicating with the other end of the ventilation groove 154b opposite to one end of the ventilation groove 154b communicating with the through hole 154a of the lead frame 154. As shown in FIG. 4B, the through hole 154c is exposed from the resin sealing portion 155 and communicates with the circuit chamber 118. In the example shown in FIG. 4D, three ventilation grooves 154b are formed on the back surface of the lead frame 154. The number of ventilation grooves 154b is not particularly limited, and may be a single number or a plurality of two or four or more.
  • the passage forming member 156 is arranged on the back surface of the lead frame 154.
  • the passage forming member 156 is, for example, a film-like adhesive tape provided with an adhesive layer on the surface of a resin base material, and is adhered to the back surface of the lead frame 154 via the adhesive layer.
  • a base material for example, a film-shaped polyimide can be used.
  • the pressure-sensitive adhesive layer for example, an acrylic-based or silicone-based pressure-sensitive adhesive can be used. That is, the passage forming member 156 is, for example, a polyimide tape.
  • the passage forming member 156 forms a ventilation passage 158 for communicating the recess 151c of the semiconductor substrate 151a to the outside together with the through hole 154a and the through hole 154c and the ventilation groove 154b of the lead frame 154. ing. Further, in the passage forming member 156, a portion of the lead frame 154 that closes the through hole 154a and the through hole 154c is exposed from the resin sealing portion 155.
  • the damping member 157 is arranged between the thermal flow rate sensor 151 and the lead frame 154.
  • the damping member 157 is, for example, an adhesive sheet for adhering the thermal flow sensor 151 to the lead frame 154.
  • the base material of the adhesive sheet constituting the damping member 157 for example, a film-shaped polyolefin or a film-shaped polyolefin in which epoxy powder is dispersed in a sea-island shape can be used.
  • a silicone-based or polyurethane-based adhesive can be used for the adhesive layer of the adhesive sheet constituting the damping member 157.
  • the damping member 157 for example, a die bonding film manufactured by Hitachi Kasei Co., Ltd., HR-9004, HR-9050G, or the like is suitable.
  • the thickness of the adhesive sheet constituting the damping member 157 is, for example, about 15 [ ⁇ m] or 30 [ ⁇ m].
  • the elastic modulus of the adhesive sheet constituting the damping member 157 is, for example, 1 [MPa] or more due to high temperature aging.
  • the damping member 157 is not limited to the configuration in which the entire damping member 157 is an adhesive sheet.
  • the damping member 157 at least a portion arranged between the through hole 154a of the lead frame 154 and the recess 151c of the semiconductor substrate 151a of the thermal flow sensor 151 may be a mesh.
  • a metal mesh can be used as the damping member 157.
  • the damping member 157 is located outside the through hole 154a of the lead frame 154, that is, a portion other than the mesh, that is, a portion arranged between the thermal flow rate sensor 151 and the lead frame 154 is formed by an adhesive sheet. It may be configured.
  • the damping member 157 has a plurality of communication holes 157a set to an opening ratio such that the resistance coefficient to the gas flowing between the ventilation passage 158 and the recess 151c of the thermal flow sensor 151 is less than 2.76. ..
  • the drag coefficient for the gas flowing between the ventilation passage 158 and the recess 151c of the thermal flow sensor 151 is K and the opening ratio of the plurality of communication holes 157a is ⁇ , the following equation (1) is established.
  • the opening ratio ⁇ of the plurality of communication holes 157a is the opening area of the plurality of communication holes 157a with respect to the area of the damping member 157 arranged between the through hole 154a of the lead frame 154 and the recess 151c of the thermal flow sensor 151. Is the ratio of. More specifically, as shown in FIG. 4D, the plurality of communication holes 157a of the damping member 157 are arranged in a staggered manner in the opening region of the through hole 154a of the lead frame 154, for example. In this case, the opening ratio ⁇ of the plurality of communication holes 157a can be expressed by the following equation (2), where d is the diameter of the communication holes 157a and l is the pitch.
  • the opening ratio ⁇ of the plurality of communication holes 157a has a wire diameter of d and a pitch of l. It can be expressed by the following equation (3).
  • the physical quantity measuring device 100 of the present embodiment sets the opening ratio ⁇ of the plurality of communication holes 157a of the damping member 157, for example, to heat the measured gas 2 at a frequency in a predetermined range due to vibration.
  • the error of the signal of the formula flow sensor 151 is set to a predetermined value or less. More specifically, for example, the sound pressure of the turbocharger provided in the internal combustion engine control system 1 causes the gas to be measured 2 to vibrate at a frequency of 10 [kHz] or more and 20 [kHz] or less.
  • the physical quantity measuring device 100 of the present embodiment has the opening ratio ⁇ of the plurality of communication holes 157a of the damping member 157 with respect to the gas flowing between the ventilation passage 158 and the recess 151c of the thermal flow sensor 151.
  • the aperture ratio ⁇ is set so that the resistance coefficient K is less than 2.76.
  • the measured gas 2 taken into the sub-passage 130 of the physical quantity measuring device 100 by the sound pressure generated by the turbocharger mounted on the vehicle has a predetermined frequency. It may vibrate.
  • the passage forming member 156 exposed from the resin sealing portion 155 of the chip package 150 vibrates at the portion of the lead frame 154 facing the through hole 154a.
  • the damping member 157 is not arranged between the through hole 154a of the lead frame 154 and the recess 151c of the semiconductor substrate 151a of the thermal flow sensor 151, the through hole 154a is caused by the vibration of the passage forming member 156.
  • the air flowing between the recesses 151c vibrates.
  • the thin film portion 151d of the semiconductor substrate 151a vibrates, and the measurement accuracy of the flow rate of the gas to be measured 2 by the thermal flow rate sensor 151 is lowered.
  • the physical quantity measuring device 100 of the present embodiment is mounted on the surface of the lead frame 154, the resin sealing portion 155 that partially seals the lead frame 154, and the lead frame 154, as described above.
  • a thermal flow sensor 151 and a passage forming member 156 arranged on the back surface of the lead frame 154 are provided.
  • the physical quantity measuring device 100 of the present embodiment further includes a damping member 157 arranged between the thermal flow rate sensor 151 and the lead frame 154.
  • the thermal flow sensor 151 includes a semiconductor substrate 151a, a thin film portion 151d formed on the surface side of the semiconductor substrate 151a and exposed from the resin sealing portion 155, and a flow rate detection unit provided on the surface side of the thin film portion 151d.
  • the lead frame 154 has a through hole 154a communicating with the opening of the recess 151c and a ventilation groove 154b communicating with the through hole 154a and formed along the back surface of the lead frame 154.
  • the passage forming member 156 forms a ventilation passage 158 that communicates the recess 151c to the outside together with the through hole 154a and the ventilation groove 154b, and the portion that closes the through hole 154a is exposed from the resin sealing portion 155.
  • the damping member 157 has a plurality of communication holes 157a set to an opening ratio ⁇ such that the drag coefficient K against the gas flowing between the ventilation passage 158 and the recess 151c is less than 2.76.
  • the opening ratio ⁇ of the plurality of communication holes 157a of the damping member 157 is such that the drag coefficient K against the gas flowing between the through holes 154a constituting the ventilation passage 158 and the recess 151c is less than 2.76. It is set.
  • FIG. 5A is a graph showing the relationship between the drag coefficient K and the attenuation factor A ⁇ .
  • the damping factor A ⁇ becomes larger than zero, and the vibration of the gas flowing between the through hole 154a constituting the ventilation passage 158 and the recess 151c is generated. Decay. Therefore, as described above, by setting the opening ratio ⁇ of the plurality of communication holes 157a of the damping member 157 so that the drag coefficient K is less than 2.76, the air flows between the ventilation passage 158 and the recess 151c. It is possible to attenuate the vibration of the gas.
  • the aperture ratio ⁇ can be obtained by, for example, the above-mentioned equation (2) or (3), and the attenuation factor A ⁇ can be obtained by the following equations (4) to (6) with ⁇ and C as proportional constants. Can be asked.
  • FIG. 5B is a graph showing the relationship between the diameter d and pitch l of the communication holes 157a and the attenuation factor A ⁇ .
  • the arrangement of the plurality of communication holes 157a of the damping member 157 is a staggered arrangement as shown in FIG. 4D.
  • the opening ratio ⁇ of the plurality of communication holes 157a of the damping member 157 is determined by the diameter d and the pitch l of the communication holes 157a as shown in the above equation (2).
  • the opening of the recess 151c of the thermal flow sensor 151 and the through hole 154a of the lead frame 154 are squares of 1 [mm] ⁇ 1 [mm].
  • the diameter d and pitch l of the communication hole 157a of the damping member 157 arranged between the opening of the recess 151c of the thermal flow sensor 151 and the through hole 154a of the lead frame 154, and the damping factor A ⁇ is established between the two.
  • the attenuation factor A ⁇ is set to be larger than 0 by setting the pitch l in the range of about 30 [ ⁇ m] to about 50 [ ⁇ m].
  • the damping factor A ⁇ is set to be larger than 0 by setting the pitch l in the range of about 80 [ ⁇ m] to about 110 [ ⁇ m].
  • the damping factor A ⁇ is set to be larger than 0 by setting the pitch l in the range of about 170 [ ⁇ m] to about 230 [ ⁇ m].
  • the damping factor A ⁇ is set to be larger than 0 by setting the pitch l in the range of about 330 [ ⁇ m] to about 460 [ ⁇ m]. Can be done.
  • the communication hole 157a is formed by laser processing, it is possible to suppress the generation of burrs by setting the diameter d to about 100 [ ⁇ m].
  • FIG. 5C is a graph showing the relationship between the wire diameter d and the pitch l of the mesh constituting the damping member 157 and the damping factor A ⁇ .
  • the opening ratio ⁇ of the plurality of communication holes 157a of the damping member 157 is determined by the wire diameter d and the pitch l of the mesh constituting the communication holes 157a, as shown in the above equation (3).
  • the opening of the recess 151c of the thermal flow sensor 151 and the through hole 154a of the lead frame 154 are squares of 1 [mm] ⁇ 1 [mm].
  • the damping factor A ⁇ is set to 0 by setting the pitch l in the range of about 70 [ ⁇ m] to about 200 [ ⁇ m]. Can be larger. Further, when the wire diameter d of the mesh is 50 [ ⁇ m], the attenuation factor A ⁇ can be made larger than 0 by setting the pitch l in the range of about 180 [ ⁇ m] to about 500 [ ⁇ m]. can. Further, when the wire diameter d of the mesh is 100 [ ⁇ m], the attenuation factor A ⁇ can be made larger than 0 by setting the pitch l in the range of about 360 [ ⁇ m] to about 1000 [ ⁇ m]. can. By setting the wire diameter d of the mesh to 20 [ ⁇ m] and the pitch l to the range of about 100 [ ⁇ m] to about 200 [ ⁇ m], the damping effect of air vibration is high and the damping member 157 is manufactured. Can be facilitated.
  • the substrate is supported like the conventional thermal air flow rate sensor described in the second embodiment of Patent Document 1.
  • the vibration of the air flowing between the ventilation passage 158 and the recess 151c of the thermal flow sensor 151 is attenuated by the plurality of communication holes 157a of the damping member 157. It is possible to suppress a decrease in the measurement accuracy of the air flow rate due to the influence of sound pressure from the outside.
  • the damping member 157 is, for example, an adhesive sheet for adhering the thermal flow rate sensor 151 to the lead frame 154.
  • the adhesive sheet conventionally used for adhering the thermal flow sensor 151 to the lead frame 154 can be used as the damping member 157. Therefore, it is possible to suppress an increase in the number of parts of the physical quantity measuring device 100 and an increase in the size of the device.
  • the damping member 157 can be easily installed and processed.
  • the elastic modulus of the adhesive sheet used as the damping member 157 is, for example, 1 [MPa] or more.
  • the damping member 157 is, for example, a mesh.
  • the strength and durability of the damping member 157 can be improved.
  • the material of the mesh constituting the damping member 157 is the same as the material of the lead frame 154, the linear expansion coefficients of the mesh constituting the damping member 157 and the lead frame 154 become equal to each other, and the generation of thermal stress is suppressed. be able to. Further, it is possible to simplify the manufacturing process by omitting the drilling process for the damping member 157.
  • the resistance coefficient to the air flowing between the ventilation passage 158 and the recess 151c of the thermal flow sensor 151 is K
  • the error of the signal of the thermal flow sensor 151 with respect to the vibration of the gas having a frequency of 10 [kHz] or more and 20 [kHz] or less is 150 [db] or less.
  • the specific configuration is not limited to this embodiment, and the design change is not deviated from the gist of the present disclosure. Etc., but they are included in this disclosure.
  • a glass sheet having a low melting point that reaches a softening point at about 300 [° C.] to 350 [° C.] may be used.
  • the glass sheet is integrated with the lead frame by chemically bonding the flux, Ni, Au, and other metals blended in the glass sheet.
  • a plurality of communication holes are formed in the adhesive sheet for adhering the thermal flow sensor and the lead frame by forming an opening having the same shape and size as the through hole of the lead frame or the opening of the recess of the thermal flow sensor.
  • the damping member to have may be omitted.

Abstract

The present disclosure provides a physical quantity measurement device capable of suppressing a decrease in air flow rate measurement accuracy due to the influence of external sound pressure while suppressing an increase in the number of parts and an increase in the size of the device. The physical quantity measurement device comprises a damping member disposed between a thermal flow sensor and a lead frame. The thermal flow sensor includes a semiconductor substrate, a thin film portion which is formed on the surface side of the semiconductor substrate and exposed from a resin sealing portion, a flow rate detection portion provided on the front surface side of the thin film portion, and a recess which is formed on the back surface side of the semiconductor substrate and is adjacent to the back surface side of the thin film portion. The lead frame has a through hole that communicates with the opening of the recess, and a ventilation groove that communicates with the through hole and is formed along the back surface. A passage forming member forms a ventilation passage that allows the recess to communicate with the outside together with the through hole and the ventilation groove, and a portion that closes the through hole is exposed from the resin sealing portion. The damping member has a plurality of communication holes having an opening ratio that is set such that the coefficient of resistance to gas flowing between the ventilation passage and the recess is less than 2.76.

Description

物理量測定装置Physical quantity measuring device
 本開示は、物理量測定装置に関する。 This disclosure relates to a physical quantity measuring device.
 従来から自動車エンジンの吸気系に設置してエンジンの吸入空気量を検出するのに適する熱式空気流量センサに関する発明が知られている(下記特許文献1)。特許文献1に記載された熱式流量センサは、流量検出素子と、支持部材と、を備えている(同請求項1、第0010段落)。 Conventionally, an invention relating to a thermal air flow sensor suitable for being installed in an intake system of an automobile engine to detect the intake air amount of the engine has been known (Patent Document 1 below). The thermal flow rate sensor described in Patent Document 1 includes a flow rate detection element and a support member (claim 1, paragraph 0010).
 上記流量検出素子は、半導体基板を加工して設けられるダイアフラムと、そのダイアフラム上に設けられる発熱抵抗体と、その発熱抵抗体の上流側と下流側にそれぞれ設けられる測温抵抗体と、を有する。上記支持部材は、上記流量検出素子を、シート接着剤を介して接着保持する。 The flow rate detecting element has a diaphragm provided by processing a semiconductor substrate, a heat generation resistor provided on the diaphragm, and a resistance temperature detector provided on the upstream side and the downstream side of the heat generation resistor, respectively. .. The support member adheres and holds the flow rate detecting element via a sheet adhesive.
 さらに、上記支持部材は、ダイアフラムの裏面側に設けられる空洞部に一方が開口する連通孔を有している。上記シート接着材は、換気孔を有しており、その換気孔は、上記空洞部と上記連通孔の一方の開口とを連通するように、上記支持部材の連通孔の開口領域に対応するシート接着剤の領域に設けられている。 Further, the support member has a communication hole at which one side opens in the cavity provided on the back surface side of the diaphragm. The sheet adhesive has a ventilation hole, and the ventilation hole corresponds to the opening region of the communication hole of the support member so as to communicate the cavity and one opening of the communication hole. It is provided in the area of the adhesive.
 また、内燃機関の吸入空気量を計測する熱式空気流量計に関する発明が知られている(下記特許文献2)。特許文献2は、リードフレームと、流量検出素子と、保護テープと、封止樹脂と、を備える樹脂パッケージ(同請求項1、第0006段落)を開示している。上記流量検出素子は、上記リードフレームの一面側に実装される。上記保護テープは、リードフレームの他面側に設けられる。上記封止樹脂は、上記流量検出素子の検出部と上記保護テープの一部を少なくとも露出する様に封止する。 Further, an invention relating to a thermal air flow meter for measuring the intake air amount of an internal combustion engine is known (Patent Document 2 below). Patent Document 2 discloses a resin package (claim 1, paragraph 0006) including a lead frame, a flow rate detecting element, a protective tape, and a sealing resin. The flow rate detecting element is mounted on one side of the lead frame. The protective tape is provided on the other side of the lead frame. The sealing resin seals the detection portion of the flow rate detecting element and a part of the protective tape so as to expose at least a part thereof.
特開2014-010023号公報Japanese Unexamined Patent Publication No. 2014-010023 特開2020-079711号公報Japanese Unexamined Patent Publication No. 2020-079711
 上記特許文献1に記載された従来の熱式空気流量センサは、たとえば、上記支持部材がリードフレームである場合(同請求項6、第一実施例、図1および図2)、ダイアフラムの裏面側に設けられる空洞部がリードフレームの連通孔を介して外部と連通する。この場合、たとえば、ターボチャージャからの音圧による空気の振動がリードフレームの連通孔を介して空洞部へ伝播し、ダイアフラムが振動して空気流量の測定精度が低下するおそれがある。 In the conventional thermal air flow sensor described in Patent Document 1, for example, when the support member is a lead frame (Claim 6, First Example, FIGS. 1 and 2), the back surface side of the diaphragm is used. The cavity portion provided in the above communicates with the outside through the communication hole of the lead frame. In this case, for example, the vibration of the air due to the sound pressure from the turbocharger may propagate to the cavity through the communication hole of the lead frame, and the diaphragm may vibrate to reduce the measurement accuracy of the air flow rate.
 一方、上記特許文献1に記載された従来の熱式空気流量センサは、たとえば、前記支持部材がリードフレーム上に接着保持された基板支持部材(同請求項7、第二実施例、図4および図5)である場合、上記のようなダイアフラムの振動を防止することが可能である。しかし、熱式空気流量センサの部品点数の増加や、熱式空気流量センサが大型化することなどに課題がある。 On the other hand, in the conventional thermal air flow rate sensor described in Patent Document 1, for example, a substrate support member in which the support member is adhered and held on a lead frame (Claim 7, Second Example, FIG. 4 and In the case of FIG. 5), it is possible to prevent the vibration of the diaphragm as described above. However, there are problems such as an increase in the number of parts of the thermal air flow sensor and an increase in the size of the thermal air flow sensor.
 また、上記特許文献1に記載された従来の熱式空気流量計は、上記保護テープを用いることで、熱式空気流量センサの部品点数の増加や大型化を抑制することができる。しかし、上記保護テープがターボチャージャからの音圧によって振動することで、センサチップのダイアフラム部が振動して、空気流量の測定精度が低下するおそれがある。 Further, in the conventional thermal air flow meter described in Patent Document 1, by using the protective tape, it is possible to suppress an increase in the number of parts and an increase in size of the thermal air flow sensor. However, when the protective tape vibrates due to the sound pressure from the turbocharger, the diaphragm portion of the sensor chip vibrates, which may reduce the measurement accuracy of the air flow rate.
 本開示は、部品点数の増加や装置の大型化を抑制しつつ、外部からの音圧の影響による空気流量の測定精度の低下を抑制することが可能な物理量測定装置を提供する。 The present disclosure provides a physical quantity measuring device capable of suppressing a decrease in measurement accuracy of an air flow rate due to the influence of external sound pressure while suppressing an increase in the number of parts and an increase in the size of the device.
 本開示の一態様は、リードフレームと、該リードフレームを部分的に封止する樹脂封止部と、前記リードフレームの表面に実装される熱式流量センサと、前記リードフレームの裏面に配置される通路形成部材と、を備える物理量測定装置であって、前記熱式流量センサと前記リードフレームとの間に配置される減衰部材をさらに備え、前記熱式流量センサは、半導体基板と、該半導体基板の表面側に形成されて前記樹脂封止部から露出した薄膜部と、該薄膜部の表面側に設けられた流量検出部と、前記半導体基板の裏面側に形成されて前記薄膜部の裏面側に隣接する凹部と、を有し、前記リードフレームは、前記凹部の開口に連通する貫通孔と、該貫通孔に連通して前記裏面に沿って形成された通気溝と、を有し、前記通路形成部材は、前記貫通孔および前記通気溝とともに前記凹部を外部に連通させる通気通路を形成し、前記貫通孔を閉鎖する部分が前記樹脂封止部から露出されており、前記減衰部材は、前記通気通路と前記凹部との間を流通する気体に対する抵抗係数が2.76未満となる開口比に設定された複数の連通孔を有することを特徴とする物理量測定装置である。 One aspect of the present disclosure is a lead frame, a resin encapsulation portion that partially seals the lead frame, a thermal flow sensor mounted on the surface of the lead frame, and an arrangement on the back surface of the lead frame. A physical quantity measuring device including a passage forming member, further including a damping member arranged between the thermal flow sensor and the lead frame, and the thermal flow sensor includes a semiconductor substrate and the semiconductor. A thin film portion formed on the front surface side of the substrate and exposed from the resin sealing portion, a flow rate detection portion provided on the front surface side of the thin film portion, and a back surface of the thin film portion formed on the back surface side of the semiconductor substrate. The lead frame has a recess adjacent to the side, and the lead frame has a through hole communicating with the opening of the recess and a ventilation groove formed along the back surface through the through hole. The passage forming member forms a ventilation passage that communicates the recess to the outside together with the through hole and the ventilation groove, and a portion that closes the through hole is exposed from the resin sealing portion. The physical quantity measuring device is characterized by having a plurality of communication holes set to an opening ratio such that the resistance coefficient to the gas flowing between the ventilation passage and the recess is less than 2.76.
 本開示の上記一態様によれば、部品点数の増加や装置の大型化を抑制しつつ、外部からの音圧の影響による測定精度の低下を抑制することが可能な物理量測定装置を提供することができる。 According to the above aspect of the present disclosure, it is intended to provide a physical quantity measuring device capable of suppressing a decrease in measurement accuracy due to the influence of external sound pressure while suppressing an increase in the number of parts and an increase in size of the device. Can be done.
本開示に係る流量検出装置の一実施形態を示すシステム図。The system diagram which shows one Embodiment of the flow rate detection apparatus which concerns on this disclosure. 図1の物理量測定装置の正面図。The front view of the physical quantity measuring apparatus of FIG. 図1の物理量測定装置の背面図。The rear view of the physical quantity measuring apparatus of FIG. 図1の物理量測定装置の左側面図。The left side view of the physical quantity measuring apparatus of FIG. 図1の物理量測定装置の右側面図。The right side view of the physical quantity measuring apparatus of FIG. 図1の物理量測定装置の上面図。Top view of the physical quantity measuring device of FIG. 図2Aの物理量測定装置の封止材を配置する前の正面図。The front view before arranging the sealing material of the physical quantity measuring apparatus of FIG. 2A. 図2Bの物理量測定装置のカバーを取り付ける前の背面図。The rear view before attaching the cover of the physical quantity measuring apparatus of FIG. 2B. 図3BのIII(C)-III(C)線に沿う物理量測定装置の断面図。FIG. 3B is a cross-sectional view of the physical quantity measuring device along the line III (C) -III (C) of FIG. 3B. 図2AのIII(D)-III(D)線に沿う物理量測定装置の断面図。FIG. 2 is a cross-sectional view of the physical quantity measuring device along the line III (D) -III (D) of FIG. 2A. 図3Bの物理量測定装置の回路基板の正面図。The front view of the circuit board of the physical quantity measuring apparatus of FIG. 3B. 図4AのIV(B)-IV(B)線に沿う回路基板の断面図。FIG. 4A is a cross-sectional view of a circuit board along the IV (B) -IV (B) line of FIG. 4A. 図4Aの回路基板に実装されるチップパッケージの底面図。The bottom view of the chip package mounted on the circuit board of FIG. 4A. 図4Cに示すチップパッケージのリードフレームの平面図。Top view of the lead frame of the chip package shown in FIG. 4C. 図4Bの回路基板に実装されたチップパッケージのIV(E)部の拡大図。FIG. 4B is an enlarged view of the IV (E) part of the chip package mounted on the circuit board. 抵抗係数Kと減衰率A∞との関係を示すグラフ。The graph which shows the relationship between the resistance coefficient K and the attenuation factor A∞. 連通孔の直径dおよびピッチlと減衰率A∞との関係を示すグラフ。The graph which shows the relationship between the diameter d and the pitch l of a communication hole, and the attenuation factor A∞. メッシュの線径dおよびピッチlと減衰率A∞との関係を示すグラフ。The graph which shows the relationship between the wire diameter d and pitch l of a mesh, and the attenuation factor A∞.
 以下、図面を参照して本発明の物理量測定装置の実施形態を説明する。 Hereinafter, embodiments of the physical quantity measuring device of the present invention will be described with reference to the drawings.
 図1は、本開示に係る物理量測定装置の一実施形態を示すシステム図である。本実施形態の物理量測定装置100は、たとえば、電子燃料噴射方式の内燃機関制御システム1に使用される。内燃機関制御システム1は、たとえば、内燃機関10と、物理量測定装置100と、スロットルバルブ25と、スロットル角度センサ26と、アイドルエアコントロールバルブ27と、酸素センサ28と、制御装置4とを備えている。 FIG. 1 is a system diagram showing an embodiment of the physical quantity measuring device according to the present disclosure. The physical quantity measuring device 100 of the present embodiment is used, for example, in an electronic fuel injection type internal combustion engine control system 1. The internal combustion engine control system 1 includes, for example, an internal combustion engine 10, a physical quantity measuring device 100, a throttle valve 25, a throttle angle sensor 26, an idle air control valve 27, an oxygen sensor 28, and a control device 4. There is.
 物理量測定装置100は、たとえば、主通路22である吸気ボディの通路壁に設けられた取り付け孔から主通路22の内部に挿入され、主通路22の通路壁に固定された状態で使用される。物理量測定装置100は、エアクリーナ21を通して取り込まれて主通路22を流れる被計測気体2である吸入空気の物理量を検出して制御装置4へ出力する。物理量測定装置100は、主通路22の通路壁から主通路22を流れる被計測気体2の主流れ方向に沿う主通路22の中心線22aへ向けて主通路22の径方向に突出している。すなわち、主通路22における物理量測定装置100の突出方向は、たとえば、主通路22の中心線22aに直交する方向である。 The physical quantity measuring device 100 is used in a state of being inserted into the inside of the main passage 22 through a mounting hole provided in the passage wall of the intake body which is the main passage 22, and fixed to the passage wall of the main passage 22. The physical quantity measuring device 100 detects the physical quantity of the intake air, which is the gas to be measured 2 taken in through the air cleaner 21 and flows through the main passage 22, and outputs the physical quantity to the control device 4. The physical quantity measuring device 100 projects in the radial direction of the main passage 22 from the passage wall of the main passage 22 toward the center line 22a of the main passage 22 along the main flow direction of the gas to be measured 2 flowing through the main passage 22. That is, the protruding direction of the physical quantity measuring device 100 in the main passage 22 is, for example, a direction orthogonal to the center line 22a of the main passage 22.
 スロットルバルブ25は、たとえば、被計測気体2の流れ方向において、吸気マニホールド24の上流側に配置されたスロットルボディ23に内蔵されている。制御装置4は、たとえば、アクセルペダルの操作量に基づいてスロットルバルブ25の開度を変化させ、内燃機関10のシリンダ11内の燃焼室へ流入する被計測気体2としての吸入空気の流量を制御する。スロットル角度センサ26は、スロットルバルブ25の開度を計測して制御装置4へ出力する。アイドルエアコントロールバルブ27は、スロットルバルブ25をバイパスする空気量を制御する。 The throttle valve 25 is built in, for example, the throttle body 23 arranged on the upstream side of the intake manifold 24 in the flow direction of the gas to be measured 2. The control device 4 changes, for example, the opening degree of the throttle valve 25 based on the operation amount of the accelerator pedal, and controls the flow rate of the intake air as the measured gas 2 flowing into the combustion chamber in the cylinder 11 of the internal combustion engine 10. do. The throttle angle sensor 26 measures the opening degree of the throttle valve 25 and outputs it to the control device 4. The idle air control valve 27 controls the amount of air bypassing the throttle valve 25.
 内燃機関10は、たとえば、シリンダ11と、ピストン12と、点火プラグ13と、燃料噴射弁14と、吸気弁15と、排気弁16と、回転角度センサ17と、を備えている。内燃機関10のピストン12の動作に基づいてエアクリーナ21を通して取り込まれた吸入空気は、主通路22を流れ、スロットルボディ23においてスロットルバルブ25により流量が制御される。スロットルボディ23を通過した吸入空気は、吸気マニホールド24を通過し、さらに吸気ポートに設けられた燃料噴射弁14を通過して、吸気弁15を介してシリンダ11内の燃焼室へ流入する。 The internal combustion engine 10 includes, for example, a cylinder 11, a piston 12, a spark plug 13, a fuel injection valve 14, an intake valve 15, an exhaust valve 16, and a rotation angle sensor 17. The intake air taken in through the air cleaner 21 based on the operation of the piston 12 of the internal combustion engine 10 flows through the main passage 22, and the flow rate is controlled by the throttle valve 25 in the throttle body 23. The intake air that has passed through the throttle body 23 passes through the intake manifold 24, further passes through the fuel injection valve 14 provided in the intake port, and flows into the combustion chamber in the cylinder 11 via the intake valve 15.
 制御装置4は、物理量測定装置100から入力された被計測気体2としての吸入空気の物理量に基づいて燃料噴射弁14を制御して、吸入空気へ燃料を噴射させる。これにより、吸気マニホールド24を通過した吸入空気は、燃料噴射弁14から噴射された燃料と混合され、混合気の状態で燃焼室へ導かれる。制御装置4は、点火プラグ13の火花着火により燃焼室内の混合気を爆発的に燃焼させ、内燃機関10に機械エネルギを発生させる。 The control device 4 controls the fuel injection valve 14 based on the physical quantity of the intake air as the gas to be measured 2 input from the physical quantity measuring device 100, and injects fuel into the intake air. As a result, the intake air that has passed through the intake manifold 24 is mixed with the fuel injected from the fuel injection valve 14 and guided to the combustion chamber in the state of the air-fuel mixture. The control device 4 explosively burns the air-fuel mixture in the combustion chamber by the spark ignition of the spark plug 13, and generates mechanical energy in the internal combustion engine 10.
 回転角度センサ17は、ピストン12、吸気弁15、および排気弁16の位置や状態、さらに内燃機関10の回転速度に関する情報を検出して制御装置4へ出力する。燃焼により発生したガスは、シリンダ11の燃焼室から排気弁16を介して排気管へ排出され、排気ガス3として排気管から車外へ排出される。酸素センサ28は、排気管に設けられ、排気管を流れる排気ガス3の酸素濃度を計測して制御装置4へ出力する。 The rotation angle sensor 17 detects the position and state of the piston 12, the intake valve 15, and the exhaust valve 16 and information on the rotation speed of the internal combustion engine 10 and outputs the information to the control device 4. The gas generated by combustion is discharged from the combustion chamber of the cylinder 11 to the exhaust pipe through the exhaust valve 16, and is discharged from the exhaust pipe to the outside of the vehicle as exhaust gas 3. The oxygen sensor 28 is provided in the exhaust pipe, measures the oxygen concentration of the exhaust gas 3 flowing through the exhaust pipe, and outputs the oxygen concentration to the control device 4.
 制御装置4は、物理量測定装置100によって検出された主通路22を流れる被計測気体2としての吸入空気の物理量、たとえば、流量、温度、湿度、圧力などに基づいて、内燃機関制御システム1の各部を制御する。具体的には、制御装置4がアクセルペダルの操作量に基づいてスロットルバルブ25の開度を制御すると、主通路22を流れる被計測気体2としての吸入空気の流量が変化する。制御装置4は、たとえば物理量測定装置100によって検出された被計測気体2の流量に基づいて、燃料噴射弁14から噴射する燃料の供給量を制御する。これにより、内燃機関10が発生する機械エネルギが制御される。 The control device 4 is based on the physical quantity of the intake air as the gas to be measured 2 flowing through the main passage 22 detected by the physical quantity measuring device 100, for example, flow rate, temperature, humidity, pressure, and the like, and each part of the internal combustion engine control system 1. To control. Specifically, when the control device 4 controls the opening degree of the throttle valve 25 based on the operation amount of the accelerator pedal, the flow rate of the intake air as the gas to be measured 2 flowing through the main passage 22 changes. The control device 4 controls the supply amount of fuel injected from the fuel injection valve 14 based on, for example, the flow rate of the gas to be measured 2 detected by the physical quantity measuring device 100. As a result, the mechanical energy generated by the internal combustion engine 10 is controlled.
 制御装置4は、物理量測定装置100の出力である吸入空気の物理量と、回転角度センサ17の出力に基づいて計測された内燃機関10の回転速度とに基づいて、燃料噴射量や点火時期を演算する。これらの演算結果に基づいて、制御装置4は、燃料噴射弁14による燃料噴射量や、点火プラグ13の点火時期を制御する。 The control device 4 calculates the fuel injection amount and the ignition timing based on the physical quantity of the intake air which is the output of the physical quantity measuring device 100 and the rotation speed of the internal combustion engine 10 measured based on the output of the rotation angle sensor 17. do. Based on these calculation results, the control device 4 controls the fuel injection amount by the fuel injection valve 14 and the ignition timing of the spark plug 13.
 制御装置4は、実際には、さらに被計測気体2の温度、スロットルバルブ25の開度の変化状態、内燃機関10の回転速度の変化状態、排気ガス3の空燃比の状態に基づいて、燃料供給量や点火時期をきめ細かく制御している。制御装置4は、さらに内燃機関10のアイドル運転状態において、スロットルバルブ25をバイパスする空気量をアイドルエアコントロールバルブ27により制御し、アイドル運転状態での内燃機関10の回転速度を制御する。 The control device 4 actually further fuels the fuel based on the temperature of the gas to be measured 2, the change state of the opening degree of the throttle valve 25, the change state of the rotation speed of the internal combustion engine 10, and the air-fuel ratio state of the exhaust gas 3. The supply amount and ignition timing are finely controlled. Further, the control device 4 controls the amount of air bypassing the throttle valve 25 by the idle air control valve 27 in the idle operation state of the internal combustion engine 10, and controls the rotation speed of the internal combustion engine 10 in the idle operation state.
 内燃機関10の主要な制御量である燃料供給量や点火時期は、いずれも物理量測定装置100の出力を主パラメータとして演算される。したがって、物理量測定装置100の測定精度の向上や、経時変化の抑制、信頼性の向上が、車両の制御精度の向上や信頼性の確保に関して重要である。 The fuel supply amount and ignition timing, which are the main control amounts of the internal combustion engine 10, are both calculated using the output of the physical quantity measuring device 100 as the main parameter. Therefore, it is important to improve the measurement accuracy of the physical quantity measuring device 100, suppress the change with time, and improve the reliability in order to improve the control accuracy and the reliability of the vehicle.
 特に近年、車両の省燃費に関する要望が非常に高く、また排気ガス浄化に関する要望が非常に高い。これらの要望に応えるには、物理量測定装置100により検出される吸入空気の物理量の検出精度の向上が極めて重要である。また、物理量測定装置100が高い信頼性を維持していることも大切である。 Especially in recent years, there has been a very high demand for fuel efficiency of vehicles, and a very high demand for exhaust gas purification. In order to meet these demands, it is extremely important to improve the detection accuracy of the physical quantity of the intake air detected by the physical quantity measuring device 100. It is also important that the physical quantity measuring device 100 maintains high reliability.
 物理量測定装置100が搭載される車両は、温度や湿度の変化が大きい環境で使用される。物理量測定装置100は、その使用環境における温度や湿度の変化への対応や、塵埃や汚染物質などへの対応も、考慮されていることが望ましい。 The vehicle equipped with the physical quantity measuring device 100 is used in an environment where changes in temperature and humidity are large. It is desirable that the physical quantity measuring device 100 also considers the response to changes in temperature and humidity in the usage environment and the response to dust and pollutants.
 また、物理量測定装置100は、内燃機関からの発熱の影響を受ける吸気管に装着される。このため、内燃機関の発熱が吸気管を介して物理量測定装置100に伝わる。物理量測定装置100は、被計測気体2と熱伝達を行うことにより被計測気体2の流量を検出するので、外部からの熱の影響をできるだけ抑制することが重要である。 Further, the physical quantity measuring device 100 is attached to the intake pipe affected by the heat generated from the internal combustion engine. Therefore, the heat generated by the internal combustion engine is transmitted to the physical quantity measuring device 100 via the intake pipe. Since the physical quantity measuring device 100 detects the flow rate of the measured gas 2 by conducting heat transfer with the measured gas 2, it is important to suppress the influence of heat from the outside as much as possible.
 以下、図2Aから図2E、図3Aから図3D、および図4Aから図4Eを参照して、本実施形態の物理量測定装置100について、より詳細に説明する。なお、これらの各図では、図1に示す主通路22における物理量測定装置100の突出方向に平行なX軸、主通路22の中心線22aに平行なY軸、および物理量測定装置100の厚さ方向に平行なZ軸からなる直交座標系を示す。なお、以下の説明では、主通路22の中心線22a(Y軸)に沿って被計測気体2が流れるものとする。 Hereinafter, the physical quantity measuring device 100 of the present embodiment will be described in more detail with reference to FIGS. 2A to 2E, FIGS. 3A to 3D, and FIGS. 4A to 4E. In each of these figures, the X-axis parallel to the protruding direction of the physical quantity measuring device 100 in the main passage 22 shown in FIG. 1, the Y-axis parallel to the center line 22a of the main passage 22, and the thickness of the physical quantity measuring device 100. A Cartesian coordinate system consisting of Z axes parallel to the direction is shown. In the following description, it is assumed that the gas to be measured 2 flows along the center line 22a (Y-axis) of the main passage 22.
 図2Aから図2Eは、それぞれ、図1の物理量測定装置100の正面図、背面図、左側面図、右側面図、および上面図である。物理量測定装置100は、たとえば、ハウジング110とカバー120とを備えている。 2A to 2E are a front view, a rear view, a left side view, a right side view, and a top view of the physical quantity measuring device 100 of FIG. 1, respectively. The physical quantity measuring device 100 includes, for example, a housing 110 and a cover 120.
 ハウジング110は、たとえば、合成樹脂材料を射出成型することによって製造される。カバー120は、たとえば、金属や合成樹脂を素材とする板状の部材である。カバー120は、たとえば、合成樹脂材料の成形品を使用することができる。ハウジング110とカバー120は、主通路22内に配置される物理量測定装置100の筐体を構成する。 The housing 110 is manufactured, for example, by injection molding a synthetic resin material. The cover 120 is, for example, a plate-shaped member made of metal or synthetic resin. As the cover 120, for example, a molded product made of a synthetic resin material can be used. The housing 110 and the cover 120 constitute a housing of the physical quantity measuring device 100 arranged in the main passage 22.
 ハウジング110は、たとえば、フランジ111と、コネクタ112と、計測部113とを有している。 The housing 110 has, for example, a flange 111, a connector 112, and a measuring unit 113.
 フランジ111は、図2Eに示すように、おおむね矩形の板状の形状を有し、対角線上の角部に一対の固定部111aを有している。固定部111aは、中央部にフランジ111を貫通して、固定ねじを挿通させる円筒状の貫通孔111bを有している。物理量測定装置100を主通路22に固定するには、主通路22に設けられた取り付け孔に計測部113を挿入する。そして、フランジ111の貫通孔111bに挿通させた固定ねじを主通路22のねじ穴に螺入して、フランジ111を主通路22の通路壁に固定する。これにより、物理量測定装置100が吸気ボディである主通路22に固定される。 As shown in FIG. 2E, the flange 111 has a substantially rectangular plate-like shape, and has a pair of fixing portions 111a at diagonal corners. The fixing portion 111a has a cylindrical through hole 111b in the center portion through which the flange 111 is inserted and through which the fixing screw is inserted. In order to fix the physical quantity measuring device 100 to the main passage 22, the measuring unit 113 is inserted into the mounting hole provided in the main passage 22. Then, the fixing screw inserted through the through hole 111b of the flange 111 is screwed into the screw hole of the main passage 22 to fix the flange 111 to the passage wall of the main passage 22. As a result, the physical quantity measuring device 100 is fixed to the main passage 22 which is an intake body.
 コネクタ112は、フランジ111から突出し、吸気ボディである主通路22の外部に配置され、外部機器に接続される。図2Dに示すように、コネクタ112の内部には、複数の外部端子112aと補正用端子112bが設けられている。外部端子112aは、たとえば、物理量測定装置100の計測結果である流量や温度などの物理量の出力端子と、物理量測定装置100を動作させる直流電力を供給するための電源端子とを含む。 The connector 112 protrudes from the flange 111, is arranged outside the main passage 22 which is an intake body, and is connected to an external device. As shown in FIG. 2D, a plurality of external terminals 112a and correction terminals 112b are provided inside the connector 112. The external terminal 112a includes, for example, an output terminal for a physical quantity such as a flow rate and a temperature, which is a measurement result of the physical quantity measuring device 100, and a power supply terminal for supplying DC power for operating the physical quantity measuring device 100.
 補正用端子112bは、物理量測定装置100の製造後に物理量の計測を行い、それぞれの物理量測定装置100に対する補正値を求め、物理量測定装置100の内部のメモリに補正値を記憶するのに使用する。その後の物理量測定装置100による物理量の計測では、上記メモリに記憶された補正値に基づく補正データが使用され、補正用端子112bは使用されない。 The correction terminal 112b measures the physical quantity after the physical quantity measuring device 100 is manufactured, obtains a correction value for each physical quantity measuring device 100, and is used to store the correction value in the internal memory of the physical quantity measuring device 100. In the subsequent measurement of the physical quantity by the physical quantity measuring device 100, the correction data based on the correction value stored in the memory is used, and the correction terminal 112b is not used.
 計測部113は、主通路22の通路壁に固定されるフランジ111から主通路22の中心線22aに向けて、中心線22aに直交する主通路22の径方向に突出するように延びている。計測部113は、おおむね直方体形状の扁平な角形の形状を有している。計測部113は、主通路22における計測部113の突出方向(X軸方向)に長さを有し、主通路22における被計測気体2の主流れ方向(Y軸方向)に幅を有している。また、計測部113は、突出方向(X軸方向)および被計測気体2の主流れ方向(Y軸方向)に直交する方向(Z軸方向)に厚さを有している。このように、計測部113が被計測気体2の主流れ方向に沿う扁平な形状を有することで、被計測気体2に対する流体抵抗を低減することができる。 The measuring unit 113 extends from the flange 111 fixed to the passage wall of the main passage 22 toward the center line 22a of the main passage 22 so as to project in the radial direction of the main passage 22 orthogonal to the center line 22a. The measuring unit 113 has a flat rectangular parallelepiped shape. The measuring unit 113 has a length in the protruding direction (X-axis direction) of the measuring unit 113 in the main passage 22 and a width in the main flow direction (Y-axis direction) of the gas to be measured 2 in the main passage 22. There is. Further, the measuring unit 113 has a thickness in a direction (Z-axis direction) orthogonal to the protruding direction (X-axis direction) and the main flow direction (Y-axis direction) of the gas to be measured 2. As described above, since the measurement unit 113 has a flat shape along the main flow direction of the gas to be measured 2, the fluid resistance to the gas to be measured 2 can be reduced.
 計測部113は、正面113a、背面113b、上流側の側面113c、下流側の側面113d、および下面113eを有している。正面113aと背面113bは、計測部113の他の面よりも面積が大きく、計測部113の突出方向(X軸方向)および主通路22の中心線22a(Y軸方向)におおむね平行である。上流側の側面113cと下流側の側面113dは、正面113aと背面113bよりも面積が小さい細長い形状を有し、主通路22の中心線22a(Y軸方向)におおむね直交している。下面113eは、計測部113の他の面よりも面積が小さく、主通路22の中心線22a(Y軸方向)におおむね平行で計測部113の突出方向(X軸方向)におおむね直交している。 The measuring unit 113 has a front surface 113a, a back surface 113b, an upstream side surface 113c, a downstream side surface 113d, and a lower surface 113e. The front surface 113a and the back surface 113b have a larger area than the other surfaces of the measuring unit 113, and are substantially parallel to the protruding direction (X-axis direction) of the measuring unit 113 and the center line 22a (Y-axis direction) of the main passage 22. The upstream side surface 113c and the downstream side surface 113d have an elongated shape having a smaller area than the front surface 113a and the back surface 113b, and are substantially orthogonal to the center line 22a (Y-axis direction) of the main passage 22. The lower surface 113e has a smaller area than the other surfaces of the measuring unit 113, is substantially parallel to the center line 22a (Y-axis direction) of the main passage 22, and is approximately orthogonal to the protruding direction (X-axis direction) of the measuring unit 113. ..
 計測部113は、上流側の側面113cに副通路入口114を有し、下流側の側面113dに第1出口115および第2出口116を有している。副通路入口114、第1出口115、および、第2出口116は、計測部113の突出方向(X軸方向)における中央よりも先端側の計測部113の先端部に設けられている。これにより、主通路22の内壁面から離れた主通路22の中央部付近の被計測気体2を副通路入口114から取り込むことができる。そのため、物理量測定装置100は、内燃機関10の熱の影響による計測精度の低下を抑制できる。 The measuring unit 113 has a sub-passage inlet 114 on the upstream side surface 113c and a first outlet 115 and a second outlet 116 on the downstream side surface 113d. The sub-passage inlet 114, the first outlet 115, and the second outlet 116 are provided at the tip of the measuring unit 113 on the tip side of the center in the protruding direction (X-axis direction) of the measuring unit 113. As a result, the gas to be measured 2 near the central portion of the main passage 22 away from the inner wall surface of the main passage 22 can be taken in from the sub-passage inlet 114. Therefore, the physical quantity measuring device 100 can suppress a decrease in measurement accuracy due to the influence of heat of the internal combustion engine 10.
 図3Aは、図2Aの物理量測定装置100の封止材119を配置する前の正面図である。図3Bは、図1の物理量測定装置100のカバー120を取り付ける前の背面図である。図3Cは、図3BのIII(C)-III(C)線に沿う物理量測定装置100の断面図である。図3Dは、図2AのIII(D)-III(D)線に沿う物理量測定装置100の断面図である。 FIG. 3A is a front view before arranging the sealing material 119 of the physical quantity measuring device 100 of FIG. 2A. FIG. 3B is a rear view of the physical quantity measuring device 100 of FIG. 1 before attaching the cover 120. FIG. 3C is a cross-sectional view of the physical quantity measuring device 100 along the line III (C) -III (C) of FIG. 3B. FIG. 3D is a cross-sectional view of the physical quantity measuring device 100 along the line III (D) -III (D) of FIG. 2A.
 図2Dに示すコネクタ112の外部端子112aは、たとえば図3Aに示すように、ボンディングワイヤ143を介して回路基板140のパッドに接続されている。回路基板140は、たとえば、ボンディングワイヤ143が接続される面に、保護回路144が実装されている。保護回路144は、回路内の電圧を安定させ、ノイズを除去する。これらボンディングワイヤ143および保護回路144は、図2Aに示すように、封止材119によって覆われて封止される。封止材119としては、たとえば、シリコーンゲルや、シリコーン系封止材よりも剛性が高いエポキシ系封止材を使用することができる。 The external terminal 112a of the connector 112 shown in FIG. 2D is connected to the pad of the circuit board 140 via the bonding wire 143, for example, as shown in FIG. 3A. In the circuit board 140, for example, the protection circuit 144 is mounted on the surface to which the bonding wire 143 is connected. The protection circuit 144 stabilizes the voltage in the circuit and eliminates noise. The bonding wire 143 and the protection circuit 144 are covered and sealed by the encapsulant 119 as shown in FIG. 2A. As the encapsulant 119, for example, a silicone gel or an epoxy-based encapsulant having higher rigidity than the silicone-based encapsulant can be used.
 ハウジング110は、図3Bに示すように、計測部113の背面113b側に、凹状の副通路溝117と、凹状の回路室118とを有している。図3Dに示すように、副通路溝117は、開口部がカバー120によって閉鎖されることで、カバー120とともに副通路130を形成する。副通路130は、主通路22を流れる被計測気体2を取り込んで迂回させる。主通路22を流れる被計測気体2は、たとえば図3Bに示すように、計測部113の上流側の側面113cに開口する副通路入口114から副通路130に取り込まれる。 As shown in FIG. 3B, the housing 110 has a concave sub-passage groove 117 and a concave circuit chamber 118 on the back surface 113b side of the measuring unit 113. As shown in FIG. 3D, the sub-passage groove 117 forms the sub-passage 130 together with the cover 120 by closing the opening by the cover 120. The sub-passage 130 takes in the gas to be measured 2 flowing through the main passage 22 and detours it. As shown in FIG. 3B, for example, the gas to be measured 2 flowing through the main passage 22 is taken into the sub-passage 130 from the sub-passage inlet 114 that opens on the side surface 113c on the upstream side of the measuring unit 113.
 副通路溝117は、たとえば、第1副通路溝117aと、第2副通路溝117bとを有している。第1副通路溝117aは、図3Bに示すように、計測部113の上流側の側面113cに開口する副通路入口114から、計測部113の下流側の側面113dに開口する第1出口115まで、主通路22の中心線22a(Y軸方向)に沿って延びている。第1副通路溝117aは、たとえば図3Dに示すように、カバー120との間に第1副通路131を形成する。第1副通路131は、副通路入口114から取り込んだ被計測気体2を、第1出口115から主通路22へ戻す。 The sub-passage groove 117 has, for example, a first sub-passage groove 117a and a second sub-passage groove 117b. As shown in FIG. 3B, the first sub-passage groove 117a extends from the sub-passage inlet 114 opening on the upstream side surface 113c of the measuring unit 113 to the first outlet 115 opening on the downstream side surface 113d of the measuring unit 113. , Extends along the center line 22a (Y-axis direction) of the main passage 22. The first sub-passage groove 117a forms the first sub-passage 131 with the cover 120, for example, as shown in FIG. 3D. The first sub-passage 131 returns the gas to be measured 2 taken in from the sub-passage inlet 114 from the first outlet 115 to the main passage 22.
 第2副通路溝117bは、図3Bに示すように、第1副通路溝117aの途中から分岐して、計測部113の突出方向(X軸方向)に沿ってフランジ111へ向けて延びている。さらに、第2副通路溝117bは、反対方向へ折り返すようにU字状にカーブして計測部113の突出方向(X軸方向)に沿って計測部113の先端部へ向けて延びている。第2副通路溝117bは、計測部113の先端部で主通路22の中心線22a(Y軸方向)に沿う方向へカーブして、計測部113の下流側の側面113dに開口する第2出口116に接続されている。たとえば、図3Cに示すように、第2副通路溝117bは、開口部がカバー120によって閉鎖されることで、カバー120との間に第2副通路132を形成する。副通路130は、第1副通路131と第2副通路132とを含む。 As shown in FIG. 3B, the second sub-passage groove 117b branches from the middle of the first sub-passage groove 117a and extends toward the flange 111 along the projecting direction (X-axis direction) of the measuring unit 113. .. Further, the second sub-passage groove 117b is curved in a U shape so as to be folded back in the opposite direction, and extends toward the tip end portion of the measuring unit 113 along the protruding direction (X-axis direction) of the measuring unit 113. The second sub-passage groove 117b curves in the direction along the center line 22a (Y-axis direction) of the main passage 22 at the tip of the measuring unit 113, and opens to the side surface 113d on the downstream side of the measuring unit 113. It is connected to 116. For example, as shown in FIG. 3C, the second sub-passage groove 117b has an opening closed by the cover 120 to form a second sub-passage 132 with the cover 120. The sub-passage 130 includes a first sub-passage 131 and a second sub-passage 132.
 回路室118は、ハウジング110の計測部113の背面113b側で、フランジ111に接続された計測部113の基端側に凹状に設けられ、回路基板140を収容している。回路室118は、副通路溝117の第1副通路溝117aよりも計測部113の基端側で、主通路22を流れる被計測気体2の主流れ方向(Y軸方向)における第2副通路溝117bの上流側に隣接して設けられている。 The circuit chamber 118 is provided in a concave shape on the back surface 113b side of the measurement unit 113 of the housing 110 and on the base end side of the measurement unit 113 connected to the flange 111, and accommodates the circuit board 140. The circuit chamber 118 is a second sub-passage in the main flow direction (Y-axis direction) of the gas to be measured 2 flowing through the main passage 22 on the base end side of the measurement unit 113 with respect to the first sub-passage groove 117a of the sub-passage groove 117. It is provided adjacent to the upstream side of the groove 117b.
 図4Aは、図3Bの物理量測定装置100の回路基板140の正面図である。図4Bは、図4AのIV(B)-IV(B)線に沿う回路基板140の断面図である。図4Cは、図4Aの回路基板140に実装されるチップパッケージ150の底面図である。図4Dは、図4Cに示すチップパッケージ150のリードフレーム154の平面図である。図4Eは、図4Bの回路基板140に実装されたチップパッケージ150のIV(E)部の拡大図である。 FIG. 4A is a front view of the circuit board 140 of the physical quantity measuring device 100 of FIG. 3B. FIG. 4B is a cross-sectional view of the circuit board 140 along the IV (B) -IV (B) line of FIG. 4A. 4C is a bottom view of the chip package 150 mounted on the circuit board 140 of FIG. 4A. FIG. 4D is a plan view of the lead frame 154 of the chip package 150 shown in FIG. 4C. FIG. 4E is an enlarged view of the IV (E) portion of the chip package 150 mounted on the circuit board 140 of FIG. 4B.
 チップパッケージ150は、図4Bに示すように、リードフレーム154と、そのリードフレーム154を部分的に封止する樹脂封止部155と、リードフレーム154の表面に実装される熱式流量センサ151と、を備える。また、チップパッケージ150は、たとえば、リードフレーム154の裏面に配置される通路形成部材156と、熱式流量センサ151とリードフレーム154との間に配置される減衰部材157をさらに備える。 As shown in FIG. 4B, the chip package 150 includes a lead frame 154, a resin sealing portion 155 that partially seals the lead frame 154, and a thermal flow sensor 151 mounted on the surface of the lead frame 154. , Equipped with. Further, the chip package 150 further includes, for example, a passage forming member 156 arranged on the back surface of the lead frame 154 and a damping member 157 arranged between the thermal flow rate sensor 151 and the lead frame 154.
 チップパッケージ150は、熱式流量センサ151と電子部品152とが、たとえば熱硬化性樹脂のトランスファーモールドによって成形された樹脂封止部155によって一体的に封止された構成を有している。図4Aに示すように、チップパッケージ150の接続端子153は、はんだなどの接合材を介して回路基板140に実装されている。接続端子153は、図3Bに示すように、硬化性封止材141によって封止されている。 The chip package 150 has a configuration in which the thermal flow sensor 151 and the electronic component 152 are integrally sealed by, for example, a resin sealing portion 155 formed by a transfer mold of a thermosetting resin. As shown in FIG. 4A, the connection terminal 153 of the chip package 150 is mounted on the circuit board 140 via a bonding material such as solder. As shown in FIG. 3B, the connection terminal 153 is sealed by the curable sealing material 141.
 チップパッケージ150の接続端子153は、たとえば、図4Bおよび図4Dに示す電子部品152に接続される。チップパッケージ150は、たとえば、電子部品152によって熱式流量センサ151を駆動させる。電子部品152は、たとえば、LSIであり、ボンディングワイヤを介して熱式流量センサ151に接続され、熱式流量センサ151を駆動させる。 The connection terminal 153 of the chip package 150 is connected to, for example, the electronic component 152 shown in FIGS. 4B and 4D. The chip package 150 drives the thermal flow sensor 151 by, for example, an electronic component 152. The electronic component 152 is, for example, an LSI, which is connected to the thermal flow rate sensor 151 via a bonding wire to drive the thermal flow rate sensor 151.
 熱式流量センサ151は、図4Eに示すように、半導体基板151aと、その半導体基板151aの表面側に形成されて樹脂封止部155から露出した薄膜部151dと、を有している。また、熱式流量センサ151は、薄膜部151dの表面側に設けられた流量検出部151bと、半導体基板151aの裏面側に形成されて薄膜部151dの裏面側に隣接する凹部151cと、を有している。 As shown in FIG. 4E, the thermal flow sensor 151 has a semiconductor substrate 151a and a thin film portion 151d formed on the surface side of the semiconductor substrate 151a and exposed from the resin sealing portion 155. Further, the thermal flow rate sensor 151 has a flow rate detection unit 151b provided on the front surface side of the thin film portion 151d, and a recess 151c formed on the back surface side of the semiconductor substrate 151a and adjacent to the back surface side of the thin film portion 151d. is doing.
 図示を省略するが、流量検出部151bは、たとえば、被計測気体2の流れ方向の上流側と下流側に配置された一対の温度センサと、その一対の温度センサの間に配置されたヒータと備えている。熱式流量センサ151は、たとえば、流量検出部151bの一対の温度センサによって温度差を検出することで、被計測気体2の流量を測定する。凹部151cの開口は、たとえば、縦横が1[mm]×1[mm]程度の正方形の形状を有している。 Although not shown, the flow rate detection unit 151b includes, for example, a pair of temperature sensors arranged on the upstream side and the downstream side in the flow direction of the gas to be measured 2, and a heater arranged between the pair of temperature sensors. I have. The thermal flow rate sensor 151 measures the flow rate of the gas to be measured 2 by detecting the temperature difference by, for example, a pair of temperature sensors of the flow rate detection unit 151b. The opening of the recess 151c has, for example, a square shape having a length and width of about 1 [mm] × 1 [mm].
 熱式流量センサ151は、たとえば、図4Bおよび図4Cに示すように、回路基板140とチップパッケージ150の凹溝150cとの間に形成された計測通路132aを流れる被計測気体2の流量を計測する。計測通路132aは、たとえば、図3Bおよび図3Dに示すように、副通路溝117の第2副通路溝117b内、すなわち副通路130の第2副通路132内に形成される。 As shown in FIGS. 4B and 4C, for example, the thermal flow rate sensor 151 measures the flow rate of the gas to be measured 2 flowing through the measurement passage 132a formed between the circuit board 140 and the concave groove 150c of the chip package 150. do. The measurement passage 132a is formed, for example, in the second sub-passage groove 117b of the sub-passage groove 117, that is, in the second sub-passage 132 of the sub-passage 130, as shown in FIGS. 3B and 3D.
 リードフレーム154は、図4Dおよび図4Eに示すように、半導体基板151aの凹部151cの開口に連通する貫通孔154aと、その貫通孔154aに連通してリードフレーム154の裏面に沿って形成された通気溝154bと、を有している。ここで、リードフレーム154の裏面は、熱式流量センサ151および電子部品152が実装されるリードフレーム154の表面と反対側の面である。貫通孔154aは、たとえば、凹部151cの開口とおおむね等しい形状および寸法に形成されている。 As shown in FIGS. 4D and 4E, the lead frame 154 is formed along a through hole 154a communicating with the opening of the recess 151c of the semiconductor substrate 151a and communicating with the through hole 154a along the back surface of the lead frame 154. It has a ventilation groove 154b and. Here, the back surface of the lead frame 154 is the surface opposite to the front surface of the lead frame 154 on which the thermal flow sensor 151 and the electronic component 152 are mounted. The through hole 154a is formed, for example, in a shape and size substantially equal to the opening of the recess 151c.
 また、リードフレーム154は、たとえば、リードフレーム154の貫通孔154aに連通する通気溝154bの一端とは反対側の通気溝154bの他端に連通する貫通孔154cを有している。この貫通孔154cは、図4Bに示すように、樹脂封止部155から露出され、回路室118に連通している。図4Dに示す例において、リードフレーム154の裏面に3本の通気溝154bが形成されている。なお、通気溝154bの数は、特に限定されず、単数もしくは2本または4本以上の複数でもよい。 Further, the lead frame 154 has, for example, a through hole 154c communicating with the other end of the ventilation groove 154b opposite to one end of the ventilation groove 154b communicating with the through hole 154a of the lead frame 154. As shown in FIG. 4B, the through hole 154c is exposed from the resin sealing portion 155 and communicates with the circuit chamber 118. In the example shown in FIG. 4D, three ventilation grooves 154b are formed on the back surface of the lead frame 154. The number of ventilation grooves 154b is not particularly limited, and may be a single number or a plurality of two or four or more.
 通路形成部材156は、図4Bに示すように、リードフレーム154の裏面に配置されている。通路形成部材156は、たとえば、樹脂製の基材の表面に粘着層が設けられたフィルム状の粘着テープであり、リードフレーム154の裏面に粘着層を介して接着されている。基材としては、たとえばフィルム状のポリイミドを用いることができる。また、粘着層としては、たとえばアクリル系やシリコーン系の粘着剤を用いることができる。すなわち、通路形成部材156は、たとえば、ポリイミドテープである。 As shown in FIG. 4B, the passage forming member 156 is arranged on the back surface of the lead frame 154. The passage forming member 156 is, for example, a film-like adhesive tape provided with an adhesive layer on the surface of a resin base material, and is adhered to the back surface of the lead frame 154 via the adhesive layer. As the base material, for example, a film-shaped polyimide can be used. Further, as the pressure-sensitive adhesive layer, for example, an acrylic-based or silicone-based pressure-sensitive adhesive can be used. That is, the passage forming member 156 is, for example, a polyimide tape.
 通路形成部材156は、図4Dおよび図4Eに示すように、リードフレーム154の貫通孔154aおよび貫通孔154cならびに通気溝154bとともに、半導体基板151aの凹部151cを外部に連通させる通気通路158を形成している。また、通路形成部材156は、リードフレーム154の貫通孔154aおよび貫通孔154cを閉鎖する部分が樹脂封止部155から露出されている。 As shown in FIGS. 4D and 4E, the passage forming member 156 forms a ventilation passage 158 for communicating the recess 151c of the semiconductor substrate 151a to the outside together with the through hole 154a and the through hole 154c and the ventilation groove 154b of the lead frame 154. ing. Further, in the passage forming member 156, a portion of the lead frame 154 that closes the through hole 154a and the through hole 154c is exposed from the resin sealing portion 155.
 減衰部材157は、図4Eに示すように、熱式流量センサ151とリードフレーム154との間に配置される。減衰部材157は、たとえば、熱式流量センサ151をリードフレーム154に接着する接着シートである。この場合、減衰部材157を構成する接着シートの基材は、たとえば、フィルム状のポリオレフィンまたはフィルム状のポリオレフィンにエポキシの粉体を海島状の分散させた構造を用いることができる。また、減衰部材157を構成する接着シートの粘着層は、たとえば、シリコーン系またはポリウレタン系の粘着剤を用いることができる。 As shown in FIG. 4E, the damping member 157 is arranged between the thermal flow rate sensor 151 and the lead frame 154. The damping member 157 is, for example, an adhesive sheet for adhering the thermal flow sensor 151 to the lead frame 154. In this case, as the base material of the adhesive sheet constituting the damping member 157, for example, a film-shaped polyolefin or a film-shaped polyolefin in which epoxy powder is dispersed in a sea-island shape can be used. Further, for the adhesive layer of the adhesive sheet constituting the damping member 157, for example, a silicone-based or polyurethane-based adhesive can be used.
 より具体的には、減衰部材157として、たとえば、日立化成株式会社製のダイボンディングフィルム、HR-9004、HR-9050Gなどが好適である。減衰部材157を構成する接着シートの厚さは、たとえば、15[μm]または30[μm]程度である。また、減衰部材157を構成する接着シートの弾性率は、たとえば、高温のエージングにより、1[MPa]以上になっている。なお、減衰部材157は、全体が接着シートである構成に限定されない。 More specifically, as the damping member 157, for example, a die bonding film manufactured by Hitachi Kasei Co., Ltd., HR-9004, HR-9050G, or the like is suitable. The thickness of the adhesive sheet constituting the damping member 157 is, for example, about 15 [μm] or 30 [μm]. Further, the elastic modulus of the adhesive sheet constituting the damping member 157 is, for example, 1 [MPa] or more due to high temperature aging. The damping member 157 is not limited to the configuration in which the entire damping member 157 is an adhesive sheet.
 より具体的には、減衰部材157は、少なくともリードフレーム154の貫通孔154aと熱式流量センサ151の半導体基板151aの凹部151cとの間に配置される部分が、メッシュであってもよい。この場合、減衰部材157として、金属製のメッシュを用いることができる。また、減衰部材157は、メッシュ以外の部分、すなわち、リードフレーム154の貫通孔154aの外側に位置して、熱式流量センサ151とリードフレーム154との間に配置される部分が、接着シートによって構成されていてもよい。 More specifically, in the damping member 157, at least a portion arranged between the through hole 154a of the lead frame 154 and the recess 151c of the semiconductor substrate 151a of the thermal flow sensor 151 may be a mesh. In this case, a metal mesh can be used as the damping member 157. Further, the damping member 157 is located outside the through hole 154a of the lead frame 154, that is, a portion other than the mesh, that is, a portion arranged between the thermal flow rate sensor 151 and the lead frame 154 is formed by an adhesive sheet. It may be configured.
 減衰部材157は、通気通路158と熱式流量センサ151の凹部151cとの間を流通する気体に対する抵抗係数が2.76未満となる開口比に設定された複数の連通孔157aを有している。たとえば、通気通路158と熱式流量センサ151の凹部151cとの間を流通する気体に対する抵抗係数をK、複数の連通孔157aの開口比をβとすると、以下の式(1)が成立する。 The damping member 157 has a plurality of communication holes 157a set to an opening ratio such that the resistance coefficient to the gas flowing between the ventilation passage 158 and the recess 151c of the thermal flow sensor 151 is less than 2.76. .. For example, assuming that the drag coefficient for the gas flowing between the ventilation passage 158 and the recess 151c of the thermal flow sensor 151 is K and the opening ratio of the plurality of communication holes 157a is β, the following equation (1) is established.
 K=0.85(1-β)/β ・・・(1) K = 0.85 (1-β) / β 2 ... (1)
 なお、複数の連通孔157aの開口比βは、リードフレーム154の貫通孔154aと熱式流量センサ151の凹部151cとの間に配置された減衰部材157の面積に対する複数の連通孔157aの開口面積の比である。より具体的には、図4Dに示すように、減衰部材157の複数の連通孔157aは、たとえば、リードフレーム154の貫通孔154aの開口領域に千鳥状に配置されている。この場合、複数の連通孔157aの開口比βは、連通孔157aの直径をd、ピッチをlとして、以下の式(2)で表すことができる。 The opening ratio β of the plurality of communication holes 157a is the opening area of the plurality of communication holes 157a with respect to the area of the damping member 157 arranged between the through hole 154a of the lead frame 154 and the recess 151c of the thermal flow sensor 151. Is the ratio of. More specifically, as shown in FIG. 4D, the plurality of communication holes 157a of the damping member 157 are arranged in a staggered manner in the opening region of the through hole 154a of the lead frame 154, for example. In this case, the opening ratio β of the plurality of communication holes 157a can be expressed by the following equation (2), where d is the diameter of the communication holes 157a and l is the pitch.
 β={π/(2×31/2)}×(d/l) ・・・(2) β = {π / (2 × 3 1/2 )} × (d / l) 2 ... (2)
 また、減衰部材157において、少なくともリードフレーム154の貫通孔154aの開口領域に配置される部分がメッシュである場合、複数の連通孔157aの開口比βは、線径をd、ピッチをlとして、以下の式(3)で表すことができる。 Further, in the damping member 157, when at least the portion arranged in the opening region of the through hole 154a of the lead frame 154 is a mesh, the opening ratio β of the plurality of communication holes 157a has a wire diameter of d and a pitch of l. It can be expressed by the following equation (3).
 β=(1-d/l) ・・・(3) β = (1-d / l) 2 ... (3)
 本実施形態の物理量測定装置100は、前述のように、減衰部材157の複数の連通孔157aの開口比βを設定することで、たとえば、所定の範囲の周波数における被計測気体2の振動による熱式流量センサ151の信号の誤差が所定値以下にされている。より具体的には、たとえば、内燃機関制御システム1に設けられるターボチャージャの音圧により、被計測気体2に周波数が10[kHz]以上、20[kHz]以下の振動が発生する。 As described above, the physical quantity measuring device 100 of the present embodiment sets the opening ratio β of the plurality of communication holes 157a of the damping member 157, for example, to heat the measured gas 2 at a frequency in a predetermined range due to vibration. The error of the signal of the formula flow sensor 151 is set to a predetermined value or less. More specifically, for example, the sound pressure of the turbocharger provided in the internal combustion engine control system 1 causes the gas to be measured 2 to vibrate at a frequency of 10 [kHz] or more and 20 [kHz] or less.
 本実施形態の物理量測定装置100は、前述のように、減衰部材157の複数の連通孔157aの開口比βを、通気通路158と熱式流量センサ151の凹部151cとの間を流通する気体に対する抵抗係数Kが2.76未満となる開口比βに設定している。これにより、本実施形態の物理量測定装置100は、周波数が10[kHz]以上、20[kHz]以下の被計測気体2の振動に対する熱式流量センサ151の信号の誤差が150[db]以下になっている。 As described above, the physical quantity measuring device 100 of the present embodiment has the opening ratio β of the plurality of communication holes 157a of the damping member 157 with respect to the gas flowing between the ventilation passage 158 and the recess 151c of the thermal flow sensor 151. The aperture ratio β is set so that the resistance coefficient K is less than 2.76. As a result, in the physical quantity measuring device 100 of the present embodiment, the error of the signal of the thermal flow sensor 151 with respect to the vibration of the gas to be measured 2 having a frequency of 10 [kHz] or more and 20 [kHz] or less becomes 150 [db] or less. It has become.
 以下、本実施形態の物理量測定装置100の作用を説明する。 Hereinafter, the operation of the physical quantity measuring device 100 of the present embodiment will be described.
 図1に示すような内燃機関制御システム1では、たとえば、車両に搭載されるターボチャージャが発生する音圧によって、物理量測定装置100の副通路130に取り込まれた被計測気体2が所定の周波数で振動する場合がある。この場合、たとえば、図4Bに示すように、チップパッケージ150の樹脂封止部155から露出した通路形成部材156が、リードフレーム154の貫通孔154aに対向する部分において振動する。 In the internal combustion engine control system 1 as shown in FIG. 1, for example, the measured gas 2 taken into the sub-passage 130 of the physical quantity measuring device 100 by the sound pressure generated by the turbocharger mounted on the vehicle has a predetermined frequency. It may vibrate. In this case, for example, as shown in FIG. 4B, the passage forming member 156 exposed from the resin sealing portion 155 of the chip package 150 vibrates at the portion of the lead frame 154 facing the through hole 154a.
 ここで、リードフレーム154の貫通孔154aと、熱式流量センサ151の半導体基板151aの凹部151cとの間に、減衰部材157が配置されていない場合、通路形成部材156の振動により貫通孔154aと凹部151cの間を流通する空気が振動する。その結果、半導体基板151aの薄膜部151dが振動して、熱式流量センサ151による被計測気体2の流量の測定精度が低下する。 Here, when the damping member 157 is not arranged between the through hole 154a of the lead frame 154 and the recess 151c of the semiconductor substrate 151a of the thermal flow sensor 151, the through hole 154a is caused by the vibration of the passage forming member 156. The air flowing between the recesses 151c vibrates. As a result, the thin film portion 151d of the semiconductor substrate 151a vibrates, and the measurement accuracy of the flow rate of the gas to be measured 2 by the thermal flow rate sensor 151 is lowered.
 これに対し、本実施形態の物理量測定装置100は、前述のように、リードフレーム154と、そのリードフレーム154を部分的に封止する樹脂封止部155と、リードフレーム154の表面に実装される熱式流量センサ151と、リードフレーム154の裏面に配置される通路形成部材156と、を備える。また、本実施形態の物理量測定装置100は、熱式流量センサ151とリードフレーム154との間に配置される減衰部材157をさらに備えている。熱式流量センサ151は、半導体基板151aと、その半導体基板151aの表面側に形成されて樹脂封止部155から露出した薄膜部151dと、その薄膜部151dの表面側に設けられた流量検出部151bと、半導体基板151aの裏面側に形成されて薄膜部151dの裏面側に隣接する凹部151cと、を有している。リードフレーム154は、凹部151cの開口に連通する貫通孔154aと、その貫通孔154aに連通してリードフレーム154の裏面に沿って形成された通気溝154bと、を有している。通路形成部材156は、貫通孔154aおよび通気溝154bとともに凹部151cを外部に連通させる通気通路158を形成し、貫通孔154aを閉鎖する部分が樹脂封止部155から露出されている。減衰部材157は、通気通路158と凹部151cとの間を流通する気体に対する抵抗係数Kが2.76未満となる開口比βに設定された複数の連通孔157aを有している。 On the other hand, the physical quantity measuring device 100 of the present embodiment is mounted on the surface of the lead frame 154, the resin sealing portion 155 that partially seals the lead frame 154, and the lead frame 154, as described above. A thermal flow sensor 151 and a passage forming member 156 arranged on the back surface of the lead frame 154 are provided. Further, the physical quantity measuring device 100 of the present embodiment further includes a damping member 157 arranged between the thermal flow rate sensor 151 and the lead frame 154. The thermal flow sensor 151 includes a semiconductor substrate 151a, a thin film portion 151d formed on the surface side of the semiconductor substrate 151a and exposed from the resin sealing portion 155, and a flow rate detection unit provided on the surface side of the thin film portion 151d. It has 151b and a recess 151c formed on the back surface side of the semiconductor substrate 151a and adjacent to the back surface side of the thin film portion 151d. The lead frame 154 has a through hole 154a communicating with the opening of the recess 151c and a ventilation groove 154b communicating with the through hole 154a and formed along the back surface of the lead frame 154. The passage forming member 156 forms a ventilation passage 158 that communicates the recess 151c to the outside together with the through hole 154a and the ventilation groove 154b, and the portion that closes the through hole 154a is exposed from the resin sealing portion 155. The damping member 157 has a plurality of communication holes 157a set to an opening ratio β such that the drag coefficient K against the gas flowing between the ventilation passage 158 and the recess 151c is less than 2.76.
 この構成により、チップパッケージ150の樹脂封止部155から露出した通路形成部材156が振動すると、減衰部材157の複数の連通孔157aを通してリードフレーム154の貫通孔154aと半導体基板151aの凹部151cとの間を空気が流通する。ここで、減衰部材157の複数の連通孔157aの開口比βは、通気通路158を構成する貫通孔154aと凹部151cとの間を流通する気体に対する抵抗係数Kが2.76未満となるように設定されている。 With this configuration, when the passage forming member 156 exposed from the resin sealing portion 155 of the chip package 150 vibrates, the through hole 154a of the lead frame 154 and the recess 151c of the semiconductor substrate 151a are formed through the plurality of communication holes 157a of the damping member 157. Air circulates between them. Here, the opening ratio β of the plurality of communication holes 157a of the damping member 157 is such that the drag coefficient K against the gas flowing between the through holes 154a constituting the ventilation passage 158 and the recess 151c is less than 2.76. It is set.
 図5Aは、抵抗係数Kと減衰率A∞との関係を示すグラフである。図5Aに示すように、抵抗係数Kが2.76未満の場合、減衰率A∞はゼロより大となり、通気通路158を構成する貫通孔154aと凹部151cとの間を流通する気体の振動が減衰する。したがって、前述のように、減衰部材157の複数の連通孔157aの開口比βを、抵抗係数Kが2.76未満となるように設定することで、通気通路158と凹部151cとの間を流通する気体の振動を減衰させることができる。なお、開口比βは、たとえば、前述の式(2)または(3)により求めることができ、減衰率A∞は、α、Cを比例定数として、以下の式(4)から(6)により求めることができる。 FIG. 5A is a graph showing the relationship between the drag coefficient K and the attenuation factor A∞. As shown in FIG. 5A, when the drag coefficient K is less than 2.76, the damping factor A∞ becomes larger than zero, and the vibration of the gas flowing between the through hole 154a constituting the ventilation passage 158 and the recess 151c is generated. Decay. Therefore, as described above, by setting the opening ratio β of the plurality of communication holes 157a of the damping member 157 so that the drag coefficient K is less than 2.76, the air flows between the ventilation passage 158 and the recess 151c. It is possible to attenuate the vibration of the gas. The aperture ratio β can be obtained by, for example, the above-mentioned equation (2) or (3), and the attenuation factor A∞ can be obtained by the following equations (4) to (6) with α and C as proportional constants. Can be asked.
 A∞=(1+α-αK)/(1+α+K) ・・・(4)
 α=1.1×(1+K)1/2      ・・・(5)
 K=C(1-β)/β         ・・・(6)
A∞ = (1 + α-αK) / (1 + α + K) ・ ・ ・ (4)
α = 1.1 × (1 + K) 1/2 ... (5)
K = C (1-β) / β 2 ... (6)
 図5Bは、連通孔157aの直径dおよびピッチlと、減衰率A∞との関係を示すグラフである。なお、図5Bにおいて、減衰部材157の複数の連通孔157aの配置は、図4Dに示すような千鳥状の配置である。減衰部材157の複数の連通孔157aの開口比βは、前述の式(2)に示すように、連通孔157aの直径dとピッチlによって決まる。たとえば、前述のように、熱式流量センサ151の凹部151cの開口と、リードフレーム154の貫通孔154aが、1[mm]×1[mm]の正方形であるとする。この場合、熱式流量センサ151の凹部151cの開口と、リードフレーム154の貫通孔154aとの間に配置される、減衰部材157の連通孔157aの直径dおよびピッチlと、減衰率A∞との間には、図5Bに示すような関係が成立する。 FIG. 5B is a graph showing the relationship between the diameter d and pitch l of the communication holes 157a and the attenuation factor A∞. In FIG. 5B, the arrangement of the plurality of communication holes 157a of the damping member 157 is a staggered arrangement as shown in FIG. 4D. The opening ratio β of the plurality of communication holes 157a of the damping member 157 is determined by the diameter d and the pitch l of the communication holes 157a as shown in the above equation (2). For example, as described above, it is assumed that the opening of the recess 151c of the thermal flow sensor 151 and the through hole 154a of the lead frame 154 are squares of 1 [mm] × 1 [mm]. In this case, the diameter d and pitch l of the communication hole 157a of the damping member 157 arranged between the opening of the recess 151c of the thermal flow sensor 151 and the through hole 154a of the lead frame 154, and the damping factor A∞. The relationship shown in FIG. 5B is established between the two.
 すなわち、連通孔157aの直径dが20[μm]である場合、ピッチlを約30[μm]から約50[μm]までの範囲とすることで、減衰率A∞を0より大とすることができる。また、連通孔157aの直径dが50[μm]である場合、ピッチlを約80[μm]から約110[μm]までの範囲とすることで、減衰率A∞を0より大とすることができる。また、連通孔157aの直径dが100[μm]である場合、ピッチlを約170[μm]から約230[μm]までの範囲とすることで、減衰率A∞を0より大とすることができる。また、連通孔157aの直径dが200[μm]である場合、ピッチlを約330[μm]から約460[μm]までの範囲とすることで、減衰率A∞を0より大とすることができる。なお、連通孔157aをレーザー加工によって形成する場合には、直径dを100[μm]程度にすることで、バリの発生を抑制することが可能になる。 That is, when the diameter d of the communication hole 157a is 20 [μm], the attenuation factor A∞ is set to be larger than 0 by setting the pitch l in the range of about 30 [μm] to about 50 [μm]. Can be done. When the diameter d of the communication hole 157a is 50 [μm], the damping factor A∞ is set to be larger than 0 by setting the pitch l in the range of about 80 [μm] to about 110 [μm]. Can be done. When the diameter d of the communication hole 157a is 100 [μm], the damping factor A∞ is set to be larger than 0 by setting the pitch l in the range of about 170 [μm] to about 230 [μm]. Can be done. When the diameter d of the communication hole 157a is 200 [μm], the damping factor A∞ is set to be larger than 0 by setting the pitch l in the range of about 330 [μm] to about 460 [μm]. Can be done. When the communication hole 157a is formed by laser processing, it is possible to suppress the generation of burrs by setting the diameter d to about 100 [μm].
 図5Cは、減衰部材157を構成するメッシュの線径dおよびピッチlと、減衰率A∞との関係を示すグラフである。減衰部材157の複数の連通孔157aの開口比βは、前述の式(3)に示すように、連通孔157aを構成するメッシュの線径dとピッチlによって決まる。たとえば、前述のように、熱式流量センサ151の凹部151cの開口と、リードフレーム154の貫通孔154aが、1[mm]×1[mm]の正方形であるとする。この場合、熱式流量センサ151の凹部151cの開口と、リードフレーム154の貫通孔154aとの間に配置される、メッシュの線径dおよびピッチlと、減衰率A∞との間には、図5Cに示すような関係が成立する。 FIG. 5C is a graph showing the relationship between the wire diameter d and the pitch l of the mesh constituting the damping member 157 and the damping factor A∞. The opening ratio β of the plurality of communication holes 157a of the damping member 157 is determined by the wire diameter d and the pitch l of the mesh constituting the communication holes 157a, as shown in the above equation (3). For example, as described above, it is assumed that the opening of the recess 151c of the thermal flow sensor 151 and the through hole 154a of the lead frame 154 are squares of 1 [mm] × 1 [mm]. In this case, between the wire diameter d and pitch l of the mesh arranged between the opening of the recess 151c of the thermal flow sensor 151 and the through hole 154a of the lead frame 154, and the damping factor A∞, The relationship shown in FIG. 5C is established.
 すなわち、減衰部材157を構成するメッシュの線径dが20[μm]である場合、ピッチlを約70[μm]から約200[μm]までの範囲とすることで、減衰率A∞を0より大とすることができる。また、メッシュの線径dが50[μm]である場合、ピッチlを約180[μm]から約500[μm]までの範囲とすることで、減衰率A∞を0より大とすることができる。また、メッシュの線径dが100[μm]である場合、ピッチlを約360[μm]から約1000[μm]までの範囲とすることで、減衰率A∞を0より大とすることができる。なお、メッシュの線径dを20[μm]、ピッチlを約100[μm]から約200[μm]までの範囲とすることで、空気の振動の減衰効果が高く、かつ減衰部材157の製造を容易にすることができる。 That is, when the wire diameter d of the mesh constituting the damping member 157 is 20 [μm], the damping factor A∞ is set to 0 by setting the pitch l in the range of about 70 [μm] to about 200 [μm]. Can be larger. Further, when the wire diameter d of the mesh is 50 [μm], the attenuation factor A∞ can be made larger than 0 by setting the pitch l in the range of about 180 [μm] to about 500 [μm]. can. Further, when the wire diameter d of the mesh is 100 [μm], the attenuation factor A∞ can be made larger than 0 by setting the pitch l in the range of about 360 [μm] to about 1000 [μm]. can. By setting the wire diameter d of the mesh to 20 [μm] and the pitch l to the range of about 100 [μm] to about 200 [μm], the damping effect of air vibration is high and the damping member 157 is manufactured. Can be facilitated.
 以上のように、本実施形態の物理量測定装置100によれば、通路形成部材156を用いることで、特許文献1の第二実施例に記載された従来の熱式空気流量センサのような基板支持部材を使用する必要がなく、部品点数の増加や装置の大型化を抑制することができる。また、本実施形態の物理量測定装置100によれば、減衰部材157の複数の連通孔157aによって、通気通路158と熱式流量センサ151の凹部151cとの間を流通する空気の振動を減衰させ、外部からの音圧の影響による空気流量の測定精度の低下を抑制することができる。 As described above, according to the physical quantity measuring device 100 of the present embodiment, by using the passage forming member 156, the substrate is supported like the conventional thermal air flow rate sensor described in the second embodiment of Patent Document 1. There is no need to use members, and it is possible to suppress an increase in the number of parts and an increase in the size of the device. Further, according to the physical quantity measuring device 100 of the present embodiment, the vibration of the air flowing between the ventilation passage 158 and the recess 151c of the thermal flow sensor 151 is attenuated by the plurality of communication holes 157a of the damping member 157. It is possible to suppress a decrease in the measurement accuracy of the air flow rate due to the influence of sound pressure from the outside.
 また、本実施形態の物理量測定装置100において、減衰部材157は、たとえば、熱式流量センサ151をリードフレーム154に接着する接着シートである。この構成により、従来から熱式流量センサ151をリードフレーム154に接着するために使用されていた接着シートを減衰部材157として使用することができる。したがって、物理量測定装置100の部品点数の増加や装置の大型化を抑制することができる。また、減衰部材157の設置および加工を容易にすることができる。 Further, in the physical quantity measuring device 100 of the present embodiment, the damping member 157 is, for example, an adhesive sheet for adhering the thermal flow rate sensor 151 to the lead frame 154. With this configuration, the adhesive sheet conventionally used for adhering the thermal flow sensor 151 to the lead frame 154 can be used as the damping member 157. Therefore, it is possible to suppress an increase in the number of parts of the physical quantity measuring device 100 and an increase in the size of the device. In addition, the damping member 157 can be easily installed and processed.
 また、本実施形態の物理量測定装置100において、減衰部材157として用いる接着シートの弾性率は、たとえば、1[MPa]以上である。この構成により、通気通路158と熱式流量センサ151の凹部151cとの間を流通する空気による減衰部材157のたわみを防止して、連通孔157aを通過する空気の振動をより確実に減衰させることが可能になる。 Further, in the physical quantity measuring device 100 of the present embodiment, the elastic modulus of the adhesive sheet used as the damping member 157 is, for example, 1 [MPa] or more. With this configuration, the deflection of the damping member 157 due to the air flowing between the ventilation passage 158 and the recess 151c of the thermal flow sensor 151 is prevented, and the vibration of the air passing through the communication hole 157a is more reliably damped. Will be possible.
 また、本実施形態の物理量測定装置100において、減衰部材157は、たとえば、メッシュである。この構成により、減衰部材157の強度および耐久性を向上させることができる。たとえば、減衰部材157を構成するメッシュの材質が、リードフレーム154の材質と同じである場合、減衰部材157を構成するメッシュとリードフレーム154の線膨張係数が等しくなり、熱応力の発生を抑制することができる。また、減衰部材157に対する孔開け加工を省略して、製造工程を簡略化することが可能になる。 Further, in the physical quantity measuring device 100 of the present embodiment, the damping member 157 is, for example, a mesh. With this configuration, the strength and durability of the damping member 157 can be improved. For example, when the material of the mesh constituting the damping member 157 is the same as the material of the lead frame 154, the linear expansion coefficients of the mesh constituting the damping member 157 and the lead frame 154 become equal to each other, and the generation of thermal stress is suppressed. be able to. Further, it is possible to simplify the manufacturing process by omitting the drilling process for the damping member 157.
 また、本実施形態の物理量測定装置100は、通気通路158と熱式流量センサ151の凹部151cとの間を流通する空気に対する抵抗係数をK、複数の連通孔157aの開口比をβとして、前述の式(1):K=0.85(1-β)/βが成立する。これにより、抵抗係数Kに基づいて複数の連通孔157aの開口比βを決定することができる。 Further, in the physical quantity measuring device 100 of the present embodiment, the resistance coefficient to the air flowing between the ventilation passage 158 and the recess 151c of the thermal flow sensor 151 is K, and the opening ratio of the plurality of communication holes 157a is β. Equation (1): K = 0.85 (1-β) / β 2 is established. Thereby, the opening ratio β of the plurality of communication holes 157a can be determined based on the drag coefficient K.
 また、本実施形態の物理量測定装置100は、周波数が10[kHz]以上、20[kHz]以下の気体の振動に対する熱式流量センサ151の信号の誤差が150[db]以下である。この構成により、熱式流量センサ151による被計測気体2の流量の測定精度を向上させることが可能になる。 Further, in the physical quantity measuring device 100 of the present embodiment, the error of the signal of the thermal flow sensor 151 with respect to the vibration of the gas having a frequency of 10 [kHz] or more and 20 [kHz] or less is 150 [db] or less. With this configuration, it becomes possible to improve the measurement accuracy of the flow rate of the gas to be measured 2 by the thermal flow rate sensor 151.
 以上、図面を用いて本開示に係る物理量測定装置の実施形態を詳述してきたが、具体的な構成はこの実施形態に限定されるものではなく、本開示の要旨を逸脱しない範囲における設計変更等があっても、それらは本開示に含まれるものである。なお、通路形成部材として、300[℃]から350[℃]程度で軟化点を迎える低融点のガラスシートを用いてもよい。この場合、ガラスシートに配合されたフラックス、Ni、Auなどの金属が化学結合することにより、ガラスシートがリードフレームに一体化する。この場合、熱式流量センサとリードフレームとを接着する接着シートに、リードフレームの貫通孔または熱式流量センサの凹部の開口と同一の形状および寸法の開口を形成して、複数の連通孔を有する減衰部材を省略してもよい。 Although the embodiment of the physical quantity measuring device according to the present disclosure has been described in detail with reference to the drawings, the specific configuration is not limited to this embodiment, and the design change is not deviated from the gist of the present disclosure. Etc., but they are included in this disclosure. As the passage forming member, a glass sheet having a low melting point that reaches a softening point at about 300 [° C.] to 350 [° C.] may be used. In this case, the glass sheet is integrated with the lead frame by chemically bonding the flux, Ni, Au, and other metals blended in the glass sheet. In this case, a plurality of communication holes are formed in the adhesive sheet for adhering the thermal flow sensor and the lead frame by forming an opening having the same shape and size as the through hole of the lead frame or the opening of the recess of the thermal flow sensor. The damping member to have may be omitted.
100  物理量測定装置
151  熱式流量センサ
151a 半導体基板
151b 流量検出部
151c 凹部
151d 薄膜部
154  リードフレーム
154a 貫通孔
154b 通気溝
155  樹脂封止部
156  通路形成部材
157  減衰部材(接着シート、メッシュ)
157a 連通孔
158  通気通路
K    抵抗係数
β    開口比
100 Physical quantity measuring device 151 Thermal flow sensor 151a Semiconductor substrate 151b Flow detection part 151c Recessed part 151d Thin film part 154 Lead frame 154a Through hole 154b Ventilation groove 155 Resin sealing part 156 Passage forming member 157 Damping member (adhesive sheet, mesh)
157a Communication hole 158 Ventilation passage K Drag coefficient β Aperture ratio

Claims (6)

  1.  リードフレームと、該リードフレームを部分的に封止する樹脂封止部と、前記リードフレームの表面に実装される熱式流量センサと、前記リードフレームの裏面に配置される通路形成部材と、を備える物理量測定装置であって、
     前記熱式流量センサと前記リードフレームとの間に配置される減衰部材をさらに備え、 前記熱式流量センサは、半導体基板と、該半導体基板の表面側に形成されて前記樹脂封止部から露出した薄膜部と、該薄膜部の表面側に設けられた流量検出部と、前記半導体基板の裏面側に形成されて前記薄膜部の裏面側に隣接する凹部と、を有し、
     前記リードフレームは、前記凹部の開口に連通する貫通孔と、該貫通孔に連通して前記裏面に沿って形成された通気溝と、を有し、
     前記通路形成部材は、前記貫通孔および前記通気溝とともに前記凹部を外部に連通させる通気通路を形成し、前記貫通孔を閉鎖する部分が前記樹脂封止部から露出されており、 前記減衰部材は、前記通気通路と前記凹部との間を流通する気体に対する抵抗係数が2.76未満となる開口比に設定された複数の連通孔を有することを特徴とする物理量測定装置。
    A lead frame, a resin sealing portion that partially seals the lead frame, a thermal flow rate sensor mounted on the surface of the lead frame, and a passage forming member arranged on the back surface of the lead frame. It is a physical quantity measuring device equipped
    A damping member arranged between the thermal flow sensor and the lead frame is further provided, and the thermal flow sensor is formed on the semiconductor substrate and the surface side of the semiconductor substrate and exposed from the resin sealing portion. It has a thin film portion, a flow rate detecting portion provided on the front surface side of the thin film portion, and a recess formed on the back surface side of the semiconductor substrate and adjacent to the back surface side of the thin film portion.
    The lead frame has a through hole communicating with the opening of the recess and a ventilation groove communicating with the through hole and formed along the back surface.
    The passage forming member forms a ventilation passage that allows the recess to communicate with the outside together with the through hole and the ventilation groove, and a portion that closes the through hole is exposed from the resin sealing portion. , A physical quantity measuring device having a plurality of communication holes set to an opening ratio such that a drag coefficient against a gas flowing between the ventilation passage and the recess is less than 2.76.
  2.  前記減衰部材は、前記熱式流量センサを前記リードフレームに接着する接着シートであることを特徴とする請求項1に記載の物理量測定装置。 The physical quantity measuring device according to claim 1, wherein the damping member is an adhesive sheet for adhering the thermal flow sensor to the lead frame.
  3.  前記接着シートの弾性率は、1[MPa]以上であることを特徴とする請求項2に記載の物理量測定装置。 The physical quantity measuring device according to claim 2, wherein the elastic modulus of the adhesive sheet is 1 [MPa] or more.
  4.  前記減衰部材は、メッシュであることを特徴とする請求項1に記載の物理量測定装置。 The physical quantity measuring device according to claim 1, wherein the damping member is a mesh.
  5.  前記抵抗係数をK、前記開口比をβとして、
     式:K=0.85(1-β)/β
     が成立することを特徴とする請求項1に記載の物理量測定装置。
    Let K be the drag coefficient and β be the aperture ratio.
    Equation: K = 0.85 (1-β) / β 2
    The physical quantity measuring device according to claim 1, wherein the above is satisfied.
  6.  周波数が10[kHz]以上、20[kHz]以下の前記気体の振動に対する前記熱式流量センサの信号の誤差が150[db]以下であることを特徴とする請求項1に記載の物理量測定装置。 The physical quantity measuring device according to claim 1, wherein the error of the signal of the thermal flow sensor with respect to the vibration of the gas having a frequency of 10 [kHz] or more and 20 [kHz] or less is 150 [db] or less. ..
PCT/JP2021/020476 2020-09-25 2021-05-28 Physical quantity measurement device WO2022064771A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-160314 2020-09-25
JP2020160314A JP2023165043A (en) 2020-09-25 2020-09-25 Physical quantity measuring device

Publications (1)

Publication Number Publication Date
WO2022064771A1 true WO2022064771A1 (en) 2022-03-31

Family

ID=80846403

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/020476 WO2022064771A1 (en) 2020-09-25 2021-05-28 Physical quantity measurement device

Country Status (2)

Country Link
JP (1) JP2023165043A (en)
WO (1) WO2022064771A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000241222A (en) * 1998-12-21 2000-09-08 Mitsubishi Electric Corp Flow rate measuring apparatus
JP2008233073A (en) * 2007-02-19 2008-10-02 Yamatake Corp Flowmeter and flow control device
US20110011479A1 (en) * 2009-07-17 2011-01-20 Stefan Chalupa Modularly structured flow conditioning unit
JP2017049011A (en) * 2015-08-31 2017-03-09 日立オートモティブシステムズ株式会社 Gas sensor device
JP2020026999A (en) * 2018-08-10 2020-02-20 オムロン株式会社 Flow rate measuring device, and piping installation applied with flow rate measuring device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000241222A (en) * 1998-12-21 2000-09-08 Mitsubishi Electric Corp Flow rate measuring apparatus
JP2008233073A (en) * 2007-02-19 2008-10-02 Yamatake Corp Flowmeter and flow control device
US20110011479A1 (en) * 2009-07-17 2011-01-20 Stefan Chalupa Modularly structured flow conditioning unit
JP2017049011A (en) * 2015-08-31 2017-03-09 日立オートモティブシステムズ株式会社 Gas sensor device
JP2020026999A (en) * 2018-08-10 2020-02-20 オムロン株式会社 Flow rate measuring device, and piping installation applied with flow rate measuring device

Also Published As

Publication number Publication date
JP2023165043A (en) 2023-11-15

Similar Documents

Publication Publication Date Title
JP6965358B2 (en) Thermal flow meter
JP6154966B2 (en) Physical quantity detection device
JP6184915B2 (en) Physical quantity detection device
JP5973371B2 (en) Thermal flow meter
JP5675705B2 (en) Thermal flow meter
JP5675708B2 (en) Thermal flow meter
US11965760B2 (en) Flow rate detecting device of intake air in an internal combustion engine
WO2022064771A1 (en) Physical quantity measurement device
JP2016194465A (en) Physical quantity detector
JP7049277B2 (en) Physical quantity detector
WO2022264498A1 (en) Physical quantity detection device
JP7062135B2 (en) Physical quantity detector
JP6775629B2 (en) Physical quantity detection element
JP7356957B2 (en) Physical quantity detection device
WO2024028931A1 (en) Physical quantity detection device
WO2020202721A1 (en) Physical quantity measurement device
US11927466B2 (en) Physical quantity measurement device including a thermal flow rate sensor with a ventilation flow path
WO2022254803A1 (en) Physical quantity detection device
JP6941172B2 (en) Physical quantity detector
JP5976167B2 (en) Thermal flow meter
JP2019207173A (en) Circuit package and flow rate measuring device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21871904

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21871904

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP