WO2022007762A1 - 一种二氧化钛材料及其制备方法与应用 - Google Patents

一种二氧化钛材料及其制备方法与应用 Download PDF

Info

Publication number
WO2022007762A1
WO2022007762A1 PCT/CN2021/104592 CN2021104592W WO2022007762A1 WO 2022007762 A1 WO2022007762 A1 WO 2022007762A1 CN 2021104592 W CN2021104592 W CN 2021104592W WO 2022007762 A1 WO2022007762 A1 WO 2022007762A1
Authority
WO
WIPO (PCT)
Prior art keywords
titanium dioxide
dioxide material
nano
dispersion
material according
Prior art date
Application number
PCT/CN2021/104592
Other languages
English (en)
French (fr)
Inventor
梁先华
Original Assignee
宁波极微纳新材料科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁波极微纳新材料科技有限公司 filed Critical 宁波极微纳新材料科技有限公司
Publication of WO2022007762A1 publication Critical patent/WO2022007762A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • C01G23/053Producing by wet processes, e.g. hydrolysing titanium salts
    • C01G23/0536Producing by wet processes, e.g. hydrolysing titanium salts by hydrolysing chloride-containing salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • C01G23/053Producing by wet processes, e.g. hydrolysing titanium salts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/84Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by UV- or VIS- data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/10Particle morphology extending in one dimension, e.g. needle-like
    • C01P2004/16Nanowires or nanorods, i.e. solid nanofibres with two nearly equal dimensions between 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer

Definitions

  • the present application particularly relates to a titanium dioxide material and its preparation method and application.
  • Nano titanium dioxide has special effects such as small particle size, high specific surface area, excellent photocatalytic activity, stable chemical and thermal properties, super affinity, etc. irreplaceable application advantages. Titanium dioxide mainly exists in the three forms of rutile phase, anatase phase and brookite phase in nature. Among them, the atomic arrangement of the rutile phase is dense, the structure is the most stable, the relative density and refractive index are also the largest, and it has strong covering power and tinting power. Widely used in industry.
  • nano-scale titanium dioxide particles are small in size, have a large number of defects on the surface, large surface activity, and are in a thermodynamically unstable state. The unique properties of nanoparticles are lost, resulting in great defects in practical applications.
  • higher requirements are put forward for the dispersibility of rutile-phase titanium dioxide.
  • the better the dispersion the better the application effect of the final product.
  • rutile titanium dioxide which is easy to agglomerate and has poor dispersibility, cannot be used to make transparent and natural skin care and sunscreen products, which will make the skin appear unnaturally white; in the field of film products, it cannot be used in transparent film products.
  • transparent and durable topcoat, fine ceramics, etc. are widely used.
  • the physical dispersion method mainly uses external forces to disperse the nanoparticles, including mechanical stirring dispersion, ultrasonic dispersion and high-energy treatment dispersion.
  • the disadvantage of the physical dispersion method is that if the external force stops, the particles will re-aggregate.
  • the chemical dispersion method is to use surface chemical methods to add surface treatment agents for dispersion.
  • the preparation of water-phase dispersed nanoparticles is usually achieved by the induction and restraint of water-soluble surfactants or polymers, but the surface of the particles is covered with modified molecules such as organics.
  • the contribution of dispersion control to improving material properties is reduced; at the same time, different application systems may also have adverse adverse effects with surface-modified molecules, reducing the application performance of the final product.
  • the titanium dioxide dispersion products obtained by the above-mentioned treatment methods are all liquid suspensions, and there are large particles formed by agglomeration of a large number of nano-scale particles, which have poor dispersibility in water, are opaque, and are easy to settle, which still causes high transportation costs and practical applications. has a big flaw.
  • nanometer titanium dioxide powder with monodisperse function.
  • the main properties of this powder are: (1) The powder must be able to It is stably dispersed in the liquid medium to form a nanoparticle dispersion with high transparency. The dispersed nanoparticles need to be stable for a long time and not agglomerate to cause precipitation; (2) The powder has no surface organic modification molecules in the process of preparation, treatment and application. , which can make the application field of nano titanium dioxide powder have universality.
  • the present invention provides for the first time a monodisperse, stable suspension, and transparent rutile phase nanometer titanium dioxide powder material and a preparation method thereof.
  • a titanium dioxide material wherein the surface of the titanium dioxide material is acidic;
  • crystalline nano-titania particle agglomerates with a particle size of less than 200 nanometers account for more than 90% by mass; preferably, the titanium dioxide material is composed of crystalline nano-titania particle agglomerates with a particle size of less than 200 nanometers. ;
  • the titanium dioxide particle agglomerates can be spontaneously dispersed in pure water without additives or dispersants to form a suspension-stable nano titanium dioxide particle dispersion.
  • the titanium dioxide material does not contain organic matter.
  • the crystalline nano-titania particles with a particle size of less than 200 nanometers are in the shape of nanorods; the most probable distribution of the long axis of the nanorods is 40 nanometers to 160 nanometers; the maximum diameter of the nanorods It can be distributed from 10 nanometers to 50 nanometers.
  • the main crystal phase of the crystalline nano-titania particles is rutile phase.
  • the dispersion liquid is in a colloidal dispersion state at a low concentration; the low concentration is that the mass fraction of the nano titanium dioxide particles is less than one percent.
  • the spontaneous dispersion is the process of spontaneously dispersing the unmodified agglomerates on the surface of the titanium dioxide material to form single particles of nano titanium dioxide particles.
  • the spontaneous dispersion is directly put into water without stirring to form a suspension-stable nano-titania particle dispersion.
  • a preparation method of any one of the above-mentioned titanium dioxide materials comprising the following steps:
  • step (2) separating the precipitation described in step (1) to obtain precipitation wet slag;
  • step (3) the moisture content of the precipitation wet slag described in step (2) is controlled at 5% to 50% to obtain precipitation solid powder;
  • step (3) The precipitation solid powder described in step (3) is sealed and heated to obtain nano titanium dioxide material.
  • the process of mixing titanium tetrachloride and water to form a mixed solution in step (1) is that titanium tetrachloride is directly added to pure water or pure water is directly added to titanium tetrachloride to form.
  • the mixed solution is in a solution state or a suspension state; the mass percentage of titanium tetrachloride in the mixed solution is five to three percent by weight. ten.
  • step (1) a constant temperature is not required during the low-temperature stirring process; the temperature of the low-temperature stirring is not higher than 100 degrees Celsius; the low-temperature stirring time is 1 hour to 10 days.
  • the precipitation wet slag in step (2) is the first separation product; the precipitation wet slag does not need to be purified.
  • the moisture content of the precipitated solid powder in step (3) is 10% to 30%.
  • the temperature of the sealing and heating in step (4) is 100 degrees Celsius to 200 degrees Celsius; the time of the sealing and heating is 2 hours to 24 hours.
  • the sealing in step (4) is to put the precipitated solid powder into a container with a fixed volume for sealing; the container with a fixed volume does not change in volume when heated.
  • the application of a titanium dioxide material as an additive in the preparation of a composite material comprises the following steps:
  • the dispersed nano titanium dioxide is combined with other materials to form a composite material.
  • the combination is selected from physical mixing or chemical reaction to form composite materials.
  • the application of a titanium dioxide material as an additive in the preparation of a composite material comprises the following steps:
  • the titanium dioxide material described in any one of the above embodiments is directly added to water to form an aqueous dispersion in which the nano-titanium dioxide particles are stably suspended;
  • the aqueous dispersion in which the nanometer titanium dioxide particles are stably suspended is applied to one or more of the fields of air purification, water purification, antibacterial disinfection, self-cleaning, and sunscreen skin care.
  • the present invention is a solid rutile phase nanometer titanium dioxide powder, which can be added to water within 10 seconds to form a transparent nanometer colloid suspension, is simple to operate, and can be used and prepared immediately, and solves the problem that the existing rutile phase nanometer titanium dioxide powder cannot be uniformly dispersed. technical challenge.
  • the surface of this material does not contain organic additives, and can be used in a wide range of fields. It can spontaneously disperse when mixed with water to form a stable suspension of rutile-phase nano-titanium dioxide particles.
  • the nanoparticles in the dispersion are uniform in size and stable in suspension, and obvious Tyndall phenomenon occurs under the illumination, and no delamination is found after being placed for a long time.
  • the dispersed rutile-phase titanium dioxide nanoparticles have small size and uniform particle size, and the dispersion liquid is light blue and transparent, which expands the application of the material in glass and other light-transmitting and beautiful materials.
  • the technical solution has simple operation steps and low price, which is conducive to large-scale industrialization and application.
  • Fig. 1 is (a) low magnification and (b) high magnification SEM images of the titanium dioxide material obtained in Example 1, which are mainly composed of spherical particles above the micron scale, and the spherical particles are composed of nano-rod-shaped titanium dioxide particle agglomerates; (c) is The micron-scale spherical particle product was dispersed in water and then drop-coated on a silicon wafer, and the obtained SEM image was observed after drying.
  • Fig. 2 is the X-ray diffraction pattern of the titanium dioxide product prepared in Example 1, and the main crystal phase is rutile phase.
  • Fig. 3 shows that the titanium dioxide material obtained in Example 1 is mixed with water, and immediately disperses spontaneously to form an aqueous dispersion in which nano titanium dioxide particles are stably suspended.
  • Fig. 4 is that the massfraction obtained after the nano titanium dioxide product obtained in Example 1 is added with water is a water dispersion of one thousandth, has a stable colloidal dispersion state, and obvious Tyndall phenomenon occurs.
  • Fig. 5 is the ultraviolet-visible light absorption curve of the nano titanium dioxide water dispersion liquid and P25 water dispersion liquid with the concentration of 5/10,000 obtained in Example 1.
  • FIG. 6 is an optical photograph obtained after the nano-titanium dioxide dispersion obtained in Example 1 is applied dropwise on a glass sheet and dried.
  • Figure 7 shows that the nano-titania nanoparticles obtained in Example 1 spread uniformly and densely on the glass surface.
  • FIG. 8 is a scanning electron microscope image of the product obtained in Example 2, after being dispersed in water and then drop-coated on a silicon wafer, and observed after drying.
  • FIG. 9 is a scanning electron microscope image obtained after the product obtained in Example 3 was dispersed in water and then dripped on a silicon wafer and observed after drying.
  • FIG. 10 is a scanning electron microscope image of the product obtained in Comparative Example 1, and the product is a petal-shaped large particle agglomerate.
  • the titanium dioxide material product obtained in Example 1 is a powdery solid with a white color.
  • Example 1 Take a small amount of the powder obtained in Example 1 and spread a thin layer on the conductive adhesive, which is used to observe the morphology of the sample with a scanning electron microscope, as shown in FIG. 1 . It can be seen from Fig. 1(a) that the titanium dioxide material obtained in Example 1 is mainly composed of spherical particles above the micron scale.
  • the micron-scale particles are composed of nanoscale titanium dioxide particle agglomerates, the nanoscale titanium dioxide particles are in the shape of nanorods, the length of the particles is less than 100 nanometers, and the uniformity of the particles is good, among which, The most probable distribution of the long axis of the nanorods is 40 nanometers to 80 nanometers, and the most probable distribution of the diameters of the nanorods is 10 nanometers to 20 nanometers. . Take a small amount of the product obtained in Example 1 and disperse it in deionized water, drop a small amount on the silicon wafer, and dry it naturally.
  • the dried silicon wafer is adhered to the sample stage of the scanning electron microscope with conductive adhesive for scanning electron microscopy.
  • the morphology of the sample was observed, as shown in Figure 1(c). It can be further seen from Figure 1(c) that the product titanium dioxide nanoparticles are in the shape of nanorods, the length of the particles is less than 100 nm, and the uniformity of the particles is good.
  • the most probable distribution of the long axis of the nanorods is 40 nm to 80 nm, The most probable distribution of nanorod diameters is 10 nanometers to 20 nanometers.
  • Figure 2 is the X-ray diffraction pattern of the titanium dioxide product prepared in Example 1. It can be seen from Figure 2 that the main crystal phase of the nano-titanium dioxide prepared in Example 1 is rutile phase, which has good crystallinity.
  • the titanium dioxide material obtained in Example 1 is mixed with water, and can spontaneously disperse to form an aqueous dispersion in which nano-titanium dioxide particles are stably suspended.
  • Figure 3 put a small amount of the titanium dioxide material obtained in Example 1 into a glass bottle, and add deionized water to the glass bottle with a pipette. It can be seen that the powder can also be immediately Disperse in water to form a dispersion.
  • Figure 4 is an aqueous dispersion with a mass fraction of 1/1000 obtained after adding water to the nano-titanium dioxide product obtained in Example 1.
  • the dispersion has good monodispersity and can form a stable colloidal dispersion in an aqueous solution. It has obvious Tyndall phenomenon; the nanoparticles are stably suspended, not agglomerated and not easy to settle, and the solution has not been delaminated for more than 2 months.
  • the nano-titania obtained in Example 1 was dispersed in water to form an aqueous dispersion with a concentration of 5/10,000, and then the above-mentioned dispersion liquid was taken in a quartz cuvette with a thickness of 1 cm, and the UV-Vis absorption curve of the sample was tested.
  • the titanium dioxide material dispersion obtained in Example 1 can completely absorb ultraviolet light less than 370 nanometers at a very low concentration, and the ultraviolet absorption ability is strong;
  • the visible light region greater than 400 nanometers has extremely high light transmittance, and the transmittance is greater than 80%.
  • Example 6 is an optical photograph obtained after the nano-titania dispersion obtained in Example 1 is applied dropwise on a glass sheet and dried. It can be seen that the light transmittance of the glass loaded with titania nanoparticles does not decrease. Further observation by scanning electron microscope, as shown in Figure 7, shows that the titanium dioxide nanoparticles supported on the glass sheet spread evenly and densely, without unevenness or cracking. Therefore, the product obtained in this embodiment greatly expands the application of the titanium dioxide material in the fields of ultraviolet absorption, aesthetics and other products.
  • the material has the characteristics of rapid dispersion and simple operation.
  • the present invention is a solid rutile phase nanometer titanium dioxide powder, which can be added to water within 10 seconds to form a transparent nanometer colloid suspension, is simple to operate, and can be used and prepared immediately, and solves the problem that the existing rutile phase nanometer titanium dioxide powder cannot be uniformly dispersed. technical challenge.
  • the surface of the material does not contain organic additives, and is applicable to a wide range of fields. It can spontaneously disperse when mixed with water to form an aqueous dispersion in which rutile-phase nano-titania particles are stably suspended.
  • the nanoparticles in the dispersion are uniform in size and stable in suspension, and obvious Tyndall phenomenon occurs under the illumination, and no delamination is found after being placed for a long time.
  • the rutile-phase titanium dioxide nanoparticles dispersed by this material are small in size and uniform in particle size, and the dispersion liquid is light blue and transparent, which expands the application of the material in glass and other light-transmitting and beautiful materials.
  • the technical solution has simple operation steps and low price, and is beneficial to large-scale industrialization and application.
  • the appearance of the titanium dioxide material product obtained in Example 2 is a powdery solid, and the color is white.
  • the morphology of the titanium dioxide material product obtained in this Example 2 is confirmed by scanning electron microscopy to be micro-spherical particles.
  • the micro-spherical particles are mainly composed of titanium dioxide nanorods.
  • the most probable distribution of the long axis of the nanorods is 50 nm to 100 nm.
  • the most probable distribution is 15 nanometers to 25 nanometers, indicating that the nano-titanium dioxide obtained in this example has a small particle size and good monodispersity.
  • the morphology of the sample was observed, as shown in Figure 8. It can be further seen from Figure 8 that the product titanium dioxide nanoparticles are in the shape of nanorods, the length of the particles is less than 100 nanometers, and the uniformity of the particles is good. The most probable distribution is from 15 nm to 25 nm. X-ray diffraction confirmed that the main crystal phase of the nano-titanium dioxide obtained in Example 2 was rutile phase and had good crystallinity.
  • a small amount of the nano-titanium dioxide product obtained in Example 2 is mixed with water, and under the condition of no stirring, it can spontaneously disperse to form a stable suspension of nano-titanium dioxide particles.
  • the dispersion liquid is a colloidal dispersion with obvious Tyndall phenomenon. , the nanoparticles in the dispersion are stably suspended, do not agglomerate and are not easy to settle, and no delamination occurs after being placed for 1 month.
  • the nano-titania obtained in Example 2 was dispersed in water to form an aqueous dispersion with a concentration of 5/10,000, and then the above-mentioned dispersion was taken in a 1 cm thick quartz cuvette to test the UV-Vis absorption curve of the sample.
  • the dispersion can completely absorb ultraviolet light less than 370 nanometers, and has strong ultraviolet absorption capacity. At the same time, it has good light transmittance in the visible light region greater than 400 nanometers, and the transmittance is greater than 70%. Additive applications in product fields such as absorption and aesthetics.
  • the nano-titania dispersion liquid with a concentration of 5/10,000 was spread on the silicon wafer, and no spots were produced after drying.
  • the titanium dioxide material product obtained in Example 3 was observed as a powdery solid after being naturally dried at normal temperature and normal pressure, and the color was white.
  • the morphology of the titanium dioxide material product obtained in this example 3 is confirmed by scanning electron microscopy to be micro-spherical particles.
  • the micro-spherical particles are mainly composed of titanium dioxide nanorods.
  • the most probable distribution of the long axis of the nanorods is 80 nanometers to 150 nanometers.
  • the most probable distribution is 15 nanometers to 35 nanometers, indicating that the nano-titanium dioxide obtained in this example has a small particle size and good monodispersity.
  • the morphology of the sample was observed, as shown in Figure 9. It can be further seen from Figure 9 that the product titanium dioxide nanoparticles are in the shape of nanorods, and the uniformity of the particles is good. The most probable distribution of the long axis of the nanorods is 80 nm to 150 nm, and the most probable distribution of the diameter of the nanorods is 15 nm. nanometers to 35 nanometers. X-ray diffraction confirmed that the main crystal phase of the nano-titanium dioxide obtained in Example 3 was rutile phase and had good crystallinity.
  • a small amount of the nano-titanium dioxide product obtained in Example 3 is mixed with water, and under the condition of no stirring, it can spontaneously disperse to form a stable suspension of nano-titanium dioxide particles.
  • the water dispersion, the dispersion is colloidal dispersion, with obvious Tyndall phenomenon , the nanoparticles in the dispersion are stably suspended, do not agglomerate and are not easy to settle, and no delamination occurs when placed for half a month.
  • the nano-titania obtained in Example 3 was dispersed in water to form an aqueous dispersion with a concentration of 5/10,000, and then the above-mentioned dispersion was taken in a 1 cm thick quartz cuvette to test the UV-Vis absorption curve of the sample.
  • the dispersion can completely absorb ultraviolet light less than 370 nanometers, and has strong ultraviolet absorption capacity. At the same time, it has good light transmittance in the visible light region greater than 400 nanometers, and the transmittance is greater than 50%, which expands the ultraviolet Additive applications in product areas such as absorption and aesthetics.
  • the titanium dioxide material product obtained in Example 4 was observed to be a powdery solid after being naturally dried at normal temperature and normal pressure, and the color was white.
  • the morphology of the titanium dioxide material product obtained in this example 4 is confirmed by scanning electron microscopy to be micro-spherical particles, and the micro-spherical particles are mainly composed of titanium dioxide nanorods.
  • the most probable distribution of TiO2 is 10 nanometers to 15 nanometers, indicating that the nano-titania obtained in this example has a small particle size and good monodispersity.
  • X-ray diffraction confirmed that the main crystal phase of the nano-titania obtained in Example 4 was a rutile phase with good crystallinity, and also contained a small amount of anatase phase.
  • a small amount of the nano-titanium dioxide product obtained in Example 4 is mixed with water, and under the condition of no stirring, it can spontaneously disperse to form an aqueous dispersion in which the nano-titanium dioxide particles are stably suspended.
  • the dispersion is colloidal dispersion and has obvious Tyndall phenomenon. , the nanoparticles in the dispersion are stably suspended, do not agglomerate and are not easy to settle, and no delamination occurs when placed for 3 months.
  • the nano-titania obtained in Example 4 was dispersed in water to form an aqueous dispersion with a concentration of 5/10,000, and then the above-mentioned dispersion was taken in a 1 cm thick quartz cuvette to test the UV-Vis absorption curve of the sample.
  • the dispersion can completely absorb ultraviolet light less than 370 nanometers, and has strong ultraviolet absorption capacity. At the same time, it has good light transmittance in the visible light region greater than 400 nanometers, and the transmittance is greater than 90%, which expands the use of titanium dioxide in ultraviolet Additive applications in product fields such as absorption and aesthetics.
  • the titanium dioxide material product obtained in Example 5 was observed to be a powdery solid after being naturally dried at normal temperature and normal pressure, and the color was white.
  • the morphology of the titanium dioxide material product obtained in this example 5 is confirmed by scanning electron microscopy to be micro-spherical particles.
  • the micro-spherical particles are mainly composed of titanium dioxide nanorods.
  • the most probable distribution of the long axis of the nanorods is 100 nm to 200 nm.
  • the most probable distribution of TiO2 is 20 nm to 50 nm, indicating that the monodispersity of the nano-titanium dioxide obtained in this example is better.
  • X-ray diffraction confirmed that the main crystal phase of the nano-titania obtained in Example 5 was the rutile phase with better crystallinity.
  • a small amount of the nano-titanium dioxide product obtained in Example 5 is mixed with water, and under the condition of no stirring, it can spontaneously disperse to form an aqueous dispersion in which the nano-titanium dioxide particles are stably suspended.
  • the dispersion is colloidal dispersion and has obvious Tyndall phenomenon. , the nanoparticles in the dispersion are stably suspended, do not agglomerate and are not easy to settle, and no delamination occurs after being placed for 3 days.
  • the nano-titania obtained in Example 5 was dispersed in water to form an aqueous dispersion with a concentration of 5/10,000, and then the above-mentioned dispersion was taken in a 1 cm thick quartz cuvette to test the UV-Vis absorption curve of the sample.
  • the dispersion can completely absorb ultraviolet light less than 370 nanometers, and has strong ultraviolet absorption capacity. At the same time, it has good light transmittance in the visible light region greater than 400 nanometers, and the transmittance is greater than 40%, which expands the ultraviolet Additive applications in product fields such as absorption and aesthetics.
  • the dispersion liquid composite material is transparent, can be sprayed on the surface of transparent and beautiful materials, does not produce spots after drying, and does not affect the color of the surface of the material.
  • the dispersion liquid composite material is used to form a dense nano-titanium dioxide coating on the surface of the material, which is not easy to fall off and has excellent anti-ultraviolet ability. It also has antibacterial and self-cleaning functions.
  • nano-titanium dioxide product obtained in any one of Examples 1 to 5, and add it to 100 grams of water to form an aqueous dispersion; then slowly add 100 milliliters of zinc chloride aqueous solutions whose mass fraction is one percent in the above-mentioned dispersion; Finally, the above-mentioned mixed solution is reacted at 90 degrees Celsius for 6 hours under stirring conditions to obtain a nano-titanium oxide/zinc oxide composite material.
  • the composite material has excellent anti-ultraviolet function and photocatalytic function, and can be used in the field of substrate protection or self-cleaning antibacterial materials.
  • the product obtained in this comparative example contains a large number of large petal-shaped particles, as shown in SEM Figure 10; at the same time, the product cannot be dispersed in water to form a stable and transparent dispersion, and the dispersion is a suspending liquid, which will appear within a few hours.
  • the invention effect of the product of the embodiment cannot be obtained in terms of product morphology, dispersibility, transparency and other structures and properties.
  • the precursor in the product obtained in this comparative example is not completely converted into rutile-phase nano-titanium dioxide, and the product morphology contains a large number of large petal-shaped particles; at the same time, the product cannot be dispersed in water to form a stable and transparent dispersion, which is a suspension liquid. A precipitation layer will appear within hours.
  • the invention effect of the product of the embodiment cannot be obtained in terms of product morphology, dispersibility, transparency and other structures and properties.
  • any numerical value recited herein includes all values of the lower value and the upper value in one unit increments from the lower value to the upper value, where there is an interval of at least two units between any lower value and any higher value, i.e. Can.
  • the number of components or process variables eg, temperature, pressure, time, etc.
  • the intent is to illustrate that the The specification also explicitly lists values such as 15 to 85, 22 to 68, 43 to 51, 30 to 32, and the like.
  • one unit is appropriately considered to be 0.0001, 0.001, 0.01, 0.1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Environmental & Geological Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本申请提供一种具有单分散、悬浮稳定、透明的金红石相纳米二氧化钛粉体材料及其制备方法,其中,一种二氧化钛材料,所述二氧化钛材料表面呈酸性;所述二氧化钛材料由粒径小于200纳米的结晶性纳米二氧化钛粒子团聚体构成;所述二氧化钛粒子团聚体在不含添加剂或分散剂的纯水中可自发分散形成悬浮稳定的纳米二氧化钛粒子分散液。

Description

一种二氧化钛材料及其制备方法与应用
交叉参考相关引用
本申请要求2020年7月6日递交的申请号为202010642930.2、发明名称为“一种二氧化钛材料及其制备方法与应用”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请特别涉及一种二氧化钛材料及其制备方法与应用。
背景技术
纳米二氧化钛具有小的粒径、高的比表面积、优异的光催化活性、稳定的化学与热性能、超亲性等特殊效应,在空气治理、杀菌消毒、自清洁材料、防晒护肤品等领域具有不可替代的应用优势。二氧化钛在自然界中主要以金红石相、锐钛矿相和板钛矿相这三种形式存在。其中,金红石相的原子排列致密,结构最为稳定,相对密度和折射率也最大,具有很强的遮盖力和着色力,在防晒、护肤、油漆、造纸、陶瓷、橡胶、搪瓷、塑料和纺织等工业中广泛应用。
通常,纳米尺度的二氧化钛颗粒尺寸小,表面存在大量的缺陷,表面活性大,处于热力学不稳定状态,分散在液体介质中的纳米颗粒易凝结、团聚,发生聚沉,不能形成稳定的分散液,失去了纳米颗粒特有的性能,造成在实际应用中具有很大的缺陷。随着金红石相二氧化钛材料运用范围的不断扩大,对金红石相二氧化钛的分散性提出了更高的要求,分散越好,最终产品应用效果也越好。如在美容护肤产品领域,易团聚、分散性差的金红石相二氧化钛无法用来制造透明、自然肤色的护肤、防晒产品,会使肌肤呈现不自然的白色;在膜产品领域,则无法在透明薄膜制品、透明耐用面漆、精细陶瓷等方面广泛应用。
目前,有报道采用物理分散法和化学分散法制备稳定的纳米颗粒分散液。其中,物理分散法主要是利用外界作用力使纳米粒子分散,包括机械搅拌分散,超声波分散和高能处理法分散,物理分散法存在的缺点是,如果外界作用力停止,粒子会重新聚集。化学分散法则是利用表面化学方法,加入表面处理剂进行分散,如水相分散纳米颗粒的制备通常是通过水溶性表面活性剂或聚合物的诱导和约束实现,但颗粒表面覆盖了有机物等修饰分子,削减了分散性控制对于提升材料性能的贡献;同时,不同的应用体系也可能会 和表面修饰的分子起到不良的反作用效果,降低最终产品的应用性能。此外,上述处理方式获得的二氧化钛分散液产物都为液体悬浊液,存在大量纳米级颗粒团聚而成的大颗粒,在水中分散性差、不透明、易于沉降,仍旧造成运输成本高和在实际应用中具有很大的缺陷。
因此,为进一步提升金红石相二氧化钛纳米材料的应用领域和使用效果,亟需开发一种具有单分散功能的纳米二氧化钛粉体,这种粉体应具有的主要性能有:(1)粉体必须能稳定分散在液相介质中形成透明性高的纳米颗粒分散液,分散后的纳米粒子需长时间稳定且不团聚产生沉淀;(2)粉体在制备、处理和应用过程中无表面有机物修饰分子,可使纳米二氧化钛粉体的应用领域具有普适性。
当前,具有自分散功能、悬浮稳定的金红石相纳米二氧化钛粉体材料仍旧未被报道和开发出来。
发明内容
为提升二氧化钛纳米材料的应用领域和使用效果,本发明首次提供了一种具有单分散、悬浮稳定、透明的金红石相纳米二氧化钛粉体材料及其制备方法。
为达到上述目的,本申请采用如下技术方案:
一种二氧化钛材料,其中,所述二氧化钛材料表面呈酸性;
在所述二氧化钛材料中粒径小于200纳米的结晶性纳米二氧化钛粒子团聚体占90%以上的质量份数;优选的,所述二氧化钛材料由粒径小于200纳米的结晶性纳米二氧化钛粒子团聚体构成;
所述二氧化钛粒子团聚体在不含添加剂或分散剂的纯水中可自发分散形成悬浮稳定的纳米二氧化钛粒子分散液。
作为一种优选的实施方式,所述二氧化钛材料不含有机物。
作为一种优选的实施方式,所述粒径小于200纳米的结晶性纳米二氧化钛粒子为纳米棒状;所述纳米棒长轴的最可几分布为40纳米至160纳米;所述纳米棒直径的最可几分布为10纳米至50纳米。
作为一种优选的实施方式,所述结晶性纳米二氧化钛粒子的主要晶相为金红石相。
作为一种优选的实施方式,所述分散液在低浓度时呈胶体分散状态;所述低浓度为纳米二氧化钛粒子的质量分数小于百分之一。
作为一种优选的实施方式,所述自发分散为二氧化钛材料表面不经修饰的团聚体自发分散形成纳米二氧化钛粒子单颗粒的过程。
作为一种优选的实施方式,所述自发分散为直接投入水中不经过搅拌即可形成悬浮稳定的纳米二氧化钛粒子分散液。
一种如上所述的任意一种二氧化钛材料的制备方法,包括以下步骤:
(1)将四氯化钛与水混合形成混合液,低温搅拌形成沉淀;
(2)将步骤(1)中所述的沉淀进行分离,获得沉淀湿渣;
(3)将步骤(2)中所述的沉淀湿渣的含水率控制在百分之五至百分之五十,获得沉淀固体粉末;
(4)将步骤(3)中所述的沉淀固体粉末密封加热,获得纳米二氧化钛材料。
作为一种优选的实施方式,步骤(1)中所述四氯化钛与水混合形成混合液的过程为四氯化钛直接加入纯水中或纯水直接加入四氯化钛中形成。
作为一种优选的实施方式,步骤(1)中所述混合液为溶液状态或悬浊液状态;所述混合液中四氯化钛所占的质量百分比为千分之五至百分之三十。
作为一种优选的实施方式,步骤(1)中所述低温搅拌过程中无需恒温;所述低温搅拌的温度不高于100摄氏度;所述低温搅拌的时间为1小时至10天。
作为一种优选的实施方式,步骤(2)中所述沉淀湿渣为首次分离产物;所述沉淀湿渣无需提纯处理。
作为一种优选的实施方式,步骤(3)中所述沉淀固体粉末的含水率为百分之十至百分之三十。
作为一种优选的实施方式,步骤(4)中所述密封加热的温度为100摄氏度至200摄氏度;所述密封加热的时间为2小时至24小时。
作为一种优选的实施方式,步骤(4)中所述密封为将沉淀固体粉末放入体积固定的容器中密封;所述体积固定的容器在加热的情况下不发生体积变化。
一种二氧化钛材料作为添加剂在制备复合材料中的应用,包括以下步骤:
将上任意一项实施方式所述二氧化钛材料分散于溶剂中;
将所述分散后的纳米二氧化钛与其它材料结合形成复合材料。
作为一种优选的实施方式,所述结合的方式选自物理混合或化学反应的方式形成复合材料。
一种二氧化钛材料作为添加剂在制备复合材料中的应用,包括以下步骤:
将上任意一项实施方式所述二氧化钛材料直接加入水中形成纳米二氧化钛粒子稳定悬浮的水分散液;
将所述纳米二氧化钛粒子稳定悬浮的水分散液应用于空气净化、水质净化、抗菌消毒、自清洁、防晒护肤领域中的一种或者多种。
相比于现有报道的所有金红石相纳米二氧化钛粉体材料,本发明的优点在于:
1.本材料具有快速分散,操作简单的特性。本发明为固体金红石相纳米二氧化钛粉体,添加到水中10秒内即可形成透明的纳米胶体悬浊液,操作简单、现用现配,解决了现有金红石相纳米二氧化钛粉体无法均匀分散的技术难题。
2.本材料表面不含有机添加物,可适用领域广,与水混合可自发分散形成金红石相纳米二氧化钛粒子稳定悬浮的水分散液。分散液中纳米颗粒尺寸均匀,悬浮稳定,在光照下出现明显的丁达尔现象,放置长时间未发现分层。
3.本材料分散后的金红石相二氧化钛纳米粒子尺寸小、粒径均一,分散液呈淡蓝色透明状,拓展了材料在玻璃等透光、美观等材料的应用。
4.本技术方案操作步骤简单、价格低廉,利于大规模工业化推广应用。
参照后文的说明和附图,详细公开了本发明的特定实施方式,指明了本发明的原理可以被采用的方式。应该理解,本发明的实施方式在范围上并不因而受到限制。
针对一种实施方式描述和/或示出的特征可以以相同或类似的方式在一个或更多个其它实施方式中使用,与其它实施方式中的特征相组合,或替代其它实施方式中的特征。
应该强调,术语“包括/包含”在本文使用时指特征、整件、步骤或组件的存在,但并不排除一个或更多个其它特征、整件、步骤或组件的存在或附加。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为实施例1得到的二氧化钛材料的(a)低倍和(b)高倍扫描电镜图,主要为微米尺度以上的球形颗粒组成,球形颗粒由纳米棒状二氧化钛粒子团聚体构成;(c)为微米尺度球形颗粒产物经水分散后滴涂在硅片上,干燥后观察得到的扫描电镜图。
图2为实施例1制备得到的二氧化钛产物的X射线衍射图,主要晶相为金红石相。
图3为实施例1获得的二氧化钛材料与水混合,立即自发分散形成纳米二氧化钛粒子稳定悬浮的水分散液。
图4为实施例1得到的纳米二氧化钛产物加水后获得的质量分数为千分之一的水分 散液,具有稳定的胶体状分散状态,出现明显的丁达尔现象。
图5为实施例1得到的浓度为万分之五的纳米二氧化钛水分散液与P25水分散液的紫外-可见光吸收曲线。
图6为实施例1得到的纳米二氧化钛分散液滴涂于玻璃片上,干燥后得到的光学照片。
图7为实施例1得到的纳米二氧化钛纳米粒子在玻璃表面铺展均匀、致密。
图8为实施例2获得的产物经水分散后滴涂在硅片上,干燥后观察得到的扫描电镜图。
图9为实施例3获得的产物经水分散后滴涂在硅片上,干燥后观察得到的扫描电镜图。
图10为对比例1获得的产物的扫描电镜图,产物为花瓣状的大颗粒团聚体。
图11为对比例1得到的产物加水后获得的悬浊液经24小时后沉淀分层的结果图。
具体实施方式
为了使本技术领域的人员更好地理解本发明中的技术方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施方式的目的,不是旨在于限制本发明。本文所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
实施例1
室温搅拌下,将90毫升的去离子水缓慢加入到10毫升的四氯化钛中,添加完成后继续搅拌3天,获得含有白色沉淀的悬浊液;随后,将悬浊液中的白色沉淀经抽滤分离获得白色沉淀湿渣;接着,将白色沉淀湿渣放入烘箱中,于50摄氏度下鼓风干燥6小时,获得含水率约为百分之十五的沉淀固体粉末;最后,将上述沉淀固体粉末放入反应釜中密封,后放入烘箱中于160摄氏度下加热15小时,获得二氧化钛产物。
本实施例1获得的二氧化钛材料产物为粉末状固体,颜色为白色。
取少量实施例1获得粉末在导电胶上铺展薄薄一层,用于扫描电镜观察样品的形貌, 如图1所示。图1(a)可以看出,实施例1得到的二氧化钛材料主要为微米尺度以上的球形颗粒组成。放大扫描倍率,如图1(b)所示,微米尺度的颗粒由纳米级二氧化钛粒子团聚体构成,纳米级二氧化钛粒子为纳米棒形状,颗粒的长度小于100纳米,颗粒的均一度好,其中,纳米棒长轴的最可几分布为40纳米至80纳米,纳米棒直径的最可几分布为10纳米至20纳米,说明本实施例获得的纳米二氧化钛具有小的粒径,单分散性较好。取少量实施例1获得的产物分散于去离子水中后取少量滴在硅片上,自然晾干,将晾干后的硅片用导电胶粘附在扫描电镜的样品台上,用于扫描电镜观察样品的形貌,如图1(c)所示。从图1(c)可以进一步看出产物二氧化钛纳米粒子为纳米棒形状,颗粒的长度小于100纳米,颗粒的均一度好,其中,纳米棒长轴的最可几分布为40纳米至80纳米,纳米棒直径的最可几分布为10纳米至20纳米。图2是实施例1制备得到的二氧化钛产物的X射线衍射图,从图2可以看出本实施例1制得的纳米二氧化钛主要晶相为金红石相,具有较好的结晶性。
本实施例1获得的二氧化钛材料与水混合,可自发分散形成纳米二氧化钛粒子稳定悬浮的水分散液。如图3所示,取少量实施例1获得的二氧化钛材料放入玻璃瓶中,用移液枪往玻璃瓶中加入去离子水,可以看到,在没有搅拌的条件下,粉体也可立马分散在水中形成分散液。图4为实施例1得到的纳米二氧化钛产物加水后获得的质量分数为千分之一的水分散液,该分散液具有很好的单分散性,在水溶液中可以形成稳定的胶体状分散液,具有明显的丁达尔现象;纳米粒子悬浮稳定、不团聚也不易沉降,放置2个月以上溶液未发生分层现象。
将实施例1得到的纳米二氧化钛分散于水中,形成浓度为万分之五的水分散液,后取上述分散液体于1厘米厚的石英比色皿中,测试样品的紫外-可见光吸收曲线。如图5所示,同P25等其它纳米二氧化钛材料相比,本实施例1得的二氧化钛材料分散液在极低的浓度下,能完全吸收小于370纳米的紫外光,紫外线吸收能力强;同时在大于400纳米的可见光区域具有极高的透光性,透光度大于百分之八十。图6为实施例1得到的纳米二氧化钛分散液滴涂于玻璃片上,干燥后得到的光学照片,可以看出负载了二氧化钛纳米粒子的玻璃的透光性没有下降。进一步通过扫描电镜观察,如图7所示,玻璃片上负载的二氧化钛纳米粒子铺展均匀、致密,没有高低不平,也没有开裂。因此,本实施例获得的产品大大的拓展了二氧化钛材料在紫外吸收、美观等产品领域的应用。
综上,相比于现有报道的所有纳米二氧化钛粉体材料,本实施例的优点在于:(1)本材料具有快速分散,操作简单的特性。本发明为固体金红石相纳米二氧化钛粉体,添 加到水中10秒内即可形成透明的纳米胶体悬浊液,操作简单、现用现配,解决了现有金红石相纳米二氧化钛粉体无法均匀分散的技术难题。(2)本材料表面不含有机添加物,可适用领域广,与水混合可自发分散形成金红石相纳米二氧化钛粒子稳定悬浮的水分散液。分散液中纳米颗粒尺寸均匀,悬浮稳定,在光照下出现明显的丁达尔现象,放置长时间未发现分层。(3)本材料分散后的金红石相二氧化钛纳米粒子尺寸小、粒径均一,分散液呈淡蓝色透明状,拓展了材料在玻璃等透光、美观等材料的应用。(4)本技术方案操作步骤简单、价格低廉,利于大规模工业化推广应用。
实施例2
室温搅拌下,将95毫升的去离子水缓慢加入到5毫升的四氯化钛中,添加完成后升温至90摄氏度并继续搅拌2小时,获得含有白色沉淀的悬浊液;随后,将悬浊液中的白色沉淀经离心分离获得白色沉淀湿渣;接着,将白色沉淀湿渣放入烘箱中,于60摄氏度下鼓风干燥3小时,获得含水率约为百分之十的沉淀固体粉末;最后,将上述沉淀固体粉末放入反应釜中密封,后放入烘箱中于140摄氏度下加热20小时,获得二氧化钛产物。
本实施例2获得的二氧化钛材料产物外观为粉末状固体,颜色为白色。
本实施例2获得的二氧化钛材料产物的形貌经扫描电镜证实为微米球颗粒,微米球颗粒主要由二氧化钛纳米棒构成,纳米棒长轴的最可几分布为50纳米至100纳米,纳米棒直径的最可几分布为15纳米至25纳米,说明本实施例获得的纳米二氧化钛具有小的粒径,单分散性较好。取少量本实施例获得的产物分散于去离子水中后取少量滴在硅片上,自然晾干,将晾干后的硅片用导电胶粘附在扫描电镜的样品台上,用于扫描电镜观察样品的形貌,如图8所示。从图8可以进一步看出产物二氧化钛纳米粒子为纳米棒形状,颗粒的长度小于100纳米,颗粒的均一度好,其中,纳米棒长轴的最可几分布为50纳米至100纳米,纳米棒直径的最可几分布为15纳米至25纳米。X射线衍射证实本实施例2获得的纳米二氧化钛主要晶相为金红石相,具有较好的结晶性。
将少量本实施例2得到的纳米二氧化钛产物与水混合,在没有搅拌的条件下,可自发分散形成纳米二氧化钛粒子稳定悬浮的水分散液,该分散液为胶体状分散,具有明显的丁达尔现象,分散液中纳米粒子悬浮稳定、不团聚也不易沉降,放置1个月未发生分层现象。
将实施例2得到的纳米二氧化钛分散于水中,形成浓度为万分之五的水分散液,后取上述分散液体于1厘米厚的石英比色皿中,测试样品的紫外-可见光吸收曲线。该分散液可完全吸收小于370纳米的紫外光,紫外线吸收能力强,同时在大于400纳米的可见 光区域具有很好的透光性,透光度大于百分之七十,拓展了二氧化钛材料在紫外吸收、美观等产品领域的添加应用。将浓度为万分之五的纳米二氧化钛分散液铺展于硅片上,干燥后没有产生斑点,采用扫描电镜证实二氧化钛纳米粒子在硅片表面铺展均匀、致密,没有高低不平,也没有开裂,进一步证实本产品在太阳能电板等透光材料领域的应用优势。
实施例3
室温搅拌下,将15毫升的四氯化钛缓慢加入到80毫升的去离子水中,添加完成后继续搅拌10天,获得含有白色沉淀的悬浊液;随后,将悬浊液中的白色沉淀经离心分离获得白色沉淀湿渣;接着,将白色沉淀湿渣放入通风橱中,常温下通风干燥2小时,获得含水率约为百分之五十的沉淀固体粉末;最后,将上述沉淀固体粉末放入反应釜中密封,后放入烘箱中于180摄氏度下加热10小时,获得二氧化钛产物。
本实施例3获得的二氧化钛材料产物经常温常压自然干燥后后观察为粉末状固体,颜色为白色。
本实施例3获得的二氧化钛材料产物的形貌经扫描电镜证实为微米球颗粒,微米球颗粒主要由二氧化钛纳米棒构成,纳米棒长轴的最可几分布为80纳米至150纳米,纳米棒直径的最可几分布为15纳米至35纳米,说明本实施例获得的纳米二氧化钛具有小的粒径,单分散性较好。取少量本实施例获得的产物分散于去离子水中后取少量滴在硅片上,自然晾干,将晾干后的硅片用导电胶粘附在扫描电镜的样品台上,用于扫描电镜观察样品的形貌,如图9所示。从图9可以进一步看出产物二氧化钛纳米粒子为纳米棒形状,颗粒的均一度好,其中,纳米棒长轴的最可几分布为80纳米至150纳米,纳米棒直径的最可几分布为15纳米至35纳米。X射线衍射证实本实施例3获得的纳米二氧化钛主要晶相为金红石相,具有较好的结晶性。
将少量本实施例3得到的纳米二氧化钛产物与水混合,在没有搅拌的条件下,可自发分散形成纳米二氧化钛粒子稳定悬浮的水分散液,该分散液为胶体状分散,具有明显的丁达尔现象,分散液中纳米粒子悬浮稳定、不团聚也不易沉降,放置半个月未发生分层现象。
将实施例3得到的纳米二氧化钛分散于水中,形成浓度为万分之五的水分散液,后取上述分散液体于1厘米厚的石英比色皿中,测试样品的紫外-可见光吸收曲线。该分散液可完全吸收小于370纳米的紫外光,紫外线吸收能力强,同时在大于400纳米的可见光区域具有很好的透光性,透光度大于百分之五十,拓展了二氧化钛材料在紫外吸收、 美观等产品领域的添加应用。将浓度为万分之五的纳米二氧化钛分散液铺展于瓷砖表面上,干燥后没有产生斑点,采用扫描电镜证实二氧化钛纳米粒子在瓷砖表面铺展均匀、致密,没有高低不平,也没有开裂,进一步证实本产品在美观材料领域的应用优势。
实施例4
室温搅拌下,将1毫升的四氯化钛缓慢加入到99毫升的去离子水中,添加完成后升温至50摄氏度并继续搅拌8小时,获得含有白色沉淀的悬浊液;随后,将悬浊液中的白色沉淀经抽滤分离获得白色沉淀湿渣;接着,将白色沉淀湿渣放入通风橱中,常温下通风干燥12小时,获得含水率约为百分之三十的沉淀固体粉末;最后,将上述沉淀固体粉末放入反应釜中密封,后放入油浴中于120摄氏度下加热24小时,获得二氧化钛产物。
本实施例4获得的二氧化钛材料产物经常温常压自然干燥后后观察为粉末状固体,颜色为白色。
本实施例4获得的二氧化钛材料产物的形貌经扫描电镜证实为微米球颗粒,微米球颗粒主要由二氧化钛纳米棒构成,纳米棒长轴的最可几分布为30纳米至50纳米,纳米棒直径的最可几分布为10纳米至15纳米,说明本实施例获得的纳米二氧化钛具有小的粒径,单分散性较好。X射线衍射证实本实施例4获得的纳米二氧化钛主要晶相为结晶性较好的金红石相,同时含有少量的锐钛矿相。
将少量本实施例4得到的纳米二氧化钛产物与水混合,在没有搅拌的条件下,可自发分散形成纳米二氧化钛粒子稳定悬浮的水分散液,该分散液为胶体状分散,具有明显的丁达尔现象,分散液中纳米粒子悬浮稳定、不团聚也不易沉降,放置3个月未发生分层现象。
将实施例4得到的纳米二氧化钛分散于水中,形成浓度为万分之五的水分散液,后取上述分散液体于1厘米厚的石英比色皿中,测试样品的紫外-可见光吸收曲线。该分散液可完全吸收小于370纳米的紫外光,紫外线吸收能力强,同时在大于400纳米的可见光区域具有很好的透光性,透光度大于百分之九十,拓展了二氧化钛材料在紫外吸收、美观等产品领域的添加应用。将浓度为万分之五的纳米二氧化钛分散液铺展于聚氨酯油漆木的表面上,干燥后没有产生斑点;取一小块表面,采用扫描电镜观察,证实二氧化钛纳米粒子在漆表面铺展均匀、致密,没有高低不平,也没有开裂,进一步说明本产品在美观材料领域的应用优势。
实施例5
室温搅拌下,将25毫升的四氯化钛缓慢加入到75毫升的去离子水中,添加完成后 升温至40摄氏度并继续搅拌12小时,获得含有白色沉淀的悬浊液;随后,将悬浊液中的白色沉淀经抽滤分离获得白色沉淀湿渣;接着,将白色沉淀湿渣放入通风橱中,常温下通风干燥12小时,获得含水率约为百分之三十的沉淀固体粉末;最后,将上述沉淀固体粉末放入反应釜中密封,后放入微波炉中于160摄氏度下微波加热2小时,获得二氧化钛产物。
本实施例5获得的二氧化钛材料产物经常温常压自然干燥后后观察为粉末状固体,颜色为白色。
本实施例5获得的二氧化钛材料产物的形貌经扫描电镜证实为微米球颗粒,微米球颗粒主要由二氧化钛纳米棒构成,纳米棒长轴的最可几分布为100纳米至200纳米,纳米棒直径的最可几分布为20纳米至50纳米,说明本实施例获得的纳米二氧化钛单分散性较好。X射线衍射证实本实施例5获得的纳米二氧化钛主要晶相为结晶性较好的金红石相。
将少量本实施例5得到的纳米二氧化钛产物与水混合,在没有搅拌的条件下,可自发分散形成纳米二氧化钛粒子稳定悬浮的水分散液,该分散液为胶体状分散,具有明显的丁达尔现象,分散液中纳米粒子悬浮稳定、不团聚也不易沉降,放置3天未发生分层现象。
将实施例5得到的纳米二氧化钛分散于水中,形成浓度为万分之五的水分散液,后取上述分散液体于1厘米厚的石英比色皿中,测试样品的紫外-可见光吸收曲线。该分散液可完全吸收小于370纳米的紫外光,紫外线吸收能力强,同时在大于400纳米的可见光区域具有很好的透光性,透光度大于百分之四十,拓展了二氧化钛材料在紫外吸收、美观等产品领域的添加应用。
实施例6
取实施例1至5任一方式获得的纳米二氧化钛产物2克,加入到500克水中形成水分散液;后往上述分散液中缓慢加入500克质量分数为百分之二的聚乙烯吡咯烷酮水溶液,搅拌混合均匀,得到金红石相纳米二氧化钛/聚乙烯吡咯烷酮透明分散液复合材料。该分散液复合材料为透明状,可以喷涂在透明、美观材料表面,干燥后不产生斑点,不影响材料表面的颜色。该分散液复合材料使用在材料表面形成致密纳米二氧化钛涂层,不易脱落,具有优异的抗紫外线能力,作为基材保护剂用于保护材料免受紫外线的破坏;同时,形成的致密纳米二氧化钛涂层还具有抗菌、自清洁功能。
实施例7
取实施例1至5任一方式获得的纳米二氧化钛产物1克,加入到100克水中形成水分散液;后往上述分散液中缓慢加入100毫升质量分数为百分之一的氯化锌水溶液;最后,将上述混合液在搅拌条件下,于90摄氏度下反应6小时,获得纳米氧化钛/氧化锌复合材料。该复合材料具有优异的抗紫外线功能和光催化功能,可被用于基材保护或自清洁抗菌材料领域。
实施例8
取实施例1至5任一方式获得的纳米二氧化钛产物1克,加入到100克水中形成水分散液;将上述分散液喷涂墙体表面,干燥后不产生斑点,起到材料表面自清洁效果。
实施例9
取实施例1至5任一方式获得的纳米二氧化钛产物1克,加入到100克水中形成水分散液;将上述分散液添加到护肤品中,起到防晒的功效。
对比例1
室温搅拌下,将90毫升的去离子水缓慢加入到10毫升的四氯化钛中,添加完成后继续搅拌3天,获得含有白色沉淀的悬浊液;随后,将悬浊液中的白色沉淀经抽滤分离获得白色沉淀湿渣,湿渣中的含水率约为百分之八十;最后,将上述白色沉淀湿渣放入反应釜中密封,后放入烘箱中于160摄氏度下加热15小时,获得产物。本对比例获得产物中含有大量的花瓣状大颗粒,如扫描电镜图10所示;同时产品无法分散在水中形成稳定、透明的分散液,分散液为悬浊液体,几个小时内便会出现沉淀分层,如图11所示。本对比例在产物形貌、分散性、透明性等结构、性能上均无法获得实施例产物的发明效果。
对比例2
室温搅拌下,将90毫升的去离子水缓慢加入到10毫升的四氯化钛中,添加完成后继续搅拌3天,获得含有白色沉淀的悬浊液;随后,将悬浊液中的白色沉淀经抽滤分离获得白色沉淀湿渣;接着,将白色沉淀湿渣放入烘箱中,于100摄氏度下鼓风干燥6小时,获得含水率小于百分之五的沉淀固体粉末;最后,将上述沉淀固体粉末放入反应釜中密封,后放入烘箱中于160摄氏度下加热15小时,获得产物。本对比例获得产物中前驱物没有完全转化为金红石相纳米二氧化钛,产物形貌中含有大量的花瓣状大颗粒;同时产品无法分散在水中形成稳定、透明的分散液,为悬浊液体,几个小时内便会出现沉淀分层。本对比例在产物形貌、分散性、透明性等结构、性能上均无法获得实施例产物的发明效果。
本文引用的任何数值都包括从下限值到上限值之间以一个单位递增的下值和上值的所有值,在任何下值和任何更高值之间存在至少两个单位的间隔即可。举例来说,如果阐述了一个部件的数量或过程变量(例如温度、压力、时间等)的值是从1到90,优选从20到80,更优选从30到70,则目的是为了说明该说明书中也明确地列举了诸如15到85、22到68、43到51、30到32等值。对于小于1的值,适当地认为一个单位是0.0001、0.001、0.01、0.1。这些仅仅是想要明确表达的示例,可以认为在最低值和最高值之间列举的数值的所有可能组合都是以类似方式在该说明书明确地阐述了的。
除非另有说明,所有范围都包括端点以及端点之间的所有数字。与范围一起使用的“大约”或“近似”适合于该范围的两个端点。因而,“大约20到30”旨在覆盖“大约20到大约30”,至少包括指明的端点。
应该理解,以上描述是为了进行图示说明而不是为了进行限制。通过阅读上述描述,在所提供的示例之外的许多实施方式和许多应用对本领域技术人员来说都将是显而易见的。因此,本教导的范围不应该参照上述描述来确定,而是应该参照所附权利要求以及这些权利要求所拥有的等价物的全部范围来确定。出于全面之目的,所有文章和参考包括专利申请和公告的公开都通过参考结合在本文中。在前述权利要求中省略这里公开的主题的任何方面并不是为了放弃该主体内容,也不应该认为发明人没有将该主题考虑为所公开的发明主题的一部分。

Claims (18)

  1. 一种二氧化钛材料,其特征在于:
    所述二氧化钛材料表面呈酸性;
    在所述二氧化钛材料中粒径小于200纳米的结晶性纳米二氧化钛粒子团聚体占90%以上的质量份数;
    所述二氧化钛粒子团聚体在不含添加剂或分散剂的纯水中可自发分散形成悬浮稳定的纳米二氧化钛粒子分散液。
  2. 如权利要求1所述的一种二氧化钛材料,其特征在于:所述二氧化钛材料不含有机物。
  3. 如权利要求1所述的一种二氧化钛材料,其特征在于:所述粒径小于200纳米的结晶性纳米二氧化钛粒子为纳米棒状结构;所述纳米棒长轴的最可几分布为40纳米至160纳米;所述纳米棒直径的最可几分布为10纳米至50纳米。
  4. 如权利要求1所述的一种二氧化钛材料,其特征在于:所述结晶性纳米二氧化钛粒子的主要晶相为金红石相。
  5. 如权利要求1所述的一种二氧化钛材料,其特征在于:所述纳米二氧化钛粒子分散液在低浓度时呈胶体分散状态;所述低浓度为纳米二氧化钛粒子的质量分数小于百分之一。
  6. 如权利要求1所述的一种二氧化钛材料,其特征在于:所述自发分散为二氧化钛材料表面不经修饰的团聚体自发分散形成纳米二氧化钛粒子单颗粒的过程,和/或,所述自发分散为直接投入水中不经过搅拌即可形成悬浮稳定的纳米二氧化钛粒子分散液。
  7. 如权利要求1所述的一种二氧化钛材料,其特征在于:所述二氧化钛材料由粒径小于200纳米的结晶性纳米二氧化钛粒子团聚体构成。
  8. 一种如权利要求1-7任意一项所述二氧化钛材料的制备方法,其特征在于,包括以下步骤:
    (1)将四氯化钛与水混合形成混合液,低温搅拌形成沉淀;
    (2)将步骤(1)中所述的沉淀进行分离,获得沉淀湿渣;
    (3)将步骤(2)中所述的沉淀湿渣的含水率控制在百分之五至百分之五十,获得沉淀固体粉末;
    (4)将步骤(3)中所述的沉淀固体粉末密封加热,获得纳米二氧化钛材料。
  9. 如权利要求8所述的一种二氧化钛材料的制备方法,其特征在于:步骤(1)中所述将四氯化钛与水混合形成混合液的过程为将四氯化钛直接加入纯水中或者将纯水直接加入四氯化钛中形成。
  10. 如权利要求8所述的一种二氧化钛材料的制备方法,其特征在于:步骤(1)中所述混合液为溶液状态或悬浊液状态;所述混合液中四氯化钛所占的质量百分比为千分之五至百分之三十。
  11. 如权利要求8所述的一种二氧化钛材料的制备方法,其特征在于:步骤(1)中所述低温搅拌过程中无需恒温;所述低温搅拌的温度不高于100摄氏度;所述低温搅拌的时间为1小时至10天。
  12. 如权利要求8所述的一种二氧化钛材料的制备方法,其特征在于:步骤(2)中所述沉淀湿渣为首次分离产物;所述沉淀湿渣无需提纯处理。
  13. 如权利要求8所述的一种二氧化钛材料的制备方法,其特征在于:步骤(3)中所述沉淀固体粉末的含水率为百分之十至百分之三十。
  14. 如权利要求8所述的一种二氧化钛材料的制备方法,其特征在于:步骤(4)中所述密封加热的温度为100摄氏度至200摄氏度;所述密封加热的时间为2小时至24小时。
  15. 如权利要求8所述的一种二氧化钛材料的制备方法,其特征在于:步骤(4)中所述密封为将沉淀固体粉末放入体积固定的容器中密封;所述体积固定的容器在加热的情况下不发生体积变化。
  16. 一种二氧化钛材料作为添加剂在制备复合材料中的应用,其特征在于,包括以下步骤:
    将如权利要求1-15任意一项所述二氧化钛材料分散于溶剂中;
    将所述分散后的纳米二氧化钛与其它材料结合形成复合材料。
  17. 如权利要求16所述的一种二氧化钛材料的应用,其特征在于:所述结合的方式选自物理混合或化学反应的方式形成复合材料。
  18. 一种二氧化钛材料作为添加剂在制备复合材料中的应用,其特征在于,包括以下步骤:
    将如权利要求1-15任意一项所述二氧化钛材料直接加入水中形成纳米二氧化钛粒子稳定悬浮的水分散液;
    将所述纳米二氧化钛粒子稳定悬浮的水分散液应用于空气净化、水质净化、抗菌消 毒、自清洁、防晒护肤领域中的一种或者多种。
PCT/CN2021/104592 2020-07-06 2021-07-05 一种二氧化钛材料及其制备方法与应用 WO2022007762A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010642930.2 2020-07-06
CN202010642930 2020-07-06

Publications (1)

Publication Number Publication Date
WO2022007762A1 true WO2022007762A1 (zh) 2022-01-13

Family

ID=79187410

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/104592 WO2022007762A1 (zh) 2020-07-06 2021-07-05 一种二氧化钛材料及其制备方法与应用

Country Status (2)

Country Link
CN (1) CN113896232B (zh)
WO (1) WO2022007762A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114409965A (zh) * 2022-01-19 2022-04-29 山东国瓷功能材料股份有限公司 功能化二氧化钛填料、其制备方法及所得ptfe高频覆铜箔板

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060110319A1 (en) * 2004-11-19 2006-05-25 Sang-Il Seok Rutile titania nano sols and process for manufacturing the same
TWI324947B (en) * 2006-11-28 2010-05-21 Univ Feng Chia Method for preparing rutile tio2nanoparticles with photocatalytic activity
WO2014140840A2 (en) * 2013-03-15 2014-09-18 Cristal Inorganic Chemicals Switzerland Ltd Rutile titanium dioxide microspheres and ordered botryoidal shapes of same
CN104909404A (zh) * 2015-06-01 2015-09-16 天津市职业大学 一种稳定性纳米二氧化钛水溶胶及其制备方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100277164B1 (ko) * 1998-07-16 2001-01-15 장인순 저온균질침전법을이용한사염화티타늄수용액으로부터의결정성tio₂초미립분말의제조방법
CN102153138B (zh) * 2010-11-02 2013-07-24 中山大学 一种基于纳米棒和纳米颗粒组成的分等级二氧化钛微米球
EP2796414A1 (en) * 2013-04-26 2014-10-29 Università Del Salento - Dipartimento Di Ingegneria Dell'Innovazione TiO2 nanoparticles synthesis, under shape and size control by means of microwave reaction
CN105016382B (zh) * 2014-04-30 2017-01-11 中国科学院化学研究所 一种纯金红石型二氧化钛纳米棒的制备方法
CN105621479A (zh) * 2016-03-18 2016-06-01 常州大学 一种TiO2的绿色制备工艺
JP7224767B2 (ja) * 2018-03-29 2023-02-20 大阪瓦斯株式会社 チタニアナノ粒子及びそれを用いた紫外線遮蔽材
CN109650439B (zh) * 2019-01-29 2021-03-26 淄博泽辰光媒科技有限公司 大尺寸自组装二氧化钛微球及其制备方法和应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060110319A1 (en) * 2004-11-19 2006-05-25 Sang-Il Seok Rutile titania nano sols and process for manufacturing the same
TWI324947B (en) * 2006-11-28 2010-05-21 Univ Feng Chia Method for preparing rutile tio2nanoparticles with photocatalytic activity
WO2014140840A2 (en) * 2013-03-15 2014-09-18 Cristal Inorganic Chemicals Switzerland Ltd Rutile titanium dioxide microspheres and ordered botryoidal shapes of same
CN104909404A (zh) * 2015-06-01 2015-09-16 天津市职业大学 一种稳定性纳米二氧化钛水溶胶及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114409965A (zh) * 2022-01-19 2022-04-29 山东国瓷功能材料股份有限公司 功能化二氧化钛填料、其制备方法及所得ptfe高频覆铜箔板
CN114409965B (zh) * 2022-01-19 2024-02-09 山东国瓷功能材料股份有限公司 功能化二氧化钛填料、其制备方法及所得ptfe高频覆铜箔板

Also Published As

Publication number Publication date
CN113896232A (zh) 2022-01-07
CN113896232B (zh) 2023-09-22

Similar Documents

Publication Publication Date Title
Khashan et al. Novel method for synthesis of Fe3O4@ TiO2 core/shell nanoparticles
Awati et al. Photocatalytic decomposition of methylene blue using nanocrystalline anatase titania prepared by ultrasonic technique
Fang et al. Preparation of titania particles by thermal hydrolysis of TiCl4 in n-propanol solution
Long et al. Controlled TiO2 coating on hollow glass microspheres and their reflective thermal insulation properties
Fajzulin et al. Nanoparticulate inorganic UV absorbers: a review
JPH067670A (ja) 複合粒子、中空粒子とそれらの製造方法
Yu et al. Tubular Titania Nanostructures via Layer‐by‐Layer Self‐Assembly
Eshaghi et al. Preparation and characterization of TiO 2 sol–gel modified nanocomposite films
WO2022007763A1 (zh) 一种二氧化钛材料的制备方法
WO2022007756A1 (zh) 二氧化钛材料及其制备方法、分散性提升方法、应用
Gao et al. Fabrication of hierarchically structured rutile TiO2 nanorods on mica particles and their superhydrophilic coating without UV irridiation
WO2022007762A1 (zh) 一种二氧化钛材料及其制备方法与应用
Zhou et al. Bacteria-based controlled assembly of metal chalcogenide hollow nanostructures with enhanced light-harvesting and photocatalytic properties
Zhang et al. Effect of calcination temperature on the structure and properties of SiO2 microspheres/nano-TiO2 composites
Li et al. Surface modification of alumina nanoparticles and its application in tape casting of micro-nano green tape
Xu et al. Fabricating gold nanoparticle–oxide nanotube composite materials by a self-assembly method
Montazeri-Pour et al. Synthesis of single-phase anatase TiO2 nanoparticles by hydrothermal treatment with application potential for photoanode electrodes of dye sensitized solar cells
WO2022007764A1 (zh) 制备二氧化钛的方法以及提升二氧化钛分散性的方法
KR20100072864A (ko) 탄소나노튜브/텅스텐산화물 나노복합분말의 제조방법 및 그 방법에 의해 제조된 탄소나노튜브/텅스텐산화물 나노복합분말
CN110642290B (zh) 一种二氧化钛纳米材料及制备方法与应用
CN113896228B (zh) 一种二氧化钛材料及其制备方法、应用
WO2022007760A1 (zh) 一种纳米二氧化钛的制备方法
CN113896230B (zh) 一种提升二氧化钛分散性的方法
JP2005060532A (ja) 光触媒分散液及びその製造方法
Tan et al. RbxCsyWO3 based superhydrophobic transparent thermal insulation film for energy saving

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21837817

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21837817

Country of ref document: EP

Kind code of ref document: A1