WO2022264200A1 - 表示装置 - Google Patents

表示装置 Download PDF

Info

Publication number
WO2022264200A1
WO2022264200A1 PCT/JP2021/022482 JP2021022482W WO2022264200A1 WO 2022264200 A1 WO2022264200 A1 WO 2022264200A1 JP 2021022482 W JP2021022482 W JP 2021022482W WO 2022264200 A1 WO2022264200 A1 WO 2022264200A1
Authority
WO
WIPO (PCT)
Prior art keywords
monitor
deterioration
pixels
speed
control unit
Prior art date
Application number
PCT/JP2021/022482
Other languages
English (en)
French (fr)
Inventor
モハマド レザ カゼミ
雅史 上野
政明 守屋
直樹 塩原
雅史 川井
浩之 古川
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to US18/288,945 priority Critical patent/US20240203341A1/en
Priority to CN202180097659.1A priority patent/CN117223049A/zh
Priority to PCT/JP2021/022482 priority patent/WO2022264200A1/ja
Publication of WO2022264200A1 publication Critical patent/WO2022264200A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • G09G3/3233Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the current through the light-emitting element
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3275Details of drivers for data electrodes
    • G09G3/3291Details of drivers for data electrodes in which the data driver supplies a variable data voltage for setting the current through, or the voltage across, the light-emitting elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0404Matrix technologies
    • G09G2300/0413Details of dummy pixels or dummy lines in flat panels
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0842Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor
    • G09G2300/0861Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor with additional control of the display period without amending the charge stored in a pixel memory, e.g. by means of additional select electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/04Maintaining the quality of display appearance
    • G09G2320/041Temperature compensation

Definitions

  • the present disclosure relates to display devices.
  • Patent Document 1 discloses a display device having a circuit element including a driving transistor.
  • the current-voltage characteristics of circuit elements including drive transistors are measured, and the input video signal is corrected based on the characteristic data obtained as a result of the measurement.
  • a group of pixels including drive transistors may change current-voltage characteristics depending on the environment in which they are used. Therefore, when performing deterioration compensation, an accurate measurement result may not be obtained depending on the timing of current-voltage measurement of a group of pixels. According to the display device disclosed in Patent Document 1, it cannot be determined whether the current-voltage characteristics of the circuit element including the driving transistor can be accurately measured. According to the display device according to one aspect of the present disclosure, execution of deterioration monitoring for detecting a decrease in the luminous efficiency of a group of pixels while the luminous efficiency of the group of pixels is temporarily changing is suppressed. .
  • a display device includes a display panel having a group of pixels, a deterioration monitor for detecting a decrease in luminous efficiency of the group of pixels, and for determining whether or not to perform the deterioration monitor, a first high-speed monitor executed at a higher speed than the deterioration monitor; a storage unit storing reference data specifying an allowable range for executing the deterioration monitor; The unit performs the degradation monitor if the first high speed monitor measurement obtained by the first high speed monitor is within the allowable range.
  • FIG. 1 is a diagram showing a schematic configuration of a display device according to an embodiment.
  • FIG. 2 is a diagram showing a schematic configuration of a pixel circuit, a source driver, and a control section according to the embodiment;
  • FIG. 3 is a diagram showing current-voltage characteristics of a pixel according to the embodiment.
  • FIG. 4 is a diagram showing current-luminance characteristics of pixels according to the embodiment.
  • FIG. 5 is a diagram showing the operation of the pixel circuit when displaying an image based on the video signal during the writing period of the gradation voltage according to the embodiment.
  • FIG. 6 is a diagram showing the operation of the pixel circuit when measuring the current flowing between the drain terminal and the source terminal of the drive transistor during the execution of the deterioration monitor and the execution of the first high-speed monitor.
  • FIG. 7 is a diagram showing the operation of the pixel circuit when measuring the current flowing through the light-emitting element during deterioration monitoring and first high-speed monitoring.
  • FIG. 8 is a diagram showing a schematic flow of processing by the control unit until a video signal after degradation compensation is obtained from the first high-speed monitor, according to the embodiment.
  • FIG. 9 is a diagram showing a schematic flow of processing for executing a first high-speed monitor and obtaining a first high-speed monitor current value, according to the embodiment.
  • FIG. 10 is a diagram showing a schematic flow of processing for executing deterioration monitoring and acquiring a compensation voltage value according to the embodiment.
  • 11 is a diagram illustrating a schematic flow of processing by a control unit according to Modification 1 of the embodiment;
  • FIG. FIG. 12 is a diagram showing a schematic configuration of a display device according to Modification 2 of the embodiment.
  • 13 is a diagram illustrating a schematic flow of processing by a control unit according to Modification 2 of the embodiment;
  • FIG. 14 is a diagram illustrating a schematic flow of processing by a control unit according to Modification 3 of the embodiment;
  • 15 is a diagram showing a schematic configuration of a display device according to Modification 4 of the embodiment.
  • FIG. 16 is a diagram showing a schematic configuration of a display device according to Modification 5 of the embodiment.
  • 17 is a diagram illustrating a schematic flow of processing by a control unit according to Modification 5 of the embodiment;
  • FIG. 1 is a diagram showing a schematic configuration of a display device 1 according to an embodiment.
  • the display device 1 includes a display panel 10 , a source driver 30 , a control section 40 and a storage section 50 .
  • the display panel 10 includes a group of pixels PX, a gate driver 13, gate lines G1(1) to G1(N), monitor control lines G2(1) to G2(N), data lines S(1) to S(M).
  • a group of pixels PX are arranged in a matrix in an image display area 11 of the display panel 10 .
  • Each of the group of pixels PX has a pixel circuit 20 including a light emitting element.
  • the display panel 10 displays an image in the display area 11 by, for example, self-luminescence of a group of pixels PX.
  • the display panel 10 for example, an organic EL (electro-luminescence) display panel using an OLED (Organic Light Emitting Diode) as a light emitting element, or a QLED (Quantum dot Light Emitting Diode) using a QLED (Quantum dot Light Emitting Diode) as a light emitting element.
  • OLED Organic Light Emitting Diode
  • QLED Quantum dot Light Emitting Diode
  • a display panel may be mentioned.
  • the display panel 10 may be any display panel that includes light-emitting elements, and is not limited to an organic EL display panel or a QLED display panel.
  • the gate lines G1(1) to G1(N) and the monitor control lines G2(1) to G2(N) are in one-to-one correspondence, and are provided extending substantially in parallel.
  • the data lines S(1)-S(M) are provided so as to cross the gate lines G1(1)-G1(N) and the monitor control lines G2(1)-G(N).
  • Each pixel PX is provided at a portion where the data lines S(1) to S(M) and the gate lines G1(1) to G1(N) intersect with the data lines S(1) to S(M).
  • the gate lines G1(1) to G1(N) are wirings for outputting scanning signals for selecting a group of pixels PX for each row from the gate driver 13 to each group of pixels PX.
  • the monitor control lines G2(1) to G2(N) transmit monitor control signals for selecting a group of pixels PX for each row from the gate driver 13 when executing the deterioration monitor and the first high-speed monitor. Wiring for outputting to each pixel PX.
  • the deterioration monitor detects a decrease in the luminous efficiency of each of the group of pixels PX, and a compensation voltage value (deterioration monitor measurement value) VC (see FIG. 2) for compensating for deterioration of the reduced luminous efficiency of each of the group of pixels PX. ) is obtained. Since the compensation voltage value VC is used when creating the compensation data 51 (see FIG. 2) for compensating the deterioration of the input video signal VDb into the video signal VDa as described later, the luminous efficiency of each of the group of pixels PX is determined by the compensation voltage value VC. It is required to detect changes (for example, changes in current-voltage characteristics) with relatively high accuracy. For this reason, the deterioration monitor requires a relatively longer processing time than the first high-speed monitor.
  • the current-voltage characteristics change due to an increase in the amount of current flowing through the group of pixels PX.
  • the luminous efficiency of each of the group of pixels PX temporarily changes greatly (for example, the current-voltage characteristics ), the compensation voltage value VC may not be obtained accurately.
  • the first high-speed monitor for example, if the luminous efficiency of each of the group of pixels PX temporarily changes significantly (for example, the current-voltage characteristics change significantly), that is, if the display device 1 is unable to perform deterioration monitoring. This is the process performed before the degradation monitor to determine if it is possible. For this reason, the first high-speed monitor detects changes in luminous efficiency (for example, changes in current-voltage characteristics) of each of the group of pixels PX more simply than the deterioration monitor. Therefore, the first high-speed monitor detects changes in luminous efficiency (for example, changes in current-voltage characteristics) of each pixel group PX faster than the degradation monitor. Details of the deterioration monitor and the first high-speed monitor will be described later with reference to FIGS. 8 to 10 and the like.
  • the data lines S(1) to S(M) are wirings for transmitting gradation signals corresponding to video signals from the source driver 30 to each group of pixels PX in order to display an image. Further, the data lines S(1) to S(M) transmit deterioration monitor voltages, which are input signals to each of the group of pixels PX, and output signals from each of the group of pixels PX when the deterioration monitor is executed. It is also the wiring for transmitting the deterioration monitor current to the source driver 30 . Further, the data lines S(1) to S(M) transmit predetermined voltages, which are input signals to each of the group of pixels PX, and output from each of the group of pixels PX when the first high-speed monitor is executed. It is also a wiring for transmitting the first high-speed monitor current, which is a signal, to the source driver 30 .
  • transmission of the video signal, transmission of the deterioration monitor voltage and deterioration monitor current, and transmission of the first high-speed monitor voltage and first high-speed monitor current do not necessarily have to be performed on the same wiring, and each transmission can be performed on separate wiring. you can go
  • the gate driver 13 may be provided on a substrate included in the display panel 10, for example. Alternatively, the gate driver 13 may be provided outside the substrate of the display panel 10 .
  • the gate driver 13 is connected to one end of each of the gate lines G1(1) to G1(N) and the monitor control lines G2(1) to G2(N).
  • the gate driver 13 has, for example, a shift register and a logic circuit.
  • the gate driver 13 drives the gate lines G 1 ( 1 ) to G 1 (N) and the monitor control lines G 2 ( 1 ) to G 2 (N) based on the gate control signal GCTL output from the control section 40 .
  • the source driver 30 drives a group of pixels PX through the data lines S(1) to S(M) based on the source control signal SCTL output from the control section 40.
  • FIG. For example, when the source driver 30 receives the video signal VDa from the control unit 40, it supplies a gradation signal (gradation voltage) corresponding to the video signal VDa to each of the data lines S(1) to S(M). Thereby, each of the group of pixels PX emits light, and an image is displayed in the display area 11 .
  • the source driver 30 supplies the deterioration monitor voltage to the data lines S(1) to S(M) based on the instruction signal from the control unit 40, or supplies the deterioration monitor voltage from each of the group of pixels PX.
  • the deterioration monitor current which is an analog signal output and transmitted through each of the data lines S(1) to S(M), is converted into a digital signal and output to the control unit 40 as a deterioration monitor current value Mo.
  • the source driver 30 supplies the first high-speed monitor voltage to the data lines S(1) to S(M) based on the instruction signal from the control unit 40, or supplies a group of The first high-speed monitor current, which is an analog signal output from each pixel PX and transmitted through each of the data lines S(1) to S(M), is converted into a digital signal to obtain a first high-speed monitor current value (first High-speed monitor measurement value) is output to the control unit 40 as FMo1.
  • the storage unit 50 for example, a flash memory or the like can be used.
  • the storage unit 50 is not limited to flash memory, and may be semiconductor memory such as SRAM (Static Random Access Memory), DRAM (Dynamic Random Access Memory), ROM (Read Only Memory), SSD (Solid State Drive). It may be a register, a magnetic storage device such as a hard disk drive (HDD), or an optical storage device such as an optical disk device.
  • SRAM Static Random Access Memory
  • DRAM Dynamic Random Access Memory
  • ROM Read Only Memory
  • SSD Solid State Drive
  • It may be a register, a magnetic storage device such as a hard disk drive (HDD), or an optical storage device such as an optical disk device.
  • HDD hard disk drive
  • optical storage device such as an optical disk device.
  • the control unit 40 controls the operations of the gate driver 13 and the source driver 30 to display an image in the display area 11, execute deterioration monitoring, and execute first high-speed monitoring.
  • the control unit 40 controls driving of the gate driver 13 by outputting a gate control signal GCTL to the gate driver 13 .
  • the control unit 40 controls driving of the source driver 30 by outputting a source control signal SCTL to the source driver 30 .
  • the control unit 40 has, for example, an image processing unit that performs image processing, a timing controller that controls operations of the gate driver 13 and the source driver 30, and the like.
  • the image processing unit can be configured using an LSI (Large Scale Integration) such as a GPU (Graphics Processing Unit).
  • the timing controller can be configured using LSI.
  • the control unit 40 acquires the input video signal VDb, which is a video signal input from the outside, the input video signal VDb is compensated for deterioration (that is, corrected) according to the state of deterioration of the luminous efficiency of the group of pixels PX. , to generate a video signal VDa to be supplied to a group of pixels PX. Then, the control unit 40 outputs the video signal VDa subjected to deterioration compensation to the source driver 30, and causes the source driver 30 to output the gradation signal corresponding to the video signal VDa to each of the group of pixels PX.
  • FIG. 2 is a diagram showing a schematic configuration of the pixel circuit 20, the source driver 30 and the control section 40 according to the embodiment.
  • FIG. 2 shows the pixel circuit 20 on the i-th row and the j-th column among the plurality of pixel circuits 20 .
  • the pixel circuit 20 includes a light emitting element 21, a capacitor C1, a selection transistor Tr1, a drive transistor Tr2, and a monitor control transistor Tr3.
  • the control unit 40 has a compensation unit 41 , a comparison unit 42 , a monitor control unit 43 and a compensation data generation unit 44 .
  • the light-emitting element 21 is, for example, a self-luminous element such as an OLED (Organic Light Emitting Diode) or a QLED (Quantum dot Light Emitting Diode).
  • the light emitting element 21 has an anode connected to the source terminal of the drive transistor Tr2 and a drain terminal of the monitor control transistor Tr3, and a cathode connected to the low level power supply line ELVSS.
  • One terminal of the capacitor C1 is connected to the high-level power supply line ELVDD and the drain terminal of the drive transistor Tr2, and the other terminal is connected to the drain terminal of the selection transistor Tr1 and the gate terminal of the drive transistor Tr2.
  • the selection transistor Tr1 is provided between the data line S(j) and the gate terminals of the capacitor C1 and the drive transistor Tr2.
  • the select transistor Tr1 has a gate terminal connected to the gate line G1(i), a source terminal connected to the data line S(j), and a drain terminal connected to the gate terminal of the drive transistor Tr2 and the other terminal of the capacitor C1. It is
  • the driving transistor Tr2 is connected in series with the light emitting element 21.
  • the driving transistor Tr2 has a gate terminal connected to the drain terminal of the selection transistor Tr1 and the other terminal of the capacitor C1, a drain terminal connected to the high-level power supply line ELVDD and one terminal of the capacitor, and a source terminal connected to the light emitting element 21. and the drain terminal of the monitor control transistor Tr3 are connected.
  • the monitor control transistor Tr3 is provided between the source terminal of the drive transistor Tr2, the anode of the light emitting element 21, and the data line S(j).
  • the monitor control transistor Tr3 has a gate terminal connected to the monitor control line G2(i), a drain terminal connected to the source terminal of the drive transistor Tr2 and the anode of the light emitting element 21, and a source terminal connected to the data line S(j). is connected with
  • compensation data 51 and reference data 52 are stored in the storage unit 50 .
  • the compensation data 51 is data for compensating for a decrease in luminous efficiency of a group of pixels PX.
  • the compensation data 51 is data for compensating for degradation (that is, correcting) the input video signal VDb to the video signal VDa.
  • the compensation data 51 may be, for example, data representing a lookup table containing information indicating the correspondence between the input video signal VDb and the video signal VDa (for example, the correspondence between the gradation voltages before and after correction).
  • the data may include information indicating an arithmetic expression for obtaining the video signal VDa from the input video signal VDb (for example, the corrected gradation voltage from the input gradation voltage).
  • the reference data 52 is data for specifying an allowable range for performing deterioration monitoring.
  • the reference data 52 may be any data as long as it is possible to specify the allowable range for executing deterioration monitoring.
  • Predetermined range data 52b representing a predetermined range for identification may also be included.
  • the reference value and predetermined range are values and ranges that define output current values from each of a group of pixels PX with respect to a predetermined voltage that allow execution of deterioration monitoring.
  • Compensation unit 41 performs degradation compensation (i.e., correction) on input video signal VDb (video signal before degradation compensation), which is a video signal input from the outside, using compensation data 51 stored in storage unit 50. , to generate a degradation-compensated video signal VDa.
  • the controller 40 then outputs the video signal VDa to the source driver 30 .
  • the comparison unit 42 determines whether the first high-speed monitor current value FMo1 acquired by the control unit 40 from the source driver 30 is within an allowable range in which deterioration monitoring can be performed. It determines whether or not, and outputs the determination result to the monitor control unit 43 .
  • the monitor control unit 43 executes the first high-speed monitor and the deterioration monitor.
  • the timing at which the monitor control unit 43 executes the first high-speed monitor and the deterioration monitor is not particularly limited. Immediately after, or when the power of the display device 1 is turned off, or the like can be mentioned. However, since the first high-speed monitor is executed to determine whether the deterioration monitor can be executed, it is executed before the deterioration monitor is executed.
  • the monitor control unit 43 supplies a predetermined voltage to the source driver 30 when executing the first high-speed monitor. Thereby, the control unit 40 obtains from the source driver 30 the first high-speed monitor current value FMo1, which is the output current from the pixel circuit 20 when the predetermined voltage is supplied. In this way, the control unit 40 measures the current-voltage characteristics of the pixel circuit 20 (that is, the group of pixels PX) simply and at high speed.
  • the monitor control unit 43 acquires from the comparison unit 42 the determination result that the first high-speed monitor current value FMo1 is within the permissible range in which deterioration monitoring can be performed, the monitor control unit 43 executes deterioration monitoring.
  • the monitor control unit 43 acquires from the comparison unit 42 the determination result indicating that the first high-speed monitor current value FMo1 is not within the allowable range in which deterioration monitoring can be performed, the monitor control unit 43 again performs the first 1 fast monitor or no first fast monitor.
  • the monitor control unit 43 executes the deterioration monitor
  • the monitor control unit 43 supplies the deterioration monitor voltage to the source driver 30 for a predetermined number of times (for example, the average number of times) for each line of the monitor control line G2(i).
  • the control unit 40 acquires from the source driver 30 the deterioration monitor current value Mo, which is the output current from the pixel circuit 20 for a predetermined number of times (for example, the average number of times) for each line of the monitor control line G2(i).
  • the monitor control unit 43 continues the deterioration monitor until the averaged deterioration monitor current value Mo of all the pixel circuits 20 connected to the monitor control line G2(i)1 becomes equal to or greater than a predetermined current value.
  • the voltage is changed (swept) and supplied to the monitor control line G2(i).
  • the monitor control unit 43 controls the deterioration when the averaged deterioration monitor current value Mo of all the pixel circuits 20 connected to the monitor control line G2(i)1 becomes equal to or greater than a predetermined current value.
  • a monitor voltage is obtained as a compensation voltage value VC.
  • control unit 40 measures the current-voltage characteristics of the plurality of pixel circuits 20 (that is, the group of pixels PX) with higher accuracy than the first high-speed monitor.
  • the monitor control unit 43 then outputs information indicating the acquired compensation voltage value VC to the compensation data generation unit 44 .
  • the compensation voltage value VC changes in accordance with the decrease in the luminous efficiency of the plurality of pixel circuits 20 (ie, the group of pixels PX)
  • the decrease in the luminous efficiency of the plurality of pixel circuits 20 ie, the group of pixels PX It can be expressed as detected data.
  • the compensation data generation unit 44 Upon acquiring information indicating the compensation voltage value VC from the monitor control unit 43, the compensation data generation unit 44 generates compensation data 51 based on the compensation voltage value VC. Then, the compensation data generation unit 44 updates the compensation data 51 already stored in the storage unit 50 using the generated compensation data 51 as new compensation data 51 .
  • the compensation data 51 already stored in the storage unit 50 is overwritten with new compensation data 51.
  • new compensation data 51 may be stored in a storage area separate from the already stored compensation data 51 in order to leave the already stored compensation data 51 .
  • FIG. 3 the decrease in luminous efficiency and deterioration compensation of a group of pixels PX will be described with reference to FIGS. 3 and 4.
  • FIG. 3 the decrease in luminous efficiency and deterioration compensation of a group of pixels PX will be described with reference to FIGS. 3 and 4.
  • FIG. 3 is a diagram showing current-voltage characteristics of the pixel PX according to the embodiment.
  • the vertical axis is a logarithmic graph in order to make it easier to understand the difference before and after deterioration of the low gradation.
  • Data A1 shown in FIG. 3 represents the current-voltage characteristics of the pixel PX before deterioration
  • data A2 represents the current-voltage characteristics of the pixel PX after deterioration.
  • FIG. 3 when the pixel PX deteriorates due to age deterioration or the like, it becomes difficult for the current to flow. , it is necessary to supply a voltage V2 higher than the voltage V1 to the pixel PX.
  • FIG. 4 is a diagram showing current-luminance characteristics of the pixel PX according to the embodiment.
  • Data B1 shown in FIG. 4 represents current-luminance characteristics of the pixel PX before deterioration
  • data B2 represents current-luminance characteristics of the pixel PX after deterioration.
  • the luminous efficiency decreases, and the deteriorated pixel PX emits light with the same luminance as the luminance obtained by the current I1 flowing through the pixel PX before deterioration. Therefore, it is necessary to pass the current I2, which is higher than the current I1, to the pixel PX.
  • the control unit 40 performs the following (1) to (3) among the pixel circuits 20 in order to detect a decrease in the luminous efficiency of the group of pixels PX. At least one of (1) Amount of decrease in the current flowing between the drain terminal and the source terminal of the driving transistor Tr2 (2) Amount of decrease in the current flowing through the light emitting element 21 (3) Amount of decrease in the luminous efficiency of the light emitting element 21
  • a deterioration monitor voltage is applied between the drain terminal and the source terminal of the drive transistor Tr2 of each pixel circuit 20 or to the light emitting element 21, and the current value at that time is obtained as the deterioration monitor current value Mo.
  • current-voltage characteristics of at least one of the driving transistor Tr2 and the light emitting element 21 are measured.
  • the amount of decrease in the luminous efficiency of the light emitting element 21 in (3) can be estimated from the amount of decrease in the current flowing through the light emitting element 21 shown in (2).
  • the display panel 10 is provided with a luminance measurement sensor for measuring the light emission luminance of the light emitting element 21 in each pixel circuit 20.
  • the controller 40 may measure the luminance actually emitted by the light emitting element 21 .
  • the “luminous efficiency of the pixel PX” includes the above (1) to (3), and the “luminous efficiency of the light emitting element 21” includes the above (3) and the above (1) and (2) shall not be included.
  • FIG. 5 is a diagram showing the operation of the pixel circuit 20 when displaying an image based on the video signal VDa during the grayscale voltage writing period (image display period) according to the embodiment. That is, FIG. 5 shows the operation of the pixel circuit 20 when displaying an image on the display area 11, not when executing the deterioration monitor and the first high-speed monitor.
  • the gate line G1(i) is in an active state (selected state), and the monitor control line G2(i) is in an inactive state (non-selected state).
  • the selection transistor Tr1 is turned on, and the monitor control transistor Tr3 is turned off.
  • a gradation voltage corresponding to the target luminance of the light emitting element 21 is supplied to the data line S(j) according to the video signal VDa.
  • the drive transistor Tr2 is turned on.
  • a current 61 flows between the drain terminal and source terminal of the driving transistor Tr2 and further between the anode and cathode of the light emitting element 21 .
  • the light emitting element 21 emits light with the target luminance.
  • FIG. 6 is a diagram showing the operation of the pixel circuit 20 when measuring the current 62 flowing between the drain terminal and the source terminal of the drive transistor Tr2 during deterioration monitoring and first high-speed monitoring.
  • the gate line G1(i) is first set to an active state (selected state), and the monitor control line G2(i) is set to an inactive state (unselected state). state).
  • the monitor control unit 43 applies a deterioration monitor voltage (during deterioration monitoring) or a predetermined voltage (during first high-speed monitoring) for measuring the current-voltage characteristics of the driving transistor Tr2 to the data line S(j).
  • a deterioration monitor voltage (during deterioration monitoring) or a predetermined voltage (during first high-speed monitoring) for measuring the current-voltage characteristics of the driving transistor Tr2 to the data line S(j).
  • the capacitor C1 is charged by the supplied deterioration monitor voltage (during execution of the deterioration monitor) or the predetermined voltage (during execution of the first high-speed monitor).
  • the driving transistor Tr2 is turned on.
  • the gate line G1(i) is brought into an inactive state (non-selected state), and the drive transistor Tr2 is fixed in the ON state.
  • the monitor control unit 43 stops supplying the deterioration monitor voltage (during execution of the deterioration monitor) or the predetermined voltage (during execution of the first high-speed monitor) supplied to the data line S(j). Then, the monitor control unit 43 switches the source driver 30 to a mode in which the current can be measured.
  • the monitor control line G2(i) is brought into an active state (selected state), and the monitor control transistor Tr3 is turned on.
  • the current 62 flows between the drain terminal and the source terminal of the drive transistor Tr2, does not flow to the light emitting element 21, flows between the drain terminal and the source terminal of the monitor control transistor Tr3, and flows through the data line S(j). is supplied to the source driver 30.
  • the source driver 30 measures the current 62, and the controller 40 obtains the deterioration monitor current value Mo or the first high-speed monitor current value FMo1, which is the measured value of the current 62 measured by the source driver 30.
  • the deterioration monitor current value Mo or the first high-speed monitor current value FMo1 flowing between the drain terminal and the source terminal of the driving transistor Tr2 is obtained. That is, current-voltage characteristics between the drain terminal and the source terminal of the drive transistor Tr2 are measured.
  • FIG. 7 is a diagram showing the operation of the pixel circuit 20 when measuring the current 63 flowing through the light emitting element 21 during deterioration monitoring and first high-speed monitoring.
  • the gate line G1(i) is first set to an active state (selected state), and the monitor control line G2(i) is set to an inactive state (unselected state). state).
  • the monitor control unit 43 supplies a voltage (for example, 0 V) for turning off the driving transistor Tr2 to the data line S(j), the driving transistor Tr2 is turned off.
  • the gate line G1(i) is brought into an inactive state (non-selected state), and the driving transistor Tr2 is fixed in an off state.
  • the monitor control line G2(i) is brought into an active state (selected state), and the monitor control transistor Tr3 is turned on.
  • the monitor control unit 43 applies a deterioration monitor voltage (during deterioration monitoring) or a predetermined voltage (during first high-speed monitoring) for measuring the current-voltage characteristics of the light emitting element 21 to the data line S(j).
  • a current 63 flows from the source driver 30 through the source terminal and drain terminal of the monitor control transistor Tr3 and between the anode and cathode of the light emitting element 21 .
  • the source driver 30 measures the current 63
  • the controller 40 obtains the deterioration monitor current value Mo or the first high-speed monitor current value FMo1, which is the measured value of the current 63 measured by the source driver 30.
  • FIG. thus, the deterioration monitor current value Mo or the first high-speed monitor current value FMo1 flowing between the anode and cathode of the light emitting element 21 is obtained. That is, current-voltage characteristics of the light emitting element 21 are measured.
  • the control unit 40 selects the current-voltage characteristic between the drain terminal and the source terminal of the driving transistor Tr2 shown in FIG. 6 and the current-voltage characteristic of the light emitting element 21 shown in FIG. At least one of them may be measured as current-voltage characteristics of a group of pixels PX.
  • the control unit 40 checks both the current-voltage characteristics between the drain terminal and the source terminal of the driving transistor Tr2 shown in FIG. 6 and the current-voltage characteristics of the light emitting element 21 shown in FIG. It is preferable to obtain current-voltage characteristics of a group of pixels PX by measuring. This makes it possible to obtain current-voltage characteristics of a group of pixels PX with higher accuracy.
  • the control unit 40 selects the current-voltage characteristic between the drain terminal and the source terminal of the driving transistor Tr2 shown in FIG. 6 and the current-voltage characteristic of the light emitting element 21 shown in FIG.
  • the current-voltage characteristics of a group of pixels PX may be obtained by measuring only the current-voltage characteristics between the drain terminal and the source terminal of the drive transistor Tr2 shown in FIG. This makes it possible to obtain the measured value of the current-voltage characteristics of the group of pixels PX while preventing the light-emitting element 21 from emitting light and being visually recognized by the viewer when obtaining the current-voltage characteristics of the group of pixels PX. .
  • FIG. 8 is a diagram showing a schematic flow of processing by the control unit 40 up to obtaining the video signal VDa after degradation compensation from the first high-speed monitor according to the embodiment.
  • step S1 the control unit 40 executes the first high-speed monitor and performs processing for acquiring the first high-speed monitor current value FMo1. That is, in step S1, the monitor control unit 43 executes a first high-speed monitor that supplies a predetermined voltage to each pixel circuit 20 via the source driver 30, and the control unit 40 controls the monitor to which the predetermined voltage is supplied.
  • a first high-speed monitor current value FMo1 which is an output current value, is acquired via the source driver 30 from each of all the pixel circuits 20 connected to each of the lines G2(1) to G2(N).
  • the first high-speed monitor does not change the voltage to be supplied, and supplies a preset predetermined voltage to the monitor control lines G2(1) to G2(N). ), rather than a deterioration monitor that supplies the voltage to the pixel circuit 20 a plurality of times, such as by sweeping the voltage to be supplied, from the start of execution to the end of execution. It takes less time.
  • the first fast monitor can be processed faster than the degradation monitor.
  • step S2 the comparison unit 42 refers to the reference data 52 stored in the storage unit 50, and the first high-speed monitor current value FMo1 acquired by the control unit 40 from the source driver 30 is within the allowable range. Determine whether or not
  • step S2 when the comparison unit 42 determines that the first high-speed monitor current value FMo1 acquired from the source driver 30 is not within the allowable range (No in step S2), the determination result is monitored and controlled. Output to the unit 43 .
  • the monitor control unit 43 detects that the luminous efficiency of the group of pixels PX has changed significantly temporarily due to, for example, a change in the temperature of the environment in which the display device 1 is used. Since it can be determined that it is not in an executable state, the process returns to step S1 without executing deterioration monitoring. That is, returning to the process of step S1, the control unit 40 executes the first high-speed monitor and acquires the first high-speed monitor current value FMo1.
  • step S2 when the comparison unit 42 determines that the first high-speed monitor current value FMo1 is not within the allowable range (No in step S2), the process does not return to step S1, and the series of steps shown in FIG. may be terminated.
  • the series of processes shown in FIG. 8 may be terminated after repeating the No process of step S2 and the process of step S1 a predetermined number of times.
  • step S2 when the comparison unit 42 determines that the first high-speed monitor current value FMo1 acquired from the source driver 30 is within the allowable range (Yes in step S2), the comparison unit 42 monitors the determination result. Output to the control unit 43 .
  • the monitor control unit 43 can determine that the change in the luminous efficiency of the group of pixels PX is within a range in which deterioration monitoring can be performed. Therefore, deterioration monitoring can be performed.
  • the control unit 40 executes deterioration monitoring and acquires the compensation voltage value VC.
  • the monitor control unit 43 then outputs information indicating the compensation voltage value VC to the compensation data generation unit 44 .
  • step S3 since the deterioration monitor voltage to be supplied is swept until the average deterioration monitor current value Mo from the pixel circuits 20 of all the lines becomes equal to or greater than a predetermined current value, the voltage from the start of execution to the end of execution is faster than the first high-speed monitor. Although the time required for detection is long, the accuracy of detecting changes in the luminous efficiency of the group of pixels PX is high.
  • step S4 the compensation data generation unit 44 generates the compensation data 51 based on the compensation voltage value VC acquired by the monitor control unit 43, and the generated compensation data 51 has already been stored in the storage unit 50. update the compensation data 51.
  • step S ⁇ b>5 the compensation unit 41 generates the video signal VDa based on the externally input video signal VDb and the compensation data 51 stored in the storage unit 50 .
  • the display device 1 includes the display panel 10 having a group of pixels PX, the control section 40, and the storage section 50.
  • the control unit 40 includes a deterioration monitor that detects a decrease in the luminous efficiency of the group of pixels PX, a first high-speed monitor that is executed at a higher speed than the deterioration monitor to determine whether the deterioration monitor should be performed, has a monitor control unit 43 capable of executing
  • the storage unit 50 stores reference data 52 specifying an allowable range for executing deterioration monitoring
  • the monitor control unit 43 controls the first high-speed monitor current value (first high-speed monitor current value) obtained by the first high-speed monitor. If the monitor measurement value) FMo1 is within the allowable range specified by the reference data 52 (Yes in step S2), deterioration monitoring is performed (step S3).
  • the first high-speed monitor that can be executed at a higher speed than the deterioration monitor is executed, and the first When the high-speed monitor current value FMo1 is within the allowable range specified by the reference data 52, it can be determined that the deterioration monitor can be executed, so the deterioration monitor is executed. That is, according to the display device 1, it is possible to determine at high speed whether deterioration monitoring for detecting a decrease in the luminous efficiency of a group of pixels PX is possible.
  • a degradation monitor detects a decrease in the luminous efficiency of a group of pixels in a state in which the luminous efficiency of the group of pixels temporarily changes due to temperature changes in the usage environment of the display device. can be suppressed from being executed. As a result, the display device 1 can accurately generate the compensation data 51 and compensate for deterioration of the group of pixels PX.
  • the monitor control unit 43 generates new compensation data 51 based on the compensation voltage value (deterioration monitor measurement value) VC obtained by executing the deterioration monitor, and the compensation data 51 stored in the storage unit 50 is updated to the new compensation data 51 (step S4).
  • the compensation data 51 stored in the storage unit 50 is updated in accordance with the luminous efficiency (for example, current-voltage characteristics) that changes according to the usage state of the group of pixels PX, so that the luminous efficiency of the group of pixels PX Degradation compensation for a group of pixels PX can be performed more accurately according to .
  • FIG. 9 is a diagram showing a schematic flow of the process of executing the first high-speed monitor and acquiring the first high-speed monitor current value FMo1 (the process of step S1 in FIG. 8) according to the embodiment.
  • the monitor control unit 43 sets the first monitor control line for starting the first high-speed monitor among the monitor control lines G2(1) to G2(N).
  • the monitor control unit 43 sets the monitor control line G2(1) provided at one end of the monitor control lines G2(1) to G2(N) to the first monitor control line for starting the first high-speed monitor. Set to line.
  • step S12 the monitor control unit 43 supplies a preset predetermined voltage to the set monitor control line (for example, monitor control line G2(1)) via the source driver 30.
  • step S13 the control unit 40 generates a first high-speed monitor current, which is an output current from all the pixels PX connected to the monitor control line (for example, the monitor control line G2(1)) to which a predetermined voltage is supplied. Get the value FMo1. Thereby, the control unit 40 acquires the first high-speed monitor current value FMo1 from all the pixels PX for one line of the set monitor control line (for example, the monitor control line G2(1)).
  • step S14 the monitor control unit 43 determines that the set monitor control line (for example, monitor control line G2(1)) is the final monitor control line (for example, monitor control line G2(N)). Determine whether or not In step S14, the monitor control unit 43 changes the set monitor control line (for example, the monitor control line G2(1)) to the final monitor control line (for example, the monitor control line G2(N) provided at the other end). )) is not (No in step S14), next, in step S15, the gate driver 13 selects the next monitor control line (for example, monitor control line G2(2)). , the monitor control line is changed, and the process returns to step S12.
  • the set monitor control line for example, monitor control line G2(1)
  • the final monitor control line for example, monitor control line G2(N) provided at the other end.
  • the final monitor control line (for example, the monitor control line G2(N) provided at the other end) is reached. , the supply of a predetermined voltage and the acquisition of the first high-speed monitor current value FMo1 from all the pixels PX connected to the monitor control line of one line are repeated for each line.
  • step S14 when the monitor control unit 43 determines that the set monitor control line (for example, the monitor control line G2(N) provided at the other end) is the final monitor control line (step If Yes in S14), the execution of the first high-speed monitor ends, and the process proceeds to step S2 (see FIG. 8).
  • the set monitor control line for example, the monitor control line G2(N) provided at the other end
  • the control unit 40 supplies a predetermined voltage, which is a preset common voltage, to each of the monitor control lines G2(1) to G2(N) line by line.
  • a first high-speed monitor current value FMo1 is obtained for each line.
  • the required time per line is about 16.67 msec. This is because it is necessary to supply a predetermined voltage and acquire the first high-speed monitor current value FMo1 in the retrace period of the frame period for each line.
  • monitor control lines G2(1) to G2(N) are 720, it takes about 12 seconds from the start to the end of execution of the first high-speed monitor for all lines.
  • FIG. 10 is a diagram showing a schematic flow of the process of executing deterioration monitoring and acquiring the compensation voltage value VC (the process of step S3 in FIG. 8) according to the embodiment.
  • the monitor control unit 43 selects the first monitor control line for starting deterioration monitoring among the monitor control lines G2(1) to G2(N). set.
  • the monitor control unit 43 sets the monitor control line G2(1) provided at one end of the monitor control lines G2(1) to G2(N) as the first monitor control line for starting deterioration monitoring. set.
  • the monitor control unit 43 supplies the deterioration monitor voltage to the set monitor control line (for example, monitor control line G2(1)) via the source driver 30.
  • the degradation monitor voltage before sweeping that is supplied first may be set in advance, or may be set by reflecting the result of the previous degradation monitor.
  • step S33 the control unit 40 outputs a deterioration monitor current value, which is an output current, from all the pixels PX connected to the monitor control line (for example, the monitor control line G2(1)) to which the deterioration monitor voltage is supplied. Get Mo. Thereby, the control unit 40 acquires the deterioration monitor current value Mo from all the pixels PX for one line of the set monitor control line (for example, the monitor control line G2(1)).
  • step S34 the monitor control unit 43 determines whether deterioration monitoring has been performed for a preset average number of times per set monitor control line (for example, monitor control line G2(1)). judge.
  • step S34 when the monitor control unit 43 determines that deterioration monitoring has not been performed for a preset average number of times per set monitor control line (for example, monitor control line G2(1)). (No in step S34), the process returns to step S32. Then, through the processing of No in steps S32, S33, and S34, the control unit 40 performs the preset average number of times per line of the set monitor control line (for example, monitor control line G2(1)). Only the deterioration monitor voltage is supplied and the deterioration monitor current value Mo is obtained.
  • step S34 when the monitor control unit 43 determines that deterioration monitoring has been performed for a preset average number of times per set monitor control line (for example, monitor control line G2(1)) ( If Yes in step S34), then in step S35, the monitor control unit 43 controls the set monitor control line (for example, monitor control line G2(1)) for each of all the pixels PX connected to one line. Each time, the obtained deterioration monitor current value Mo is averaged.
  • a preset average number of times per set monitor control line for example, monitor control line G2(1)
  • step S36 the monitor control unit 43 averages the deterioration monitor current value for each of all the pixels PX connected to the set monitor control line (for example, the monitor control line G2(1)). It is determined whether or not Mo has become equal to or greater than a predetermined current value.
  • step S36 the average deterioration monitor current value Mo of all the pixels PX connected to the set monitor control line (for example, monitor control line G2(1)) is equal to or greater than a predetermined current value.
  • the deterioration monitor voltage of the pixel PX that has not been changed is stored in a temporary line memory or the like as a candidate value of the compensation voltage value.
  • step S36 the monitor control unit 43 sets the average deterioration monitor current value Mo for each of all the pixels PX connected to the set monitor control line (for example, the monitor control line G2(1)) to a predetermined value.
  • the monitor control unit 43 changes, that is, sweeps the deterioration monitor voltage in step S37.
  • the monitor controller 43 increases the deterioration monitor voltage.
  • the candidate value of the compensation voltage value stored in the temporary line memory in the pixel PX that has already reached the predetermined current value is held as it is without being updated.
  • the monitor control unit 43 causes the deterioration monitor voltage changed in step S37 to pass through the set monitor control line (for example, monitor control line G2(1)) via the source driver 30.
  • the deterioration monitor current value Mo obtained by averaging the processing of steps S32 to S37 for each of the plurality of pixels PX connected to one set monitor control line (for example, monitor control line G2(1)) is The change of the deterioration monitor voltage, ie, the sweep of the deterioration monitor voltage, is repeated until the current reaches a predetermined current value or more.
  • step S36 the monitor control unit 43 averages the deterioration monitor current value Mo for each of all the pixels PX connected to the set monitor control line (for example, the monitor control line G2(1)). are equal to or greater than the predetermined current value (Yes in step S36), then in step S38, the monitor control unit 43 selects the candidate value of the compensation voltage value stored in the temporary line memory. It is stored in the storage unit 50 or the like as the compensation voltage value VC. As a result, the monitor control unit 43 acquires the compensation voltage value VC per set monitor control line (for example, the monitor control line G2(1)).
  • step S39 the monitor control unit 43 determines whether the set monitor control line (for example, monitor control line G2(1)) is the final monitor control line (for example, monitor control line G2(N)). determine whether or not In step S39, when the monitor control unit 43 determines that the set monitor control line (for example, monitor control line G2(1)) is not the final monitor control line (for example, monitor control line G2(N)), (No in step S39), next, in step S40, the gate driver 13 selects the next monitor control line (for example, monitor control line G2(2)), thereby changing the monitor control line. , the process returns to step S32.
  • the set monitor control line for example, monitor control line G2(1)
  • the final monitor control line for example, monitor control line G2(N)
  • each line until the final monitor control line (for example, monitor control line G2(N)) is The supply of the deterioration monitor voltage swept for the average number of times and the acquisition of the compensation voltage value VC based on the deterioration monitor current value Mo from each pixel circuit 20 are repeated.
  • step S39 when the monitor control unit 43 determines that the set monitor control line (for example, the monitor control line G2(N)) is the final monitor control line (if Yes in step S39), Execution of the deterioration monitor ends, and the process proceeds to step S4 (see FIG. 8).
  • the set monitor control line for example, the monitor control line G2(N)
  • the control unit 40 supplies the deterioration monitor voltage for the average number of times to each of the monitor control lines G2(1) to G2(N) for each line, and supplies the deterioration monitor current for the average number of times for each line. Get the value Mo. Then, the control unit 40 controls the monitor control lines G2(1) to G2(N) so that the average value of the deterioration monitor current values Mo for each pixel circuit 20 is equal to or greater than a predetermined current value for each line. The change and supply of the deterioration monitor voltage are repeated until . As a result, the compensation voltage value VC is obtained for each line of the monitor control lines G2(1) to G2(N).
  • the deterioration monitor can supply voltage to each of the monitor control lines G2(1) to G2(N) more times than the first high-speed monitor, that is, measure the current-voltage characteristics of each group of pixels PX. Therefore, it takes time from the start to the end of the execution, but it is possible to accurately measure the current-voltage characteristic (that is, detect the decrease in the luminous efficiency of the group of pixels PX).
  • the required time per line is about 16.67 msec. This is because, like the first high-speed monitor, it is necessary to supply the deterioration monitor voltage and acquire the compensation voltage value VC during the retrace period in the frame period for each line.
  • the number of times of averaging is 8 times and the number of times of sweeping the deterioration monitor voltage is 12 times for each line of the monitor control lines G2(1) to G2(N). It is also assumed that the monitor control lines G2(1) to G2(N) have 720 lines. Then, it takes about 19.2 minutes from the start to the end of execution of deterioration monitoring for all lines. As described above, it takes about 12 seconds from the start to the end of execution of the first high-speed monitor for all lines, so it can be seen that the first high-speed monitor is faster than the deterioration monitor.
  • step S37 the deterioration monitor voltage is not increased for the pixels PX for which the averaged deterioration monitor current value Mo is equal to or higher than a predetermined current value in step S36, and only the pixels PX whose averaged deterioration monitor current value Mo is not equal to or higher than the predetermined current value are deteriorated in step S37. Increase monitor voltage.
  • the deterioration monitor current value Mo obtained by averaging the processing of steps S32 to S37 for each of the plurality of pixels PX connected to one set monitor control line (for example, monitor control line G2(1)) is The change of the deterioration monitor voltage, that is, the sweep of the deterioration monitor voltage is repeated until all the current values exceed a predetermined current value, and the set monitor control line (for example, the monitor control line G2(1)) is connected to one line.
  • the degradation monitor voltage set at the time when all the pixels PX reach a predetermined current value or higher is stored in the storage unit 50 or the like as the compensation voltage value VC.
  • step S37 since current variations (including, for example, burn-in) exist for each of the plurality of pixels PX, the number of times the deterioration monitor voltage is swept differs for each of the plurality of monitor control lines.
  • processing contents and processing time of the deterioration monitor and the first high-speed monitor described above are only examples, and are not limited to the examples described above.
  • the monitor control unit 43 measures the current-voltage characteristics of the group of pixels PX a smaller number of times in the first high-speed monitor than in the deterioration monitor, that is, the supply of the predetermined voltage and the first high-speed monitor current value (first High-speed monitor measurement) Get FMo1.
  • the predetermined voltage is supplied and the first high-speed monitor current value FMo1 is obtained only once for each of the monitor control lines G2(1) to G2(N). Therefore, it is possible to quickly determine whether or not the deterioration monitor is ready to be executed.
  • FIG. 11 is a diagram showing a schematic flow of processing by the control unit 40 according to Modification 1 of the embodiment.
  • the control unit 40 may update the reference data 52 stored in the storage unit 50 based on the first high-speed monitor current value FMo1.
  • the control unit 40 performs the processing of steps S1 and S2 described using FIG. 8 and the like.
  • step S2 when the comparator 42 determines that the first high-speed monitor current value FMo1 acquired from the source driver 30 is within the allowable range (Yes in step S2), the monitor controller 43 Further, in step S2A, the reference data 52 stored in the storage unit 50 is updated based on the first high-speed monitor current value FMo1 determined to be within the allowable range.
  • the comparison unit 42 stores reference value data 52a representing a predetermined reference value and predetermined range data 52b representing a predetermined range for specifying an allowable range for the reference value, stored in the storage unit 50. to update. Thereafter, the control unit 40 executes the processes of steps S3 to S5 described using FIG. 8, and ends the series of processes.
  • step S2A may be after the process of Yes in step S2, and is not limited to the case where it is executed before step S3, and may be between steps S3 and S4. It may be between step S4 and step S5, or after step S5.
  • the comparison unit 42 determines based on the first high-speed monitor current value FMo1 , updates the reference data 52 stored in the storage unit 50 .
  • the reference data 52 stored in the storage unit 50 is updated in accordance with the luminous efficiency (for example, current-voltage characteristics) that changes according to the usage state of the group of pixels PX, so that the comparison unit 42 can perform the operation more accurately.
  • the luminous efficiency for example, current-voltage characteristics
  • the comparison unit 42 As a method for the comparison unit 42 to update the reference data 52 already stored in the storage unit 50, the reference data 52 already stored in the storage unit 50 is overwritten with new reference data 52 and saved.
  • new reference data 52 may be stored in a storage area separate from the already stored reference data 52 in order to leave the already stored reference data 52 .
  • FIG. 12 is a diagram showing a schematic configuration of a pixel circuit, a source driver, and a control section according to Modification 2 of the embodiment.
  • the control unit 40 executes high-speed monitoring twice before and after the deterioration monitoring is executed, and updates the compensation data 51 stored in the storage unit 50 according to the result of comparing the results of the two high-speed monitoring. You may As shown in FIG. 12, when the monitor control unit 43 executes the second high-speed monitor for the second time, the control unit 40 acquires the second high-speed monitor current value (second high-speed monitor measurement value) FMo2 from the source driver 30. .
  • FIG. 13 is a diagram showing a schematic flow of processing by the control unit 40 according to Modification 2 of the embodiment.
  • the control unit 40 first executes the first high-speed monitor, which is the first high-speed monitor, by performing the process of step S1 described using FIG. Get the value FMo1. Then, in step S2, when the comparison unit 42 refers to the reference data 52 stored in the storage unit 50 and determines that the first high-speed monitor current value FMo1 is within the allowable range (Yes in step S2), In step S3, the monitor control unit 43 that has acquired the determination result executes deterioration monitoring and acquires the compensation voltage value VC.
  • step S51 the monitor control unit 43 executes the second high-speed monitor, which is the second high-speed monitor, and performs processing for acquiring the second high-speed monitor current value FMo2. That is, in step S51, the monitor control unit 43 executes a second high-speed monitor that supplies a predetermined voltage to each pixel circuit 20 via the source driver 30, and the control unit 40 controls each pixel circuit to which the predetermined voltage is supplied. A second high-speed monitor current value FMo2, which is an output current value from 20, is acquired via the source driver 30.
  • step S51 The specific contents of the process of executing the second high-speed monitor and obtaining the second high-speed monitor current value FMo2 in step S51 are as follows. This is the same as the process of acquiring the first high-speed monitor current value FMo1 (the process of step S1).
  • step S52 the comparison unit 42 determines whether the second high-speed monitor current value FMo2 is within a predetermined range with respect to the first high-speed monitor current value FMo1.
  • step S52 when the comparison unit 42 determines that the second high-speed monitor current value FMo2 is not within the predetermined range with respect to the first high-speed monitor current value FMo1 (No in step S52), deterioration monitoring is performed. Since it can be determined that the luminous efficiency of the group of pixels PX has changed significantly during the period, the process returns to step S1 without using the compensation voltage value VC acquired by the control unit 40 in step S3. That is, returning to the process of step S1, the control unit 40 again executes the first high-speed monitor, which is the first high-speed monitor, and acquires the first high-speed monitor current value FMo1.
  • step S52 when the comparison unit 42 determines that the second high-speed monitor current value FMo2 is not within the predetermined range with respect to the first high-speed monitor current value FMo1 (No in step S52), step S1
  • the series of processes shown in FIG. 13 may be ended without returning to the process of .
  • the series of processes shown in FIG. 13 may be terminated after performing the No process of step S52 a predetermined number of times.
  • step S52 when the comparison unit 42 determines that the second high-speed monitor current value FMo2 is within the predetermined range with respect to the first high-speed monitor current value FMo1 (Yes in step S52), deterioration monitoring is performed. Since it can be determined that the luminous efficiency of the group of pixels PX does not change significantly between before and after, in step S4, the compensation data generation unit 44 generates the compensation voltage value acquired by the monitor control unit 43 by the processing in step S3. Compensation data 51 is generated based on VC, and compensation data 51 already stored in the storage unit 50 is updated with the generated compensation data 51 . Then, in step S ⁇ b>5 , the compensation unit 41 generates the video signal VDa based on the externally input video signal VDb and the compensation data 51 stored in the storage unit 50 .
  • the control unit 40 After executing the deterioration monitor, the control unit 40 generates the compensation data 51 based on the compensation voltage value (deterioration monitor measurement value) VC obtained by executing the deterioration monitor, and stores it in the storage unit 50.
  • a second fast monitor which runs faster than the degradation monitor, is run to determine whether or not to store. Then, the control unit 40 determines that the second high-speed monitor current value (second high-speed monitor measured value) FMo2 obtained by the second high-speed monitor is a predetermined value with respect to the first high-speed monitor current value (first high-speed monitor measured value) FMo1. If it is within the range, new compensation data 51 is generated based on the compensation voltage value VC, and the compensation data 51 stored in the storage unit 50 is updated to the new compensation data 51 .
  • step S4 the comparison unit 42 determines that the second high-speed monitor current value FMo2 is within the predetermined range with respect to the first high-speed monitor current value FMo1 in Yes in step S52.
  • the comparison unit 42 further stores After referring to the reference data 52 stored in the unit 50 and determining that the second high-speed monitor current value FMo2 is within the allowable range, the process of step S4 may be performed. This makes it possible to perform deterioration compensation for a group of pixels PX more accurately.
  • FIG. 14 is a diagram showing a schematic flow of processing by the control unit 40 according to Modification 3 of the embodiment. As shown in FIG. 14, in the series of processes described with reference to FIG. 13, the process of step S2A described with reference to FIG. A process of updating the reference data 52 stored in the storage unit 50 may be added based on the first high-speed monitor current value FMo1 determined as
  • step S2A may be after the process of Yes in step S2, and is not limited to the case where it is executed before step S3, and may be between steps S3 and S51. may be between steps S51 and S52, between Yes in step S52 and step S4, between steps S4 and S5, or after step S5 There may be. Further, the process of step S2A may be executed in parallel with the processes of steps S3, S51, S52, S4, and S5.
  • FIG. 15 is a diagram showing a schematic configuration of the display device 1 according to Modification 4 of the embodiment.
  • the display device 1 includes a group of dummy pixels DPX that do not contribute to image display, and dummy data lines SD1 and SD2 connected to the group of dummy pixels DPX, respectively.
  • the monitor control unit 43 (see FIG. 2) may measure current-voltage characteristics of a group of dummy pixels DPX instead of a group of pixels PX in the first high-speed monitor.
  • the dummy data lines SD1 and SD2 are provided outside the data lines S(1) to S(M) so as to sandwich the data lines S(1) to S(M). is connected with Each of the group of dummy pixels DPX is provided at the intersection of the dummy data lines SD1 and SD2, the gate lines G1(1) to G1(N) and the monitor control lines G2(1) to G2(N). ing.
  • the dummy data line SD1 is, for example, outside the display area 11 and adjacent to the data line S(1), the gate lines G1(1) to G1(N) and the monitor control lines G2(1) to G2( N).
  • a region provided with a plurality of dummy pixels DPX arranged in a row along the dummy data line SD1 and a region provided with a plurality of dummy pixels DPX arranged in a row along the dummy data line SD1 are respectively referred to as a dummy pixel region 11D. called.
  • the group of pixels PX are pixels that contribute to image display because the light emitted during the normal display operation of the display device 1 reaches the viewer of the display device 1 .
  • the group of dummy pixels DPX are pixels that do not emit light during the normal display operation of the display device 1 and do not contribute to image display.
  • Each of the group of dummy pixels DPX includes a dummy pixel circuit 20D.
  • the configuration of the dummy pixel circuit 20D is the same as the configuration of the pixel circuit 20 described using FIG.
  • the group of dummy pixels DPX are pixels that do not contribute to image display and are provided so as not to be seen by the viewer of the display device 1, for example, by being provided so as to overlap the light shielding portion of the housing. good too.
  • FIG. 15 shows an example in which the dummy pixel region 11D extends along the left and right sides of the display region 11, that is, adjacent to the data line S(1) and the data line S(N).
  • the position of the dummy pixel region 11D is not limited to this.
  • the dummy pixel region 11D may extend along the top and bottom of the display region 11, that is, adjacent to the top gate line G1(1) and the bottom monitor control line G2(N).
  • step S1 the control unit 40 does not acquire the first high-speed monitor current value FMo1 from each of the group of pixels PX, but acquires the first high-speed monitor current value FMo1 from each of the group of dummy pixels DPX. . 13 or 14, in step S51, the control unit 40 does not obtain the second high-speed monitor current value FMo2 from each of the group of pixels PX, but obtains the value of the group of dummy pixels DPX. A second high-speed monitor current value FMo2 is obtained from each of them.
  • control unit 40 may measure current-voltage characteristics of a group of dummy pixels DPX in the first high-speed monitor. Since the group of dummy pixels DPX is smaller in number than the group of pixels PX, the first high-speed monitor can be executed at a higher speed than the case where the first high-speed monitor is executed using the group of pixels PX. . As a result, it is possible to quickly determine whether or not deterioration monitoring can be executed.
  • the group of dummy pixels DPX is smaller in number than the group of pixels PX, the first high-speed monitor current value FMo1 obtained from each of the group of dummy pixels DPX is within the allowable range.
  • the capacity of the reference data 52 is small, and the capacity of the storage unit 50 required for storing the reference data 52 can also be reduced.
  • the group of dummy pixels DPX are pixels that do not emit light even during the normal display operation of the display device 1, so that the display device 1 can be made pixels with almost no deterioration in luminous efficiency from the time of product shipment. .
  • the reference data 52 set at the time of product shipment of the display device 1 can be used continuously. That is, since it is possible to determine whether or not the first high-speed monitor current value FMo1 is within the allowable range without considering the reduction in the luminous efficiency of the group of dummy pixels DPX, it is possible to determine whether or not deterioration monitoring can be executed. is easy to determine.
  • FIG. 16 is a diagram showing a schematic configuration of the display device 1 according to Modification 5 of the embodiment. Since the current-voltage characteristics of the group of pixels PX also change depending on the temperature of the display panel 10, the control unit 40, as the first high-speed monitor, determines the current-voltage characteristics of the group of pixels PX or the current-voltage characteristics of the group of dummy pixels DPX. Instead of measuring the temperature, the temperature of the display panel 10 may be measured.
  • the display panel 10 according to Modification 5 of the present embodiment may include one or more temperature sensors 15 .
  • a group of temperature sensors 15 are provided in a matrix on the back surface of the display panel 10 (the surface opposite to the surface on which the display area 11 is provided).
  • control unit 40 may include a temperature data acquisition unit 48 .
  • the temperature data acquisition unit 48 acquires outputs from the group of temperature sensors 15 as a first temperature measurement value (first high speed monitor measurement value) Tm1 and a second temperature measurement value (second high speed monitor measurement value) Tm2.
  • first temperature measurement value first high speed monitor measurement value
  • second high speed monitor measurement value second high speed monitor measurement value
  • the reference value indicated by the reference value data 52a and the predetermined range indicated by the predetermined range data 52b in the reference data 52 are the temperature of the display panel 10 at which execution of the deterioration monitor is permitted. (e.g. normal temperature in a stable environment) and its range.
  • FIG. 17 is a diagram showing a schematic flow of processing by the control unit 40 according to Modification 5 of the embodiment.
  • the control unit 40 performs processing of acquiring the first temperature measurement value Tm ⁇ b>1 from the group of temperature sensors 15 as the first high-speed monitor. That is, in step S61, when the monitor control unit 43 executes the first high-speed monitor, the temperature data acquisition unit 48 treats the output from the temperature sensor 15 as the first temperature measurement value Tm1 obtained by measuring the temperature of the display panel 10. get.
  • step S62 the comparison unit 42 refers to the reference data 52 stored in the storage unit 50, and determines that the first temperature measurement value Tm1 acquired by the temperature data acquisition unit 48 is the allowable temperature for which deterioration monitoring can be performed. Determine whether it is within the range.
  • step S2 when the comparison unit 42 determines that the first temperature measurement value Tm1 acquired by the temperature data acquisition unit 48 is not within the allowable range in which deterioration monitoring can be performed (No in step S62). ), and outputs the determination result to the monitor control unit 43 .
  • the monitor control unit 43 determines that the temperature of the display panel 10 changes due to, for example, a change in the usage environment of the display device 1, and the luminous efficiency of the group of pixels PX temporarily increases. Since it can be determined that there is a change, that is, it can be determined that deterioration monitoring is not executable, the process returns to step S1 without executing deterioration monitoring. That is, returning to the process of step S1, the control unit 40 executes the first high-speed monitor and acquires the first temperature measurement value Tm1.
  • step S62 when the comparison unit 42 determines that the first temperature measurement value Tm1 is not within the allowable range (No in step S62), the process does not return to step S61, and the series of steps shown in FIG. Processing may be terminated. Alternatively, the series of processes shown in FIG. 17 may be terminated after repeating the No process of step S62 and the process of step S61 a predetermined number of times.
  • step S62 when the comparison unit 42 determines that the first temperature measurement value Tm1 is within the allowable range (Yes in step S62), it outputs the determination result to the monitor control unit 43.
  • the monitor control unit 43 determines that the temperature of the display panel 10 has not changed significantly, that is, the change in the luminous efficiency of the group of pixels PX is within the range in which deterioration monitoring can be performed. In other words, it can be determined that the deterioration monitor can be executed.
  • step S63 the control unit 40 executes the deterioration monitor and acquires the compensation voltage value VC.
  • the monitor control unit 43 then outputs information indicating the compensation voltage value VC to the compensation data generation unit 44 . Note that the processing of step S63 is the same as that of step S3 described using FIG. 8 and FIGS. 11 to 14 and the like.
  • step S64 the monitor control unit 43 performs a process of acquiring the second temperature measurement value Tm2 from the group of temperature sensors 15 as the second high-speed monitor, which is the second high-speed monitor. That is, in step S64, when the monitor control unit 43 executes the second high-speed monitor, the temperature data acquisition unit 48 uses the output from the temperature sensor 15 as the second temperature measurement value Tm2 obtained by measuring the temperature of the display panel 10. get.
  • step S64 The process of executing the second high-speed monitor and obtaining the second temperature measurement value Tm2 in step S64 is the same as the process of executing the first high-speed monitor and obtaining the first temperature measurement value Tm1 in step S61. be.
  • step S65 the comparison unit 42 determines whether the second temperature measurement value Tm2 is within a predetermined range with respect to the first temperature measurement value Tm1.
  • step S65 when the comparison unit 42 determines that the second temperature measurement value Tm2 is not within the predetermined range with respect to the first temperature measurement value Tm1 (No in step S65), during execution of the deterioration monitor Since it can be determined that the temperature of the display panel 10 has changed significantly, that is, the luminous efficiency of the group of pixels PX has changed significantly, the compensation voltage value VC acquired by the control unit 40 in step S63 is not used, and step S61 is performed again. return to the process of That is, returning to the process of step S61, the control unit 40 again executes the first high-speed monitor, which is the first high-speed monitor, and acquires the first temperature measurement value Tm1.
  • step S65 when the comparison unit 42 determines that the second temperature measurement value Tm2 is not within the predetermined range with respect to the first temperature measurement value Tm1 (No in step S65), the process of step S61 is performed.
  • the series of processes shown in FIG. 17 may be terminated without returning to .
  • the series of processes shown in FIG. 17 may be terminated after performing the No process of step S65 a predetermined number of times.
  • step S65 when the comparison unit 42 determines that the second temperature measurement value Tm2 is within the predetermined range with respect to the first temperature measurement value Tm1 (Yes in step S65), , it can be determined that the temperature of the display panel 10 has not changed significantly, that is, the luminous efficiency of the group of pixels PX has not changed significantly.
  • Compensation data 51 is generated based on the compensation voltage value VC acquired by the monitor control unit 43 through the process, and the compensation data 51 already stored in the storage unit 50 is updated with the generated compensation data 51 .
  • step S ⁇ b>67 the compensator 41 generates the video signal VDa based on the externally input video signal VDb and the compensation data 51 stored in the memory 50 .
  • step S64 and the process of step S65 for executing the second high-speed monitor may be omitted.
  • the display panel 10 may have the temperature sensor 15. Then, the temperature data acquisition unit 48 may acquire the output from the temperature sensor 15 as the first temperature measurement value (first high-speed monitor measurement value) Tm1.
  • the first high-speed monitor is faster than the deterioration monitor because it only acquires the output from the temperature sensor 15, unlike the process of supplying voltage to a group of pixels PX multiple times as in the deterioration monitor.
  • a degradation monitor detects a decrease in the luminous efficiency of a group of pixels in a state in which the luminous efficiency of the group of pixels temporarily changes due to temperature changes in the usage environment of the display device. can be suppressed from being executed.
  • the control unit 40 After executing the deterioration monitor, the control unit 40 generates compensation data 51 based on the compensation voltage value (deterioration monitor measurement value) VC obtained by executing the deterioration monitor, and stores the compensation data 51 in the storage unit 50 .
  • a second high-speed monitor which runs at a higher speed than the deterioration monitor, is executed to determine whether the Then, the control unit 40 controls the second temperature measurement value (second high-speed monitor measurement value) Tm2 obtained by the second high-speed monitor to fall within a predetermined range with respect to the first temperature measurement value (first high-speed monitor measurement value) Tm1. If there is, new compensation data 51 is generated based on the compensation voltage value VC, and the compensation data 51 stored in the storage unit 50 is updated to the new compensation data 51 .
  • the storage unit 50 is a computer-readable storage medium that non-temporarily stores a display program installed from a storage medium external to the display device 1 or from a server that can communicate with the display device 1. good too.
  • the display program causes the controller 40 to function as a compensator 41 , comparator 42 , monitor controller 43 , compensation data generator 44 , and temperature data acquirer 48 .
  • the control unit 40 has a computer as a hardware configuration.
  • the computer may include a processor that functions as the compensator 41, the comparator 42, the monitor controller 43, the compensation data generator 44, and the temperature data acquirer 48 by executing the display program.
  • the processor can be of any type as long as it can implement the function by executing the display program.
  • processors such as a CPU (Central Processing Unit), a GPU (Graphics Processing Unit), a DSP (Digital Signal Processor), and an ASIC (application specific integrated circuit) can be used as the processor.
  • processors may also include peripheral circuit devices in addition to CPUs, GPUs, DSPs, and the like.
  • the peripheral circuit device may be an IC (Integrated Circuit), and may include resistors, capacitors, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Control Of El Displays (AREA)

Abstract

表示装置は、一群の画素を有する表示パネルと、前記一群の画素の発光効率の低下を検出する劣化モニタと、前記劣化モニタをすべきか否かを判定するために、前記劣化モニタよりも高速で実行される第1高速モニタと、を実行可能な制御部と、前記劣化モニタを実行する許容範囲を特定した参照データを記憶する記憶部と、を有し、前記制御部は、前記第1高速モニタにより得られた第1高速モニタ測定値が前記許容範囲内にあれば、前記劣化モニタを実行する。

Description

表示装置
 本開示は、表示装置に関する。
 特許文献1には、駆動トランジスタを含む回路素子を有する表示装置が開示されている。前記表示装置では、駆動トランジスタを含む回路素子の電流電圧特性を測定し、測定した結果得られる特性データに基づいて入力映像信号を補正している。
国際公開第2017/104631号
 駆動トランジスタを含む一群の画素は、使用されている環境によっては、電流電圧特性が変化する場合がある。このため、劣化補償を行う際、一群の画素の電流電圧測定を行うタイミングによっては、正確な測定結果を得られない場合がある。特許文献1に開示された表示装置によると、駆動トランジスタを含む回路素子の電流電圧特性を正確に測定できる状態であるかを判断することができない。本開示の一態様に係る表示装置によると、一時的に一群の画素の発光効率が変化している状態で、一群の画素の発光効率の低下を検出する劣化モニタが実行されることを抑制する。
 本開示の一態様に係る表示装置は、一群の画素を有する表示パネルと、前記一群の画素の発光効率の低下を検出する劣化モニタと、前記劣化モニタをすべきか否かを判定するために、前記劣化モニタよりも高速で実行される第1高速モニタと、を実行可能な制御部と、前記劣化モニタを実行する許容範囲を特定した参照データを記憶する記憶部と、を有し、前記制御部は、前記第1高速モニタにより得られた第1高速モニタ測定値が前記許容範囲内にあれば、前記劣化モニタを実行する。
図1は、実施形態に係る表示装置の概略構成を表す図である。 図2は、実施形態に係る、画素回路、ソースドライバおよび制御部の概略構成を表す図である。 図3は、実施形態に係る画素の電流電圧特性を表す図である。 図4は、実施形態に係る画素の電流輝度特性を表す図である。 図5は、実施形態に係る、階調電圧の書き込み期間において映像信号に基づいて画像を表示する際の画素回路の動作を示す図である。 図6は、劣化モニタの実行時および第1高速モニタの実行時に、駆動トランジスタのドレイン端子およびソース端子間を流れる電流を測定するときの画素回路の動作を表す図である。 図7は、劣化モニタの実行時および第1高速モニタの実行時に、発光素子を流れる電流を測定するときの画素回路の動作を表す図である。 図8は、実施形態に係る、第1高速モニタから劣化補償後の映像信号を得るまでの制御部の処理の概略的な流れを表す図である。 図9は、実施形態に係る、第1高速モニタを実行し、第1高速モニタ電流値を取得する処理の概略的な流れを表す図である。 図10は、実施形態に係る、劣化モニタを実行し、補償電圧値を取得する処理の概略的な流れを表す図である。 図11は、実施形態の変形例1に係る制御部の処理の概略的な流れを表す図である。 図12は、実施形態の変形例2に係る表示装置の概略構成を表す図である。 図13は、実施形態の変形例2に係る制御部の処理の概略的な流れを表す図である。 図14は、実施形態の変形例3に係る制御部の処理の概略的な流れを表す図である。 図15は、実施形態の変形例4に係る表示装置の概略構成を表す図である。 図16は、実施形態の変形例5に係る表示装置の概略構成を表す図である。 図17は、実施形態の変形例5に係る制御部の処理の概略的な流れを表す図である。
 〔実施形態〕
 図1は、実施形態に係る表示装置1の概略構成を表す図である。表示装置1は、表示パネル10と、ソースドライバ30と、制御部40と、記憶部50とを備える。表示パネル10は、一群の画素PXと、ゲートドライバ13と、ゲート線G1(1)~G1(N)と、モニタ制御線G2(1)~G2(N)と、データ線S(1)~S(M)とを有する。一群の画素PXは、表示パネル10のうち画像の表示領域11にマトリクス状に設けられている。一群の画素PXのそれぞれは、発光素子を含む画素回路20を有する。
 表示パネル10は、例えば、一群の画素PXが自発光することによって表示領域11に画像が表示される。表示パネル10としては、例えば、発光素子にOLED(Organic Light Emitting Diode)が用いられた有機EL(electro-luminescence)表示パネル、または、発光素子にQLED(Quantum dot Light Emitting Diode)が用いられたQLED表示パネルを挙げることができる。なお、表示パネル10は、発光素子を備える表示パネルであればよく、有機EL表示パネル、または、QLED表示パネルに限定されるものではない。
 ゲート線G1(1)~G1(N)およびモニタ制御線G2(1)~G2(N)は、1対1で対応しており、それぞれ、略平行に延びて設けられている。データ線S(1)~S(M)は、ゲート線G1(1)~G1(N)およびモニタ制御線G2(1)~G(N)と交差するように延びて設けられている。各画素PXは、データ線S(1)~S(M)およびゲート線G1(1)~G1(N)と、データ線S(1)~S(M)とが交差する部分に設けられている。
 ゲート線G1(1)~G1(N)は、一群の画素PXを行毎に選択するための走査信号を、ゲートドライバ13から一群の画素PXそれぞれへ出力する配線である。モニタ制御線G2(1)~G2(N)は、劣化モニタおよび第1高速モニタを実行する際に、一群の画素PXを行毎に選択するためのモニタ制御信号を、ゲートドライバ13から一群の画素PXそれぞれへ出力する配線である。
 なお、劣化モニタは、一群の画素PXそれぞれの発光効率の低下を検出し、一群の画素PXそれぞれの低下した発光効率を劣化補償するための補償電圧値(劣化モニタ測定値)VC(図2参照)を得る処理である。補償電圧値VCは、後述するように入力映像信号VDbを映像信号VDaへ劣化補償するための補償データ51(図2参照)を作成する際に用いられるため、一群の画素PXそれぞれの発光効率の変化(例えば電流電圧特性の変化)を、相対的に高精度で検出することが要求される。このため、劣化モニタは、第1高速モニタよりも処理時間が、相対的に長くなる。
 また、例えば、表示装置1の使用環境の温度が上がると、一群の画素PXに流れる電流の量が増加することで、電流電圧特性が変化する。このように、劣化モニタの実行前または実行中に、例えば、表示装置1の使用環境の温度変化などに起因して一時的に一群の画素PXそれぞれの発光効率が大きく変化(例えば、電流電圧特性が大きく変化)してしまうと、正確に、補償電圧値VCが得られない場合がある。
 一方、第1高速モニタは、例えば、一時的に一群の画素PXそれぞれの発光効率が大きく変化(例えば、電流電圧特性が大きく変化)していないか、すなわち、表示装置1が劣化モニタの実行が可能な状態であるかを判定するために、劣化モニタの前に行われる処理である。このため、第1高速モニタは、劣化モニタよりも、簡易的に一群の画素PXそれぞれの発光効率の変化(例えば、電流電圧特性の変化)を検出する。このため、第1高速モニタは、一群の画素PXそれぞれの発光効率の変化(例えば、電流電圧特性の変化)を検出する速度が、劣化モニタよりも高速である。なお、劣化モニタおよび第1高速モニタの詳細は、図8から図10などを用いて後述する。
 データ線S(1)~S(M)は、画像を表示するためにソースドライバ30から一群の画素PXそれぞれに映像信号に応じた階調信号を伝送するための配線である。また、データ線S(1)~S(M)は劣化モニタの実行時に、一群の画素PXそれぞれへの入力信号である劣化モニタ電圧を伝送したり、一群の画素PXのそれぞれから出力信号である劣化モニタ電流をソースドライバ30へ伝送したりする配線でもある。さらに、データ線S(1)~S(M)は第1高速モニタの実行時に、一群の画素PXのそれぞれへの入力信号である所定電圧を伝送したり、一群の画素PXのそれぞれからの出力信号である第1高速モニタ電流をソースドライバ30へ伝送したりする配線でもある。
 なお、映像信号の伝送と、劣化モニタ電圧および劣化モニタ電流の伝送と、第1高速モニタ電圧および第1高速モニタ電流の伝送とを、必ずしも同一の配線で行う必要はなく、それぞれ別々の配線で行ってもよい。
 ゲートドライバ13は、例えば、表示パネル10が有する基板に設けられていてもよい。または、ゲートドライバ13は、表示パネル10が有する基板の外部に設けられていてもよい。ゲートドライバ13には、ゲート線G1(1)~G1(N)およびモニタ制御線G2(1)~G2(N)それぞれの一方の端部が接続されている。ゲートドライバ13は、例えば、シフトレジスタおよび論理回路などを有する。ゲートドライバ13は、制御部40から出力されたゲート制御信号GCTLに基づいて、ゲート線G1(1)~G1(N)およびモニタ制御線G2(1)~G2(N)を駆動する。
 ソースドライバ30には、データ線S(1)~S(M)それぞれの一方の端部が接続されている。ソースドライバ30は、制御部40から出力されたソース制御信号SCTLに基づいて、データ線S(1)~S(M)を介して一群の画素PXを駆動する。例えば、ソースドライバ30は、制御部40から映像信号VDaを受けると、映像信号VDaに応じた階調信号(階調電圧)をデータ線S(1)~S(M)それぞれに供給する。これによって、一群の画素PXそれぞれが発光し、表示領域11に画像が表示される。
 また、ソースドライバ30は、劣化モニタの実行時には、制御部40からの指示信号に基づいて、劣化モニタ電圧をデータ線S(1)~S(M)に供給したり、一群の画素PXそれぞれから出力されてデータ線S(1)~S(M)それぞれを伝送されてきたアナログ信号である劣化モニタ電流をデジタル信号へ変換して、劣化モニタ電流値Moとして制御部40へ出力したりする。
 また、ソースドライバ30は、第1高速モニタの実行時には、制御部40からの指示信号に基づいて、第1高速モニタ電圧をデータ線S(1)~S(M)に供給したり、一群の画素PXそれぞれから出力されてデータ線S(1)~S(M)それぞれを伝送されてきたアナログ信号である第1高速モニタ電流をデジタル信号へ変換して、第1高速モニタ電流値(第1高速モニタ測定値)FMo1として制御部40へ出力したりする。
 記憶部50としては、例えば、フラッシュメモリーなどを用いることができる。なお、記憶部50は、フラッシュメモリーに限定されず、SRAM(Static Random Access Memory)、DRAM(Dynamic Random Access Memory)、ROM(Read Only Memory)、SSD(Solid State Drive)などの半導体メモリーであってもよいし、レジスターであってもよいし、ハードディスク装置(HDD:Hard Disk Drive)等の磁気記憶装置であってもよいし、光学ディスク装置等の光学式記憶装置であってもよい。
 制御部40は、ゲートドライバ13およびソースドライバ30の動作を制御することにより、表示領域11に画像を表示させたり、劣化モニタを実行したり、第1高速モニタを実行したりする。制御部40は、ゲートドライバ13へゲート制御信号GCTLを出力することでゲートドライバ13の駆動を制御する。また、制御部40は、ソースドライバ30へソース制御信号SCTLを出力することでソースドライバ30の駆動を制御する。
 制御部40は、例えば、画像処理を行う画像処理部と、ゲートドライバ13およびソースドライバ30の動作を制御するタイミングコントローラなどを有する。例えば、画像処理部は、GPU(Graphics Processing Unit)などのLSI(Large Scale Integration)を用いて構成することができる。例えば、タイミングコントローラは、LSIを用いて構成することができる。
 ここで、一群の画素PXは、温度変化の影響を受けたり、経年劣化を生じたりするなどに起因して、発光効率が低下する。そこで、制御部40は、外部から入力される映像信号である入力映像信号VDbを取得すると、一群の画素PXの発光効率の低下状態に応じて、入力映像信号VDbを劣化補償(すなわち補正)し、一群の画素PXへ供給すべき映像信号VDaを生成する。そして、制御部40は、劣化補償がされた映像信号VDaをソースドライバ30へ出力し、ソースドライバ30から、映像信号VDaに応じた階調信号を一群の画素PXそれぞれへ出力させる。
 図2は、実施形態に係る、画素回路20、ソースドライバ30および制御部40の概略構成を表す図である。図2では、複数の画素回路20のうちi行j列目の画素回路20を表している。例えば、画素回路20は、発光素子21と、コンデンサC1と、選択トランジスタTr1と、駆動トランジスタTr2と、モニタ制御トランジスタTr3とを含む。制御部40は、補償部41と、比較部42と、モニタ制御部43と、補償データ生成部44とを有する。
 発光素子21は、例えば、OLED(Organic Light Emitting Diode)、または、QLED(Quantum dot Light Emitting Diode)などの自発光素子である。発光素子21のうち、アノードは駆動トランジスタTr2のソース端子およびモニタ制御トランジスタTr3のドレイン端子と接続され、カソードはローレベル電源線ELVSSと接続されている。
 コンデンサC1のうち、一方の端子はハイレベル電源線ELVDDおよび駆動トランジスタTr2のドレイン端子と接続され、他方の端子は選択トランジスタTr1のドレイン端子および駆動トランジスタTr2のゲート端子と接続されている。
 選択トランジスタTr1は、データ線S(j)と、コンデンサC1および駆動トランジスタTr2のゲート端子との間に設けられている。選択トランジスタTr1のうち、ゲート端子はゲート線G1(i)と接続され、ソース端子はデータ線S(j)と接続され、ドレイン端子は駆動トランジスタTr2のゲート端子およびコンデンサC1の他方の端子と接続されている。
 駆動トランジスタTr2は、発光素子21と直列に接続されている。駆動トランジスタTr2のうち、ゲート端子は選択トランジスタTr1のドレイン端子およびコンデンサC1の他方の端子と接続され、ドレイン端子はハイレベル電源線ELVDDおよびコンデンサの一方の端子と接続され、ソース端子は発光素子21のアノードおよびモニタ制御トランジスタTr3のドレイン端子が接続されている。
 モニタ制御トランジスタTr3は、駆動トランジスタTr2のソース端子および発光素子21のアノードと、データ線S(j)との間に設けられている。モニタ制御トランジスタTr3のうち、ゲート端子は、モニタ制御線G2(i)と接続され、ドレイン端子は駆動トランジスタTr2のソース端子および発光素子21のアノードに接続され、ソース端子はデータ線S(j)と接続されている。
 記憶部50には、例えば、補償データ51および参照データ52が記憶されている。補償データ51は、一群の画素PXの発光効率の低下を補償するためのデータである。具体的には、補償データ51は、入力映像信号VDbを、映像信号VDaへ劣化補償(すなわち補正)するためのデータである。補償データ51は、例えば、入力映像信号VDbと映像信号VDaとの対応関係(例えば、補正前後の階調電圧の対応関係)が示された情報を含むルックアップテーブルを表すデータとしてもよいし、入力映像信号VDbから映像信号VDa(例えば、入力された階調電圧から補正後の階調電圧)を得るための演算式が示された情報を含むデータとしてもよい。
 参照データ52は、劣化モニタを実行する許容範囲を特定するためのデータである。参照データ52は、劣化モニタを実行する許容範囲を特定することが可能なデータであればよく、例えば、参照データ52は、所定の基準値を表す基準値データ52aと、基準値に対する許容範囲を特定するための所定範囲を表す所定範囲データ52bとを含んでいてもよい。例えば、基準値および所定範囲は、劣化モニタの実行を許容できる、所定電圧に対する一群の画素PXのそれぞれからの出力電流値を規定した値およびその範囲である。
 補償部41は、外部から入力された映像信号である入力映像信号VDb(劣化補償前の映像信号)を、記憶部50に記憶された補償データ51を用いて劣化補償(すなわち補正)することにより、劣化補償された映像信号VDaを生成する。そして、制御部40は映像信号VDaをソースドライバ30へ出力する。
 比較部42は、制御部40がソースドライバ30から取得した第1高速モニタ電流値FMo1が、記憶部50に記憶された参照データ52に基づいて、劣化モニタを実行可能な許容範囲内であるか否かを判定し、判定結果をモニタ制御部43へ出力する。
 モニタ制御部43は、ソースドライバ30へ指示信号を出力することにより、第1高速モニタを実行したり、劣化モニタを実行したりする。モニタ制御部43が、第1高速モニタ、および、劣化モニタを実行するタイミングは、特に限定されるものではないが、例えば、画像の表示期間中、垂直帰線期間中、表示装置1の電源オン直後、または表示装置1の電源オフ時などを挙げることができる。ただし、第1高速モニタは、劣化モニタの実行が可能か否かを判定するために実行されるため、劣化モニタの実行前に実行される。
 モニタ制御部43は、第1高速モニタを実行する際は、予め設定された所定電圧をソースドライバ30へ供給する。これにより、制御部40は、所定電圧が供給されたときの画素回路20からの出力電流である第1高速モニタ電流値FMo1をソースドライバ30から得る。このように、制御部40は、画素回路20(すなわち一群の画素PX)の電流電圧特性を簡易的に高速で測定する。そして、モニタ制御部43は、第1高速モニタ電流値FMo1が劣化モニタを実行可能な許容範囲内であるとの判定結果を比較部42から取得すると、劣化モニタを実行する。また、モニタ制御部43は、第1高速モニタ電流値FMo1が劣化モニタを実行可能な許容範囲内ではないとの判定結果を比較部42から取得すると、劣化モニタを実行せずに、再度、第1高速モニタを実行するか、または、第1高速モニタの実行もしない。
 また、モニタ制御部43は、劣化モニタを実行すると、モニタ制御線G2(i)1ライン毎に所定回数(例えば平均回数)分だけ劣化モニタ電圧をソースドライバ30へ供給する。これにより制御部40は、モニタ制御線G2(i)1ライン毎に所定回数(例えば平均回数)分の画素回路20からの出力電流である劣化モニタ電流値Moをソースドライバ30から取得する。そして、モニタ制御部43は、モニタ制御線G2(i)1ラインに接続された全ての画素回路20のそれぞれの平均された劣化モニタ電流値Moが、所定の電流値以上になるまで、劣化モニタ電圧を変更(スイープ)してモニタ制御線G2(i)に供給する。そして、モニタ制御部43は、モニタ制御線G2(i)1ラインに接続された全ての画素回路20のそれぞれの平均された劣化モニタ電流値Moが、所定の電流値以上になったときの劣化モニタ電圧を、補償電圧値VCとして取得する。このように、制御部40は、複数の画素回路20(すなわち一群の画素PX)の電流電圧特性を第1高速モニタよりも高精度で測定する。そして、モニタ制御部43は、取得した補償電圧値VCを示す情報を補償データ生成部44へ出力する。
 なお、補償電圧値VCは、複数の画素回路20(すなわち一群の画素PX)の発光効率の低下に応じて変化するため、複数の画素回路20(すなわち一群の画素PX)の発光効率の低下が検出されたデータであると表現することができる。
 補償データ生成部44は、モニタ制御部43から補償電圧値VCを示す情報を取得すると、補償電圧値VCに基づいて、補償データ51を生成する。そして、補償データ生成部44は、生成した補償データ51を、新たな補償データ51として、記憶部50に既に記憶されている補償データ51を更新する。
 なお、補償データ生成部44が、記憶部50に既に記憶されている補償データ51を更新する方法としては、既に記憶部50に記憶されている補償データ51を新たな補償データ51へ上書きして保存してもよいし、既に記憶されている補償データ51を残すために既に記憶されている補償データ51とは別の記憶領域に新たな補償データ51を保存してもよい。
 次に、図3および図4を用いて、一群の画素PXの発光効率の低下および劣化補償について説明する。
 図3は、実施形態に係る画素PXの電流電圧特性を表す図である。なお、図3においては、低階調の劣化前後の差異を分かりやすくするため、縦軸を対数表記のグラフとしている。図3に示す、データA1は、劣化する前の画素PXの電流電圧特性を表し、データA2は、劣化した時の画素PXの電流電圧特性を表している。図3に示すように、画素PXが経年劣化などによって劣化すると電流が流れ難くなり、劣化前に画素PXに供給していた電圧V1によって画素PXに流れていた電流値と同じ電流値を劣化後の画素PXに流すには、電圧V1よりも高い電圧V2を画素PXに供給する必要がある。
 図4は、実施形態に係る画素PXの電流輝度特性を表す図である。図4に示す、データB1は、劣化前の画素PXの電流輝度特性を表し、データB2は、劣化した時の画素PXの電流輝度特性を表している。図4に示すように、画素PXが経年劣化などにより劣化すると発光効率が低下し、劣化前に画素PXに流した電流I1によって得られた輝度と同じ輝度で、劣化後の画素PXを発光させるには、電流I1よりも高い電流I2を画素PXに流す必要がある。
 このような、画素PXの劣化状態を把握するために、制御部40は、一群の画素PXの発光効率の低下を検出するために、画素回路20のうち、以下の(1)~(3)のうち少なくとも何れかを測定する。
(1)駆動トランジスタTr2のドレイン端子およびソース端子間に流れる電流の低下量
(2)発光素子21に流れる電流の低下量
(3)発光素子21の発光効率の低下量
 (1)(2)については、各画素回路20の駆動トランジスタTr2のドレイン端子およびソース端子間、または発光素子21に、劣化モニタ電圧を加え、その時の電流値を劣化モニタ電流値Moとして得ることで、駆動トランジスタTr2および発光素子21の少なくとも一方の電流電圧特性を測定する。
 (3)の発光素子21の発光効率の低下量は(2)に示す発光素子21に流れる電流の低下量から推測することができる。なお、より確実に(3)の発光素子21の発光効率の低下量を測定するには、例えば、表示パネル10に、発光素子21の発光輝度を測定する輝度測定センサを各画素回路20に設け、実際に発光素子21が発光した輝度を制御部40が測定してもよい。
 なお、本明細書では、「画素PXの発光効率」は上記の(1)~(3)を含むものとし、「発光素子21の発光効率」は上記の(3)を含み上記の(1)および(2)を含まないものとする。
 次に、図5から図7を用いて、画素PXに設けられた画素回路20の動作について説明する。図5は、実施形態に係る、階調電圧の書き込み期間(画像の表示期間)において映像信号VDaに基づいて画像を表示する際の画素回路20の動作を示す図である。すなわち、図5は、劣化モニタおよび第1高速モニタの実行時ではなく、表示領域11に画像を表示するときの画素回路20の動作を表している。
 階調信号の書き込み期間において、ゲート線G1(i)はアクティブ状態(選択された状態)とされ、モニタ制御線G2(i)は非アクティブ状態(非選択の状態)とされる。これにより、選択トランジスタTr1はオン状態となり、モニタ制御トランジスタTr3はオフ状態となる。そして、映像信号VDaに応じて、データ線S(j)には発光素子21の目標輝度に応じた階調電圧が供給される。これにより、駆動トランジスタTr2はオン状態となる。この結果、電流61が、駆動トランジスタTr2のドレイン端子およびソース端子間を通り、さらに発光素子21のアノードおよびカソード間を流れる。これにより、発光素子21が、目標の輝度で発光する。
 図6は、劣化モニタの実行時および第1高速モニタの実行時に、駆動トランジスタTr2のドレイン端子およびソース端子間を流れる電流62を測定するときの画素回路20の動作を表す図である。
 劣化モニタの実行時および第1高速モニタの実行時は、まず、ゲート線G1(i)はアクティブ状態(選択された状態)とされ、モニタ制御線G2(i)は非アクティブ状態(非選択の状態)とされる。
 そして、モニタ制御部43によって、駆動トランジスタTr2の電流電圧特性を測定するための劣化モニタ電圧(劣化モニタの実行時)または所定電圧(第1高速モニタの実行時)がデータ線S(j)に供給されると、供給された劣化モニタ電圧(劣化モニタの実行時)または所定電圧(第1高速モニタの実行時)によってコンデンサC1が充電される。これにより、駆動トランジスタTr2がオン状態となる。
 次に、ゲート線G1(i)は非アクティブ状態(非選択の状態)とされ、駆動トランジスタTr2がオン状態で固定される。そして、モニタ制御部43は、データ線S(j)に供給している劣化モニタ電圧(劣化モニタの実行時)または所定電圧(第1高速モニタの実行時)の供給を停止する。そして、モニタ制御部43は、ソースドライバ30を電流の測定が可能なモードへ切り替える。
 次に、モニタ制御線G2(i)はアクティブ状態(選択された状態)とされ、モニタ制御トランジスタTr3はオン状態となる。この結果、電流62が、駆動トランジスタTr2のドレイン端子およびソース端子間を通り、発光素子21へは流れず、モニタ制御トランジスタTr3のドレイン端子およびソース端子間を流れ、データ線S(j)を通ってソースドライバ30へ供給される。そして、ソースドライバ30で電流62が測定され、制御部40は、ソースドライバ30で測定された電流62の測定値である劣化モニタ電流値Moまたは第1高速モニタ電流値FMo1を得る。このようにして、駆動トランジスタTr2のドレイン端子およびソース端子間を流れた劣化モニタ電流値Moまたは第1高速モニタ電流値FMo1が得られる。すなわち、駆動トランジスタTr2のドレイン端子およびソース端子間の電流電圧特性が測定される。
 図7は、劣化モニタの実行時および第1高速モニタの実行時に、発光素子21を流れる電流63を測定するときの画素回路20の動作を表す図である。
 劣化モニタの実行時および第1高速モニタの実行時は、まず、ゲート線G1(i)はアクティブ状態(選択された状態)とされ、モニタ制御線G2(i)は非アクティブ状態(非選択の状態)とされる。
 そして、モニタ制御部43によって、駆動トランジスタTr2をオフ状態とするための電圧(例えば0V)がデータ線S(j)に供給されると、駆動トランジスタTr2がオフ状態となる。
 次に、ゲート線G1(i)は非アクティブ状態(非選択の状態)とされ、駆動トランジスタTr2がオフ状態で固定される。そして、モニタ制御線G2(i)はアクティブ状態(選択された状態)とされ、モニタ制御トランジスタTr3はオン状態となる。
 そして、モニタ制御部43によって、発光素子21の電流電圧特性を測定するための劣化モニタ電圧(劣化モニタの実行時)または所定電圧(第1高速モニタの実行時)がデータ線S(j)に供給されると、ソースドライバ30から、電流63が、モニタ制御トランジスタTr3のソース端子およびドレイン端子間を通り、発光素子21のアノードおよびカソード間を流れる。これにより、発光素子21が発光する。そして、ソースドライバ30で電流63が測定され、制御部40は、ソースドライバ30で測定された電流63の測定値である劣化モニタ電流値Moまたは第1高速モニタ電流値FMo1を得る。このようにして、発光素子21のアノードおよびカソード間を流れる劣化モニタ電流値Moまたは第1高速モニタ電流値FMo1が得られる。すなわち、発光素子21の電流電圧特性が測定される。
 第1高速モニタの実行時に、制御部40は、図6に示した駆動トランジスタTr2のドレイン端子およびソース端子間の電流電圧特性と、図7に示した発光素子21の電流電圧特性とのうち、少なくとも一方を一群の画素PXの電流電圧特性として測定すればよい。
 なお、劣化モニタの実行時に、制御部40は、図6に示した駆動トランジスタTr2のドレイン端子およびソース端子間の電流電圧特性と、図7に示した発光素子21の電流電圧特性との両方を測定することによって、一群の画素PXの電流電圧特性を得ることが好ましい。これによって、より精度よく一群の画素PXの電流電圧特性を得ることができる。または、劣化モニタの実行時に、制御部40は、図6に示した駆動トランジスタTr2のドレイン端子およびソース端子間の電流電圧特性と、図7に示した発光素子21の電流電圧特性とのうち、図6に示した駆動トランジスタTr2のドレイン端子およびソース端子間の電流電圧特性の方だけを測定することによって、一群の画素PXの電流電圧特性を得てもよい。これにより、一群の画素PXの電流電圧特性を得る際に発光素子21が発光して視聴者に視認されることを抑制しながら、一群の画素PXの電流電圧特性の測定値を得ることができる。
 次に、図1、図2および図8などを用いて、制御部40の処理の概略的な流れについて説明する。図8は、実施形態に係る、第1高速モニタから劣化補償後の映像信号VDaを得るまでの制御部40の処理の概略的な流れを表す図である。
 まず、ステップS1において、制御部40は、第1高速モニタを実行し、第1高速モニタ電流値FMo1を取得する処理を行う。すなわち、ステップS1において、モニタ制御部43は、ソースドライバ30を介して所定電圧を各画素回路20へ供給する第1高速モニタを実行し、制御部40は、所定電圧が供給された、モニタ制御線G2(1)からG2(N)のそれぞれに接続された全ての画素回路20のそれぞれから出力電流値である第1高速モニタ電流値FMo1を、ソースドライバ30を介して取得する。
 例えば、ステップS1において、詳細は図9を用いて後述するが、第1高速モニタは、供給する電圧を変更せず、予め設定された所定電圧を、モニタ制御線G2(1)からG2(N)のそれぞれに接続された全ての画素回路20へ供給するだけであるため、供給する電圧をスイープさせるなど複数回、電圧を画素回路20へ供給する劣化モニタよりも、実行開始から実行終了までに要する時間が短い。このように、第1高速モニタは、劣化モニタよりも高速で処理することができる。
 次に、ステップS2において、比較部42は、記憶部50に記憶された参照データ52を参照し、制御部40がソースドライバ30から取得した第1高速モニタ電流値FMo1が、許容範囲内であるか否かを判定する。
 そして、ステップS2において、比較部42は、ソースドライバ30から取得した第1高速モニタ電流値FMo1が、許容範囲内ではないと判定した場合(ステップS2におけるNoの場合)、当該判定結果をモニタ制御部43へ出力する。当該判定結果を取得した場合、モニタ制御部43は、例えば表示装置1の使用環境の温度が変化したなどに起因して、一群の画素PXの発光効率が一時的に大きく変化し、劣化モニタを実行可能な状態ではないと判断できるため、劣化モニタを実行せずに、再度、ステップS1の処理に戻る。すなわち、ステップS1の処理に戻り、制御部40は、第1高速モニタを実行し、第1高速モニタ電流値FMo1を取得する。
 なお、ステップS2において、比較部42が、第1高速モニタ電流値FMo1は許容範囲内ではないと判定した場合(ステップS2におけるNoの場合)、ステップS1の処理へ戻らず、図8に示す一連の処理を終了してもよい。また、ステップS2のNoの処理と、ステップS1の処理とを所定回数繰り返した後、図8に示す一連の処理を終了してもよい。
 次に、ステップS2において、比較部42は、ソースドライバ30から取得した第1高速モニタ電流値FMo1が、許容範囲内であると判定した場合(ステップS2におけるYesの場合)、当該判定結果をモニタ制御部43へ出力する。当該判定結果を取得した場合、モニタ制御部43は、一群の画素PXの発光効率の変化は劣化モニタの実行が可能な範囲に収まっていると判断できるため、劣化モニタを実行可能な状態であると判断し、次に、ステップS3において、制御部40は、劣化モニタを実行し、補償電圧値VCを取得する。そして、モニタ制御部43は、補償電圧値VCを示す情報を補償データ生成部44へ出力する。
 例えば、ステップS3において、詳細は図10を用いて後述するが、劣化モニタは、モニタ制御線G2(1)からG2(N)において1ライン毎に平均回数、劣化モニタ電圧を供給したり、1ライン全ての画素回路20からの平均した劣化モニタ電流値Moが所定の電流値以上になるまで、供給する劣化モニタ電圧をスイープさせたりするため、第1高速モニタよりも、実行開始から実行終了までに要する時間は長いが、一群の画素PXの発光効率の変化を検出する精度は高い。
 次に、ステップS4において、補償データ生成部44は、モニタ制御部43が取得した補償電圧値VCに基づいて、補償データ51を生成し、生成した補償データ51によって記憶部50に既に記憶されている補償データ51を更新する。そして、ステップS5において、補償部41は、外部から入力映像信号VDbと、記憶部50に記憶された補償データ51とに基づき、映像信号VDaを生成する。
 このように、本実施形態に係る表示装置1は、一群の画素PXを有する表示パネル10と、制御部40と、記憶部50とを有する。そして、制御部40は、一群の画素PXの発光効率の低下を検出する劣化モニタと、劣化モニタをすべきか否かを判定するために劣化モニタよりも高速で実行される第1高速モニタと、を実行可能なモニタ制御部43を有する。さらに、記憶部50は、劣化モニタを実行する許容範囲を特定した参照データ52を記憶しており、モニタ制御部43は、第1高速モニタにより得られた第1高速モニタ電流値(第1高速モニタ測定値)FMo1が、参照データ52によって特定される許容範囲内にあれば(ステップS2のYesの場合)、劣化モニタを実行する(ステップS3)。
 このように、本実施形態に係る表示装置1によると、劣化モニタを実行する前に、劣化モニタよりも高速で実行可能な第1高速モニタを実行し、第1高速モニタにより得られた第1高速モニタ電流値FMo1が、参照データ52によって特定される許容範囲内にある場合は、劣化モニタを実行可能な状態であると判断できるため、劣化モニタを実行する。すなわち、表示装置1によると、高速で、一群の画素PXの発光効率の低下を検出するための劣化モニタの実行可能な状態の判定が可能である。この結果、表示装置1によると、表示装置の使用環境の温度変化などによって、一時的に一群の画素の発光効率が変化している状態で、一群の画素の発光効率の低下を検出する劣化モニタが実行されてしまうことを抑制することができる。これにより、表示装置1は、正確に、補償データ51を生成して一群の画素PXの劣化補償を行うことができる。
 また、モニタ制御部43は、劣化モニタを実行して得られた補償電圧値(劣化モニタ測定値)VCに基づいて、新たな補償データ51を生成し、記憶部50に記憶された補償データ51を、新たな補償データ51へ更新する(ステップS4)。これにより、一群の画素PXの使用状態に応じて変化する発光効率(例えば電流電圧特性)に応じて、記憶部50に記憶された補償データ51が更新されるため、一群の画素PXの発光効率に応じてより正確に、一群の画素PXの劣化補償をすることができる。
 次に、図1、図2、図9および図10などを用い、第1高速モニタを実行し、第1高速モニタ電流値FMo1を取得する処理(図8のステップS1の処理)、および、劣化モニタを実行し、補償電圧値VCを取得する処理(図8のステップS3)それぞれの詳細について説明する。
 図9は、実施形態に係る、第1高速モニタを実行し、第1高速モニタ電流値FMo1を取得する処理(図8のステップS1の処理)の概略的な流れを表す図である。まず、ステップS11において、モニタ制御部43は、モニタ制御線G2(1)~G2(N)のうち、第1高速モニタを開始する最初のモニタ制御線を設定する。例えば、モニタ制御部43は、モニタ制御線G2(1)~G2(N)のうち、一方の端に設けられたモニタ制御線G2(1)を、第1高速モニタを開始する最初のモニタ制御線に設定する。
 次に、ステップS12において、モニタ制御部43は、ソースドライバ30を介して、設定されたモニタ制御線(例えば、モニタ制御線G2(1))に、予め設定された所定電圧を供給する。
 そして、ステップS13において、制御部40は、所定電圧が供給されたモニタ制御線(例えば、モニタ制御線G2(1))に接続された全ての画素PXからの出力電流である第1高速モニタ電流値FMo1を取得する。これにより、制御部40は、設定されたモニタ制御線(例えば、モニタ制御線G2(1))1ライン分の全ての画素PXからの第1高速モニタ電流値FMo1を取得する。
 次に、ステップS14において、モニタ制御部43は、設定されているモニタ制御線(例えば、モニタ制御線G2(1))が最終のモニタ制御線(例えば、モニタ制御線G2(N))であるか否かを判定する。ステップS14において、モニタ制御部43は、設定されているモニタ制御線(例えば、モニタ制御線G2(1))が最終のモニタ制御線(例えば、他方の端に設けられたモニタ制御線G2(N))ではないと判定すると(ステップS14のNoの場合)、次に、ステップS15においてゲートドライバ13によって1つ隣のモニタ制御線(例えば、モニタ制御線G2(2))が選択されることにより、モニタ制御線が変更され、ステップS12処理に戻る。そして、ステップS12、S13、ステップS14のNo場合の処理、およびステップS15の処理を経ることで、最終のモニタ制御線(例えば、他方の端に設けられたモニタ制御線G2(N))へ至るまで、1ライン毎に所定電圧の供給と1ラインのモニタ制御線に接続された全ての画素PXからの第1高速モニタ電流値FMo1の取得とを繰り返す。
 そして、ステップS14において、モニタ制御部43は、設定されているモニタ制御線(例えば、他方の端に設けられたモニタ制御線G2(N))が最終のモニタ制御線であると判定すると(ステップS14のYesの場合)、第1高速モニタの実行を終了し、ステップS2の処理(図8参照)へ進む。
 このように、第1高速モニタでは、制御部40は、モニタ制御線G2(1)~G2(N)それぞれに、予め設定された共通する電圧である所定電圧を1ライン毎に供給して、1ライン毎に第1高速モニタ電流値FMo1を取得する。このように、第1高速モニタでは、モニタ制御線G2(1)~G2(N)それぞれに供給する電圧を変化させないため、劣化モニタと比べて、高速で処理を行うことができる。
 例えば、表示装置1のフレーム周波数が60Hzの場合であって、画像の表示期間に第1高速モニタを実行する場合、1ライン当たりの所要時間は16.67msec程度となる。これは、1ライン毎にフレーム期間中の帰線期間に所定電圧の供給と第1高速モニタ電流値FMo1の取得を行う必要があるためである。
 そして、例えば、モニタ制御線G2(1)~G2(N)のライン数が720ラインとすると、全ラインの第1高速モニタの実行開始から終了までに要する時間は、約12秒程度である。
 図10は、実施形態に係る、劣化モニタを実行し、補償電圧値VCを取得する処理(図8のステップS3の処理)の概略的な流れを表す図である。ステップS2(図8参照)のYesの後、次に、ステップS31においてモニタ制御部43は、モニタ制御線G2(1)~G2(N)のうち、劣化モニタを開始する最初のモニタ制御線を設定する。例えば、モニタ制御部43は、モニタ制御線G2(1)~G2(N)のうち、一方の端に設けられたモニタ制御線G2(1)を、劣化モニタを開始する最初のモニタ制御線に設定する。
 次に、ステップS32において、モニタ制御部43は、ソースドライバ30を介して、設定されたモニタ制御線(例えば、モニタ制御線G2(1))に、劣化モニタ電圧を供給する。最初に供給されるスイープ前の劣化モニタ電圧は、予め設定されていてもよし、前回の劣化モニタの結果を反映して設定されてもよい。
 そして、ステップS33において、制御部40は、劣化モニタ電圧が供給されたモニタ制御線(例えば、モニタ制御線G2(1))に接続された全ての画素PXから、出力電流である劣化モニタ電流値Moを取得する。これにより、制御部40は、設定されたモニタ制御線(例えば、モニタ制御線G2(1))1ライン分の全ての画素PXからの劣化モニタ電流値Moを取得する。
 次に、ステップS34において、モニタ制御部43は、設定されたモニタ制御線(例えば、モニタ制御線G2(1))1ライン当たり、予め設定された平均回数分、劣化モニタを実行したか否かを判定する。ステップS34において、モニタ制御部43は、設定されたモニタ制御線(例えば、モニタ制御線G2(1))1ライン当たり、予め設定された平均回数分、劣化モニタを実行していないと判定した場合(ステップS34のNoの場合)、ステップS32の処理へ戻る。そして、ステップS32、ステップS33およびステップS34のNoの処理を経て、制御部40は、設定されたモニタ制御線(例えば、モニタ制御線G2(1))1ライン当たり、予め設定された平均回数分だけ、劣化モニタ電圧の供給と劣化モニタ電流値Moの取得とを行う。
 そして、ステップS34において、モニタ制御部43は、設定されたモニタ制御線(例えば、モニタ制御線G2(1))1ライン当たり、予め設定された平均回数分、劣化モニタを実行したと判定すると(ステップS34のYesの場合)、次に、ステップS35において、モニタ制御部43は、設定されたモニタ制御線(例えば、モニタ制御線G2(1))1ラインに接続された全ての画素PXのそれぞれ毎に、取得した劣化モニタ電流値Moを平均する。
 そして、ステップS36において、モニタ制御部43は、設定されたモニタ制御線(例えば、モニタ制御線G2(1))1ラインに接続された全ての画素PXのそれぞれ毎に、平均した劣化モニタ電流値Moが所定の電流値以上となったか否かを判定する。なお、ステップS36において、設定されたモニタ制御線(例えば、モニタ制御線G2(1))1ラインに接続された全ての画素PXのうち、平均した劣化モニタ電流値Moが所定の電流値以上となった画素PXの劣化モニタ電圧を、補償電圧値の候補値として仮のラインメモリなどに記憶していく。
 ステップS36において、モニタ制御部43は、設定されたモニタ制御線(例えば、モニタ制御線G2(1))1ラインに接続された全ての画素PXのそれぞれ毎の平均した劣化モニタ電流値Moが所定の電流値以上となっていないと判定すると(ステップS36のNoの場合)、ステップS37において、モニタ制御部43は、劣化モニタ電圧を変更、すなわちスイープさせる。例えば、モニタ制御部43は、劣化モニタ電圧の電圧を上げる。なお、劣化モニタの電圧を上げる場合、既に所定の電流値に到達した画素PXにおける仮のラインメモリに記憶された補償電圧値の候補値は更新せずにそのまま保持する。そして、ステップS32の処理へ戻り、モニタ制御部43は、ステップS37において変更させた劣化モニタ電圧を、ソースドライバ30を介して、設定されたモニタ制御線(例えば、モニタ制御線G2(1))に供給する。そして、ステップS32~S37の処理を、設定されたモニタ制御線(例えば、モニタ制御線G2(1))1ラインに接続された複数の画素PXのそれぞれ毎に平均した劣化モニタ電流値Moが、所定の電流値以上となるまで、劣化モニタ電圧の変更、すなわち劣化モニタ電圧のスイープを繰り返す。
 そして、ステップS36において、モニタ制御部43は、設定されたモニタ制御線(例えば、モニタ制御線G2(1))1ラインに接続された全ての画素PXのそれぞれ毎に平均した劣化モニタ電流値Moが、全て所定の電流値以上となったと判定すると(ステップS36のYesの場合)、次に、ステップS38において、モニタ制御部43は、仮のラインメモリに記憶された補償電圧値の候補値を補償電圧値VCとして記憶部50などに記憶する。これにより、モニタ制御部43は、設定されたモニタ制御線(例えば、モニタ制御線G2(1))1ライン当たりの補償電圧値VCを取得する。
 そして、ステップS39において、モニタ制御部43は、設定されているモニタ制御線(例えば、モニタ制御線G2(1))が最終のモニタ制御線(例えば、モニタ制御線G2(N))であるか否かを判定する。ステップS39において、モニタ制御部43は、設定されているモニタ制御線(例えば、モニタ制御線G2(1))が最終のモニタ制御線(例えば、モニタ制御線G2(N))ではないと判定すると(ステップS39のNoの場合)、次に、ステップS40においてゲートドライバ13によって1つ隣のモニタ制御線(例えば、モニタ制御線G2(2))が選択されることにより、モニタ制御線が変更され、ステップS32の処理に戻る。そして、ステップS32~S38、ステップS39のNo場合の処理、およびステップS40の処理を経ることで、最終のモニタ制御線(例えば、モニタ制御線G2(N))へ至るまで、1ライン毎に、平均回数分のスイープされた劣化モニタ電圧の供給と、各画素回路20からの劣化モニタ電流値Moに基づく補償電圧値VCの取得とを繰り返す。
 そして、ステップS39において、モニタ制御部43は、設定されているモニタ制御線(例えば、モニタ制御線G2(N))が最終のモニタ制御線であると判定すると(ステップS39のYesの場合)、劣化モニタの実行を終了し、ステップS4の処理(図8参照)へ進む。
 このように、劣化モニタでは、制御部40は、モニタ制御線G2(1)~G2(N)それぞれに、1ライン毎に、劣化モニタ電圧を平均回数分供給し、平均回数分の劣化モニタ電流値Moを取得する。そして、制御部40は、モニタ制御線G2(1)~G2(N)それぞれに、1ライン毎に、全ての画素回路20のそれぞれ毎の劣化モニタ電流値Moの平均値が所定の電流値以上になるまで、劣化モニタ電圧の変更と供給とを繰り返す。これにより、モニタ制御線G2(1)~G2(N)1ライン毎に、補償電圧値VCを取得する。
 このように、劣化モニタは、第1高速モニタよりも、モニタ制御線G2(1)~G2(N)それぞれに電圧を供給する回数、すなわち、一群の画素PXそれぞれの電流電圧特性を測定する回数が多いため、実行開始から終了までに要する時間はかかるが、電流電圧特性の測定(すなわち一群の画素PXの発光効率の低下の検出)を正確に行うことができる。
 例えば、表示装置1のフレーム周波数が60Hzの場合であって、画像の表示期間に劣化モニタを実行する場合、1ライン当たりの所要時間は16.67msec程度となる。これは、第1高速モニタ同様、1ライン毎にフレーム期間中の帰線期間に劣化モニタ電圧の供給と補償電圧値VCの取得を行う必要があるためである。
 そして、例えば、モニタ制御線G2(1)~G2(N)1ライン当たり、平均回数を8回、劣化モニタ電圧のスイープ回数を12回とする。また、モニタ制御線G2(1)~G2(N)のライン数が720ラインとする。すると、全ラインの劣化モニタの実行開始から終了までに要する時間は、約19.2分である。上述のように、全ラインの第1高速モニタの実行開始から終了までに要する時間は、約12秒であるため、第1高速モニタの方が、劣化モニタよりも高速であることが分かる。
 なお、別の方法として、設定されたモニタ制御線(例えば、モニタ制御線G2(1))1ラインに接続された全ての画素PXのそれぞれ毎に供給電圧を変えることができる構成の場合、次の方法を採用してもよい。すなわち、ステップS36において、平均した劣化モニタ電流値Moが所定の電流値以上となった画素PXは、ステップS37において、劣化モニタ電圧は上げず、所定の電流値以上となっていない画素PXのみ劣化モニタ電圧を上げる。そして、ステップS32~S37の処理を、設定されたモニタ制御線(例えば、モニタ制御線G2(1))1ラインに接続された複数の画素PXのそれぞれ毎に平均した劣化モニタ電流値Moが、全て所定の電流値以上となるまで、劣化モニタ電圧の変更、すなわち劣化モニタ電圧のスイープを繰り返し、設定されたモニタ制御線(例えば、モニタ制御線G2(1))1ラインに接続された複数の画素PXの全てが、所定の電流値以上となった時点で設定されている劣化モニタ電圧を、補償電圧値VCとして記憶部50などに記憶する。
 なお、ステップS37において、複数の画素PXのそれぞれ毎に電流ばらつき(例えば焼き付きなども含む)が存在するため、複数のモニタ制御線のそれぞれ毎に、劣化モニタ電圧をスイープする回数は異なる。
 また、上述した、劣化モニタおよび第1高速モニタの処理内容および処理時間は、あくまでも一例であり、上述した例に限定されるものではない。
 このように、モニタ制御部43は、第1高速モニタでは、劣化モニタよりも少ない回数だけ、一群の画素PXの電流電圧特性を測定、すなわち所定電圧の供給と第1高速モニタ電流値(第1高速モニタ測定値)FMo1を取得する。図9を用いて説明した例では、モニタ制御線G2(1)~G2(N)それぞれ1ライン毎に1回だけ、所定電圧の供給と第1高速モニタ電流値FMo1を取得している。このため、劣化モニタが実行可能な状態であるか否かを、速やかに判定することができる。
 図11は、実施形態の変形例1に係る制御部40の処理の概略的な流れを表す図である。制御部40は、第1高速モニタ電流値FMo1に基づいて、記憶部50に記憶された参照データ52を更新してもよい。
 制御部40は、図8などを用いて説明したステップS1およびステップS2の処理を行う。ステップS2において、比較部42は、ソースドライバ30から取得した第1高速モニタ電流値FMo1が、許容範囲内であると判定した場合(ステップS2におけるYesの場合)、当該判定結果をモニタ制御部43へ出力し、さらに、ステップS2Aにおいて、許容範囲内であると判定した第1高速モニタ電流値FMo1に基づいて、記憶部50に記憶された参照データ52を更新する。具体的には例えば、比較部42は、記憶部50に記憶された、所定の基準値を表す基準値データ52aと、基準値に対する許容範囲を特定するための所定範囲を表す所定範囲データ52bとを更新する。この後、制御部40は、図8を用いて説明したステップS3~S5の処理を実行し、一連の処理を終了する。
 なお、ステップS2Aの処理が実行されるタイミングは、ステップS2のYesの処理の後であればよく、ステップS3の前に実行される場合に限定されず、ステップS3とステップS4の間であってもよいし、ステップS4とステップS5の間であってよいし、ステップS5の後であってもよい。
 このように、比較部42は、第1高速モニタ電流値(第1高速モニタ測定値)FMo1が、劣化モニタの実行が可能な許容範囲内であれば、第1高速モニタ電流値FMo1に基づいて、記憶部50に記憶された参照データ52を更新する。これにより、一群の画素PXの使用状態に応じて変化する発光効率(例えば電流電圧特性)に応じて、記憶部50に記憶された参照データ52が更新されるため、比較部42は、より正確に、劣化モニタの実行が可能か否かを判定することができる。
 なお、比較部42が、記憶部50に既に記憶されている参照データ52を更新する方法としては、既に記憶部50に記憶されている参照データ52を新たな参照データ52へ上書きして保存してもよいし、既に記憶されている参照データ52を残すために既に記憶されている参照データ52とは別の記憶領域に新たな参照データ52を保存してもよい。
 図12は、実施形態の変形例2に係る、画素回路、ソースドライバおよび制御部の概略構成を表す図である。制御部40は、劣化モニタの実行前と実行後の2回、高速モニタを実行し、2回の高速モニタの結果を比較した結果に応じて、記憶部50に記憶された補償データ51を更新してもよい。図12に示すように、モニタ制御部43が2回目の第2高速モニタを実行すると、制御部40は、ソースドライバ30から第2高速モニタ電流値(第2高速モニタ測定値)FMo2を取得する。
 図13は、実施形態の変形例2に係る制御部40の処理の概略的な流れを表す図である。図13に示すように、制御部40は、図8を用いて説明したステップS1の処理を行うことで、まず、1回目の高速モニタである第1高速モニタを実行し、第1高速モニタ電流値FMo1を取得する。そして、ステップS2において、比較部42は、記憶部50に記憶された参照データ52を参照し、第1高速モニタ電流値FMo1が許容範囲内であると判定すると(ステップS2のYesの場合)、ステップS3において、判定結果を取得したモニタ制御部43は、劣化モニタを実行し、補償電圧値VCを取得する。
 次に、ステップS51において、モニタ制御部43は、2回目の高速モニタである、第2高速モニタを実行し、第2高速モニタ電流値FMo2を取得する処理を行う。すなわち、ステップS51において、モニタ制御部43は、ソースドライバ30を介して所定電圧を各画素回路20へ供給する第2高速モニタを実行し、制御部40は、所定電圧が供給された各画素回路20からの出力電流値である第2高速モニタ電流値FMo2を、ソースドライバ30を介して取得する。
 なお、ステップS51における、第2高速モニタを実行し、第2高速モニタ電流値FMo2を取得する処理の具体的な内容は、図8および図9を用いて説明した第1高速モニタを実行し、第1高速モニタ電流値FMo1を取得する処理(ステップS1の処理)と同様である。
 次に、ステップS52において、比較部42は、第2高速モニタ電流値FMo2が、第1高速モニタ電流値FMo1に対して所定範囲内であるか否かを判定する。ステップS52において、比較部42は、第2高速モニタ電流値FMo2が、第1高速モニタ電流値FMo1に対して所定範囲内ではないと判定した場合(ステップS52のNoの場合)、劣化モニタの実行中に一群の画素PXの発光効率が大きく変化したと判断できるため、ステップS3において制御部40が取得した補償電圧値VCは使用せずに、再度、ステップS1の処理に戻る。すなわち、ステップS1の処理に戻り、制御部40は、再度、1回目の高速モニタである第1高速モニタを実行し、第1高速モニタ電流値FMo1を取得する。
 なお、ステップS52において、比較部42は、第2高速モニタ電流値FMo2が、第1高速モニタ電流値FMo1に対して所定範囲内ではないと判定した場合(ステップS52のNoの場合)、ステップS1の処理へ戻らず、図13に示す一連の処理を終了してもよい。また、ステップS52のNoの処理を所定回数行った後、図13に示す一連の処理を終了してもよい。
 ステップS52において、比較部42は、第2高速モニタ電流値FMo2が、第1高速モニタ電流値FMo1に対して所定範囲内であると判定した場合(ステップS52のYesの場合)、劣化モニタの実行前後で、一群の画素PXの発光効率が大きく変化していないと判断できるため、次に、ステップS4において、補償データ生成部44は、ステップ3の処理によってモニタ制御部43が取得した補償電圧値VCに基づいて、補償データ51を生成し、生成した補償データ51によって記憶部50に既に記憶されている補償データ51を更新する。そして、ステップS5において、補償部41は、外部から入力映像信号VDbと、記憶部50に記憶された補償データ51とに基づき、映像信号VDaを生成する。
 このように、制御部40は、劣化モニタを実行した後、劣化モニタを実行して得られた補償電圧値(劣化モニタ測定値)VCに基づいて、補償データ51を生成して記憶部50に記憶するか否かを判定するための、劣化モニタよりも高速で実行される第2高速モニタを実行する。そして、制御部40は、第2高速モニタにより得られた第2高速モニタ電流値(第2高速モニタ測定値)FMo2が第1高速モニタ電流値(第1高速モニタ測定値)FMo1に対して所定範囲にあれば、補償電圧値VCに基づいて、新たな補償データ51を生成し、記憶部50に記憶された補償データ51を、新たな補償データ51へ更新する。
 これにより、劣化モニタの実行中に、一群の画素PXが、突発的に大きな発光効率の変化(例えば、電流電圧特性の変化)をしていたか否かを判定することができる。そして、劣化モニタの実行中に、一群の画素PXが、突発的に大きな発光効率の変化(例えば、電流電圧特性の変化)をしていなかった場合に、記憶部50に記憶された補償データ51を更新する。このため、より正確に、一群の画素PXの劣化補償を行うことができる。
 なお、ステップS52のYesにおいて、比較部42は、第2高速モニタ電流値FMo2が、第1高速モニタ電流値FMo1に対して所定範囲内であると判定した場合、さらに、比較部42は、記憶部50に記憶された参照データ52を参照し、第2高速モニタ電流値FMo2が許容範囲内であると判定してから、ステップS4の処理へ進むようにしてもよい。これによって、さらに、正確に、一群の画素PXの劣化補償を行うことができる。
 図14は、実施形態の変形例3に係る制御部40の処理の概略的な流れを表す図である。図14に示すように、図13を用いて説明した一連の処理に、図11を用いて説明したステップS2Aの処理、すなわち、比較部42が、劣化モニタの実行が可能な許容範囲内であると判定した第1高速モニタ電流値FMo1に基づいて、記憶部50に記憶された参照データ52を更新する処理を追加してもよい。
 なお、ステップS2Aの処理が実行されるタイミングは、ステップS2のYesの処理の後であればよく、ステップS3の前に実行される場合に限定されず、ステップS3とステップS51の間であってもよいし、ステップS51とステップS52の間であってよいし、ステップS52のYesとステップS4の間であってよいし、ステップS4とステップS5の間であってよいし、ステップS5の後であってもよい。また、ステップS2Aの処理は、ステップS3、S51、S52、S4、S5それぞれの処理と並列に実行されてもよい。
 図15は、実施形態の変形例4に係る表示装置1の概略構成を表す図である。表示装置1は、画像の表示に寄与しない一群のダミー画素DPXと、一群のダミー画素DPXそれぞれと接続されたダミーデータ線SD1・SD2とを備える。モニタ制御部43(図2参照)は、第1高速モニタでは、一群の画素PXではなく、一群のダミー画素DPXの電流電圧特性を測定してもよい。
 ダミーデータ線SD1・SD2は、データ線S(1)~S(M)を挟むようにデータ線S(1)~S(M)の外側に設けられており、一方の端部はソースドライバ30と接続されている。一群のダミー画素DPXのそれぞれは、ダミーデータ線SD1・SD2と、ゲート線G1(1)~G1(N)およびモニタ制御線G2(1)~G2(N)と、が交差する部分に設けられている。
 ダミーデータ線SD1は、例えば、表示領域11外であって、データ線S(1)と隣接するように、ゲート線G1(1)~G1(N)およびモニタ制御線G2(1)~G2(N)と交差している。ダミーデータ線SD1に沿って列をなす複数のダミー画素DPXが設けられた領域、および、ダミーデータ線SD1に沿って列をなす複数のダミー画素DPXが設けられた領域をそれぞれダミー画素領域11Dと称する。
 ここで、一群の画素PXは、表示装置1の通常の表示動作時に発光した光が表示装置1の視聴者に届くため画像の表示に寄与する画素である。一方、一群のダミー画素DPXは、表示装置1の通常の表示動作時に、光を発光しない画素であり、画像の表示に寄与しない画素である。一群のダミー画素DPXのそれぞれは、ダミー画素回路20Dを備える。ダミー画素回路20Dの構成は、図2を用いて説明した画素回路20の構成と同様である。
 なお、一群のダミー画素DPXは、例えば、筐体の遮光部分と重なるように設けられるなど、表示装置1の視聴者からは見えないように設けられた、画像の表示に寄与しない画素であってもよい。
 また、図15では、ダミー画素領域11Dは、表示領域11外の左右、すなわち、データ線S(1)およびデータ線S(N)それぞれに隣接して沿うように延びる例を図示しているが、ダミー画素領域11Dの位置はこれに限定されるものではない。例えば、ダミー画素領域11Dは、表示領域11外の上下、すなわち、上端のゲート線G1(1)および下端のモニタ制御線G2(N)それぞれに隣接して沿うように延びていてもよい。
 実施形態の変形例4に係る表示装置1の制御部40の処理は、図8、図11、図13、または図14に示す何れの処理を用いてもよい。ただし、ステップS1において、制御部40は、一群の画素PXのそれぞれから第1高速モニタ電流値FMo1を取得するのではなく、一群のダミー画素DPXのそれぞれから第1高速モニタ電流値FMo1を取得する。また、図13または図14に示す処理を用いる場合、ステップS51において、制御部40は、一群の画素PXのそれぞれから第2高速モニタ電流値FMo2を取得するのではなく、一群のダミー画素DPXのそれぞれから第2高速モニタ電流値FMo2を取得する。
 このように、制御部40は、第1高速モニタでは、一群のダミー画素DPXの電流電圧特性を測定してもよい。一群のダミー画素DPXは、一群の画素PXよりも数が少ないため、一群の画素PXを用いて第1高速モニタを実行する場合よりも、さらに、高速で第1高速モニタを実行することができる。これによって、より、速やかに劣化モニタの実行が可能か否かを判定することができる。
 また、一群のダミー画素DPXは、一群の画素PXよりも数が少ないため、一群のダミー画素DPXのそれぞれから得られた第1高速モニタ電流値FMo1が許容範囲内か否かを判定するための参照データ52の容量は小さく、参照データ52の記憶に必要な記憶部50内の容量も小さくすることができる。
 また、一群のダミー画素DPXは、表示装置1の通常の表示動作時にも光を発光しない画素とすることにより、表示装置1の製品出荷時から発光効率の劣化がほぼ無い画素とすることができる。これにより、同じ温度環境で第1高速モニタ電流値FMo1を測定すると、表示装置1の製品出荷時に設定された参照データ52を使い続けることができる。すなわち、一群のダミー画素DPXの発光効率の低下を考慮せずに第1高速モニタ電流値FMo1が許容範囲か否かを判定することができるため、劣化モニタを実行可能な状態であるか否かの判定が容易である。
 図16は、実施形態の変形例5に係る表示装置1の概略構成を表す図である。一群の画素PXの電流電圧特性は表示パネル10の温度によっても変化するため、制御部40は、第1高速モニタとして、一群の画素PXの電流電圧特性または一群のダミー画素DPXの電流電圧特性を測定するのではなく、表示パネル10の温度を測定してもよい。
 本実施形態の変形例5に係る表示パネル10は、1または複数の温度センサ15を備えていてもよい。図16に示す例では、一群の温度センサ15が、表示パネル10の裏面(表示領域11が設けられた面とは反対側の面)にマトリクス状に設けられている。
 また、制御部40は、温度データ取得部48を備えていてもよい。温度データ取得部48は、一群の温度センサ15からの出力を、第1温度測定値(第1高速モニタ測定値)Tm1および第2温度測定値(第2高速モニタ測定値)Tm2として取得する。なお、本実施形態の変形例5では、参照データ52のうち、基準値データ52aに示される基準値および所定範囲データ52bに示される所定範囲は、劣化モニタの実行を許容できる表示パネル10の温度(例えば安定した環境での常温)を規定した値およびその範囲である。
 図17は、実施形態の変形例5に係る制御部40の処理の概略的な流れを表す図である。まず、ステップS61において、制御部40は、第1高速モニタとして、第1温度測定値Tm1を一群の温度センサ15から取得する処理を行う。すなわち、ステップS61において、モニタ制御部43が第1高速モニタを実行すると、温度データ取得部48は、温度センサ15からの出力を、表示パネル10の温度が測定された第1温度測定値Tm1として取得する。
 次に、ステップS62において、比較部42は、記憶部50に記憶された参照データ52を参照し、温度データ取得部48が取得した第1温度測定値Tm1が、劣化モニタの実行が可能な許容範囲内であるか否かを判定する。
 そして、ステップS2において、比較部42は、温度データ取得部48が取得した第1温度測定値Tm1が、劣化モニタの実行が可能な許容範囲内ではないと判定した場合(ステップS62におけるNoの場合)、当該判定結果をモニタ制御部43へ出力する。当該判定結果を取得した場合、モニタ制御部43は、例えば表示装置1の使用環境の変化したなどに起因して表示パネル10の温度が変化し、一群の画素PXの発光効率が一時的に大きく変化していると判断できるため、すなわち、劣化モニタを実行可能な状態ではないと判断できるため、劣化モニタを実行せずに、再度、ステップS1の処理に戻る。すなわち、ステップS1の処理に戻り、制御部40は、第1高速モニタを実行し、第1温度測定値Tm1を取得する。
 なお、ステップS62において、比較部42が、第1温度測定値Tm1は許容範囲内ではないと判定した場合(ステップS62におけるNoの場合)、ステップS61の処理へ戻らず、図17に示す一連の処理を終了してもよい。また、ステップS62のNoの処理と、ステップS61の処理とを所定回数繰り返した後、図17に示す一連の処理を終了してもよい。
 次に、ステップS62において、比較部42は、第1温度測定値Tm1は許容範囲内であると判定した場合(ステップS62におけるYesの場合)、当該判定結果をモニタ制御部43へ出力する。当該判定結果を取得した場合、モニタ制御部43は、表示パネル10の温度は大きく変化しておらず、すなわち、一群の画素PXの発光効率の変化は劣化モニタの実行が可能な範囲に収まっていると判断できるため、言い換えると、劣化モニタを実行可能な状態であると判断できるため、次に、ステップS63において、制御部40は、劣化モニタを実行し、補償電圧値VCを取得する。そして、モニタ制御部43は、補償電圧値VCを示す情報を補償データ生成部44へ出力する。なお、ステップS63の処理は、図8および図11~図14などを用いて説明したステップS3と同様である。
 次に、ステップS64において、モニタ制御部43は、2回目の高速モニタである、第2高速モニタとして、第2温度測定値Tm2を一群の温度センサ15から取得する処理を行う。すなわち、ステップS64において、モニタ制御部43が第2高速モニタを実行すると、温度データ取得部48は、温度センサ15からの出力を、表示パネル10の温度が測定された第2温度測定値Tm2として取得する。
 なお、ステップS64における、第2高速モニタを実行し、第2温度測定値Tm2を取得する処理は、ステップS61における第1高速モニタを実行し、第1温度測定値Tm1を取得する処理と同様である。
 次に、ステップS65において、比較部42は、第2温度測定値Tm2が、第1温度測定値Tm1に対して所定範囲内であるか否かを判定する。ステップS65において、比較部42は、第2温度測定値Tm2が、第1温度測定値Tm1に対して所定範囲内ではないと判定した場合(ステップS65のNoの場合)、劣化モニタの実行中に表示パネル10の温度が大きく変化した、すなわち一群の画素PXの発光効率が大きく変化したと判断できるため、ステップS63において制御部40が取得した補償電圧値VCは使用せずに、再度、ステップS61の処理に戻る。すなわち、ステップS61の処理に戻り、制御部40は、再度、1回目の高速モニタである第1高速モニタを実行し、第1温度測定値Tm1を取得する。
 なお、ステップS65において、比較部42は、第2温度測定値Tm2が、第1温度測定値Tm1に対して所定範囲内ではないと判定した場合(ステップS65のNoの場合)、ステップS61の処理へ戻らず、図17に示す一連の処理を終了してもよい。また、ステップS65のNoの処理を所定回数行った後、図17に示す一連の処理を終了してもよい。
 ステップS65において、比較部42は、第2温度測定値Tm2が、第1温度測定値Tm1に対して所定範囲内であると判定した場合(ステップS65のYesの場合)、劣化モニタの実行前後で、表示パネル10の温度が大きく変化していない、すなわち、一群の画素PXの発光効率が大きく変化していないと判断できるため、次に、ステップS66において、補償データ生成部44は、ステップ63の処理によってモニタ制御部43が取得した補償電圧値VCに基づいて、補償データ51を生成し、生成した補償データ51によって記憶部50に既に記憶されている補償データ51を更新する。そして、ステップS67において、補償部41は、外部から入力映像信号VDbと、記憶部50に記憶された補償データ51とに基づき、映像信号VDaを生成する。
 なお、2回目の高速モニタを実行するステップS64の処理およびステップS65の処理を省略してもよい。
 このように、表示パネル10は温度センサ15を有していてもよい。そして、温度データ取得部48は、温度センサ15からの出力を第1温度測定値(第1高速モニタ測定値)Tm1として取得してもよい。
 上述のように、第1高速モニタは、劣化モニタのような一群の画素PXへ複数回、電圧を供給する処理とは異なり、温度センサ15からの出力を取得するだけなので、劣化モニタよりも高速で処理が可能である。すなわち、表示装置1によると、高速で、一群の画素PXの発光効率の低下を検出するための劣化モニタの実行可能な状態の判定が可能である。この結果、表示装置1によると、表示装置の使用環境の温度変化などによって、一時的に一群の画素の発光効率が変化している状態で、一群の画素の発光効率の低下を検出する劣化モニタが実行されてしまうことを抑制することができる。
 また、制御部40は、劣化モニタを実行した後、劣化モニタを実行して得られた補償電圧値(劣化モニタ測定値)VCに基づいて、補償データ51を生成して記憶部50に記憶するか否かを判定するための、劣化モニタよりも高速で実行される第2高速モニタを実行する。そして、制御部40は、第2高速モニタにより得られた第2温度測定値(第2高速モニタ測定値)Tm2が第1温度測定値(第1高速モニタ測定値)Tm1に対して所定範囲にあれば、補償電圧値VCに基づいて、新たな補償データ51を生成し、記憶部50に記憶された補償データ51を、新たな補償データ51へ更新する。
 これにより、劣化モニタの実行中に、表示パネル10の温度が変化したことに起因して一群の画素PXが、突発的に大きな発光効率の変化(例えば、電流電圧特性の変化)をしていたか否かを判定することができる。そして、劣化モニタの実行中に、一群の画素PXが、突発的に大きな発光効率の変化(例えば、電流電圧特性の変化)をしていなかった場合に、記憶部50に記憶された補償データ51を更新する。このため、より正確に、一群の画素PXの劣化補償を行うことができる。
 なお、記憶部50は、コンピュータが読み取り可能な記憶媒体であって、表示装置1の外部の記憶媒体または表示装置1と通信可能なサーバからインストールされた表示プログラムを非一時的に記憶していてもよい。表示プログラムは、制御部40を、補償部41、比較部42、モニタ制御部43、補償データ生成部44、温度データ取得部48として機能させる。制御部40は、ハードウェア構成として、コンピュータを備える。コンピュータは、表示プログラムを実行することによって、制御部40を、補償部41、比較部42、モニタ制御部43、補償データ生成部44、温度データ取得部48として機能するプロセッサを備えてもよい。プロセッサは、表示プログラムを実行することによって機能を実現することができれば、その種類は問わない。プロセッサとして、CPU(Central Processing Unit)、GPU(Graphics Processing Unit)、DSP(Digital Signal Processor)、ASIC(application specific integrated circuit)等、各種のプロセッサを用いることが可能である。またプロセッサは、CPU、GPU、DSP等に加えて周辺回路装置を含んでもよい。周辺回路装置は、IC(Integrated Circuit)であってもよいし、抵抗やキャパシター等を含んでもよい。
 なお、前述した実施形態や変形例に登場した各要素を、矛盾が生じない範囲で、適宜に組み合わせてもよい。
1:表示装置、10:表示パネル、11:表示領域、11D:ダミー画素領域、15:温度センサ、21:発光素子、40:制御部、41:補償部、42:比較部、43:モニタ制御部、44:補償データ生成部、48:温度データ取得部、50:記憶部、51:補償データ、52:参照データ、DPX:ダミー画素、FMo1:第1高速モニタ電流値(第1高速モニタ測定値)、FMo2:第2高速モニタ電流値(第2高速モニタ測定値)、Mo:劣化モニタ電流値、PX:画素、Tm1:第1温度測定値(第1高速モニタ測定値)、Tm2:第2温度測定値(第2高速モニタ測定値)、VDa:映像信号、VC:補償電圧値(劣化モニタ測定値)、VDb:入力映像信号

 

Claims (8)

  1.  一群の画素を有する表示パネルと、
     前記一群の画素の発光効率の低下を検出する劣化モニタと、前記劣化モニタをすべきか否かを判定するために、前記劣化モニタよりも高速で実行される第1高速モニタと、を実行可能な制御部と、
     前記劣化モニタを実行する許容範囲を特定した参照データを記憶する記憶部と、を有し、
     前記制御部は、前記第1高速モニタにより得られた第1高速モニタ測定値が前記許容範囲内にあれば、前記劣化モニタを実行する、表示装置。
  2.  前記制御部は、前記第1高速モニタでは、前記劣化モニタよりも少ない回数だけ、前記一群の画素の電流電圧特性を測定することで前記第1高速モニタ測定値を取得する、請求項1に記載の表示装置。
  3.  さらに、画像の表示に寄与しない一群のダミー画素を有し、
     前記制御部は、前記第1高速モニタでは、前記一群のダミー画素の電流電圧特性を測定することで前記第1高速モニタ測定値を取得する、請求項1または2に記載の表示装置。
  4.  前記表示パネルは温度センサを有し、
     前記第1高速モニタ測定値は、前記温度センサからの出力である、請求項1から3の何れか1項に記載の表示装置。
  5.  前記制御部は、前記第1高速モニタ測定値が前記許容範囲内であれば、前記第1高速モニタ測定値に基づいて、前記記憶部に記憶された前記参照データを更新する、請求項1から4の何れか1項に記載の表示装置。
  6.  前記記憶部は、前記一群の画素の発光効率の低下を補償する補償データを記憶し、
     前記制御部は、前記劣化モニタを実行した後、前記劣化モニタを実行して得られた劣化モニタ測定値に基づいて新たな補償データを生成し、前記記憶部に記憶された前記補償データを、前記新たな補償データへ更新する、請求項1から5の何れか1項に記載の表示装置。
  7.  前記記憶部は、前記一群の画素の発光効率の低下を補償する補償データを記憶し、
     前記制御部は、
      前記劣化モニタを実行した後、前記劣化モニタを実行して得られた劣化モニタ測定値に基づいて補償データを生成して前記記憶部に記憶するか否かを判定するための、前記劣化モニタよりも高速で実行される第2高速モニタを実行し、
      前記第2高速モニタにより得られた第2高速モニタ測定値が前記第1高速モニタ測定値に対して所定範囲にあれば、前記劣化モニタ測定値に基づいて新たな補償データを生成し、前記記憶部に記憶された前記補償データを、前記新たな補償データへ更新する、
     請求項1から6の何れか1項に記載の表示装置。
  8.  前記表示パネルは、有機EL表示パネルまたはQLED表示パネルである、請求項1から7の何れか1項に記載の表示装置。

     
PCT/JP2021/022482 2021-06-14 2021-06-14 表示装置 WO2022264200A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US18/288,945 US20240203341A1 (en) 2021-06-14 2021-06-14 Display device
CN202180097659.1A CN117223049A (zh) 2021-06-14 2021-06-14 显示装置
PCT/JP2021/022482 WO2022264200A1 (ja) 2021-06-14 2021-06-14 表示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/022482 WO2022264200A1 (ja) 2021-06-14 2021-06-14 表示装置

Publications (1)

Publication Number Publication Date
WO2022264200A1 true WO2022264200A1 (ja) 2022-12-22

Family

ID=84525884

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/022482 WO2022264200A1 (ja) 2021-06-14 2021-06-14 表示装置

Country Status (3)

Country Link
US (1) US20240203341A1 (ja)
CN (1) CN117223049A (ja)
WO (1) WO2022264200A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008175958A (ja) * 2007-01-17 2008-07-31 Sony Corp 表示装置、表示駆動方法
WO2010001594A1 (ja) * 2008-07-04 2010-01-07 パナソニック株式会社 表示装置及びその制御方法
WO2015162650A1 (ja) * 2014-04-23 2015-10-29 株式会社Joled 表示装置及びその制御方法
JP2016090940A (ja) * 2014-11-10 2016-05-23 三星ディスプレイ株式會社Samsung Display Co.,Ltd. 表示装置、表示方法、及びプログラム

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101661016B1 (ko) * 2013-12-03 2016-09-29 엘지디스플레이 주식회사 유기발광 표시장치와 그의 화질 보상방법
US10062326B2 (en) * 2014-03-31 2018-08-28 Sharp Kabushiki Kaisha Display device and method for driving same
US10621913B2 (en) * 2015-12-14 2020-04-14 Sharp Kabushiki Kaisha Display device and driving method therefor
KR20200134584A (ko) * 2019-05-22 2020-12-02 삼성전자주식회사 디스플레이 구동 회로 및 이를 포함하는 디스플레이 장치

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008175958A (ja) * 2007-01-17 2008-07-31 Sony Corp 表示装置、表示駆動方法
WO2010001594A1 (ja) * 2008-07-04 2010-01-07 パナソニック株式会社 表示装置及びその制御方法
WO2015162650A1 (ja) * 2014-04-23 2015-10-29 株式会社Joled 表示装置及びその制御方法
JP2016090940A (ja) * 2014-11-10 2016-05-23 三星ディスプレイ株式會社Samsung Display Co.,Ltd. 表示装置、表示方法、及びプログラム

Also Published As

Publication number Publication date
US20240203341A1 (en) 2024-06-20
CN117223049A (zh) 2023-12-12

Similar Documents

Publication Publication Date Title
TWI711023B (zh) 驅動電路、發光顯示裝置,以及驅動方法
US9865198B2 (en) Display device of active matrix type
US9384696B2 (en) Display device, method of calculating compensation data thereof, and driving method thereof
CN105702212B (zh) 有机发光显示设备及其驱动方法
JP6654363B2 (ja) 有機発光表示装置
US8089477B2 (en) Display device and method for controlling the same
KR102199425B1 (ko) 전기 광학 장치
KR102028504B1 (ko) 보상회로를 포함하는 유기발광 표시장치
US8390653B2 (en) Electroluminescent pixel with efficiency compensation by threshold voltage overcompensation
KR20160055559A (ko) 유기발광표시장치 및 그 구동방법
KR20140083188A (ko) 유기 발광 디스플레이 장치와 이의 구동 방법
KR20050085039A (ko) 디스플레이 디바이스의 출력 균일성을 개선하는 방법
CN113853645B (zh) 显示装置及其驱动方法
KR20180059604A (ko) 유기발광표시장치 및 그의 구동방법
US11087687B2 (en) Display device and driving method for the same
KR20140077789A (ko) 유기 발광 표시 장치 및 그 구동방법
KR102084711B1 (ko) 표시 장치 및 표시 장치 구동방법
KR20160081069A (ko) 유기 발광 표시 장치
KR20200123694A (ko) 디스플레이 구동 회로 및 이의 동작 방법
KR20070032931A (ko) 픽셀 구동 전류 측정 방법 및 장치와 기록 매체
JP2015106096A (ja) 表示装置及びその補償データ算出方法及びその駆動方法
WO2022264200A1 (ja) 表示装置
JP6358615B2 (ja) 表示装置及びその製造方法
KR20170136028A (ko) 유기 발광 표시 장치 및 발광 소자의 열화 보상 방법
CN115206238A (zh) 显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21945880

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180097659.1

Country of ref document: CN

Ref document number: 18288945

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21945880

Country of ref document: EP

Kind code of ref document: A1