WO2022262559A1 - 一种可用于发声装置的振膜及其制备方法、发声装置 - Google Patents
一种可用于发声装置的振膜及其制备方法、发声装置 Download PDFInfo
- Publication number
- WO2022262559A1 WO2022262559A1 PCT/CN2022/095825 CN2022095825W WO2022262559A1 WO 2022262559 A1 WO2022262559 A1 WO 2022262559A1 CN 2022095825 W CN2022095825 W CN 2022095825W WO 2022262559 A1 WO2022262559 A1 WO 2022262559A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- diaphragm
- polyester
- rubber
- based thermoplastic
- layer
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title abstract description 7
- 238000002360 preparation method Methods 0.000 title abstract description 4
- 229920000728 polyester Polymers 0.000 claims abstract description 96
- 239000000463 material Substances 0.000 claims abstract description 72
- 229920001971 elastomer Polymers 0.000 claims abstract description 63
- 239000005060 rubber Substances 0.000 claims abstract description 61
- 229920006342 thermoplastic vulcanizate Polymers 0.000 claims abstract description 53
- 229920001169 thermoplastic Polymers 0.000 claims abstract description 39
- 239000004416 thermosoftening plastic Substances 0.000 claims abstract description 39
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 36
- 239000004636 vulcanized rubber Substances 0.000 claims abstract description 14
- 238000004073 vulcanization Methods 0.000 claims abstract description 10
- 239000012752 auxiliary agent Substances 0.000 claims abstract description 6
- 239000010410 layer Substances 0.000 claims description 74
- 230000003712 anti-aging effect Effects 0.000 claims description 23
- 229920006346 thermoplastic polyester elastomer Polymers 0.000 claims description 16
- 239000012528 membrane Substances 0.000 claims description 15
- 239000000314 lubricant Substances 0.000 claims description 13
- 239000004014 plasticizer Substances 0.000 claims description 13
- 239000002344 surface layer Substances 0.000 claims description 13
- 239000000945 filler Substances 0.000 claims description 11
- -1 polybutylene terephthalate Polymers 0.000 claims description 11
- 239000002131 composite material Substances 0.000 claims description 10
- 238000003860 storage Methods 0.000 claims description 9
- 229920002725 thermoplastic elastomer Polymers 0.000 claims description 8
- 239000003292 glue Substances 0.000 claims description 7
- KUDUQBURMYMBIJ-UHFFFAOYSA-N 2-prop-2-enoyloxyethyl prop-2-enoate Chemical compound C=CC(=O)OCCOC(=O)C=C KUDUQBURMYMBIJ-UHFFFAOYSA-N 0.000 claims description 6
- 229920000459 Nitrile rubber Polymers 0.000 claims description 6
- 238000002844 melting Methods 0.000 claims description 6
- 230000008018 melting Effects 0.000 claims description 6
- XMNIXWIUMCBBBL-UHFFFAOYSA-N 2-(2-phenylpropan-2-ylperoxy)propan-2-ylbenzene Chemical compound C=1C=CC=CC=1C(C)(C)OOC(C)(C)C1=CC=CC=C1 XMNIXWIUMCBBBL-UHFFFAOYSA-N 0.000 claims description 5
- 229920000747 poly(lactic acid) Polymers 0.000 claims description 3
- 229920000058 polyacrylate Polymers 0.000 claims description 3
- 229920001707 polybutylene terephthalate Polymers 0.000 claims description 3
- 229920000515 polycarbonate Polymers 0.000 claims description 3
- 239000004417 polycarbonate Substances 0.000 claims description 3
- 239000004626 polylactic acid Substances 0.000 claims description 3
- 229920003225 polyurethane elastomer Polymers 0.000 claims description 3
- 229920002379 silicone rubber Polymers 0.000 claims description 3
- 239000004945 silicone rubber Substances 0.000 claims description 3
- 229920000800 acrylic rubber Polymers 0.000 claims description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 claims description 2
- 239000005020 polyethylene terephthalate Substances 0.000 claims description 2
- 238000013016 damping Methods 0.000 abstract description 15
- 230000002195 synergetic effect Effects 0.000 abstract description 3
- 239000000047 product Substances 0.000 description 20
- 230000000052 comparative effect Effects 0.000 description 14
- 238000000034 method Methods 0.000 description 12
- 238000012360 testing method Methods 0.000 description 11
- 230000007423 decrease Effects 0.000 description 9
- 230000008569 process Effects 0.000 description 7
- 239000003431 cross linking reagent Substances 0.000 description 5
- 230000006872 improvement Effects 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 239000012790 adhesive layer Substances 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 230000008859 change Effects 0.000 description 3
- 229920006351 engineering plastic Polymers 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 3
- 230000007774 longterm Effects 0.000 description 3
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 2
- 239000004594 Masterbatch (MB) Substances 0.000 description 2
- 239000004696 Poly ether ether ketone Substances 0.000 description 2
- 239000004820 Pressure-sensitive adhesive Substances 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- JUPQTSLXMOCDHR-UHFFFAOYSA-N benzene-1,4-diol;bis(4-fluorophenyl)methanone Chemical compound OC1=CC=C(O)C=C1.C1=CC(F)=CC=C1C(=O)C1=CC=C(F)C=C1 JUPQTSLXMOCDHR-UHFFFAOYSA-N 0.000 description 2
- 150000001558 benzoic acid derivatives Chemical class 0.000 description 2
- 238000004132 cross linking Methods 0.000 description 2
- LSXWFXONGKSEMY-UHFFFAOYSA-N di-tert-butyl peroxide Chemical compound CC(C)(C)OOC(C)(C)C LSXWFXONGKSEMY-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000000806 elastomer Substances 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- 238000001125 extrusion Methods 0.000 description 2
- 238000003475 lamination Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 150000002978 peroxides Chemical class 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 230000010287 polarization Effects 0.000 description 2
- 229920002530 polyetherether ketone Polymers 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- NIPNSKYNPDTRPC-UHFFFAOYSA-N N-[2-oxo-2-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 NIPNSKYNPDTRPC-UHFFFAOYSA-N 0.000 description 1
- REYJJPSVUYRZGE-UHFFFAOYSA-N Octadecylamine Chemical compound CCCCCCCCCCCCCCCCCCN REYJJPSVUYRZGE-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 229920000954 Polyglycolide Polymers 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- DAKWPKUUDNSNPN-UHFFFAOYSA-N Trimethylolpropane triacrylate Chemical compound C=CC(=O)OCC(CC)(COC(=O)C=C)COC(=O)C=C DAKWPKUUDNSNPN-UHFFFAOYSA-N 0.000 description 1
- OKKRPWIIYQTPQF-UHFFFAOYSA-N Trimethylolpropane trimethacrylate Chemical compound CC(=C)C(=O)OCC(CC)(COC(=O)C(C)=C)COC(=O)C(C)=C OKKRPWIIYQTPQF-UHFFFAOYSA-N 0.000 description 1
- 150000008065 acid anhydrides Chemical class 0.000 description 1
- 239000003522 acrylic cement Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000003490 calendering Methods 0.000 description 1
- DKVNPHBNOWQYFE-UHFFFAOYSA-N carbamodithioic acid Chemical compound NC(S)=S DKVNPHBNOWQYFE-UHFFFAOYSA-N 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 235000019241 carbon black Nutrition 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 150000008280 chlorinated hydrocarbons Chemical class 0.000 description 1
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical class OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- XLJMAIOERFSOGZ-UHFFFAOYSA-M cyanate Chemical compound [O-]C#N XLJMAIOERFSOGZ-UHFFFAOYSA-M 0.000 description 1
- 150000007973 cyanuric acids Chemical class 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- FPAFDBFIGPHWGO-UHFFFAOYSA-N dioxosilane;oxomagnesium;hydrate Chemical compound O.[Mg]=O.[Mg]=O.[Mg]=O.O=[Si]=O.O=[Si]=O.O=[Si]=O.O=[Si]=O FPAFDBFIGPHWGO-UHFFFAOYSA-N 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 239000012990 dithiocarbamate Substances 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 125000004185 ester group Chemical group 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000012948 isocyanate Substances 0.000 description 1
- 150000002513 isocyanates Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- XNGIFLGASWRNHJ-UHFFFAOYSA-N o-dicarboxybenzene Natural products OC(=O)C1=CC=CC=C1C(O)=O XNGIFLGASWRNHJ-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000011056 performance test Methods 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 150000003022 phthalic acids Chemical class 0.000 description 1
- 229920000768 polyamine Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 239000004633 polyglycolic acid Substances 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 229940088417 precipitated calcium carbonate Drugs 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 238000003856 thermoforming Methods 0.000 description 1
- XOOUIPVCVHRTMJ-UHFFFAOYSA-L zinc stearate Chemical compound [Zn+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O XOOUIPVCVHRTMJ-UHFFFAOYSA-L 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R7/00—Diaphragms for electromechanical transducers; Cones
- H04R7/02—Diaphragms for electromechanical transducers; Cones characterised by the construction
- H04R7/04—Plane diaphragms
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R31/00—Apparatus or processes specially adapted for the manufacture of transducers or diaphragms therefor
- H04R31/003—Apparatus or processes specially adapted for the manufacture of transducers or diaphragms therefor for diaphragms or their outer suspension
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R7/00—Diaphragms for electromechanical transducers; Cones
- H04R7/02—Diaphragms for electromechanical transducers; Cones characterised by the construction
- H04R7/04—Plane diaphragms
- H04R7/06—Plane diaphragms comprising a plurality of sections or layers
- H04R7/10—Plane diaphragms comprising a plurality of sections or layers comprising superposed layers in contact
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R2231/00—Details of apparatus or processes specially adapted for the manufacture of transducers or diaphragms therefor covered by H04R31/00, not provided for in its subgroups
- H04R2231/001—Moulding aspects of diaphragm or surround
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R2307/00—Details of diaphragms or cones for electromechanical transducers, their suspension or their manufacture covered by H04R7/00 or H04R31/003, not provided for in any of its subgroups
- H04R2307/025—Diaphragms comprising polymeric materials
Definitions
- the invention relates to the technical field of electroacoustics, in particular to a vibrating membrane that can be used for a sounding device, a preparation method thereof, and a sounding device.
- Existing speaker diaphragm materials mainly include engineering plastics such as PEEK and PAR or elastomer materials such as TPU and TPEE.
- engineering plastics such as PEEK and PAR have good temperature resistance, their material resilience is poor, and the product is prone to film folding, which cannot play a waterproof role.
- elastomer materials such as TPU and TPEE have poor high temperature resistance. Therefore, the diaphragm materials commonly used in the industry currently have deficiencies, and rubber is considered to be one of the materials that are expected to improve the performance of diaphragm materials.
- thermoplastic elastomer material is mixed with rubber to make the insulating protective layer of cables, but because it is used as an insulating material, more attention is paid to the optimization of insulation, flame retardancy and other properties, without improving damping, minimum resonance frequency, etc. Acoustic performance, making it unusable as a diaphragm.
- the main purpose of the present invention is to provide a vibrating membrane that can be used for a sounding device, which adopts a polyester-based thermoplastic vulcanizate layer, and the material utilizes the synergistic effect of thermoplastic polyester material and rubber material to obtain good acoustic performance, taking into account excellent stiffness , rebound, damping, thermal stability, etc., and can be thermoplastically formed.
- Another object of the present invention is to provide a method for preparing the above-mentioned diaphragm, which only involves conventional procedures, has a simple process, and does not have harsh process conditions.
- the third aspect of the present invention aims to provide a sound generating device composed of the above diaphragm.
- the present invention provides the following technical solutions.
- the diaphragm for a sounding device according to the embodiment of the first aspect of the present invention, includes at least one polyester-based thermoplastic vulcanizate layer, and the polyester-based thermoplastic vulcanizate is composed of thermoplastic polyester material, rubber, vulcanizing agent and The additive is made by dynamic vulcanization;
- the thickness of the diaphragm is 25-300 ⁇ m, and the loss factor of the polyester-based thermoplastic vulcanizate is 0.05-0.25 at 23°C.
- the weight ratio of the thermoplastic polyester material to the rubber in the polyester-based thermoplastic vulcanizate is 10:1 ⁇ 1:1.
- the thermoplastic polyester material has a melting point of 160°C to 250°C.
- the rubber includes one or more of nitrile rubber, hydrogenated nitrile rubber, silicone rubber, acrylate rubber, ethylene-acrylate rubber, and polyurethane rubber; and/or,
- the thermoplastic polyester material includes one or more of thermoplastic polyester elastomer, polylactic acid, polycarbonate, polybutylene terephthalate, and polyethylene terephthalate.
- the loss factor of the polyester-based thermoplastic vulcanizate at 23°C is 0.08-0.21; and/or, the storage modulus of the polyester-based thermoplastic vulcanizate at 23°C is ⁇ 300Mpa.
- the storage modulus of the polyester-based thermoplastic vulcanizate at 23°C is 9.7-45Mpa.
- the thickness of the diaphragm is 30-200 ⁇ m.
- the auxiliary agent includes at least one of an anti-aging agent, a plasticizer, a filler, and a lubricant; and/or, the vulcanizing agent includes dicumyl peroxide.
- the diaphragm comprises only one layer of the polyester-based thermoplastic vulcanizate.
- the diaphragm is a multilayer stacked composite layer structure, which includes an intermediate layer and two surface layers, the intermediate layer is an adhesive layer and is arranged between the two surface layers, and the two Said skin layers are independently selected from thermoplastic elastomer layers or said polyester-based thermoplastic vulcanizate layers.
- the diaphragm is a multilayer stacked composite structure
- the diaphragm includes the polyester-based thermoplastic vulcanizate layer and a rubber layer
- the polyester-based thermoplastic vulcanizate layer and the rubber layer Alternately stacked
- the polyester-based thermoplastic vulcanizate layer is the surface layer.
- the sound generating device includes a vibration system and a magnetic circuit system matched with the vibration system, the vibration system includes a diaphragm and a voice coil combined on one side of the diaphragm, the The magnetic circuit system drives the voice coil to vibrate to drive the diaphragm to produce sound, and the diaphragm is the diaphragm according to the above-mentioned embodiment of the present invention.
- the sound generating device includes a housing, a magnetic circuit system and a vibration system disposed in the housing, the vibration system includes a voice coil, a first diaphragm and a second diaphragm, the The top of the voice coil is connected to the first diaphragm, the magnetic circuit system drives the voice coil to vibrate to drive the first diaphragm to produce sound, and the two ends of the second diaphragm are respectively connected to the housing Connected to the bottom of the voice coil, the second diaphragm is the diaphragm according to the above embodiment of the present invention.
- the present invention adopts the polyester-based thermoplastic vulcanized rubber layer to make the vibrating membrane, and the polyester-based thermoplastic vulcanized rubber contains both thermoplastic polyester material and rubber material with cross-network structure.
- Thermoplastic polyester materials provide strength, resilience, and thermoplasticity for the entire system, and rubber materials provide heat-resistant stability, resilience, and damping for the entire system. Under the premise of damping and thermal stability, it can also be thermoplastically formed, which greatly improves the comprehensive performance of the diaphragm.
- Fig. 1 is the change curve of storage modulus under the different temperatures of embodiment and comparative example
- Fig. 2 is the structural representation of the loudspeaker provided by the present invention.
- Fig. 3 is a structural schematic diagram of the sounding vibration unit in Fig. 2;
- Fig. 4 is the total harmonic distortion curve of the embodiment and the comparative example.
- the invention provides a vibrating membrane that can be used for a sounding device, comprising at least one polyester-based thermoplastic vulcanizate layer, and the polyester-based thermoplastic vulcanizate is made of thermoplastic polyester material, rubber, vulcanizing agent and auxiliary agent through dynamic vulcanization ;
- the thickness of the diaphragm is 25-300 ⁇ m, and the loss factor of the polyester-based thermoplastic vulcanizate is 0.05-0.25 at 23°C.
- the invention utilizes a polyester-based thermoplastic vulcanized rubber layer to make a vibrating membrane, and the polyester-based thermoplastic vulcanized rubber contains both thermoplastic polyester material and rubber material with cross-network structure.
- the thermoplastic polyester material provides strength, resilience, and thermoplasticity for the entire system, and the rubber material provides heat resistance stability, resilience, and damping for the entire system.
- the synergistic effect of the two can obtain excellent acoustic performance, especially stiffness, rebound, damping, thermal stability, etc., and the combination can be thermoplastically molded.
- the present invention can achieve a better balance among storage modulus, loss factor and minimum resonance frequency (F0), and the storage mode can be controlled in a wider temperature range
- the stability of F0 is improved, and the stability of F0 in a wider voltage range is also improved, and it is less likely to be distorted.
- the diaphragm thickness of the present invention can be arbitrarily selected within the range of 25-300 ⁇ m, and can be adjusted according to F0 requirements, such as 25 ⁇ m, 50 ⁇ m, 100 ⁇ m, 150 ⁇ m, 200 ⁇ m, 250 ⁇ m, 300 ⁇ m, etc. Because the strength of vulcanized rubber is lower than that of pure elastic body, in order to meet the stiffness required for diaphragm vibration, a certain thickness needs to be matched. However, if the thickness is too large, the vibration space of the diaphragm will be lost, and if the thickness of the diaphragm is too large, the weight of the diaphragm will be increased, thereby reducing the sensitivity of the diaphragm. More preferably, the thickness of the diaphragm can be 30-200 ⁇ m. At this time The material can well combine the stiffness, resilience and damping properties required by Gu Gu membrane vibration.
- the loss factor of the polyester-based thermoplastic vulcanizate in the present invention is the data obtained by using DMA temperature scanning mode, 1Hz vibration frequency, and 3°C/min heating rate, and it can be matched with the thickness of the diaphragm, and can be arbitrarily within the range of 0.05 to 0.25. Choose from, for example, 0.05, 0.1, 0.15, 0.2, 0.25, etc. Generally, the higher the loss factor, the better the damping property of the material.
- the improvement of the damping property of the diaphragm material is beneficial to reduce the polarization during the vibration process, reduce product distortion, and improve the listening yield. However, the improvement of material damping will reduce the instantaneous response of the diaphragm, and the sound quality will also be reduced.
- the loss factor is more preferably 0.08-0.21, such as 0.08, 0.09, 0.10, 0.11, 0.12 , 0.14, 0.15, 0.16, 0.17, 0.18, 0.19, 0.2, 0.21, etc.
- the amount of thermoplastic polyester material is preferably not less than that of rubber, and the mass ratio of thermoplastic polyester material to rubber is generally 10:1 ⁇ 1:1, such as 10:1, 9:1, 8:1, 7:1, 6:1, 5:1, 4:1, 3:1, 2:1, 1:1, etc.
- the content of thermoplastic polyester material is further increased, the proportion of rubber phase in the whole system is reduced, and the network structure required to improve temperature resistance cannot be formed well, and the thermal stability of the material is not significantly improved.
- the thermoplasticity of the material decreases, and the dispersed particles of rubber increase, and the overall performance and film-forming properties of the material decrease.
- the modulus of the polyester-based thermoplastic vulcanizate at 23°C is usually ⁇ 300MPa, such as 250MPa, 200MPa, 150MPa, 100MPa, 50MPa, 10MPa, 5Mpa, etc., preferably ⁇ 150MPa, More preferably 9.7-45Mpa.
- the melting point of the selected thermoplastic polyester material in the present invention is usually between 160 and 250°C, for example, it can be 160°C, 170°C, 180°C, 190°C, 200°C, 210°C , 220°C, 230°C, 240°C, etc. If the melting point is lower than 160°C, it cannot meet the long-term vibration and temperature resistance requirements of the product. If the melting point is too high, the dispersibility with rubber dynamic vulcanization will be poor, and the overall material performance will be reduced.
- the thermoplastic polyester material may include one or more of thermoplastic polyester elastomer, polylactic acid, polycarbonate, polyglycolic acid, polyhydroxyalkanoic acid, and polybutylene terephthalate. With the improvement of sound quality and waterproof requirements, the better the elasticity and flexibility of the speaker diaphragm, the better the product performance.
- the thermoplastic polyester material is preferably thermoplastic polyester elastomer material (TPEE).
- the rubber in the present invention may include one or more of nitrile rubber, hydrogenated nitrile rubber, silicone rubber, acrylic rubber, ethylene-acrylate rubber, and polyurethane rubber. Considering the compatibility of the rubber with the thermoplastic polyester material, at least one of ester group-containing acrylate rubber and ethylene-acrylate rubber is preferred.
- the auxiliary agent in the present invention includes at least one of anti-aging agent, plasticizer, filler, lubricant, to improve the overall performance of the material or improve the ease of processing
- the specific composition can be anti-aging agent, plasticizer, filler Or a lubricant, or a combination of an anti-aging agent and a plasticizer, or a combination of an anti-aging agent and a filler, or a combination of an anti-aging agent and a lubricant, or a combination of four types of an anti-aging agent, a plasticizer, a filler, and a lubricant.
- the vulcanizing agent of the present invention includes trimercapto-s-triazine vulcanization system, polyamine, organic acid, ammonium salt, organic acid ammonium salt, dithiocarbamate, imidazole/acid anhydride, isocyanuric acid/quaternary salt, sulfur/ Accelerator, at least one of peroxide, preferably peroxide, such as dicumyl peroxide (DCP), di-tert-butyl peroxide (DTBP) and the like.
- DCP dicumyl peroxide
- DTBP di-tert-butyl peroxide
- the raw rubber is 100 parts by mass, and the amount of vulcanizing agent added is preferably 0.5-5 parts by mass, such as 0.5 parts, 1 part, 1.5 parts, 2 parts, 2.5 parts, 3 parts, 3.5 parts, 4 parts, 4.5 parts , 5 parts, etc., more preferably 1 part.
- the cross-linking agent in this mass part can ensure that the raw rubber rubber is fully cross-linked and avoid the loss of toughness of the material caused by excessive cross-linking.
- the co-crosslinking agent includes trimethylolpropane triacrylate, trimethylolpropane trimethacrylate, N,N ⁇ -m-phenylene bismaleimide, diallyl phthalic acid At least one of ester, triallyl isocyanate and triallyl cyanate, preferably N,N ⁇ -m-phenylene bismaleimide.
- the content of the auxiliary crosslinking agent is 0.1-20 parts by mass, such as 0.5 parts, 1 part, 2 parts, 3 parts, 4 parts, 5 parts, 7 parts, 10 parts, 13 parts, 15 parts, 20 parts, etc., more preferably 2 parts.
- the cross-linking agent in this ratio range can have a good cross-linking effect, so that the diaphragm has sufficient hardness and rebound performance.
- the anti-aging agent includes at least one of anti-aging agent N-445, anti-aging agent 246, anti-aging agent 4010, anti-aging agent SP, anti-aging agent RD, anti-aging agent ODA, anti-aging agent OD, anti-aging agent WH-02, preferably anti-aging agent WH -02.
- the added amount of anti-aging agent is preferably 0.5-10 parts by mass, such as 0.5 parts, 1 part, 2 parts, 3 parts, 4 parts, 5 parts, 7 parts, 10 parts, etc., More preferably 3 parts.
- the addition of anti-aging agent can make the vibrating film material still have good mechanical properties in long-term high temperature or high temperature and humid environment, and will not reduce the material performance due to excessive addition.
- the plasticizer includes aliphatic dibasic acid esters, phthalic acid esters, benzoic acid esters, benzoic acid esters, polyol esters, chlorinated hydrocarbons, epoxy, citric acid esters, At least one of polyesters, preferably polyesters.
- the amount of plasticizer added is preferably 1-13 parts by mass, such as 1 part, 2 parts, 3 parts, 4 parts, 5 parts, 7 parts, 10 parts, 13 parts, etc. , more preferably 10 parts.
- Adding a plasticizer reduces the force between rubber molecules, thereby reducing the glass transition temperature of the rubber, making the rubber plastic and fluid, and facilitating molding operations such as calendering and extrusion.
- the lubricant includes at least one of stearic acid and stearate, stearylamine and alkyl phosphate, ⁇ -octadecyl- ⁇ -hydroxy polyoxyethylene phosphate, preferably stearic acid Salt.
- the mass parts of the raw rubber is 100 parts
- the mass parts of the lubricant is 0.5-5 parts, such as 0.5 parts, 1 part, 2 parts, 3 parts, 4 parts, 5 parts, etc., more preferably 1.5 parts .
- the addition of lubricant can reduce the bonding between the material and the mold during the forming process of the diaphragm, and it is easy to release the mold. If the amount added is too large, the lubricant will precipitate on the surface after long-term use, which will affect the bonding of the diaphragm and other components.
- the filler includes at least one of carbon black, silicon dioxide, talcum powder, precipitated calcium carbonate and barium sulfate.
- the above materials are added to raw rubber in the form of powder.
- the amount of filler added is preferably 5 to 30 parts, such as 5 parts, 7 parts, 10 parts, 13 parts, 15 parts, 20 parts, 25 parts, 30 parts, etc., more preferably 10 servings. This ratio range makes the diaphragm have good hardness, tensile strength and rebound performance.
- polyester-based thermoplastic vulcanizate can well combine the modulus and resilience required for the vibration of the diaphragm, and has relatively high damping properties, it can be used to make a single-layer diaphragm or a laminated diaphragm.
- Composite film of other layers such as glue layer, plastic layer, thermoplastic elastomer layer, etc.).
- the vibrating membrane of the present invention is a composite membrane, it comprises an intermediate layer and two surface layers, the intermediate layer is an adhesive layer and is arranged between the two surface layers, and the two surface layers are independently selected from thermoplastic elastomer layers Or the polyester-based thermoplastic vulcanizate layer.
- both upper and lower surface layers may be polyester-based thermoplastic vulcanizate layers, or both upper and lower surface layers may be thermoplastic elastomer layers, or one of the surface layers may be a polyester-based thermoplastic vulcanizate layer and the other surface layer may be a thermoplastic elastomer layer.
- the adhesive layer in the composite film may be a typical adhesive in the field, such as one or more of a silicone layer and an acrylic adhesive layer, preferably a pressure-sensitive adhesive film.
- the pressure-sensitive adhesive film is easy to use, and the lamination between multiple layers can be realized through a simple lamination process.
- the vibrating membrane of the present invention can also be such a composite structure: comprising the polyester-based thermoplastic vulcanizate layer and the rubber layer, the polyester-based thermoplastic vulcanizate layer and the rubber layer are alternately stacked, and the polyester-based thermoplastic vulcanizate layer for the surface layer.
- the diaphragm can be a three-layer composite structure, which includes two layers of polyester-based thermoplastic vulcanizate and a layer of glue, and the glue layer is arranged between the two layers of polyester-based thermoplastic vulcanizate to bond the two layers of polyester-based thermoplastic vulcanizate.
- the diaphragm is formed into a structure of polyester-based thermoplastic vulcanizate layer + adhesive layer + polyester-based thermoplastic vulcanizate layer.
- the diaphragm can also be a five-layer composite structure, which includes three polyester-based thermoplastic vulcanizate layers and two rubber layers, and the two outer surfaces of each rubber layer are polyester-based thermoplastic vulcanizate layers.
- the diaphragm is formed into a structure of polyester-based thermoplastic vulcanized rubber layer+glue layer+polyester-based thermoplastic vulcanized rubber layer+glue layer+polyester-based thermoplastic vulcanized rubber layer.
- polyester-based thermoplastic vulcanizate For the preparation method of polyester-based thermoplastic vulcanizate in the present invention, it only involves conventional procedures, including: blending other raw materials except vulcanizing agent, then adding vulcanizing agent for dynamic vulcanization, extrusion, to obtain polyester-based thermoplastic vulcanizate, Finally, it is optionally laminated with other layers to form the diaphragm.
- the process conditions of dynamic vulcanization have a certain influence on the performance of polyester-based thermoplastic vulcanizate.
- the preferred process is: first prepare rubber masterbatch (weigh various materials according to the calculated formula, and then add anti-aging agent to raw rubber , plasticizers, fillers and lubricants, etc.), and then add rubber masterbatch to the thermoplastic polyester material in the molten state for mixing. agent, and kneaded for 3 to 10 minutes to prepare dynamic vulcanized rubber.
- the vibrating membrane provided by the present invention can form a sounding device of any structure, such as the following typical sounding device: comprising a vibrating system and a magnetic circuit system matched with the vibrating system, the vibrating system includes a vibrating membrane and a Voice coil on one side of the membrane.
- the voice coil can vibrate up and down under the action of the magnetic field force of the magnetic circuit system after the voice coil is energized to drive the vibration of the diaphragm, and the sound can be produced when the diaphragm vibrates.
- the sound generating device may include a housing and a magnetic circuit system and a vibration system disposed in the housing.
- the vibration system may include a voice coil, a first diaphragm and a second diaphragm, and the top of the voice coil Connected with the first diaphragm, the magnetic circuit system drives the voice coil to vibrate to drive the first diaphragm to produce sound, and the two ends of the second diaphragm are respectively connected with the shell and the bottom of the voice coil.
- the second diaphragm may be the diaphragm according to the foregoing embodiments of the present invention.
- the first diaphragm can be used to vibrate and produce sound
- the second diaphragm can be used to balance the vibration of the voice coil.
- the voice coil can vibrate up and down under the action of the magnetic field force of the magnetic circuit system after the voice coil is energized to drive the first diaphragm to vibrate, and the first diaphragm can vibrate to produce sound.
- the second diaphragm can also vibrate up and down with the voice coil. Since the two ends of the second diaphragm are respectively connected to the bottom of the shell and the voice coil, the second diaphragm can balance the vibration of the voice coil and prevent the polarization of the voice coil. Therefore, the sounding effect of the sounding device can be improved.
- first diaphragm and the second diaphragm can use the diaphragm of the above-mentioned embodiment of the present invention at the same time, or one of the first diaphragm and the second diaphragm can adopt the diaphragm of the above-mentioned embodiment of the present invention.
- the diaphragm which is not specifically limited in the present invention. The following is a specific description in conjunction with the examples.
- Examples 1 to 3 are all made using the following methods, and correspondingly using the amount of materials in Table 1 to form a polyester-based thermoplastic vulcanizate layer. details as follows:
- Thermoplastic polyester elastomer thermoplastic polyester elastomer with a hardness of about 45D and a polyester soft segment with a melting point of 200°C
- ethylene-acrylate rubber the mass ratio of polyethylene block to polyacrylate is 5:1
- antioxidants antioxidants
- plasticizers fillers and lubricants
- the second step dynamic vulcanization
- thermoplastic polyester elastomer used in Example 1 was directly selected.
- Example 1 Example 2
- Example 3 thermoplastic polyester elastomer 100 100 100 Ethylene-acrylate rubber 100 42.8 11 Dicumyl peroxide (sulfurizing agent) 1 0.43 0.11 N,N ⁇ -m-phenylene bismaleimide (assistant cross-linking agent) 2 0.86 0.22
- Polyester plasticizer TP-95 plasticizer
- Antiaging agent WH-02 antioxidant
- Zinc stearate lubricant
- Test method Use a cutting knife or a utility blade to take a flat rectangular spline with a width of 5-10mm from the film, and use the ASTM D412-2016 standard for testing.
- the test vibration frequency is 1Hz
- the heating rate is 3°C/min
- the loss factor The test temperature is 23°C.
- the modulus stability of TPEE is improved, especially in the range of 50°C to 150°C, and the modulus stability is better with the increase of rubber content. That is, implementation 1 is superior to embodiment 2 in terms of modulus stability and is superior to embodiment 3, and embodiments 1 to 3 are all superior to comparative examples. As shown in Table 2, as the ratio of rubber components increases, the loss factor of polyester-based thermoplastic vulcanizate tends to increase, but the modulus of the material decreases.
- Embodiment 2 In order to achieve good performance and sound quality, proper stiffness and damping must be taken into account when the diaphragm vibrates. It can be seen from the results in Table 2 and Figure 1 that the presence of the rubber phase helps to improve the damping properties of the material and the modulus at high temperatures. stability, but a significant loss of modulus at room temperature. At the same time, as the rubber phase increases, the hot workability of the material decreases. Compared with Embodiment 1 and Embodiment 3, Embodiment 2 has better performance and processability when applied to the diaphragm. Embodiment 2 is selected below to manufacture and test the loudspeaker.
- Example 2 and Comparative Example were respectively selected to make diaphragms.
- the diaphragms in the embodiment 2 and the comparative example both adopt a single-layer structure
- the polyester-based thermoplastic vulcanizate prepared therefor is used in the embodiment 2
- the thermoplastic polyester elastomer is used in the comparative example.
- the thickness of the TPEE in the comparative example is 50 ⁇ m
- the thickness of the polyester-based thermoplastic vulcanizate film in Example 2 is 90 ⁇ m.
- the manufacturing method of the diaphragm in Embodiment 2 and the comparative example is the same, as follows:
- thermoforming machine for secondary molding to prepare the required diaphragm shape, cut to the product size and assembled into the micro speaker unit together with the voice coil, magnetic circuit system and other components (as shown in Figure 2 and Figure 3).
- microspeakers SPK
- the micro-speaker adopts the structure shown in Figure 2, which includes a vibration system and a magnetic circuit system matched with the vibration system, and the vibration system includes a diaphragm and a voice coil combined on one side of the diaphragm.
- the loudspeaker vibration unit is shown in FIG. 3 , and those skilled in the art can make corresponding adjustments according to actual product requirements.
- the vibrating membrane 1 is composed of a ring portion 11 and a ball top 12, and the thermoplastic polyester elastomer layer can be located at the ring portion 11 of the diaphragm, or at the ring portion 11 and the ball top. 12.
- Surround portion 11 protrudes toward the side away from voice coil 2; ball top 12 is connected to surround portion 11; a centering strut is provided in the vibration system, which can improve the anti-polarization ability of the vibration system, etc.
- the F0 comparison (as shown in Table 3) result under different voltages shows that the loudspeaker product increases with the increase of the test voltage, and the product F0 decreases with the increase of the voltage, and the product F0 of Example 2 decreases more with the increase of the voltage. Low, this shows that the stability of embodiment product F0 is better, and performance is more stable. This phenomenon may be because as the voltage increases, the local heating of the voice coil increases, and the modulus of the material decreases. Because the polyester-based thermoplastic vulcanizate diaphragm has better heat resistance and stability than the TPEE diaphragm, the relative solid modulus The rate of change is reduced, and the F0 fluctuation of the product is relatively small.
- Example 2 has lower THD at the same voltage, and as the test voltage increases, the degree of increase in THD of Example 2 is also lower than that of the comparative product. This may be because as the test voltage increases, the decrease in F0 of the product in Example 2 is relatively small, the overall performance of the product changes little, and the vibration displacement of the product fluctuates smoothly, so the distortion does not increase significantly. However, as the test voltage increases, the F0 of the product of the comparative example decreases significantly. In addition, the damping of the material is lower than that of Example 2, so the distortion increases more obviously (especially when the test voltage increases from 3V to 5V).
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Signal Processing (AREA)
- Multimedia (AREA)
- Manufacturing & Machinery (AREA)
- Diaphragms For Electromechanical Transducers (AREA)
Abstract
本发明涉及一种可用于发声装置的振膜及其制备方法、发声装置。一种可用于发声装置的振膜包括至少一层聚酯基热塑性硫化橡胶层,所述聚酯基热塑性硫化橡胶由热塑性聚酯材料、橡胶、硫化剂和助剂经动态硫化制成;其中,所述振膜的厚度为25~300μm,所述聚酯基热塑性硫化橡胶在23℃环境下的损耗因子为0.05~0.25。本发明采用聚酯基热塑性硫化橡胶层,该材料利用热塑性聚酯材料和橡胶材料的协同作用获得了良好的声学性能,包括兼顾优异的刚度、回弹、阻尼、热稳定性等方面,而且可以热塑成型。
Description
本发明涉及电声技术领域,特别涉及一种可用于发声装置的振膜及其制备方法、发声装置。
随着行业内对扬声器性能要求的提高,越来越多的产品追求更高的响度、高品质的音质以及高等级的防水等。现有扬声器振膜材料主要包括PEEK、PAR等工程塑料或者TPU、TPEE等弹性体材料。其中,PEEK、PAR等工程塑料虽然耐温性较好,但材料回弹性较差,产品易产生膜折,无法起到防水的作用。而TPU、TPEE等弹性体材料的耐高温性较差。因此,目前行业内常用的振膜材料均存在不足之处,而橡胶被认为有希望改善振膜材料性能不足的材料之一,其相对于工程塑料和热塑性弹性体材料在热稳定性和回弹性方面有提升。例如,有报道在热塑性弹性体材料中混入橡胶制成电缆的绝缘保护层,但由于其被用作绝缘材料,因此更注重绝缘、阻燃等性能的优化,而没有改善阻尼、最低共振频率等声学性能,导致无法用作振膜。
为此,提出本发明。
发明内容
本发明的主要目的在于提供一种可用于发声装置的振膜,其采用聚酯基热塑性硫化橡胶层,该材料利用热塑性聚酯材料和橡胶材料的协同作用获得了良好的声学性能,兼顾优异的刚度、回弹、阻尼、热稳定性等方面,而且可以热塑成型。
本发明的另一目的在于提供上述振膜的制备方法,该方法仅涉及常规工序,流程简单,无苛刻工艺条件。
本发明的第三方面目的在于提供上述振膜组成的发声装置。
为了实现以上目的,本发明提供了以下技术方案。
根据本发明第一方面实施例的用于发声装置的振膜,所述振膜包括至少一层聚酯基热塑性硫化橡胶层,所述聚酯基热塑性硫化橡胶由热塑性聚酯材料、橡胶、硫化剂和助剂经动态硫化制成;
所述振膜的厚度为25~300μm,所述聚酯基热塑性硫化橡胶在23℃环境下的损耗因子为0.05~0.25。
根据本发明的一些实施例,所述聚酯基热塑性硫化橡胶中的所述热塑性聚酯材料和所述橡胶的重量比为10:1~1:1。
根据本发明的一些实施例,所述热塑性聚酯材料的熔点为160℃~250℃。
根据本发明的一些实施例,所述橡胶包括丁腈橡胶、氢化丁腈橡胶、硅橡胶、丙烯酸酯类橡胶、乙烯-丙烯酸酯类橡胶、聚氨酯橡胶中的一种或多种;和/或,所述热塑性聚酯材料包括热塑性聚酯弹性体、聚乳酸、聚碳酸酯、聚对苯二甲酸丁二醇酯、聚对苯二甲酸乙二醇酯中的一种或多种。
根据本发明的一些实施例,所述聚酯基热塑性硫化橡胶在23℃环境下的损耗因子为0.08~0.21;和/或,所述聚酯基热塑性硫化橡胶在23℃环境下的储能模量≤300Mpa。
根据本发明的一些实施例,所述聚酯基热塑性硫化橡胶在23℃环境下的储能模量为9.7~45Mpa。
根据本发明的一些实施例,所述振膜的厚度为30~200μm。
根据本发明的一些实施例,所述助剂包括防老剂、增塑剂、填料、润滑剂中的至少一种;和/或,所述硫化剂包括过氧化二异丙苯。
根据本发明的一些实施例,所述振膜只包含一层所述聚酯基热塑性硫化橡胶层。
根据本发明的一些实施例,所述振膜为多层堆叠的复合层结构,其包含中间层和两个表层,所述中间层为胶层且设在两个所述表层之间,两个所述表层独立地选自热塑性弹性体层或所述聚酯基热塑性硫化橡胶层。
根据本发明的一些实施例,所述振膜为多层堆叠的复合结构,所述振膜包括所述聚酯基热塑性硫化橡胶层和胶层,所述聚酯基热塑性硫化橡胶层和所述胶层交替叠加且所述聚酯基热塑性硫化橡胶层为表层。
根据本发明第三方面实施例的发声装置,包括振动系统和与所述振动系统相配合的磁路系统,所述振动系统包括振膜和结合在所述振膜一侧的音圈,所述磁路系统系统驱动所述音圈振动以带动所述振膜发声,所述振膜为根据本发明上述实施例的所述振膜。
根据本发明第四方面实施例的发声装置,包括壳体以及设在所述壳体内的磁路系统和振动系统,所述振动系统包括音圈、第一振膜和第二振膜,所述音圈的顶部与所述第一振膜相连,所述磁路系统系统驱动所述音圈振动以带动所述第一振膜发声,所述第二振膜的两端分别与所述壳体和所述音圈的底部相连,所述第二振膜为根据本发明上述实施例的所述振膜。
与现有技术相比,本发明采用聚酯基热塑性硫化橡胶层制成振膜,该聚酯基热塑性硫化橡胶既含有热塑性的聚酯材料,也含有交联网状结构的橡胶材料。热塑性聚酯材料为整个体系提供了强度、回弹性、热可塑性,橡胶材料为整个体系提供了耐热稳定性、回弹性和阻尼性,二者协同作用可以实现在满足产品对刚度、回弹、阻尼、热稳定性的前提下,又可热塑成型,大大提升了振膜的综合使用性能。
通过阅读下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是对本发明的限制。
图1为实施例和对比例不同温度下储能模量的变化曲线;
图2为本发明提供的扬声器的结构示意图;
图3为图2中发声振动单元的结构示意图;
图4为实施例和对比例的总谐波失真曲线。
下面将结合实施例对本发明的实施方案进行详细描述,但是本领域技术人员将会理解,下列实施例仅用于说明本发明,而不应视为限制本发明的范围。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用原药、试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品或者可以根据现有技术制备得到。
本发明提供了一种可用于发声装置的振膜,包括至少一层聚酯基热塑性硫化橡胶层,所述聚酯基热塑性硫化橡胶由热塑性聚酯材料、橡胶、硫化剂和助剂经 动态硫化制成;所述振膜的厚度为25~300μm,所述聚酯基热塑性硫化橡胶在23℃环境下的损耗因子为0.05~0.25。
本发明利用聚酯基热塑性硫化橡胶层制成振膜,该聚酯基热塑性硫化橡胶既含有热塑性的聚酯材料,也含有交联网状结构的橡胶材料。热塑性聚酯材料为整个体系提供了强度、回弹性、热可塑性,橡胶材料为整个体系提供了耐热稳定性、回弹性和阻尼性,二者协同作用可以获得优异的声学性能,尤其是刚度、回弹、阻尼、热稳定性等方面,而且该组合可以热塑成型。
经测试,相比不含橡胶的热塑性聚酯材料,本发明在储能模量、损耗因子、最低共振频率(F0)之间能获得更好的平衡,而且储能模在较宽温度范围内的稳定性提高,F0在较宽电压范围内的稳定性也提高,更不容易失真。
本发明所述的振膜厚度可以在25~300μm范围内任意选择,可以根据F0需求调整,例如25μm、50μm、100μm、150μm、200μm、250μm、300μm等。因硫化橡胶的强度相对纯弹性体较低,为满足振膜振动所需的刚度,需要匹配一定的厚度。但是厚度太大会导致振膜振动空间的损失,而且振膜厚度太大会增大振膜的重量,由此会降低振膜的灵敏度,更优选地,振膜的厚度可以为30~200μm,此时材料可以很好地兼顾振膜振动所需的刚度、回弹性和阻尼性。
本发明所述聚酯基热塑性硫化橡胶的损耗因子是采用DMA温度扫描模式、1Hz振动频率、3℃/min升温速率得到的数据,其与振膜的厚度相配合,可以在0.05~0.25范围内任意选择,例如0.05、0.1、0.15、0.2、0.25等。通常损耗因子越高,材料的阻尼性越好,振膜材料的阻尼性提升有利于减少振动过程中的偏振,降低产品失真,提升听音良率。但材料阻尼的提升,会导致振膜的瞬时响应性降低,音质同样会有所降低,结合该类材料的模量要求,损耗因子更优选0.08~0.21,例如0.08、0.09、0.10、0.11、0.12、0.14、0.15、0.16、0.17、0.18、0.19、0.2、0.21等。
为了保证所述聚酯基热塑性硫化橡胶的加工性、回弹性以及必要的加工强度,热塑性聚酯材料的用量优选不低于橡胶,通常热塑性聚酯材料与橡胶的质量份配比为10:1~1:1,例如10:1、9:1、8:1、7:1、6:1、5:1、4:1、3:1、2:1、1:1等。热塑性聚酯材料含量进一步增加,橡胶相在整个体系中的占比减少,无法很好地形成提升耐温所需的网状结构,材料热稳定性提升不明显。橡胶含量的进一步增加, 材料的热可塑性降低,且橡胶分散的颗粒增大,材料的整体性能及加工成膜性会下降。
另外,热塑性聚酯材料含量越多,最终产物的模量越高,如上所述,橡胶相的减少会降低整体材料的耐高温性,无法实现提升热塑性聚酯材料耐高温性的目的。并且模量与材料的弹性存在相关性,模量越高,材料的弹性变差。为了保证扬声器优良的低频性能及防水性能,所述聚酯基热塑性硫化橡胶在23℃环境下的模量通常≤300MPa,例如250MPa、200MPa、150MPa、100MPa、50MPa、10MPa、5Mpa等,优选≤150MPa,更优选9.7~45Mpa。
为了保证振膜具有良好的热稳定性,本发明所选热塑性聚酯材料的熔点通常在160~250℃之间,例如可以是160℃、170℃、180℃、190℃、200℃、210℃、220℃、230℃、240℃等。若熔点低于160℃,不能满足产品长期振动及耐温需求,熔点过高,与橡胶动态硫化时分散性差,整体材料性能会降低。所述热塑性聚酯材料可以包括热塑性聚酯弹性体、聚乳酸、聚碳酸酯、聚乙醇酸、聚羟基烷酸、聚对苯二甲酸丁二醇酯中的一种或多种。随着音质及防水要求的提高,扬声器振膜的弹性及柔韧性越优,产品性能越优,热塑性聚酯材料优选热塑性聚酯弹性体材料(TPEE)。
本发明所述橡胶可以包括丁腈橡胶、氢化丁腈橡胶、硅橡胶、丙烯酸酯类橡胶、乙烯-丙烯酸酯类橡胶、聚氨酯橡胶中的一种或多种。考虑到橡胶与热塑性聚酯材料的相容性,优选含有酯基的丙烯酸酯橡胶、乙烯-丙烯酸酯橡胶中的至少一种。
本发明中的所述助剂包括防老剂、增塑剂、填料、润滑剂中的至少一种,以提高材料综合性能或者改善易加工性,具体的组成可以是防老剂、增塑剂、填料或润滑剂,或者防老剂、增塑剂的组合,或者防老剂、填料的组合,或者防老剂、润滑剂的组合,或者防老剂、增塑剂、填料、润滑剂四种组合。
本发明所述硫化剂包括三巯基均三嗪硫化体系、多胺、有机酸、铵盐、有机酸铵盐、二硫代氨基甲酸盐、咪唑/酸酐、异氰尿酸/季盐、硫磺/促进剂、过氧化物中的至少一种,优选过氧化物,例如过氧化二异丙苯(DCP)、二叔丁基过氧化物(DTBP)等。所述橡胶生胶质量份为100份,硫化剂添加量优选为0.5~5质量份,例如0.5份、1份、1.5份、2份、2.5份、3份、3.5份、4份、4.5份、5份 等,更优选1份。该质量份的交联剂可以保证橡胶生胶充分交联并避免交联度过高导致的材料韧性损失。
所述助交联剂包括三羟甲基丙烷三丙烯酸酯、三羟甲基丙烷三甲基丙烯酸酯、N,N`-间苯撑双马来酰亚胺、二烯丙基邻苯二酸酯、三烯丙基异氰酸酯和三烯丙基氰酸酯中的至少一种,优选N,N`-间苯撑双马来酰亚胺。以橡胶生胶为100质量份算,助交联剂含量为0.1-20质量份,例如0.5份、1份、2份、3份、4份、5份、7份、10份、13份、15份、20份等,更优选2份。该比例范围的交联剂能够起到良好的交联效果,使振膜兼具足够的硬度以及回弹性能。
所述防老剂包括防老剂N-445、防老剂246、防老剂4010、防老剂SP、防老剂RD、防老剂ODA、防老剂OD、防老剂WH-02中的至少一种,优选防老剂WH-02。所述橡胶生胶质量份为100份时,防老剂添加量优选为0.5~10质量份,例如0.5份、1份、2份、3份、4份、5份、7份、10份等,更优选3份。防老剂的添加可以使得振膜材料在长期高温或高温湿热环境下仍可保证材料的良好力学性能,且不会因为添加量过大导致的材料性能降低。
所述增塑剂包括脂肪族二元酸酯类、苯二甲酸酯类、苯多酸酯类、苯甲酸酯类、多元醇酯类、氯化烃类、环氧类、柠檬酸酯类、聚酯类中的至少一种,优选聚酯类。所述橡胶生胶质量份为100份时,增塑剂添加量优选为1-13质量份,例如1份、2份、3份、4份、5份、7份、10份、13份等,更优选10份。添加增塑剂使得橡胶分子间的作用力降低,从而降低橡胶的玻璃化温度,令橡胶可塑性、流动性,便于压延、压出等成型操作。
所述润滑剂包括硬脂酸及硬脂酸盐、十八烷基胺和磷酸烷基酯、α-十八烷基-ω-羟基聚氧乙烯磷酸酯中的至少一种,优选硬脂酸盐。所述橡胶生胶质量份为100份时,所述润滑剂的质量份数为0.5-5份,例如0.5份、1份、2份、3份、4份、5份等,更优选1.5份。润滑剂的加入,可以降低振膜成型加工时材料与模具的粘结,易脱模。添加量过大,长时间使用后润滑剂会析出表面,影响振膜与其他部件的粘结。
所述填料包括炭黑、二氧化硅、滑石粉、沉淀碳酸钙和硫酸钡中的至少一种。上述材料以粉体的形式添加到橡胶生胶中。所述橡胶生胶质量份为100份时,填料的添加量优选5~30份,例如5份、7份、10份、13份、15份、20份、25份、 30份等,更优选10份。该比例范围使振膜兼具良好的硬度、拉伸强度以及回弹性能。由于聚酯基热塑性硫化橡胶可以很好的兼顾振膜振动所需的模量和回弹性,同时具有相对较高的阻尼性,因此利用其既可以制成单层膜的振膜,也可以贴合其他层(例如胶层、塑料层、热塑性弹性体层等)的复合膜。
本发明的振膜为复合膜时,其包含中间层和两个表层,所述中间层为胶层且设在两个所述表层之间,两个所述表层独立地选自热塑性弹性体层或所述聚酯基热塑性硫化橡胶层。具体地,可以上下两个表层均为聚酯基热塑性硫化橡胶层,或者上下两个表层均为热塑性弹性体层,或者其中一个表层为聚酯基热塑性硫化橡胶层、另一个表层为热塑性弹性体层。
对于复合膜中的胶层,其可以是本领域典型的胶,例如硅胶层、丙烯酸胶层中的一种或多种,优选为压敏胶膜。压敏胶膜使用方便,通过简单的复合工艺就可实现多层间的贴合。
本发明的振膜还可以是这样的复合结构:包括所述聚酯基热塑性硫化橡胶层和胶层,所述聚酯基热塑性硫化橡胶层和所述胶层交替叠加且所述聚酯基热塑性硫化橡胶层为表层。例如,振膜可以为三层复合结构,其包括两层聚酯基热塑性硫化橡胶层和一层胶层,胶层设在两层聚酯基热塑性硫化橡胶层之间以将两层聚酯基热塑性硫化橡胶层连接在一起,即,振膜形成为聚酯基热塑性硫化橡胶层+胶层+聚酯基热塑性硫化橡胶层的结构。又例如,振膜还可以为五层复合结构,其包括三层聚酯基热塑性硫化橡胶层和两层胶层,每层胶层的两个外表面均为聚酯基热塑性硫化橡胶层,由此,振膜形成为聚酯基热塑性硫化橡胶层+胶层+聚酯基热塑性硫化橡胶层+胶层+聚酯基热塑性硫化橡胶层的结构。
对于本发明中聚酯基热塑性硫化橡胶的制备方法,其仅涉及常规工序,包括:将除硫化剂外的其他原料共混,然后加入硫化剂进行动态硫化,挤出,得到聚酯基热塑性硫化橡胶,最后任选将其与其他层贴合成所述振膜。
其中,动态硫化的工艺条件对聚酯基热塑性硫化橡胶的性能有一定影响,优选的过程是:首先制备橡胶母胶(按照计算好的配方称量各种物料,然后在橡胶生胶中添加防老剂、增塑剂、填料和润滑剂等进行混炼),然后向熔融状态下的热塑性聚酯材料中添加橡胶母胶进行混炼,混合均匀后,依次添加助交联剂、硫化剂等硫化助剂,混炼3~10min后制备得到动态硫化橡胶。
本发明提供的振膜可组成任意构造的发声装置,例如以下典型的发声装置:包括振动系统和与所述振动系统相配合的磁路系统,所述振动系统包括振膜和结合在所述振膜一侧的音圈。当发声装置工作时,音圈通电后在磁路系统的磁场力的作用下,音圈可以上下振动以带动振膜振动,振膜振动时可以进行发声。
根据本发明另一方面的实施例,发声装置可以包括壳体以及设在壳体内的磁路系统和振动系统,振动系统可以包括音圈、第一振膜和第二振膜,音圈的顶部与第一振膜相连,磁路系统系统驱音圈振动以带动第一振膜发声,第二振膜的两端分别与壳体和音圈的底部相连。其中,第二振膜可以为根据本发明上述实施例中的振膜。
也就是说,第一振膜可以用于振动发声,第二振膜可以用于平衡音圈的振动。具体而言,当发声装置工作时,音圈通电后在磁路系统的磁场力的作用下,音圈可以上下振动以带动第一振膜振动,第一振膜振动时可以进行发声。第二振膜也可以跟随音圈上下振动,由于第二振膜的两端分别与壳体和音圈的底部相连,第二振膜可以平衡音圈的振动,可以防止音圈出现偏振的现象,从而可以提升发声装置的发声效果。
需要进行说明的是,可以将第一振膜和第二振膜同时采用本发明上述实施例的振膜,也可以是第一振膜和第二振膜中的一个采用本发明上述实施例的振膜,本发明对此不作具体限制。下文结合实施例具体展开说明。
实施例1-3
实施例1至实施例3均采用如下方法,以及对应采用表1中的材料用量进行制作形成聚酯基热塑性硫化橡胶层。具体如下:
第一步,共混
将热塑性聚酯弹性体(硬度约为45D,熔点为200℃的聚酯软段的热塑性聚酯弹性体)、乙烯-丙烯酸酯橡胶(聚乙烯嵌段与聚丙烯酸酯的质量比为5:1)、防老剂、增塑剂、填料和润滑剂加入到挤出机中共混,螺杆温度设置为160℃~250℃,混合均匀。
第二步,动态硫化
向混合物中继续加入适量的硫化剂,进行动态硫化,硫化5~10min,此时得到了相应的聚酯基热塑性硫化橡胶层。
对比例
直接选择实施例1所用的热塑性聚酯弹性体。
实施例1-3中各原料配比如表1所示。
表1原料用量(均为重量份)
实施例1 | 实施例2 | 实施例3 | |
热塑性聚酯弹性体 | 100 | 100 | 100 |
乙烯-丙烯酸酯橡胶 | 100 | 42.8 | 11 |
过氧化二异丙苯(硫化剂) | 1 | 0.43 | 0.11 |
N,N`-间苯撑双马来酰亚胺(助交联剂) | 2 | 0.86 | 0.22 |
聚酯增塑剂TP-95(增塑剂) | 10 | 4.28 | 1.1 |
防老剂WH-02(防老剂) | 3 | 1.3 | 0.33 |
硬脂酸锌(润滑剂) | 1.5 | 0.64 | 0.16 |
二氧化硅(填料) | 10 | 4 | 1 |
检测不同材料储能模量随温度的变化及常温下的损耗因子
测试方法:使用裁刀或美工刀片从薄膜上采取宽度为5~10mm的平整矩形样条,采用ASTM D412-2016标准进行测试,采测试振动频率为1Hz,升温速率为3℃/min,损耗因子的测试温度为23℃。
结果:
如图1所示,随着橡胶相的加入,TPEE的模量稳定性有所提升,尤其对50℃~150℃范围内提升明显,且随着橡胶含量的增加,模量稳定性越优,即模量稳定性方面实施1优于实施例2优于实施例3,实施例1至3均优于对比例。如表2所示,随着橡胶组份配比的增加,聚酯基热塑性硫化橡胶的损耗因子有上升趋势,但是材料的模量会降低。
为了实现良好的性能效果和音质,振膜振动时需要兼顾适当的刚度和阻尼性,由表2及图1结果可以看出,橡胶相的存在有助于提高材料的阻尼性和高温下模量的稳定性,但在室温下的模量损失明显。同时随着橡胶相的增加,材料的热加工性降低。实施例2相对于实施例1和实施例3应用于振膜时,具有更优的性能及加工性,以下选择实施例2进行扬声器的制作及测试。
表2
方案 | 储能模量@23℃ | 储能模量@70℃ | 损耗因子@23℃ |
对比例 | 71 | 40 | 0.04 |
实施例1 | 9.7 | 6.1 | 0.21 |
实施例2 | 23 | 12 | 0.12 |
实施例3 | 45 | 19 | 0.08 |
测试不同材料制成的扬声器的F0和总谐波失真曲线
1、制作扬声器
分别选取实施例2和对比例中的材料分别制作振膜。其中,实施例2和对比例中的振膜均采用单层结构,实施例2采用其制备的聚酯基热塑性硫化橡胶,对比例采用热塑性聚酯弹性体。为了满足相近的产品F0,对比例TPEE的厚度为50μm,实施例2聚酯基热塑性硫化橡胶薄膜的厚度为90μm。实施例2和对比例中的振膜的制作方法相同,具体如下:
将上述材料置于热压成型机上进行二次成型,制备得到所需的振膜形状,裁切至产品尺寸后与音圈、磁路系统等部件一起装配至微型扬声器单元中(如图2和图3所示)。
2、测试方法:
分别对装配有上述实施例2和对比例中的振膜的微型扬声器(SPK)进行产品性能测试。微型扬声器采用如图2所示的结构,其包括振动系统和与所述振动系统相配合的磁路系统,所述振动系统包括振膜和结合在所述振膜一侧的音圈。扬声器振动单元如图3所示,本领域技术人员可根据实际产品需求做相应的调整。例如,如图2和3所示,振膜1由折环部11和球顶部12组成,热塑性聚酯弹性体层可位于振膜的折环部11,也可位于折环部11及球顶部12。折环部11向远离音圈2的一侧凸起;球顶部12与折环部11相连;振动系统中设有定心支片,可提高振动系统的抗偏振能力等。
结果:
不同大小电压下的F0对比(如表3所示)结果显示,扬声器产品随着测试电压的增加,产品F0降低随着电压升高而降低,其中实施例2产品F0随电压升 高降低程度更低,这表明实施例产品F0的稳定性更优,性能更稳定。这一现象可能是因为随着电压升高,音圈局部发热量增加,材料的模量会降低,因聚酯基热塑性硫化橡胶振膜相对于TPEE振膜耐热稳定性优,固模量的相对变化率降低,产品的F0波动相对较小。
表3
方案 | F0,2V/Hz | F0,3V(Hz) | F0,5V(Hz) |
对比例 | 968 | 944 | 916 |
实施例2 | 961 | 951 | 935 |
如图4所示,相同电压下实施例2具有更低的THD,随着测试电压的增加,实施例2的THD升高的程度也会低于对比例产品。这可能是因为随着测试电压增加,实施例2产品的F0降低程度相对小,产品整体性能变化小,产品振动的位移波动平稳,从而失真不会出现明显升高。而对比例产品随着测试电压的升高,产品F0降低明显,加之材料的阻尼低于实施例2,从而失真增加更加明显(尤其测试电压从3V升高至5V)。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。
Claims (13)
- 一种可用于发声装置的振膜,其特征在于,所述振膜包括至少一层聚酯基热塑性硫化橡胶层,所述聚酯基热塑性硫化橡胶由热塑性聚酯材料、橡胶、硫化剂和助剂经动态硫化制成;其中,所述振膜的厚度为25~300μm,所述聚酯基热塑性硫化橡胶在23℃环境下的损耗因子为0.05~0.25。
- 根据权利要求1所述的振膜,其特征在于,所述聚酯基热塑性硫化橡胶中的所述热塑性聚酯材料和所述橡胶的重量比为10:1~1:1。
- 根据权利要求1所述的振膜,其特征在于,所述热塑性聚酯材料的熔点为160℃~250℃。
- 根据权利要求1-3任一项所述的振膜,其特征在于,所述橡胶包括丁腈橡胶、氢化丁腈橡胶、硅橡胶、丙烯酸酯类橡胶、乙烯-丙烯酸酯类橡胶、聚氨酯橡胶中的一种或多种;和/或,所述热塑性聚酯材料包括热塑性聚酯弹性体、聚乳酸、聚碳酸酯、聚对苯二甲酸丁二醇酯、聚对苯二甲酸乙二醇酯中的一种或多种。
- 根据权利要求1-3任一项所述的振膜,其特征在于,所述聚酯基热塑性硫化橡胶在23℃环境下的损耗因子为0.08~0.21;和/或,所述聚酯基热塑性硫化橡胶在23℃环境下的储能模量≤300Mpa。
- 根据权利要求1-3任一项所述的振膜,其特征在于,所述聚酯基热塑性硫化橡胶在23℃环境下的储能模量为9.7~45Mpa。
- 根据权利要求1-3任一项所述的振膜,其特征在于,所述振膜的厚度为30~200μm。
- 根据权利要求1-3任一项所述的振膜,其特征在于,所述助剂包括防老剂、增塑剂、填料、润滑剂中的至少一种;和/或,所述硫化剂包括过氧化二异丙苯。
- 根据权利要求1-3任一项所述的振膜,其特征在于,所述振膜只包含一层所述聚酯基热塑性硫化橡胶层。
- 根据权利要求1-3任一项所述的振膜,其特征在于,所述振膜为多层堆叠的复合层结构,其包含中间层和两个表层,所述中间层为胶层且设在两个所述表层之间,两个所述表层独立地选自热塑性弹性体层或所述聚酯基热塑性硫化橡 胶层。
- 根据权利要求1-3任一项所述的振膜,其特征在于,所述振膜为多层堆叠的复合结构,其包括所述聚酯基热塑性硫化橡胶层和胶层,所述聚酯基热塑性硫化橡胶层和所述胶层交替叠加且所述聚酯基热塑性硫化橡胶层为表层。
- 一种发声装置,其特征在于,包括振动系统和与所述振动系统相配合的磁路系统,所述振动系统包括振膜和结合在所述振膜一侧的音圈,所述磁路系统系统驱动所述音圈振动以带动所述振膜发声,所述振膜采用权利要求1-11任一项所述的振膜。
- 一种发声装置,其特征在于,包括壳体以及设在所述壳体内的磁路系统和振动系统,所述振动系统包括音圈、第一振膜和第二振膜,所述音圈的顶部与所述第一振膜相连,所述磁路系统系统驱动所述音圈振动以带动所述第一振膜发声,所述第二振膜的两端分别与所述壳体和所述音圈的底部相连,所述第二振膜为权利要求1-11中任一项所述的振膜。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110680736.8 | 2021-06-18 | ||
CN202110680736.8A CN113596678B (zh) | 2021-06-18 | 2021-06-18 | 一种可用于发声装置的振膜及其制备方法、发声装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022262559A1 true WO2022262559A1 (zh) | 2022-12-22 |
Family
ID=78244039
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/095825 WO2022262559A1 (zh) | 2021-06-18 | 2022-05-29 | 一种可用于发声装置的振膜及其制备方法、发声装置 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN113596678B (zh) |
WO (1) | WO2022262559A1 (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113596678B (zh) * | 2021-06-18 | 2023-08-25 | 歌尔股份有限公司 | 一种可用于发声装置的振膜及其制备方法、发声装置 |
CN114363775A (zh) * | 2022-01-11 | 2022-04-15 | 苏州赛伍应用技术股份有限公司 | 一种振膜材料及其制备工艺 |
CN117082405A (zh) * | 2023-10-16 | 2023-11-17 | 瑞声光电科技(常州)有限公司 | 复合振膜及发声器件 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5942577A (en) * | 1996-06-05 | 1999-08-24 | Advanced Elastomer Systems, L.P. | Temperature-stable low solvent-swelling thermoplastic elastomer compositions |
CN102585416A (zh) * | 2012-03-13 | 2012-07-18 | 北京化工大学 | 一种耐高温、耐油型热塑性硫化胶 |
CN103709720A (zh) * | 2013-11-28 | 2014-04-09 | 青岛科技大学 | 一种聚氨酯/聚乳酸热塑性硫化胶及其制备方法 |
CN108769887A (zh) * | 2018-05-03 | 2018-11-06 | 深圳市摩码克来沃化学科技有限公司 | 一种新型振膜、振膜的制备方法及设有该振膜的发声器 |
CN110804154A (zh) * | 2019-10-31 | 2020-02-18 | 歌尔股份有限公司 | 发声装置的振膜以及发声装置 |
CN111935625A (zh) * | 2020-09-23 | 2020-11-13 | 歌尔股份有限公司 | 一种发声装置的复合振膜及其制备方法、发声装置 |
CN113596678A (zh) * | 2021-06-18 | 2021-11-02 | 歌尔股份有限公司 | 一种可用于发声装置的振膜及其制备方法、发声装置 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA1334701C (en) * | 1988-04-11 | 1995-03-07 | Raman Patel | High temperature stable, low solvent swelling thermoplastic elastomer compositions |
JP2000080223A (ja) * | 1998-09-04 | 2000-03-21 | Unitika Ltd | 熱可塑性ポリエステル樹脂組成物及びその製造方法 |
CN106792377A (zh) * | 2017-01-23 | 2017-05-31 | 瑞声科技(南京)有限公司 | 振膜及发声器件 |
CN108337613A (zh) * | 2018-01-04 | 2018-07-27 | 瑞声科技(新加坡)有限公司 | 发声器件 |
CN108551642B (zh) * | 2018-06-15 | 2020-09-22 | 歌尔股份有限公司 | 扬声器振膜以及扬声器 |
CN111935626B (zh) * | 2020-09-23 | 2022-03-15 | 歌尔股份有限公司 | 一种扬声器的振膜及其制备方法、扬声器 |
CN111923525A (zh) * | 2020-09-23 | 2020-11-13 | 歌尔股份有限公司 | 振膜和发声装置 |
-
2021
- 2021-06-18 CN CN202110680736.8A patent/CN113596678B/zh active Active
-
2022
- 2022-05-29 WO PCT/CN2022/095825 patent/WO2022262559A1/zh active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5942577A (en) * | 1996-06-05 | 1999-08-24 | Advanced Elastomer Systems, L.P. | Temperature-stable low solvent-swelling thermoplastic elastomer compositions |
CN102585416A (zh) * | 2012-03-13 | 2012-07-18 | 北京化工大学 | 一种耐高温、耐油型热塑性硫化胶 |
CN103709720A (zh) * | 2013-11-28 | 2014-04-09 | 青岛科技大学 | 一种聚氨酯/聚乳酸热塑性硫化胶及其制备方法 |
CN108769887A (zh) * | 2018-05-03 | 2018-11-06 | 深圳市摩码克来沃化学科技有限公司 | 一种新型振膜、振膜的制备方法及设有该振膜的发声器 |
CN110804154A (zh) * | 2019-10-31 | 2020-02-18 | 歌尔股份有限公司 | 发声装置的振膜以及发声装置 |
CN111935625A (zh) * | 2020-09-23 | 2020-11-13 | 歌尔股份有限公司 | 一种发声装置的复合振膜及其制备方法、发声装置 |
CN113596678A (zh) * | 2021-06-18 | 2021-11-02 | 歌尔股份有限公司 | 一种可用于发声装置的振膜及其制备方法、发声装置 |
Also Published As
Publication number | Publication date |
---|---|
CN113596678A (zh) | 2021-11-02 |
CN113596678B (zh) | 2023-08-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022262559A1 (zh) | 一种可用于发声装置的振膜及其制备方法、发声装置 | |
CN111866669B (zh) | 一种用于微型发声装置的振膜和微型发声装置 | |
CN110708638B (zh) | 一种用于微型发声装置的振膜及微型发声装置 | |
CN110804154A (zh) | 发声装置的振膜以及发声装置 | |
WO2021082255A1 (zh) | 一种发声装置的振膜以及发声装置 | |
EP3962109A1 (en) | Vibrating diaphragm for miniature sound-producing device and miniature sound-producing device | |
CN110818991A (zh) | 一种发声装置的振膜以及发声装置 | |
KR102659012B1 (ko) | 미니어처 사운드 발생 장치용 다이어프램 및 미니어처 사운드 발생 장치 | |
CN113490126A (zh) | 一种可用于发声装置的振膜及其制备方法、发声装置 | |
CN113490125A (zh) | 一种可用于发声装置的振膜及发声装置 | |
CN110784805A (zh) | 一种用于微型发声装置的振膜及微型发声装置 | |
CN111849103B (zh) | 一种用于微型发声装置的振膜和微型发声装置 | |
CN110784806B (zh) | 一种用于微型发声装置的振膜及微型发声装置 | |
CN110708635B (zh) | 发声装置的振膜以及发声装置 | |
WO2022247911A1 (zh) | 一种可用于发声装置的振膜及其制备方法、发声装置 | |
WO2023029721A1 (zh) | 发声装置的振膜及其发声装置 | |
CN111848994B (zh) | 一种微型发声装置 | |
EP3962102A1 (en) | Vibration diaphragm for miniature sound production device and miniature sound production device | |
EP3962106A1 (en) | Vibrating diaphragm for miniature sound producing device and miniature sound producing device | |
CN110798780B (zh) | 一种用于微型发声装置的振膜以及微型发声装置 | |
CN116074699A (zh) | 发声装置的振膜及其制备方法、发声装置 | |
CN116074708A (zh) | 发声装置的振膜及发声装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22824039 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22824039 Country of ref document: EP Kind code of ref document: A1 |