WO2022258075A1 - 一种基于dmd生成多参量可调光场的方法、装置及系统 - Google Patents

一种基于dmd生成多参量可调光场的方法、装置及系统 Download PDF

Info

Publication number
WO2022258075A1
WO2022258075A1 PCT/CN2022/103532 CN2022103532W WO2022258075A1 WO 2022258075 A1 WO2022258075 A1 WO 2022258075A1 CN 2022103532 W CN2022103532 W CN 2022103532W WO 2022258075 A1 WO2022258075 A1 WO 2022258075A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser beam
dmd
light field
dispersion
lens group
Prior art date
Application number
PCT/CN2022/103532
Other languages
English (en)
French (fr)
Inventor
曹耀宇
姚卓凡
揭凯文
Original Assignee
暨南大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 暨南大学 filed Critical 暨南大学
Publication of WO2022258075A1 publication Critical patent/WO2022258075A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/06Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the phase of light
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/0005Adaptation of holography to specific applications
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/04Processes or apparatus for producing holograms
    • G03H1/08Synthesising holograms, i.e. holograms synthesized from objects or objects from holograms
    • G03H1/0866Digital holographic imaging, i.e. synthesizing holobjects from holograms
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/0005Adaptation of holography to specific applications
    • G03H2001/0066Adaptation of holography to specific applications for wavefront matching wherein the hologram is arranged to convert a predetermined wavefront into a comprehensive wave, e.g. associative memory
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/0005Adaptation of holography to specific applications
    • G03H2001/0094Adaptation of holography to specific applications for patterning or machining using the holobject as input light distribution

Definitions

  • the invention relates to the technical field of light field regulation, in particular to a method, device and system for generating a multi-parameter adjustable light field based on DMD.
  • Light field modulation technology generally refers to the phase and amplitude modulation of the incident laser wavefront to obtain the required intensity distribution and propagation characteristics.
  • the light field control technology has developed rapidly. It is no longer limited to the design of fixed optical parameters, but can dynamically modulate the light field through holographic calculations to achieve diversified control of the light field.
  • the femtosecond laser has the advantages of high peak power, thermal effect, and can produce various nonlinear effects. Therefore, femtosecond laser-based optical field modulation technology has important applications in laser processing, optical tweezers, information storage, biological imaging and other fields.
  • LC-SLM liquid crystal spatial light modulator
  • iterative optimization algorithm calculates the phase distribution of the target light field through iterative optimization algorithm, and load it into the LC-SLM to realize the wavefront modulation of the incident laser.
  • the phase obtained by this optimized iterative algorithm lacks flexibility, and it is difficult to simultaneously control the position, power and topological charge of each spot in the spot array.
  • the phase at the entrance pupil can be divided into multiple regions on the LC-SLM to achieve individual control of each focus in the focus array.
  • LC-SLM is used for light field regulation
  • the influence of dispersion problem on resolution degradation is not considered; and LC-SLM is a device that responds to polarization, and polarizers and half-wave plates must be added to the optical system. Only by converting the incident light into linearly polarized light with a specific polarization direction can a better modulation effect be achieved, resulting in a large loss of laser power and complex construction of the optical system, which limits further expansion and integration of the system.
  • DMD has great advantages over LC-SLM in terms of price and hologram refresh rate (up to 20kHz). Therefore, it is particularly important to realize a low-cost, high-efficiency, and high-resolution light field control technology.
  • DMD-based multi-parameter light field control has not been realized in the prior art.
  • the embodiments of the present invention provide a method, device and system for generating a multi-parameter adjustable light field based on DMD, so as to realize low-cost and high-efficiency regulation of the multi-parameter light field.
  • the embodiment of the present invention discloses a method for generating a multi-parameter adjustable light field based on DMD, including:
  • performing dispersion compensation processing on the first filtered laser beam to determine a dispersion-compensated laser beam includes:
  • the diffracted light passes through the lens group to determine a dispersion-compensated laser beam.
  • the combination of the complex amplitude expression of the target light field and the binary hologram algorithm to determine the binary hologram of the target light field includes:
  • the phase expression is determined by moving the focal point of the target light field to the entrance pupil plane of the objective lens on the focal plane;
  • the binary hologram of the target light field is determined.
  • loading the binary hologram into the DMD, performing wavefront modulation on the dispersion-compensated laser beam through the DMD, and determining the modulated laser beam include:
  • the dispersion-compensated laser beam passes through the DMD to determine a modulated laser beam.
  • the embodiment of the present invention also discloses a device for generating a multi-parameter adjustable light field based on DMD, which is characterized in that it includes a pulsed laser, and along the output light direction of the pulsed laser are the first lens group, the second A spatial filter, a blazed grating, a second lens group, a first mirror, a digital micromirror array, a second mirror, a third lens group, a second spatial filter and an objective lens, and the first spatial filter is placed on The focal plane position of the front lens in the first lens group;
  • the pulse laser is used to emit a femtosecond laser beam, and the femtosecond laser beam is irradiated to the blazed grating through the first lens group and the first spatial filter;
  • the first lens group is used to expand and collimate the femtosecond laser beam
  • the first spatial filter is used to filter the femtosecond laser beam
  • the blazed grating is used to generate forward dispersion for the femtosecond laser beam, and the femtosecond laser beam is reflected to the digital micromirror array through the second lens group and the first mirror;
  • the second lens group is used to perform dispersion compensation on the femtosecond laser beam
  • the digital micromirror array is used to modulate the wavefront of the femtosecond laser beam, and the femtosecond laser beam is reflected to the second mirror, the third lens group and the second spatial filter to the the objective lens;
  • the third lens group is used to deliver the femtosecond laser beam to the entrance pupil of the objective lens
  • the second spatial filter is used to filter the diffracted light of the femtosecond laser beam
  • the objective lens is used to focus the femtosecond laser beam to generate a multi-parameter adjustable light field.
  • it also includes a half mirror, a convex lens and a CCD camera, and the CCD camera is placed on the focal plane of the convex lens;
  • the half mirror is used to reflect a part of the laser beam
  • the convex lens is used to focus reflected light
  • the CCD camera is used to collect reflected light information.
  • a displacement stage is also included;
  • the displacement stage is used to control the three-dimensional movement of the sample.
  • the blazed grating has a blazed wavelength of 500 nm and a grating period of 1200 lines/mm.
  • the digital micromirror array has a resolution of 1080p and a micromirror pitch of 10.8 ⁇ m.
  • the embodiment of the present invention also discloses a system for generating a multi-parameter adjustable light field based on DMD, including a processor and a memory;
  • the memory is used to store programs
  • the processor executes the program to implement the method as described above.
  • the embodiment of the present invention also discloses a computer program product or computer program, where the computer program product or computer program includes computer instructions, and the computer instructions are stored in a computer-readable storage medium.
  • the processor of the computer device can read the computer instructions from the computer-readable storage medium, and the processor executes the computer instructions, so that the computer device executes the above method.
  • the present invention adopts the above technical scheme and has the following technical effects: the present invention realizes dispersion compensation by quantitatively calculating the dispersion of the device, and improves the focus resolution of the system; by combining the complex amplitude expression of the target light field and a binary holographic algorithm to determine the binary hologram of the target light field; the three-dimensional spatial position, power dose, and topological charge of each light spot in the array light field can be adjusted separately; the binary hologram is loaded To the DMD, the wavefront modulation of the dispersion-compensated laser beam is performed through the DMD to determine the modulated laser beam; the binary hologram can be loaded through the DMD through the holographic computing technology, which can reduce the cost of the system and improve the efficiency of the system .
  • FIG. 1 is a flow chart of a method for generating a multi-parameter adjustable light field based on a DMD according to an embodiment of the present invention
  • FIG. 2 is a structural diagram of a device for generating a multi-parameter adjustable light field based on a DMD according to an embodiment of the present invention
  • FIG. 3 is a planar field intensity distribution and a binary phase diagram of the focal point moving one-dimensionally along the xoy plane according to an embodiment of the present invention
  • Fig. 4 is the plane field intensity distribution and the binary phase diagram of the focal point moving two-dimensionally along the xoy plane according to the embodiment of the present invention
  • FIG. 5 is a planar field intensity distribution and a binary phase diagram of the focal point moving three-dimensionally along the xoz plane according to an embodiment of the present invention
  • FIG. 6 is a spatial three-dimensional multi-focus field intensity distribution and a binary phase diagram of an embodiment of the present invention.
  • Fig. 8 is the multi-focus field strength distribution and binary phase diagram of the embodiments of the present invention whose amplitude term coefficients are respectively 0.4, 0.6, and 0.8;
  • Fig. 9 is the field intensity distribution and binary phase diagram of the vortex light with the topological charge of 1 moving along the three-dimensional direction according to the embodiment of the present invention.
  • Fig. 10 is the field intensity distribution and binary phase diagram of a vortex light array with a topological charge of 1 moving along a three-dimensional direction according to an embodiment of the present invention
  • Fig. 11 is the optical field intensity distribution and binary phase diagram of the vortex array with the topological charges of 0, 1, and 3 respectively according to the embodiment of the present invention
  • the embodiment of the present invention also provides a method for generating a multi-parameter adjustable light field based on DMD, including:
  • step S3 performing dispersion compensation processing on the first filtered laser beam to determine the dispersion-compensated laser beam includes:
  • the diffracted light passes through the lens group to determine a dispersion-compensated laser beam.
  • the femtosecond laser is a broadband light, it will produce serious dispersion when passing through the DMD, and the focused spot will widen into a long beam, resulting in the deterioration of the resolution. Therefore, the beam expanded femtosecond laser is irradiated onto the blazed grating, and the inherent dispersion caused by the two-dimensional grid structure of the DMD is compensated by using the blazed grating, and the dispersion of the blazed grating is scaled through the lens group, which is consistent with the DMD Dispersion matches.
  • DMD is placed at 45°, and its equivalent pixel size d DMD is:
  • d represents the actual pixel size of the DMD
  • d DMD represents the equivalent pixel size of the DMD
  • the DMD can be used as a blazed grating with a blaze angle of 12° and a period of 7.636 ⁇ m.
  • the incident angle is 24°
  • the diffraction angle is 0°
  • the propagation direction of the outgoing light is perpendicular to the DMD panel, at this time the diffraction efficiency is the highest.
  • the blaze condition needs to be satisfied:
  • m represents the blaze order of the blazed grating
  • represents the output wavelength of the laser
  • d DMD represents the equivalent pixel size of the DMD
  • ⁇ DMD represents the blaze angle of the DMD
  • i DMD represents the incident angle of the DMD.
  • D DMD represents the angular dispersion value of DMD
  • ⁇ DMD represents the diffraction angle of DMD
  • m represents the blazed order of the blazed grating.
  • a blazed grating with 1200 lines per millimeter is used, and its grating period is 0.83 ⁇ m; the incident angle of the grating is set to 47°, and the angular dispersion value of the blazed grating can be calculated as:
  • D G represents the angular dispersion value of the blazed grating
  • d G represents the period of the blazed grating
  • ⁇ G represents the diffraction angle of the blazed grating
  • m represents the blazed order of the blazed grating.
  • f L2 represents the focal length of the second lens of the lens group between the blazed grating and DMD
  • f L1 represents the focal length of the first lens of the lens group between the blazed grating and DMD
  • D G represents the focal length of the blazed grating Angular dispersion value
  • D D represents the angular dispersion value of DMD.
  • the combination of the complex amplitude expression of the target light field and the binary holographic algorithm to determine the binary hologram of the target light field includes:
  • the phase expression is determined by moving the focal point of the target light field to the entrance pupil plane of the objective lens on the focal plane;
  • the binary hologram of the target light field is determined.
  • the DMD micromirror has only two states of "0" and "1".
  • the binary hologram loaded on the DMD can be calculated by deriving the complex amplitude expression of the target light field.
  • the real-time control of the light field is realized, wherein the target light field is the multi-parameter adjustable array light field generated according to this embodiment.
  • B represents the coefficient of the amplitude term
  • exp represents the exponential function
  • i represents the imaginary factor
  • waves Represents the plane wave propagation vector
  • k x , ky , and k z respectively represent the three-dimensional components of the wave vector in space
  • x, y, z represent the coordinate positions of the focus in three-dimensional space.
  • is the angle between the incident light and the optical axis of the lens
  • ⁇ x represents the moving distance of the focus on the focal plane along the x direction
  • f represents the focal length of the objective lens
  • k x represents the component of the wave vector in the one-dimensional direction of x
  • x represents the abscissa position of the focus in three-dimensional space.
  • B represents the coefficient of the amplitude term
  • exp represents the exponential function
  • i represents the imaginary factor
  • ⁇ x represents the moving distance of the focus on the focal plane along the x direction
  • f represents the focal length of the objective lens
  • x represents the abscissa position of the focus in three-dimensional space.
  • B represents the coefficient of the amplitude term
  • exp represents the exponential function
  • i represents the imaginary factor
  • ⁇ x represents the moving distance of the focus on the focal plane along the x direction
  • f represents the focal length of the objective lens
  • x represents the abscissa position of the focus in three-dimensional space
  • ⁇ y represents the movement of the focus on the focal plane along the y direction Distance
  • y represents the ordinate position of the focal point in three-dimensional space.
  • B represents the coefficient of the amplitude term
  • exp represents the exponential function
  • i represents the imaginary factor
  • represents the laser wavelength emitted from the laser
  • ⁇ x represents the moving distance of the focus on the focal plane along the x direction
  • f represents the focal length of the objective lens
  • x represents the abscissa position of the focus in three-dimensional space
  • ⁇ y represents the focus The moving distance of the focal plane along the y direction, where y represents the ordinate position of the focal point in the three-dimensional space.
  • 301 in Fig. 3 represents the plane field strength distribution of the focus moving along the xoy plane one-dimensionally
  • 302 represents the binary phase diagram of the focus moving one-dimensionally along the xoy plane
  • 4 represents the plane field of the focus moving two-dimensionally along the xoy plane Intensity distribution
  • 402 represents the binary phase diagram of the two-dimensional movement of the focus along the xoy plane
  • 501 in Figure 5 represents the plane field intensity distribution of the three-dimensional movement of the focus along the xoz plane
  • 502 represents the binary phase diagram of the three-dimensional movement of the focus along the xoy plane.
  • the three-dimensional scanning of the multi-focus in space can be derived, and the complex amplitude formula of the multi-focus target light field can be obtained:
  • n a positive integer
  • k the number of focus spots
  • B k the amplitude term coefficient of the kth focused spot
  • exp the exponential function
  • i the imaginary factor
  • the laser wavelength emitted from the laser
  • ⁇ x the moving distance of the focus on the focal plane along the x direction
  • f the focal length of the objective lens
  • x the abscissa position of the focus in three-dimensional space
  • ⁇ y represents the focus The moving distance of the focal plane along the y direction
  • y represents the ordinate position of the focal point in the three-dimensional space.
  • 601 in FIG. 6 represents a spatial three-dimensional multi-focus field strength distribution
  • 602 represents a corresponding binary phase diagram
  • 801 is the amplitude in Fig. 8
  • 802 is the corresponding binary hologram; it can be concluded from the simulation result that the embodiment of the present invention can be well controlled separately in the focus array A dose of power per focus.
  • n represents a positive integer
  • k represents the number of focus spots
  • B k represents the amplitude term coefficient of the kth focused spot
  • exp represents the exponential function
  • i represents the imaginary factor
  • represents the laser wavelength emitted from the laser
  • f represents the focal length of the objective lens
  • x represents the abscissa position of the focal point in three-dimensional space
  • ⁇ x k represents the displacement of the kth focused spot in the x direction from the center position
  • y represents the ordinate position of the focal point in three-dimensional space
  • ⁇ y k represents the displacement of the kth focus spot in the y direction from the center position
  • Fig. 9 represents the field intensity distribution of a single vortex focus with a topological charge of 1 moving along the three-dimensional direction, and 902 represents the corresponding binary phase diagram
  • 1001 in Fig. 10 represents the topological The field intensity distribution of the vortex optical array whose charge is 1 moves along the three-dimensional direction, and 1002 represents the corresponding binary phase diagram
  • 1101 in Fig. 11 represents the optical field intensity distribution of the vortex array whose topological charges are 0, 1, and 3 respectively, 1102 Represented as the corresponding binary phase diagram.
  • A(x,y) is the amplitude term of the target light field
  • A(x,y) ⁇ [0,1] is the phase of the target light field
  • T is the grating period corresponding to the binary phase diagram
  • k is a constant
  • x and y are rectangular coordinate components
  • h(i,j) ⁇ 0,1 ⁇ represents the i-th row on the DMD
  • the pixel value of column j is the amplitude term of the target light field
  • the binary hologram of the target light field is obtained.
  • the loading of the binary hologram into the DMD, the wavefront modulation of the dispersion-compensated laser beam through the DMD, and the determination of the modulated laser beam include:
  • the dispersion-compensated laser beam passes through the DMD to determine a modulated laser beam.
  • an embodiment of the present invention provides a device for generating a multi-parameter adjustable light field based on DMD, including a pulsed laser 1, and along the output light direction of the pulsed laser are a first lens group 2 and a first spatial filter in sequence. 3. Blazed grating 4, second lens group 5, first mirror 6, digital micromirror array 7, second mirror 8, third lens group 9, second spatial filter 10 and objective lens 13, the first The spatial filter 3 is placed at the focal plane position of the front lens in the first lens group 2;
  • the pulse laser is used to emit a femtosecond laser beam, and the femtosecond laser beam is irradiated to the blazed grating through the first lens group and the first spatial filter;
  • the first lens group is used to expand and collimate the femtosecond laser beam
  • the first spatial filter is used to filter the femtosecond laser beam
  • the blazed grating is used to generate forward dispersion for the femtosecond laser beam, and the femtosecond laser beam is reflected to the digital micromirror array through the second lens group and the first mirror;
  • the second lens group is used to perform dispersion compensation on the femtosecond laser beam
  • the digital micromirror array is used to modulate the wavefront of the femtosecond laser beam, and the femtosecond laser beam is reflected to the second mirror, the third lens group and the second spatial filter to the the objective lens;
  • the third lens group is used to deliver the femtosecond laser beam to the entrance pupil of the objective lens
  • the second spatial filter is used to filter the diffracted light of the femtosecond laser beam
  • the objective lens is used to focus the femtosecond laser beam to generate a multi-parameter adjustable light field.
  • the femtosecond laser beam emitted by the pulse laser passes through the first lens group and the first spatial filter, the first spatial filter is placed at the focal plane of the front lens in the first lens group, and the outgoing light is irradiated on the blazed grating at a constant angle ;
  • the blazed grating produces first-order diffracted light through the second lens group and the laser beam is reflected to the digital micromirror array DMD by the first reflector, and the emitted laser light is reflected to the third lens group by the second reflector; Pass through the front lens of the third lens group, the second spatial filter, the rear lens of the third lens group, the half mirror and the objective lens in sequence.
  • the half mirror is used to reflect a part of the laser beam
  • the convex lens is used to focus reflected light
  • the CCD camera is used to collect reflected light information.
  • half mirror 11 transmits a part of laser beam to objective lens 13, and part of laser beam is reflected to CCD camera 15 through convex lens 12, and convex lens 12 is used for focusing reflected light, and CCD camera 15 is used for collecting reflected light information.
  • Fig. 2 further as a preferred embodiment, it also includes a displacement platform 14;
  • the displacement stage 14 is used to control the three-dimensional movement of the sample.
  • the blazed grating has a blazed wavelength of 500 nm and a grating period of 1200 lines/mm.
  • the digital micromirror array has a resolution of 1080p and a micromirror pitch of 10.8 ⁇ m.
  • an embodiment of the present invention also provides a system, including a processor and a memory; the memory is used to store a program; and the processor executes the program to implement the method as described above.
  • an embodiment of the present invention further provides a computer-readable storage medium, the storage medium stores a program, and the program is executed by a processor to implement the foregoing method.
  • the embodiment of the present invention also discloses a computer program product or computer program, where the computer program product or computer program includes computer instructions, and the computer instructions are stored in a computer-readable storage medium.
  • the processor of the computer device can read the computer instruction from the computer-readable storage medium, and the processor executes the computer instruction, so that the computer device executes the method shown in FIG. 1 .
  • the embodiment of the present invention can quantitatively calculate the dispersion of the system device through the blazed grating and the limitation of the focal length of the lens, compensate the dispersion of the DMD, and improve the resolution of the focal point;
  • the embodiment of the present invention can adjust the three-dimensional spatial position, power dose, and topological charge of each focal point in the array light field by loading the binary hologram into the DMD. Combined with the ultra-high refresh rate of the DMD, it can realize An ultra-high-speed light field regulation technology has the advantages of low cost, high efficiency, and simple application.
  • the functions/operations noted in the block diagrams may occur out of the order noted in the operational diagrams.
  • two blocks shown in succession may, in fact, be executed substantially concurrently or the blocks may sometimes be executed in the reverse order, depending upon the functionality/operations involved.
  • the embodiments presented and described in the flowcharts of the present invention are provided by way of example in order to provide a more comprehensive understanding of the technology. The disclosed methods are not limited to the operations and logical flow presented herein. Alternative embodiments are contemplated in which the order of various operations is changed and in which sub-operations described as part of larger operations are performed independently.
  • the functions described above are realized in the form of software function units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the essence of the technical solution of the present invention or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in various embodiments of the present invention.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disk or optical disc, etc., which can store program codes. .
  • a "computer-readable medium” may be any device that can contain, store, communicate, propagate or transmit a program for use in or in conjunction with an instruction execution system, device or device.
  • computer-readable media include the following: electrical connection with one or more wires (electronic device), portable computer disk case (magnetic device), random access memory (RAM), Read Only Memory (ROM), Erasable and Editable Read Only Memory (EPROM or Flash Memory), Fiber Optic Devices, and Portable Compact Disc Read Only Memory (CDROM).
  • the computer-readable medium may even be paper or other suitable medium on which the program can be printed, since the program can be read, for example, by optically scanning the paper or other medium, followed by editing, interpretation or other suitable processing if necessary.
  • the program is processed electronically and stored in computer memory.

Abstract

本发明公开了一种基于DMD生成多参量可调光场的方法、装置及系统,方法包括:对飞秒激光光束进行扩束和准直处理,确定扩束和准直后的激光光束;对激光光束进行滤波处理,确定第一滤波激光光束;对第一滤波激光光束进行色散补偿处理,确定色散补偿后的激光光束;结合目标光场的复振幅表达式以及二元全息算法,确定目标光场的二元全息图;将二元全息图加载到DMD,通过DMD对色散补偿后的激光光束进行波前调制,确定调制后的激光光束;对调制后的激光光束进行滤波处理,滤除零级衍射光和负一级衍射光,确定一级衍射光通过;对一级衍射光进行聚焦处理,生成多参量可调阵列光场。本发明能够减低系统的使用成本,可广泛应用于光场调控技术领域。

Description

一种基于DMD生成多参量可调光场的方法、装置及系统 技术领域
本发明涉及光场调控技术领域,尤其是一种基于DMD生成多参量可调光场的方法、装置及系统。
背景技术
由于现代纳米光学的进步,光场调控技术已经成为当前国际光学领域的一个研究热点,光场调控技术一般是指对入射激光的波前进行相位和振幅调制,得到所需要的强度分布和传播特性。随着空间光调制器技术的进步,光场调控技术得到了飞速的发展,不再局限于固定的光学参数设计,而是可以通过全息计算来动态地调制光场,实现光场多样化调控。另一方面,飞秒激光具有峰值功率高、热效应、可以产生各种非线性效应等优点。因此,基于飞秒激光的光场调控技术在激光加工、光镊、信息存储、生物成像等领域有重要应用。
目前,光场调控方法大多是利用液晶空间光调制器(LC-SLM),通过迭代优化算法计算出目标光场的相位分布,并加载到LC-SLM来实现对入射激光的波前调制,但这种优化迭代算法得出的相位缺少灵活性,很难实现对焦点阵列中的每个光斑的位置,功率和拓扑荷同时调控。另一方面,尽管可以通过在LC-SLM上将入瞳处的相位划分为多个区域来实现对焦点阵列中每个焦点的单独调控。但在使用LC-SLM进行光场调控时,未考虑色散问题造成分辨率恶化的影响;且LC-SLM是一种对偏振响应的器件,在光路系统中必须加上偏振片和半波片,将入射光转为特定偏振方向的线偏光才能实现较好的调制效果,导致激光功率损失较多且光路系统搭建复杂,限制系统的进一步扩展和集成。此外,DMD在价格以及全息图的刷新速度上(高达20kHz)相比与LC-SLM都有很大的优势。因此,实现一种低成本,高效率,高分辨率的光场调控技术显得尤为重要,而目前现有技术中尚未实现基于DMD的多参量光场调控。
发明内容
有鉴于此,本发明实施例提供一种基于DMD生成多参量可调光场的方法、装置及系统,以实现低成本、高效率地调控多参量光场。
一方面,本发明实施例公开了一种基于DMD生成多参量可调光场的方法,包括:
发射飞秒激光光束;
对所述飞秒激光光束进行扩束和准直处理,确定扩束和准直后的激光光束;
对所述扩束和准直后的激光光束进行滤波处理,确定第一滤波激光光束;
对所述第一滤波激光光束进行色散补偿处理,确定色散补偿后的激光光束;
结合目标光场的复振幅表达式以及二元全息算法,确定所述目标光场的二元全息图;
将所述二元全息图加载到DMD,通过DMD对所述色散补偿后的激光光束进行波前调制,确定调制后的激光光束;
对所述调制后的激光光束进行滤波处理,滤除零级衍射光和负一级衍射光,确定一级衍射光通过;
对所述一级衍射光进行聚焦处理,生成多参量可调阵列光场,其中,所述多参量可调阵列光场中每个聚焦光斑的空间三维、功率剂量以及拓扑荷数都是独立可调的。
可选地,所述对所述第一滤波激光光束进行色散补偿处理,确定色散补偿后的激光光束,包括:
通过闪耀光栅反射所述第一滤波激光光束,准直出射所述第一滤波激光光束的衍射光,其中,所述衍射光用于表征带有恒定角色散的一级衍射光;
根据DMD的入射角大小,确定DMD的角色散值;
根据所述衍射光角色散,确定闪耀光栅的角色散值;
根据所述闪耀光栅的角色散值以及DMD的角色散值计算透镜焦距,确定透镜组;
所述衍射光通过所述透镜组,确定色散补偿后的激光光束。
可选地,所述结合目标光场的复振幅表达式以及二元全息算法,确定所述目标光场的二元全息图,包括:
通过目标光场的焦点在焦平面上移动至物镜入瞳面,确定相位表达式;
对所述相位表达式中的相位项叠加球面波相位以及涡旋相位,确定目标光场的复振幅表达式;
结合所述复振幅表达式以及二元全息算法,确定目标光场的二元全息图。
可选地,所述将所述二元全息图加载到DMD,通过DMD对所述色散补偿后的激光光束进行波前调制,确定调制后的激光光束,包括:
根据所述二元全息图的像素值,控制所述DMD每个像素上微镜的翻转;
所述色散补偿后的激光光束通过所述DMD,确定调制后的激光光束。
另一方面,本发明实施例还公开了一种基于DMD生成多参量可调光场的装置,其特征在于,包括脉冲激光器,沿所述脉冲激光器的输出光方向依次是第一透镜组、第一空间滤波器、闪耀光栅、第二透镜组、第一反射镜、数字微镜阵列、第二反射镜、第三透镜组、第二 空间滤波器以及物镜,所述第一空间滤波器放置在所述第一透镜组中前透镜的焦平面位置;
其中,所述脉冲激光器,用于发射飞秒激光光束,所述飞秒激光光束通过所述第一透镜组以及第一空间滤波器,照射至所述闪耀光栅;
所述第一透镜组,用于对所述飞秒激光光束进行扩束和准直;
所述第一空间滤波器,用于对所述飞秒激光光束进行滤波;
所述闪耀光栅,用于对所述飞秒激光光束生成正向色散,所述飞秒激光光束通过所述第二透镜组以及第一反射镜,反射至所述数字微镜列阵;
所述第二透镜组,用于对所述飞秒激光光束进行色散补偿;
所述数字微镜列阵,用于对所述飞秒激光光束进行波前调制,所述飞秒激光光束通过所述第二反射镜、第三透镜组以及第二空间滤波器,反射至所述物镜;
所述第三透镜组,用于将所述飞秒激光光束传递到所述物镜入瞳前;
所述第二空间滤波器,用于过滤所述飞秒激光光束的衍射光;
所述物镜,用于聚焦所述飞秒激光光束,生成多参量可调光场。
可选地,还包括半反半透镜、凸透镜以及CCD相机,所述CCD相机放置在所述凸透镜焦平面上;
其中,所述半反半透镜,用于反射一部分激光光束;
所述凸透镜,用于聚焦反射光;
所述CCD相机,用于收集反射光信息。
可选地,还包括位移台;
其中,所述位移台,用于控制样品的三维移动。
可选地,所述闪耀光栅的闪耀波长为500nm,光栅周期为1200线/mm。
可选地,所述数字微镜列阵的分辨率为1080p,微镜间距为10.8μm。
另一方面,本发明实施例还公开了一种基于DMD生成多参量可调光场的系统,包括处理器以及存储器;
所述存储器用于存储程序;
所述处理器执行所述程序实现如前面所述的方法。
另一方面,本发明实施例还公开了一种计算机程序产品或计算机程序,该计算机程序产品或计算机程序包括计算机指令,该计算机指令存储在计算机可读存储介质中。计算机设备的处理器可以从计算机可读存储介质读取该计算机指令,处理器执行该计算机指令,使得该计算机设备执行前面的方法。
本发明采用以上技术方案与现有技术相比,具有以下技术效果:本发明通过对装置的色散定量计算,实现色散补偿,提高了系统的焦点分辨率;通过结合目标光场的复振幅表达式以及二元全息算法,确定所述目标光场的二元全息图;能够对阵列光场中每个光斑的是三维空间位置、功率剂量、拓扑荷数分别调控;将所述二元全息图加载到DMD,通过DMD对所述色散补偿后的激光光束进行波前调制,确定调制后的激光光束;能够通过全息计算技术,通过DMD加载二元全息图,能够减低系统的成本以及提高系统的效率。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例的一种基于DMD生成多参量可调光场的方法流程图;
图2为本发明实施例的一种基于DMD生成多参量可调光场的装置结构图;
图3为本发明实施例的焦点沿xoy平面一维移动的平面场强分布与二元相位图;
图4为本发明实施例的焦点沿xoy平面二维移动的平面场强分布与二元相位图;
图5为本发明实施例的焦点沿xoz平面三维移动的平面场强分布与二元相位图;
图6为本发明实施例的空间三维多焦点场强分布与二元相位图;
图7为本发明实施例的振幅项系数均为1的多焦点场强分布与二元相位图;
图8为本发明实施例的振幅项系数分别为0.4、0.6、0.8的多焦点场强分布与二元相位图;
图9为本发明实施例的拓扑荷为1的涡旋光沿三维方向移动场强分布与二元相位图;
图10为本发明实施例的拓扑荷为1的涡旋光阵列沿三维方向移动场强分布与二元相位图;
图11为本发明实施例的拓扑荷分别为0、1、3的涡旋阵列光场强分布与二元相位图;
图中,1.脉冲激光器,2.第一透镜组,3.第一空间滤波器,4.闪耀光栅,5.第二透镜组,6.第一反射镜,7.数字微镜列阵,8.第二反射镜,9.第三透镜组,10.第二空间滤波器,11.半反半透镜,12.凸透镜,13.物镜,14.位移台,15.CCD相机。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
参照图1,本发明实施例还提供了一种基于DMD生成多参量可调光场的方法,包括:
S1、发射飞秒激光光束;
S2、对所述飞秒激光光束进行扩束和准直处理,确定扩束和准直后的激光光束;
S3、对所述扩束和准直后的激光光束进行滤波处理,确定第一滤波激光光束;
S4、对所述第一滤波激光光束进行色散补偿处理,确定色散补偿后的激光光束;
S5、结合目标光场的复振幅表达式以及二元全息算法,确定所述目标光场的二元全息图;
S6、将所述二元全息图加载到DMD,通过DMD对所述色散补偿后的激光光束进行波前调制,确定调制后的激光光束;
S7、对所述调制后的激光光束进行滤波处理,滤除零级衍射光和负一级衍射光,确定一级衍射光通过;
S8、对所述一级衍射光进行聚焦处理,生成多参量可调阵列光场,其中,所述多参量可调阵列光场中每个聚焦光斑的空间三维、功率剂量以及拓扑荷数都是独立可调的。
进一步作为优选的实施方式,上述步骤S3中,所述对所述第一滤波激光光束进行色散补偿处理,确定色散补偿后的激光光束,包括:
通过闪耀光栅反射所述第一滤波激光光束,准直出射所述第一滤波激光光束的衍射光,所述衍射光用于表征带有恒定的角色散的一级衍射光;
根据DMD的入射角大小,确定DMD的角色散值;
根据衍射光角色散,确定闪耀光栅的角色散值;
根据所述闪耀光栅的角色散值以及DMD的角色散值计算透镜焦距,确定透镜组;
所述衍射光通过所述透镜组,确定色散补偿后的激光光束。
其中,由于飞秒激光是宽带光,在经过DMD时会产生严重的色散,聚焦之后的光斑会展宽为长条形光束,造成分辨率的恶化。因此,将扩束后的飞秒激光照射到闪耀光栅上,使用闪耀光栅对DMD的二维网格结构所引起的固有色散进行补偿,通过透镜组对闪耀光栅的色散进行缩放处理,与DMD的色散相匹配。
在光路系统中,DMD是45°放置,其等效像素尺寸d DMD为:
Figure PCTCN2022103532-appb-000001
其中,d代表DMD的实际像素尺寸,d DMD代表DMD的等效像素尺寸。
由于DMD的偏转角度为±12°,那么DMD可以作为闪耀角为12°,周期为7.636μm的闪耀光栅。当入射角为24°时,衍射角为0°,出射光的传播方向垂直于DMD面板,此时衍射效率最高。基于光栅方程,需要满足闪耀条件:
mλ=2d DMDsin(γ DMD)cos(i DMD- DMD);
其中,m代表闪耀光栅的闪耀级次,λ代表激光器输出波长,d DMD代表DMD的等效像素 尺寸,γ DMD代表DMD的闪耀角,i DMD代表DMD的入射角。
计算得到λ=515nm,m=6;
根据公式计算DMD的角色散值为:
Figure PCTCN2022103532-appb-000002
其中,D DMD代表DMD的角色散值,θ DMD代表DMD的衍射角大小,m代表闪耀光栅的闪耀级次。
在本发明实施例中,使用每毫米线数为1200条的闪耀光栅,其光栅周期为0.83μm;令光栅入射角为47°,可计算出闪耀光栅的角色散值为:
Figure PCTCN2022103532-appb-000003
其中,D G代表闪耀光栅的角色散值,d G代表闪耀光栅周期,θ G代表闪耀光栅衍射角大小,m代表闪耀光栅的闪耀级次。
根据所述闪耀光栅的角色散值以及DMD的角色散值计算透镜焦距,使其满足:
Figure PCTCN2022103532-appb-000004
其中,f L2表示闪耀光栅和DMD之间的透镜组的第二个透镜的焦距大小,f L1表示闪耀光栅和DMD之间的透镜组的第一个透镜的焦距大小,D G代表闪耀光栅的角色散值,D D代表DMD的角色散值。
根据透镜焦距的大小设定,确定透镜;通过闪耀光栅以及透镜,对DMD产生的色散进行补偿。
进一步作为优选的实施方式,上述步骤S5中,所述结合目标光场的复振幅表达式以及二元全息算法,确定所述目标光场的二元全息图,包括:
通过目标光场的焦点在焦平面上移动至物镜入瞳面,确定相位表达式;
对所述相位表达式中的相位项叠加球面波相位以及涡旋相位,确定目标光场的复振幅表达式;
结合所述复振幅表达式以及二元全息算法,确定目标光场的二元全息图。
其中,DMD微镜只有“0”和“1”两种状态,利用二元全息算法控制方程,通过推导出目标光场的复振幅表达式,可以计算出加载到DMD上的二元全息图,实现光场的实时调控,其中,目标光场为根据本实施例生成的多参量可调阵列光场。将焦点在焦平面上移动位置与物镜入瞳面相结合,通过以下过程推导焦点在焦平面上位置变化的相位表达式。
从最基本的平面波表达式出发:
Figure PCTCN2022103532-appb-000005
其中,
Figure PCTCN2022103532-appb-000006
代表平面波的复振幅,B代表振幅项系数,exp代表指数函数,i代表虚数因子,
Figure PCTCN2022103532-appb-000007
代表波矢,
Figure PCTCN2022103532-appb-000008
代表平面波传播矢量,k x,k y,k z分别代表波矢在空间三维的分量,x,y,z分别代表焦点在三维空间中的坐标位置。
若焦点仅沿x一维方向上移动△x的位移量,则有:
Figure PCTCN2022103532-appb-000009
Figure PCTCN2022103532-appb-000010
其中,θ是入射光与透镜光轴的夹角,△x代表焦点在焦平面沿x方向上的移动距离,f代表物镜的焦距,
Figure PCTCN2022103532-appb-000011
代表波矢,k x代表波矢在x一维方向上的分量,x代表焦点在三维空间中的横坐标位置。
由于入射光与透镜光轴的夹角很小,所以tanθ≈sinθ;
可以得到
Figure PCTCN2022103532-appb-000012
其中,
Figure PCTCN2022103532-appb-000013
代表平面波的复振幅,B代表振幅项系数,exp代表指数函数,i代表虚数因子,
Figure PCTCN2022103532-appb-000014
代表波矢,△x代表焦点在焦平面沿x方向上的移动距离,f代表物镜的焦距,x代表三维空间中的焦点的横坐标位置。
根据上式可以得到焦点在二维空间移动复振幅表达式为:
Figure PCTCN2022103532-appb-000015
其中,
Figure PCTCN2022103532-appb-000016
代表平面波的复振幅,B代表振幅项系数,exp代表指数函数,i代表虚数因子,
Figure PCTCN2022103532-appb-000017
代表波矢,△x代表焦点在焦平面沿x方向上的移动距离,f代表物镜的焦距,x代表三维空间中的焦点的横坐标位置,△y代表焦点在焦平面沿y方向上的移动距离,y代表三维空间中的焦点的纵坐标位置。
得到焦点在焦平面空间上位置移动的目标光场复振幅:
Figure PCTCN2022103532-appb-000018
其中,
Figure PCTCN2022103532-appb-000019
代表平面波的复振幅,B代表振幅项系数,exp代表指数函数,i代表虚数因子,
Figure PCTCN2022103532-appb-000020
代表波矢,λ代表从激光器出射的激光波长,△x代表焦点在焦平面沿x方向上的移动距离,f代表物镜的焦距,x代表三维空间中的焦点的横坐标位置,△y代表焦点在焦平面沿y方向上 的移动距离,y代表三维空间中的焦点的纵坐标位置。
参照图3、图4以及图5,根据上述目标光场的复振幅,在高NA物镜聚焦下,基于德拜矢量衍射积分计算,得到单焦点在空间三维的仿真结果。其中,图3中301表示焦点沿xoy平面一维移动的平面场强分布,302表示焦点沿xoy平面一维移动的二元相位图;图4中401表示焦点沿xoy平面二维移动的平面场强分布,402表示焦点沿xoy平面二维移动的二元相位图;图5中501表示焦点沿xoz平面三维移动的平面场强分布,502表示焦点沿xoy平面三维移动的二元相位图。又仿真结果可以得出,本发明实施例能够很好地操作激光焦点在空间三维位置的任意扫描。
根据上述目标光场的复振幅公式,可以推导出多焦点在空间三维的扫描,可以得到多焦点目标光场复振幅公式:
Figure PCTCN2022103532-appb-000021
其中,n代表正整数,k代表聚焦光斑个数,
Figure PCTCN2022103532-appb-000022
代表平面波的复振幅,B k代表第k个聚焦光斑的振幅项系数,exp代表指数函数,i代表虚数因子,
Figure PCTCN2022103532-appb-000023
代表波矢,λ代表从激光器出射的激光波长,△x代表焦点在焦平面沿x方向上的移动距离,f代表物镜的焦距,x代表三维空间中的焦点的横坐标位置,△y代表焦点在焦平面沿y方向上的移动距离,y代表三维空间中的焦点的纵坐标位置。
参照图6,图6中601表示空间三维多焦点场强分布,602表示对应的二元相位图。参照图7以及图8,其中,图7中701为振幅项系数为B1=1,B2=1,B3=1下的仿真计算结果,702为对应的二元全息图;图8中801为振幅项因子为B1=0.4,B2=0.6,B3=0.8下的仿真计算结果,802为对应的二元全息图;由仿真结果可以得出,本发明实施例能够很好的在焦点阵列中单独控制每个焦点的功率剂量。
对所述目标光场复振幅进行相位叠加,给每个复振幅中的相位项叠加球面波相位和涡旋相位,得到最终的目标光场的复振幅表达式:
Figure PCTCN2022103532-appb-000024
其中,n代表正整数,k代表聚焦光斑个数,
Figure PCTCN2022103532-appb-000025
代表平面波的复振幅,B k代表第k个聚焦光斑的振幅项系数,exp代表指数函数,i代表虚数因子,
Figure PCTCN2022103532-appb-000026
代表波矢,λ代表从激光器出射的激光波长,f代表物镜的焦距,x代表三维空间中的焦点的横坐标位置,△x k代表第k个聚焦光斑在x方向偏移中心位置的位移量,y代表三维空间中的焦点的纵坐标位置,△y k代表第k个 聚焦光斑在y方向偏移中心位置的位移量,
Figure PCTCN2022103532-appb-000027
代表第k个聚焦光斑在z方向偏移中心位置所叠加球面波相位,
Figure PCTCN2022103532-appb-000028
代表第k个聚焦光斑叠加不同拓扑荷数对的涡旋相位。
参照图9、图10以及图11,其中,图9中901表示拓扑荷为1的单个涡旋焦点沿三维方向移动场强分布,902表示为对应的二元相位图;图10中1001表示拓扑荷为1的涡旋光阵列沿三维方向移动场强分布,1002表示为对应的二元相位图;图11中1101表示为拓扑荷分别为0、1、3的涡旋阵列光场强分布,1102表示为对应的二元相位图。
二元全息图的算法如下:
Figure PCTCN2022103532-appb-000029
其中,A(x,y)是目标光场的振幅项,且A(x,y)∈[0,1],
Figure PCTCN2022103532-appb-000030
是目标光场的相位,T是二元相位图对应的光栅周期,k是常数,x和y为直角坐标分量,h(i,j)∈{0,1}代表DMD上第i行,第j列的像素值。
结合所述复振幅表达式以及二元全息算法,得到目标光场的二元全息图。
进一步作为优选的实施方式,上述步骤S6中,所述将所述二元全息图加载到DMD,通过DMD对所述色散补偿后的激光光束进行波前调制,确定调制后的激光光束,包括:
根据所述二元全息图的像素值,控制所述DMD每个像素上微镜的翻转;
所述色散补偿后的激光光束通过所述DMD,确定调制后的激光光束。
其中,加载二元全息图到DMD,根据二元全息图的像素值控制DMD每个像素上微镜的翻转,当像素值为0时,该像素上的微镜翻转-12°,当像素值为1时,该像素上的微镜翻转+12°,以实现对入射光的波前调制。
参照图2,本发明实施例提供一种基于DMD生成多参量可调光场的装置,包括脉冲激光器1,沿所述脉冲激光器的输出光方向依次是第一透镜组2、第一空间滤波器3、闪耀光栅4、第二透镜组5、第一反射镜6、数字微镜阵列7、第二反射镜8、第三透镜组9、第二空间滤波器10以及物镜13,所述第一空间滤波器3放置在所述第一透镜组2中前透镜的焦平面位置;
其中,所述脉冲激光器,用于发射飞秒激光光束,所述飞秒激光光束通过所述第一透镜组以及第一空间滤波器,照射至所述闪耀光栅;
所述第一透镜组,用于对所述飞秒激光光束进行扩束和准直;
所述第一空间滤波器,用于对所述飞秒激光光束进行滤波;
所述闪耀光栅,用于对所述飞秒激光光束生成正向色散,所述飞秒激光光束通过所述第二透镜组以及第一反射镜,反射至所述数字微镜列阵;
所述第二透镜组,用于对所述飞秒激光光束进行色散补偿;
所述数字微镜列阵,用于对所述飞秒激光光束进行波前调制,所述飞秒激光光束通过所述第二反射镜、第三透镜组以及第二空间滤波器,反射至所述物镜;
所述第三透镜组,用于将所述飞秒激光光束传递到所述物镜入瞳前;
所述第二空间滤波器,用于过滤所述飞秒激光光束的衍射光;
所述物镜,用于聚焦所述飞秒激光光束,生成多参量可调光场。
其中,脉冲激光器发出飞秒激光光束经过第一透镜组和第一空间滤波器,第一空间滤波器放置在第一透镜组中前透镜的焦平面位置,出射光以恒定角度照射到闪耀光栅上;闪耀光栅产生一级衍射光通过第二透镜组且由第一反射镜将激光光束反射到数字微镜阵列DMD上,出射的激光经过第二反射镜将激光反射到第三透镜组;激光光束依次通过第三透镜组的前透镜、第二空间滤波器、第三透镜组的后透镜、半反半透镜和物镜。
参照图2,进一步作为优选的实施方式,还包括半反半透镜11、凸透镜12以及CCD相机15,所述CCD相机15放置在所述凸透镜12焦平面上;
其中,所述半反半透镜,用于反射一部分激光光束;
所述凸透镜,用于聚焦反射光;
所述CCD相机,用于收集反射光信息。
参照图2,半反半透镜11将一部分激光光束透射至物镜13,将一部分激光光束通过凸透镜12反射至CCD相机15,凸透镜12用于聚焦反射光,CCD相机15用于收集反射光信息。
参照图2,进一步作为优选的实施方式,还包括位移台14;
其中,所述位移台14,用于控制样品的三维移动。
进一步作为优选的实施方式,所述闪耀光栅的闪耀波长为500nm,光栅周期为1200线/mm。
进一步作为优选的实施方式,所述数字微镜列阵的分辨率为1080p,微镜间距为10.8μm。
与上述的方法相对应,本发明实施例还提供了一种系统,包括处理器以及存储器;所述存储器用于存储程序;所述处理器执行所述程序实现如前面所述的方法。
与上述的方法相对应,本发明实施例还提供了一种计算机可读存储介质,所述存储介质存储有程序,所述程序被处理器执行实现如前面所述的方法。
本发明实施例还公开了一种计算机程序产品或计算机程序,该计算机程序产品或计算机程序包括计算机指令,该计算机指令存储在计算机可读存储介质中。计算机设备的处理器可 以从计算机可读存储介质读取该计算机指令,处理器执行该计算机指令,使得该计算机设备执行图1所示的方法。
综上所述,本发明实施例具有以下优点:
(1)本发明实施例通过闪耀光栅以及对透镜焦距的限制,能够对系统装置的色散进行定量计算,对DMD的色散进行补偿,能够提高焦点的分辨率;
(2)本发明实施例通过将二元全息图加载到DMD,能够对阵列光场中每个焦点的三维空间位置、功率剂量、拓扑荷数进行调节,结合DMD超高的刷新速率,能够实现一种超高速的光场调控技术,具有低成本,高效率,简单适用的优点。
在一些可选择的实施例中,在方框图中提到的功能/操作可以不按照操作示图提到的顺序发生。例如,取决于所涉及的功能/操作,连续示出的两个方框实际上可以被大体上同时地执行或所述方框有时能以相反顺序被执行。此外,在本发明的流程图中所呈现和描述的实施例以示例的方式被提供,目的在于提供对技术更全面的理解。所公开的方法不限于本文所呈现的操作和逻辑流程。可选择的实施例是可预期的,其中各种操作的顺序被改变以及其中被描述为较大操作的一部分的子操作被独立地执行。
此外,虽然在功能性模块的背景下描述了本发明,但应当理解的是,除非另有相反说明,所述的功能和/或特征中的一个或多个可以被集成在单个物理装置和/或软件模块中,或者一个或多个功能和/或特征可以在单独的物理装置或软件模块中被实现。还可以理解的是,有关每个模块的实际实现的详细讨论对于理解本发明是不必要的。更确切地说,考虑到在本文中公开的装置中各种功能模块的属性、功能和内部关系的情况下,在工程师的常规技术内将会了解该模块的实际实现。因此,本领域技术人员运用普通技术就能够在无需过度试验的情况下实现在权利要求书中所阐明的本发明。还可以理解的是,所公开的特定概念仅仅是说明性的,并不意在限制本发明的范围,本发明的范围由所附权利要求书及其等同方案的全部范围来决定。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
在流程图中表示或在此以其他方式描述的逻辑和/或步骤,例如,可以被认为是用于实现逻辑功能的可执行指令的定序列表,可以具体实现在任何计算机可读介质中,以供指令执行系统、装置或设备(如基于计算机的系统、包括处理器的系统或其他可以从指令执行系统、装置或设备取指令并执行指令的系统)使用,或结合这些指令执行系统、装置或设备而使用。就本说明书而言,“计算机可读介质”可以是任何可以包含、存储、通信、传播或传输程序以供指令执行系统、装置或设备或结合这些指令执行系统、装置或设备而使用的装置。
计算机可读介质的更具体的示例(非穷尽性列表)包括以下:具有一个或多个布线的电连接部(电子装置),便携式计算机盘盒(磁装置),随机存取存储器(RAM),只读存储器(ROM),可擦除可编辑只读存储器(EPROM或闪速存储器),光纤装置,以及便携式光盘只读存储器(CDROM)。另外,计算机可读介质甚至可以是可在其上打印所述程序的纸或其他合适的介质,因为可以例如通过对纸或其他介质进行光学扫描,接着进行编辑、解译或必要时以其他合适方式进行处理来以电子方式获得所述程序,然后将其存储在计算机存储器中。
应当理解,本发明的各部分可以用硬件、软件、固件或它们的组合来实现。在上述实施方式中,多个步骤或方法可以用存储在存储器中且由合适的指令执行系统执行的软件或固件来实现。例如,如果用硬件来实现,和在另一实施方式中一样,可用本领域公知的下列技术中的任一项或他们的组合来实现:具有用于对数据信号实现逻辑功能的逻辑门电路的离散逻辑电路,具有合适的组合逻辑门电路的专用集成电路,可编程门阵列(PGA),现场可编程门阵列(FPGA)等。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
尽管已经示出和描述了本发明的实施例,本领域的普通技术人员可以理解:在不脱离本发明的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由权利要求及其等同物限定。
以上是对本发明的较佳实施进行了具体说明,但本发明并不限于所述实施例,熟悉本领域的技术人员在不违背本发明精神的前提下还可做出种种的等同变形或替换,这些等同的变形或替换均包含在本申请权利要求所限定的范围内。

Claims (10)

  1. 一种基于DMD生成多参量可调光场的方法,其特征在于,包括:
    发射飞秒激光光束;
    对所述飞秒激光光束进行扩束和准直处理,确定扩束和准直后的激光光束;
    对所述扩束和准直后的激光光束进行滤波处理,确定第一滤波激光光束;
    对所述第一滤波激光光束进行色散补偿处理,确定色散补偿后的激光光束;
    结合目标光场的复振幅表达式以及二元全息算法,确定所述目标光场的二元全息图;
    将所述二元全息图加载到DMD,通过DMD对所述色散补偿后的激光光束进行波前调制,确定调制后的激光光束;
    对所述调制后的激光光束进行滤波处理,滤除零级衍射光和负一级衍射光,确定一级衍射光通过;
    对所述一级衍射光进行聚焦处理,生成多参量可调阵列光场,其中,所述多参量可调阵列光场中每个聚焦光斑的空间三维、功率剂量以及拓扑荷数都是独立可调的。
  2. 根据权利要求1所述的一种基于DMD生成多参量可调光场的方法,其特征在于,所述对所述第一滤波激光光束进行色散补偿处理,确定色散补偿后的激光光束,包括:
    通过闪耀光栅反射所述第一滤波激光光束,准直出射所述第一滤波激光光束的衍射光,其中,所述衍射光用于表征带有恒定角色散的一级衍射光;
    根据DMD的入射角大小,确定DMD的角色散值;
    根据所述衍射光角色散,确定闪耀光栅的角色散值;
    根据所述闪耀光栅的角色散值以及DMD的角色散值计算透镜焦距,确定透镜组;
    所述衍射光通过所述透镜组,确定色散补偿后的激光光束。
  3. 根据权利要求1所述的一种基于DMD生成多参量可调光场的方法,其特征在于,所述结合目标光场的复振幅表达式以及二元全息算法,确定所述目标光场的二元全息图,包括:
    通过目标光场的焦点在焦平面上移动至物镜入瞳面,确定相位表达式;
    对所述相位表达式中的相位项叠加球面波相位以及涡旋相位,确定目标光场的复振幅表达式;
    结合所述复振幅表达式以及二元全息算法,确定目标光场的二元全息图。
  4. 根据权利要求1所述的一种基于DMD生成多参量可调光场的方法,其特征在于,所述将所述二元全息图加载到DMD,通过DMD对所述色散补偿后的激光光束进行波前调制,确定调制后的激光光束,包括:
    根据所述二元全息图的像素值,控制所述DMD中每个像素上微镜的翻转;
    所述色散补偿后的激光光束通过所述DMD,确定调制后的激光光束。
  5. 一种基于DMD生成多参量可调光场的装置,其特征在于,包括脉冲激光器,沿所述脉冲激光器的输出光方向依次是第一透镜组、第一空间滤波器、闪耀光栅、第二透镜组、第一反射镜、数字微镜阵列、第二反射镜、第三透镜组、第二空间滤波器以及物镜,所述第一空间滤波器放置在所述第一透镜组中前透镜的焦平面位置;
    其中,所述脉冲激光器,用于发射飞秒激光光束,所述飞秒激光光束通过所述第一透镜组以及第一空间滤波器,照射至所述闪耀光栅;
    所述第一透镜组,用于对所述飞秒激光光束进行扩束和准直;
    所述第一空间滤波器,用于对所述飞秒激光光束进行滤波;
    所述闪耀光栅,用于对所述飞秒激光光束生成正向色散,所述飞秒激光光束通过所述第二透镜组以及第一反射镜,反射至所述数字微镜列阵;
    所述第二透镜组,用于对所述飞秒激光光束进行色散补偿;
    所述数字微镜列阵,用于对所述飞秒激光光束进行波前调制,所述飞秒激光光束通过所述第二反射镜、第三透镜组以及第二空间滤波器,反射至所述物镜;
    所述第三透镜组,用于将所述飞秒激光光束传递到所述物镜入瞳前;
    所述第二空间滤波器,用于过滤所述飞秒激光光束的衍射光;
    所述物镜,用于聚焦所述飞秒激光光束,生成多参量可调光场。
  6. 根据权利要求5所述的一种基于DMD生成多参量可调光场的装置,其特征在于,还 包括半反半透镜、凸透镜以及CCD相机,所述CCD相机放置在所述凸透镜焦平面上;
    其中,所述半反半透镜,用于反射一部分激光光束;
    所述凸透镜,用于聚焦反射光;
    所述CCD相机,用于收集反射光信息。
  7. 根据权利要求5所述的一种基于DMD生成多参量可调光场的装置,其特征在于,还包括位移台;
    其中,所述位移台,用于控制样品的三维移动。
  8. 根据权利要求5所述的一种基于DMD生成多参量可调光场的装置,其特征在于,所述闪耀光栅的闪耀波长为500nm,光栅周期为1200线/mm。
  9. 根据权利要求5所述的一种基于DMD生成多参量可调光场的装置,其特征在于,所述数字微镜列阵的分辨率为1080p,微镜间距为10.8μm。
  10. 一种基于DMD生成多参量可调光场的系统,其特征在于,包括存储器以及处理器;
    所述存储器用于存储程序;
    所述处理器执行所述程序实现如权利要求1-4中任一项所述的方法。
PCT/CN2022/103532 2021-06-09 2022-07-04 一种基于dmd生成多参量可调光场的方法、装置及系统 WO2022258075A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110642895.9 2021-06-09
CN202110642895.9A CN113448077A (zh) 2021-06-09 2021-06-09 一种基于dmd生成多参量可调光场的方法、装置及系统

Publications (1)

Publication Number Publication Date
WO2022258075A1 true WO2022258075A1 (zh) 2022-12-15

Family

ID=77811105

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/103532 WO2022258075A1 (zh) 2021-06-09 2022-07-04 一种基于dmd生成多参量可调光场的方法、装置及系统

Country Status (2)

Country Link
CN (1) CN113448077A (zh)
WO (1) WO2022258075A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113448077A (zh) * 2021-06-09 2021-09-28 暨南大学 一种基于dmd生成多参量可调光场的方法、装置及系统
CN114441474B (zh) * 2022-04-07 2022-07-01 安徽中科谱康科技有限公司 一种近红外光谱仪及其控制方法和系统
CN115185100B (zh) * 2022-06-22 2023-08-04 成都飞机工业(集团)有限责任公司 一种加密点阵式光场的生成方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109343320A (zh) * 2018-10-31 2019-02-15 华中科技大学 一种光控制装置
US20190353912A1 (en) * 2015-09-21 2019-11-21 The Chinese University Of Hong Kong Apparatus and method for laser beam shaping and scanning
CN111819500A (zh) * 2018-03-06 2020-10-23 香港中文大学 超快激光制造方法及系统
CN113448077A (zh) * 2021-06-09 2021-09-28 暨南大学 一种基于dmd生成多参量可调光场的方法、装置及系统

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10821671B2 (en) * 2015-09-21 2020-11-03 The Chinese University Of Hong Kong Ultrafast laser fabrication method and system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190353912A1 (en) * 2015-09-21 2019-11-21 The Chinese University Of Hong Kong Apparatus and method for laser beam shaping and scanning
CN111819500A (zh) * 2018-03-06 2020-10-23 香港中文大学 超快激光制造方法及系统
CN109343320A (zh) * 2018-10-31 2019-02-15 华中科技大学 一种光控制装置
CN113448077A (zh) * 2021-06-09 2021-09-28 暨南大学 一种基于dmd生成多参量可调光场的方法、装置及系统

Also Published As

Publication number Publication date
CN113448077A (zh) 2021-09-28

Similar Documents

Publication Publication Date Title
WO2022258075A1 (zh) 一种基于dmd生成多参量可调光场的方法、装置及系统
CN107621701B (zh) 产生双指数贝塞尔高斯光束的方法及系统
KR102102010B1 (ko) 광변조 제어 방법, 제어 프로그램, 제어 장치, 및 레이저광 조사 장치
US20150185523A1 (en) Light modulation method, light modulation program, light modulation device, and illumination device
CN109870890B (zh) 一种具有分数阶涡旋轮廓的整数阶涡旋光束相位掩模板及光路系统
CN109343077A (zh) 一种液晶相控阵鬼成像系统及其成像方法
CN111816343B (zh) 一种利用正弦相位调制实现多位置光阱的方法和装置
CN104635344A (zh) 一种参数可调节的贝塞尔光束产生装置及其产生方法
CN106908946A (zh) 一种简化的双光束光镊系统
US11134231B2 (en) Light control device
CN103592768A (zh) 余弦-高斯关联光束的产生系统、产生方法及其测量装置
CN103019258A (zh) 一种基于光学相控阵与逆向光学的多目标跟踪指示技术
CN114019690B (zh) 产生任意阶光学涡旋阵列和带缺陷有限光晶格的光学系统
KR102272867B1 (ko) 다수의 레이저 소스들의 위상 조정을 위한 시스템
CN111735535B (zh) 三维聚焦阵列实时动态精密调控装置及方法
CN108919499B (zh) 一种产生位置和强度独立可控多个聚焦光斑的方法
Zhang et al. Three-dimensional holographic parallel focusing with feedback control for femtosecond laser processing
Hermerschmidt et al. Holographic optical tweezers with real-time hologram calculation using a phase-only modulating LCOS-based SLM at 1064 nm
CN109141287B (zh) 基于空间光调制器的点光源阵列发生器及其获得方法
CN113267899B (zh) 一种一次产生多个同轴轨道轨道角动量态的方法
Lindle et al. Large angle nonmechanical laser beam steering at 4.6 μ m using a digital micromirror device
Grachev et al. An open-source 3d-printed terahertz pulse time-domain holographic detection module for broadband beam inspection
CN210573037U (zh) 一种基于反射式衍射光学元件的光学成像系统
JP6757307B2 (ja) 回折素子の設計方法
JP6788622B2 (ja) 回折素子の設計方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22819671

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE