WO2022263464A1 - Utilisation d'huiles essentielles à titre de biostimulants de mycéliums et de champignons - Google Patents

Utilisation d'huiles essentielles à titre de biostimulants de mycéliums et de champignons Download PDF

Info

Publication number
WO2022263464A1
WO2022263464A1 PCT/EP2022/066214 EP2022066214W WO2022263464A1 WO 2022263464 A1 WO2022263464 A1 WO 2022263464A1 EP 2022066214 W EP2022066214 W EP 2022066214W WO 2022263464 A1 WO2022263464 A1 WO 2022263464A1
Authority
WO
WIPO (PCT)
Prior art keywords
beta
mycelium
essential oil
pinene
phellandrene
Prior art date
Application number
PCT/EP2022/066214
Other languages
English (en)
Inventor
Jérémie MALLET
Original Assignee
Myceliance
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Myceliance filed Critical Myceliance
Priority to EP22733622.9A priority Critical patent/EP4355096A1/fr
Priority to CN202280042101.8A priority patent/CN117529230A/zh
Publication of WO2022263464A1 publication Critical patent/WO2022263464A1/fr

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N65/00Biocides, pest repellants or attractants, or plant growth regulators containing material from algae, lichens, bryophyta, multi-cellular fungi or plants, or extracts thereof
    • A01N65/06Coniferophyta [gymnosperms], e.g. cypress
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G18/00Cultivation of mushrooms
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G18/00Cultivation of mushrooms
    • A01G18/40Cultivation of spawn
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N27/00Biocides, pest repellants or attractants, or plant growth regulators containing hydrocarbons
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N65/00Biocides, pest repellants or attractants, or plant growth regulators containing material from algae, lichens, bryophyta, multi-cellular fungi or plants, or extracts thereof
    • A01N65/08Magnoliopsida [dicotyledons]
    • A01N65/10Apiaceae or Umbelliferae [Carrot family], e.g. parsley, caraway, dill, lovage, fennel or snakebed
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01PBIOCIDAL, PEST REPELLANT, PEST ATTRACTANT OR PLANT GROWTH REGULATORY ACTIVITY OF CHEMICAL COMPOUNDS OR PREPARATIONS
    • A01P21/00Plant growth regulators

Definitions

  • TITLE USE OF ESSENTIAL OILS AS BIOSTIMULANTS OF MYCELIUMS AND MUSHROOMS
  • the present invention relates to the use of essential oils as biostimulants in the production of mycelia and the cultivation of mushrooms. More particularly, the invention relates to the use of particular terpenes, or of essential oils which are mainly composed of them, in the stimulation of the development and growth of mycelia and edible mushrooms.
  • Edible mushrooms have always been used by humans, particularly for their food qualities or their medicinal properties.
  • mushrooms There are many varieties of mushrooms but the most cultivated in the world are button mushrooms (Agaricus bisporus), oyster mushrooms (Pleurotus ostreaus, Pleurotus eryngii, etc.) and shiitake mushrooms (Lentinula edodes).
  • Button mushrooms alone represent more than 40% of the world market, oyster mushrooms 25% and shiitake 15%.
  • the main market players on a global scale are China with 50% of production, the United States and Europe.
  • the mushroom production method can be broken down into two stages: the first concerns the obtaining of inoculum and mycelia, the second concerns the actual culture of the mushrooms, from the mycelia obtained during the first step. These two steps can be carried out independently by different players, the first by a mycelium producer, the second by a mushroom grower, or by a single player, the mushroom grower.
  • the culture medium can be agar, such as potato dextrose agar (PDA, Potato Dextrose Agar), a liquid medium such as potato dextrose broth (PDB, Potato Dextrose Broth), or any other nutrient solution containing a gelling agent or not.
  • PDA potato dextrose agar
  • PB potato Dextrose broth
  • the development and growth of the mycelium on its culture medium is variable but generally extends from 7 to 28 days, depending on the strain of mushroom.
  • a piece of the culture medium is then taken for inoculation with a colonization substrate.
  • a suitable colonization substrate can be synthetic, or more often composed of cereals, generally rye, millet, sorghum, wheat, barley, rice or oats, previously sterilized and packaged in jars or containers. grow bags.
  • the mycelium inoculum thus obtained is then used in the cultivation and production of mushrooms.
  • the inoculum is therefore used to seed a substrate for fruiting.
  • the fruiting substrate is compost generally made up of straw and animal waste, watered abundantly to guarantee its maturation for two to three weeks.
  • the fruiting substrate is then pasteurized for a few days with decreasing temperatures of 60 to 40°C.
  • the seeding of the fruiting substrate is done after pasteurization, for example using a ladder, by mixing the inoculum contained in its colonization substrate and the fruiting substrate.
  • the next step is casing, which consists of covering the fruiting substrate with a suitable layer of soil.
  • the casing soil is, for example, a mixture of crushed and disinfected freestone and horticultural peat. After a controlled drop in temperature, the first mushroom heads emerge from the fruiting substrate, and the harvest can then begin and last two to three weeks.
  • Biostimulants are substances capable of stimulating the metabolism of a plant, or a fungus, and its natural processes of absorption of nutrients. More specifically, Regulation (EU) 2019/1009 of the European Parliament and of the Council of June 5, 2019 entering into force on July 22, 2022 defines a biostimulant as "a product which stimulates the nutrition processes of plants independently of the nutrients it contains. contains, with the aim of improving one or more of the following characteristics of plants or their rhizosphere: a) nutrient use efficiency b) tolerance to abiotic stress c) quality characteristics d) nutrient availability nutrients confined to the soil or rhizosphere”
  • the object of the present invention is thus to identify and to propose effective biostimulants in the methods of production of inoculum of mycelia and in the methods of culture of mushrooms from inoculum of mycelia.
  • the biostimulants according to the invention will have to make it possible to shorten the times for production of the inocula of mycelia and for the culture of mushrooms or, at the very least, to avoid the lengthening of these times.
  • the biostimulants according to the invention must be usable in the conventional methods of production of inoculum and production of mushrooms.
  • the invention relates to the use of at least one chemotyped essential oil beta-pinene, delta-3-carene or beta-phellandrene, or a mixture thereof, for the stimulation of development and growth. of a mycelium or fungus.
  • the chemotype, or chemotype, of an essential oil indicates the major component of the chemical composition of the essential oil. This component is generally present in a content greater than 20% of the total volume used during its chemical analysis.
  • the essential oils selected according to the invention it is possible to extract and use the biostimulant compound(s) from the chemical composition of the essential oil.
  • the invention also relates to the use of at least one terpene chosen from beta-pinene, delta-3-carene or beta-phellandrene, or one of their mixtures, for stimulating development and growth. of a mycelium or fungus.
  • biostimulants are real innovations for the production of mushrooms.
  • the use of products with a biostimulant effect has a major impact on the production of mycelia and fungi.
  • the main limit of inoculum producers lies in their ability to quickly produce, store and distribute their mycelia to mushroom producers.
  • the use of biostimulants according to the invention makes it possible to reduce the time between the start of production and distribution, thus increasing the production capacity of producers.
  • the addition of biostimulants in the culture substrate makes it possible to increase the speed of colonization of the substrate by the mycelia and thus to initiate fruiting and to initiate the harvest of more mushrooms. rapidly, leading to an increase in the production of mushroom growers.
  • the addition of biostimulants can be carried out during the different incubation phases, until fruiting.
  • the mycelia stimulated by the compounds and the essential oils selected according to the invention it was possible to observe an increase in the yield of the crops, an increase in the average mass per mushroom and, on the one hand, generally, an improvement in the quality of the mushrooms harvested.
  • the compounds and essential oils selected in the context of the invention have the particularity of exhibiting a strongly biostimulating effect over a wide range of concentrations, therefore without risk of an inhibitory effect in the event of an overdose.
  • the selected compounds and essential oils are also interchangeable, for example in the event of a shortage of one of them.
  • the selected compounds and essential oils can also be combined in order to obtain, in certain cases, effects of synergy and accentuated resilience.
  • the compounds and essential oils selected also make it possible to produce their effects on the growth of mycelia and fungi under conditions less favorable than normal conditions, such as a lowering of the incubation temperature by 1 or 2°C or a aging effect.
  • the essential oil is chosen from Pinus ponderosa, Pinus mugo, Pseudotsuga menziesii, Abies balsamea, Abies alba, Picea glauca, Angelica archangelica and Ferula gummosa.
  • the mycelium or the fungus is chosen from basidiomycetes, in particular button mushroom, oyster mushrooms and shiitake mushrooms, more particularly Agaricus bisporus, Pleurotus ostreaus, Pleurotus eryngii and Lentinula edodes.
  • the essential oil used is preferentially chemotyped beta-pinene, delta-S-carene or beta-phellandrene, preferentially beta-pinene.
  • the terpene used is preferably beta-pinene, delta-3-carene or beta-phellandrene.
  • the essential oil used is preferably chosen from Pinus ponderosa, Pinus mugo, Pseudotsuga menziesii, Abies balsamea, Abies alba, Picea glauca, Angelica archangelica and Ferula gummosa.
  • the essential oil used is preferentially chemotyped beta-pinene, delta-3-carene or beta-phellandrene, preferentially beta-pinene.
  • the terpene used is preferably beta-pinene, delta-3-carene or beta-phellandrene.
  • the essential oil used is preferably chosen from Pinus ponderosa, Pinus mugo, Pseudotsuga menziesii, Abies balsamea, Abies alba, Picea glauca, Angelica archangelica and Ferula gummosa.
  • the essential oil used is preferentially chemotyped beta-pinene or beta-phellandrene, preferentially beta-phellandrene.
  • the terpene used is preferably beta-pinene or beta-phellandrene.
  • the essential oil used is preferably chosen from Angelica archangelica and Ferula gummosa.
  • the essential oil used is preferentially chemotyped beta-pinene.
  • the terpene used is preferably beta-pinene.
  • the essential oil used is preferably chosen from Pseudotsuga menziesii, Abies balsamea, Abies alba, Picea glauca, and Ferula gummosa.
  • the invention also relates to a composition for biostimulating the development and growth of a mycelium or a fungus, which is characterized in that it comprises: a liquid solution, at least one terpene chosen from delta-3- carene and beta-phellandrene, or at least one chemotyped beta-pinene, delta-3-carene or beta-phellandrene essential oil, or one of their mixtures, at least one surfactant capable of solubilizing the terpene(s), or the or essential oils, in the liquid solution.
  • the ratio between the terpene(s), or the essential oil(s), and the surfactant(s) is 1.
  • composition according to the invention composed for 50% of at least one terpene chosen from delta-3-carene or beta-phellandrene, or at least one essential oil chemotyped beta-pinene, delta-3-carene or beta -phellandrène, or one of their mixture, and for 50% liquid black soap.
  • the composition comprises, as essential oil, at least one essential oil chosen from Pinus ponderosa, Pinus mugo, Pseudotsuga menziesii, Abies balsamea, Abies alba, Picea glauca, Angelica archangelica and Ferula gummosa.
  • at least one essential oil chosen from Pinus ponderosa, Pinus mugo, Pseudotsuga menziesii, Abies balsamea, Abies alba, Picea glauca, Angelica archangelica and Ferula gummosa.
  • the invention also relates to a method for obtaining an inoculum, of mycelium, characterized in that it comprises the following steps: preparation of a culture medium, addition, in the culture medium, of least one essential oil chemotyped beta-pinene, delta-3-carene or beta-phellandrene, or of at least one terpene selected from beta-pinene, delta-3-carene or beta-phellandrene, or one of their mixture, or of a composition as defined previously, inoculation of the culture medium with spores or an inoculum, optionally, growth of the mycelium, inoculation of a colonization substrate with the mycelium, obtaining an inoculum, of mycelium , conditioning of the inoculum.
  • the essential oil, the terpene or the composition are added to the culture medium so that the concentration of the essential oil(s), or the concentration of the terpene(s), is comprised between 20 and 300 pL/L of culture medium.
  • the culture medium used is a culture medium conventionally used in the production of mycelium. It is in particular a liquid or agar medium, such as potato dextrose broth (PDB) or potato dextrose agar (PDA).
  • PDB potato dextrose broth
  • PDA potato dextrose agar
  • the medium is sterilized in the liquid state.
  • the composition according to the invention is added then the medium is stored in liquid form or poured into Petri dishes if it contains a gelling agent.
  • the liquid solution or Petri dishes are then inoculated with spores or solid inocula, and the method continues in the conventional manner.
  • the method according to the invention makes it possible to shorten by several days the period necessary for obtaining inocula, mycelia, or mushrooms, marketable by the producers, compared to a traditional method.
  • Growth can be stimulated and increased by more than 50%, even more than 80%, compared to the growth obtained in a classic method, that is to say without the use of terpenes or essential oils selected in the framework of the invention.
  • Growth stimulation can be calculated by measuring the size or the mass of the mycelium at a time T, compared to a control.
  • the invention also relates to a method for growing mushrooms from an inoculum, mycelium, which is characterized in that it comprises the following steps: preparation of a fruiting substrate, optionally, impregnation, incorporation, watering or spraying of the fruiting substrate with at least one chemotyped essential oil beta-pinene, delta-3-carene or beta-phellandrene, or at least one terpene chosen from beta-pinene, delta-3-carene or beta-phellandrene, or one of their mixture, or by a composition as defined above, seeding of the fruiting substrate with an inoculum, of mycelium preferentially obtained by a method according to the invention, incubation, with optional watering or spraying of the fruiting substrate by at least one essential oil, or at least one terpene or by a composition as defined above, fruiting, harvesting, according to one embodiment of the invention, the mycel ium or the mushroom is chosen from the basidiomycetes, in particular button mushroom, oyster
  • FIG. 1 is a graphic representation of the stimulation of the growth of the mycelium of Agaricus bisporus on a culture medium supplemented with essential oil of Pinus ponderosa.
  • FIG. 2 is a graphic representation of the stimulation of the growth of the mycelium of Agaricus bisporus on a culture medium supplemented with essential oil of Pinus mugo.
  • FIG. B is a graphic representation of the stimulation of the growth of the mycelium of Agaricus bisporus on a culture medium supplemented with essential oil of Pseudotsuga menziesii.
  • FIG. 4], [Fig. 5] and [Fig. 6] are graphic representations of the stimulation of mycelium growth of three strains of Agaricus bisporus on a culture medium supplemented with purified b-pinene.
  • FIG. 7 is a graphical representation of the growth inhibition of Agaricus bisporus mycelium on a culture medium supplemented with purified ⁇ -pinene.
  • Example 1 Evaluation of the biostimulation of the growth of mycelium of Agaricus bisporus
  • composition of biostimulants according to the invention Mix in a sterile container, the essential oil(s), or the terpene(s) chosen according to the invention, with the surfactant(s), in equal portions:
  • Figures 1, 2 and 3 illustrate the average growths of the mycelium of Agaricus bisporus on their culture medium supplemented with essential oils of Pinus ponderosa (figure 1), Pinus mugo (figure 2) and Pseudotsuga menziesii (figure 3) .
  • the essential oils indicated in Table 2 showed an inhibitory effect, or showed no significant effect, on the growth of the mycelium of Agaricus bisporus.
  • Example 2 Evaluation of the biostimulation of the growth of mycelium of Pleurotus ostreaus 2.1 Experimental protocol The experimental protocol is identical to that of Example 1.
  • Example 5 Evaluation of the biostimulation of the growth of mycelium of Agaricus bisporus by b-pinene.
  • the experimental protocol is identical to that of example 1.
  • the tests were carried out on three strains of Agaricus bisporus (brands Heirloom and TripleX from the company Amycel and Italian from the company Sylvan) with the purified terpene b-pinene.
  • Figures 4, 5 and 6 show the average mycelium growths of Heirloom brand Agaricus bisporus ( Figure 4), TripleX brand Agaricus bisporus ( Figure 5), Italian brand Agaricus bisporus ( Figure 6), on their culture medium supplemented with purified b-pinene, at a concentration of 40 or 80 ⁇ L/L for Heirloom and TripleX brand Agaricus bisporus, and at a concentration of 80 or 100 ⁇ L/L for Arabic brand Agaricus bisporus.
  • Example 6 Comparison of the effects on the growth of mycelium of Agaricus bisporus of b-pinene and of Ga-pinene.
  • the tests were carried out on the Agaricus bisporus strain of the TripleX brand from the company Amycel with the purified terpenes b-pinene and a-pinene, at a concentration of 40 ⁇ L/L.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Mycology (AREA)
  • Plant Pathology (AREA)
  • Wood Science & Technology (AREA)
  • Natural Medicines & Medicinal Plants (AREA)
  • Agronomy & Crop Science (AREA)
  • Dentistry (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Pest Control & Pesticides (AREA)
  • Botany (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Mushroom Cultivation (AREA)

Abstract

La présente invention concerne l'utilisation de terpènes particuliers, ou d'huiles essentielles qui en sont majoritairement composées, à titre de biostimulants dans la production de mycéliums et la culture de champignons. Plus particulièrement, l'invention concerne l'utilisation d'au moins une huile essentielle chémotypée bêta- pinène, delta-3-carène ou bêta-phellandrène, ou d'au moins un terpène choisi parmi le bêta-pinène, le delta-3-carène ou le bêta-phellandrène, ou l'un de leur mélange, pour la stimulation du développement et de la croissance de mycéliums et de champignons comestibles.

Description

DESCRIPTION
TITRE : UTILISATION D'HUILES ESSENTIELLES À TITRE DE BIOSTIMULANTS DE MYCÉLIUMS ET DE CHAMPIGNONS
La présente invention concerne l'utilisation d'huiles essentielles à titre de biostimulants dans la production de mycéliums et la culture de champignons. Plus particulièrement, l'invention concerne l'utilisation de terpènes particuliers, ou d'huiles essentielles qui en sont majoritairement composées, dans la stimulation du développement et de la croissance de mycéliums et de champignons comestibles.
Les champignons comestibles sont utilisés depuis toujours par l'Homme notamment pour leurs qualités alimentaires ou leurs vertus médicinales. Il existe de nombreuses variétés de champignons mais les plus cultivées dans le monde sont le champignon de Paris (Agaricus bisporus), les pleurotes (Pleurotus ostreaus, Pleurotus eryngii, etc.) et le shiitake (Lentinula edodes). Le champignon de Paris représente à lui seul plus de 40 % du marché mondial, les pleurotes 25 % et le shiitake 15 %. Les principaux acteurs du marché à l'échelle mondiale sont la Chine avec 50 % de la production, les États-Unis et l'Europe.
À l'échelle industrielle, la méthode de production de champignons peut se décomposer en deux étapes : la première concerne l'obtention d'inoculum, de mycéliums, la seconde concerne la culture à proprement parler des champignons, à partir des mycéliums obtenus lors de la première étape. Ces deux étapes peuvent être réalisées indépendamment par des acteurs différents, la première par un producteur de mycéliums, la seconde par un champignonniste, ou par un seul et même acteur, le champignonniste.
L'obtention d'inoculum, de mycéliums, débute par l'inoculation d'un milieu de culture stérilisé à partir de spores ou d'un morceau d'inoculum. Le milieu de culture peut être de la gélose, telle que de la gélose dextrosée à la pomme de terre (PDA, Potato Dextrose Agar), un milieu liquide tel que du bouillon dextrosé à la pomme de terre (PDB, Potato Dextrose Broth), ou toute autre solution nutritive contenant un gélifiant ou non. Le développement et la croissance du mycélium sur son milieu de culture est variable mais s'étend généralement de 7 à 28 jours, en fonction de la souche de champignon. Une fois que le mycélium a totalement colonisé le milieu de culture, un morceau du milieu de culture est alors prélevé pour l'inoculation d'un substrat de colonisation. Un substrat de colonisation adapté peut être synthétique, ou le plus souvent composé de céréales, généralement de seigle, de millet, de sorgho, de blé, d'orge, de riz ou d'avoine, préalablement stérilisées et conditionnées dans des bocaux ou des sacs de culture.
L'inoculum de mycélium ainsi obtenu est ensuite utilisé dans la culture et la production des champignons. L'inoculum est donc utilisé pour ensemencer un substrat de fructification.
Dans le cas du champignon de Paris, le substrat de fructification est un compost généralement composé de pailles et de déjections animales, arrosé abondamment pour garantir sa maturation durant deux à trois semaines. Le substrat de fructification est ensuite pasteurisé durant quelques jours avec des températures décroissantes de 60 à 40°C. L'ensemencement du substrat de fructification se fait après pasteurisation, par exemple à l'aide d'une lardeuse, par mélange de l'inoculum contenu dans son substrat de colonisation et du substrat de fructification. Il s'en suit une période d'incubation durant laquelle les substrats de fructification inoculés sont placés dans un local clos dont la température, l'humidité et l'oxygène sont contrôlées pendant deux semaines. La température est maintenue de 22 à 25°C. L'étape ultérieure est le gobetage, qui consiste à recouvrir le substrat de fructification d'une couche de terre adaptée. La terre de gobetage est, par exemple, un mélange de tuffeau, broyé et désinfecté et de tourbe horticole. Après une baisse de température contrôlée, les premières têtes de champignons sortent du substrat de fructification, et la récolte peut alors commencer et durer deux à trois semaines.
Ces méthodes d'obtention de l'inoculum et de production des champignons s'étendent ainsi sur plusieurs semaines, en particulier du fait du temps nécessaire aux différentes souches de mycéliums pour coloniser leurs substrats. Le développement et la croissance des mycéliums peuvent en outre être perturbés par différents facteurs, tels qu'une variation de paramètres des conditions de culture. Les vitesses de croissance des mycéliums peuvent ainsi devenir un facteur limitant allongeant les délais de production des inocula pour les producteurs et/ou allongeant les délais de récolte des champignons pour les champignonnistes. Ainsi toute la chaîne de production des champignons peut se trouver impactée.
L'utilisation de biostimulants dans les méthodes de productions agricoles est en plein développement. Les biostimulants sont des substances capables de stimuler le métabolisme d'une plante, ou d'un champignon, et ses processus naturels d'absorption des nutriments. Plus précisément, le Règlement (UE) 2019/1009 du parlement européen et du conseil du 5 juin 2019 entrant en vigueur le 22 juillet 2022 définit un biostimulant comme « un produit qui stimule les processus de nutrition des végétaux indépendamment des éléments nutritifs qu'il contient, dans le but d'améliorer une ou plusieurs des caractéristiques suivantes des végétaux ou de leur rhizosphère : a) l'efficacité d'utilisation des éléments nutritifs b) la tolérance au stress abiotique c) les caractéristiques qualitatives d) la disponibilité des éléments nutritifs confinés dans le sol ou la rhizosphère »
Le but de la présente invention est ainsi d'identifier et de proposer des biostimulants efficaces dans les méthodes de production d'inoculum de mycéliums et dans les méthodes de culture de champignons à partir d'inoculum de mycéliums. En particulier, les biostimulants selon l'invention devront permettre de raccourcir les délais de production des inocula de mycéliums et de culture de champignons ou, tout au moins, d'éviter l'allongement de ces délais. Enfin, les biostimulants selon l'invention devront être utilisables dans les méthodes classiques de production d'inoculum et de production des champignons.
À cet effet, l'invention concerne l'utilisation d'au moins une huile essentielle chémotypée bêta- pinène, delta-3-carène ou bêta-phellandrène, ou l'un de leur mélange, pour la stimulation du développement et de la croissance d'un mycélium ou d'un champignon. De manière connue, le chémotype, ou chimiotype, d'une huile essentielle indique le composant majoritaire de la composition chimique de l'huile essentielle. Ce composant se trouve généralement présent selon une teneur supérieure à 20 % du volume total utilisé lors de son analyse chimique.
De manière alternative à l'utilisation des huiles essentielles sélectionnées selon l'invention, il est possible d'extraire et d'utiliser le ou les composés biostimulants de la composition chimique de l'huile essentielle.
Ainsi, l'invention concerne également l'utilisation d'au moins un terpène choisi parmi le bêta- pinène, le delta-3-carène ou le bêta-phellandrène, ou l'un de leur mélange, pour stimuler le développement et la croissance d'un mycélium ou d'un champignon.
La société déposante a en effet découvert, que certains terpènes, ou les huiles essentielles qui en sont majoritairement composées, présentaient des capacités de biostimulation surprenantes sur le développement et la croissance des mycéliums et champignons, en particulier lorsqu'ils sont ajoutés dans leurs milieux de culture ou leurs substrats, et pouvaient donc être utilisés dans les procédés et méthodes d'obtention d'inoculum ou de culture de champignons.
L'utilisation de biostimulants naturels est une réelle innovation pour la production de champignons. L'utilisation de produits à effet biostimulant a un impact majeur sur la production de mycéliums et de champignons. La principale limite des producteurs d'inoculum réside en effet dans leur capacité à produire rapidement, stocker et distribuer leurs mycéliums auprès des producteurs de champignons. L'utilisation des biostimulants selon l'invention permet de réduire le délai entre le début de la production et la distribution, augmentant ainsi la capacité de production des producteurs. De même, pendant la phase de production des champignons, l'ajout des biostimulants dans le substrat de culture permet d'augmenter la vitesse de colonisation du substrat par les mycéliums et ainsi d'initier la fructification et d'amorcer la récolte des champignons plus rapidement, entraînant une augmentation de la production des champignonnistes. L'ajout des biostimulants peut être réalisé au cours des différentes phases d'incubation, jusqu'à la fructification.
Ainsi, lors d'essais réalisés sur composts, les mycéliums stimulés par les composés et les huiles essentielles sélectionnés selon l'invention, ont pu être observées une augmentation du rendement des cultures, une augmentation de la masse moyenne par champignon et, d'une manière générale, une amélioration de la qualité des champignons récoltés.
Les composés et les huiles essentielles sélectionnés dans le cadre de l'invention ont la particularité de présenter un effet fortement biostimulant sur une large plage de concentrations, donc sans risque d'effet inhibiteur en cas de surdosage.
Les composés et les huiles essentielles sélectionnés sont également interchangeables, par exemple en cas de pénurie de l'un d'entre eux.
Les composés et les huiles essentielles sélectionnés peuvent également être combinés afin d'obtenir dans certains cas des effets de synergie et de résilience accentuée.
Les composés et les huiles essentielles sélectionnés permettent également de produire leurs effets sur la croissance des mycéliums et des champignons en conditions moins propices que les conditions normales, telles qu'un abaissement de la température d'incubation d'1 ou 2°C ou un effet de vieillissement.
Selon un mode de réalisation de l'invention, l'huile essentielle est choisie parmi Pinus ponderosa, Pinus mugo, Pseudotsuga menziesii, Abies balsamea, Abies alba, Picea glauca, Angelica archangelica et Ferula gummosa.
Selon un mode de réalisation de l'invention, le mycélium ou le champignon est choisi parmi les basidiomycètes, en particulier le champignon de Paris, les pleurotes et le shiitake, plus particulièrement Agaricus bisporus, Pleurotus ostreaus, Pleurotus eryngii et Lentinula edodes.
Lorsque le mycélium ou le champignon est Agaricus bisporus, l'huile essentielle utilisée est préférentiellement chémotypée bêta-pinène, delta-S-carène ou bêta-phellandrène, préférentiellement bêta-pinène. De manière alternative à l'utilisation de l'huile essentielle, le terpène utilisé est préférentiellement le bêta-pinène, le delta-3-carène ou le bêta- phellandrène.
En particulier, lorsque le mycélium ou le champignon est Agaricus bisporus, l'huile essentielle utilisée est préférentiellement choisie parmi Pinus ponderosa, Pinus mugo, Pseudotsuga menziesii, Abies balsamea, Abies alba, Picea glauca, Angelica archangelica et Ferula gummosa.
Lorsque le mycélium ou le champignon est Pleurotus ostreaus, l'huile essentielle utilisée est préférentiellement chémotypée bêta-pinène, delta-3-carène ou bêta-phellandrène, préférentiellement bêta-pinène. De manière alternative à l'utilisation de l'huile essentielle, le terpène utilisé est préférentiellement le bêta-pinène, le delta-3-carène ou le bêta- phellandrène.
En particulier, lorsque le mycélium ou le champignon est Pleurotus ostreaus, l'huile essentielle utilisée est préférentiellement choisie parmi Pinus ponderosa, Pinus mugo, Pseudotsuga menziesii, Abies balsamea, Abies alba, Picea glauca, Angelica archangelica et Ferula gummosa.
Lorsque le mycélium ou le champignon est Pleurotus eryngii, l'huile essentielle utilisée est préférentiellement chémotypée bêta-pinène ou bêta-phellandrène, préférentiellement bêta- phellandrène. De manière alternative à l'utilisation de l'huile essentielle, le terpène utilisé est préférentiellement le bêta-pinène ou le bêta-phellandrène.
En particulier, lorsque le mycélium ou le champignon est Pleurotus eryngii, l'huile essentielle utilisée est préférentiellement choisie parmi Angelica archangelica et Ferula gummosa.
Lorsque le mycélium ou le champignon est Lentinula edodes, l'huile essentielle utilisée est préférentiellement chémotypée bêta-pinène. De manière alternative à l'utilisation de l'huile essentielle, le terpène utilisé est préférentiellement le bêta-pinène.
En particulier, lorsque le mycélium ou le champignon est Lentinula edodes, l'huile essentielle utilisée est préférentiellement choisie parmi Pseudotsuga menziesii, Abies balsamea, Abies alba, Picea glauca, et Ferula gummosa. L'invention concerne encore une composition de biostimulation du développement et de la croissance d'un mycélium ou d'un champignon, qui se caractérise en ce qu'elle comprend : une solution liquide, au moins un terpène choisi parmi le delta-3-carène et le bêta-phellandrène, ou au moins une huile essentielle chémotypée bêta-pinène, delta-3-carène ou bêta-phellandrène, ou l'un de leur mélange, au moins un tensioactif apte à solubiliser le ou les terpènes, ou la ou les huiles essentielles, dans la solution liquide.
En fonction de la nature aqueuse ou autre de la solution liquide, l'homme du métier sera à même de sélectionner, parmi les tensioactifs connus, ceux aptes à solubiliser des terpènes, ou des huiles essentielles, dans la solution.
Préférentiellement, le ratio entre le ou les terpènes, ou la ou les huiles essentielles, et le ou les tensioactifs est de 1.
Avantageusement, la composition selon l'invention composée pour 50 % d'au moins un terpène choisi parmi le delta-3-carène ou le bêta-phellandrène, ou au moins une huile essentielle chémotypée bêta-pinène, delta-3-carène ou bêta-phellandrène, ou l'un de leur mélange, et pour 50 % de savon noir liquide.
Préférentiellement, la composition comprend à titre d'huile essentielle, au moins une huile essentielle choisie parmi Pinus ponderosa, Pinus mugo, Pseudotsuga menziesii, Abies balsamea, Abies alba, Picea glauca, Angelica archangelica et Ferula gummosa.
Les huiles essentielles sélectionnées dans le cadre de l'invention, et leurs terpènes, peuvent être utilisées de manière simple et efficace dans les méthodes classiques de production d'inoculum et de production des champignons, sans qu'il soit nécessaire de complexifier ces méthodes. Ainsi, l'invention concerne encore une méthode d'obtention d'un inoculum, de mycélium, caractérisée en ce qu'elle comprend les étapes suivantes : préparation d'un milieu de culture, ajout, dans le milieu de culture, d'au moins une huile essentielle chémotypée bêta-pinène, delta-3-carène ou bêta-phellandrène, ou d'au moins un terpène choisi parmi le bêta-pinène, le delta-3-carène ou le bêta-phellandrène, ou l'un de leur mélange, ou d'une composition telle que définie précédemment, inoculation du milieu de culture par des spores ou un inoculum, éventuellement, croissance du mycélium, inoculation d'un substrat de colonisation par le mycélium, obtention d'un inoculum, de mycélium, conditionnement de l'inoculum.
Préférentiellement dans la méthode selon l'invention, l'huile essentielle, le terpène ou la composition sont ajoutés dans le milieu de culture de manière à ce que la concentration de la ou les huiles essentielles, ou la concentration du ou des terpènes, soit comprise entre 20 et 300 pL/L de milieu de culture.
Le milieu de culture utilisé est un milieu de culture classiquement utilisé dans la production de mycélium. Il s'agit en particulier, d'un milieu liquide ou gélosé, tels que le bouillon dextrosé à la pomme de terre (PDB) ou la gélose dextrosée à la pomme de terre (PDA). De manière connue, le milieu est stérilisé à l'état liquide. Une fois le milieu stérilisé, la composition selon l'invention est ajoutée puis le milieu est conservé sous forme liquide ou coulé dans des boites de Pétri s'il contient un gélifiant. La solution liquide ou les boites de Pétri sont ensuite inoculées avec des spores ou des inocula solides, et la méthode se poursuit de manière classique.
La méthode selon l'invention permet de raccourcir de plusieurs jours le délai nécessaire à l'obtention d'inocula, de mycéliums, ou de champignons, commercialisables par les producteurs, par rapport à une méthode classique. La croissance peut être stimulée et augmentée de plus de 50 %, voire de plus de 80 %, par rapport à la croissance obtenue dans une méthode classique, c'est-à-dire sans l'utilisation des terpènes ou huiles essentielles sélectionnés dans le cadre de l'invention. La stimulation de la croissance peut se calculer en mesurant l'envergure ou la masse du mycélium à un instant T, par rapport à un témoin.
L'invention concerne encore une méthode de culture de champignons à partir d'un inoculum, de mycélium, qui se caractérise en ce qu'elle comprend les étapes suivantes : préparation d'un substrat de fructification, éventuellement, imprégnation, incorporation, arrosage ou pulvérisation du substrat de fructification par au moins une huile essentielle chémotypée bêta-pinène, delta-3-carène ou bêta-phellandrène, ou au moins un terpène choisi parmi le bêta-pinène, le delta-3-carène ou le bêta-phellandrène, ou l'un de leur mélange, ou par une composition telle que définie précédemment, ensemencement du substrat de fructification par un inoculum, de mycélium préférentiellement obtenu par une méthode selon l'invention, incubation, avec éventuellement, arrosage ou pulvérisation du substrat de fructification par au moins une huile essentielle, ou au moins un terpène ou par une composition telle que définis précédemment, fructification, récolte, selon un mode de réalisation de l'invention, le mycélium ou le champignon est choisi parmi les basidiomycètes, en particulier le champignon de Paris, les pleurotes et le shiitake, plus particulièrement Agaricus bisporus, Pleurotus ostreaus, Pleurotus eryngii et Lentinula edodes. Les caractéristiques de l'invention mentionnées ci-dessus, ainsi que d'autres, apparaîtront plus clairement à la lecture de la description suivante d'exemples de réalisation, ladite description étant faite en relation avec les figures jointes, parmi lesquelles :
[Fig. 1] est une représentation graphique de la stimulation de la croissance du mycélium d'Agaricus bisporus sur un milieu de culture additionné d'huile essentielle de Pinus ponderosa.
[Fig. 2] est une représentation graphique de la stimulation de la croissance du mycélium d'Agaricus bisporus sur un milieu de culture additionné d'huile essentielle de Pinus mugo.
[Fig. B] est une représentation graphique de la stimulation de la croissance du mycélium d'Agaricus bisporus sur un milieu de culture additionné d'huile essentielle de Pseudotsuga menziesii.
[Fig. 4], [Fig. 5] et [Fig. 6] sont des représentations graphiques de la stimulation de la croissance du mycélium de trois souches d'Agaricus bisporus sur un milieu de culture additionné de b- pinène purifié.
[Fig. 7] est une représentation graphique de l'inhibition de la croissance du mycélium d'Agaricus bisporus sur un milieu de culture additionné d'a-pinène purifié.
Exemple 1 : Évaluation de la biostimulation de la croissance de mycélium d ’Agaricus bisporus
1.1 Protocole expérimental
Préparation d'une composition de biostimulants selon l'invention - Mélanger dans un contenant stérile, le ou les huiles essentielles, ou le ou les terpènes choisis selon l'invention, avec le ou les tensioactifs, à portion égale :
- Pour obtenir une concentration de la ou les huiles essentielles, ou du ou des terpènes, de 100 pL pour 1 litre de solution, préparer donc 200 pL au total.
Préparation du milieu de culture - Préparer 2 fois 1 litre de PDA selon les instructions du fournisseur, en contenants séparés.
- Stériliser les deux solutions en même temps, 15 minutes à 121°C à l'autoclave.
Ajout, dans le milieu de culture, de la composition de biostimulants selon l'invention
- Attendre que les deux solutions baissent en température, jusqu'à atteindre environ 40°C. - Homogénéiser puis verser la composition de biostimulants, dans un des deux contenants.
- Verser le même volume du ou des tensioactifs utilisés, dans le second contenant.
- Placer sous agitation, puis couler les 2 litres de solutions dans des boîtes de Pétri annotées.
- Placer les boîtes de Pétri dans un incubateur à 23°C ±1°C et 80 % d'humidité.
Inoculation du milieu de culture - Inoculer toutes les boîtes de Pétri avec la souche de champignon sélectionnée.
- Replacer les boîtes de Pétri dans l'incubateur à 23°C ±1°C et 80 % d'humidité.
Détermination de la stimulation de la croissance du mycélium
- Après 7 jours, tracer le contour du mycélium sous les boîtes de Pétri, avec un marqueur fin.
- Tracer à nouveau le contour du mycélium après 14 et 21 jours, suivant l'inoculation. - Mesurer sa croissance à 0,5 mm près, sur 4 axes séparés de 90°, pour chaque boîte de Pétri.
- Calculer les moyennes de croissance mesurées, puis déterminer le pourcentage d'inhibition ou de biostimulation par rapport au témoin, qui ne contient que le ou les tensioactifs, sans la ou les huiles essentielles, ou le ou les terpènes utilisés.
1.2 résultats Les huiles essentielles qui ont été testées et qui ont permis de stimuler le développement et la croissance de mycélium d ’Agaricus bisporus sont présentées dans le Tableau 1 ci-dessous. Le pourcentage de stimulation obtenu ainsi que le chémotype de chaque huile essentielle sont également indiqués.
Les manipulations pour chaque huile essentielle testée ont été reproduites 40 fois, en utilisant du mycélium d'Agaricus bisporus de marque Heirloom, fourni par la société américaine Amycel. [Tab.l]
Figure imgf000014_0001
On relève, par rapport aux contrôles, une stimulation de la croissance des mycéliums de plus de 35 %. En particulier, les huiles essentielles de Pinus ponderosa, d ’Angelico archangelica et de Pinus mugo se sont montrées extrêmement efficaces avec un taux de stimulation de la croissance de 82 %, de 75 % et de 67 %, respectivement. Ces huiles essentielles sont chémotypées b-pinène, b-phellandrène ou d-3-carène.
Les figures 1, 2 et 3 illustrent les croissances moyennes du mycélium d'Agaricus bisporus sur leur milieu de culture additionné d'huiles essentielles de Pinus ponderosa (figure 1), de Pinus mugo (figure 2) et de Pseudotsuga menziesii (figure 3). À titre de comparaison, les huiles essentielles indiquées dans le Tableau 2 ont quant à elles montré un effet inhibiteur, ou n'ont montré aucun effet significatif, sur la croissance du mycélium d'Agaricus bisporus.
[Ta b.2]
Figure imgf000015_0001
Figure imgf000016_0001
Exemple 2 : Évaluation de la biostimulation de la croissance de mycélium de Pleurotus ostreaus 2.1 Protocole expérimental Le protocole expérimental est identique à celui de l'exemple 1.
2.2 Résultats
Les huiles essentielles qui ont été testées et qui ont permis de stimuler le développement et la croissance de mycélium de Pleurotus ostreaus sont présentées dans le Tableau 3 ci-dessous. Le pourcentage de stimulation obtenu ainsi que le chémotype de chaque huile essentielle sont également indiqués.
Les manipulations pour chaque huile essentielle testée ont été reproduites 4 fois, en utilisant du mycélium de Pleurotus ostreaus fourni par la société autrichienne Glückspilze.
[Ta b.3]
Figure imgf000017_0001
On relève, par rapport aux contrôles, une stimulation de la croissance des mycéliums de plus de 30 %. En particulier, les huiles essentielles de Pinus ponderosa, Pinus mugo et Pseudotsuga menziesii se sont montrées extrêmement efficaces avec un taux de stimulation de la croissance de 61 %, de 52 % et de 48 %, respectivement. Ces huiles essentielles sont chémotypées b- pinène, d-3-carène ou b-phellandrène.
Exemple 3 : Évaluation de la biostimulation de la croissance de mycélium de Pleurotus eryngii 3.1 Protocole expérimental
Le protocole expérimental est identique à celui de l'exemple 1.
3.2 Résultats
Les huiles essentielles qui ont été testées et qui ont permis de stimuler le développement et la croissance de mycélium de Pleurotus eryngii sont présentées dans le Tableau 4 ci-dessous. Le pourcentage de stimulation obtenu ainsi que le chémotype de chaque huile essentielle sont également indiqués.
Les manipulations pour chaque huile essentielle testée ont été reproduites 4 fois, en utilisant du mycélium de Pleurotus eryngii fourni par la société autrichienne Glückspilze.
[Tab.4)
Figure imgf000018_0001
On relève, par rapport aux contrôles, une stimulation de la croissance des mycéliums de plus de 35 %. En particulier, les huiles essentielles Angelica archangelica et de Ferula gummosa se sont montrées extrêmement efficaces avec un taux de stimulation de la croissance de 54 % et de 35 %, respectivement. Ces huiles essentielles sont chémotypées b-phellandrène ou b-pinène. À titre de comparaison, les huiles essentielles de Trachyspermum ammi, chémotypée thymol, et d'Artemisia dracunculus, chémotypée méthylchavicol, ont été testées et ont quant à elles montré un effet inhibiteur sur la croissance de mycélium de Pleurotus eryngii. Exemple 4 : Évaluation de la biostimulation de la croissance de mycélium de Lentinula edodes
4.1 Protocole expérimental
Le protocole expérimental est identique à celui de l'exemple 1.
4.2 Résultats
Les huiles essentielles qui ont été testées et qui ont permis de stimuler le développement et la croissance de mycélium de Lentinula edodes sont présentées dans le Tableau 5 ci-dessous. Le pourcentage de stimulation obtenu ainsi que le chémotype de chaque huile essentielle sont également indiqués.
Les manipulations pour chaque huile essentielle testée ont été reproduites 4 fois, en utilisant du mycélium de Lentinula edodes fourni par la société autrichienne Glückspilze. [Tab.5]
Figure imgf000019_0001
On relève, par rapport aux contrôles, une stimulation de la croissance des mycéliums de plus de 10 %. En particulier, les huiles essentielles de Pseudotsuga menziesii et de Ferula gummosa se sont montrées efficaces avec un taux de stimulation de la croissance de 20 % et de 18 %, respectivement. Ces huiles essentielles sont toutes chémotypées b-pinène.
Exemple 5 : Évaluation de la biostimulation de la croissance de mycélium de Agaricus bisporus par le b-pinène.
5.1 Protocole expérimental
Le protocole expérimental est identique à celui de l'exemple 1. Les essais ont été réalisés sur trois souches d 'Agaricus bisporus (de marques Heirloom et TripleX de la société Amycel et Tuscan de la société Sylvan) avec le terpène purifié b-pinène.
5.2 Résultats
Les figures 4, 5 et 6 illustrent les croissances moyennes du mycélium d 'Agaricus bisporus de marque Heirloom (figure 4), d 'Agaricus bisporus de marque TripleX (figure 5), d 'Agaricus bisporus de marque Tuscan (figure 6), sur leur milieu de culture additionné de b-pinène purifié, à une concentration de 40 ou de 80 pL/L pour Agaricus bisporus de marques Heirloom et TripleX, et à une concentration de 80 ou de 100 pL/L pour Agaricus bisporus de marque Tuscan.
On observe pour les trois souches d 'Agaricus bisporus un effet très marqué de biostimulation de la croissance des mycéliums biostimulés par le b-pinène, cet effet étant renforcé en augmentant la concentration de b-pinène.
Exemple 6 : Comparaison des effets sur la croissance de mycélium de Agaricus bisporus du b- pinène et de Ga-pinène.
6.1 Protocole expérimental Le protocole expérimental est identique à celui de l'exemple 1.
Les essais ont été réalisés sur la souche d'Agaricus bisporus de marque TripleX de la société Amycel avec les terpènes purifiés b-pinène et a-pinène, à la concentration de 40pL/L.
6.2 résultats Les résultats sont présentés sur les figures 5 et 7.
Cet essai met en lumière les effets antagonistes de ces 2 terpènes sur la croissance du mycélium d'Agaricus bisporus. En effet, I'a-pinène produit un effet inhibiteur sur la croissance du mycélium alors que le b-pinène produit un effet biostimulant sur la croissance du mycélium, comme indiqué dans l'exemple 5.

Claims

REVENDICATIONS
1) Utilisation d'au moins une huile essentielle chémotypée bêta-pinène, delta-3- carène ou bêta-phellandrène, ou l'un de leur mélange, pour la stimulation du développement et de la croissance d'un mycélium ou d'un champignon.
2) Utilisation selon la revendication 1, dans laquelle l'huile essentielle est choisie parmi Pinus ponderosa, Pinus mugo, Pseudotsuga menziesii, Abies balsamea, Abies alba, Picea glauca, Angelica archangelica et Ferula gummosa.
3) Utilisation d'au moins un terpène choisi parmi le bêta-pinène, le delta-3-carène ou le bêta-phellandrène, ou l'un de leur mélange, pour la stimulation du développement et de la croissance d'un mycélium ou d'un champignon.
4) Utilisation selon l'une des revendications 1 à 3, dans laquelle le mycélium ou le champignon est choisi parmi les basidiomycètes, en particulier le champignon de Paris, les pleurotes et le shiitake, plus particulièrement Agaricus bisporus, Pleurotus ostreaus, Pleurotus eryngii et Lentinula edodes.
5) Composition de biostimulation du développement et de la croissance d'un mycélium ou d'un champignon, caractérisée en ce qu'elle comprend : une solution liquide, au moins un terpène choisi parmi le delta-3-carène ou le bêta-phellandrène, ou au moins une huile essentielle chémotypée bêta-pinène, delta-3-carène ou bêta- phellandrène, ou l'un de leur mélange, au moins un tensioactif apte à solubiliser le ou les terpènes, ou la ou les huiles essentielles, dans la solution liquide. 6) Composition selon la revendication 5, caractérisée en ce que l'huile essentielle est choisie parmi Pinus ponderosa, Pinus mugo, Pseudotsuga menziesii, Abies balsamea, Abies alba, Picea glauca, Angelica archangelica et Ferula gummosa.
7) Composition selon la revendication 5 ou 6, caractérisée en ce que le ratio entre le ou les terpènes, ou la ou les huiles essentielles, et le ou les tensioactifs est de 1.
8) Composition selon l'une des revendications 5 à 7, caractérisée en ce qu'elle est composée pour 50 % d'au moins un terpène choisi parmi le delta-3-carène ou le bêta-phellandrène, ou d'au moins une huile essentielle chémotypée bêta-pinène, delta-3-carène ou bêta-phellandrène, ou l'un de leur mélange, et pour 50 % de savon noir liquide.
9) Méthode d'obtention d'un inoculum, de mycélium caractérisé en ce qu'elle comprend les étapes suivantes : préparation d'un milieu de culture, ajout dans le milieu de culture d'au moins une huile essentielle chémotypée bêta- pinène, delta-3-carène ou bêta-phellandrène, ou d'au moins un terpène choisi parmi le bêta-pinène, le delta-3-carène ou le bêta-phellandrène, ou l'un de leur mélange, ou d'une composition selon l'une des revendications 5 à 8, inoculation du milieu de culture par des spores ou un inoculum, éventuellement, croissance du mycélium, inoculation d'un substrat de colonisation par le mycélium obtention d'un inoculum, de mycélium conditionnement de l'inoculum. 10) Méthode selon la revendication 9, caractérisée en ce que la ou les huiles essentielles, le ou lesdits terpènes, ou ladite composition, sont ajoutés dans le milieu de culture de manière à ce que la concentration de la ou les huiles essentielles, ou la concentration du ou des terpènes, soit comprise entre 20 et 300 pL/L de milieu de culture.
11) Méthode de culture de champignons à partir d'un inoculum, de mycélium, caractérisée en ce qu'elle comprend les étapes suivantes : préparation d'un substrat de fructification, éventuellement, imprégnation, incorporation, arrosage ou pulvérisation du substrat de fructification par au moins une huile essentielle chémotypée bêta-pinène, delta-3- carène ou bêta-phellandrène, ou au moins un terpène choisi parmi le bêta-pinène, le delta-3-carène ou le bêta-phellandrène, ou l'un de leur mélange, ou par une composition selon l'une des revendications 5 à 8, ensemencement du substrat de fructification par un inoculum, de mycélium obtenu par une méthode selon la revendication 9, incubation, avec éventuellement, arrosage ou pulvérisation du substrat de fructification par au moins une huile essentielle, ou au moins un terpène ou une composition tels que définis précédemment, fructification récolte.
12) Méthode selon l'une des revendications 9 à 11, caractérisée en ce que laquelle le mycélium ou le champignon est choisi parmi les basidiomycètes, en particulier le champignon de Paris, les pleurotes et le shiitake, plus particulièrement Agaricus bisporus, Pleurotus ostreaus, Pleurotus eryngii et Lentinula edodes.
PCT/EP2022/066214 2021-06-17 2022-06-14 Utilisation d'huiles essentielles à titre de biostimulants de mycéliums et de champignons WO2022263464A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22733622.9A EP4355096A1 (fr) 2021-06-17 2022-06-14 Utilisation d'huiles essentielles à titre de biostimulants de mycéliums et de champignons
CN202280042101.8A CN117529230A (zh) 2021-06-17 2022-06-14 精油作为菌丝体和蘑菇的生物刺激剂的用途

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2106414A FR3124053B1 (fr) 2021-06-17 2021-06-17 Utilisation d’huiles essentielles à titre de biostimulants de mycéliums et de champignons
FRFR2106414 2021-06-17

Publications (1)

Publication Number Publication Date
WO2022263464A1 true WO2022263464A1 (fr) 2022-12-22

Family

ID=76920987

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2022/066214 WO2022263464A1 (fr) 2021-06-17 2022-06-14 Utilisation d'huiles essentielles à titre de biostimulants de mycéliums et de champignons

Country Status (4)

Country Link
EP (1) EP4355096A1 (fr)
CN (1) CN117529230A (fr)
FR (1) FR3124053B1 (fr)
WO (1) WO2022263464A1 (fr)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4891222A (en) * 1987-02-24 1990-01-02 Eichhoefer Gerald W Pine oil fire ant insecticide
CN104402575A (zh) * 2014-10-23 2015-03-11 庆元县秋平真菌研究所 一种牛樟芝培养基配方及牛樟芝的栽培方法
CN107466677A (zh) * 2017-08-22 2017-12-15 张桂清 一种杉木屑栽培灵芝的方法
AU2020302835B2 (en) * 2019-06-25 2021-03-11 Greenpro Solutions Pty Ltd Pine oil-based herbicide

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4891222A (en) * 1987-02-24 1990-01-02 Eichhoefer Gerald W Pine oil fire ant insecticide
CN104402575A (zh) * 2014-10-23 2015-03-11 庆元县秋平真菌研究所 一种牛樟芝培养基配方及牛樟芝的栽培方法
CN107466677A (zh) * 2017-08-22 2017-12-15 张桂清 一种杉木屑栽培灵芝的方法
AU2020302835B2 (en) * 2019-06-25 2021-03-11 Greenpro Solutions Pty Ltd Pine oil-based herbicide

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
ANGELINI P ET AL: "Effect of antimicrobial activity of Melaleuca alternifolia essential oil on antagonistic potential of Pleurotus species against Trichoderma harzianum in dual culture", WORLD JOURNAL OF MICROBIOLOGY AND BIOTECHNOLOGY, KLUWER ACADEMIC PUBLISHERS, DO, vol. 24, no. 2, 22 June 2007 (2007-06-22), pages 197 - 202, XP019582101, ISSN: 1573-0972 *
MARINA SOKOVIC ET AL: "Antimicrobial activity of essential oils and their components against the three major pathogens of the cultivated button mushroom, Agaricus bisporus", EUROPEAN JOURNAL OF PLANT PATHOLOGY, KLUWER ACADEMIC PUBLISHERS, DO, vol. 116, no. 3, 14 September 2006 (2006-09-14), pages 211 - 224, XP019434278, ISSN: 1573-8469, DOI: 10.1007/S10658-006-9053-0 *
OHGA SHOJI: "Influence of wood species on the sawdust-based cultivation ofPleurotus abalonusandPleurotus eryngii", JOURNAL OF WOOD SCIENCE, SPRINGER SINGAPORE, SINGAPORE, vol. 46, no. 2, 1 April 2000 (2000-04-01), pages 175 - 179, XP036417960, ISSN: 1435-0211, [retrieved on 20000401], DOI: 10.1007/BF00777368 *
SATOU TADAAKI ET AL: "Composition and Seasonal Variation of the Essential Oil from Abies Sachalinensis from Hokkaido, Japan", vol. 4, no. 6, 1 June 2009 (2009-06-01), US, XP055888490, ISSN: 1934-578X, Retrieved from the Internet <URL:https://journals.sagepub.com/doi/pdf/10.1177/1934578X0900400621> DOI: 10.1177/1934578X0900400621 *

Also Published As

Publication number Publication date
FR3124053A1 (fr) 2022-12-23
CN117529230A (zh) 2024-02-06
FR3124053B1 (fr) 2023-09-08
EP4355096A1 (fr) 2024-04-24

Similar Documents

Publication Publication Date Title
US7404959B2 (en) Environmentally safe agricultural supplement
EP2043968B1 (fr) Nouvelles compositions d&#39;inocula fongiques, leur procede de preparation et leur application a l&#39;amelioration de la croissance des cultures
CN1802918A (zh) 植物生长调节
CN102057981A (zh) 一种延长新鲜菜用莲子货架期的联合保鲜方法
Di Cesare et al. Effects of irrigation-fertilization and irrigation-mycorrhization on the alimentary and nutraceutical properties of tomatoes
KR20140021777A (ko) 타우린을 함유하는 양액 조성물 및 이를 이용한 타우린 함유 농작물 재배방법
CN104663854A (zh) 一种核桃鲜果的保鲜方法及其应用
Miskovic et al. Effect of eggplant rootstock on yield and quality parameters of grafted tomato.
EP3151673B2 (fr) Méthode et composition pour améliorer la productivité de plantes non légumineuses
EP4355096A1 (fr) Utilisation d&#39;huiles essentielles à titre de biostimulants de mycéliums et de champignons
JP7096696B2 (ja) 植物の土壌病害防除方法
Pignata et al. Inherent quality and safety of watercress grown in a floating system using Bacillus subtilis
EP2967034B1 (fr) Utilisations d&#39;esters carboniques de glycérol acylés en agriculture
KR20200137620A (ko) 느타리버섯 재배방법과 느타리버섯 재배용 배지 조성물
Alam-Eldein et al. Harvest and Postharvest Technology of Opuntia spp.
FR3060256A1 (fr) Procede d&#39;induction et de production de peridia de truffe
Hasnain et al. Application of amino acids on mango tree (Mangifera indica L.) cv.'Rataul no. 12: assessment of fruit fly infestation and postharvest parameters.
JP3735267B2 (ja) ハタケシメジの栽培方法
KR20070012580A (ko) 인삼, 홍삼엑기스를 이용재배한 기능성 콩나물 혼합조성물.
JPH06197630A (ja) 茸類の栽培方法
WO2010066857A1 (fr) Méthode de culture hors-sol pour la production d&#39;halophytes
Ahoei et al. The effects of Thrichoderma harzianom extract on the chlorophyll rate and nitrate concentration in two varieties of Lettuce in soilless culture system
KR20190071967A (ko) 과산화초산을 포함하는 친환경 병해 방제제
Tachmitzakis Organic tomato production: An attempt to improve production by transplant and early watering.
Helyes et al. Appreciation of ethrel on ripening dynamic and on the content of ingredients in processing tomato (Lycopersicon lycopersicum (L.) Karsten) varieties

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22733622

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280042101.8

Country of ref document: CN

Ref document number: 18569467

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2022733622

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022733622

Country of ref document: EP

Effective date: 20240117