WO2022262578A1 - 一种调光材料组合物及调光器件 - Google Patents

一种调光材料组合物及调光器件 Download PDF

Info

Publication number
WO2022262578A1
WO2022262578A1 PCT/CN2022/096554 CN2022096554W WO2022262578A1 WO 2022262578 A1 WO2022262578 A1 WO 2022262578A1 CN 2022096554 W CN2022096554 W CN 2022096554W WO 2022262578 A1 WO2022262578 A1 WO 2022262578A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
material composition
transparent conductive
conductive layer
dimming
Prior art date
Application number
PCT/CN2022/096554
Other languages
English (en)
French (fr)
Inventor
王耀
朱巍
牛佳悦
Original Assignee
江苏集萃智能液晶科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏集萃智能液晶科技有限公司 filed Critical 江苏集萃智能液晶科技有限公司
Publication of WO2022262578A1 publication Critical patent/WO2022262578A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/09Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in organic liquids
    • C08J3/091Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in organic liquids characterised by the chemical constitution of the organic liquid
    • C08J3/095Oxygen containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G83/00Macromolecular compounds not provided for in groups C08G2/00 - C08G81/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G83/00Macromolecular compounds not provided for in groups C08G2/00 - C08G81/00
    • C08G83/008Supramolecular polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/09Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in organic liquids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/09Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in organic liquids
    • C08J3/091Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in organic liquids characterised by the chemical constitution of the organic liquid
    • C08J3/098Other compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/08Cellulose derivatives
    • C08L1/16Esters of inorganic acids
    • C08L1/18Cellulose nitrate, i.e. nitrocellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/10Homopolymers or copolymers of methacrylic acid esters
    • C08L33/12Homopolymers or copolymers of methyl methacrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L87/00Compositions of unspecified macromolecular compounds, obtained otherwise than by polymerisation reactions only involving unsaturated carbon-to-carbon bonds
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/166Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field characterised by the electro-optical or magneto-optical effect
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/166Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field characterised by the electro-optical or magneto-optical effect
    • G02F1/167Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field characterised by the electro-optical or magneto-optical effect by electrophoresis
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2301/00Characterised by the use of cellulose, modified cellulose or cellulose derivatives
    • C08J2301/08Cellulose derivatives
    • C08J2301/16Esters of inorganic acids
    • C08J2301/18Cellulose nitrate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • C08J2333/06Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing only carbon, hydrogen, and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C08J2333/10Homopolymers or copolymers of methacrylic acid esters
    • C08J2333/12Homopolymers or copolymers of methyl methacrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2387/00Characterised by the use of unspecified macromolecular compounds, obtained otherwise than by polymerisation reactions only involving unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2401/00Characterised by the use of cellulose, modified cellulose or cellulose derivatives
    • C08J2401/08Cellulose derivatives
    • C08J2401/16Esters of inorganic acids
    • C08J2401/18Cellulose nitrate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2487/00Characterised by the use of unspecified macromolecular compounds, obtained otherwise than by polymerisation reactions only involving unsaturated carbon-to-carbon bonds

Definitions

  • the invention relates to the technical field of light-adjusting material compositions, in particular to a light-adjusting material composition and a light-adjusting device.
  • a light valve is a device that can control the transmission of light.
  • Common light valves are mainly divided into thermochromic systems, photochromic systems and electrochromic systems.
  • the electrochromic system can be further classified into polymer dispersed liquid crystal system (PDLC, such as US patent US3585381), electrochemical color changing system (EC, such as US patent US9581877) and suspended particle system (SPD, such as US patent US6606185).
  • PDLC polymer dispersed liquid crystal system
  • EC electrochemical color changing system
  • SPD suspended particle system
  • SPD dimming technology not only has the advantages of both EC and PDLC dimming glass, but also has the characteristics of simple assembly structure, stepless dimming, instantaneous color change, low energy consumption, low preparation cost, safe and reliable products, and a wide range of available substrates. , so this technology is theoretically the most ideal intelligent dimming technology, and the market prospect is extremely broad.
  • the necessary condition for its core material is that the particles have anisometric shape.
  • this type of material needs to be able to form a colloidal dispersion system under certain conditions and have a high axis-to-diameter ratio.
  • nanowires, nanorods, nanoribbons, nanocone and nanoflakes with one-dimensional or two-dimensional structures are the first choice for SPD core material morphology. It has been found that carbon nanotubes, graphene, TiO 2 nanowires), V 2 O 5 nanorods and other materials can be used as SPD materials (Nanotechnology, 2014, 25, 415703; Optical Materials, 2015, 46, 418-422; RSC Advance, 2013 , 3, 10414-10419). However, due to the defects of single component, narrow optical dynamic range, and low stability of these inorganic materials, the actual application range is very limited.
  • Organo-metal frameworks are a class of porous organic-inorganic hybrid materials with clear coordination structure, large specific surface area, high porosity, and easy modification. Due to the wide selectivity of metal ions and organic ligands in the structure of this type of material, the shape is easy to control and the structure is easy to modify, and the metal coordination node can be approximated as an inorganic structural unit. , Gas storage and separation have great application potential.
  • the purpose of the present invention is to provide a light-adjusting material composition, which is applied to SPD light-adjusting devices to solve the technical problems of narrow optical dynamic range, slow response speed and slow discoloration of light-adjusting devices in the prior art.
  • the application provides a light-adjusting material composition, which is a suspension comprising MOFs nanoparticles, a viscosity regulator and a dispersant, due to the stability of the MOFs nanoparticles as suspended particles
  • a light-adjusting material composition which is a suspension comprising MOFs nanoparticles, a viscosity regulator and a dispersant
  • High, large specific surface area, high porosity, easy surface modification, controllable structure and morphology, etc. can form a colloidal dispersion system under certain conditions, so applying it to dimming devices can effectively solve the problem of light in dimming devices
  • the mass fraction of MOFs nanoparticles ranges from 0.1% to 50%
  • the viscosity control agent mass fraction ranges from 0.1% to 20%
  • the mass fraction of the dispersant ranges from 30% to 99.8%.
  • the microscopic morphology of the MOFs nanoparticles is selected from one or more of sheet, rod, and wire.
  • the MOFs nano-particles have a rod-like microscopic appearance and an aspect ratio in the range of 4-100.
  • the metal ions in the MOFs nanoparticles are selected from Mg 2+ , Ca 2+ , Co 2+ , Fe 2+ , Zn 2+ , Mn 2+ , Ni 2+ , Cd 2+ , Cu 2+ , Co 3+ , Al 3+ , Fe 3+ , Mn 3+ , Cr 3+ , Zr 4+ , Ti 4+ , but not limited to the above metal ions.
  • the organic ligands of the MOFs nanoparticles are selected from one or more of porphyrin derivatives, conjugated benzene derivatives and pyrazine derivatives, but not limited to the above organic ligands .
  • the porphyrin derivatives are selected from tetrakis (4-carboxyphenyl) porphyrin (TCPP), tetrakis (4-hydroxyphenyl) porphyrin, tetraaminophthalocyanine, tetracarboxylic acid base phthalocyanine One or more of cyanine.
  • the conjugated benzene derivative is selected from one or more of terephthalic acid, trimesic acid, and 4,4'-biphenyldicarboxylic acid.
  • the pyrazine derivatives are selected from one or more of 2,5-pyrazinedicarboxylic acid, 2,3-pyrazinedicarboxylic acid, and 2,6-pyrazinedicarboxylic acid .
  • the viscosity regulator is selected from one or more of cellulose esters and polyacrylates.
  • the cellulose ester is selected from one or more of nitrocellulose, cellulose acetate, cellulose propionate, and butyl acetate.
  • the polyacrylate is selected from one or more of polymethyl methacrylate, polyisobutyl methacrylate (PMMA), and polyethyl methacrylate.
  • the dispersion liquid is selected from PDMS (polydimethylsiloxane), DOA (dioctyl adipate), DOS (dioctyl sebacate), DINP (phthalic acid Diisononyl), DOP (dioctyl phthalate), BBP (butylbenzyl phthalate), DOTP (dioctyl terephthalate), TOTM (triisooctyl trimellitate ), D13P (ditridecyl phthalate), one or more, but not limited to the above dispersion.
  • PDMS polydimethylsiloxane
  • DOA dioctyl adipate
  • DOS dioctyl sebacate
  • DINP phthalic acid Diisononyl
  • DOP dioctyl phthalate
  • BBP butylbenzyl phthalate
  • DOTP dioctyl terephthalate
  • TOTM tri
  • the present application also provides a dimming device, the dimming device includes a first transparent conductive layer, a second transparent conductive layer and The light-adjusting material layer in between, the light-adjusting material layer comprises the above-mentioned light-adjusting material composition.
  • the gap between the first transparent conductive layer and the second transparent conductive layer ranges from 1 ⁇ m to 100 ⁇ m.
  • the first transparent conductive layer and the second transparent conductive layer are transparent conductive layers.
  • a first transparent substrate is provided on the side of the first transparent conductive layer away from the light-adjusting material layer, and a first transparent substrate is provided on the side of the second transparent conductive layer away from the light-adjusting material layer. the second transparent substrate.
  • the light-adjusting material composition provided by the present application is a suspension comprising MOFs nanoparticles, a viscosity regulator and a dispersant, and the present application also provides a light-adjusting device comprising the above-mentioned light-adjusting material composition.
  • the suspension provided by the invention has a wider optical dynamic range and faster response speed in the ON state than in the OFF state when the suspension is applied to the dimming device.
  • Fig. 1 is a dimming device of an embodiment
  • Fig. 2 is a dimming device of an embodiment
  • Figure 3 shows that before power-on in one embodiment, the MOFs are arranged in disorder, and the device is in a colored state;
  • Figure 4 shows that after power-on in one embodiment, the MOFs are arranged in an orderly manner, and the device is in a transparent state;
  • Figure 5 is a scanning electron microscope image of the MOFs material of Preparatory Example 2.
  • Fig. 6 is the XRD diagram of the MOFs material of the preparatory example 2.
  • Figure 7 is a scanning electron microscope image of the MOFs material of the preparatory example 6;
  • Fig. 8 is the XRD figure of preparation example 6MOFs material
  • the present application provides a dimming material composition, which is a suspension comprising MOFs nanoparticles, a viscosity regulator and a dispersant.
  • a dimming material composition which is a suspension comprising MOFs nanoparticles, a viscosity regulator and a dispersant.
  • the mass fraction of MOFs nanoparticles in the suspension ranges from 0.1% to 50%.
  • the transmittance in the dark state is greater, but the transmittance in the transparent state is greater.
  • the transmittance increases unequally.
  • the mass fraction of MOFs nanoparticles is greater than 50%, the transmittance in the dark state decreases, and the transmittance in the transparent state also decreases.
  • the mass fraction of the viscosity control agent ranges from 0.1% to 20%.
  • the main function of the viscosity control agent is to increase the dispersion of the material and reduce the agglomeration of the material. Adding different viscosity control agents requires different amounts. The viscosity is too small and the response speed is fast , but the material is easy to settle, so you must choose to add an amount higher than a certain limit to get the corresponding suspension; if the viscosity is too high, the response will be very slow.
  • the mass fraction of the dispersant ranges from 30% to 99.8%, and the main function of the dispersant is to disperse MOFs particles and dissolve viscosity regulators.
  • the MOFs nanoparticles have an aspect ratio ranging from 4 to 100.
  • the metal ions in the MOFs nanoparticles are selected from Zn 2+ , Cu 2+ , Ni 2+ , Co 3+ , Zr 4+ , but not limited to the above metal ions.
  • the organic ligands of the MOFs nanoparticles are selected from tetrakis (4-carboxyphenyl) porphyrin (TCPP), terephthalic acid and 2,5-pyrazine dicarboxylic acid, but not only Restricted to the organic ligands mentioned above.
  • the present application provides a dimming material layer comprising the aforementioned dimming material composition and a dimming device comprising the dimming material layer, as
  • the dimming device includes a first transparent conductive layer, a second transparent conductive layer, and the aforementioned dimming material located between the first transparent conductive layer and the second transparent conductive layer
  • a first transparent substrate is provided on the side of the first transparent conductive layer away from the light-adjusting material layer
  • a second transparent substrate is provided on the side of the second transparent conductive layer away from the light-adjusting material layer.
  • the gap between the first transparent conductive layer and the second transparent conductive layer ranges from 1 ⁇ m to 100 ⁇ m, and the reserved space of the box below 1 ⁇ m is too small, which affects the free rotation of suspended particles and the unit concentration of particles, resulting in a dark state
  • the light transmittance becomes higher and the dynamic range narrows; if the gap is too large, the driving voltage will not only be increased, but also the device will be affected in the manufacturing process, the dynamic range from the dark state to the transparent state of the system, and the haze.
  • the application also provides a series of preferred preparation methods of MOFs nanoparticles, as follows:
  • Embodiment 1-8 are identical to Embodiment 1-8:
  • the first transparent conductive layer is further provided with a first transparent substrate on the side away from the light-adjusting material layer, and a second transparent substrate is provided on the side of the second transparent conductive layer away from the light-adjusting material layer to make a light-adjustable device. See Table 1 for the mass fraction of the components of the optical material composition and the test results of the light-adjusting device comprising the above-mentioned light-adjusting material composition.
  • Titanium dioxide nanowires (TiO 2 , commercial products) are dispersed in a dispersion liquid containing a viscosity regulator, and then the dispersion liquid is encapsulated between the first transparent conductive layer and the second transparent conductive layer to form a light-adjusting material layer.
  • a first transparent substrate is provided on the side of the first transparent conductive layer away from the light-adjusting material layer, and a second transparent substrate is provided on the side of the second transparent conductive layer away from the light-adjusting material layer to form a light-adjusting device.
  • the content of the components and the test results are shown in Table 1.
  • Disperse Preliminary Example 6 in a dispersion liquid containing a viscosity control agent then encapsulate the dispersion liquid between the first transparent conductive layer and the second transparent conductive layer to form a light-adjusting material layer, and the first transparent conductive layer is far away from the light-adjustable
  • a first transparent substrate is provided on one side of the material layer, and a second transparent substrate is provided on the side of the second transparent conductive layer away from the light-adjusting material layer to form a light-adjusting device.
  • the test results are shown in Table 1.
  • the viscosity is too small and the response speed is fast , but the material is easy to settle, the viscosity is too large and the response time is slow.
  • the suspension provided by the invention has a wider optical dynamic range and faster response speed in the ON state than in the OFF state when the suspension is applied to the dimming device.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)

Abstract

本发明涉及一种调光材料组合物及调光器件,所述组合物是一种包含MOFs纳米粒子、粘度调控剂及分散剂的悬浮液,所述调光材料组合物应用于调光器件有效解决了现有调光器件光学动态范围窄、响应速度慢、变色慢的技术问题。

Description

一种调光材料组合物及调光器件
本申请要求了申请日为2021年6月16日,申请号为CN202110663195.8,发明名称为“一种调光材料组合物及调光器件”的发明专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及调光材料组合物技术领域,尤其涉及一种调光材料组合物及调光器件。
背景技术
光阀是可以控制光透过性的装置。常见的光阀主要分为热致变色系统、光致变色系统及电致变色系统。其中电致变色系统进一步可分类为聚合物分散液晶系统(PDLC,如美国专利US3585381)、电化学变色系统(EC,如美国专利US9581877)及悬浮颗粒系统(SPD,如美国专利US6606185)。虽然上述技术已趋于成熟,如PDLC已经实现商业化,但当前的产品在透过率、经济效率(节能)、便捷操作性、可调性、成本等方面依然存在着不同程度的缺点,EC(电致变色)通过氧化还原反应实现变色调光,但响应速度较慢(~5min/m 2),且玻璃尺寸越大,变色越慢,容易出现变色不均匀的现象。因此核心材料的开发对光阀领域的发展依然非常重要。
由于SPD调光技术不仅兼具EC和PDLC调光玻璃的优势,而且还具有组装结构简单、无极调光、瞬时变色、能耗小、制备成本低、产品安全可靠、可用基材范围广等特点,因此该技术理论上为最为理想的智能调光技术,市场前景极为广阔。在SPD中,其核心材料的必要条件是粒子具有不等轴形状。其次,这类材料需要在一定条件下能够形成胶体分散体系且具有高轴径比。因此,具有一维或者二维结构的纳米线、纳米棒、纳米带、纳米椎及纳米薄片是SPD核心材料形貌的首选。目前已经发现碳纳米管、石墨烯、TiO 2纳米线)、V 2O 5纳米棒等材料可以作为SPD材料(Nanotechnology,2014,25,415703;Optical Materials,2015,46,418-422;RSC Advance,2013,3,10414-10419)。但由于这些无机材料由于存在组分单一、光学动态范围窄、稳定性不高等缺陷,导致实际的应用范围十分有限。
有机-金属框架(MOFs)是一类具有配位结构明确、大比表面积、高孔隙率、易修饰等特点的多孔性有机-无机杂化材料。由于这类材料结构中的金属离子和有机配体的可选择性广泛,形貌易控且结构容易修饰,金属配位节点可近似认为无机结构单元,因此这类材料在传感、光学、催化、气体存储与分离等方面具有巨大的应用潜力。
发明内容
本发明的目的在于提供一种调光材料组合物,所述调光材料组合物应用于SPD调光器件解决现有技术中调光器件光学动态范围窄、响应速度慢、变色慢的技术问题。
为实现上述目的,本申请提供了一种调光材料组合物,所述组合物是一种包含MOFs纳米粒子、粘度调控剂及分散剂的悬浮液,由于作为悬浮粒子的MOFs纳米粒子的稳定性高,比表面积大、高孔隙率、表面易修饰、结构形貌可控等特性,在一定条件下能够形成胶体分散体系,因此将其应用于调光器件可有效解决调光器件中存在的光透过率变化范围窄、响应速度慢的技术问题。
作为本申请的进一步改进,所述悬浮液中:
MOFs纳米粒子质量分数范围为0.1%-50%,
粘度调控剂质量分数范围为0.1%-20%,
分散剂质量分数范围为30%-99.8%。
作为本申请的进一步改进,所述MOFs纳米粒子的微观形貌选自片状、棒状、线状中的一种或多种。
作为本申请的进一步改进,所述MOFs纳米粒子微观形貌棒状的轴径比范围4-100。
作为本申请的进一步改进,所述MOFs纳米粒子中金属离子选自Mg 2+、Ca 2+、Co 2+、Fe 2+、Zn 2+、Mn 2+、Ni 2+、Cd 2+、Cu 2+、Co 3+、Al 3+、Fe 3+、Mn 3+、Cr 3+、Zr 4+、Ti 4+中的一种或多种,但不仅仅限于上述金属离子。
作为本申请的进一步改进,所述MOFs纳米粒子的中有机配体选自卟啉衍生物、共轭苯衍生物及吡嗪衍生物中的一种或多种,但不仅仅限于上述有机配体。
作为本申请的进一步改进,所述卟啉衍生物选自四(4-羧基苯基)卟啉(TCPP)、四(4-羟基苯基)卟啉、四氨基酞菁、四羧酸基酞菁中的一种或多种。
作为本申请的进一步改进,所述共轭苯衍生物选自对苯二甲酸、均苯三甲酸、4,4'-联苯二甲酸的一种或多种。
作为本申请的进一步改进,所述吡嗪衍生物选自2,5-吡嗪二羧酸、2,3-吡嗪二羧酸、2,6-吡嗪二羧酸的一种或多种。
作为本申请的进一步改进,所述粘度调控剂选自纤维素酯、聚丙烯酸酯中的一种或多种。
作为本申请的进一步改进,所述纤维素酯选自为硝化纤维素、醋酸纤维素、丙酸纤维素、醋酸丁酯纤维素的一种或多种。
作为本申请的进一步改进,所述聚丙烯酸酯选自聚甲基丙烯酸甲酯、聚甲基丙烯酸异丁酯(PMMA)、聚甲基丙烯酸乙酯的一种或多种。
作为本申请的进一步改进,所述分散液选自PDMS(聚二甲基硅氧烷)、DOA(己二酸二辛酯)、DOS(癸二酸二辛酯)、DINP(邻苯二甲酸二异壬酯)、DOP(邻苯二甲酸二辛酯)、BBP(邻苯二甲酸丁基苄酯)、DOTP(对苯二甲酸二辛酯)、TOTM(偏苯三酸三异辛酯)、D13P(邻苯二甲酸双十三酯)中的一种或多种,但不仅仅限于上述分散液。
为实现上述目的,本申请还提供了一种调光器件,所述调光器件包括第一透明导电层、第二透明导电层以及位于所述第一透明导电层和所述第二透明导电层之间的调光材料层,所述调光材料层包含上述调光材料组合物。
作为本申请的进一步改进,所述第一透明导电层与所述第二透明导电层之间的间隙范围为1μm-100μm。
作为本申请的进一步改进,所述第一透明导电层及所述第二透明导电层为透明导电层。
作为本申请的进一步改进,所述第一透明导电层远离所述调光材料层的一侧设置有第一透明基板,所述第二透明导电层远离所述调光材料层的一侧设置有第二透明基板。
本申请提供的调光材料组合物,所述组合物是一种包含MOFs纳米粒子、粘度调控剂及分散剂的悬浮液,本申请还提供了包含上述调光材料组合物的调光器件。本发明提供的悬浮液应用于调光器件的接通状态比断开状态具有更宽的光学动态范围,且响应速度快。
附图说明
图1为一实施例调光器件;
图2为一实施例调光器件;
图3为一实施例通电前,MOFs无序排列,器件呈现着色态;
图4为一实施例通电后,MOFs有序排列,器件呈现透明态;
图5为预备例2MOFs材料扫描电镜图;
图6为预备例2MOFs材料XRD图;
图7为预备例6MOFs材料扫描电镜图;
图8为预备例6MOFs材料XRD图;
图中:1、调光材料层;2、第一透明导电层;3、第二透明导电层;4、第一透明基板;5、第二透明基板;6、MOFs纳米粒子。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合本申请具体实施例及附图对本申请技术方案进行清楚、完整地描述。显然,所描述的实施例仅是本申请一部分实施例,而不是全部的实施例,不用来限制本发明的范围。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
为制备光学动态范围宽、响应速度快的调光器件,本申请提供一种调光材料组合物,所述组合物是一种包含MOFs纳米粒子、粘度调控剂及分散剂的悬浮液。作为本申请优选的实施例,所述悬浮液中MOFs纳米粒子质量分数范围为0.1%-50%,当MOFs纳米粒子质量分数低于0.1%,暗态的透过率越大,但透明态的透过率不等值上升,当MOFs纳米粒子质量分数大于50%,暗态的透过率越小,同时透明态的 透过率同样也会变小。粘度调控剂质量分数范围为0.1%-20%,所述粘度调控其主要作用是增加材料的分散性,降低材料团聚,添加不同的粘度控制剂需要添加不同的量,粘度太小,响应速度快,但材料很容易沉降,因此一定要选择添加高于某一限度的量方能得到相应的悬浮液;粘度过大,则响应很慢。分散剂质量分数范围为30%-99.8%,所述分散剂主要作用是分散MOFs粒子和溶解粘度调控剂。作为本申请的优选实施例所述MOFs纳米粒子的轴径比范围为4-100。作为本申请优选的实施例所述MOFs纳米粒子中金属离子选自Zn 2+、Cu 2+、Ni 2+,Co 3+、Zr 4+,但不仅仅限于上述金属离子。作为本申请的优选实施例所述MOFs纳米粒子的中有机配体选自四(4-羧基苯基)卟啉(TCPP)、对苯二甲酸及2,5-吡嗪二羧酸,但不仅仅限于上述有机配体。
为制备光学动态范围宽,响应速度快的调光器件,本申请提供了一种包含上述所述的调光材料组合物的调光材料层及包含所述调光材料层的调光器件,作为本申请的优选实施例,所述调光器件包括第一透明导电层、第二透明导电层以及位于所述第一透明导电层和所述第二透明导电层之间的上述所述调光材料层,所述第一透明导电层远离所述调光材料层的一侧设置有第一透明基板,所述第二透明导电层远离所述调光材料层的一侧设置有第二透明基板。所述第一透明导电层与所述第二透明导电层之间的间隙范围为1μm-100μm,1μm以下的盒子预留空间太小,影响悬浮粒子的自由旋转和粒子的单位浓度,导致暗态的透光率变高,动态范围变窄;间隙过大则不仅会增加驱动电压,同时器件在制作工艺、体系暗态到透明态的动态范围以及雾度等方面均为受到影响。
本申请还提供了一系列优选的MOFs纳米粒子的制备方法,如下:
预备例1:
将2.4mg的硝酸铜,40μL三氟乙酸及10mgPVP溶解在9mL的DMF中,加入3mL乙醇,搅匀后逐滴加入3mL四(4-羧基苯基)卟啉的DMF溶液。随后将混合溶液放入高压反应釜中,80℃反应4小时。反应产物用乙醇洗涤,最终离心得到的MOFs材料Ⅰ为Cu-TCPP纳米片。
预备例2:
将0.35g ZrCl 4,0.5g 2,5-吡嗪二羧酸溶解在30mL DMF中,充分溶解,随后将溶液置于50mL水热反应釜中,120℃反应12h。反应产物用DMF洗涤,最终离心得到的MOFs材料Ⅱ为Zr-H 2PzDC纳米片。微观形貌如图5所示的扫描电镜图,图6为其相应的XRD图。
预备例3:
将0.75mmol的对苯二甲酸溶解到32mL的DMF中,加入2mL乙醇及2mL超纯水。随后加入0.75mmol的氯化镍,完全溶解后加入0.8mL的三乙胺,搅拌得到均一溶胶状悬浮液。随后将悬浮液在40kHz环境下超声反应8小时,得到的固体用水和乙醇分别洗涤5次,离心得到绿色的MOFs材料Ⅲ为Ni-BDC纳米片。
预备例4:
将0.75mmol的对苯二甲酸溶解到32mL的DMF中,加入2mL乙醇及2mL超纯水。随后加入0.5mmol的氯化镍及0.25mmmol的硝酸钴,完全溶解后加入0.8mL的三乙胺,搅拌得到均一溶胶状悬浮液。随后将悬浮液在40kHz环境下超声反应8小时,得到的固体用水和乙醇分别洗涤5次,离心得到墨绿色的MOFs材料Ⅳ为Ni/Co-BDC纳米片。
预备例5:
将0.35g ZnI 2,0.75g I 2,0.5g 2,5-吡嗪二羧酸溶解在30mL DMF中,充分溶解,随后将溶液置于50mL水热反应釜中,180℃反应12h。反应产物用DMF洗涤,最终离心得到的MOFs材料Ⅴ为Zn-H 2PzDC纳米片。
预备例6:
将0.35g ZrCl 4,0.75g I 2,0.49g KI,0.3g PVP溶解在30mLDMF中,充分溶解,随后将溶液置于100mL三口瓶中,150℃回流反应12h。反应产物用DMF洗涤,最终离心得到的MOFs材料Ⅵ为Zr/I 2-H 2PzDC纳米棒,纳米棒的长径比最大为100,最小为4,平均值为38。微观形貌如图7所示的扫描电镜图,图8为其相应的XRD图。
实施例1-8:
将预备例1-6中的MOFs纳米粒子分散在含有粘度调控剂的分散液中,然后将分散液封装入第一透明导电层及第二透明导电层之间形成调光材料层,在所述第一透明导电层远离调光材料层一侧还设置有第一透明基板,在所述第二透明导电层远离调光材料层一侧还设置有第二透明基板制成调光器件,具体调光材料组合物的组分质量分数及包含上述调光材料组合物的调光器件测试结果见表1。
对比例1:
将二氧化钛纳米线(TiO 2,商业品)的分散在含有粘度调控剂的分散液中,然后将分散液封装入第一透明导电层及第二透明导电层之间形成调光材料层,所述第一透明导电层远离调光材料层一侧还设置有第一透明基板,在所述第二透明导电层远离调光材料层一侧还设置有第二透明基板制成调光器件。组分含量及测试结果见表1。
对比例2-4
将预备例6分散在含有粘度调控剂的分散液中,然后将分散液封装入第一透明导电层及第二透明导电层之间形成调光材料层,所述第一透明导电层远离调光材料层一侧还设置有第一透明基板,在所述第二透明导电层远离调光材料层一侧还设置有第二透明基板制成调光器件。测试结果见表1。
Figure PCTCN2022096554-appb-000001
表1
由上述实施例及对比例可知MOFs以外的材料,效果差,光学动态范围窄,当MOFs纳米粒子质量分数低于0.1%,暗态的透过率越大,但透明态的透过率不等值上升,当MOFs纳米粒子质量分数大于50%,暗态的透过率越小,同时透明态的透过率同样也会变小。粘度调控剂质量分数范围为0.1%-20%,所述粘度调控其主要作用是增加材料的分散性,降低材料团聚,添加不同的粘度控制剂需要添加不同的量,粘度太小,响应速度快,但材料很容易沉降,粘度太大响应时间慢。本发明提供的悬浮液应用于调光器件的接通状态比断开状态具有更宽的光学动态范围,且响应速度快。
虽然本说明书按照实施方式加以描述,但并非每个实施方式仅包含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起见,本领域技术人员应当将说明书作为一个整体,各实施方式中的技术方案也可以经适当组合,形成本领域技术人员可以理解的其他实施方式。
上文所列出的一系列的详细说明仅仅是针对本发明的可行性实施方式的具体说明,它们并非用以限制本发明的保护范围,凡未脱离本发明技艺精神所作的等效实施方式或变更均应包含在本发明的保护范围之内。

Claims (17)

  1. 一种调光材料组合物,其特征在于,所述组合物是一种包含MOFs纳米粒子、粘度调控剂及分散剂的悬浮液。
  2. 根据权利要求1所述调光材料组合物,其特征在于,所述悬浮液中:
    MOFs纳米粒子质量分数范围为0.1%-50%,
    粘度调控剂质量分数范围为0.1%-20%,
    分散剂质量分数范围为30%-99.8%。
  3. 根据权利要求1所述的调光材料组合物,其特征在于,所述MOFs纳米粒子的微观形貌选自片状、棒状、线状中的一种或多种。
  4. 根据权利要求3所述的调光材料组合物,其特征在于,所述MOFs纳米粒子微观形貌棒状的轴径比范围为4-100。
  5. 根据权利要求1所述的调光材料组合物,其特征在于,所述MOFs纳米粒子中金属离子选自Mg 2+、Ca 2+、Co 2+、Fe 2+、Zn 2+、Mn 2+、Ni 2+、Cd 2+、Cu 2+、Co 3+、Al 3+、Fe 3+、Mn 3+、Cr 3+、Zr 4+、Ti 4+中的一种或多种。
  6. 根据权利要求1所述的调光材料组合物,其特征在于,所述MOFs纳米粒子的中有机配体选自卟啉衍生物、共轭苯衍生物及吡嗪衍生物中的一种或多种。
  7. 根据权利要求6所述的调光材料组合物,其特征在于,所述卟啉衍生物选自四(4-羧基苯基)卟啉(TCPP)、四(4-羟基苯基)卟啉、四氨基酞菁、四羧酸基酞菁中的一种或多种。
  8. 根据权利要求6所述的调光材料组合物,其特征在于,所述共轭苯衍生物选自对苯二甲酸、均苯三甲酸、4,4'-联苯二甲酸的一种或多种。
  9. 根据权利要求6所述的调光材料组合物,其特征在于,所述吡嗪衍生物选自2,5-吡嗪二羧酸、2,3-吡嗪二羧酸、2,6-吡嗪二羧酸的一种或多种。
  10. 根据权利要求1所述的调光材料组合物,其特征在于,所述粘度调控剂选自纤维素酯、聚丙烯酸酯中的一种或多种。
  11. 根据权利要求10所述的调光材料组合物,其特征在于,所述纤维素酯选自为硝化纤维素、醋酸纤维素、丙酸纤维素、醋酸丁酯纤维素的一种或多种。
  12. 根据权利要求10所述的调光材料组合物,其特征在于,所述聚丙烯酸酯选自聚甲基丙烯酸甲酯、聚甲基丙烯酸异丁酯、聚甲基丙烯酸乙酯的一种或多种。
  13. 根据权利要求1所述的调光材料组合物,其特征在于,所述分散液选自PDMS、DOA、DOS、DINP、DOP、BBP、DOTP、TOTM、D13P中的一种或多种。
  14. 一种调光器件,所述调光器件包括第一透明导电层、第二透明导电层以及位于所述第一透明导电层和所述第二透明导电层之间的调光材料层,其特征在于,所述调光材料层包含权利要求1-13任一项所述的调光材料组合物。
  15. 根据权利要求14所述的调光器件,其特征在于,所述第一透明导电层与所述第二透明导电层之间的间隙范围为1μm-100μm。
  16. 根据权利要求14所述的调光器件,其特征在于,所述第一透明导电层及所述第二透明导电层为透明导电层。
  17. 根据权利要求14所述的调光器件,其特征在于,所述第一透明导电层远离所述调光材料层的一侧设置有第一透明基板,所述第二透明导电层远离所述调光材料层的一侧设置有第二透明基板。
PCT/CN2022/096554 2021-06-16 2022-06-01 一种调光材料组合物及调光器件 WO2022262578A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110663195.8A CN115477768A (zh) 2021-06-16 2021-06-16 一种调光材料组合物及调光器件
CN202110663195.8 2021-06-16

Publications (1)

Publication Number Publication Date
WO2022262578A1 true WO2022262578A1 (zh) 2022-12-22

Family

ID=84419335

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/096554 WO2022262578A1 (zh) 2021-06-16 2022-06-01 一种调光材料组合物及调光器件

Country Status (2)

Country Link
CN (1) CN115477768A (zh)
WO (1) WO2022262578A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117631394A (zh) * 2023-12-28 2024-03-01 浙江大学 自适应光调控装置、自适应光调控系统及自适应光调控方法
CN117631394B (zh) * 2023-12-28 2024-05-28 浙江大学 自适应光调控装置、自适应光调控系统及自适应光调控方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016204301A1 (ja) * 2015-06-18 2016-12-22 国立大学法人九州大学 複合材料、フォトンアップコンバージョン材料およびフォトンアップコンバーター
CN107216463A (zh) * 2017-07-17 2017-09-29 济南大学 一种具有近红外吸收的Fe基金属有机骨架纳米粒子及其制备方法
CN107607525A (zh) * 2017-10-19 2018-01-19 北京市理化分析测试中心 负载贵金属纳米粒子的金属有机骨架及制备方法和应用
CN109181451A (zh) * 2018-08-30 2019-01-11 陕西科技大学 一种聚丙烯酸酯/MOFs复合皮革涂饰剂的制备方法
CN109320731A (zh) * 2018-10-15 2019-02-12 重庆师范大学 镉-有机配位聚合物Cd5-MOF、其制备方法及应用
CN112851957A (zh) * 2020-12-29 2021-05-28 江苏集萃智能液晶科技有限公司 一种超薄金属有机框架纳米片的制备方法及应用其的调光器件

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016204301A1 (ja) * 2015-06-18 2016-12-22 国立大学法人九州大学 複合材料、フォトンアップコンバージョン材料およびフォトンアップコンバーター
CN107216463A (zh) * 2017-07-17 2017-09-29 济南大学 一种具有近红外吸收的Fe基金属有机骨架纳米粒子及其制备方法
CN107607525A (zh) * 2017-10-19 2018-01-19 北京市理化分析测试中心 负载贵金属纳米粒子的金属有机骨架及制备方法和应用
CN109181451A (zh) * 2018-08-30 2019-01-11 陕西科技大学 一种聚丙烯酸酯/MOFs复合皮革涂饰剂的制备方法
CN109320731A (zh) * 2018-10-15 2019-02-12 重庆师范大学 镉-有机配位聚合物Cd5-MOF、其制备方法及应用
CN112851957A (zh) * 2020-12-29 2021-05-28 江苏集萃智能液晶科技有限公司 一种超薄金属有机框架纳米片的制备方法及应用其的调光器件

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117631394A (zh) * 2023-12-28 2024-03-01 浙江大学 自适应光调控装置、自适应光调控系统及自适应光调控方法
CN117631394B (zh) * 2023-12-28 2024-05-28 浙江大学 自适应光调控装置、自适应光调控系统及自适应光调控方法

Also Published As

Publication number Publication date
CN115477768A (zh) 2022-12-16

Similar Documents

Publication Publication Date Title
Zou et al. Facile preparation and photocatalytic activity of oxygen vacancy rich BiOCl with {0 0 1} exposed reactive facets
Huo et al. Ag SPR-promoted 2D porous g-C3N4/Ag2MoO4 composites for enhanced photocatalytic performance towards methylene blue degradation
WO2021175034A1 (zh) 复合粒子及包含复合粒子的调光器件
CN109491174B (zh) 一种无机-有机杂化核壳型纳米棒及带有该纳米棒的光阀
CN107537437B (zh) 一种负载型双组分纳米氧化物吸附剂、其制备方法及其应用
Li et al. Insight into the solar utilization of a novel Z-scheme Cs0. 33WO3/CdS heterostructure for UV–Vis-NIR driven photocatalytic hydrogen evolution
CN105700265B (zh) 具有电场响应光子晶体特性的彩色电泳显示器及其制备方法和显示方法
JP6366140B2 (ja) 金属微粒子含有構造体
CN108862389A (zh) 一种高性能氧化钨纳米粉体及其制备方法和应用
CN114392734B (zh) 一种氧化钨复合材料及其制备方法和应用
CN114839760A (zh) 一种光阀及其制备方法
CN112851957B (zh) 一种超薄金属有机框架纳米片的制备方法及应用其的调光器件
WO2022262578A1 (zh) 一种调光材料组合物及调光器件
Yin et al. Synthesis of Multiwalled Carbon Nanotube Modified BiOCl Microspheres with Enhanced Visible‐Light Response Photoactivity
Ren et al. Bi and oxygen defects improved visible light photocatalysis with BiOBr nanosheets
CN112778972A (zh) 一种电子显示屏精抛用抛光粉及其生产方法
CN104860357A (zh) 单分散的纳米片和/或纳米环及其制备和应用
KR20180029768A (ko) 전기변색 구조체 및 그 제조 방법
Sun et al. Synthesis of BiOCl/Bi3NbO7 heterojunction by in-situ chemical etching with enhanced photocatalytic performance for the degradation of organic pollutants
Zhang et al. One Step In Situ Loading of CuS Nanoflowers on Anatase TiO 2/Polyvinylidene Fluoride Fibers and Their Enhanced Photocatalytic and Self-Cleaning Performance
Bouazizi et al. Synthesis and characterization of SnO2-HMD-Fe materials with improved electric properties and affinity towards hydrogen
Hu et al. Construction of mesoporous NCQDs–BiOCl composites for photocatalytic-degrading organic pollutants in water under visible and near-infrared light
Ramin et al. The effect of carbon nanotubes as a support on morphology and size of silver nanoparticles
CN1817524A (zh) 一种液相法制备纳米银粉的固液分离方法
WO2022007762A1 (zh) 一种二氧化钛材料及其制备方法与应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22824058

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE