WO2022262514A1 - 支撑组件、显示模组及电子设备 - Google Patents

支撑组件、显示模组及电子设备 Download PDF

Info

Publication number
WO2022262514A1
WO2022262514A1 PCT/CN2022/093744 CN2022093744W WO2022262514A1 WO 2022262514 A1 WO2022262514 A1 WO 2022262514A1 CN 2022093744 W CN2022093744 W CN 2022093744W WO 2022262514 A1 WO2022262514 A1 WO 2022262514A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
support
support assembly
modulus
display screen
Prior art date
Application number
PCT/CN2022/093744
Other languages
English (en)
French (fr)
Inventor
罗中元
代晓涛
朱彦霏
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2022262514A1 publication Critical patent/WO2022262514A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/301Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements flexible foldable or roll-able electronic displays, e.g. thin LCD, OLED
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • C09J7/29Laminated material
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/33Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements being semiconductor devices, e.g. diodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/35Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements being liquid crystals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2203/00Applications of adhesives in processes or use of adhesives in the form of films or foils
    • C09J2203/326Applications of adhesives in processes or use of adhesives in the form of films or foils for bonding electronic components such as wafers, chips or semiconductors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2400/00Presence of inorganic and organic materials
    • C09J2400/10Presence of inorganic materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2400/00Presence of inorganic and organic materials
    • C09J2400/10Presence of inorganic materials
    • C09J2400/14Glass
    • C09J2400/143Glass in the substrate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2400/00Presence of inorganic and organic materials
    • C09J2400/10Presence of inorganic materials
    • C09J2400/16Metal
    • C09J2400/163Metal in the substrate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2467/00Presence of polyester
    • C09J2467/006Presence of polyester in the substrate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2475/00Presence of polyurethane
    • C09J2475/006Presence of polyurethane in the substrate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2479/00Presence of polyamine or polyimide
    • C09J2479/08Presence of polyamine or polyimide polyimide
    • C09J2479/086Presence of polyamine or polyimide polyimide in the substrate

Definitions

  • the present application relates to the technical field of electronic equipment, in particular to a support assembly, a display module and electronic equipment.
  • the bar machine uses a flexible organic light emitting diode (Organic Light Emitting Diode, abbreviated as OLED) display, compared with a liquid crystal display (ie Liquid Crystal Display, abbreviated as LCD) or a hard OLED display, the resistance
  • OLED Organic Light Emitting Diode
  • LCD liquid crystal display
  • SCF Super Clean Film
  • the application provides a supporting component, a display module and an electronic device, so as to reduce the thickness and weight of the supporting component, and improve the buffering capacity of the supporting component for falling balls.
  • the first aspect of the present application provides a support assembly for supporting a display screen, the support assembly includes at least two laminated layers, and the modulus of each laminated layer gradually increases along a direction away from the display screen.
  • the above-mentioned support assembly is used to support the display screen, and the support assembly includes at least two laminated layers.
  • the modulus of each laminated layer gradually increases, that is to say, each laminated layer is stacked in the order of modulus
  • the modulus of the laminate closer to the display screen is smaller, and the deformation is more likely to occur, and the modulus of the laminate farther away from the display screen is larger, and the deformation is less likely to occur;
  • the support component receives an impact, keep it away from The laminated layer of the display screen is impacted first, and the laminated layer far away from the display screen only slightly deforms to absorb the impact energy, delays the transmission of the impact energy to the next laminated layer, and fully exerts the buffering capacity of the laminated layer, and then dissipates the remaining energy Evenly disperse and transfer to the next stack, reduce the impact on the next stack, thereby further delaying the transmission of impact energy, and give full play to the falling ball buffering capacity of the next stack,
  • the relationship between the ball-dropping ability of the support assembly and the individual ball-dropping ability of each of the stacks satisfies the following relationship: the ball-dropping ability of the support assembly ⁇ the linearity of the individual ball-dropping ability of each of the stacks Stacking, when the total thickness of the support assembly 3 is determined, the thickness of each laminated layer is allocated according to this formula, so as to realize the optimal design of the cushioning capacity of falling balls.
  • the ball falling ability can be within the range of plus or minus 2mm of the linear superposition of the ball falling abilities of each laminated monomer, which can not only realize the optimized design of the buffering capacity of the support component 3, but also avoid excessive number of experiments, increasing time cost and production cost.
  • the thickness of the support assembly is 0.1 mm to 0.3 mm, which can not only meet the requirements of the buffering capacity of the support assembly 3 for falling balls, but also keep the thickness of the whole machine small, so as to meet the requirements of thinning and weight reduction of the whole machine .
  • the support assembly includes at least one buffer layer and at least one support layer, the modulus of the buffer layer is smaller than the modulus of the support layer, and the buffer layer and the support layer are away from the display
  • the supporting layer is made of a material with a higher modulus to increase the strength of the outer surface of the supporting component 3 and prevent damage such as scratches on the outer surface of the supporting component 3, and through the supporting layer that is not easily deformed, the impact
  • the energy can be uniformly dispersed, thereby reducing the impact strength received by the buffer layer
  • the buffer layer is made of a material with a low modulus, and the buffer layer absorbs impact energy through elastic deformation, thereby reducing the impact energy transmitted to the surface of the display screen 1 .
  • the support assembly includes a first buffer layer and a second buffer layer, the modulus of the first buffer layer is smaller than the modulus of the second buffer layer, and the first buffer layer and the second buffer layer
  • the buffer layer is arranged along a direction away from the display screen, and the buffer capacity of the support assembly is improved through two buffer layers; the modulus of the first buffer layer is smaller than that of the second buffer layer, and the first buffer layer and the second buffer layer
  • the layers are arranged along the direction away from the display screen, so that the impact energy can be absorbed layer by layer, and the buffering capacity of the first buffer layer and the second buffer layer can be fully exerted.
  • the material of the first buffer layer is foam, which has a series of characteristics such as high elasticity, light weight, free bending, ultra-thin volume and reliable performance. Form an isolation protection effect and reduce the impact stress on the display screen.
  • the material of the second buffer layer is polyurethane or silicone gel.
  • Polyurethane and silicone gel can maintain elasticity for a long time within a relatively large stable range, and can protect electronic components from moisture, shock and insulation. Extend the useful life of support components.
  • the support assembly includes a first support layer and a second support layer, the modulus of the first support layer is smaller than the modulus of the second support layer, and the first support layer and the second support layer
  • the support layer is arranged along the direction away from the display screen, through the two support layers, the uniformity of impact energy distribution in the support assembly is improved to avoid excessive local pressure;
  • the modulus of the first support layer is smaller than that of the second support layer Modulus, the first support layer and the second support layer are arranged along the direction away from the display screen, so that the impact can be evenly distributed layer by layer, and the buffering capacity of the first support layer and the second support layer can be fully utilized.
  • the material of the first support layer is polyester, glass fiber or polyimide, that is to say, the material of the first support layer is a hard polymer material, which can form a reliable support effect, It can also reduce weight.
  • the material of the second supporting layer is metal, so as to form a surface with high strength and prevent the surface of the supporting component from being scratched.
  • the support assembly further includes a first adhesive layer, the first adhesive layer is located on the surface of the support assembly close to the display screen, and the modulus of the first adhesive layer is smaller than that of the other laminated layers. That is to say, the supporting component is bonded to the surface of the display screen through the first adhesive layer with high elasticity, so that the first adhesive layer can play the role of bonding and buffering at the same time, improving the buffering performance of the supporting component.
  • a second adhesive layer is bonded between adjacent laminated layers, and the modulus of the second adhesive layer is between two adjacent laminated layers, so that the second adhesive layer and the support assembly
  • the stacking sequence along the modulus is formed between the other laminated layers of the other layers, so that the second adhesive layer can fully exert its buffering capacity while playing the role of bonding, and improve the buffering performance of the supporting component.
  • the second aspect of the present application provides a display module, which includes any support assembly provided in the present application.
  • the third aspect of the present application provides an electronic device, which includes any display module provided in the present application.
  • FIG. 1 is a schematic structural diagram of a display module in the prior art
  • FIG. 2 is a schematic structural diagram of another display module in the prior art
  • FIG. 3 is a schematic structural diagram of a display module provided in an embodiment of the present application.
  • Fig. 4 is the schematic diagram of the interface mechanics model on which the embodiment of the present application is based;
  • Fig. 5 is the graph drawn according to Fig. 4.
  • Fig. 6 is a schematic structural diagram of the first group of experimental groups provided in the embodiments of the present application.
  • FIG. 7 is a schematic structural diagram of the second group of experimental groups provided in the embodiments of the present application.
  • Figure 8 is a schematic structural diagram of the first group of control groups provided in the embodiments of the present application.
  • Fig. 9 is a schematic structural diagram of the third group of experimental groups provided in the embodiments of the present application.
  • Figure 10 is a schematic structural diagram of the second group of control groups provided in the embodiment of the present application.
  • Figure 11 is a schematic structural diagram of the third group of control groups provided in the embodiment of the present application.
  • Figure 12 is a schematic structural diagram of the fourth group of control groups provided in the embodiments of the present application.
  • Figure 13 is a schematic structural diagram of the fifth group of control groups provided in the embodiment of the present application.
  • Figure 14 is a schematic structural diagram of the sixth group of control groups provided in the embodiment of the present application.
  • Fig. 15 is an actual measured line diagram of the laminate thickness distribution principle provided by the embodiment of the present application.
  • Fig. 16 is a schematic diagram of the laminated stacking structure of the first type of support assembly provided by the embodiment of the present application.
  • Fig. 17 is a schematic diagram of the laminated stacking structure of the second support assembly provided by the implementation of the present application.
  • Fig. 18 is a schematic diagram of the laminated stacking structure of the third support assembly provided by the implementation of the present application.
  • FIG. 19 is a schematic diagram of the stacked structure of the fourth type of support assembly provided by the implementation of the present application.
  • An embodiment of the present application provides an electronic device, which may be a common mobile terminal such as a mobile phone, a tablet computer, or a wearable device, and includes a display module for displaying text, images, or videos.
  • a common mobile terminal such as a mobile phone, a tablet computer, or a wearable device
  • a display module for displaying text, images, or videos.
  • the display module provided by the embodiment of the present application includes a display screen 1 , a screen cover 2 and a support assembly 3 .
  • the display screen 1 is used for displaying images, text or video, etc.
  • the display screen 1 can be a flexible screen or a rigid screen.
  • the display screen 1 can be an organic light emitting diode (that is, Organic Light Emitting Diode, abbreviated as OLED) display screen 1, an active matrix organic light emitting diode or an active matrix Organic light-emitting diode (ie active-matrix organiclight-emitting diode, abbreviated as AMOLED) display 1, mini light-emitting diode (ie mini organic light-emitting diode) display 1, micro light-emitting diode (ie micro organic light-emitting diode) Display 1, micro organic light emitting diode (ie micro organic light-emitting diode) display 1, quantum dot light emitting diodes (ie quantum dot light emitting diodes, abbreviated as QLED) display 1 or liquid crystal display 1 (ie Liquid Crystal Display , abbreviated as LCD), etc.; the screen cover 2 covers the light-transmitting side of the display 1 to improve the flatness of the surface of the display 1, the screen cover, the
  • the support component 3 is used as the protective layer on the back of the display screen 1, which directly affects the impact of the steps, openings, adhesive tape, foam edges, etc. in the middle frame of the whole machine on the back of the display screen 1 when the electronic device is dropped, and the cushioning capacity of the support component 3. Insufficiency will lead to failure phenomena such as broken bright spots or black spots when the electronic device is dropped. Therefore, the structural optimization of the support component 3 has become one of the important improvement directions to improve the impact resistance of the display module.
  • the supporting component 3 can adopt a multi-layer metal composite structure, and the layers of metal are bonded by adhesives such as pressure sensitive adhesive (that is, pressure sensitive adhesive, abbreviated as PSA) or grid glue (that is, Embossing, abbreviated as EMBO).
  • PSA pressure sensitive adhesive
  • EMBO grid glue
  • the supporting component 3 is formed by stacking and compounding the first metal layer, the second metal layer and the third metal layer, the first metal layer is Al, the second metal layer is SUS, the third metal layer is Al, and the first metal layer is Between the metal layer and the second metal layer and between the second metal layer and the third metal layer are bonded by pressure-sensitive adhesive or grid glue, that is to say, there is no polymer cushioning material in the supporting component 3, and it is entirely by metal Hard support to resist impact and extrusion. The metal stiffness of this structure is too high, and it cannot be bent under normal circumstances.
  • the support assembly 3 can adopt a laminated structure composed of multiple materials, for example, the support assembly 3 is composited with various materials such as foam, polyimide (Polyimide, abbreviated as PI) or copper (Cu), and Use adhesives for interface bonding.
  • foam polyimide
  • PI polyimide
  • Cu copper
  • Use adhesives for interface bonding Use the rigidity of Cu to resist impact and reduce the pressure; use foam to absorb dynamic impact and absorb the impact energy.
  • each layer can be, for example, the support assembly 3 includes a first stack, a second stack and a third stack, the first stack is PI, the thickness of the first stack is 20 ⁇ m, and the second stack
  • the layer is foam, the thickness of the second laminate is 80 ⁇ m to 150 ⁇ m, the third laminate is metal, and the thickness of the third laminate is 30 ⁇ m to 70 ⁇ m, between the first laminate and the second laminate and the second laminate It is bonded with the third layer by pressure-sensitive adhesive or grid adhesive, and the thickness of the pressure-sensitive adhesive or grid adhesive is 15 ⁇ m to 60 ⁇ m.
  • This structure is a compound structure of various materials, and the thickness is relatively thick, generally 0.24mm-0.26mm, which is not conducive to the thinning of the whole machine, and the buffer capacity is insufficient.
  • the buffer capacity of falling balls is 40cm-50cm, especially the stacking of each layer The order is not fixed, and the thickness of each stack is not clear, so the cushioning capacity of the support assembly 3 has a large variation range, and it is difficult to give full play to the cushioning capacity of each stack.
  • the embodiment of the present application provides a support assembly 3, which includes at least two laminated layers, and the modulus of each laminated layer gradually increases along the direction away from the display screen 1, that is to say , each laminate is arranged in a stacking scheme in order of modulus. The closer to the display screen 1, the smaller the modulus and the easier it is to deform.
  • the falling ball buffering capacity of each stack can be fully exerted as much as possible, reducing the transmission of impact energy to the next layer, thereby reducing the thickness of the support assembly 3.
  • the falling ball buffering capacity of the support assembly 3 since the lamination of the support assembly 3 can be made of lighter materials, and the thickness of the support assembly 3 is small, the weight of the support assembly 3 can be reduced.
  • Figure 4 is a schematic diagram of the interface mechanics model on which the embodiment of the present application is based, wherein the laminate includes layer A and layer B, the thickness of layer A is H 1 , Poisson's ratio is ⁇ 1 , and the modulus is E 1 , The thickness of layer B is H 2 , Poisson's ratio is ⁇ 2 , and the modulus is E 2 .
  • Figures 6 to 14 are part of the experimental groups and control groups that have been tested to verify the above conclusions, and each experimental group or control group is the average value of the test results of a group of samples.
  • Figure 6 adopts the order of modulus, and along the direction away from the display screen 1, each stack is EMBO+FOAM+PI+Cu, and the cushioning capacity of falling balls is 31mm after testing
  • Figure 7 also adopts the order of modulus , the difference between Figure 7 and Figure 6 is that the PI layer is removed, that is, along the direction away from the display screen 1, each stack is EMBO+FOAM+Cu in sequence, and the buffering capacity of the falling ball is 31.3mm after testing
  • Figure 8 does not use the modulus Sequence, the difference between Figure 8 and Figure 6 is that the PI layer is closest to the display screen 1, that is, along the direction away from the display screen 1, each laminated layer is PI+EMBO+FOAM+Cu in turn, and the buffering capacity of falling balls is 30mm after testing
  • Figure 9 also adopts the order of
  • Figure 10 and Figure 9 The area of Figure 10 and Figure 9 is that the order of the two stacks is exchanged, that is, along the direction away from the display screen 1, each stack is Cu+EMBO in turn, and the ball dropped after the test
  • the cushioning capacity is 15mm;
  • Figure 11 does not use the order of modulus, along the direction away from the display screen 1, the stacking order is METAL+PSA+METAL, and the cushioning capacity of the falling ball is 12mm after testing;
  • Figure 12 does not use the order of modulus , along the direction away from the display screen 1, the stacking sequence is METAL+FOAM+METAL, and the buffering capacity of the falling ball is 24mm after testing;
  • Figure 13 does not adopt the order of modulus, along the direction away from the display screen 1, each stacking layer The sequence is FOAM+METAL+FOAM, and the ball-falling cushioning capacity is 20mm after testing;
  • Figure 14 does not adopt the order of modulus, along the direction away from the display screen 1, each stacking sequence is FOAM+PET+
  • support assembly 3 comprises at least one buffer layer and at least one support layer, the modulus of buffer layer is less than the modulus of support layer, buffer layer and support layer are arranged along the direction away from display screen 1; It is made of high-quality materials to increase the strength of the outer surface of the support component 3 and prevent damage such as scratches on the outer surface of the support component 3, and through the support layer that is not easy to deform, the impact energy can be evenly dispersed, thereby reducing the buffer The impact strength received by the layer; the buffer layer is made of a material with a lower modulus, and the buffer layer absorbs impact energy through elastic deformation, thereby reducing the impact energy transmitted to the surface of the display screen 1 .
  • the support assembly 3 includes a first buffer layer 32 and a second buffer layer 33, through which the buffer capacity of the support assembly 3 is improved; the modulus of the first buffer layer 32 is smaller than that of the second buffer layer 33 , the first buffer layer 32 and the second buffer layer 33 are arranged along the direction away from the display screen 1, so that the impact energy can be absorbed layer by layer, and the buffer capacity of the first buffer layer 32 and the second buffer layer 33 can be fully exerted.
  • the material of the first buffer layer 32 is foam (FOAM), which has a series of characteristics such as high elasticity, light weight, free bending, ultra-thin volume and reliable performance.
  • the surface of 1 forms an isolation protective effect, which reduces the impact stress on the display screen 1;
  • the material of the second buffer layer 33 is polyurethane (TPU) or silicone gel, and polyurethane and silicone gel can maintain elasticity for a long time within a relatively large stable range , can protect the electronic components from moisture, shock and insulation, and can prolong the effective life of the support component 3 .
  • the support assembly 3 includes a first support layer 34 and a second support layer 35, through the two support layers, the uniformity of impact energy distribution in the support assembly 3 is improved to avoid excessive local pressure; the first support layer 34
  • the modulus is smaller than the modulus of the second support layer 35, and the first support layer 34 and the second support layer 35 are arranged along the direction away from the display screen 1, so that the impact can be evenly distributed layer by layer, and the first support layer 34 can be fully utilized.
  • the cushioning capacity of the second supporting layer 35 is the cushioning capacity of the second supporting layer 35.
  • the material of the first support layer 34 is polyester (PET), glass fiber or polyimide (PI), that is to say, the material of the first support layer 34 is a hard polymer material, which can form The reliable supporting function can also reduce weight; the material of the second supporting layer 35 is metal to form a surface with high strength and prevent the surface of the supporting component 3 from being scratched.
  • PET polyester
  • PI polyimide
  • the support assembly 3 also includes a first adhesive layer 31, the first adhesive layer 31 is located on the surface of the support assembly 3 close to the display screen 1, the modulus of the first adhesive layer 31 is smaller than the modulus of other laminated layers, that is to say The support assembly 3 is bonded to the surface of the display screen 1 through the first adhesive layer 31 with high elasticity, so that the first adhesive layer 31 can play the role of bonding and cushioning at the same time, improving the cushioning performance of the support assembly 3 .
  • the second adhesive layer 36 is bonded between adjacent laminated layers, and the modulus of the second adhesive layer 36 is between two adjacent laminated layers, so that the second adhesive layer 36 and other laminated layers of the support assembly 3
  • the stacking order of the modulus is formed between the layers, so that the second adhesive layer 36 can fully exert its cushioning capacity while playing the role of bonding, and improve the cushioning performance of the supporting component 3 .
  • the thickness of the support component 3 is 0.1mm-0.3mm, for example, the thickness of the support component 3 can be 0.1mm, 0.11mm, 0.12mm, 0.13mm, 0.14mm, 0.15mm, 0.16mm, 0.17mm, 0.18mm . , and can keep the thickness of the whole machine small, so as to realize the demand of thinning and weight reduction of the whole machine.
  • the thickness of the support assembly 3 is less than 0.1mm, the thickness of the support assembly 3 is too small, and each laminate has a smaller thickness, resulting in a smaller linear superposition of the single ball drop ability of each laminate, so that the actual strength of the support assembly 3
  • the falling ball ability is difficult to meet the requirements; when the thickness of the supporting component 3 is greater than 0.3mm, although the supporting component 3 can have a high buffering capacity for falling balls, but the thickness is too thick, which will increase the thickness and weight of the whole machine, and it is difficult to reduce the thickness and weight of the whole machine demand.
  • each lamination of the supporting assembly 3 is the first layer of EMB, the second layer of FOAM, and the third layer of Cu; After each allocation, calculate the linear superposition of each layer of monomer drop ball capacity (denoted as monomer superposition prediction value), and measure the ball drop capacity of support assembly 3 (recorded as experimental value); find out multiple different thickness distributions
  • the single superimposed predicted value is the closest group to the experimental value, and a line graph is drawn as shown in Figure 15.
  • the upper limit of the ball falling buffer capacity of the support component 3 is approximately equal to the linear superposition of the ball drop capacity of the individual materials of each layer, that is, the ball drop capacity of the support component 3 ⁇ the linear superposition of the single ball drop capacity of each layer, thus, The principle of layer thickness allocation is formed.
  • the thickness of each layer is allocated according to this formula, so as to realize the optimal design of the buffering capacity of falling balls.
  • the linear superposition of the ball drop ability of each layer means that the energy absorbed by the stack ⁇ the linear superposition of the energy that each layer can absorb, which means that the buffer capacity of each layer is maximized, and the energy of each layer is absorbed It is completely absorbed and will not be transmitted to the next layer, so that the impact energy cannot be transmitted to the display screen 1, and will not cause damage such as rupture of the display screen 1.
  • this application optimizes the material and thickness distribution.
  • the thickness is reduced by 40% (for example, the thickness is reduced from 0.26 to 0.16), and the buffer capacity is increased by 60% (for example, The cushioning capacity is reduced from 55cm to 88cm), and the weight is reduced by 15%.
  • the cushioning capacity is improved, which greatly improves the reliability competitiveness of the screen, so as to overcome the low reliability of the existing solutions question.
  • the thickness distribution of each stack can be determined by the following method: Step S1, randomly assigning the thickness of each stack, and calculating the linear superposition of the ball drop ability of each stack. Step S2, test the actual ball-dropping ability of the support assembly 3, and compare whether the actual ball-dropping ability is close to the linear superposition of the ball-dropping abilities of each stack (the close range can be set according to the actual cushioning capacity requirements, for example, ⁇ 0.5mm , ⁇ 1mm, ⁇ 1.5mm, ⁇ 2mm, ⁇ 2.5mm or ⁇ 3mm, etc.).
  • Step S3 when the actual ball dropping ability is close to the linear superposition of the ball falling ability of each layer, it is determined that the thickness distribution of the layer meets the requirements, and the experiment is terminated; when the actual ball falling ability is not close to the linear superposition of the ball falling ability of each layer, it is determined that the If the stack thickness distribution does not meet the requirements, go to step S4.
  • Step S4 adjusts the thickness of each laminated layer, and repeats steps S1 to S3.
  • the laminations of the support assembly 3 along the direction away from the display screen 1 are as follows:
  • OCA/EMBO that is, optical glue/grid glue
  • FOAM that is, foam
  • OCA/EMBO that is, optical glue/network Lattice, used for bonding, with a thickness of 15 ⁇ m to 60 ⁇ m
  • TPU/silicone gel that is, polyurethane/silicone gel, used for buffering, with a thickness of 50 ⁇ m to 150 ⁇ m
  • OCA/EMBO that is, optical glue/grid glue , used for bonding, its thickness is 15 ⁇ m ⁇ 60 ⁇ m
  • PET/glass fiber/PI namely polyester/glass fiber/polyimide, a relatively hard polymer film material, used for support, its thickness is 20 ⁇ m ⁇ 100 ⁇ m
  • OCA/EMBO that is, optical glue/grid glue, is used for bonding, and its thickness is 15 ⁇ m to 60 ⁇
  • the stacking order of the laminates satisfies the sequential modulus order, and the specific distribution of the thickness of each layer can be carried out according to the distribution principle of the laminate thickness.
  • the number of stacked layers of the support component 3 can be 2 layers, 3 layers, 4 layers... , and so on, as long as the stacking of each laminate satisfies the order of modulus.
  • some optional implementations are as follows:
  • the laminations of the support assembly 3 along the direction away from the display screen 1 are as follows:
  • OCA/EMBO that is, optical glue/grid glue
  • its thickness is 100 ⁇ m to 200 ⁇ m
  • metal is used for support, and its thickness is 30 ⁇ m to 70 ⁇ m.
  • the stacking order of the laminates satisfies the sequential modulus order, and the specific distribution of the thickness of each layer can be carried out according to the distribution principle of the laminate thickness.
  • the laminations of the support assembly 3 along the direction away from the display screen 1 are as follows:
  • OCA/EMBO that is, optical glue/grid glue
  • TPU/silicone gel that is, polyurethane/silicone gel, is used for buffering, and its thickness is 50 ⁇ m to 150 ⁇ m
  • EMBO that is, optical glue/grid glue, is used for bonding, and its thickness is 15 ⁇ m to 60 ⁇ m
  • metal is used for support, and its thickness is 30 ⁇ m to 70 ⁇ m.
  • the stacking order of the laminates satisfies the sequential modulus order, and the specific distribution of the thickness of each layer can be carried out according to the distribution principle of the laminate thickness.
  • the laminations of the support assembly 3 along the direction away from the display screen 1 are as follows:
  • OCA/EMBO that is, optical glue/grid glue
  • TPU/silicone gel that is, polyurethane/silicone gel, is used for buffering, and its thickness is 50 ⁇ m to 150 ⁇ m
  • metal For support, its thickness is 30 ⁇ m to 70 ⁇ m.
  • the metal is integrally formed with the TPU/silicone gel, eliminating the need for adhesives for bonding.
  • the stacking order of the laminates satisfies the sequential modulus order, and the specific distribution of the thickness of each layer can be carried out according to the distribution principle of the laminate thickness.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)

Abstract

一种支撑组件(3)、显示模组和电子设备。支撑组件(3)用于支撑显示屏(1),支撑组件(3)包括至少两个叠层,沿着远离显示屏(1)的方向,各叠层的模量逐渐增大,可减小支撑组件(3)的厚度和重量,并提升支撑组件(3)的落球缓冲能力。

Description

支撑组件、显示模组及电子设备
本申请要求于2021年06月18日提交中国专利局、申请号为202110675446.4、发明名称为“支撑组件、显示模组及电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电子设备技术领域,尤其涉及一种支撑组件、显示模组及电子设备。
背景技术
直板机采用柔性有机发光二极管(即Organic Light Emitting Diode,缩写为OLED)显示屏,相比于液晶显示屏(即Liquid Crystal Display,缩写为LCD)或硬质OLED显示屏,显示触控层的抗冲击强度大幅下降,跌落或挤压下的断裂失效风险大幅增高。根本原因是,OLED背面支撑组件(即Super Clean Film,缩写为SCF)缓冲能力不足,跌落时整机中框台阶、开孔、背胶、泡棉边缘等对显示屏背面产生冲击,导致OLED层破裂,产生碎亮点或黑斑等失效现象。未来行业整体趋势朝向手机轻薄化的方向发展,对显示模组提出新需求:1.支撑组件减薄、减重;2.屏幕与中框间隙减小,支撑组件缓冲能力需提升,要求落球缓冲能力>55cm。
申请内容
本申请提供了一种支撑组件、显示模组及电子设备,以减小支撑组件的厚度和重量,并提升支撑组件的落球缓冲能力。
本申请的第一方面提供了一种支撑组件,用于支撑显示屏,所述支撑组件包括至少两个叠层,沿着远离显示屏的方向,各所述叠层的模量逐渐增大。
上述支撑组件用于支撑显示屏,支撑组件包括至少两个叠层,沿着远离显示屏的方向,各叠层的模量逐渐增大,也就是说,各叠层采用顺模量次序的堆叠方案进行排列,越靠近显示屏的叠层的模量越小,越容易发生变形,越远离显示屏的叠层的模量越大,越不容易发生变形;当支撑组件收到冲击时,远离显示屏的叠层首先受到冲击,远离显示屏的叠层仅发生微弱的变形吸收冲击能量,延缓冲击能量向下一叠层的传递,充分发挥该叠层的落球缓冲能力,然后将剩余的能量均匀分散并传递至下一个叠层,减小下一个叠层受到的冲击,从而进一步延缓冲击能量的传递,充分发挥下一个叠层的落球缓冲能力,由此,使每一个叠层的落球缓冲能力均能够尽可能充分发挥作用,减小冲击能量向下一层的传递,从而可以在减小支撑组件厚度的情况下,提升支撑组件的落球缓冲能力;由于支撑组件的叠层可以选用重量较轻的材料,而且支撑组件的厚度较小,因此,可以减小支撑组件的重量。
可选地,所述支撑组件的落球能力与各所述叠层的单体落球能力之间的关系满足以下关系式:所述支撑组件的落球能力≈各所述叠层的单体落球能力线性叠加,在支撑组件3的总厚度确定的情况下,根据此公式对各个叠层的厚度进行分配,可以实现落球缓冲能力的最优化设计。
可选地,各所述叠层的单体落球能力线性叠加-2mm≤所述支撑组件的落球能力≤各所述叠层的单体落球能力线性叠加+2mm,也就是说,支撑组件3的落球能力在各叠层单体落球能力线性叠加的正负2mm范围以内即可,既能够实现支撑组件3缓冲能力的优化设计,又能够避免实验次数过多,增加时间成本和生产成本。
可选地,所述支撑组件的厚度为0.1mm~0.3mm,既能够使支撑组件3的落球缓冲能力满足要求,又能够使整机保持较小的厚度,实现整机减薄减重的需求。
可选地,所述支撑组件包括至少一个缓冲层和至少一个支撑层,所述缓冲层的模量小于所述支撑层的模量,所述缓冲层与所述支撑层沿着远离所述 显示屏的方向排列;支撑层采用模量较高的材料制成,以增加支撑组件3外表面的强度,防止支撑组件3的外表面发生划伤等损坏,而且通过不易变形的支撑层,使冲击能量能够均匀分散,从而减小缓冲层收到的冲击强度;缓冲层采用模量较低的材料制成,缓冲层通过弹性变形吸收冲击能量,从而减小传递至显示屏1表面的冲击能量。
可选地,所述支撑组件包括第一缓冲层和第二缓冲层,所述第一缓冲层的模量小于所述第二缓冲层的模量,所述第一缓冲层与所述第二缓冲层沿着远离所述显示屏的方向排列,通过两个缓冲层,提高支撑组件的缓冲能力;第一缓冲层的模量小于第二缓冲层的模量,第一缓冲层与第二缓冲层沿着远离显示屏的方向排列,使冲击能量能够逐层吸收,充分发挥第一缓冲层和第二缓冲层的缓冲能力。
可选地,所述第一缓冲层的材料为泡棉,泡棉具有弹性大、重量轻、弯曲自如、体积超薄和性能可靠等一系列特点,通过泡棉在支撑组件靠近显示屏的表面形成隔离防护作用,减小显示屏受到的冲击应力。
可选地,所述第二缓冲层的材料为聚氨酯或硅凝胶,聚氨酯和硅凝胶能够在较大稳定范围内长期保持弹性,能够对电子元件起到防潮、防震及绝缘保护作用,可以延长支撑组件的有效寿命。
可选地,所述支撑组件包括第一支撑层和第二支撑层,所述第一支撑层的模量小于所述第二支撑层的模量,所述第一支撑层与所述第二支撑层沿着远离所述显示屏的方向排列,通过两个支撑层,提高冲击能量在支撑组件内分布的均匀性,避免局部压强过大;第一支撑层的模量小于第二支撑层的模量,第一支撑层与第二支撑层沿着远离显示屏的方向排列,使冲击能够逐层均匀分布,又能够充分发挥第一支撑层和第二支撑层的缓冲能力。
可选地,所述第一支撑层的材料为聚酯、玻纤或聚酰亚胺,也就是说,第一支撑层的材料选用较硬的高分子材料,既能够形成可靠的支撑作用,又能够起到减重的效果。
可选地,所述第二支撑层的材料为金属,以形成强度较高的表面,防止支撑组件的表面划伤。
可选地,所述支撑组件还包括第一胶层,所述第一胶层位于所述支撑组件靠近所述显示屏的表面,所述第一胶层的模量小于其他各所述叠层的模量,也就是说,支撑组件通过弹性较大的第一胶层粘接于显示屏的表面,使第一胶层能够同时起到粘接和缓冲的作用,提高支撑组件的缓冲性能。
可选地,相邻所述叠层之间通过第二胶层粘接,所述第二胶层的模量介于相邻两个所述叠层之间,使第二胶层与支撑组件的其他叠层之间形成顺模量的堆叠次序,使第二胶层在起到粘接作用的同时,其缓冲能力也能够充分发挥,提高支撑组件的缓冲性能。
本申请的第二方面提供了一种显示模组,其包括本申请提供的任意一种支撑组件。
本申请的第三方面提供了一种电子设备,其包括本申请提供的任意一种显示模组。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性的,并不能限制本申请。
附图说明
图1为现有技术中一种显示模组的结构示意图;
图2为现有技术中另一种显示模组的结构示意图;
图3为本申请实施例提供的显示模组的结构示意图;
图4为本申请实施例所依据的界面力学模型示意图;
图5为根据图4绘制的曲线图;
图6为本申请实施例提供的第一组实验组的结构示意图;
图7为本申请实施例提供的第二组实验组的结构示意图;
图8为本申请实施例提供的第一组对照组的结构示意图;
图9为本申请实施例提供的第三组实验组的结构示意图;
图10为本申请实施例提供的第二组对照组的结构示意图;
图11为本申请实施例提供的第三组对照组的结构示意图;
图12为本申请实施例提供的第四组对照组的结构示意图;
图13为本申请实施例提供的第五组对照组的结构示意图;
图14为本申请实施例提供的第六组对照组的结构示意图;
图15为本申请实施例提供的叠层厚度分配原则的实测折线图;
图16为本申请实施例提供的第一种支撑组件的叠层堆叠结构示意图;
图17为本申请实施了提供的第二种支撑组件的叠层堆叠结构示意图;
图18为本申请实施了提供的第三种支撑组件的叠层堆叠结构示意图;
图19为本申请实施了提供的第四种支撑组件的叠层堆叠结构示意图。
附图标记:
1-显示屏;
2-盖板;
3-支撑组件;
31-第一胶层;
32-第一缓冲层;
33-第二缓冲层;
34-第一支撑层;
35-第二支撑层;
36-第二胶层。
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本申请的实施例,并与说明书一起用于解释本申请的原理。
具体实施方式
为了更好的理解本申请的技术方案,下面结合附图对本申请实施例进行详细描述。
在本申请实施例中使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请。在本申请实施例和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。
应当理解,本文中使用的术语“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
需要注意的是,本申请实施例所描述的“上”、“下”、“左”、“右”等方位词是以附图所示的角度来进行描述的,不应理解为对本申请实施例的限定。此外,在上下文中,还需要理解的是,当提到一个元件连接在另一个元件“上”或者“下”时,其不仅能够直接连接在另一个元件“上”或者“下”,也可以通过中间元件间接连接在另一个元件“上”或者“下”。
本申请实施例提供了一种电子设备,该电子设备可以为手机、平板电脑或可穿戴设备等常见的移动终端,其包括显示模组,显示模组用于显示文字、图像或视频等。
本申请实施例提供的显示模组包括显示屏1、屏幕盖板2和支撑组件3。显示屏1用于显示图像、文字或视频等。显示屏1可以为柔性屏,也可以为刚性屏,例如,显示屏1可以为有机发光二极管(即Organic Light Emitting Diode,缩写为OLED)显示屏1,有源矩阵有机发光二极体或主动矩阵有机发光二极体(即active-matrix organiclight-emitting diode,缩写为AMOLED)显示屏1,迷你发光二极管(即mini organic light-emittingdiode)显示屏1,微型发光 二极管(即micro organic light-emitting diode)显示屏1,微型有机发光二极管(即micro organic light-emitting diode)显示屏1,量子点发光二极管(即quantum dot light emitting diodes,缩写为QLED)显示屏1或液晶显示屏1(即Liquid Crystal Display,缩写为LCD)等;屏幕盖板2覆盖于显示屏1的透光侧,以提高显示屏1表面的平整性,屏幕盖板2对显示屏1形成保护作用,屏幕盖板2具有透光性,可以透过屏幕盖板2看到显示屏1上显示的图案;支撑组件3设置于显示屏1的背光侧,用于支撑显示屏1,也就是说,支撑组件3设置于显示屏1背离屏幕盖板2的一侧,支撑组件3对显示屏1起到支撑作用和保护作用。
其中,支撑组件3作为显示屏1背面的保护层,直接影响电子设备跌落时整机中框台阶、开孔、背胶、泡棉边缘等对显示屏1背面产生冲击,支撑组件3的缓冲能力不足会导致电子设备跌落时产生碎亮点或黑斑等失效现象因此,支撑组件3的结构优化成为改善显示模组抗冲击性能的重要改进方向之一。
参考图1,支撑组件3可以采用多层金属复合的结构,各层金属之间通过压敏胶(即pressure sensitive adhesive,缩写为PSA)或网格胶(即Embossing,缩写为EMBO)等胶粘剂进行粘接,例如,支撑组件3由第一金属层、第二金属层和第三金属层叠加复合形成,第一金属层为Al,第二金属层为SUS,第三金属层为Al,第一金属层和第二金属层之间以及第二金属层和第三金属层之间通过压敏胶或网格胶粘接,也就是说,支撑组件3中不设置高分子缓冲材料,完全靠金属的硬度支撑来抗冲击和挤压。这种结构金属刚度过高,一般情况下无法弯折,弯折后反弹力极大,因此无法用于曲面手机;而且由于完全依靠金属刚度抵抗变形,而不存在吸收能量的缓冲材料,导致缓冲能力不足;此外,由于金属重量极重,不利于整机减重。
参考图2,支撑组件3可以采用多种材料复合的叠层结构,例如,支撑组件3采用泡棉、聚酰亚胺(Polyimide,缩写为PI)或铜(Cu)等多种材料复合,并使用胶粘剂进行界面粘接。利用Cu的刚度抵抗冲击,将压强减小;利 用泡棉吸收动态冲击,将冲击能量吸收。各层的典型厚度和堆叠方案例如可以为,支撑组件3包括第一叠层、第二叠层和第三叠层,第一叠层为PI、第一叠层的厚度为20μm,第二叠层为泡棉、第二叠层的厚度为80μm~150μm,第三叠层为金属、第三叠层的厚度为30μm~70μm,第一叠层与第二叠层之间以及第二叠层与第三叠层之间通过压敏胶或网格胶粘接,压敏胶或网格胶的厚度为压15μm~60μm。这种结构为多种材料复合的结构,厚度较厚,一般为0.24mm~0.26mm,对整机减薄不利,而且缓冲能力不足,落球缓冲能力为40cm~50cm,特别是各叠层的堆叠顺序并不固定,而且每一个叠层的厚度也不明确,因此导致支撑组件3的缓冲能力存在较大的变化范围,难以充分发挥各叠层的缓冲能力。
如图3所示,本申请实施例提供了一种支撑组件3,支撑组件3包括至少两个叠层,沿着远离显示屏1的方向,各叠层的模量逐渐增大,也就是说,各叠层采用顺模量次序的堆叠方案进行排列,越靠近显示屏1的叠层的模量越小,越容易发生变形,越远离显示屏1的叠层的模量越大,越不容易发生变形;当支撑组件3收到冲击时,远离显示屏1的叠层首先受到冲击,远离显示屏1的叠层仅发生微弱的变形吸收冲击能量,延缓冲击能量向下一叠层的传递,充分发挥该叠层的落球缓冲能力,然后将剩余的能量均匀分散并传递至下一个叠层,减小下一个叠层受到的冲击,从而进一步延缓冲击能量的传递,充分发挥下一个叠层的落球缓冲能力,由此,使每一个叠层的落球缓冲能力均能够尽可能充分发挥作用,减小冲击能量向下一层的传递,从而可以在减小支撑组件3厚度的情况下,提升支撑组件3的落球缓冲能力;由于支撑组件3的叠层可以选用重量较轻的材料,而且支撑组件3的厚度较小,因此,可以减小支撑组件3的重量。
如图4所示为本申请实施例所依据的界面力学模型示意图,其中,叠层包括A层和B层,A层的厚度为H 1,泊松比为μ 1,模量为E 1,B层的厚度为H 2,泊松比为μ 2,模量为E 2。根据图4可知,A、B两层在界面处的剪切应变满足ε xy1=ε xy2, 由泊松比可以求得ε z2=μ 1ε z12;运动学方程为H 11/dt+H 22/dt=vt,动力学方程为σ 1dt=mdv,解变为:
Figure PCTCN2022093744-appb-000001
Figure PCTCN2022093744-appb-000002
由此可知,E 2/E 1越小,μ 21越大,H 2/H 1越大,B层受力越小。
根据上述结论绘制曲线图如图5所示,其中,H1=H2,μ 1=μ 2。根据图5可得出结论,各叠层结构满足顺模量次序时,显示屏1受到的应力最小。
图6-图14为对上述结论进行实测验证的部分实验组和对照组,每个实验组或对照组为一组样品测试结果的平均值。其中,图6采用顺模量的次序,沿着远离显示屏1的方向,各叠层依次为EMBO+FOAM+PI+Cu,经测试落球缓冲能力为31mm;图7也采用顺模量的次序,图7与图6的区别在于去除PI层,即沿着远离显示屏1的方向,各叠层依次为EMBO+FOAM+Cu,经测试落球缓冲能力为31.3mm;图8未采用顺模量次序,图8与图6的区别在于,PI层最靠近显示屏1,即沿着远离显示屏1的方向,各叠层依次为PI+EMBO+FOAM+Cu,经测试落球缓冲能力为30mm;图9也采用顺模量的次序,图9与图6的区别在于去除FOAM层和PI层,即沿着远离显示屏1的方向,各叠层依次为EMBO+Cu,经测试落球缓冲能力为20mm;图10未采用顺模量次序,图10与图9的区域在于,交换两个叠层的顺序,即沿着远离显示屏1的方向,各叠层依次为Cu+EMBO,经测试落球缓冲能力为15mm;图11未采用顺模量次序,沿着远离显示屏1的方向,各叠层次序为METAL+PSA+METAL,经测试落球缓冲能力为12mm;图12未采用顺模量次序,沿着远离显示屏1的方向,各叠层次序为METAL+FOAM+METAL,经测试落球缓冲能力为24mm;图13未采用顺模量次序,沿着远离显示屏1的方向,各叠层次序为FOAM+METAL+FOAM,经测试落球缓冲能力为20mm;图14未采用顺模量次序,沿着远离显示屏1的方向,各叠层次序为FOAM+PET+FOAM,经测试落球缓 冲能力为30mm。
根据实测验证结果可知,各叠层结构满足顺模量次序时,落球缓冲能力最高,即显示屏1受到的应力最小,顺模量次序的叠层堆叠结构适用于两层、三层、四层等多层的堆叠结构设计,实测与理论结论一致。
具体地,根据图11-图14可知,未采用顺模量次序的叠层结构的落球缓冲能力不足,一般在30mm以内;将图6-图8的测试结果对比,将图9和图10的测试结果对比,可以得出,厚度相同时,采用顺模量堆叠次序可以提高落球缓冲能力;根据图6和图7的对比可知,采用顺模量次序时,通过选择合理的材料种类进行匹配,可以在减小支撑组件3厚度的同时,提升支撑组件3的落球缓冲能力。
继续参考图3,支撑组件3包括至少一个缓冲层和至少一个支撑层,缓冲层的模量小于支撑层的模量,缓冲层与支撑层沿着远离显示屏1的方向排列;支撑层采用模量较高的材料制成,以增加支撑组件3外表面的强度,防止支撑组件3的外表面发生划伤等损坏,而且通过不易变形的支撑层,使冲击能量能够均匀分散,从而减小缓冲层收到的冲击强度;缓冲层采用模量较低的材料制成,缓冲层通过弹性变形吸收冲击能量,从而减小传递至显示屏1表面的冲击能量。
进一步地,支撑组件3包括第一缓冲层32和第二缓冲层33,通过两个缓冲层,提高支撑组件3的缓冲能力;第一缓冲层32的模量小于第二缓冲层33的模量,第一缓冲层32与第二缓冲层33沿着远离显示屏1的方向排列,使冲击能量能够逐层吸收,充分发挥第一缓冲层32和第二缓冲层33的缓冲能力。
进一步地,第一缓冲层32的材料为泡棉(FOAM),泡棉具有弹性大、重量轻、弯曲自如、体积超薄和性能可靠等一系列特点,通过泡棉在支撑组件3靠近显示屏1的表面形成隔离防护作用,减小显示屏1受到的冲击应力;第二缓冲层33的材料为聚氨酯(TPU)或硅凝胶,聚氨酯和硅凝胶能够在较大稳定范围内长期保持弹性,能够对电子元件起到防潮、防震及绝缘保护作用,可 以延长支撑组件3的有效寿命。
进一步地,支撑组件3包括第一支撑层34和第二支撑层35,通过两个支撑层,提高冲击能量在支撑组件3内分布的均匀性,避免局部压强过大;第一支撑层34的模量小于第二支撑层35的模量,第一支撑层34与第二支撑层35沿着远离显示屏1的方向排列,使冲击能够逐层均匀分布,又能够充分发挥第一支撑层34和第二支撑层35的缓冲能力。
进一步地,第一支撑层34的材料为聚酯(PET)、玻纤或聚酰亚胺(PI),也就是说,第一支撑层34的材料选用较硬的高分子材料,既能够形成可靠的支撑作用,又能够起到减重的效果;第二支撑层35的材料为金属,以形成强度较高的表面,防止支撑组件3的表面划伤。
进一步地,支撑组件3还包括第一胶层31,第一胶层31位于支撑组件3靠近显示屏1的表面,第一胶层31的模量小于其他各叠层的模量,也就是说,支撑组件3通过弹性较大的第一胶层31粘接于显示屏1的表面,使第一胶层31能够同时起到粘接和缓冲的作用,提高支撑组件3的缓冲性能。
进一步地,相邻叠层之间通过第二胶层36粘接,第二胶层36的模量介于相邻两个叠层之间,使第二胶层36与支撑组件3的其他叠层之间形成顺模量的堆叠次序,使第二胶层36在起到粘接作用的同时,其缓冲能力也能够充分发挥,提高支撑组件3的缓冲性能。
进一步地,支撑组件3的厚度为0.1mm~0.3mm,例如,支撑组件3的厚度可以为0.1mm、0.11mm、0.12mm、0.13mm、0.14mm、0.15mm、0.16mm、0.17mm、0.18mm、0.19mm、0.20mm、0.21mm、0.22mm、0.23mm、0.24mm、0.25mm、0.26mm、0.27mm、0.28mm、0.29mm或0.3mm等,既能够使支撑组件3的落球缓冲能力满足要求,又能够使整机保持较小的厚度,实现整机减薄减重的需求。当支撑组件3的厚度小于0.1mm时,支撑组件3的厚度过小,各叠层均具有较小的厚度,导致各叠层的单体落球能力线性叠加较小,从而使得支撑组件3的实际落球能力难以满足要求;当支撑组件3的厚度大于0.3mm时,虽然支撑组件3能够具有 较高的落球缓冲能力,但厚度过厚导致整机厚度和重量增加,难以实现整机减薄减重的需求。
为使各个叠层之间的厚度能够合理匹配,在保持厚度不变的情况下,使支撑组件3的落球缓冲能力能够达到最优,本申请实施例按照以下方式进行了实验测试:沿着远离显示屏1的方向,支撑组件3的各个叠层依次为第一层EMB、第二层FOAM、第三层Cu;在支撑组件3总厚度确定的情况下,对各叠层厚度进行若干次不同的分配,每一次分配之后,计算各层单体落球能力的线性叠加(记为单体叠加预测值),实测支撑组件3的落球能力(记为实验值);找出多次不同的厚度分配方式中,单体叠加预测值与实验值最接近的一组,绘制折线图如图15。
其中,一组具体的实验测试结果参见表1,表中支撑组件3的总厚度为0.22mm。根据表1中的数据可知,方案1为单体叠加预测值与实验值最接近的一组,将该组数据绘制在图15中。
表1
Figure PCTCN2022093744-appb-000003
Figure PCTCN2022093744-appb-000004
根据图15可知,支撑组件3的落球缓冲能力的上限,近似等于各层单体材料落球能力的线性叠加,即支撑组件3的落球能力≈各叠层的单体落球能力线性叠加,由此,形成叠层厚度分配原则,在支撑组件3的总厚度确定的情况下,根据此公式对各个叠层的厚度进行分配,可以实现落球缓冲能力的最优化设计。
具体来说,落球能量为重力势能,即E=mgh,其中m为落球质量,g为重力加速度,h为落球高度;由此可见,落球能力与高度呈线性关系,叠层总落球能力≈各层单体落球能力的线性叠加,意味着叠层吸收的能量≈各层单体能够吸收的能量的线性叠加,也就意味着每一层的缓冲能力得到最大发挥,每一层的能量都被完全吸收,不被传递到下一层,从而使得冲击能量无法传递至显示屏1,也就不会引起显示屏1的破裂等损坏。
本申请基于上述叠层厚度分配原则,进行了材料和厚度分配的优化,相比于传统方案实现了厚度降低40%(例如,将厚度从0.26降低为0.16),缓冲能力提升60%(例如,将缓冲能力从55cm降低为88cm),重量降低15%,以此在减薄减重的同时,实现缓冲能力提升,极大提升了屏幕可靠性竞争力,以此克服现有方案的低可靠性问题。
进一步地,在支撑组件3的总厚度确定的情况下,各叠层的厚度分配可以通过以下方法进行确定:步骤S1,随机分配各叠层的厚度,计算各叠层落球能力的线性叠加。步骤S2,测试支撑组件3的实际落球能力,比较该实际落球能力与各叠层落球能力的线性叠加是否接近(该接近的范围可根据实际缓冲能力的需求,进行自行设定,例如±0.5mm、±1mm、±1.5mm、±2mm、±2.5mm或±3mm等)。步骤S3,当实际落球能力与各叠层落球能力的线性叠加接近时,判定该叠层厚度分配符合要求,实验终止;当实际落球能力与各叠层落球能力的线性叠加不接近时,判定该叠层厚度分配不符合要求,进行步骤S4。步骤S4调整各叠层的厚度,并重新进行步骤S1~步骤S3。
在一种实施例中,各叠层的单体落球能力线性叠加-2mm≤支撑组件3的落球能力≤各叠层的单体落球能力线性叠加+2mm,也就是说,支撑组件3的落球能力在各叠层单体落球能力线性叠加的正负2mm范围以内即可,既能够实现支撑组件3缓冲能力的优化设计,又能够避免实验次数过多,增加时间成本和生产成本。
本申请提供的一些具体实施例可参考如下:
实施例一
如图16所示,支撑组件3各叠层沿着远离显示屏1的方向依次为:
OCA/EMBO,即光学胶/网格胶,用于粘接,其厚度为15μm~150μm;FOAM,即泡棉,用于缓冲,其厚度为50μm~180μm;OCA/EMBO,即光学胶/网格胶,用于粘接,其厚度为15μm~60μm;TPU/硅凝胶,即聚氨酯/硅凝胶,用于缓冲,其厚度为50μm~150μm;OCA/EMBO,即光学胶/网格胶,用于粘接,其厚度为15μm~60μm;PET/玻纤/PI,即聚酯/玻纤/聚酰亚胺,较硬的高分子膜材,用于支撑,其厚度为20μm~100μm;OCA/EMBO,即光学胶/网格胶,用于粘接,其厚度为15μm~60μm;金属,用于支撑,其厚度为30μm~70μm。该叠层堆叠次序满足顺模量次序,并且可以按照叠层厚度分配原则进行各层厚度的具体分配。其中,支撑组件3中并非每一层都是必须的,而是根据实际情况可以进行合理的增减,也就是说,支撑组件3的叠层数可以是2层、3层、4层……,以此类推,只要各叠层堆叠满足顺模量次序即可。例如,一些可选的实施例如下:
实施例二
如图17所示,支撑组件3各叠层沿着远离显示屏1的方向依次为:
OCA/EMBO,即光学胶/网格胶,用于粘接,其厚度为100μm~200μm;金属,用于支撑,其厚度为30μm~70μm。该叠层堆叠次序满足顺模量次序,并且可以按照叠层厚度分配原则进行各层厚度的具体分配。
实施例三
如图18所示,支撑组件3各叠层沿着远离显示屏1的方向依次为:
OCA/EMBO,即光学胶/网格胶,用于粘接,其厚度为15μm~150μm;TPU/硅凝胶,即聚氨酯/硅凝胶,用于缓冲,其厚度为50μm~150μm;OCA/EMBO,即光学胶/网格胶,用于粘接,其厚度为15μm~60μm;金属,用于支撑,其厚度为30μm~70μm。该叠层堆叠次序满足顺模量次序,并且可以按照叠层厚度分配原则进行各层厚度的具体分配。
实施例四
如图19所示,支撑组件3各叠层沿着远离显示屏1的方向依次为:
OCA/EMBO,即光学胶/网格胶,用于粘接,其厚度为15μm~150μm;TPU/硅凝胶,即聚氨酯/硅凝胶,用于缓冲,其厚度为50μm~150μm;金属,用于支撑,其厚度为30μm~70μm。其中,金属与TPU/硅凝胶一体成型,从而无需使用胶粘剂进行粘接。该叠层堆叠次序满足顺模量次序,并且可以按照叠层厚度分配原则进行各层厚度的具体分配。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (15)

  1. 一种支撑组件,用于支撑显示屏,其特征在于,所述支撑组件包括至少两个叠层,沿着远离显示屏的方向,各所述叠层的模量逐渐增大。
  2. 根据权利要求1所述的支撑组件,其特征在于,所述支撑组件的落球能力与各所述叠层的单体落球能力之间的关系满足以下关系式:所述支撑组件的落球能力≈各所述叠层的单体落球能力线性叠加。
  3. 根据权利要求2所述的支撑组件,其特征在于,各所述叠层的单体落球能力线性叠加-2mm≤所述支撑组件的落球能力≤各所述叠层的单体落球能力线性叠加+2mm。
  4. 根据权利要求1所述的支撑组件,其特征在于,所述支撑组件的厚度为0.1mm~0.3mm。
  5. 根据权利要求1-4任一项所述的支撑组件,其特征在于,所述支撑组件包括至少一个缓冲层和至少一个支撑层,所述缓冲层的模量小于所述支撑层的模量,所述缓冲层与所述支撑层沿着远离所述显示屏的方向排列。
  6. 根据权利要求5所述的支撑组件,其特征在于,所述支撑组件包括第一缓冲层和第二缓冲层,所述第一缓冲层的模量小于所述第二缓冲层的模量,所述第一缓冲层与所述第二缓冲层沿着远离所述显示屏的方向排列。
  7. 根据权利要求6所述的支撑组件,其特征在于,所述第一缓冲层的材料为泡棉。
  8. 根据权利要求6所述的支撑组件,其特征在于,所述第二缓冲层的材料为聚氨酯或硅凝胶。
  9. 根据权利要求5所述的支撑组件,其特征在于,所述支撑组件包括第一支撑层和第二支撑层,所述第一支撑层的模量小于所述第二支撑层的模量,所述第一支撑层与所述第二支撑层沿着远离所述显示屏的方向排列。
  10. 根据权利要求9所述的支撑组件,其特征在于,所述第一支撑层的材 料为聚酯、玻纤或聚酰亚胺。
  11. 根据权利要求9所述的支撑组件,其特征在于,所述第二支撑层的材料为金属。
  12. 根据权利要求5所述的支撑组件,其特征在于,所述支撑组件还包括第一胶层,所述第一胶层位于所述支撑组件靠近所述显示屏的表面,所述第一胶层的模量小于其他各所述叠层的模量。
  13. 根据权利要求5所述的支撑组件,其特征在于,相邻所述叠层之间通过第二胶层粘接,所述第二胶层的模量介于相邻两个所述叠层之间。
  14. 一种显示模组,其特征在于,包括权利要求1-13任一项所述的支撑组件。
  15. 一种电子设备,其特征在于,包括权利要求14所述的显示模组。
PCT/CN2022/093744 2021-06-18 2022-05-19 支撑组件、显示模组及电子设备 WO2022262514A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110675446.4 2021-06-18
CN202110675446.4A CN115497374A (zh) 2021-06-18 2021-06-18 支撑组件、显示模组及电子设备

Publications (1)

Publication Number Publication Date
WO2022262514A1 true WO2022262514A1 (zh) 2022-12-22

Family

ID=84465315

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/093744 WO2022262514A1 (zh) 2021-06-18 2022-05-19 支撑组件、显示模组及电子设备

Country Status (2)

Country Link
CN (1) CN115497374A (zh)
WO (1) WO2022262514A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105593184A (zh) * 2013-08-01 2016-05-18 康宁股份有限公司 提供具有弹性模量梯度的涂层的基材的方法和设备
CN208607861U (zh) * 2018-08-09 2019-03-15 京东方科技集团股份有限公司 柔性面板模组和显示装置
CN109903679A (zh) * 2019-03-07 2019-06-18 京东方科技集团股份有限公司 可折叠支撑结构及其制备方法、显示装置
CN111477670A (zh) * 2020-05-12 2020-07-31 京东方科技集团股份有限公司 一种显示装置
CN213122928U (zh) * 2020-06-24 2021-05-04 华为技术有限公司 抗冲击模组、显示屏、显示终端
WO2021112253A1 (ja) * 2019-12-05 2021-06-10 富士フイルム株式会社 光学積層体、偏光板、画像表示装置、抵抗膜式タッチパネル及び静電容量式タッチパネル

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105593184A (zh) * 2013-08-01 2016-05-18 康宁股份有限公司 提供具有弹性模量梯度的涂层的基材的方法和设备
CN208607861U (zh) * 2018-08-09 2019-03-15 京东方科技集团股份有限公司 柔性面板模组和显示装置
CN109903679A (zh) * 2019-03-07 2019-06-18 京东方科技集团股份有限公司 可折叠支撑结构及其制备方法、显示装置
WO2021112253A1 (ja) * 2019-12-05 2021-06-10 富士フイルム株式会社 光学積層体、偏光板、画像表示装置、抵抗膜式タッチパネル及び静電容量式タッチパネル
CN111477670A (zh) * 2020-05-12 2020-07-31 京东方科技集团股份有限公司 一种显示装置
CN213122928U (zh) * 2020-06-24 2021-05-04 华为技术有限公司 抗冲击模组、显示屏、显示终端

Also Published As

Publication number Publication date
CN115497374A (zh) 2022-12-20

Similar Documents

Publication Publication Date Title
US11308827B2 (en) Flexible display device having viscoeleastic fluid layers
TWI661344B (zh) 顯示裝置
CN107942563B (zh) 显示模组和显示装置
US20130025647A1 (en) Impact resistant device comprising an optical layer
EP3598514A1 (en) Organic light-emitting display device
CN111105710B (zh) 窗口基底和包括窗口基底的柔性显示装置
US20190130796A1 (en) Curved Display Device and Electronic Device Using the Same
WO2021056939A1 (zh) Oled 显示屏及 oled 显示装置
CN110675755B (zh) 可折叠显示装置
JP2010515783A (ja) 耐衝撃性に優れた衝撃吸収層及びこの衝撃吸収層を含む衝撃吸収用フィルム
US20200325952A1 (en) Shock absorbing module and display device including the same
KR20180079094A (ko) 접착 필름 및 이를 이용한 폴더블 표시 장치
CN110164310B (zh) 柔性显示面板及显示装置
US11147169B2 (en) Impact absorbing element for display device
TW201640668A (zh) 有機發光二極體顯示器及其製造方法
CN110570760B (zh) 一种可折叠柔性显示装置
JP2023512575A (ja) フレキシブルスクリーンカバー、フレキシブルディスプレイパネル、フレキシブルスクリーン及び折り畳み式電子装置
US20180354227A1 (en) Window for display device and display device including the same
WO2024060998A1 (zh) 电子设备、显示屏和屏幕保护件
WO2022262514A1 (zh) 支撑组件、显示模组及电子设备
WO2023138369A1 (zh) 一种应用于电子设备的支撑层组、显示模组及电子设备
CN111416057A (zh) 柔性oled显示装置
WO2018176703A1 (zh) 显示模组封装结构及显示装置
WO2022222883A1 (zh) 屏幕盖板、折叠屏模组以及电子设备
CN113528043A (zh) 一种应用于电子设备的复合胶带、显示模组及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22823996

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE