WO2022260219A1 - 신규한 복합 음극활물질, 이를 포함하는 리튬 전지, 및 상기 복합 음극활물질의 제조방법 - Google Patents

신규한 복합 음극활물질, 이를 포함하는 리튬 전지, 및 상기 복합 음극활물질의 제조방법 Download PDF

Info

Publication number
WO2022260219A1
WO2022260219A1 PCT/KR2021/014068 KR2021014068W WO2022260219A1 WO 2022260219 A1 WO2022260219 A1 WO 2022260219A1 KR 2021014068 W KR2021014068 W KR 2021014068W WO 2022260219 A1 WO2022260219 A1 WO 2022260219A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
negative electrode
composite
metal
electrode active
Prior art date
Application number
PCT/KR2021/014068
Other languages
English (en)
French (fr)
Inventor
정영운
오정훈
Original Assignee
주식회사 엘피엔
정영운
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘피엔, 정영운 filed Critical 주식회사 엘피엔
Publication of WO2022260219A1 publication Critical patent/WO2022260219A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers

Definitions

  • the present invention relates to a novel composite negative electrode active material, a secondary battery including the same, and a method for manufacturing the composite negative electrode active material.
  • a lithium secondary battery includes a positive electrode, a negative electrode, and an electrolyte.
  • the positive electrode active material such as carbon particles
  • the lithium secondary battery can be charged and discharged.
  • a lithium transition metal oxide is used as a cathode active material of the secondary battery, and a carbon-based material such as natural graphite having excellent cycle characteristics is used as an anode active material.
  • a carbon-based material such as natural graphite having excellent cycle characteristics is used as an anode active material.
  • anode active materials of carbonaceous materials such as natural graphite with a conventional theoretical capacity of 372mAh/g, long cycle life, and self-discharge rate.
  • a lithium secondary battery having a negative electrode active material having characteristics of high capacity and long life with low characteristics is required.
  • Patent Document 1 uses silicon carbide (SiCx) for the negative electrode active material composite, and after forming a composite layer by firing two layers, that is, carbon-based particles, amorphous silicon particles, and carbon precursors such as pitch, on the composite layer again.
  • SiCx silicon carbide
  • Patent Document 2 uses silicon suboxide (SiOx) as a silicon composite, but when the negative electrode contains silicon suboxide, lithium oxide is formed in the first cycle, which is the first charge and discharge, and lithium is consumed outside of electrochemistry.
  • Patent Document 3 manufactures a high-capacity battery using a metal partial nitride, but includes two layers, that is, a first layer including carbon-based negative electrode active material particles on a current collector and silicon nitride formed on the first layer. It is made of a second layer, and since the performance of the battery depends on the thickness, difficulties in manufacturing to maintain high capacity performance are expected.
  • One aspect of the present invention is to provide a composite anode active material having improved initial discharge capacity, initial efficiency, and lifespan characteristics.
  • Another aspect of the present invention is to provide a lithium secondary battery including the composite negative electrode active material.
  • Another aspect of the present invention is to provide a method for preparing the composite anode active material.
  • a core portion including a crystalline carbon-based material; and a shell portion including composite particles at at least one outer portion of the core portion, wherein the composite particles include at least one material selected from the group consisting of low-crystalline carbon and amorphous carbon; and metal partial nitrides reactive with lithium;
  • a composite negative electrode active material having a structure in which a matrix composed of one component selected from among the other components is included.
  • the metal partial nitride is a metal partially substituted with nitrogen, and is denoted as “MNx”, where M represents a metal, N represents nitrogen (nitride), and x represents a nitride on the metal surface. It represents the degree of substitution by and is from 0.01 to less than 0.1.
  • the metal partial nitride included as a matrix or filler of the composite particles included in the cell part can improve the dispersibility of the solid content in the slurry due to its high affinity with the polar solvent of the slurry for preparing the negative electrode.
  • it is connected to excellent distribution uniformity of the composite negative electrode active material to minimize the weakening of the bonding force with the current collector to solve the problem of internal resistance due to separation of the active material layer and the current collector to improve electrode characteristics It works.
  • a positive electrode including a positive electrode active material; a negative electrode including the above composite active material; And there is provided a lithium secondary battery comprising an electrolyte disposed between the positive electrode and the negative electrode.
  • preparing metal particles from a metal and an organic solvent (ii) a core portion of the metal particles, a material for partially nitriding the metal particles, at least one material selected from the group of materials capable of being reduced to low crystalline carbon and amorphous carbon by firing, and a crystalline carbon-based material mixing the materials to obtain a mixture; (iii) drying the mixture to obtain a composite before heat treatment, and (iv) sintering the composite before heat treatment at a high temperature to arrange composite particles at at least one location outside the crystalline carbonaceous core to form a cell portion.
  • a method for producing a composite anode active material containing is provided.
  • a composite anode active material having a structure in which the rest of the components are included in a matrix composed of one component and a lithium secondary battery including the same have excellent initial discharge capacity, initial efficiency, and/or lifespan characteristics, and also the composite anode active material And it is easy to manufacture a lithium secondary battery including the same.
  • a part such as a layer, film, region, plate, etc. is said to be “on” or “on” another part, it includes the case where there is another part in the middle as well as directly on the other part.
  • the expression “on” or “on” means to be located above or below the target part, and does not mean an upper side related to gravity.
  • the composite anode active material includes a core portion including a crystalline carbon-based material; and at least one material selected from the group consisting of low-crystalline carbon and amorphous carbon, and a composite particle having a structure in which the other components are included in a matrix made of one component selected from a metal partial nitride that reacts with lithium. It includes; a shell part included in at least one place outside the core part.
  • the core part containing the crystalline carbon-based material serves as an electrical conduction channel by the conductivity of the crystalline carbon-based material as the basis of the composite anode active material of the present invention
  • the metal part nitride included in the composite particles of the shell part is lithium and It plays a role in securing capacity by reaction and a role in improving lifespan due to improved bonding force with the current collector due to improved dispersibility of the slurry during negative electrode manufacturing, and is composed of low crystalline carbon and amorphous carbon included in the composite particles
  • At least one material selected from the group can be seen as serving to achieve the above effect by connecting the metal part nitride and the crystalline carbon-based material of the core part to each other.
  • the crystalline carbon-based material included in the core portion may include artificial graphite, natural graphite, carbon fiber, or a crystalline carbon-based material of mesocarbon microbeads (MCMB), graphite, graphite and low crystalline It may be a mixture, low crystalline carbon, amorphous carbon or a mixture of low crystalline carbon and amorphous carbon.
  • MCMB mesocarbon microbeads
  • the core portion may have a wide range of spherical shapes, such as a perfect spherical shape or an elliptical shape.
  • the diameter of the core portion including the crystalline carbonaceous material may be 5 to 20 ⁇ m, and excellent electrical conductivity may be achieved within the above range.
  • the metal partial nitride included in the composite particles of the shell part is capable of reacting with lithium, and the metal is silicon, tin, germanium, titanium, aluminum, etc., preferably Si (silicon), and the preferred metal partial nitride is silicon nitride. (SiNx).
  • x is 0.01 or more and less than 0.1, and when x is less than 0.01, Si is oxidized to SiOx, and it is difficult to increase the actual capacity due to the formation of an irreversible phase such as Li 4 SiO 4 by reaction with lithium during initial charging, and x If is greater than 0.1, the opportunity for Si to react with lithium is reduced, making it difficult to see the effect of increasing the initial capacity by the lithium-silicon alloy.
  • the initial discharge capacity is higher than when x is 0.1. That is, the reaction opportunity between Si and lithium seems to be most appropriate when x is between 0.01 and less than 0.1.
  • the low-crystalline carbon and amorphous carbon included in the composite particles of the shell part are obtained by firing pitch, coke, or a mixture thereof, and the pitch is a petroleum-based or coal-based central axis of coal tar pitch, petroleum pitch, and condensed polycyclic aromatic hydrocarbon compounds.
  • organic synthetic pitch obtained by condensation or polycondensation of a heteroatom-containing condensed polycyclic aromatic hydrocarbon compound, etc., and it is possible to use any pitch that can be used in the present art without being limited thereto.
  • the structure of the composite anode active material of the present invention is a metal partial nitride reacting with lithium and at least one material selected from the group consisting of low-crystalline carbon and amorphous carbon at one or more places on the core of the crystalline carbon-based material. It is a structure in which composite particles consisting of a structure in which the other components are included in a matrix composed of one component selected from among are formed.
  • Such a structure may be formed by the method for manufacturing a composite negative electrode active material including the following steps as described above.
  • a core portion of the metal particles a material for partially nitriding the metal particles, at least one material selected from the group of materials capable of being reduced to low crystalline carbon and amorphous carbon by firing, and a crystalline carbon-based material mixing the materials to obtain a mixture;
  • the composite particles constituting the cell part include one or more materials selected from the group consisting of low-crystalline carbon and amorphous carbon, and one component selected from metal partial nitrides that react with lithium, and other components are included in a matrix. It is a structure with
  • the metal partial nitride of the composite particle is mixed with the metal particle in step ii) and a material for partial nitriding of the metal particle, such as polyvinylpyrrolidone, followed by drying in step iii) followed by heat treatment in step iv) Calcining And in step iv), at least one material selected from the group of materials capable of being low-crystalline carbon and amorphous carbon is melted by firing, and the melt and the metal partial nitride form composite particles, And the formed composite particles are formed in the cell portion of the core portion material of the crystalline carbon-based material.
  • a material for partial nitriding of the metal particle such as polyvinylpyrrolidone
  • a mixture of bulk metal particles having an average particle diameter of 1 ⁇ m to 50 ⁇ m and an organic solvent is pulverized by a milling process. and drying to obtain metal particles having an average particle diameter (D50, average particle diameter) of 30 nm to 250 nm.
  • the metal is silicon, tin, germanium, titanium, aluminum, etc., preferably silicon (Si).
  • the organic solvent consists of methanol, ethanol, propanol, isopropanol, cyclohexanol, cyclohexanone, methyl ethyl ketone, ethylene glycol, diethyl carbonate, tetrahydrofuran (THF), dimethyl sulfoxide (DMSO) and mixtures thereof It is one or more selected from the group.
  • the amount of the organic solvent may be used in an amount of 1 to 10 times (parts by weight) with respect to the metal.
  • the milling process may be a conventional milling process using a bead mill, etc., and the milling process time may be determined according to the metal particles and amount used.
  • the step (ii) is a crystalline carbon-based material having an average particle diameter of 5 to 20 ⁇ m in the mixture of the metal particles and the organic solvent obtained in the step (i), and a group of materials that can be converted into low-crystalline carbon and amorphous carbon by firing.
  • This is a step of wet mixing by introducing at least one material selected from and a material for partial nitriding of metal particles such as polyvinylpyrrolidone.
  • At least one material selected from the group of materials that can be converted into low-crystalline carbon and amorphous carbon by the sintering may have an average particle diameter of 1 to 5 ⁇ m.
  • the amount of the crystalline carbon-based material used is 0.1 to 5 times (parts by weight), preferably 0.1 to 1 time, of the mixture of the metal particles and the organic solvent.
  • the crystalline carbon-based material may include artificial graphite, natural graphite, carbon fiber, or a crystalline carbon-based material of mesocarbon microbeads (MCMB), graphite, a mixture of graphite and low crystalline, low crystalline carbon, It may be amorphous carbon or a mixture of low crystalline carbon and amorphous carbon.
  • MCMB mesocarbon microbeads
  • the amount of one or more materials selected from the group of materials that can be made into low-crystalline carbon and amorphous carbon by the firing is 0.01 to 1 times (parts by weight) of the mixture of the metal particles and the organic solvent, preferably 0.01 to 0.5 times.
  • At least one material selected from materials capable of becoming low-crystalline carbon and amorphous carbon by firing may be pitch or coke, and the pitch may be petroleum-based or coal-based, such as coal tar pitch, petroleum pitch, and condensed polycyclic aromatic hydrocarbon compounds.
  • the amount of material used for partial nitridation of metal particles such as polyvinylpyrrolidone is '0.01 to 1 times (parts by weight)', preferably 0.01 to 0.5 times, of the mixture of the metal particles and organic solvent.
  • Step (iii) is a step of drying the mixture of step (ii) to obtain a composite before heat treatment.
  • the composite before the heat treatment refers to a material in which the organic solvent is removed from the mixture in step (ii) by heat treatment and the materials are mixed and dried.
  • the drying is performed in an oven at 80 ° C to 150 ° C for a certain period of time, and the drying time is not limited, and the drying time is determined according to the amount of materials in step (ii), preferably 5 to 15 hours .
  • Step (iv) is a composite for a negative electrode active material by firing the composite before the heat treatment of step (iii) by heat treatment so that the crystalline carbon-based core and the composite particles are disposed on at least one outside of the core to form a cell.
  • This is a step of obtaining a composite, that is, a composite anode active material.
  • the heat treatment firing for forming the composite in step (iv) is treated for 8 to 15 hours including heat treatment at a temperature of 800 ° C to 1200 ° C under a nitrogen or argon atmosphere, and the treatment time is increased to the heat treatment temperature, maintained, and It includes the time to cool the composite to room temperature after heat treatment.
  • the composite is a material in which a cell part is formed by disposing a crystalline carbon-based core part and composite particles at at least one place outside the core part, and the composite particle is at least one material selected from the group consisting of low-crystalline carbon and amorphous carbon; and a material having a structure in which the other components are included in a matrix composed of one component selected from metal partial nitrides.
  • the metal of the metal partial nitride (MNx, M is a metal, N is nitrogen, and x is the degree of partial substitution of the nitride on the metal surface) of the composite particle obtained above is silicon, tin, germanium, titanium, aluminum, etc. It is preferably silicon, and the preferred metal partial nitride is silicon nitride (SiNx).
  • x representing the degree of nitride substitution on the metal surface is 0.01 or more and less than 0.1.
  • x representing the degree of nitride substitution on the metal surface is 0.01 or more and less than 0.1.
  • Si is oxidized to SiOx, and it is difficult to increase the actual capacity due to the formation of an irreversible phase such as Li 4 SiO 4 by reaction with lithium during initial charging, and when x is 0.1 or more, Si reacts with lithium. is reduced, so the effect of increasing the initial capacity by the lithium-silicon alloy is reduced.
  • the amount of the metal (M) in MNx which is a metal partial nitride, may be metal particles; crystalline carbonaceous materials; And at least one material selected from materials that can be made into low-crystalline carbon and amorphous carbon by firing; 20% by weight or more of the total amount of, preferably 20% to 40% by weight. If the metal content is less than 20% by weight, the effect of increasing the initial capacity is reduced, and if it exceeds 40% by weight, it may be inefficient in terms of cost, process, and the like.
  • the amount of metal particles used the amount of material used for partially nitriding metal particles, and the group of materials that can be made into low crystalline carbon or amorphous carbon by firing
  • the usage amount, the usage amount of the crystalline carbon-based material, and the metal partial nitride are out of the above ranges, the capacity and lifespan of the battery are affected.
  • Another aspect of the present invention is to provide a lithium secondary battery including an anode including the composite anode active material, a cathode including the cathode active material, and an electrolyte between the anode and the cathode.
  • the negative electrode may be prepared as a negative electrode active material composition by mixing the composite negative electrode active material, a binder, and a solvent, and, if necessary, a conductive material, a filler that suppresses expansion of the negative electrode, a viscosity modifier, an adhesion promoter, and the like may be added. .
  • binder examples include polyacrylic acid (PAA), polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), cellulose, polyvinyl alcohol, carboxymethylcellulose (CMC), starch, hydroxymethylcellulose . Regenerated cellulose, polyacrylonitrile, polymethyl methacrylate, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, polypropylene. Various copolymers and the like may be used, and the amount of the binder is 0 to 20% by weight based on the total amount of the negative electrode material.
  • PAA polyacrylic acid
  • PTFE polytetrafluoroethylene
  • PVdF polyvinylidene fluoride
  • CMC carboxymethylcellulose
  • Regenerated cellulose polyacrylonitrile
  • polymethyl methacrylate polymethyl methacrylate
  • polyvinylpyrrolidone tetrafluoroethylene
  • polyethylene polypropylene.
  • the conductive material is not particularly limited as long as it has conductivity without causing chemical change in the battery, and graphite; carbon black; conductive fibers; metal powder; conductive metal powder; Conductive materials such as polyphenylene derivatives may be used.
  • the filler is not particularly limited as long as it is a fibrous material that does not cause chemical change in the battery, and may include olefin-based polymers such as polyethylene and polypropylene; Fibrous materials such as glass fibers and carbon fibers are used.
  • the viscosity modifier serves to adjust the viscosity for easy application of the negative electrode active material composition on the current collector, and can be mixed up to 30% by weight of the total negative electrode active material composition, and carboxymethylcellulose, polyvinylidene fluoride, etc. used
  • the adhesion promoter is for improving adhesion to the current collector, and may be used in an amount of 10% by weight relative to the binder, and oxalic acid, adipic acid, formic acid, acrylic acid derivatives, itaconic acid derivatives, and the like are used.
  • the solvent may be N-methylpyrrolidone, acetone, dimethylformamide (DMF), dimethyl sulfoxide (DMSO), isopropyl alcohol, acetone or water, and these solvents may be used alone or in a mixture of two or more.
  • the amount of the composite negative electrode active material, binder, conductive material, filler, solvent, etc. used in the manufacture of the negative electrode is a typical amount used in the field of lithium secondary batteries within the above range.
  • the negative electrode is prepared by coating and drying the negative electrode active material composition on a current collector, and the current collector is not particularly limited as long as it has conductivity without causing a chemical reaction to the battery, and copper, stainless steel, aluminum, nickel, titanium, A copper or stainless steel surface treated with carbon, nickel, titanium, or silver is used.
  • the positive electrode is manufactured by coating and drying a positive electrode active material composition in which a positive electrode active material, a conductive material, a binder, a solvent, etc. are mixed on a current collector.
  • the cathode active material is not particularly limited, but typically lithium transition metal oxides may be used, and Li/CO-based composite oxides such as LiCoO 2 , Li/Ni/Co/Mn-based oxides such as LiNi x Co y Mn 2 O 2 , and the like , Li/Ni-based composite oxides such as LiNiO2, Li/Mn-based composite oxides such as LiMn2O4, and the like, and these may be used alone or in combination of two or more.
  • Li/CO-based composite oxides such as LiCoO 2 , Li/Ni/Co/Mn-based oxides such as LiNi x Co y Mn 2 O 2 , and the like
  • Li/Ni-based composite oxides such as LiNiO2
  • Li/Mn-based composite oxides such as LiMn2O4, and the like
  • the conductive material, binder, solvent, etc. of the positive electrode active material composition may be used in the same manner as the conductive material, binder, and solvent of the negative electrode active material composition, and each component included in the positive electrode active material composition is used in a conventional ratio in the art. .
  • the electrolyte may include a non-aqueous organic solvent and a metal salt, and the non-aqueous solvent includes N-methylpyrrolidone, propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, ethyl Methyl carbonate, gambabutyrolactone, 1,2-dimethoxy ethane, 1,2-diethoxy ethane, tetrahydroxyfuran (THF), 2-methyltetrahydrofuran, dimethylsulfoxide, 1,3-di oxolane, 4-methyl-1,3-dioxane, diethyl ether, formamide, dimethylformamide, dioxohan, acetonitrile, nitromethane, methyl formate, methyl acetate, triester phosphate, trimethoxyethane, Dioxolane derivatives, sulfolane, methyl sulfolane, 1,3-dimethyl-2-imidazolidinone
  • a lithium salt may be used as a material that is easily soluble in the non-aqueous solvent, and LiCl, LiBr, LiI, LiClO4, LiBF4, LiB10Cl10, LiPF6, LiCF3SO3, LiCF3CO2, LiAsF6, LiSbF6, LiAlCl4, CH3SO3Li, CF3SO3Li, (CF3SO2 ) 2NLi, lithium chloroborane, lithium lower aliphatic carboxylic acid, lithium 4-phenylborate and the like can be used.
  • a material for improving charge/discharge characteristics, flame retardancy, nonflammability, or high-temperature storage characteristics may be added to the electrolyte, if necessary.
  • the lithium secondary battery manufactured as above can be used in small and medium-large battery packs.
  • a method for manufacturing a composite negative electrode active material according to another aspect of the present invention is as described above.
  • the composite was heat treated at elevated temperatures in a nitrogen atmosphere for 10 hours in a heat treatment furnace at 1,000 °C. After the heat treatment was maintained at a temperature of 1,000 ° C. for 1 hour, cooling was performed for 8 hours. After the cooling, a SiNx-carbon composite anode active material was obtained.
  • the amount of nitration (x) of SiNx in the composite anode active material was analyzed using a nitrogen analyzer from LECO, and a coin cell was manufactured using the following coin cell manufacturing method to measure initial discharge capacity and efficiency, and to evaluate life characteristics. conducted.
  • a silicon nitride-carbon composite anode active material was prepared in the same manner as in Example 1 except for one.
  • the amount of nitration (x) of SiNx in the composite anode active material was analyzed using a nitrogen analyzer from LECO, and a coin cell was manufactured using the following coin cell manufacturing method to measure initial discharge capacity and efficiency, and to evaluate life characteristics. conducted.
  • a silicon nitride-carbon composite anode active material was prepared in the same manner as in Example 1 except for one.
  • the amount of nitration (x) of SiNx in the composite anode active material was analyzed using a nitrogen analyzer from LECO, and a coin cell was manufactured using the following coin cell manufacturing method to measure initial discharge capacity and efficiency, and to evaluate life characteristics. conducted.
  • a silicon nitride-carbon composite anode active material was prepared in the same manner as in Example 1 except for one.
  • the amount of nitration (x) of SiNx in the composite anode active material was analyzed using a nitrogen analyzer from LECO, and a coin cell was manufactured using the following coin cell manufacturing method to measure initial discharge capacity and efficiency, and to evaluate life characteristics. conducted.
  • a silicon nitride-carbon composite anode active material was prepared in the same manner as in Example 1 except for one.
  • the amount of nitration (x) of SiNx in the composite anode active material was analyzed using a nitrogen analyzer from LECO, and a coin cell was manufactured using the following coin cell manufacturing method to measure initial discharge capacity and efficiency, and to evaluate life characteristics. conducted.
  • a silicon nitride-carbon composite anode active material was prepared in the same manner as in Example 1 except for the above.
  • the amount of nitration (x) of SiNx in the composite anode active material was analyzed using a nitrogen analyzer from LECO, and a coin cell was manufactured using the following coin cell manufacturing method to measure initial discharge capacity and efficiency, and to evaluate life characteristics. conducted.
  • a silicon nitride-carbon composite anode active material was prepared in the same manner as in Example 1 except for the above.
  • the amount of nitration (x) of SiNx in the composite anode active material was analyzed using a nitrogen analyzer from LECO, and a coin cell was manufactured using the following coin cell manufacturing method to measure initial discharge capacity and efficiency, and to evaluate life characteristics. conducted.
  • a silicon nitride-carbon composite anode active material was prepared in the same manner as in Example 1.
  • the amount of nitration (x) of SiNx in the composite anode active material was analyzed using a nitrogen analyzer from LECO, and a coin cell was manufactured using the following coin cell manufacturing method to measure initial discharge capacity and efficiency, and to evaluate life characteristics. conducted.
  • a slurry was prepared by mixing a SiNx-carbon composite anode active material:conductive material:binder in a ratio of 8:1:1 in ultrapure water. At this time, PAA was used as the binder. The slurry was uniformly coated on copper foil, dried in an oven at 80° C. for about 2 hours, then roll-pressed, and further dried in a vacuum oven at 110° C. for about 12 hours to prepare a negative electrode plate.
  • a CR2032 coin-type half cell was prepared according to a commonly known manufacturing process using a liquid electrolyte containing 10% by weight of .
  • a constant current was applied until the battery voltage reached 0.01V (vs. Li) at a current of 0.1C rate at 25 ° C.
  • a constant voltage was applied until the current reached a 0.01C rate to charge.
  • it was discharged with a constant current of 0.1C rate until the voltage reached 1.5V (vs.Li).
  • a constant current was applied at a current of 0.5C rate until the battery voltage reached 0.01V (vs. Li), and when the battery voltage reached 0.01V (vs. Li), the current was charged until the current reached 0.01C rate. It was charged by applying a constant voltage. The cycle of discharging with a constant current at a rate of 0.5C was repeated 50 times until the voltage reached 1.5V during discharging.
  • Si input amount Si except for polyvinylpyrrolidone, graphite, and Si input amount in pitch
  • Si input amount Si except for polyvinylpyrrolidone, graphite, and Si input amount in pitch
  • x range of SiNx in the composite anode active material nitride amount
  • Table 2 below shows the initial discharge capacity, initial efficiency, and capacity retention rate (battery life) after 50 cycles according to Table 1 above.
  • Examples 1 to 6 related to the composite negative electrode active material containing the metal partial nitride of the present invention are Comparative Example 1 in which x of SiNx is 0.1 and silicon suboxide where x of SiNx of the present invention is outside the range of less than 0.1 Compared to Comparative Example 2, which is an anode active material containing a cargo (SiOx), the capacity (initial discharge capacity) and initial efficiency are excellent, and the battery life (capacity retention rate after 50 cycles) is improved or similar, indicating that the negative electrode of the present invention It turns out that the active material can be used as a battery negative electrode material and exhibits excellent effects.
  • the negative electrode active material of the present invention can be used as a battery negative electrode material and has industrial applicability in the manufacture of secondary batteries.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

본 발명은, 결정성 카본계 물질을 포함하는 코어부; 및 상기 코어부의 외부의 적어도 한 곳에 복합체 입자를 포함하는 쉘부;를 포함하며, 상기 복합체 입자는, 저결정성 카본 및 비정질 카본으로 이루어진 군에서 선택되는 하나 이상의 물질 및 리튬과 반응하는 금속 부분 질화물 중에서 선택된 하나의 성분으로 이루어진 매트릭스(matrix)에 나머지 성분으로 이루어진 필러(filler)가 포함되어 있는 구조로 이루어진 음극 활물질 및 이를 포함하는 리튬 전지에 관한 것이다.

Description

신규한 복합 음극활물질, 이를 포함하는 리튬 전지, 및 상기 복합 음극활물질의 제조방법
본 발명은 신규한 복합 음극활물질, 이를 포함하는 이차전지, 및 상기 복합 음극활물질의 제조방법에 관한 것이다.
화석 연료로 인한 지구 환경오염 문제에 따라 이를 해결하고자 하는 노력의 일환으로 전기화학을 이용하는 발전, 축전 분야의 연구가 지금까지 많이 이루어져 왔다.
특히, 이차전지는 PDA, 이동 전화, 노트북 컴퓨터 등 모바일 전자 기기의 개발 및 수요에 따라 에너지원으로서 수요가 급증하고, 또한 전 세계적인 자동차 연비 및 배기가스 관련 규제에 따른 전기차 시장의 급증에 따라 전기차용 이차전지, 에너지저장장치용 이차전지 등의 수요가 급증하여, 이차전지에 관한 연구가 활발히 진행되고 있으며, 이차전지 중에서도 용량 및 수명개선과 설계가 용이한 리튬 이온 전지에 관한 연구가 가장 활발하다.
일반적으로 리튬 이차전지는 양극, 음극, 전해질을 포함하며, 첫 번째 충전 시 양극활물질로부터 나온 리튬 이온이 카본 입자와 같은 음극활물질 내 삽입되고, 방전 시 음극활물질로부터 탈리되어 다시 양극활물질로 삽입된다. 이와 같이 리튬 이온은 양극과 음극 두 전극 사이의 왕복으로 에너지를 전달하는 역할을 하므로, 리튬 이차전지는 충방전이 가능하다.
통상적으로 상기 이차전지의 양극활물질로는 리튬 전이 금속 산화물을, 음극활물질로는 우수한 사이클 특성을 가지는 천연흑연 등의 카본계 물질이 사용된다. 최근 모바일 기기, 전기차 및 에너지저장장치 등의 고성능을 위하여는 종래의 이론 용량이 372mAh/g인 천연흑연 등 카본계 물질의 음극활물질보다 높은 에너지 밀도와 작동 전위를 나타내고, 사이클 수명이 길며, 자기 방전율이 낮은 특성을 갖는 고용량, 장수명의 특성을 갖는 음극활물질을 갖는 리튬 이차전지가 요구되고 있다.
이러한 고용량의 이차전지의 음극활물질로 탄소/실리콘 복합체 등 실리콘 기반 복합 음극활물질 소재에 관한 연구가 활발하다(특허문헌 1, 2, 3). 그러나 특허문헌 1은 음극활물질 복합체에 실리콘 탄화물(SiCx)을 이용하며, 2개의 층, 즉 탄소계 입자, 비정질 실리콘 입자 및 피치 등 탄소 전구체를 소성하여 복합층을 형성한 후, 이 복합층위에 다시 탄소계 코팅층을 형성하는 것으로서, 성능을 좌우하는 0.01 내지 10㎛ 이하의 두께를 조절해야 하는 것으로 제조의 어려움이 예상된다. 또한, 특허문헌 2는 실리콘 복합체로서 실리콘 아산화물(SiOx)을 사용하고 있으나, 음극이 실리콘 아산화물을 포함하는 경우, 첫 충방전인 첫 사이클에서 리튬산화물 등이 형성되어 전기화학 이외에서 리튬이 소비되어 전지의 수명이 단축되는 단점이 있다. 특허문헌 3은 금속 부분 질화물을 사용하여 고용량의 전지를 제조하고 있으나, 2개의 층, 즉 집전체 상에 탄소계 음극활물질 입자를 포함한 제1층과 상기 제1층 상에 형성되는 실리콘 나이트라이드을 포함하는 제2층으로 이루어지고, 두께에 따라 전지의 성능이 좌우되므로 고용량의 성능을 유지하기 위한 제조상 어려움이 예상된다.
따라서 위와 같은 문제를 해결하여 고용량, 장수명을 나타내면서도 제조가 간편한 음극활물질 및 리튬 이차전지 기술의 개발이 필요하다.
본 발명의 일 양태는, 초기 방전용량, 초기효율 및 수명특성이 개선된 복합 음극활물질을 제공하고자 하는 것이다.
본 발명의 다른 양태는 상기 복합 음극활물질을 포함하는 리튬 이차전지를 제공하고자 하는 것이다.
본 발명의 또 다른 양태는 상기 복합 음극활물질의 제조방법을 제공하고자 하는 것이다.
본 발명은 일 양태에 따라, 결정성 카본계 물질을 포함하는 코어부; 및 상기 코어부의 외부 적어도 한 곳에 복합체 입자를 포함하는 쉘부;를 포함하며, 상기 복합체 입자는, 저결정성 카본 및 비정질 카본으로 이루어진 군에서 선택되는 하나 이상의 물질; 및 리튬과 반응하는 금속 부분 질화물; 중에서 선택된 하나의 성분으로 이루어진 매트릭스(matrix)에 나머지 성분이 포함되어 있는 구조로 이루어진 복합 음극활물질을 제공하는 것이다.
상기의 금속 부분 질화물은 금속에 대하여 질소가 부분적으로 치환된 것으로서, “MNx”로 표시되며, 상기 표기 중 M은 금속을 나타내고, N은 질소(Nitrogen, 질화물)을 나타내며, x는 금속 표면의 질화물에 의한 치환 정도를 나타내는 것으로 0.01 내지 0.1 미만이다.
상기와 같은 복합 음극활물질의 구조와 성분들에 의하여 종래 기술에서의 전지용량, 전지 수명, 음극활물질의 표면에서 리튬의 수지상 성장 등에 따른 단락 유발 가능성, 전지제조 공정상의 어려움 등의 문제를 해결할 수 있다.
즉, 셀부에 포함된 복합체 입자의 매트릭스 또는 필러로서 포함되는 금속 부분 질화물은 음극 제조용 슬러리의 극성 용매와 높은 친화력으로 슬러리 내의 고형분의 분산성을 향상시킬 수 있으며, 이러한 분산성의 향상은 음극 제조를 위하여 집전체에 도포 시에 상기 복합 음극활물질의 우수한 분포 균일성으로 연결되어 집전체와의 결합력이 약화되는 것을 최소화하여 활물질층과 집전체의 분리에 따른 내부저항의 문제 해결로 전극 특성을 우수하게 하는 효과가 있다.
본 발명의 다른 양태에 따라, 양극활물질을 포함하는 양극; 상기의 복합 활물질을 포함하는 음극; 및 상기 양극과 음극 사이에 배치된 전해질을 포함하는 리튬 이차전지가 제공된다.
본 발명의 또 다른 양태에 따라, (i) 금속 및 유기용매로부터 금속 입자를 준비하는 단계; (ii) 상기 금속 입자, 상기 금속 입자의 부분 질화물화를 위한 물질, 소성에 의하여 저결정성 카본 및 비정질 카본으로 될 수 있는 물질 군에서 선택되는 하나 이상의 물질, 및 결정성 카본계 물질의 코어부 물질을 혼합하여 혼합물을 수득하는 단계; (iii) 상기 혼합물을 건조하여 열처리 전 복합물을 얻는 단계, 및 (iv) 상기 열처리 전 복합물을 고온으로 소성하여 상기 결정성 카본계 코어부 외부의 적어도 한 곳에 복합체 입자가 배치되어 셀부를 형성하는 단계;를 포함하는 복합 음극활물질의 제조방법이 제공된다.
결정성 카본계 물질을 포함하는 코어부; 및 상기 코어부의 외부 적어도 한 곳에 복합체 입자를 포함하는 쉘부;를 포함하며, 상기 복합체 입자는, 저결정성 카본 및 비정질 카본으로 이루어진 군에서 선택되는 하나 이상의 물질 및 리튬과 반응하는 금속 부분 질화물 중에서 선택된 하나의 성분으로 이루어진 매트릭스(matrix)에 나머지 성분이 포함되어 있는 구조로 이루어진 복합 음극활물질 및 이를 포함하는 리튬 이차전지는 초기 방전용량, 초기효율, 및/또는 수명특성이 우수하고, 또한 복합 음극활물질과 이를 포함하는 리튬 이차전지의 제조가 용이하다.
도 1은 본 발명의 실시예 1~6과 비교예 1 및 2의 초기 충방전 용량을 나타내는 그래프이다
다른 정의가 없다면 본 명세서에서 사용되는 모든 용어(기술 및 과학적 용어 포함)는 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 공통적으로 이해될 수 있는 의미로 사용될 수 있으며, 또한 단수형은 특별히 문장에서 정의하지 않는 한 복수형도 포함된다.
본 명세서에서 층, 막, 영역, 판 등의 부분이 다른 부분 “위에”, 또는 “상에” 있다고 할 때는 다른 부분의 바로 위뿐만 아니라, 그 중간에 또 다른 부분이 있는 경우도 포함한다.
또한, 본 명세서에서 “~ 상에” 또는 “~위에”라는 표현은 대상 부분의 위 또는 아래에 위치함을 의미하고 중력과 관련된 상측의 의미가 아니다.
이하, 본 발명의 일 구현 예에 따른 복합 음극활물질, 이를 포함하는 리튬 이차전지, 및 상기 복합 음극활물질의 제조방법에 관하여 설명하기로 한다. 이는 예시로서 제시된 것으로 이에 의해 본 발명이 제한되지 않으며, 본 발명은 후술하는 특허청구범위의 범주에 의해 정의된다.
앞서 설명한 바와 같이 본 발명의 일 양태인 복합 음극활물질은, 결정성 카본계 물질을 포함하는 코어부; 및 저결정성 카본 및 비정질 카본으로 이루어진 군에서 선택되는 하나 이상의 물질 및 리튬과 반응하는 금속 부분 질화물 중에서 선택된 하나의 성분으로 이루어진 매트릭스(matrix)에 나머지 성분이 포함되어 있는 구조로 이루어져 있는 복합체 입자를 상기 코어부의 외부 적어도 한 곳에 포함하는 쉘부;를 포함한다.
상기 결정성 탄소계 물질을 함유한 코어부는 본 발명의 복합 음극활물질의 근간으로서 결정성 탄소계 물질의 전도성에 의한 전기전도 채널의 역할을 하고, 쉘부의 복합체 입자에 포함된 금속 부분 질화물은 리튬과 반응에 의한 용량 확보 역할, 및 음극 제조 시 슬러리의 분산성 향상에 따른 집전체와의 결합력 향상으로 인한 수명개선 역할 등을 하게 되며, 쉘부의 복합체 입자에 포함된 저결정성 카본 및 비정질 카본으로 이루어진 군에서 선택되는 하나 이상의 물질은 상기 금속 부분 질화물과 코어부의 결정성 탄소계 물질을 서로 연결해주어 상기와 같은 효과를 나타낼 수 있도록 하는 역할을 하는 것으로 볼 수 있다.
일반적으로 상기 코어부에 포함된 결정성 카본계 물질은 인조흑연, 천연흑연, 탄소섬유, 또는 메조카본마이크로비드(MCMB)의 결정질 카본계 물질을 포함할 수 있으며, 그라파이트, 그라피아트와 저결정성의 혼합물, 저결정성 카본, 비정질 카본 또는 저결정성 카본 및 비정질 카본의 혼합물일 수 있다.
상기 코어부의 형상은 완전 구형 또는 타원형 등의 넓은 범위의 구형일 수 있다. 상기 결정성 카본계 물질을 포함하는 코어부 직경은 5 내지 20㎛ 일 수 있으며, 상기 범위에서 우수한 전기전도성 채널의 효과를 나타낼 수 있다.
상기 쉘부의 복합체 입자에 포함되는 금속 부분 질화물은 리튬과 반응이 가능한 것으로서, 상기 금속은 실리콘, 주석, 게르마늄, 티타늄, 알루미늄 등이고, 바람직하게는 Si(실리콘)이며, 바람직한 금속 부분 질화물은 실리콘 나이트라이드(SiNx)이다.
상기 SiNx에서 x는 0.01 이상 0.1 미만이며, x가 0.01보다 적으면 Si가 SiOx로 산화되어 초기 충전 시 리튬과의 반응에 의한 Li4SiO4와 같은 비가역상의 형성으로 실질적인 용량의 증가가 어렵고, x가 0.1보다 많으면 Si이 리튬과의 반응 기회가 적어져 리튬-실리콘 합금에 의한 초기 용량 증가의 효과를 보기 어렵다. 하기 실시예 및 비교예에서 보이는 바와 같이 x가 0.1 미만인 경우의 초기 방전용량이 x가 0.1인 경우보다 높다. 즉, x가 0.01 내지 0.1 미만의 사이에서 Si과 리튬과의 반응 기회가 가장 적정한 것으로 보인다.
상기 쉘부의 복합 입자에 포함된 저결정성 카본 및 비정질 카본은 피치, 코크스, 또는 이들 혼합물의 소성으로 얻어지는 것으로서, 상기 피치는 석유계 또는 석탄계로서 콜타르 피치, 석유 피치, 축합 다환 방향족 탄화수소 화합물의 중축합 또는 헤테로 원자 함유 축합 다환 방향족 탄화수소 화합물의 중축합으로 얻어지는 유기 합성 피치 등이며, 이에 한하지 않고 본 기술분야에서 사용이 가능한 모든 피치를 사용하는 것이 가능하다.
본 발명의 복합 음극활물질의 구조는 위에서 본 바와 같이 결정성 카본계 물질의 코어부상의 한 곳 이상에 저결정성 카본 및 비정질 카본으로 이루어진 군에서 선택되는 하나 이상의 물질 및 리튬과 반응하는 금속 부분 질화물 중에서 선택된 하나의 성분으로 이루어진 매트릭스(matrix)에 나머지 성분이 포함되어 있는 구조로 이루어져 있는 복합체 입자가 형성되어 있는 구조이다.
이러한 구조는 상기에서 기재한 바와 같은 아래 단계를 포함하는 복합 음극활물질 제조방법으로 형성될 수 있다.
(i) 금속 및 유기 용매로부터 금속 입자를 준비하는 단계;
(ii) 상기 금속 입자, 상기 금속 입자의 부분 질화물화를 위한 물질, 소성에 의하여 저결정성 카본 및 비정질 카본으로 될 수 있는 물질 군에서 선택되는 하나 이상의 물질, 및 결정성 카본계 물질의 코어부 물질을 혼합하여 혼합물을 수득하는 단계;
(iii) 상기 혼합물을 건조하여 열처리 전의 복합물을 얻는 단계, 및
(iv) 상기 건조된 혼합물을 고온으로 소성하여 상기 결정성 카본계 코어부 외부의 적어도 한 곳에 복합체 입자가 배치되어 셀부를 형성하는 단계;를 포함하는 복합 음극활물질의 제조방법이 제공된다.
상기 셀부를 구성하는 복합체 입자는 저결정성 카본 및 비정질 카본으로 이루어진 군에서 선택되는 하나 이상의 물질, 및 리튬과 반응하는 금속 부분 질화물 중에서 선택된 하나의 성분으로 이루어진 매트릭스(matrix)에 나머지 성분이 포함되어 있는 구조이다.
상기 복합체 입자의 금속 부분 질화물은 단계 ii)에서 금속 입자, 및 폴리비닐피롤리돈 등과 같은 금속 입자의 부분 질화물화를 위한 물질이 혼합된 후, 단계 iii)의 건조에 이은 단계 iv)의 열처리 소성에 의하여 형성되며, 또한 단계 iv)에서는 소성에 의하여 저결정성 카본 및 비정질 카본으로 될 수 있는 물질 군에서 선택되는 하나 이상의 물질이 용융되고, 이 용융물과 상기 금속 부분 질화물이 복합체 입자를 생성하며, 그리고 상기 형성된 복합체 입자가 결정성 카본계 물질의 코어부 물질의 셀부에 형성이 되는 것이다.
상기 각 단계를 구체적으로 보면, 상기 방법의 ‘(i) 금속 및 유기용매로부터 금속 입자를 준비하는 단계’는, 평균 입경 1㎛ 내지 50㎛의 벌크 금속 입자와 유기용매의 혼합물을 밀링 공정으로 분쇄하고 건조하여 입자 평균 직경(D50, 평균 입경) 30nm 내지 250nm 크기의 금속 입자를 얻는 단계이다.
상기 금속은 실리콘, 주석, 게르마늄, 티타늄, 알루미늄 등이고, 바람직하게는 실리콘(Si)이다.
상기 유기용매는 메탄올, 에탄올, 프로판올, 이소프로판올, 시클로헥산올, 시클로헥사논, 메틸에틸케톤, 에틸렌글리콜, 디에틸카보네이트, 테트라하이드로퓨란(THF), 디메틸설폭사이드(DMSO) 및 이들의 혼합물로 이루어진 군으로부터 선택된 하나 이상이다. 상기 유기용매의 사용량은 상기 금속에 대하여 1 내지 10배(중량부)로 사용할 수 있다.
상기 밀링 공정은 비드 밀 등을 사용하는 통상의 밀링 공정일 수 있으며, 밀링 공정 시간은 사용된 금속 입자 및 사용량에 따라 결정될 수 있다.
상기 단계 (ii)는 상기 단계 (i)에서 얻어진 금속 입자와 유기용매의 혼합물에 평균 입경 5 내지 20㎛의 결정성 카본계 물질, 소성에 의하여 저결정성 카본 및 비정질 카본으로 될 수 있는 물질 군에서 선택되는 하나 이상의 물질, 및 폴리비닐피롤리돈 등의 금속 입자의 부분 질화물화를 위한 물질을 투입하여 습식 혼합하는 단계이다. 상기 소성에 의하여 저결정성 카본 및 비정질 카본으로 될 수 있는 물질 군에서 선택되는 하나 이상의 물질은 평균 입경 1 내지 5㎛일 수 있다.
상기 결정성 카본계 물질의 사용량은 상기 금속입자와 유기용매의 혼합물의 ‘0.1 내지 5배(중량부)이고, 바람직하게는 0.1 내지 1배이다.
상기 결정성 카본계 물질은 인조흑연, 천연흑연, 탄소섬유, 또는 메조카본마이크로비드(MCMB)의 결정질 카본계 물질을 포함할 수 있으며, 그라파이트, 그라피아트와 저결정성의 혼합물, 저결정성 카본, 비정질 카본 또는 저결정성 카본 및 비정질 카본의 혼합물일 수 있다.
상기 소성에 의하여 저결정성 카본 및 비정질 카본으로 될 수 있는 물질 군에서 선택되는 하나 이상의 물질의 사용량은 상기 금속입자와 유기용매의 혼합물의 ‘0.01 내지 1배(중량부)이고, 바람직하게는 0.01 내지 0.5배이다.
상기 소성에 의하여 저결정성 카본 및 비정질 카본으로 될 수 있는 물질에서 선택되는 하나 이상의 물질은 피치, 또는 코크스일 수 있고, 상기 피치는 석유계 또는 석탄계로서 콜타르 피치, 석유 피치, 축합 다환 방향족 탄화수소 화합물의 중축합 또는 헤테로 원자 함유 축합 다환 방향족 탄화수소 화합물의 중축합으로 얻어지는 유기 합성 피치 등이며, 이에 한하지 않고 본 기술분야에서 사용이 가능한 모든 피치가 이에 포함된다.
상기 폴리비닐피롤리돈 등의 금속 입자의 부분 질화물화를 위한 물질의 사용량은 상기 금속 입자와 유기용매의 혼합물의 ‘0.01 내지 1배(중량부)’이고, 바람직하게는 0.01 내지 0.5배이다.
단계 (iii)은 상기 단계 (ii)의 혼합물을 건조하여 열처리 전의 복합물을 얻는 단계이다.
상기 열처리 전의 복합물은 상기 단계 (ii)의 혼합물이 열처리로 인하여 유기용매가 제거되고 각 물질이 혼합되어 건조된 상태의 물질을 의미한다.
상기 건조는 80℃ 내지 150℃의 오븐에서 일정 시간 건조가 이루어지며, 상기 건조 시간은 한정되지 아니하고 단계 (ii)의 물질들의 사용량에 따라 그 건조 시간이 결정되고, 바람직하게는 5 내지 15시간이다.
단계 (iv)는 결정성 카본계 코어부 및 이 코어부 외부의 적어도 한 곳에 복합체 입자가 배치되어 셀부를 형성하도록 상기 단계 (iii)의 열처리 전 단계의 복합물을 열처리로 소성하여 음극활물질용 복합체인 복합물, 즉 복합 음극활물질을 얻는 단계이다.
상기 단계 (iv)의 복합물 형성을 위한 열처리 소성은 질소 또는 아르곤 분위기 하에서 800℃ 내지 1200℃ 온도로 열처리하는 것을 포함하여 8 내지 15시간 처리하며, 상기 처리 시간은 상기 열처리 온도까지의 승온, 유지 및 열처리 후 복합물을 상온까지 냉각하는 시간을 포함한다.
상기 복합물은 결정성 카본계 코어부 및 이 코어부 외부의 적어도 한 곳에 복합체 입자가 배치되어 셀부가 형성된 물질이고, 상기 복합체 입자는 저결정성 카본 및 비정질 카본으로 이루어진 군에서 선택되는 하나 이상의 물질, 및 금속 부분 질화물 중에서 선택된 하나의 성분으로 이루어진 매트릭스(matrix)에 나머지 성분이 포함되어 있는 구조의 물질이다.
상기에서 얻어진 복합체 입자의 금속 부분 질화물(MNx, M은 금속이고, N은 질소이며, x는 금속 표면 중 질화물이 부분적으로 치환된 정도이다)의 금속은 실리콘, 주석, 게르마늄, 티타늄, 알루미늄 등이고, 바람직하게는 실리콘이며, 바람직한 금속 부분 질화물은 실리콘 나이트라이드(SiNx)이다.
상기 금속 부분 질화물인 MNx에서 금속 표면의 질화물 치환 정도를 나타내는 x는 0.01 이상 0.1 미만이다. x가 0.01 보다 적으면 Si가 SiOx로 산화되어 초기 충전 시 리튬과의 반응에 의한 Li4SiO4와 같은 비가역상의 형성으로 실질적인 용량의 증가가 어렵고, x가 0.1 이상이면 Si이 리튬과의 반응 기회가 적어져 리튬-실리콘 합금에 의한 초기 용량 증가의 효과가 감소된다.
이러한 금속 부분 질화물인 MNx 중의 상기 금속(M)의 사용량은 금속 입자; 결정성 카본계 물질; 및 소성에 의하여 저결정성 카본 및 비정질 카본으로 될 수 있는 물질에서 선택되는 하나 이상의 물질;의 총량에 대하여 전체의 20중량% 이상으로 포함되며, 바람직하게는 20% 내지 40중량%이다. 금속의 포함량이 20중량% 미만이면 초기 용량 증가 효과가 감소하고, 40중량%를 넘어서면 비용, 공정 등의 경제적인 점에서 비효율적일 수 있다.
상기 단계 (i) 내지 (iv)의 복합 음극활물질 제조방법에서 금속 입자의 사용량, 금속 입자의 부분 질화물화를 위한 물질의 사용량, 소성에 의하여 저결정성 카본 또는 비정질 카본으로 될 수 있는 물질 군의 사용량, 및 결정성 카본계 물질의 사용량, 그리고 금속 부분 질화물이 상기 범위를 벗어나는 경우, 전지의 용량 및 수명에 영향을 미친다.
본 발명의 다른 양태는, 상기 복합 음극활물질을 포함하는 음극, 양극활물질을 포함하는 양극, 및 상기 음극과 양극 사이에 전해질을 포함하는 리튬 이차전지를 제공하는 것이다.
음극은 상기 복합 음극활물질, 바인더, 및 용매를 혼합하여 음극활물질 조성물로 제조될 수 있으며, 필요에 따라 도전재, 음극의 팽창을 억제하는 성분인 충진제, 점도 조절제, 접착 촉진제 등을 추가할 수 있다.
상기 바인더의 예로는, 폴리아크릴산(PAA), 폴리테트라플루오로에틸렌(PTFE), 폴리비닐리덴플루오로라이드(PVdF), 셀룰로오즈, 폴리비닐알코올, 카르복시메틸셀룰로오즈(CMC), 전분, 히드록시메틸셀룰로오즈. 재생 셀룰로오즈, 폴리아크릴로니트릴, 폴리메틸메타크릴레이트, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌. 다양한 공중합체 등이 사용될 수 있으며, 바인더의 사용량은 음극재 전체 기준으로 0 내지 20 중량%이다.
상기 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 갖는 것이면 특별히 제한되지 않으며, 그라파이트; 카본 블랙; 도전성 섬유; 금속 분말; 도전성 금속 분말; 폴리페닐렌 유도체 등의 도전성 소재가 사용될 수 있다.
상기 충진제는 당해 전지에 화학적 변화를 유발하지 않으면서 섬유상 재료이면 특별히 제한되지 않으며, 폴리에틸렌, 폴리프로필렌 등의 올레핀계 중합체; 유리섬유, 탄소섬유 등의 섬유상 물질이 사용된다.
상기 점도 조절제는 집전체 상에 음극활물질 조성물의 용이한 도포를 위한 점도를 조절하는 작용을 하는 것으로서 음극활물질 조성물 전체의 30 중량%까지 혼합이 가능하며, 카르복시메틸셀룰로오즈, 폴리비닐리덴 플로라이드 등이 사용된다.
상기 접착 촉진제는 집전체에 대한 접착력 향상을 위한 것이고, 바인더 대비 10 중량%로 사용될 수 있으며, 옥살산, 아디프산, 포름산, 아크릴산 유도체 이타콘산 유도체 등이 사용된다.
상기 용매는 N-메틸피롤리돈, 아세톤, 디메틸포름아마이드(DMF), 디메틸설폭사이드(DMSO), 이소프로필알코올, 아세톤 또는 물일 수 있으며, 이들 용매를 단독 또는 2종 이상의 혼합물로 사용될 수 있다.
상기 음극 제조에 사용되는 복합 음극활물질, 바인더, 도전재, 충진제, 용매 등의 사용량은 상기 범위 내에서 리튬 이차전지 분야에서 사용되는 통상적인 사용량을 사용한다.
음극은 상기 음극활물질 조성물을 집전체 상에 도포 건조하여 제작하며, 상기 집전체는 당해 전지에 화학적 반응을 일으키지 않으면서 도전성을 갖는 것이면 특별히 제한하지 않으며, 구리, 스테인리스 스틸, 알루미늄, 니켈, 티타늄, 구리나 스테인리스 스틸 표면에 카본, 니켈, 티타늄, 은 등으로 표면 처리된 것 등이 사용된다.
양극은 양극활물질, 도전재, 바인더, 용매 등을 혼합한 양극활물질 조성물을 집전체 상에 도포 건조하여 제작한다.
상기 양극활물질은 특별히 한정되지 아니하나, 통상적으로 리튬 전이금속 산화물을 사용할 수 있으며, LiCoO2 등의 Li/CO계 복합 산화물, LiNixCoyMn2O2등의 Li/Ni/Co/Mn계의 복합 산화물, LiNiO2등의 Li/Ni계 복합 산화물, LiMn2O4의 Li/Mn계의 복합 산화물 등을 들 수 있고, 이들의 단독 또는 2개 이상을 혼합하여 사용할 수 있다.
상기 양극활물질 조성물의 도전재, 바인더, 용매 등은 상기 음극활물질 조성물의 도전재, 바인더, 용매와 동일하게 사용할 수 있으며, 상기 양극활물질 조성물에 포함되는 각 성분은 당업계의 통상의 비율로 사용된다.
상기 전해질은 비수계 유기 용매와 금속염을 포함할 수 있으며, 상기 비수계 용매로는 N-메틸피롤리돈, 프로필렌 카르보네이트, 에틸렌 카르보네이트, 부틸렌 카르보네이트, 디메틸 카르보네이트, 에틸메틸 카르보네이트, 감바부틸로락톤, 1,2-디메톡시 에탄, 1,2-디에톡시 에탄, 테트라히드록시퓨란(THF), 2-메틸테트라하이드로퓨란, 디메틸술폭사이드, 1,3-디옥소란, 4-메틸-1,3-디옥산, 디에틸에테르, 포름아미드, 디메틸포름아미드, 디옥소한, 아세토니트릴, 니트로메탄, 포름산 메틸, 초산 메틸, 인산 트리에스테르, 트리메톡시 에탄, 디옥소란 유도체, 설포란, 메틸 설포란, 1,3-디메틸-2-이미다졸리디논, 프로필렌 카르복실레이트 유도체, 테트라하이드로퓨란 유도체, 에테르, 피로피온산 에틸, 프로피온산 메틸 등의 비양자성 유기 용매가 사용될 수 있다. 상기 금속염은 상기 비수계 용매에 용해되기 좋은 물질로서 리튬염을 사용할 수 있고, LiCl, LiBr, LiI, LiClO4, LiBF4, LiB10Cl10, LiPF6, LiCF3SO3, LiCF3CO2, LiAsF6, LiSbF6, LiAlCl4, CH3SO3Li, CF3SO3Li, (CF3SO2)2NLi, 클로로 보란 리튬, 저급 지방족 카르본산 리튬, 4-페닐 붕산 리튬 등이 사용될 수 있다.
또한, 전해질에는 필요에 따라 충방전 특성, 난연성 특성, 불연성 특성, 또는 고온 보존 특성의 향상을 위한 물질을 첨가할 수 있다.
위와 같이 제작된 리튬 이차전지는 소형 및 중대형 전지팩에 사용될 수 있다.
본 발명의 또 다른 양태에 따른 복합 음극활물질의 제조방법은 위에서 본 바와 같다.
이하, 실시예를 통하여 본 발명을 더욱 상술하지만, 하기 실시예는 본 발명을 예시하거나, 구체적으로 설명하기 위한 것이며, 본 발명의 범주가 이들에 의하여 제한 되는 것이 아니다.
또한, 여기서 기재되지 않은 내용은 이 기술분야에서 숙련된 자이면 충분히 유추할 수 있는 것이므로 그 설명을 생략한다.
1. 복합 음극활물질의 제조에 대한 실시예 1 내지 6 및 비교예 1 내지 2
<실시예 1>
평균 입경이 20㎛ 크기의 실리콘 입자 20kg를 이소프로필 알코올 용매 80kg와 함께 비드 밀을 통해 24시간 가공하였다. 가공 후 말번社 입도분석을 통해 평균 입경 100㎚ 크기의 나노 실리콘 입자를 확인하였다.
이소프로필 알코올 8kg에 상기 나노 실리콘 입자 2kg 중량이 혼합된 혼합물에 평균 입경 10um의 구형흑연 6kg, 평균 입경 2um의 석유계 피치 2kg, 폴리비닐피롤리돈 1kg을 혼합기에 투입하고 1시간 동안 습식 혼합하였다. 혼합이 완료된 복합물은 오븐에서 8시간 건조하여 열처리 전단계의 복합물을 얻었다.
상기 복합물은 1,000℃의 열처리 로에서 10시간 동안 질소 분위기에서 승온 열처리를 하였다. 열처리는 1,000℃의 온도로 1시간 동안 유지한 후, 냉각은 8시간 동안 이루어졌다. 상기 냉각 후 SiNx-탄소 복합 음극활물질을 얻었다.
상기 복합 음극활물질 중 SiNx의 질화량(x)은 LECO社의 질소분석기를 이용하여 분석을 진행하였고, 하기의 코인셀의 제조방법으로 코인셀을 제조하여 초기 방전용량 및 효율 측정, 수명특성 평가를 실시하였다.
<실시예 2>
이소프로필 알코올 8kg에 상기 나노 실리콘 입자 2kg 중량이 혼합된 혼합물에 평균 입경 10um의 구형흑연 6kg, 평균 입경 2um의 석유계 피치 2kg, 폴리비닐피롤리돈 0.5kg을 혼합기에 투입하고 1시간 동안 습식 혼합한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 실리콘 질화물-탄소 복합 음극활물질을 제조하였다.
상기 복합 음극활물질 중 SiNx의 질화량(x)은 LECO社의 질소분석기를 이용하여 분석을 진행하였고, 하기의 코인셀의 제조방법으로 코인셀을 제조하여 초기 방전용량 및 효율 측정, 수명특성 평가를 실시하였다.
<실시예 3>
이소프로필 알코올 8kg에 상기 나노 실리콘 입자 2kg 중량이 혼합된 혼합물에 평균 입경 10um의 구형흑연 6kg, 평균 입경 2um의 석유계 피치 2kg, 폴리비닐피롤리돈 0.25kg를 혼합기에 투입하고 1시간 동안 습식 혼합한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 실리콘 질화물-탄소 복합 음극활물질을 제조하였다.
상기 복합 음극활물질 중 SiNx의 질화량(x)은 LECO社의 질소분석기를 이용하여 분석을 진행하였고, 하기의 코인셀의 제조방법으로 코인셀을 제조하여 초기 방전용량 및 효율 측정, 수명특성 평가를 실시하였다.
<실시예 4>
이소프로필 알코올 8kg에 상기 나노 실리콘 입자 2kg 중량이 혼합된 혼합물에 평균 입경 10um의 구형흑연 6kg, 평균 입경 2um의 석유계 피치 2kg, 폴리비닐피롤리돈 1.25kg을 혼합기에 투입하고 1시간 동안 습식 혼합한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 실리콘 질화물-탄소 복합 음극활물질을 제조하였다.
상기 복합 음극활물질 중 SiNx의 질화량(x)은 LECO社의 질소분석기를 이용하여 분석을 진행하였고, 하기의 코인셀의 제조방법으로 코인셀을 제조하여 초기 방전용량 및 효율 측정, 수명특성 평가를 실시하였다.
<실시예 5>
이소프로필 알코올 12kg에 상기 나노 실리콘 입자 3kg 중량이 혼합된 혼합물에 평균 입경 10um의 구형흑연 5kg, 평균 입경 2um의 석유계피치 2kg, 폴리비닐피롤리돈 1.5kg을 혼합기에 투입하고 1시간 동안 습식 혼합한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 실리콘 질화물-탄소 복합 음극활물질을 제조하였다.
상기 복합 음극활물질 중 SiNx의 질화량(x)은 LECO社의 질소분석기를 이용하여 분석을 진행하였고, 하기의 코인셀의 제조방법으로 코인셀을 제조하여 초기 방전용량 및 효율 측정, 수명특성 평가를 실시하였다.
<실시예 6>
이소프로필 알코올 16kg에 상기 나노 실리콘 입자 4kg 중량이 혼합된 혼합물에 평균 입경 10um의 구형흑연 4kg, 평균 입경 2um의 석유계 피치 2kg, 폴리비닐피롤리돈 2kg을 혼합기에 투입하고 1시간 동안 습식 혼합한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 실리콘 질화물-탄소 복합 음극활물질을 제조하였다.
상기 복합 음극활물질 중 SiNx의 질화량(x)은 LECO社의 질소분석기를 이용하여 분석을 진행하였고, 하기의 코인셀의 제조방법으로 코인셀을 제조하여 초기 방전용량 및 효율 측정, 수명특성 평가를 실시하였다.
<비교예 1>
이소프로필 알코올 8kg에 상기 나노 실리콘 입자 2kg 중량이 혼합된 혼합물에 평균 입경 10um의 구형흑연 6kg, 평균 입경 2um의 석유계 피치 2kg, 폴리비닐피롤리돈 2kg를 혼합기에 투입하고 1시간 동안 습식 혼합한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 실리콘 질화물-탄소 복합 음극활물질을 제조하였다.
상기 복합 음극활물질 중 SiNx의 질화량(x)은 LECO社의 질소분석기를 이용하여 분석을 진행하였고, 하기의 코인셀의 제조방법으로 코인셀을 제조하여 초기 방전용량 및 효율 측정, 수명특성 평가를 실시하였다.
<비교예 2>
이소프로필 알코올 8kg에 상기 나노 실리콘 입자 2kg 중량이 혼합된 혼합물에 평균 입경 10um의 구형흑연 6kg, 평균 입경 2um의 석유계 피치 2kg를 혼합기에 투입하고 1시간 동안 습식 혼합한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 실리콘 질화물-탄소 복합 음극활물질을 제조하였다.
상기 복합 음극활물질 중 SiNx의 질화량(x)은 LECO社의 질소분석기를 이용하여 분석을 진행하였고, 하기의 코인셀의 제조방법으로 코인셀을 제조하여 초기 방전용량 및 효율 측정, 수명특성 평가를 실시하였다.
2. 코인셀(전지)의 제조
SiNx-탄소 복합 음극활물질:도전재:바인더를 8:1:1 비율로 초 순수에서혼합하여 슬러리를 제조하였다. 이때 상기 바인더는 PAA를 사용하였다. 상기 슬러리를 구리 호일에 균일하게 도포하고, 80℃ 오븐에서 2시간 가량 건조 후, 롤 프레스하고 110℃ 진공 오븐에서 약 12시간 동안 추가 건조하여 음극판을 제조하였다.
상기 제조된 음극판; 상대 전극으로 리튬 호일; 다공성 폴리에틸렌막의 세퍼레이터; 및 에틸린카보네이트(ethylene carbonate)와 디에틸카보네이트(diethyl carbonate; DEC)를 3:7의 부피비로 혼합한 용매에 LiPF6가 1.3M 농도로 녹아 있고 플루오로-에틸렌 카보네이트(Fluoro-Ethylene carbonate; FEC)가 10 중량%가 함유된 액체 전해액;을 사용하여 통상적으로 알려진 제조 공정에 따라 CR2032 코인형 반쪽 셀을 제조하였다.
3. 코인셀의 초기 방전용량 및 효율 측정
25℃에서 0.1C rate의 전류로 전지 전압이 0.01V(vs. Li)에 이를 때까지는 정전류를 인가하였고 전지 전압이 0.01V에 이르면 전류가 0.01C rate에 이를 때까지 정전압을 인가하여 충전하였다. 방전 시에 전압이 1.5V(vs.Li)에 이를 때까지 0.1C rate의 정전류로 방전하였다.
4. 코인셀의 수명특성 평가
25℃에서 0.5C rate의 전류로 전지 전압이 0.01V(vs. Li)에 이를 때까지 정전류를 인가하여 충전하였고 전지 전압이 0.01V(vs. Li)에 이르면 전류가 0.01C rate에 이를 때까지 정전압을 인가하여 충전하였다. 방전 시에 전압이 1.5V에 이를 때까지 0.5C rate의 정전류로 방전하는 사이클을 50회 반복하였다.
상기 실시예 1 내지 6 및 비교에 1 내지 2의 복합 음극활물질 제조를 위한 Si 투입량 (폴리비닐피롤리돈을 제외한 Si, 흑연, 피치 중 Si 투입량), 복합 음극활물질 내 SiNx의 x범위(질화량)을 아래 표 1에 정리하였다.
Figure PCTKR2021014068-appb-T000001
아래 표 2에는 상기 표 1에 따른 초기 방전용량, 초기효율 및 50 Cycle 후 용량 유지율(전지 수명)을 도시하였다.
Figure PCTKR2021014068-appb-T000002
상기 표 2로부터 본 발명의 금속 부분 질화물을 포함하는 복합 음극활물질에 관한 실시예 1 내지 6은, 본 발명의 SiNx 의 x가 0.1 미만의 범위를 벗어나는 SiNx의 x가 0.1인 비교예 1 및 실리콘 아산화물(SiOx)을 포함하는 음극활물질인 비교예 2에 비하여 용량(초기 방전용량) 및 초기효율이 우수하고, 또한 전지 수명(50Cycle 후의 용량 유지율)이 개선되거나 유사한 것을 알 수 있어, 본 발명의 음극활물질은 전지 음극재로서의 사용이 가능하고, 또한 우수한 효과를 나타내는 것을 알 수 있다.
본 발명의 음극활물질은 전지 음극재로서의 사용이 가능하여 이차전지의 제조에 산업상 이용가능성이 있다.

Claims (18)

  1. 결정성 카본계 물질을 포함하는 코어부; 및 상기 코어부의 외부 적어도 한 곳에 복합체 입자를 포함하는 쉘부;를 포함하며, 상기 복합체 입자는, 저결정성 카본 및 비정질 카본으로 이루어진 군에서 선택되는 하나 이상의 물질; 및 리튬과 반응하는 금속 부분 질화물; 중에서 선택된 하나의 성분으로 이루어진 매트릭스(matrix)에 나머지 성분이 포함되어 있는 구조로 이루어진 것이고,
    상기 금속 부분 질화물은 MNx로 표기되며, 상기 x(금속의 질화량)는 0.01 내지 0.1 미만이며, 상기 금속의 함량은 결정성 카본계 물질; 저결정성 카본 및 비정질 카본으로 이루어진 군에서 선택되는 하나 이상의 물질; 및 금속 부분 질화물 중의 금속;의 총 함량에 대하여 20 중량% 이상인 것을 특징으로 하는, 복합 음극활물질
  2. 제1항에 있어서,
    상기 금속의 함량은 20% 이상 40중량% 이하인 것을 특징으로 하는, 복합 음극활물질
  3. 제1항에 있어서,
    상기 결정성 카본계 물질은 인조흑연, 천연흑연, 탄소섬유, 메조카본마이크로비드(MCMB), 그라파이트, 그라피아트와 저결정성의 혼합물, 저결정성 카본, 또는 저결정성 카본과 비정질 카본의 혼합물 중 하나인 것을 특징으로 하는, 복합 음극활물질
  4. 제1항에 있어서,
    상기 저결정성 카본 및 비정질 카본으로 이루어진 군에서 선택되는 하나 이상의 물질은 피치, 또는 코크스이며, 상기 피치는 석유계 또는 석탄계로서의 콜타르 피치; 석유 피치; 또는 유기 합성 피치로서의 축합 다환 방향족 탄화수소 화합물의 중축합 또는 헤테로 원자 함유 축합 다환 방향족 탄화수소 화합물의 중축합으로 얻어지는 유기 합성 피치인 것을 특징으로 하는, 복합 음극활물질
  5. 제1항에 있어서,
    상기 금속 부분 질화물의 금속은 실리콘, 주석, 게르마늄, 티타늄, 또는 알루미늄인 것을 특징으로 하는, 복합 음극활물질
  6. 제5항에 있어서,
    상기 금속은 실리콘이며, 금속 부분 질화물은 실리콘 나이트라이드(SiNx)인 것을 특징으로 하는, 복합 음극활물질
  7. 제1항 내지 제6항 중 어느 한 항의 복합 음극활물질의 제조방법으로서,
    (i) 금속, 및 유기용매로부터 금속 입자를 준비하는 단계;
    (ii) 상기 단계 (i)의 유기용매와 혼합된 금속 입자, 상기 금속 입자의 부분 질화물화를 위한 물질, 소성에 의하여 저결정성 카본 및 비정질 카본으로 될 수 있는 물질 군에서 선택되는 하나 이상의 물질, 및 결정성 카본계 물질의 코어부 물질을 혼합하여 혼합물을 수득하는 단계;
    (iii) 상기 혼합물을 건조하여 열처리 전의 복합물을 얻는 단계, 및
    (iv) 상기 건조된 혼합물인 열처리 전의 복합물을 고온의 소성으로 상기 결정성 카본계 코어부 외부의 적어도 한 곳에 복합체 입자가 배치되어 셀부를 형성하는 단계;를 포함하며,
    상기 복합체 입자는 저결정성 카본 및 비정질 카본으로 이루어진 군에서 선택되는 하나 이상의 물질; 및 리튬과 반응하는 금속 부분 질화물; 중에서 선택된 하나의 성분으로 이루어진 매트릭스(matrix)에 나머지 성분이 포함되어 있는 구조로 이루어진 것을 특징으로 하는, 복합 음극활물질의 제조방법
  8. 제7항에 있어서,
    상기 (i) 단계에서 준비되는 금속 입자의 입자 평균 직경이 30nm 내지 250nm인 것을 특징으로 하는, 복합 음극활물질의 제조방법
  9. 제7항에 있어서,
    상기 (i) 단계의 유기용매는 메탄올, 에탄올, 프로판올, 이소프로판올, 시클로헥산올, 시클로헥사논, 메틸에틸케톤, 에틸렌글리콜, 디에틸카보네이트, 테트라하이드로퓨란(THF), 디메틸설폭사이드(DMSO) 및 이들의 혼합물로 이루어진 군으로부터 선택된 하나 이상이고, 상기 유기용매의 사용량은 상기 금속에 대하여 1 내지 10배(중량부)인 것을 특징으로 하는, 복합 음극활물질의 제조방법
  10. 제7항에 있어서,
    상기 (ii) 단계의 결정성 카본계 물질의 사용량은 상기 금속 입자와 유기용매의 혼합물에 대하여 0.1 내지 5배(중량부)인 것을 특징으로 하는, 복합 음극활물질의 제조방법
  11. 제7항에 있어서,
    상기 (ii) 단계의 결정성 카본계 물질은 평균 입경이 5 내지 200㎛인 것을 특징으로 하는, 복합 음극활물질의 제조방법
  12. 제7항에 있어서,
    상기 (ii) 단계의 소성에 의하여 저결정성 카본 및 비정질 카본으로 될 수 있는 물질 군에서 선택되는 하나 이상의 물질의 사용량은 상기 금속 입자와 유기용매의 혼합물의 0.01 내지 1배(중량부)이고, 상기 금속 입자의 부분 질화물화를 위한 물질의 사용량은 상기 금속 입자와 유기용매의 혼합물의 0.01 내지 1배(중량부)인 것을 특징으로 하는, 복합 음극활물질의 제조방법
  13. 제1항 내지 제7항 중 어느 한 항에 따른 복합 음극활물질을 포함하는 것을 특징으로 하는, 음극 합체
  14. 제13항의 상기 음극 합체가 집전체 상에 도포되어 있는 것을 특징으로 하는, 이차전지용 음극
  15. 제14항의 이차전지용 음극을 포함하는 있는 것을 특징으로 하는, 이차전지
  16. 제15항에 있어서, 상기 전지는 이차전지인 것을 특징으로 하는, 이차전지
  17. 제16항의 이차전지를 단위 전지로 사용하는 것을 특징으로 하는, 전지팩
  18. 제17항에 있어서, 상기 전지팩은 자동차용, 전력저장용, 또는 모바일 기기용인 것을 특징으로 하는, 전지팩
PCT/KR2021/014068 2021-06-09 2021-10-13 신규한 복합 음극활물질, 이를 포함하는 리튬 전지, 및 상기 복합 음극활물질의 제조방법 WO2022260219A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020210074671A KR102450634B1 (ko) 2021-06-09 2021-06-09 신규한 복합 음극활물질, 이를 포함하는 리튬 전지, 및 상기 복합 음극활물질의 제조방법
KR10-2021-0074671 2021-06-09

Publications (1)

Publication Number Publication Date
WO2022260219A1 true WO2022260219A1 (ko) 2022-12-15

Family

ID=83597348

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/014068 WO2022260219A1 (ko) 2021-06-09 2021-10-13 신규한 복합 음극활물질, 이를 포함하는 리튬 전지, 및 상기 복합 음극활물질의 제조방법

Country Status (2)

Country Link
KR (1) KR102450634B1 (ko)
WO (1) WO2022260219A1 (ko)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120064023A (ko) * 2010-12-08 2012-06-18 주식회사 엘지화학 음극 활물질 및 이를 이용한 이차전지
KR20180094747A (ko) * 2017-02-16 2018-08-24 강원대학교산학협력단 리튬 이차전지용 음극 활물질, 그 제조방법 및 리튬 이차전지용 음극 활물질을 포함하는 리튬 이차전지
KR102194750B1 (ko) * 2020-01-21 2020-12-23 주식회사 그랩실 다층 구조의 음극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차전지

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101430640B1 (ko) 2012-09-17 2014-08-14 강윤규 금속실리콘 및 실리콘산화물을 포함하는 이차전지의 음극재용 복합분말체의 제조방법
KR101991845B1 (ko) 2016-03-24 2019-06-24 주식회사 엘지화학 음극 및 이의 제조방법
KR102401839B1 (ko) 2017-07-21 2022-05-25 에스케이온 주식회사 리튬 이차 전지용 음극 활물질, 이의 제조방법, 및 이를 포함하는 리튬 이차 전지

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120064023A (ko) * 2010-12-08 2012-06-18 주식회사 엘지화학 음극 활물질 및 이를 이용한 이차전지
KR20180094747A (ko) * 2017-02-16 2018-08-24 강원대학교산학협력단 리튬 이차전지용 음극 활물질, 그 제조방법 및 리튬 이차전지용 음극 활물질을 포함하는 리튬 이차전지
KR102194750B1 (ko) * 2020-01-21 2020-12-23 주식회사 그랩실 다층 구조의 음극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차전지

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ASBJØRN ULVESTAD , JAN PETTER MÆHLEN , MARTIN KIRKENGEN: "Silicon nitride as anode material for Li-ion batteries: Understanding the SiNx conversion reaction", JOURNAL OF POWER SOURCES, vol. 399, 30 September 2018 (2018-09-30), pages 414 - 421, XP085461350, DOI: 10.1016/j.jpowsour.2018.07.109 *
G.Z RAN , L.P YOU , L DAI , Y .L LIU , Y LV , X.S CHEN , G.G QIN: "Catalystless synthesis of crystalline Si3N4/amorphous SiO2 nanocables from silicon substrates and N2", CHEMICAL PHYSICS LETTERS, vol. 384, no. 1-3, 19 January 2004 (2004-01-19) - 20 December 2003 (2003-12-20), pages 94 - 97, XP093012333, ISSN: 0009-2614, DOI: 10.1016/j.cplett.2003.11.069 *

Also Published As

Publication number Publication date
KR102450634B1 (ko) 2022-10-06

Similar Documents

Publication Publication Date Title
WO2020111580A1 (ko) 리튬 이차 전지용 양극 첨가제, 이의 제조방법, 이를 포함하는 리튬 이차 전지용 양극 및 이를 포함하는 리튬 이차 전지
WO2015030402A1 (ko) 리튬 전이금속 복합 입자, 이의 제조방법, 및 이를 포함하는 양극 활물질
WO2019151814A1 (ko) 음극 활물질, 이를 포함하는 음극 및 리튬 이차전지
WO2012165758A1 (ko) 리튬 이차전지
WO2013062313A1 (ko) 음극활물질의 제조방법, 그 음극활물질 및 이를 구비한 리튬이차전지
WO2017164702A1 (ko) 음극 및 이의 제조방법
WO2019078690A2 (ko) 음극 활물질, 상기 음극 활물질을 포함하는 음극, 및 상기 음극을 포함하는 이차 전지
WO2013129850A1 (ko) 리튬 이차전지용 전극활물질 및 그 제조방법
WO2014204141A1 (ko) 리튬 이차전지용 음극활물질, 이를 포함하는 리튬 이차전지 및 상기 음극활물질의 제조방법
WO2010079963A2 (ko) 양극 활물질 및 이를 포함하는 리튬 이차전지
WO2019124980A1 (ko) 리튬이차전지용 음극 활물질, 이의 제조방법 및 이를 사용하여 제조된 리튬이차전지
WO2014196816A1 (ko) 신규한 이차전지
WO2019078544A1 (ko) 리튬 이차전지용 음극, 및 이를 포함하는 리튬 이차전지
WO2013180434A1 (ko) 리튬 이차전지용 음극 활물질 및 이를 포함하는 리튬 이차전지
WO2011162529A2 (ko) 안전성이 향상된 음극활물질 및 이를 포함하는 이차전지
WO2020162708A1 (ko) 음극 및 이를 포함하는 리튬 이차전지
WO2019103499A1 (ko) 리튬 이차전지용 음극 활물질, 및 이의 제조방법
WO2022055308A1 (ko) 음극재, 이를 포함하는 음극 및 이차전지
WO2019093820A1 (ko) 음극 활물질, 상기 음극 활물질을 포함하는 음극, 및 상기 음극을 포함하는 이차 전지
WO2019093830A1 (ko) 음극 활물질, 상기 음극 활물질을 포함하는 음극, 및 상기 음극을 포함하는 이차 전지
WO2020080800A1 (ko) 리튬 이차전지용 양극 첨가제의 제조방법 및 이로부터 제조된 리튬 이차전지용 양극 첨가제
WO2019078688A2 (ko) 리튬 이차전지용 양극 활물질, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
WO2022055309A1 (ko) 음극 활물질, 상기 음극 활물질을 포함하는 음극, 및 상기 음극을 포함하는 이차 전지
WO2019143135A1 (en) Composite material including selenium, method of fabricating the same, lithium ion and lithium selenium secondary batteries including the same, and lithium ion capacitor including the same
WO2019050216A2 (ko) 음극 활물질, 상기 음극 활물질을 포함하는 음극, 및 상기 음극을 포함하는 이차 전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21945286

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21945286

Country of ref document: EP

Kind code of ref document: A1