WO2022258006A1 - 一种增材制造装置及方法 - Google Patents

一种增材制造装置及方法 Download PDF

Info

Publication number
WO2022258006A1
WO2022258006A1 PCT/CN2022/097817 CN2022097817W WO2022258006A1 WO 2022258006 A1 WO2022258006 A1 WO 2022258006A1 CN 2022097817 W CN2022097817 W CN 2022097817W WO 2022258006 A1 WO2022258006 A1 WO 2022258006A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
additive manufacturing
light source
layer
manufacturing device
Prior art date
Application number
PCT/CN2022/097817
Other languages
English (en)
French (fr)
Inventor
朱光
杨尚佑
史卓鹤
Original Assignee
清锋(北京)科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2023600128U priority Critical patent/JP3246104U/ja
Application filed by 清锋(北京)科技有限公司 filed Critical 清锋(北京)科技有限公司
Priority to DE212022000144.3U priority patent/DE212022000144U1/de
Priority to AU2022291205A priority patent/AU2022291205B2/en
Priority to CN202280007145.7A priority patent/CN116457176A/zh
Priority to IL309228A priority patent/IL309228A/en
Priority to CA3222032A priority patent/CA3222032A1/en
Priority to CR20230602A priority patent/CR20230602A/es
Priority to EP22819603.6A priority patent/EP4299287A4/en
Priority to MX2023014797A priority patent/MX2023014797A/es
Publication of WO2022258006A1 publication Critical patent/WO2022258006A1/zh
Priority to US18/190,059 priority patent/US12130445B2/en
Priority to US18/540,833 priority patent/US20240123683A1/en
Priority to AU2024204916A priority patent/AU2024204916A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0927Systems for changing the beam intensity distribution, e.g. Gaussian to top-hat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/124Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/124Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
    • B29C64/129Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/264Arrangements for irradiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/264Arrangements for irradiation
    • B29C64/286Optical filters, e.g. masks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0938Using specific optical elements

Definitions

  • This specification relates to the field of additive manufacturing, in particular to an additive manufacturing device and method.
  • additive Manufacturing manufactures physical objects by layer-by-layer accumulation.
  • Photocurable additive manufacturing uses liquid photocurable resin as a raw material, which undergoes a curing reaction under the irradiation of ultraviolet light of a certain wavelength, and solidifies to form a cured layer. The solidified layers are stacked layer by layer to finally form the desired three-dimensional object.
  • Transparent three-dimensional objects printed by additive manufacturing have a wide range of applications.
  • transparent braces printed by additive manufacturing are widely used in orthodontics.
  • how to print three-dimensional objects with high transparency and high resolution is still a difficult problem in the industry.
  • One of the embodiments of the present specification provides an additive manufacturing device, which includes: a light source, which provides light to cure the photocurable resin; a molding device, which includes a storage container, and the storage container is used to store the photocurable resin. Resin, the molding device has a molding surface on which the light-curable resin is cured; a light scattering mechanism is arranged between the light source and the molding surface, and the light scattering mechanism can make the light of the light source spread A deviation occurs in the direction, so that the light intensity in the pixels on the molding surface varies.
  • the first transparency of the first printed part is T1
  • the light emitted by the light source passes through the light scattering mechanism and cures the light-curable resin on the molding surface
  • the first transparency of the first printed part is T1
  • the light emitted by the light source The second transparency of the second printed part formed by curing the light-curable resin on the molding surface after the light does not pass through the light scattering mechanism is T2, and the first transparency T1 is greater than the second transparency T2 .
  • the molding device further includes a molding platform configured to move away from the light source, so that the cured photo-curable resin is away from the molding surface.
  • the ratio between the maximum value and the minimum value of light intensity in a single pixel on the molding surface is a first ratio A1
  • the ratio between the maximum value and the minimum value of the light intensity of the light emitted by the light source without passing through the light scattering mechanism in a single pixel on the molding surface is a second ratio A2
  • the half maximum width of the Gaussian distribution curve of the light intensity in a single pixel on the molding surface is the first half maximum width FWHM1
  • the The half-maximum width of the Gaussian distribution curve of the light intensity of the light emitted by the light source without passing through the light scattering mechanism in a single pixel on the molding surface is the second half-maximum width FWHM2
  • the first half-maximum of at least one pixel is The width FWHM1 is larger than the corresponding second half maximum width FWHM2.
  • the light source is a liquid crystal display light source or a light source of a digital light processing projection device.
  • the light scattering mechanism includes a light dodging device, the distance between the light dodging device and the molding surface is smaller than the distance between the light dodging device and the light source, and the light dodging device It is used to adjust the light intensity distribution in one or more pixels of the light source.
  • the dodging device includes a light source profile modifier, the light source profile modifier is arranged on the light path of the light source, and the light source profile modifier is used to modify one or more pixels of the light source outline; the light source is a liquid crystal display light source.
  • the light dodging device includes a light dodging sheet.
  • the dodging device includes a glass structure, and the glass structure includes frosted glass, sandblasted glass, or etched glass.
  • the surface roughness Ra of the glass structure is: X ⁇ 5 ⁇ X ⁇ m.
  • the light homogenization device includes a light source ditherer; the light source is a digital light processing projection device; and the light source ditherer is used to dither a display chip of the digital light processing projection device.
  • the light scattering mechanism includes a transparent scattering layer disposed between the molding surface and the light source, and the scattering layer can scatter the passing light beam.
  • the scattering layer constitutes the shaping surface.
  • the scattering layer includes a substrate and a microstructure provided on the substrate, and the microstructure includes at least one of surface textures, micropores, fiber structures and nanoparticles.
  • the surface texture includes surface protrusions or depressions arranged in an array; or, the surface texture includes a wavy or zigzag texture.
  • the characteristic size of the surface texture is 10 nm-20 ⁇ m.
  • the micropores include closed pores formed inside the scattering layer; alternatively, the micropores include semi-open pores formed on the surface of the scattering layer.
  • the micropores have a diameter ranging from 2 nm to 20 ⁇ m.
  • the matrix includes a substrate layer within which the fibrous structures are deposited, and the difference between the refractive index of the substrate layer and the refractive index of the fibrous structures is less than the specified 20% of the refractive index of the fiber structure.
  • the ratio of the total volume of the fiber structure to the volume of the scattering layer is in the range of 5% to 90%.
  • the ratio of the total weight of the fiber structure to the weight of the scattering layer is in the range of 5% to 90%.
  • the average value of the maximum distance between any two adjacent fiber structures is 0.05 ⁇ m ⁇ 50 ⁇ m.
  • the average length of the fibrous structure is 0.1-30 mm.
  • the ratio of the total volume of the nanoparticles to the total volume of the scattering layer ranges from 1% to 30%.
  • the ratio of the total weight of the nanoparticles to the total weight of the scattering layer ranges from 1% to 30%.
  • the average distance between any two adjacent nanoparticles is 0.05 ⁇ m ⁇ 50 ⁇ m.
  • the average particle diameter of the nanoparticles is 1-100 mm.
  • the scattering layer is a composite layer having multiple layers.
  • the composite layer includes a polydimethylsiloxane (PDMS) layer and a paper layer.
  • PDMS polydimethylsiloxane
  • the composite layer includes a polydimethylsiloxane (PDMS) layer and a polymer film with a microstructure.
  • PDMS polydimethylsiloxane
  • the composite layer is a release film
  • the release film includes a plastic layer and an elastic layer.
  • the plastic layer includes polytetrafluoroethylene (PTFE), polyethylene (PE), polyvinylidene fluoride (PVDF), fluorinated ethylene propylene (FEP), perfluoroalkoxy resin (PFA ), polychlorotrifluoroethylene (PCTFE), ethylene-tetrafluoroethylene copolymer (ETFE), polyvinyl fluoride (PVF), polyethylene terephthalate (PET), polybutadiene formal (PBT ), thermoplastic polyurethane (TPU), polyamide or nylon (PA), polyimide (PI), polypropylene (PP), polyvinyl chloride (PVC), polymethyl methacrylate (PMMA), polystyrene (PS), polybutylene (PB), polyoxymethylene (POM), polycarbonate (PC), polysulfone (PSU), polyphenylene oxide (PPO), polyvinyl alcohol (PVA), polyacrylonitrile styrene ( AS), polyacrylon
  • the elastic layer includes an elastic layer matrix and an elastic layer tough support, and the elastic layer matrix is filled in the pores of the elastic layer tough support.
  • the tough scaffold materials of the elastic layer include but are not limited to polyethylene (PE), polyvinylidene fluoride (PVDF), fluorinated ethylene propylene (FEP), perfluoroalkoxy resin (PFA) , polychlorotrifluoroethylene (PCTFE), ethylene-tetrafluoroethylene copolymer (ETFE), polyvinyl fluoride (PVF), polyethylene terephthalate (PET), polybutadiene formal (PBT) , thermoplastic polyurethane (TPU), polyamide or nylon (PA), polyimide (PI), polypropylene (PP), polyvinyl chloride (PVC), polymethyl methacrylate (PMMA), polystyrene ( PS), polybutylene (PB), polyoxymethylene (POM), polycarbonate (PC), polysulfone (PSU), polyphenylene oxide (PPO), polyvinyl alcohol (PVA), polyacrylonitrile styrene (AS ), polyacryl
  • PE poly
  • the material of the elastic layer base includes polyester elastomer, propylene-based elastomer, styrene-based elastomer, olefin-based elastomer, diene-based elastomer, vinyl chloride-based elastomer, lipid elastomer Polymers, amide elastomers, silicone polymers, epoxy polymers, silicone elastomers, organic fluoroelastomers, silicone, rubber, silicone rubber, thermoplastic vulcanizate (TPV), nitrile rubber (NBR), Butyl rubber, thermoplastic polyurethane (TPU), polyester rubber (TPEE), polyamide thermoplastic elastomer (TPAE), T-NR-trans polyisoprene rubber (TPI), syndiotactic 1,2-polymer Butadiene (TPB), fluorinated thermoplastic elastomer (TPF), thermoplastic phenolic resin (Novalc resin), thermoplastic chlorinated polyethylene (TCPE
  • the scattering layer is at least a part of the bottom surface of the storage container.
  • the scattering layer is made of flexible and/or elastic material.
  • the transparency of the scattering layer is 40%-100%.
  • the scattering layer is made of natural and/or synthetic rubber, polytetrafluoroethylene, polyurethane, polybutadiene, polyisobutylene, neoprene, silicone, polyperfluoroethylene propylene, ethylene-chlorotri Vinyl fluoride copolymer, polyvinylidene fluoride, ethylene-tetrafluoroethylene copolymer, tetrafluoroethylene-vinylidene fluoride copolymer, chlorotrifluoroethylene-vinylidene fluoride copolymer, o-phenylphenol, polyparaphenylene Diformic acid, polyisoprene, polyacrylic rubber, fluorosilicone rubber, fluororubber, methylchlorosilane, ethylchlorosilane, phenylchlorosilane, polychlorotrifluoroethylene, polytetrafluoroethylene, polyvinylidene fluoride E
  • the modulus of elasticity of the scattering layer is 1-50 MPa.
  • the tensile strength of the scattering layer is 5-50 MPa.
  • the elongation at break of the scattering layer is 50%-800%.
  • the additive manufacturing device is used to manufacture dental appliances.
  • One of the embodiments of this specification provides an additive manufacturing method, which is based on the additive manufacturing device of any of the above embodiments to perform additive manufacturing, including: placing a photocurable resin in the storage container of the molding equipment; passing the light emitted by the light source through The light scattering mechanism irradiates the light-curable resin after scattering, so that the light-curable resin is cured.
  • the light image formed by the light source on the molding surface is composed of multiple pixels, and the light intensity in a single pixel changes with the change of position, the light intensity in the border area of the pixel is weak, and the center of the pixel The light intensity of the area is stronger.
  • the light intensity of the edge area of the pixel is enhanced, the light intensity of the middle area of the pixel is weakened, and the boundary between pixels is blurred. , thereby reducing the protrusions and depressions on the surface of the printed three-dimensional object, and improving the transparency of the printed three-dimensional object.
  • Fig. 1A is a first schematic diagram of the printing effect of an additive manufacturing device according to some embodiments of this specification
  • Fig. 1B is a second schematic diagram of the printing effect of the additive manufacturing device according to some embodiments of this specification.
  • Fig. 1C is a third schematic diagram of the printing effect of the additive manufacturing device according to some embodiments of this specification.
  • Fig. 2 is a structural block diagram of an additive manufacturing device according to some embodiments of this specification.
  • Fig. 3 is a schematic structural diagram of an additive manufacturing device according to some embodiments of the present specification.
  • Fig. 4 is a Gaussian distribution curve diagram of light intensity in a single pixel of a light source passing through a light scattering mechanism and not passing through a light scattering mechanism according to some embodiments of the present specification;
  • Figure 5A is an exemplary experimental dental aligner printed by an additive manufacturing device according to some embodiments of the present specification
  • Figure 5B is an exemplary control dental aligner printed by an additive manufacturing device according to some embodiments of the present specification
  • Fig. 6 is an exemplary flowchart of an additive manufacturing method according to some embodiments of the present specification.
  • the reference signs are: 1. additive manufacturing device; 10. light source; 20. molding equipment; 21. storage container; 22. molding surface; 23. molding platform; 231. plane; 30. light scattering mechanism; 40. Light curing resin; 50, three-dimensional objects.
  • system means for distinguishing different components, elements, parts, parts or assemblies of different levels.
  • the words may be replaced by other expressions if other words can achieve the same purpose.
  • Additive manufacturing technology (also known as 3D printing technology) is widely used in various fields.
  • additive manufacturing technology can be used to produce medical supplies such as dental braces, bone stents, heart valves, vascular stents, and cartilage tissue;
  • Additive manufacturing technology produces desktop ornaments, models and other handicrafts.
  • the product can be printed by additive manufacturing methods such as fused deposition molding, laser sintering molding, and photocuring molding.
  • Light-curing molding has a good application prospect. Light-curing molding has the advantages of high degree of automation in the molding process, good surface quality of manufactured products, high dimensional accuracy, and the ability to achieve relatively fine dimensional molding. Stereolithography can be used to print products with certain transparency.
  • Fused deposition molding is a molding method in which filamentous materials (such as thermoplastics, wax or metal fuses) are extruded from a heated nozzle, and melt is deposited at a fixed rate according to the predetermined trajectory of each layer of the part.
  • Laser sintering molding is a molding technology that sinters powder compacts with laser as the heat source.
  • Photocuring molding is a molding technology body that uses a laser with a specific wavelength and intensity to focus on the surface of the photocurable material to make the photocurable material solidify quickly. It mainly uses liquid printing raw materials as raw materials, and photo-curing molding uses the characteristics that liquid printing raw materials will quickly solidify under the irradiation of laser beams of specific wavelength and intensity to realize the printing of objects.
  • stereolithography technology SLA technology
  • DLP technology digital light processing technology
  • LCD technology liquid crystal display technology
  • Stereolithography (SLA technology) uses a laser guided by a galvanometer to solidify a liquid printing material.
  • Digital light processing technology (DLP technology) is to project light after digitally processing the image signal.
  • Digital light processing technology uses a digital light projector to solidify the liquid printing material.
  • the digital light projector projects the image of the entire layer onto the bottom of the container containing the light-cured material.
  • the digital micromirror device selectively guides the Light.
  • a digital micromirror device is an assembly consisting of thousands of micromirrors.
  • Liquid crystal display technology uses the photoelectric effect of liquid crystals to produce images with different gray levels and colors.
  • liquid crystal display technology projects a complete layer on a container containing light-curable raw materials, but the light is emitted through the LCD instead of the LED array of the digital light projector.
  • the screen acts as a mask, showing only the light image needed for the current layer.
  • the light source may be a liquid crystal display light source (LCD light source) or a light source of a digital light processing projection device (DLP light source, such as a digital light projector).
  • the light source is an ultraviolet laser, and the printing material is irradiated by ultraviolet light of a specific wavelength (250nm-400nm) to cause a polymerization reaction and complete curing.
  • the optical image formed by the light source of stereolithography technology (SLA technology), digital light processing technology (DLP technology), or liquid crystal display technology (LCD technology) on the molding surface is composed of multiple pixels.
  • SLA technology stereolithography technology
  • DLP technology digital light processing technology
  • LCD technology liquid crystal display technology
  • the step of photocuring printing can be as follows: first layering the three-dimensional model in one direction to obtain the contour information or image information of each layer, and then using a light source to irradiate the light pattern on the printing raw material, After the printing material in the raw material is irradiated by light, a polymerization reaction (light curing) occurs to form a cured layer. After the light pattern of this layer is cured, the next layer is cured, and the iteration is repeated to form a complete print.
  • the raw material for photocurable printing may be photocurable resin.
  • photocuring printing can fabricate three-dimensional objects through top-down layer-by-layer printing stacking.
  • the top-down layer-by-layer stacking is to place the light source on the molding surface, that is, on the upper surface of the liquid photocurable resin, and the current cured layer is formed on the upper surface of the previously formed cured layer.
  • the additive manufacturing device can manufacture three-dimensional objects through bottom-up layer-by-layer stacking.
  • the bottom-up layer-by-layer stacking is to place the light source under the molding surface, that is, under the lower surface of the liquid photocurable resin, and the current cured layer is formed on the lower surface of the previously formed cured layer.
  • stereolithography can be used to print products with certain transparency.
  • the transparency of the object in order to meet the requirement of high transparency of the printed object, in addition to using a resin material with high transparency itself, the transparency of the object can be improved through post-processing. For example, grinding, polishing and other treatments are carried out in the post-processing technology. Another example is spraying transparent paint or performing transparent resin impregnation after printing.
  • transparent or translucent resins it becomes very difficult to precisely control light transmission and curing depth.
  • incident light in the ultraviolet or visible wavelength range not only irradiates the liquid resin of the current cured layer to form a current Light is also transmitted through the liquid resin of the currently cured layer to the previously cured layer, resulting in undesired curing. This situation will cause the resolution of the three-dimensional object in the direction perpendicular to the surface of the photo-curing molding to decrease, which will affect the transparency of the printed part.
  • Fig. 1A is a first schematic diagram of the printing effect of an additive manufacturing device according to some embodiments of this specification.
  • Fig. 1B is a second schematic diagram of the printing effect of the additive manufacturing device according to some embodiments of this specification.
  • Fig. 1C is a third schematic diagram of the printing effect of the additive manufacturing device according to some embodiments of this specification.
  • the upper three images of Fig. 1A to Fig. 1C show three transparent three-dimensional objects (dental aligners) printed by the additive manufacturing device with three different scattering films respectively, and the three images of Fig. 1A to Fig. 1C
  • the three lower images are partial enlarged images of the transparent three-dimensional objects in the upper image.
  • the surface of the three-dimensional object in Figure 1A shows clear surface layer lines, and the surface layer lines can be the linear texture in the figure; in Figure 1B and Figure 1C
  • a three-dimensional object shows a large number of point-like textures, which can be the smallest texture unit in the picture, and a point-like texture can be formed by curing a pixel after being irradiated.
  • the transparency of the three-dimensional object in FIG. 1A is much higher than that of the three-dimensional objects in FIG. 1B and FIG. 1C . Therefore, the transparency of a three-dimensional object is related to the texture pattern on its surface. The more blurred the boundary of the surface texture pattern, the higher the transparency, as shown in the surface layer line in Figure 1A; the clearer the boundary of the surface texture pattern, the lower the transparency, as shown in Figure 1B and Dotted texture in Figure 1C.
  • the reason for the above phenomenon is that since the light image formed by the light source on the molding surface is composed of multiple pixels, the light intensity in a single pixel changes with the position, the light intensity in the boundary area of a single pixel is weak, and the center of the pixel The light intensity of the area is stronger.
  • the position with stronger light intensity is easy to transmit through the light-cured resin of the current cured layer to the previous cured layer, resulting in undesired curing, so that the cured layer in this area is more prominent; while the place with weaker light intensity corresponds to the curing
  • the layer is more concave. This situation will cause an uneven surface of the three-dimensional object in the direction perpendicular to the photo-cured molding surface, which is reflected in the reduction of resolution and the low transparency of the printed part, such as the dotted texture in Figure 1B and Figure 1C.
  • Fig. 2 is a structural block diagram of an additive manufacturing device according to some embodiments of the present specification.
  • the embodiment of this specification provides an additive manufacturing device 1 , and the additive manufacturing device 1 includes a light source 10 , a molding device 20 and a light scattering mechanism 30 .
  • the light source 10 is used to provide light to cure the light-curable resin 40 .
  • Molding device 20 comprises storage container 21, and storage container 21 is used for storing photocurable resin 40;
  • Molding device 20 has molding surface 22, and molding surface 22 can refer to the surface that is irradiated by light on photocurable resin 40, and photocurable resin 40 is formed on the molding surface. 22 for curing.
  • the light scattering mechanism 30 is disposed between the light source 10 and the molding surface 22 , the light scattering mechanism 30 can make the light of the light source 10 deviate in the propagation direction, so as to change the light intensity in the pixel on the molding surface 22 .
  • the light of the light source 10 can form a light image on the molding surface, and the light image includes a plurality of pixels, and the pixel can be the smallest unit of the light image on the molding surface 22. Multiple pixels on the molding surface 22 can constitute the same
  • the printed pattern of the cured layer is consistent with the light image.
  • the light propagation direction of the light source 10 deviates, so that the light intensity in the pixel on the molding surface 22 changes, it can be understood that the light propagation direction of the light source 10 before passing through the light scattering mechanism 30 and passing through the light scattering
  • the direction of propagation after the mechanism 30 is not collinear, and the deviation range of the light from the light source 10 after passing through the light scattering mechanism 30 is still limited to the pixels on the molding surface 22, in other words, for the light corresponding to a single pixel, the light source 10
  • the light of the light source 10 is deviated after passing through the light scattering mechanism 30, it is still projected within the region where the pixels of the light image formed on the molding surface 22 are located when the light of the light source 10 does not pass through the light scattering mechanism 30.
  • the photocuring process may include free radical photocurable resins and cationic photocurable resins.
  • free radical photocurable resins include, but are not limited to, acrylic resins, methacrylic resins, N-vinylpyrrolidone, acrylamides, styrenes, olefins, halogenated olefins, cyclic olefins, maleic anhydride, alkenes, alkynes, Carbon monoxide, functionalized oligomers (e.g., epoxides, polyurethanes, polyethers, or polyesters functionalized with acrylate or methacrylate groups, etc.), and functionalized polyethylene glycol (PEG) )Wait.
  • PEG polyethylene glycol
  • cationic photocurable resins include, but are not limited to, epoxy groups and vinyl ether groups.
  • cationic photocurable resins include, but are not limited to, styrene compounds, vinyl ethers, N-vinyl carbazoles, lactones, Lactams, cyclic ethers (such as epoxides), cyclic acetals and cyclic siloxanes, etc.
  • the photocurable resin 40 may include one or more radical photocurable resins, one or more cationic photocurable resins, or a combination thereof.
  • photocurable resin 40 may be a dual cure resin.
  • the dual-curing resin can undergo a first photocuring process under the irradiation of the light source 10 to form a printing intermediate.
  • the printed intermediate will have the desired shape and structure of the 3D object, but will be less mechanically strong.
  • the printed intermediate can undergo a second curing process to form the final three-dimensional object.
  • the second curing process can be further carried out by heating, microwave radiation, humidity (ie, exposing the printed object to water vapor at elevated or ambient temperature). After the second curing process, printed objects with substantially the same shape and structure as the desired three-dimensional object can be obtained, while improving the mechanical strength.
  • the photocurable resin 40 may further include a photoinitiator, and the photoinitiator may be any suitable photoinitiator capable of initiating a photocuring reaction with the light source 10 in the illustrated embodiment.
  • the photoinitiator is capable of absorbing at wavelengths ranging from 350 nm to 420 nm.
  • the wavelength at which the light source 10 initiates the photocuring process is 405 nm.
  • the light source 10 triggers the photocuring process at a wavelength of 385 nm.
  • examples of photoinitiators include, but are not limited to, benzoin ether Dialkoxyacetophenone Hydroxyalkyl Ketones Acylphosphine oxides aminoketone Benzophenone Thioxanthone 1,2 diketone Camphorquinone Bis( ⁇ 5-2,4-cyclopentadien-1-yl)-bis(2,6-difluoro-3-(1H-pyrrol-1-yl)-phenyl)titanium Wait.
  • Rn in the chemical formula is any number of other atoms, including hydrogen (H), oxygen (O), carbon (C), nitrogen (N), sulfur (S).
  • the photoinitiator is benzoylphosphine oxide, including but not limited to: diphenyl-(2,4,6-trimethylbenzoyl)phosphine TPO Phenylbis(2,4,6-trimethylbenzoyl)phosphine oxide 819 TEPO 819DW Wait.
  • the light source 10 can be arranged above the molding device 20 to irradiate the photocurable resin 40 in the storage container 21 from above, and the molding surface 22 is located at the upper liquid level of the photocurable resin 40 . In some embodiments, the light source 10 can be arranged below the molding device 20 to irradiate the photocurable resin 40 in the storage container 21 from below, and the molding surface 22 is located at the lower liquid level of the photocurable resin 40 .
  • the light scattering mechanism 30 may be disposed between the molding surface 22 and the light source 10 , so that the light from the light source 10 is diffused onto the molding surface 22 through the light scattering mechanism 30 .
  • the light scattering mechanism 30 includes, but is not limited to, a dodging device, a light source profile modifier, a light source ditherer, a scattering layer, and the like.
  • a dodging device for details about the light scattering mechanism 30 , please refer to the related description below.
  • the first transparency of the first printed part formed by curing the photocurable resin on the molding surface is T1
  • the light emitted by the light source does not pass through the light scattering mechanism.
  • the second transparency of the second printed part formed by curing the photocurable resin on the molding surface is T2, and the first transparency T1 is greater than the second transparency T2.
  • the first printed part and the second printed part refer to transparent three-dimensional objects printed by the additive manufacturing device 1 .
  • the light image formed by the light source on the molding surface 22 is composed of a plurality of pixels, and the light intensity in a single pixel changes with the change of the position, and the light intensity in the boundary area of the pixel is weak, and the pixel The light intensity in the central region is stronger.
  • the light intensity of the edge area of the pixel is enhanced, and the light intensity of the middle area of the pixel is weakened, and the boundary between pixels be blurred, thereby reducing the protrusions and depressions on the surface of the printed three-dimensional object, and improving the transparency of the printed three-dimensional object.
  • Fig. 3 is a schematic structural diagram of an additive manufacturing device according to some embodiments of the present specification.
  • FIG. 3 shows an example in which the additive manufacturing device 1 manufactures a three-dimensional object 50 through bottom-up layer-by-layer stacking.
  • the light source 10 is arranged below the molding device 20, the liquid photocurable resin 40 is stored in the storage container 21, the light source 10 irradiates the bottom of the storage container 21 from bottom to top, so that the photocurable resin at the bottom of the storage container 21 forms a cured layer, and The current cured layer is formed on the lower surface of the previously formed cured layer.
  • At least part of the bottom of the storage container 21 is transparent, and light can shine on the photocurable resin 40 through the bottom of the storage container 21 .
  • the entire bottom of the storage container 21 is transparent; in some embodiments, a portion of the bottom of the storage container 21 is transparent.
  • the bottom of the storage container 21 can be made of transparent glass, transparent resin, transparent plastic and other materials.
  • the light transmittance of the bottom of the storage container 21 may range from 40% to 100%.
  • the molding surface 22 may refer to an illuminated area formed by light passing through the bottom of the storage container 21 and irradiating onto the photocurable resin 40 .
  • the light scattering mechanism 30 is disposed at the bottom of the storage container 21 and between the molding surface 22 and the light source 10 .
  • the light-scattering mechanism 30 can also be adapted to manufacture three-dimensional objects by layer-by-layer stacking from top to bottom, that is, the light source is placed above the molding equipment, the liquid photocurable resin is stored in the storage container, and the light source is stacked from top to bottom.
  • the top surface of the photocurable resin in the storage container is irradiated down to form a cured layer, and the current cured layer is formed on the upper surface of the previously formed cured layer.
  • the embodiment of this specification does not limit the application scenarios of the light scattering mechanism 30, which can be used in any form of additive manufacturing device.
  • the forming apparatus 20 also includes a forming platform 23 .
  • the forming platform 23 may be a platform for carrying and fixing the cured layer of the photocurable resin 40, the forming platform 23 is provided with a plane 231 capable of fixing the cured layer, and the final printed three-dimensional object 50 is formed On the plane 231 of the forming platform 23 .
  • the molding platform 23 is used to move away from the light source 10 , so that the cured photo-curable resin 40 is away from the molding surface 22 .
  • the forming device 20 further includes a lifting mechanism (not shown in the figure), on which the forming platform 23 is disposed, and the lifting mechanism can drive the forming platform 23 to move up and down, so as to approach or move away from the light source 10 .
  • the lifting mechanism drives the forming platform 23 away from or close to the light source 10 to adjust the relative position between the forming platform 23 and the forming surface 22 .
  • the lifting mechanism drives the molding platform 23 away from the light source 10, and the previously cured layer can be kept away from the molding surface 22, so that the photocurable resin 40 flows to the surface of the previously cured layer, and light is irradiated by the light source 10 The resin 40 is cured to form the new molding surface 22 .
  • the molding device 20 may further include a controller (not shown in the figure).
  • the controller is signal-connected with the lifting mechanism for controlling the moving direction and moving distance of the lifting mechanism.
  • the controller controls the lifting mechanism to drive the molding platform 23 to move in a direction away from the light source 10 successively at a preset interval, so that the previously cured layer is separated from the molding surface 22, thereby realizing photocuring of the resin. 40 layer by layer printing.
  • the lifting mechanism drives the forming platform 23 to move a preset distance away from the light source 10, so that the previous solidified layer is separated from the forming surface 22, and the liquid photocurable resin 40 will flow Between the previously cured layer and the molding surface 22, a new photocurable resin 40 is irradiated by the light source 10 to form a new cured layer.
  • the additive manufacturing device is used to manufacture dental aligners, bone brackets, heart valves, blood vessel brackets, and cartilage tissues, but this description is not limited thereto.
  • the additive manufacturing device can also be used to manufacture shoe soles, insoles, pillows, desktop ornaments, models, mechanical parts, plastic toys, sand table models, and the like.
  • the light source 10 is a surface light source, which may refer to a light source whose output beam can form a surface image on the molding surface 22 .
  • the surface light source has a plurality of pixels on the molding surface 22, and a pixel can be a light spot of the smallest unit of a light image on the molding surface.
  • the light source 10 may be a liquid crystal display light source.
  • the liquid crystal display light source may consist of a series of LCD light sources emitting an output beam through the liquid crystal display.
  • light source 10 may be a light source of a digital light processing projection device.
  • the light source of the digital light processing projection device is digitally processed by the digital light processing projection device before emitting an output light beam.
  • the liquid crystal display light source and/or the light source of the digital light processing projection device may include but not limited to ultraviolet laser, LED light or high pressure pump lamp.
  • the ultraviolet laser has a wavelength of 355 nm, which can be better absorbed by the photo-curable resin 40 and has minimal damage to the photo-curable resin 40 .
  • the wavelength of the ultraviolet laser is short, and the action time on the photocurable resin 40 is short, which can minimize the time of thermal effect and protect the photocurable resin 40 .
  • the light intensity within a single pixel varies with position.
  • the light intensity at the edge position within a single pixel is smaller than the light intensity at the center position within the pixel.
  • the degree of photocuring caused by irradiating the position with higher light intensity on the photocurable resin 40 is high, and the degree of photocure caused by irradiation of the position with lower light intensity on the photocurable resin 40 is low.
  • the positions with larger light intensity are more protruding, and the positions with lower light intensity are more concave, thus presenting an uneven surface on the entire surface of the three-dimensional object 50 , and the more uneven the surface, the easier it is to reduce the transparency of the three-dimensional object 50 .
  • Fig. 4 is a Gaussian distribution curve of light intensity in a single pixel of a light source passing through a light scattering mechanism and not passing through a light scattering mechanism according to some embodiments of the present specification.
  • the dotted line in the figure represents the Gaussian distribution curve of light intensity in a single pixel where the light source does not pass through the light scattering mechanism shown in some embodiments
  • the solid line in the figure represents the single pixel where the light source shown in some embodiments passes through the light scattering mechanism Gaussian distribution curve of internal light intensity.
  • the ratio between the maximum value Imax and the minimum value Imin of the light intensity I in a single pixel on the molding surface is the first ratio A1
  • the light intensity of the light source is The ratio between the maximum value I 0 max and the minimum value I 0 min of the light intensity I 0 within a single pixel of the light intensity I 0 emitted without passing through the light scattering mechanism is the second ratio A2
  • the first ratio of at least one pixel A1 is smaller than the corresponding second ratio A2, wherein "corresponding" can be understood as that the first ratio A1 and the second ratio A2 are compared for the same pixel.
  • the ratio between the maximum value I max and the minimum value I min of the light intensity I of a single pixel of the light image formed by the light source on the molding surface is reduced, so that The light intensity difference between different positions is reduced to improve the surface flatness of the three-dimensional object, and to improve the printing transparency or clarity of the three-dimensional object.
  • the above-mentioned maximum value I max and minimum value I min of the light intensity I are both for the light of one pixel.
  • the full width at half maximum (FWHM) of the Gaussian distribution curve of the light intensity I in a single pixel on the molding surface is the first full width at half maximum FWHM1
  • the half maximum width of the Gaussian distribution curve of the light intensity of the light emitted by the light source without passing through the light scattering mechanism in a single pixel on the molding surface is the second half maximum width FWHM2
  • the first half maximum width FWHM1 of at least one pixel is greater than the corresponding The second width at half maximum FWHM2, wherein "corresponding" can be understood as that the first width at half maximum FWHM1 and the second width at half maximum FWHM2 are compared for the same pixel.
  • the full width at half maximum (FWHM) FWHM1 of the curve of the light intensity I in a single pixel of the light spot formed on the molding surface by the light emitted by the light source varies with the irradiation position has increased.
  • the Gaussian distribution curve of the light intensity of the pixel on the molding surface is formed by taking any point on the boundary of the pixel as the coordinate origin O, the straight line passing through the coordinate origin O and the center point of the pixel as the abscissa D, and the light intensity as the ordinate I Curve, that is, the curve of light intensity changing with position in a single pixel.
  • the pixels on the molding surface include but are not limited to circles, rectangles, triangles, ellipses or other irregular figures
  • the pixel center points can include but not limited to the geometric symmetry center of the pixel, the center of gravity, the longest axis and the shortest axis of the pixel intersection, etc.
  • the full width at half maximum FWHM may be the full width of the abscissa when the peak height of the light intensity on the Gaussian distribution curve is half. The larger the FWHM, the smoother the curve, the smaller the light intensity difference between different positions, and the higher the transparency of the three-dimensional object.
  • a coordinate system is established, the abscissa represents the position (such as the position of the molding surface), and the ordinate represents the light intensity.
  • the light intensity of a single pixel formed on the molding surface exhibits a waveform variation as a function of position. The part with stronger light intensity is the peak, and the part with weaker light intensity is the trough. The smaller the difference between the peak and the trough, the more continuous the light source and the higher the transparency of the three-dimensional object.
  • the light intensity of the trough can be increased by controlling the scattering of light, thereby reducing the difference between the peak and the trough.
  • the light scattering mechanism may include a light uniformity device.
  • Dodging devices are used to adjust the distribution of light intensity within one or more pixels of a light source. It can be understood that when the uniform light device adjusts the light intensity distribution in multiple pixels of the light source, the light uniform device adjusts the light intensity distribution in each pixel respectively.
  • the dodging device can be applied to various light sources, including but not limited to liquid crystal display light sources or digital light processing projection device light sources.
  • the uniform light device is arranged in the light propagation path between the light source and the molding surface, and the uniform light device can make the light intensity of the boundary area of each pixel and the light intensity of the middle area of each pixel equal to each other by scattering light. The difference is reduced, thereby blurring the boundaries between pixels and increasing the transparency and clarity of three-dimensional objects.
  • the size of the output light beam of the dodging device may be in the range of X ⁇ 5 ⁇ X ⁇ m.
  • the size of a pixel may be a size such as a side length and a diameter of a single pixel.
  • the output beam can be characterized by a waveform of light intensity versus position. In other embodiments, the output beam may be characterized by a shape such as a circle or ellipse on the shaping surface.
  • the distance between the dodging device and the shaping surface is greater than the distance between the dodging device and the light source. In some embodiments, the distance between the dodging device and the shaping surface is equal to the distance between the dodging device and the light source. In some embodiments, the distance between the dodging device and the molding surface is smaller than the distance between the dodging device and the light source, so as to improve the accuracy of the light dodging device in scattering the output light beam, thereby improving the transparency of the three-dimensional object.
  • the dodging device includes, but is not limited to, any combination of one or more of light source profile modifiers, light source ditherers, dodging sheets, glass structures, or optical elements, which is not limited in this specification. See the related descriptions below for more details on Light Profile Modifiers, Light Shakers, Dodgers, Glass Structures or Optics.
  • the dodging device may include optical elements capable of changing the distribution of the output beam and achieving a predetermined radiation pattern.
  • the light source used to achieve photocuring is an array, for example, a digital light processing projection device light source (DLP) array or a microLED light source (microLED) array
  • the optical element can change the individual output beams to scatter
  • multiple optical elements can form a light diffuser array.
  • an array of light scatterers may be used to generate scattered light.
  • the light diffuser array can be arranged at the position corresponding to the microLED array, so that each optical element performs light scattering on the light beam corresponding to each pixel, that is, the light emitted by each microLED array can pass through the corresponding optical element in the light diffuser array. elements to scatter.
  • the dodging device may include a light source profile modifier disposed on the light path of the light source for modifying the profile of one or more pixels of the light source.
  • the borders of pixels can be blurred through the Light Profile modifier, thereby increasing the transparency of 3D objects.
  • a light source profile modifier can be applied to an LCD light source, which can modify the light profile of the LCD light source within a single pixel on the molding surface.
  • the light source profile modifier may be an additively manufactured optical element, and the transparent light source profile modifier may be printed layer by layer through an additive manufacturing device.
  • the accuracy of additive manufacturing can reach the micron level (for example, the accuracy of the additive manufacturing device can reach 50 microns), and a micron-level profile modifier can be printed through additive manufacturing to modify the printed light source profile.
  • the device corresponds to the LCD light source setting, which can achieve light scattering at the micron level, thereby achieving contour modification within a single pixel.
  • the size of the output beam of the light source profile modifier may be in the range of X ⁇ 5 ⁇ X ⁇ m.
  • the size of a pixel may be a size such as a side length and a diameter of a single pixel.
  • the output beam can be characterized by a waveform of light intensity versus position. In other embodiments, the output beam may be characterized by a shape such as a circle or ellipse on the shaping surface.
  • the light source is a liquid crystal display light source.
  • the light source profile modifier may be applied to stereolithography (using laser light source, SLA) of a laser light source.
  • the dodging device includes a light source ditherer, which can increase the number of pixels on the molding surface by dithering, thereby blurring the boundaries of pixels and improving the transparency of the three-dimensional object.
  • the light source ditherer may be suitable for dithering a light source where the light source is a digital light processing projection device.
  • the light source ditherer is used to dither the display chip of the digital light processing projection device, so that the output beam is dithered, and the output beam moves rapidly clockwise or counterclockwise between adjacent pixels, thereby blurring the boundary of the pixels, Increases the transparency of 3D objects.
  • the dodging device includes a dodging sheet.
  • the dodging sheet realizes the diffusion and uniform light shaping of the light beam through regular or irregular micro-lenses on its surface.
  • the shape profile, divergence angle, and light intensity distribution of one or more pixels of the light source can be adjusted.
  • the dodging device includes a glass structure including frosted glass, sandblasted glass, or etched glass.
  • the glass structure may be disposed on the inner surface of the bottom of the storage container, which can be in direct contact with the light-curable resin.
  • a glass structure may be provided on the outer surface of the bottom of the storage container.
  • the glass structure can be integrated with the bottom of the storage container, that is, the bottom of the storage container is made of glass, and the scattering layer is made by frosting, sandblasting or etching.
  • the surface roughness Ra of the glass structure is: X ⁇ 5 ⁇ X ⁇ m.
  • the size of a pixel may be a size such as a side length and a diameter of a single pixel.
  • the surface roughness Ra characterizes the microscopic unevenness of the tiny peaks and valleys that the surface of the glass structure has.
  • the degree to which glass structures scatter light can be controlled by controlling the surface roughness.
  • a glass structure with a surface roughness Ra in the range of X ⁇ 5 ⁇ X ⁇ m can blur the boundaries of pixels and improve the transparency of three-dimensional objects.
  • the light scattering mechanism includes a transparent scattering layer, and the scattering layer may be a film structure capable of scattering passing light beams.
  • the scattering layer is arranged in the light propagation path between the light source and the molding surface, so that the light emitted by the light source passes through the scattering layer to be scattered and then radiates to the molding surface.
  • the scattering layer is a polymer film.
  • the scattering layer is disposed on the molding surface, and the output light beam of the light source is diffused onto the molding surface through the scattering layer.
  • the scattering layer constitutes the molding surface, and the photocurable resin is cured and molded on the side of the scattering layer away from the light source.
  • the size of the light beam passing through the scattering layer may be in the range of X ⁇ 5 ⁇ X ⁇ m.
  • the size of a pixel may be a size such as a side length and a diameter of a single pixel.
  • the scattering layer is at least a part of the bottom surface of the storage container, that is, the scattering layer is integrally formed with the bottom surface of the storage container.
  • the entire bottom surface of the storage container may be the scattering layer, or a partial area of the bottom surface of the storage container may be the scattering layer.
  • the scattering layer may be a separate structure. In some embodiments, the scattering layer is disposed on the inner surface of the bottom of the storage container, or alternatively, the scattering layer is disposed on the outer surface of the bottom of the storage container. In some embodiments, the scattering layer is spaced apart from the storage container.
  • the refractive index of the scattering layer may be different from the refractive index of surrounding objects (eg, air, the bottom of a storage container, etc.).
  • the diffusion layer may include a paper layer, with an anti-adhesion coating between the diffusion layer and the light-curable resin, the anti-adhesion coating prevents the light-curable resin from entering the paper layer, and helps to bond the cured layer to the paper. Layer separation.
  • the transparency of the scattering layer is 40%-100%, for example, the transparency of the scattering layer may be 50%, 60%, 70%, 80%, 90%, 95% and so on.
  • the scattering layer is made of flexible and/or elastic material.
  • the scattering layer can be made of natural and/or synthetic rubber, polytetrafluoroethylene, polyurethane, polybutadiene, polyisobutylene, neoprene, silicone, polyperfluoroethylene propylene, ethylene-chlorotrifluoro Ethylene copolymer, polyvinylidene fluoride, ethylene-tetrafluoroethylene copolymer, tetrafluoroethylene-vinylidene fluoride copolymer, chlorotrifluoroethylene-vinylidene fluoride copolymer, o-phenylphenol, polyterephthalene Formic acid, polyisoprene, polyacrylic rubber, fluorosilicone rubber, fluororubber, methylchlorosilane, ethylchlorosilane, phenylchlorosilane, polychlorotriflu
  • the modulus of elasticity of the scattering layer is 1-50 MPa.
  • the elastic modulus can reflect the deformation ability of the scattering layer. If the elastic modulus is too small, the scattering layer will be easily deformed by external force, and it will be difficult to maintain its shape, thus affecting the scattering rate; if the elastic modulus is too large, the scattering layer will be more uncomfortable. Deformed by external force, it is too rigid, and it is difficult to completely fit with the surrounding structure, thus affecting the scattering rate. Therefore, the scattering layer with an elastic modulus of 1-50 MPa can not only satisfy the strength of the scattering layer, but also make it closely adhere to the surrounding structure, thereby improving the accuracy of light beam scattering.
  • the tensile strength of the scattering layer is 5-50 MPa.
  • Tensile strength characterizes the resistance of a material to maximum uniform plastic deformation.
  • the scattering layer with a tensile strength of 5-50 MPa has both a certain tensile ability and a certain deformation ability.
  • the elongation at break of the scattering layer is 50%-800%.
  • Elongation at break refers to the ratio of the displacement value of the scattering layer when it is broken to the original length.
  • a scattering layer with an elongation at break of 50% to 800% is not easily broken when subjected to an external force.
  • the scattering layer includes a base and microstructures disposed on the base.
  • the matrix may be a layered structure.
  • the microstructure and the scattering layer are two different materials that form an interface between the microstructure and the substrate, which can enhance the scattering effect of light, thereby improving the transparency of the printed three-dimensional object.
  • microstructures may be disposed inside the matrix.
  • microstructures can also be provided on the outer surface of the substrate.
  • the microstructure arranged on the outer surface of the substrate can be in contact with air; another example, the microstructure arranged on the outer surface of the substrate can be in contact with the photocurable resin; for another example, the microstructure arranged on the outer surface of the substrate can be in contact with the bottom surface of the storage container touch.
  • the characteristic size of the microstructures may be in the range of 10 nm-20 ⁇ m. Wherein, the characteristic size may refer to the smallest size among the isotropic sizes of the microstructure.
  • microstructures include, but are not limited to, at least one of surface textures, micropores, fibrous structures, and nanoparticles. A more detailed description of the surface texture, micropores, fibrous structure and nanoparticles can be found in the description below.
  • the microstructures include surface textures.
  • the surface texture comprises surface protrusions or depressions arranged in an array.
  • the surface texture may be a plurality of protrusions located on the surface of the scattering layer, and the shapes of the protrusions include but are not limited to hemispherical, cylindrical, conical, pyramidal and so on.
  • the surface texture may be a depression on the surface of the scattering layer, and the shape of the depression includes but is not limited to hemispherical, cylindrical, conical, pyramidal and so on.
  • the surface texture includes, but is not limited to, continuous textures such as waves, zigzags, or "zigzags".
  • the feature size of the surface texture may be in the range of 10 nm-20 ⁇ m.
  • the feature size may refer to the smallest size among the isotropic sizes of the surface texture.
  • the micropores comprise closed pores formed inside the matrix.
  • the micropores include half-open holes formed on the surface of the substrate, and these half-open holes can also be regarded as the depressions in the above-mentioned embodiments.
  • the micropores may be located at any one or more positions of the interior of the matrix, the side surface of the matrix, the upper surface of the matrix, and the lower surface of the matrix.
  • the matrix includes a plurality of pores in the inner and outer surfaces that can form solid-gas and/or solid-liquid interfaces, thereby enhancing the scattering of the matrix.
  • the micropores have a diameter ranging from 2 nm to 20 ⁇ m.
  • the matrix is homogeneous, wherein the pore size of the micropores is the same across the matrix. In some embodiments, the matrix is heterogeneous.
  • methods for fabricating a porous scattering layer include, but are not limited to: immersion precipitation (examples of precipitation may include, but are not limited to, thermal precipitation, precipitation by solvent evaporation, vapor phase precipitation, etc.), sintering processes, stretching techniques , trace etching, template leaching, slip casting, sol-gel processes, etc.
  • the matrix includes a substrate layer, the fiber structure is deposited inside the substrate layer, and the fiber structure forms a solid-solid interface in the substrate layer to increase the scattering effect of the scattering layer.
  • the number of fibrous structures is multiple.
  • the difference between the index of refraction of the substrate layer and the index of refraction of the fibrous structure is less than 20% of the index of refraction of the fibrous structure. In some embodiments, the difference between the refractive index of the substrate layer and the refractive index of the fibrous structure is less than 20% of the refractive index of the substrate layer.
  • the refractive index can be defined as the ratio of the speed of light to the speed of light in the measured material (substrate layer or fiber structure).
  • the ratio of the total volume of the fiber structure to the volume of the scattering layer ranges from 5% to 90%. In some embodiments, the ratio of the total weight of the fiber structure to the weight of the scattering layer ranges from 5% to 90%. It can be understood that the number of fibrous structures can be multiple, the total volume of the fibrous structures can be understood as the sum of the volumes of all the fibrous structures, and the total weight of the fibrous structures can be understood as the sum of the weights of all the fibrous structures.
  • the volume of the heat dissipation layer includes the volume of the substrate layer and the volume of the fiber structure, and the weight of the heat dissipation layer includes the weight of the substrate layer and the weight of the fiber structure.
  • the average value of the maximum distance between any two adjacent fiber structures is 0.05 ⁇ m ⁇ 50 ⁇ m.
  • the fibrous structure is in the form of a filament, which can extend in any curved posture within the scattering layer.
  • there is a maximum distance between any two adjacent fiber structures and the maximum distance between all adjacent fiber structures is averaged, and the average value is in the range of 0.05 ⁇ m to 50 ⁇ m, so as to control
  • the uniformity of dispersion of the fiber structure in the base material layer enables the fiber structure to be more uniformly dispersed in the base material layer.
  • the average length of the fibrous structure is 0.1-30 mm. If the fiber structure is too short, it is difficult to increase the light scattering effect, and if the fiber structure is too long, it is easy to curl and accumulate in the substrate layer. Therefore, the fiber structure with an average length of 0.1-30mm can be deposited in the substrate layer relatively stretched.
  • some examples of fibrous materials deposited into the dodging layer may include, but are not limited to, Kevlar TM , carbon fibers, polystyrene, polyethylene, ultra-high molecular weight polyethylene, polycarbonate, polyphenylene oxide, poly (methyl methacrylate), parylene (parylene may include parylene C, parylene N, parylene D, parylene HT, and parylene AF), Nylon, polycaprolactone, polyamide, polypropylene, perfluoroalkoxy, polymethylpentene, and derivative polymers of the above.
  • Kevlar TM carbon fibers
  • polystyrene polyethylene
  • ultra-high molecular weight polyethylene polycarbonate
  • polyphenylene oxide poly (methyl methacrylate)
  • parylene parylene
  • parylene may include parylene C, parylene N, parylene D, parylene HT, and parylene AF
  • Nylon polycaprolactone
  • polyamide poly
  • the microstructures within the scattering layer may include nanoparticles. Nanoparticles can form a solid-solid interface in the scattering layer to increase the scattering effect. In some embodiments, the number of nanoparticles is multiple.
  • the ratio of the total volume of nanoparticles to the volume of the scattering layer ranges from 1% to 30%. In some embodiments, the ratio of the total weight of nanoparticles to the weight of the scattering layer ranges from 1% to 30%. It can be understood that the number of nanoparticles can be multiple, the total volume of nanoparticles can be understood as the sum of the volumes of all nanoparticles, and the total weight of nanoparticles can be understood as the sum of the weights of all nanoparticles.
  • the volume of the heat dissipation layer includes the volume of the substrate layer and the volume of the nanoparticles, and the weight of the heat dissipation layer includes the weight of the substrate layer and the weight of the nanoparticles.
  • the average distance between any two adjacent nanoparticles is 0.05 ⁇ m ⁇ 50 ⁇ m. In some embodiments, the distance between any two adjacent nanoparticles is counted, and the distance between all adjacent nanoparticles is averaged, and the average value is in the range of 0.05 ⁇ m to 50 ⁇ m, so as to control the distance between the nanoparticles
  • the uniformity of dispersion in the substrate layer enables the nanoparticles to be more uniformly dispersed in the scattering layer.
  • the average particle size of the nanoparticles is 1-100 mm. Nanoparticles that are too small or too large will reduce the light scattering effect, and nanoparticles with an average particle diameter of 1-100 mm can better increase the light scattering effect.
  • the scattering layer is a composite layer having multiple layers.
  • the surface layer of the scattering layer that can be in contact with the photocurable resin may have anti-adhesive properties, so that the photocurable resin can be separated from the scattering layer after curing.
  • the surface layer of the scattering layer that can be in contact with the photocurable resin can be made of elastic material and/or anti-sticking material.
  • other layers of the scattering layer that are not in contact with the photocurable resin can be made of materials that can increase the scattering effect, or other layers can be increased by adding microstructures. Scattering effect.
  • the composite layer includes a polydimethylsiloxane (PDMS) layer and a paper layer.
  • the polydimethylsiloxane (PDMS) layer has certain elasticity and anti-adhesive properties, therefore, the polydimethylsiloxane (PDMS) layer can be set to be able to contact with the photocurable resin in the scattering layer surface layer.
  • the paper layer can be made of a transparent or translucent paper material with light transmission. For example, adding acrylic resin to paper pulp can make a light-transparent paper layer. In some embodiments, the transparency of the paper layer is 40%-100%. In some embodiments, the paper layer can be set as another layer not in contact with the photocurable resin, and a better scattering effect can be achieved through the paper layer.
  • the composite layer includes a polydimethylsiloxane (PDMS) layer and a polymer film with a microstructure.
  • the polydimethylsiloxane (PDMS) layer has certain elasticity and anti-adhesive properties, therefore, the polydimethylsiloxane (PDMS) layer can be set as the scattering layer
  • the material of the polymer film having a microstructure can refer to the description of the material of the scattering layer above, and will not be repeated here in the embodiments of this specification.
  • the microstructure within the polymer film includes, but is not limited to, at least one of surface textures, micropores, fibrous structures, and nanoparticles. More detailed descriptions of surface textures, micropores, fibrous structures, and nanoparticles can be found in the related descriptions above.
  • the composite layer is a release film
  • the release film includes a plastic layer and an elastic layer.
  • the upper surface of the plastic layer is used as a light-curing molding surface, and the material is incompatible with the light-curing resin.
  • the plastic layer material of the release film and the photocurable resin material do not infiltrate each other, so when the photocurable resin material undergoes a curing reaction on the upper surface of the plastic layer to form a cured layer, the adhesion between the cured layer and the plastic layer The resultant force is small, which is conducive to the separation of the cured layer and the photo-cured molding surface.
  • non-wetting disclosed in the present invention is that the contact angle of the photocurable resin material on the upper surface of the plastic layer is not less than 60°. In some embodiments, the contact angle of the photocurable resin material on the upper surface of the plastic layer is not less than 70°; in some embodiments, the contact angle of the photocurable resin material on the upper surface of the plastic layer is not less than 80°; in some embodiments , the contact angle of the photocurable resin material on the upper surface of the plastic layer is not less than 90°.
  • the material of the plastic layer includes, but is not limited to: polytetrafluoroethylene (PTFE), polyethylene (PE), polyvinylidene fluoride (PVDF), fluorinated ethylene propylene (FEP), perfluoroalkoxy Base resin (PFA), polychlorotrifluoroethylene (PCTFE), ethylene-tetrafluoroethylene copolymer (ETFE), polyvinyl fluoride (PVF), polyethylene terephthalate (PET), polybutadiene Formal (PBT), thermoplastic polyurethane (TPU), polyamide or nylon (PA), polyimide (PI), polypropylene (PP), polyvinyl chloride (PVC), polymethyl methacrylate (PMMA) , polystyrene (PS), polybutylene (PB), polyoxymethylene (POM), polycarbonate (PC), polysulfone (PSU), polyphenylene oxide (PPO), polyvinyl alcohol (PVA), polypropylene A
  • the elastic layer of the release film includes a tough frame and an elastic layer matrix filled in the tough frame.
  • the elastic layer matrix fills the pores of the tough scaffold.
  • the main function of the elastic layer is to provide the elastic recovery force during the release process.
  • the function of the elastic layer tough support is to improve the mechanical strength of the elastic layer so that it can be used for a longer period of time.
  • the elastic layer matrix mainly provides the elastic recovery force during the release process. elastic resilience.
  • the flexible scaffold of the elastic layer is made of polymer fiber material, and can have various structures.
  • the resilient scaffold of the elastic layer has a spider web-like microporous structure, wherein the micropores are formed by overlapping polymer microfibers.
  • the flexible scaffold of the elastic layer is composed of short polymer fiber materials arranged in order, wherein the short polymer fibers are parallel to each other so as not to overlap.
  • the flexible scaffold of the elastic layer is composed of random arrangement of short polymer fiber materials.
  • the polymer fiber material diameter of the flexible scaffold of the elastic layer of the composite release film disclosed in the present invention is in the range of 50nm-10 ⁇ m, or in the range of 100nm-5 ⁇ m, or in the range of 200nm-2 ⁇ m.
  • the flexible support of the elastic layer of the release film is a porous polytetrafluoroethylene (PTFE) film, and its surface morphology has a spider web-like microporous structure, and pores are formed between the polytetrafluoroethylene microfibers.
  • the microporous structure is formed by entanglement and connection of many microfibers, and the diameter of the pores can be within the range of 50nm to 10 ⁇ m.
  • the longitudinal cross-section of the PTFE membrane is a network structure, and there are very complex changes such as mesh communication, hole nesting, and channel bending in the three dimensions of the micropores, and a channel may be composed of multiple micropores. It is also possible for a microwell to be connected to multiple channels.
  • the flexible support of the elastic layer is in the matrix of the elastic layer, forms a solid-solid interface with the matrix of the elastic layer, and can scatter light passing through the matrix of the elastic layer.
  • flexible scaffold materials for the elastic layer include, but are not limited to, polyethylene (PE), polyvinylidene fluoride (PVDF), fluorinated ethylene propylene (FEP), perfluoroalkoxy resin (PFA), polychlorotrifluoroethylene ( PCTFE), ethylene-tetrafluoroethylene copolymer (ETFE), polyvinyl fluoride (PVF), polyethylene terephthalate (PET), polybutadiene formal (PBT), thermoplastic polyurethane (TPU), Polyamide or nylon (PA), polyimide (PI), polypropylene (PP), polyvinyl chloride (PVC), polymethyl methacrylate (PMMA), polystyrene (PS), polybutylene ( PB), polyoxymethylene (POM), polycarbonate (PC),
  • PE poly
  • the base material of the elastic layer of the release film can be any suitable elastic body.
  • elastic layer base materials may include, but are not limited to, polyester elastomers, acrylic elastomers, styrene-based elastomers, olefin-based elastomers, diene-based elastomers, vinyl chloride-based elastomers, lipid-based elastomers, amides Elastomers, silicone polymers, epoxy polymers, silicone elastomers, organic fluorine elastomers and other materials.
  • the base material of the elastic layer can use but is not limited to the following materials: silica gel, rubber, silicone rubber, thermoplastic vulcanizate (TPV), nitrile rubber (NBR), butyl rubber, thermoplastic polyurethane (TPU), polyester Rubber (TPEE), polyamide thermoplastic elastomer (TPAE), T-NR-trans polyisoprene rubber (TPI), syndiotactic 1,2-polybutadiene (TPB), organic fluorine thermoplastic elastomer Polymer (TPF), thermoplastic phenolic resin (Novalc resin), thermoplastic chlorinated polyethylene (TCPE), methylchlorosilane, ethylchlorosilane, phenylchlorosilane, thermoplastic polyvinyl chloride elastomer (PVC), polydimethylsilane polysiloxane (PDMS), polyethylene, polystyrene, polybutadiene, polyurethane, polyisoprene,
  • the scattering layer may be a multilayer composite layer including microstructures.
  • microstructures may be deposited on one or more of the multilayer composite layers.
  • reference may be made to the relevant description of the microstructure above.
  • Figure 5A is an exemplary experimental dental aligner printed by an additive manufacturing device according to some embodiments of the present specification.
  • Figure 5B is an exemplary control dental aligner printed by an additive manufacturing device according to some embodiments of the present specification.
  • the embodiment of this specification provides an exemplary printing comparison result of using the same printer to print the orthodontic appliance.
  • shown in Fig. 5 A is the experimental tooth straightener printed using the light diffusion mechanism in any embodiment of this specification
  • shown in Fig. 5 B is to use the ordinary FEP film from DuPont Company as the separation membrane (the separation membrane Control aligners printed without the ability to scatter light).
  • the other experimental conditions, experimental equipment, and experimental parameters are the same, and the experimental parameters are shown in Table 1:
  • Table 1 The parameter list of the printing example of the additive manufacturing device shown according to some embodiments of this specification
  • Print layer thickness(mm) 0.1 Light intensity (mw/cm2) 2.0 Exposure time (ms) 2400 Printing temperature(°C) 40
  • the experimental aligner in Figure 5A is significantly more transparent and clearer than the control aligner in Figure 5B. Therefore, the light diffusion mechanism in any embodiment of this specification has the technical effect of improving the transparency of three-dimensional object printing.
  • Fig. 6 is an exemplary flowchart of an additive manufacturing method according to some embodiments of the present specification.
  • Some embodiments of this specification also provide an additive manufacturing method, the method performs additive manufacturing based on the additive manufacturing device of any embodiment, and the method includes a process 600:
  • Step 610 Place photocurable resin in the storage container of the molding device.
  • the photocurable resin is placed in the storage container of the molding device, and the photocurable resin is in a liquid state.
  • a light scattering mechanism is placed between the light source and the molding apparatus, the light scattering mechanism being capable of scattering light passing through the light scattering mechanism.
  • Step 620 The light emitted by the light source is scattered by the light scattering mechanism and then irradiated onto the photo-curable resin, so that the photo-curable resin is cured.
  • the light emitted by the light source is scattered by the light scattering mechanism and then irradiated onto the photo-curable resin, so that the photo-curable resin is cured, and the cured layer can be attached to the molding platform.
  • Step 630 Control the molding platform to move away from the light source, so that the cured photo-curable resin is away from the molding surface.
  • the photocurable resin is irradiated again by the light source, so that the photocurable resin is cured into a new cured layer attached to the previously formed cured layer.
  • the molding device is controlled to move away from the light source, so that the cured photo-curable resin is away from the molding surface, and a new cured layer is printed by controlling the cured layer away from the molding surface.
  • the molding equipment includes a lifting mechanism and a molding platform. The cured layer can be attached to the molding platform. By controlling the lifting mechanism, the molding platform is driven to move away from the light source at a preset distance, so that the previously cured layer is removed from the molding surface. Separation, where the liquid photocurable resin flows between the previously cured layer and the molding surface.
  • the light emitted by the light source is scattered by the light scattering mechanism and irradiated onto the photo-curable resin to cure the photo-curable resin to form a new cured layer on the previously cured layer.
  • a three-dimensional object can be printed layer by layer.
  • the new solidified layer is formed as a unitary structure with the previously formed solidified layer.
  • the light image formed by the light source on the molding surface is composed of multiple pixels, and the light intensity in the light image corresponding to a single pixel changes with the change of position, and the light in the boundary area of the pixel Intensity is weaker, and the light intensity in the central area of the pixel is stronger.
  • the light intensity of the edge area of the pixel is enhanced, the light intensity of the middle area of the pixel is weakened, and the boundary between pixels is blurred. , thereby reducing the protrusions and depressions on the surface of the printed three-dimensional object, and improving the transparency of the printed three-dimensional object;
  • the light intensity at different positions in the pixel can be adjusted so that the ratio between the maximum value I max and the minimum value I min of the light intensity I of a single pixel formed by the light source on the molding surface is given by Reduced, so that the light intensity difference between different positions is reduced to improve the surface flatness of the three-dimensional object, and improve the printing transparency or clarity of the three-dimensional object;
  • the full width at half maximum (FWHM) FWHM1 of the light intensity I of a single pixel formed by the light source on the molding surface changes with the irradiation position.
  • the difference between the light intensity at the boundary of the pixel and the light intensity in the middle of the pixel can be reduced by the uniform light device, thereby blurring the boundary of the pixel on the surface of the three-dimensional object and increasing the transparency and clarity of the three-dimensional object;
  • the boundary of pixels can be blurred through the light source profile modifier, thereby improving the transparency of three-dimensional objects
  • the light source shaker is used to shake the display chip of the digital light processing projection device, so that the output beam is shaken, so that the output beam moves rapidly clockwise or counterclockwise between adjacent pixels, so that the boundary of the pixel is blurred , to improve the transparency of three-dimensional objects;
  • the output light beam of the light source scatters onto the molding surface through the scattering layer, blurring the boundaries of pixels on the molding surface, thereby improving the transparency and clarity of the printed three-dimensional object.
  • the possible beneficial effects may be any one or a combination of the above, or any other possible beneficial effects.
  • numbers describing the quantity of components and attributes are used. It should be understood that such numbers used in the description of the embodiments use the modifiers "about”, “approximately” or “substantially” in some examples. grooming. Unless otherwise stated, “about”, “approximately” or “substantially” indicates that the stated figure allows for a variation of ⁇ 20%. Accordingly, in some embodiments, the numerical parameters used in the specification and claims are approximations that can vary depending upon the desired characteristics of individual embodiments. In some embodiments, numerical parameters should take into account the specified significant digits and adopt the general digit reservation method. Although the numerical ranges and parameters used in some embodiments of this specification to confirm the breadth of the range are approximations, in specific embodiments, such numerical values are set as precisely as practicable.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • General Physics & Mathematics (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Thermal Sciences (AREA)
  • Lubricants (AREA)

Abstract

一种增材制造装置(1)及方法。该增材制造装置(1)包括:光源(10),提供光照以固化光固化树脂(40);成型设备(20),其包括储存容器(21),所述储存容器(21)用于储存所述光固化树脂(40),所述成型设备(20)具有成型表面(22),所述光固化树脂(40)在成型表面(22)上固化;光散射机构(30),设于所述光源(10)和所述成型表面(22)之间,所述光散射机构(30)能够使光源(10)的光在传播方向上发生偏离,从而使所述成型表面(22)上像素内的光强变化。减小打印的三维物体(50)的表面的凸起和凹陷,提高打印的三维物体(50)的透明度。

Description

一种增材制造装置及方法
交叉引用
本申请要求2021年06月09日提交的美国临时申请63/208,543的优先权,全部内容通过引用并入本文。
技术领域
本说明书涉及增材制造领域,特别涉及一种增材制造装置及方法。
背景技术
增材制造(Additive Manufacturing,AM)俗称3D打印,通过逐层堆积制造实体物品。光固化式的增材制造以液态光固化树脂为原料,在一定波长的紫外光照射下发生固化反应,固化形成固化层。固化层逐层堆叠,最终形成所需的三维物体。
通过增材制造打印的透明三维物体具有广泛的应用,例如,通过增材制造打印的透明牙套在牙齿矫正上被广泛地应用。但是如何能够打印出透明度高且分辨率高的三维物体仍然是业界的难题。
发明内容
本说明书实施例之一提供一种增材制造装置,该增材制造装置包括:光源,提供光照以固化光固化树脂;成型设备,其包括储存容器,所述储存容器用于储存所述光固化树脂,所述成型设备具有成型表面,所述光固化树脂在成型表面上固化;光散射机构,设于所述光源和所述成型表面之间,所述光散射机构能够使光源的光在传播方向上发生偏离,从而使所述成型表面上像素内的光强变化。
在一些实施例中,所述光源发出的光穿过所述光散射机构后在所述成型表面上固化所述光固化树脂而形成的第一打印件的第一透明度为T1,所述光源发出的光未穿过所述光散射机构后在所述成型表面上固化所述光固化树脂而形成的第二打印件的第二透明度为T2,所述第一透明度T1大于所述第二透明度T2。
在一些实施例中,所述成型设备还包括成型平台,所述成型平台用于向远离所述光源的方向运动,以使得固化后的所述光固化树脂远离所述成型表面。
在一些实施例中,所述光源发出的光穿过所述光散射机构后在所述成型表面上单个像素内的光强的最大值和最小值之间的比值为第一比值A1,所述光源发出的光未穿过所述光散射机构在所述成型表面上单个像素内的光强的最大值和最小值之间的比值为第二比值A2,至少一个像素的所述第一比值A1小于对应的所述第二比值A2。
在一些实施例中,所述光源发出的光穿过所述光散射机构后在所述成型表面上单个像素内的光强的高斯分布曲线的半高宽为第一半高宽FWHM1,所述光源发出的光未穿过所述光散射机构在所述成型表面上单个像素内的光强的高斯分布曲线的半高宽为第二半高宽FWHM2,至少一个像素的所述第一半高宽FWHM1大于对应的所述第二半高宽FWHM2。
在一些实施例中,所述光源为液晶显示光源或者数字光处理投影设备的光源。
在一些实施例中,所述光散射机构包括匀光设备,所述匀光设备与所述成型表面之间的距离小于所述匀光设备与所述光源之间的距离,所述匀光设备用于调整所述光源的一个或多个像素内的光强分布。
在一些实施例中,所述匀光设备包括光源轮廓修改器,所述光源轮廓修改器设置在所述光源的光路上,所述光源轮廓修改器用于修改所述光源的一个或多个像素的轮廓;所述光源为液晶显示光源。
在一些实施例中,所述匀光设备包括匀光片。
在一些实施例中,所述匀光设备包括玻璃结构,所述玻璃结构包括磨砂玻璃、喷砂玻璃或蚀刻玻璃。
在一些实施例中,当所述像素的尺寸为Xμm时,所述玻璃结构的表面粗糙度Ra为:X~5×Xμm。
在一些实施例中,所述匀光设备包括光源抖动器;所述光源为数字光处理投影设备;所述光源抖动器用于使得所述数字光处理投影设备的显示芯片抖动。
在一些实施例中,所述光散射机构包括透明的散射层,所述散射层设于所述成型表面和所述光源之间,所述散射层能够使穿过的光束产生散射。
在一些实施例中,所述散射层构成所述成型表面。
在一些实施例中,所述散射层包括基体和设于所述基体上的微结构,所述微结构包括表面纹理、微孔、纤维结构和纳米颗粒中的至少一种。
在一些实施例中,所述表面纹理包括阵列设置的表面凸起或凹陷;或者,所述表面纹理包括波浪形或锯齿形的纹理。
在一些实施例中,所述表面纹理的特征尺寸为10nm~20μm。
在一些实施例中,所述微孔包括形成在所述散射层内部的封闭孔;或者,所述微孔包括形成在所述散射层表面的半开孔。
在一些实施例中,所述微孔的直径范围为2nm~20μm。
在一些实施例中,所述基体包括基材层,所述纤维结构沉积在所述基材层内部,所述 基材层的折射率和所述纤维结构的折射率之间的差值小于所述纤维结构的折射率的20%。
在一些实施例中,所述纤维结构的总体积与所述散射层的体积之比在5%~90%范围内。
在一些实施例中,所述纤维结构的总重量与所述散射层的重量之比在5%~90%范围内。
在一些实施例中,任意两个相邻的所述纤维结构之间的最大距离的平均值为0.05μm~50μm。
在一些实施例中,所述纤维结构的平均长度为0.1~30mm。
在一些实施例中,所述纳米颗粒的总体积与所述散射层的总体积之比在1%~30%范围内。
在一些实施例中,所述纳米颗粒的总重量与所述散射层的总重量之比在1%~30%范围内。
在一些实施例中,任意两个相邻的所述纳米颗粒之间的距离的平均值为0.05μm~50μm。
在一些实施例中,所述纳米颗粒的平均粒径为1~100mm。
在一些实施例中,所述散射层为具有多层的复合层。
在一些实施例中,所述复合层包括聚二甲基硅氧烷(PDMS)层和纸质层。
在一些实施例中,所述复合层包括聚二甲基硅氧烷(PDMS)层和具有微结构的聚合物膜。
在一些实施例中,所述复合层为离型膜,所述离型膜包括塑性层和弹性层。
在一些实施例中,所述塑性层包括聚四氟乙烯(PTFE)、聚乙烯(PE)、聚偏二氟乙烯(PVDF)、氟化乙烯丙烯(FEP)、全氟烷氧基树脂(PFA)、聚三氟氯乙烯(PCTFE)、乙烯-四氟乙烯共聚物(ETFE)、聚氟乙烯(PVF)、聚对苯二甲酸乙二醇酯(PET)、聚丁二烯缩甲醛(PBT)、热塑性聚氨酯(TPU)、聚酰胺或者尼龙(PA)、聚酰亚胺(PI)、聚丙烯(PP)、聚氯乙烯(PVC)、聚甲基丙烯酸甲酯(PMMA)、聚苯乙烯(PS)、聚丁烯(PB)、聚甲醛(POM)、聚碳酸酯(PC)、聚砜(PSU)、聚苯醚(PPO)、聚乙烯醇(PVA)、聚丙烯腈苯乙烯(AS)、聚丙烯腈丁二烯苯乙烯(ABS)、氟树脂(FR)的一种或者多种的组合,或者任选它们中的两种或两种以上的聚合物或者其单体聚合形成的共混聚合物或者嵌段聚合物或者互穿网络聚合物。
在一些实施例中,所述弹性层包括所述弹性层包括弹性层基体与弹性层韧性支架,所述弹性层基体填充于所述弹性层韧性支架的孔隙中。
在一些实施例中,所述弹性层韧性支架材料的包括但不限于聚乙烯(PE)、聚偏二氟乙烯(PVDF)、氟化乙烯丙烯(FEP)、全氟烷氧基树脂(PFA)、聚三氟氯乙烯(PCTFE)、 乙烯-四氟乙烯共聚物(ETFE)、聚氟乙烯(PVF)、聚对苯二甲酸乙二醇酯(PET)、聚丁二烯缩甲醛(PBT)、热塑性聚氨酯(TPU)、聚酰胺或者尼龙(PA)、聚酰亚胺(PI)、聚丙烯(PP)、聚氯乙烯(PVC)、聚甲基丙烯酸甲酯(PMMA)、聚苯乙烯(PS)、聚丁烯(PB)、聚甲醛(POM)、聚碳酸酯(PC)、聚砜(PSU)、聚苯醚(PPO)、聚乙烯醇(PVA)、聚丙烯腈苯乙烯(AS)、聚丙烯腈丁二烯苯乙烯(ABS)、氟树脂(FR)的一种或者多种的组合,或者任选它们中的两种或两种以上的聚合物或者其单体聚合形成的共混聚合物或者嵌段聚合物或者互穿网络聚合物。
在一些实施例中,所述弹性层基体的材料包括聚酯弹性体、丙烯基弹性体、苯乙烯类弹性体、烯烃类弹性体、双烯类弹性体、氯乙烯类弹性体、脂类弹性体、酰胺类弹性体、硅氧烷聚合物、环氧聚合物、有机硅类弹性体、有机氟类弹性体、硅胶、橡胶、硅橡胶、热塑性硫化橡胶(TPV)、丁腈橡胶(NBR)、丁基橡胶、热塑性聚氨酯(TPU)、聚酯橡胶(TPEE)、聚酰胺类热塑性弹性体(TPAE)、T-NR-反式聚异戊二烯橡胶(TPI)、间同1,2-聚丁二烯(TPB)、有机氟类热塑性弹性体(TPF)、热塑性酚醛树脂(Novalc树脂)、热塑性氯化聚乙烯(TCPE)、甲基氯硅烷、乙基氯硅烷、苯基氯硅烷、热塑性聚氯乙烯弹性体(PVC)、聚二甲基硅氧烷(PDMS)、聚乙烯、聚苯乙烯、聚丁二烯、聚氨酯、聚异戊二烯、聚烯烃弹性体(POE)、三元乙丙橡胶(EPDM)、苯乙烯类热塑性橡胶(SEBS,SBS)、聚醚嵌段酰胺(PEBA)、乙烯-醋酸乙烯酯共聚物(EVA,EVM)、线性低密度聚乙烯(LLDPE)、聚丙烯酸橡胶、氟硅橡胶和含氟弹性体的一种或者多种的组合,或者任选它们中的两种或两种以上的聚合物或者其单体聚合形成的共混聚合物或者嵌段聚合物或者互穿网络聚合物。
在一些实施例中,所述散射层为所述储存容器的至少一部分底面。
在一些实施例中,所述散射层由柔性和/或弹性材料制成。
在一些实施例中,所述散射层的透明度为40%~100%。
在一些实施例中,所述散射层由天然和/或合成橡胶、聚四氟乙烯、聚氨酯、聚丁二烯、聚异丁烯、氯丁橡胶、硅树脂、聚全氟乙烯丙烯、乙烯-氯三氟乙烯共聚物、聚偏二氟乙烯、乙烯-四氟乙烯共聚物、四氟乙烯-偏二氟乙烯共聚物、氯三氟乙烯-偏二氟乙烯共聚物、邻苯基苯酚、聚对苯二甲酸、聚异戊二烯、聚丙烯酸橡胶、氟硅橡胶、氟橡胶、甲基氯硅烷、乙基氯硅烷、苯基氯硅烷、聚三氟氯乙烯、聚四氟乙烯、聚偏二氟乙烯、聚(氟乙烯)、聚三氯乙烯、全氟烷基聚醚、六氟丙烯、氟化聚(氯乙烯)、聚(4-甲基-1-戊烯)、聚二甲基硅氧烷(PDMS)以及上述材料的衍生物中的一种或多种制成。
在一些实施例中,所述散射层的弹性模量为1~50MPa。
在一些实施例中,所述散射层的拉伸强度5~50MPa。
在一些实施例中,所述散射层的断裂伸长率为50%~800%。
在一些实施例中,所述增材制造装置用于制造牙齿矫正器。
本说明书实施例之一提供一种增材制造方法,基于上述任一实施例的增材制造装置进行增材制造,包括:在成型设备的储存容器内放置光固化树脂;将光源发出的光通过光散射机构散射后照射到光固化树脂上,使得光固化树脂固化。
通过上述增材制造装置的结构,光源在成型表面上形成的光图像由多个像素组成,单个像素内的光强随位置的变化而变化,像素的边界区域的光强较弱,像素的中心区域的光强较强。而通过设置光散射机构使光源发出的光产生散射后,由于光的角度的改变,像素的边缘区域的光强得到增强,像素的中间区域的光强减弱,像素与像素之间的边界被模糊,从而减小打印的三维物体的表面的凸起和凹陷,提高打印的三维物体的透明度。
附图说明
本说明书将以示例性实施例的方式进一步说明,这些示例性实施例将通过附图进行详细描述。这些实施例并非限制性的,在这些实施例中,相同的编号表示相同的结构,其中:
图1A是根据本说明书一些实施例所示的增材制造装置的打印效果示意图一;
图1B是根据本说明书一些实施例所示的增材制造装置的打印效果示意图二;
图1C是根据本说明书一些实施例所示的增材制造装置的打印效果示意图三;
图2是根据本说明书一些实施例所示的增材制造装置的结构框图;
图3是根据本说明书一些实施例所示的增材制造装置的结构示意图;
图4是根据本说明书一些实施例所示的光源穿过光散射机构和未穿过光散射机构的单个像素内光强的高斯分布曲线图;
图5A是根据本说明书一些实施例所示的增材制造装置打印的示例性实验牙齿矫正器;
图5B是根据本说明书一些实施例所示的增材制造装置打印的示例性对照牙齿矫正器;
图6是根据本说明书一些实施例所示的增材制造方法的示例性流程图。
其中,附图标记为:1、增材制造装置;10、光源;20、成型设备;21、储存容器;22、成型表面;23、成型平台;231、平面;30、光散射机构;40、光固化树脂;50、三维物体。
具体实施方式
为了更清楚地说明本说明书实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单的介绍。显而易见地,下面描述中的附图仅仅是本说明书的一些示例或实施例, 对于本领域的普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图将本说明书应用于其它类似情景。除非从语言环境中显而易见或另做说明,图中相同标号代表相同结构或操作。
应当理解,本文使用的“系统”、“装置”、“单元”和/或“模块”是用于区分不同级别的不同组件、元件、部件、部分或装配的一种方法。然而,如果其他词语可实现相同的目的,则可通过其他表达来替换所述词语。
如本说明书和权利要求书中所示,除非上下文明确提示例外情形,“一”、“一个”、“一种”和/或“该”等词并非特指单数,也可包括复数。一般说来,术语“包括”与“包含”仅提示包括已明确标识的步骤和元素,而这些步骤和元素不构成一个排它性的罗列,方法或者设备也可能包含其它的步骤或元素。
本说明书中使用了流程图用来说明根据本说明书的实施例的系统所执行的操作。应当理解的是,前面或后面操作不一定按照顺序来精确地执行。相反,可以按照倒序或同时处理各个步骤。同时,也可以将其他操作添加到这些过程中,或从这些过程移除某一步或数步操作。
增材制造技术(也称为3D打印技术)广泛应用于各个领域。例如,可以利用增材制造技术生产牙套、骨支架、心脏瓣膜、血管支架、软骨组织等医疗用品;又例如,可以利用增材制造技术生产鞋底、鞋垫、枕头等生活用品;还例如,可以利用增材制造技术生产桌面摆件、模型等工艺品。在一些实施例中,可以采用熔融沉积成型、激光烧结成型、光固化成型等增材制造方式打印出产品。光固化成型具有较好的应用前景,光固化成型具有成型过程自动化程度高、制作产品表面质量好、尺寸精度高以及能够实现比较精细的尺寸成型等优点。光固化成型可以用于打印具有一定透明度的产品。
熔融沉积成型是将丝状材料(如热塑性塑料、蜡或金属的熔丝)从加热的喷嘴挤出,按照零件每一层的预定轨迹,以固定的速率进行熔体沉积的成型方法。激光烧结成型是以激光为热源对粉末压坯进行烧结的成型技术。
光固化成型是用特定波长与强度的激光聚焦到光固化材料表面而使得光固化材料快速固化的成型技术体。主要是使用液体打印原料作为原材料,光固化成型利用液体打印原料在特定波长与强度的激光束照射下会快速固化的特性来实现物体的打印。目前立体光刻技术(SLA技术)、数字光处理技术(DLP技术)、液晶显示技术(LCD技术)也应用到光固化打印中,使其打印精度得到提高。立体光刻技术(SLA技术)使用由检流计引导的激光来固化液体打印原料。数字光处理技术(DLP技术)是通过把影像信号经过数字处理后,把光投 影出来。数字光处理技术(DLP技术)使用数字光投影仪来固化液体打印原料,数字光投影仪将整个图层的图像投射到容纳光固化原材料的容器底部,数字微镜设备(DMD)有选择地引导光。数字微镜设备(DMD)是由成千上万个微镜组成的组件。液晶显示技术(LCD技术)是利用液晶的光电效应产生具有不同灰度层次及颜色的图像。相较于数字光处理技术(DLP技术),液晶显示技术(LCD技术)会在容纳光固化原材料的容器上投射完整的层,但是光会通过LCD而不是数字光投影仪的LED阵列发出来。屏幕充当遮罩,仅显示当前图层所需的光图像。在一些实施例中,光源可以选用液晶显示光源(LCD光源)或者数字光处理投影设备的光源(DLP光源,如数字光投影仪)等光源。在一些实施例中,光源选用紫外激光,打印原料在特定波长的紫外光(250nm~400nm)照射下引起聚合反应,完成固化。
在一些实施例中,立体光刻技术(SLA技术)、数字光处理技术(DLP技术)、液晶显示技术(LCD技术)的光源在成型表面上形成的光图像是由多个像素组成。对于一个像素而言,光强随位置的变化而变化,像素的边界区域的光强较弱,像素中心的光强较强。
在一些实施例中,光固化打印的步骤可以为:先将三维模型在一个方向进行分层处理,从而获取每层的轮廓信息或者图像信息,然后通过光源来将光图案照射到打印原材料上,原材料中的打印原料受到光照射后,发生聚合反应(光固化)形成固化层,该层光图案固化完成后,再进行下一层的固化,重复迭代,最后形成一个完整打印件。光固化打印的原料可以为光固化树脂。
在一些实施例中,光固化打印可以通过自上而下的逐层打印堆叠制造三维物体。示例地,自上而下的逐层堆叠是将光源设于成型表面之上,即液态的光固化树脂的上表面之上,当前固化层是在先前形成的固化层的上表面形成的。在一些实施例中,增材制造装置可以通过自下而上的逐层堆叠制造三维物体。示例地,自下而上的逐层堆叠是将光源设于成型表面之下,即液态的光固化树脂的下表面之下,当前固化层是在先前形成的固化层的下表面形成的。
在一些实施例中,光固化成型可以被用于打印具有一定透明度的产品。在一些实施例中,为了满足打印物体透明度高的需求,除了使用本身透明度高的树脂材料之外,可以通过后处理来提高物体的透明度。例如,在后处理技术时进行打磨、抛光等处理。又例如,打印后喷涂透明涂料或进行透明树脂浸渍等处理。但是,在使用透明或半透明的树脂时,精确控制光的透射以及固化深度变得非常困难,在打印过程中,紫外或可见光波长范围的入射光不仅仅照射当前固化层的液体树脂而形成当前固化层,光还会透过当前固化层的液体树脂透射到先前固化层,从而导致不希望发生的固化。这种情况会造成三维物体在垂直光固化成型表 面的方向分辨率降低,影响打印件的透明度。
图1A是根据本说明书一些实施例所示的增材制造装置的打印效果示意图一。图1B是根据本说明书一些实施例所示的增材制造装置的打印效果示意图二。图1C是根据本说明书一些实施例所示的增材制造装置的打印效果示意图三。
在一些实施例中,图1A至图1C的上方三幅图像显示了增材制造装置分别用三种不同的散射膜打印出的三个透明三维物体(牙齿矫正器),图1A至图1C的下方三幅图像分别是其上方图像的透明三维物体的局部放大图。从图1A至图1C的三个透明三维物体可以看出,图1A中的三维物体表面显示出清晰的表面层线,表面层线可以是图中的线状纹理;图1B和图1C中的三维物体显示出大量点状纹理,该点状纹理可以是图中的最小纹理单元,一个点状纹理可以是一个像素照射后固化形成的。经过对比,图1A中的三维物体的透明度远高于图1B和图1C中的三维物体的透明度。因此,三维物体的透明度与其表面的纹理图案有关,表面纹理图案的边界越模糊则透明度越高,如图1A中的表面层线;表面纹理图案的边界越清晰则透明度越低,如图1B和图1C中的点状纹理。
造成上述现象的原因是,由于光源在成型表面上形成的光图像由多个像素组成,单个像素内光强随位置的变化而变化,单个像素内的边界区域的光强较弱,像素的中心区域的光强较强。光强较强的位置容易透过当前固化层的光固化树脂透射到先前固化层,从而导致不希望发生的固化,从而使该区域的固化层更突出;而光强较弱的地方对应的固化层较凹陷。这种情况会造成三维物体在垂直光固化成型表面的方向出现不平整的表面,体现为分辨率降低,打印件的透明度较低的现象,如图1B和图1C中的点状纹理。
图2是根据本说明书一些实施例所示的增材制造装置的结构框图。
如图2所示,本说明书实施例提供一种增材制造装置1,该增材制造装置1包括光源10、成型设备20和光散射机构30。其中,光源10用于提供光照以固化光固化树脂40。成型设备20包括储存容器21,储存容器21用于储存光固化树脂40;成型设备20具有成型表面22,成型表面22可以指光固化树脂40上被光照射的表面,光固化树脂40在成型表面22上固化。光散射机构30设于光源10和成型表面22之间,光散射机构30能够使光源10的光在传播方向上发生偏离,从而使所述成型表面22上像素内的光强变化。其中,光源10的光在成型表面上可以形成光图像,光图像包括多个像素,像素可以是成型表面22上的光图像的最小单元的光点成型表面22上的多个像素可以构成与当前固化层的打印图案一致的光图像。光源10的光的传播方向上发生偏离,从而使所述成型表面22上像素内的光强变化,可以理解为,光源10的光在穿过光散射机构30之前的传播方向和穿过光散射机构30之后的传播方向 不共线,并且,光源10的光穿过光散射机构30后偏离范围依然限定在成型表面22上的像素内,换言之,对于单个像素对应的光而言,该光源10的光穿过光散射机构30后虽然发生了偏离,但是依然投射在该光源10的光未穿过光散射机构30时在成型表面22上形成的光图像的像素所在的区域范围内。
在一些实施例中,光固化过程可以包括自由基光固化树脂和阳离子光固化树脂。自由基光固化树脂的示例包括但不限于丙烯酸树脂、甲基丙烯酸树脂、N-乙烯基吡咯烷酮、丙烯酰胺、苯乙烯、烯烃、卤代烯烃、环状烯烃、马来酸酐、烯烃、炔烃、一氧化碳、官能化低聚物(例如,环氧化物、聚氨酯、聚醚、或用丙烯酸酯或甲基丙烯酸酯基团官能化的聚酯等)和官能化的聚乙二醇(polyethylene glycol,PEG)等。阳离子光固化树脂的示例包括但不限于环氧基和乙烯基醚基等,示例地,阳离子光固化树脂包括但不限于苯乙烯类化合物、乙烯基醚、N-乙烯基咔唑、内酯、内酰胺、环状醚(例如环氧化物)、环状缩醛和环状硅氧烷等。
在一些实施例中,光固化树脂40可以包括一种或多种自由基光固化树脂、一种或多种阳离子光固化树脂、或上述的组合。
在一些实施例中,光固化树脂40可以是双重固化树脂。在一些实施例中,双固化树脂可以在光源10的照射下进行第一次光固化过程以形成打印中间体。打印中间体将具有所需的三维物体的形状和结构,但机械强度较差。打印中间体可以经历第二次固化过程以形成最终的三维物体。第二次固化过程可以通过加热、微波辐射、湿度(即,在高温或环境温度下将打印物体暴露于水蒸气)来进一步进行。在第二次固化过程之后,可以获得与所需的三维物体基本相同的形状和结构的打印物体,同时提高了机械强度。
在一些实施例中,光固化树脂40中还可以包括光引发剂,光引发剂可以是能够引发与说明书实施例中的光源10的光固化反应的任何合适的光引发剂。在一些实施例中,光引发剂能够吸收波长为350nm~420nm。在一些实施例中,光源10引发光固化过程的波长是405nm。而在其他实施例中,光源10引发光固化过程的波长是385nm。在一些实施例中,光引发剂的示例包括但不限于安息香乙醚
Figure PCTCN2022097817-appb-000001
二烷氧基苯乙酮
Figure PCTCN2022097817-appb-000002
羟烷基酮
Figure PCTCN2022097817-appb-000003
酰基膦氧化物
Figure PCTCN2022097817-appb-000004
氨基酮
Figure PCTCN2022097817-appb-000005
二苯甲酮
Figure PCTCN2022097817-appb-000006
噻吨酮
Figure PCTCN2022097817-appb-000007
1,2二酮
Figure PCTCN2022097817-appb-000008
樟脑醌
Figure PCTCN2022097817-appb-000009
双(η5-2,4-环戊二烯-1-基)-双(2,6-二氟-3-(1H-吡咯-1-基)-苯基)钛
Figure PCTCN2022097817-appb-000010
等。其中化学式中的Rn是任意数量的其他原子,包括氢(H)、氧(O)、碳(C)、氮(N)、硫(S)。
在一些优选地实施例中,光引发剂为苯甲酰膦氧化物,包括但不限于:二苯基-(2,4,6-三甲基苯甲酰)氧磷TPO
Figure PCTCN2022097817-appb-000011
苯基双(2,4,6-三甲基苯甲酰基)氧化膦819
Figure PCTCN2022097817-appb-000012
TEPO
Figure PCTCN2022097817-appb-000013
819DW
Figure PCTCN2022097817-appb-000014
等。
在一些实施例中,光源10可以设置在成型设备20的上方,从上方照射储存容器21内的光固化树脂40,此时成型表面22位于光固化树脂40的上液面。在一些实施例中,光源10可以设置在成型设备20的下方,从下方照射储存容器21内的光固化树脂40,此时成型表 面22位于光固化树脂40的下液面。
在一些实施例中,光散射机构30可以设置在成型表面22和光源10之间,以使光源10的光透过光散射机构30散射到成型表面22上。示例地,光源的光射入光散射机构30后,在光散射机构30内产生光路偏移,使光路按照一定角度向四周扩散,扩散后的光离开光散射机构30后按照扩散后的角度投射到成型表面22上。在一些实施例中,光散射机构30包括但不限于匀光设备、光源轮廓修改器、光源抖动器和散射层等。关于光散射机构30的详细内容请参见下文相关描述。
在一些实施例中,光源发出的光穿过光散射机构后在成型表面上固化光固化树脂而形成的第一打印件的第一透明度为T1,光源发出的光未穿过光散射机构后在成型表面上固化光固化树脂而形成的第二打印件的第二透明度为T2,第一透明度T1大于第二透明度T2。其中,第一打印件和第二打印件是指通过增材制造装置1打印出的透明的三维物体。
通过上述增材制造装置1的结构,光源在成型表面22上形成的光图像由多个像素组成,单个像素内的光强随位置的变化而变化,像素的边界区域的光强较弱,像素的中心区域的光强较强。而通过设置光散射机构30使光源10发出的光产生散射后,由于光的角度的改变,像素的边缘区域的光强得到增强,像素的中间区域的光强减弱,像素与像素之间的边界被模糊,从而减小打印的三维物体的表面的凸起和凹陷,提高打印的三维物体的透明度。
图3是根据本说明书一些实施例所示的增材制造装置的结构示意图。
在一些实施例中,图3示出了增材制造装置1通过自下而上的逐层堆叠制造三维物体50的示例。光源10设置在成型设备20的下方,液态的光固化树脂40储存在储存容器21中,光源10从下向上照射到储存容器21的底部,使储存容器21底部的光固化树脂形成固化层,并且当前固化层是在先前形成的固化层的下表面形成的。储存容器21的底部的至少部分是透明的,光可以透过储存容器21的底部照射到光固化树脂40上。在一些实施例中,储存容器21的全部底部是透明的;在一些实施例中,储存容器21的部分底部是透明的。在一些实施例中,储存容器21的底部可以由透明玻璃、透明树脂、透明塑料等材料制成。在一些实施例中,储存容器21的底部的透光率可以在40%~100%范围内。成型表面22可以是指光透过储存容器21的底部照射到光固化树脂40上形成的光照区域。在一些实施例中,光散射机构30设于储存容器21的底部,且位于成型表面22和光源10之间。在其他实施例中,光散射机构30还可以适用于自上而下的逐层堆叠制造三维物体,即将光源设置在成型设备的上方,液态的光固化树脂储存在储存容器中,光源从上向下照射到储存容器内光固化树脂的顶面,以形成固化层,并且当前固化层是在先前形成的固化层的上表面形成的。本说明书实施例对光散 射机构30的应用场景不作限制,其可以用于任何形式的增材制造装置中。
在一些实施例中,成型设备20还包括成型平台23。在一些实施例中,成型平台23可以是用于承载和固定光固化树脂40的固化层的平台,该成型平台23上设有能够使固化层固定附着的平面231,最终打印的三维物体50形成在成型平台23的平面231上。在一些实施例中,成型平台23用于向远离光源10的方向运动,以使得固化后的光固化树脂40远离成型表面22。
在一些实施例中,成型设备20还包括升降机构(图中未示出),成型平台23设置在升降机构上,升降机构能够驱动成型平台23沿上下方向移动,从而靠近或远离光源10。在增材制造装置1在打印三维物体50之前,升降机构驱动成型平台23远离或靠近光源10,以调整成型平台23与成型表面22之间的相对位置。在增材制造装置1在打印三维物体50时,升降机构驱动成型平台23远离光源10,先前固化层可以远离成型表面22,使光固化树脂40流动到先前固化层的表面,通过光源10照射光固化树脂40以形成新的成型表面22。
在一些实施例中,成型设备20还可以包括控制器(图中未示出)。在一些实施例中,控制器与升降机构信号相连,用于控制升降机构的移动方向和移动距离。
在一些实施例中,控制器的通过控制升降机构,从而带动成型平台23的以预设的间距逐次朝向远离光源10的方向移动,使先前固化层从成型表面22分离,从而实现对光固化树脂40逐层打印。示例地,在成型平台23上形成固化层后,升降机构带动成型平台23朝向远离光源10的方向移动预设距离,使先前固化层从成型表面22分离,此时液态的光固化树脂40会流动到先前固化层和成型表面22之间,通过光源10照射新的光固化树脂40以形成新的固化层。
在一些实施例中,增材制造装置用于制造牙齿矫正器、骨支架、心脏瓣膜、血管支架、软骨组织,但本说明书对此不作限制。在其他实施例中,增材制造装置还可以用于制造鞋底、鞋垫、枕头、桌面摆件、模型、机械零部件、塑料玩具、沙盘模型等。
在一些实施例中,光源10为面光源,面光源可以是指输出光束能够在成型表面22上形成面图像的光源。面光源在成型表面22上具有多个像素,像素可以是成型表面上的光图像的最小单元的光点。
在一些实施例中,光源10可以是液晶显示光源。在一些实施例中,液晶显示光源可以由一系列LCD光源透过液晶显示器发射输出光束。
在一些实施例中,光源10可以是数字光处理投影设备的光源。在一些实施例中,数字光处理投影设备的光源经过数字光处理投影设备进行数字处理后,再发射输出光束。
在一些实施例中,液晶显示光源和/或数字光处理投影设备的光源可以包括但不限于紫外激光、LED光或高压泵灯。在一些实施例中,紫外激光波长为355nm,可以被光固化树脂40较好的吸收,且对光固化树脂40的破坏也是最小的。紫外激光器波长较短,在光固化树脂40上的作用时间较短,可以最大程度的减少热效应的时间从而保护光固化树脂40。
在一些实施例中,单个像素内的光强随位置的改变而变化。例如,单个像素内边缘位置的光强小于像素内中心位置的光强。在光固化过程中,光强较大的位置照射到光固化树脂40上引起的光固化的程度高,光强较小的位置照射到光固化树脂40上引起的光固化程度低,光强较大的位置较为凸出,光强较小的位置较为凹陷,从而在整个三维物体50的表面上呈现出凹凸不平的表面,表面越不平整越易导致三维物体50的透明度降低。
图4是根据本说明书一些实施例所示的光源穿过光散射机构和未穿过光散射机构的单个像素内光强的高斯分布曲线图。其中,图中虚线表示一些实施例所示的光源未穿过光散射机构的单个像素内光强的高斯分布曲线,图中实线表示一些实施例所示的光源穿过光散射机构的单个像素内光强的高斯分布曲线。
在一些实施例中,光源的发出的光穿过光散射机构后在成型表面上单个像素内的光强I的最大值I max和最小值I min之间的比值为第一比值A1,光源的发出的光未穿过光散射机构在成型表面上单个像素内的光强I 0的最大值I 0 max和最小值I 0 min之间的比值为第二比值A2,至少一个像素的第一比值A1小于对应的第二比值A2,其中,“对应的”可以理解为,第一比值A1和第二比值A2是针对同一个像素进行比较的。也就是说,在使用光散射机构后,光源在成型表面上形成的光图像的单个像素的光强I的最大值I max和最小值I min之间的比值有所减小,从而使像素内不同位置之间的光强差值减小,以提高三维物体的表面平整度,以及提高三维物体的打印透明度或清晰度。需要说明的是,上述光强I的最大值I max和最小值I min均是针对一个像素的光而言。
在一些实施例中,光源发出的光穿过光散射机构后在成型表面上单个像素内的光强I的高斯分布曲线的半高宽(full width at half maximum,FWHM)为第一半高宽FWHM1,光源发出的光未穿过光散射机构在成型表面上单个像素内的光强的高斯分布曲线的半高宽为第二半高宽FWHM2,至少一个像素的第一半高宽FWHM1大于对应的第二半高宽FWHM2,其中,“对应的”可以理解为,第一半高宽FWHM1和第二半高宽FWHM2是针对同一个像素进行比较的。也就是说,在使用光散射机构后,光源发出的光在成型表面上形成的光斑的单个像素内的光强I随照射位置变化的曲线的半高宽(full width at half maximum,FWHM)FWHM1有所增加。其中,成型表面上的像素的光强的高斯分布曲线以像素的边界的任意点 为坐标原点O,经过坐标原点O和像素中心点的直线为横坐标D,光强为纵坐标I而形成的曲线,也就是单个像素内光强随位置变化的曲线。其中,成型表面上的像素包括但不限于圆形、矩形、三角形、椭圆形或其他不规则图形,像素中心点可以包括但不限于像素的几何对称中心、重心、像素的最长轴和最短轴的交点等。根据成型表面上的像素的光强的高斯分布曲线可以看出,半高宽FWHM可以是高斯分布曲线上光强峰值高度为一半时的横坐标的全宽。半高宽FWHM越大,曲线越平整,则不同位置之间的光强差值越小,三维物体的透明度越高。
在一些实施例中,建立坐标系,横坐标代表位置(如成型表面的位置),纵坐标代表光强。在一些实施例中,在成型表面上形成的单个像素的光强随位置变化呈现波形变化。光强较强的部分为波峰,光强较弱的部分为波谷。若波峰和波谷的差值越小,则光源越连续,三维物体的透明度会更高。在一些实施例中,可以通过控制光的散射使波谷的光强增大,从而减小波峰和波谷的差值。
在一些实施例中,光散射机构可以包括匀光设备。匀光设备用于调整光源的一个或多个像素内的光强分布。可以理解地,当匀光设备调整光源的多个像素内的光强分布,匀光设备是针对各个像素内的光强分布分别进行调节。在一些实施例中,匀光设备可以适用于各类光源,包括但不限于液晶显示光源或者数字光处理投影设备的光源。在一些实施例中,匀光设备设置在光源和成型表面之间的光传播路径中,匀光设备能够通过对光的散射使各个像素的边界区域的光强和像素的中间区域的光强的差值减小,从而模糊像素与像素之间的边界,增加三维物体的透明度和清晰度。
在一些实施例中,当像素的尺寸为Xμm时,对于单个像素,匀光设备的输出光束的尺寸可以在X~5×Xμm范围内。其中,像素的尺寸可以是单个像素的边长、直径等尺寸。在一些实施例中,输出光束可以用光强随位置变化的波形曲线来表征。在其他实施例中,输出光束可以在成型表面上以圆形或椭圆形等形状来表征。
在一些实施例中,匀光设备与成型表面之间的距离大于匀光设备与光源之间的距离。在一些实施例中,匀光设备与成型表面之间的距离等于匀光设备与光源之间的距离。在一些实施例中,匀光设备与成型表面之间的距离小于匀光设备与光源之间的距离,以提高匀光设备对输出光束散射的精度,从而提高三维物体的透明度。
在一些实施例中,匀光设备包括但不限于光源轮廓修改器、光源抖动器、匀光片、玻璃结构或光学元件等一种或多种的任意组合,本说明书对此不作限制。有关光源轮廓修改器、光源抖动器、匀光片、玻璃结构或光学元件的更多详细内容请参见下文相关描述。
在一些实施例中,匀光设备可以包括能够改变输出光束的分布并实现预定辐射图案的光学元件。在一些实施例中,当用于实现光固化的光源是阵列时,例如,数字光处理投影设备的光源(DLP)阵列或微型液晶显示光源(microLED)阵列,光学元件可以改变单个输出光束来散射通过的光,多个光学元件可以组成光散射器阵列。示例地,当在增材制造装置中使用microLED阵列时,可以使用光散射器阵列来产生散射光。光散射器阵列可以设置在与microLED阵列对应的位置,以使得每个光学元件对每个像素对应的光束进行光散射,即每个microLED阵列发出的光可以通过光散射器阵列中的相应的光学元件进行散射。
在一些实施例中,匀光设备可以包括光源轮廓修改器,光源轮廓修改器设置在光源的光路上,用于修改光源的一个或多个像素的轮廓。通过光源轮廓修改器能够模糊像素的边界,从而提高三维物体的透明度。
在一些实施例中,光源轮廓修改器可以应用于LCD光源,光源轮廓修改器可以修改LCD光源在成型表面上的单个像素内的光轮廓。在一些实施例中,光源轮廓修改器可以为增材制造的光学元件,可以通过增材制造装置逐层打印出透明的光源轮廓修改器。在一些实施例中,增材制造的精度可以达到微米级别(比如增材制造装置的精度可以达到50微米),通过增材制造可以打印出微米级别的轮廓修改器,将打印出的光源轮廓修改器对应LCD光源设置,可以在微米级别实现光的散射,从而实现单个像素内的轮廓修改。
在一些实施例中,当像素的尺寸为Xμm时,光源轮廓修改器的输出光束的尺寸可以在X~5×Xμm范围内。其中,像素的尺寸可以是单个像素的边长、直径等尺寸。在一些实施例中,输出光束可以用光强随位置变化的波形曲线来表征。在其他实施例中,输出光束可以在成型表面上以圆形或椭圆形等形状来表征。
在一些实施例中,光源为液晶显示光源。在一些实施例中,光源轮廓修改器可以应用于激光光源的立体光刻技术(stereolithography,using laser light source,SLA)。
在一些实施例中,匀光设备包括光源抖动器,光源抖动器可以通过抖动使成型表面上的像素个数增加,从而模糊像素的边界,使三维物体的透明度提高。
在一些实施例中,光源抖动器可以适用于光源为数字光处理投影设备的光源抖动。示例地,光源抖动器用于使得数字光处理投影设备的显示芯片抖动,从而使输出光束产生抖动,使输出光束在相邻像素之间按照顺时针或逆时针快速移动,从而使像素的边界模糊,提高三维物体的透明度。
在一些实施例中,匀光设备包括匀光片。在一些实施例中,匀光片通过其表面规则或不规则的微透镜来实现对光束的扩散和匀光整形。在一些实施例中,通过改变匀光片表面微 透镜的大小形貌,可以调节光源的一个或多个像素的形状轮廓、发散角度以及光强分布等。
在一些实施例中,匀光设备包括玻璃结构,玻璃结构包括磨砂玻璃、喷砂玻璃或蚀刻玻璃。在一些实施例中,玻璃结构可以设置在储存容器的底部的内表面,其能够与光固化树脂直接接触。在一些实施例中,玻璃结构可以设置在储存容器的底部的外表面。在一些实施例中,玻璃结构可以与储存容器的底部为一体结构,即储存容器的底部为玻璃材质,经过磨砂、喷砂或蚀刻工艺而制成散射层。
在一些实施例中,当像素的尺寸为Xμm时,玻璃结构的表面粗糙度Ra为:X~5×Xμm。其中,像素的尺寸可以是单个像素的边长、直径等尺寸。表面粗糙度Ra表征了玻璃结构的表面具有的微小峰谷的微观不平度。通过控制表面粗糙度可以控制玻璃结构对光的散射程度。表面粗糙度Ra为X~5×Xμm范围内的玻璃结构可以使像素的边界模糊,提高三维物体的透明度。
在一些实施例中,光散射机构包括透明的散射层,散射层可以是能够使穿过的光束产生散射的薄膜结构。在一些实施例中,该散射层设于光源与成型表面之间的光传播路径中,使光源发出的光透过散射层产生散射后辐射到成型表面上。在一些实施例中,散射层是聚合物薄膜。在一些实施例中,散射层设于成型表面上,光源的输出光束透过散射层散射到成型表面上。在一些实施例中,散射层构成成型表面,光固化树脂在散射层远离光源的一侧固化成型。通过设置散射层可以使成型表面的像素的边界模糊,从而提高打印的三维物体的透明度和清晰度。
在一些实施例中,当像素的尺寸为Xμm时,透过散射层的光束的尺寸可以在X~5×Xμm范围内。其中,像素的尺寸可以是单个像素的边长、直径等尺寸。
在一些实施例中,散射层为储存容器的至少一部分底面,即散射层与储存容器的底面一体成型。示例地,储存容器的整个底面都可以是散射层,或者,储存容器的底面的部分区域是散射层。
在一些实施例中,散射层可以是独立的结构。在一些实施例中,散射层设置在储存容器的底部的内表面,或者,散射层设置在储存容器的底部的外表面。在一些实施例中,散射层与储存容器间隔设置。
在一些实施例中,散射层的折射率可以与周围物体(例如空气、储存容器的底部等)的折射率不同。当输出光束进入散射层后,会在散射层发生折射,从而使光束沿不同方向散射开。在一些实施例中,扩散层可以包括纸层,在散射层和光固化树脂之间有一个防粘连涂层,防粘连涂层可以防止光固化树脂进入纸层,并有助于将固化层与纸层分离。
在一些实施例中,散射层的透明度为40%~100%,例如,散射层的透明度可以是50%、60%、70%、80%、90%、95%等。
在一些实施例中,散射层由柔性和/或弹性材料制成。在一些实施例中,散射层可以由天然和/或合成橡胶、聚四氟乙烯、聚氨酯、聚丁二烯、聚异丁烯、氯丁橡胶、硅树脂、聚全氟乙烯丙烯、乙烯-氯三氟乙烯共聚物、聚偏二氟乙烯、乙烯-四氟乙烯共聚物、四氟乙烯-偏二氟乙烯共聚物、氯三氟乙烯-偏二氟乙烯共聚物、邻苯基苯酚、聚对苯二甲酸、聚异戊二烯、聚丙烯酸橡胶、氟硅橡胶、氟橡胶、甲基氯硅烷、乙基氯硅烷、苯基氯硅烷、聚三氟氯乙烯、聚四氟乙烯、聚偏二氟乙烯、聚(氟乙烯)、聚三氯乙烯、全氟烷基聚醚、六氟丙烯、氟化聚(氯乙烯)、聚(4-甲基-1-戊烯)、聚二甲基硅氧烷(PDMS)以及上述材料的衍生物中的一种或多种制成。这些材料既能满足散射层对透明度的需求,又具有一定的弹性变形能力,使其能够更容易与周围结构(如储存容器的底面)贴合。
在一些实施例中,散射层的弹性模量为1~50MPa。弹性模量能够反应散射层的变形能力,弹性模量过小,则散射层越容易受外力而变形,较难维持其形状,从而影响散射率;弹性模量过大,则散射层的越难受外力变形,其过于刚硬,较难与周围结构完全贴合,从而影响散射率。因此,弹性模量为1~50MPa的散射层既能满足散射层的强度,又能使其与周围结构紧密贴合,提高对光束散射的精度。
在一些实施例中,散射层的拉伸强度5~50MPa。拉伸强度表征材料最大均匀塑性变形的抗力。拉伸强度为5~50MPa的散射层既具有一定的抗拉能力,又具有一定的变形能力。
在一些实施例中,散射层的断裂伸长率为50%~800%。断裂伸长率是指散射层在拉断时的位移值与原长的比值。断裂伸长率为50%~800%的散射层在受外力时不容易断裂。
在一些实施例中,散射层包括基体和设于所述基体上的微结构。在一些实施例中,基体可以为层状结构。微结构与散射层是两种不同的材料,在微结构和基体之间形成界面,该界面能够增强光的散射效果,从而提高打印的三维物体的透明度。在一些实施例中,微结构可以设置在基体的内部。在一些实施例中,微结构也可以设置在基体的外表面。例如,设置在基体外表面的微结构可以与空气接触;又例如,设置在基体外表面的微结构可以与光固化树脂接触;再例如,设置在基体外表面的微结构可以与储存容器的底面接触。在一些实施例中,微结构的特征尺寸可以在10nm-20μm的范围内。其中,特征尺寸可以是指微结构的各向尺寸中的最小尺寸。
在一些实施例中,微结构包括但不限于表面纹理、微孔、纤维结构和纳米颗粒中的至少一种。有关表面纹理、微孔、纤维结构和纳米颗粒的更多详细描述可以参见下文描述。
在一些实施例中,微结构包括表面纹理。在一些实施例中,表面纹理包括阵列设置的表面凸起或凹陷。例如,表面纹理可以是位于散射层表面的多个凸起,凸起的形状包括但不限于半球形、圆柱形、圆锥形、金字塔形等。再例如,表面纹理可以是位于散射层表面的凹陷,凹陷的形状包括但不限于半球形、圆柱形、圆锥形、金字塔形等。
在一些实施例中,表面纹理包括但不限于波浪形、锯齿形或“Z”字形等连续的纹理。
在一些实施例中,表面纹理的特征尺寸可以在10nm-20μm的范围内。其中,特征尺寸可以是指表面纹理的各向尺寸中的最小尺寸。
在一些实施例中,微孔包括形成在基体内部的封闭孔。在一些实施例中,微孔包括形成在基体表面的半开孔,这些半开孔也可以视为上述实施例中的凹陷。在一些实施例中,微孔可以设于基体内部、基体的侧表面、基体的上表面、基体的下表面中的任意一个或多个位置。在一些实施例中,基体包括内部和外表面的多个孔,这些孔可以形成固-气和/或固-液界面,从而增强基体的散射。在一些实施例中,微孔的直径范围为2nm~20μm。
在一些实施例中,基体是均质的,其中微孔的孔径在基体的横截面是相同的。在一些实施例中,基体是异质的。在一些实施例中,用于制造多孔的散射层的方法包括但不限于:浸泡沉淀(沉淀的示例可包括但不限于热沉淀、通过溶剂蒸发沉淀、气相沉淀等)、烧结工艺、拉伸技术、跟踪蚀刻、模板浸出、滑动铸造、溶胶-凝胶工艺等。
在一些实施例中,基体包括基材层,纤维结构沉积在基材层内部,纤维结构在基材层内形成固-固界面以增加散射层的散射效果。在一些实施例中,纤维结构的数量是多个。
在一些实施例中,基材层的折射率和纤维结构的折射率之间的差值小于纤维结构的折射率的20%。在一些实施例中,基材层的折射率和纤维结构的折射率之间的差值小于基材层的折射率的20%。其中折射率可以定义为光速与光在被测材料(基材层或纤维结构)中的速度之比。
在一些实施例中,纤维结构的总体积与散射层的体积之比在5%~90%范围内。在一些实施例中,纤维结构的总重量与散射层的重量之比在5%~90%范围内。可以理解地,纤维结构的数量可以是多个,纤维结构的总体积可以理解为所有纤维结构的体积的总和,纤维结构的总重量可以理解为所有纤维结构的重量的总和。散热层的体积包括基材层的体积和纤维结构的体积,散热层的重量包括基材层的重量和纤维结构的重量。通过控制纤维结构的总体积和总重量在散射层中的占比,可以控制纤维结构添加到散射层中的量,避免纤维结构过少或过多而起不到增加散射效果。
在一些实施例中,任意两个相邻的纤维结构之间的最大距离的平均值为0.05μm~50μm。 在一些实施例中,纤维结构呈细丝状,其可以在散射层内以任意弯曲的姿态延伸。在一些实施例中,任意两个相邻的纤维结构之间具有一个最大间距,将所有相邻的纤维结构之间的最大间距取平均值,该平均值在0.05μm~50μm范围内,从而控制纤维结构在基材层内的分散均匀程度,使纤维结构能够较为均匀的分散在基材层内。
在一些实施例中,纤维结构的平均长度为0.1~30mm。纤维结构过短较难起到增加光散射效果,纤维结构过长则容易卷曲集聚在基材层内,因此,平均长度为0.1~30mm的纤维结构能较为伸展的沉积在基材层内。
在一些实施例中,沉积到匀光层中的纤维材料的一些示例可以包括但不限于Kevlar TM、碳纤维、聚苯乙烯、聚乙烯、超高分子量聚乙烯、聚碳酸酯、聚苯醚、聚(甲基丙烯酸甲酯)、聚对二甲苯(聚对二甲苯可包括聚对二甲苯C、聚对二甲苯N、聚对二甲苯D、聚对二甲苯HT和聚对二甲苯AF)、尼龙、聚己内酯、聚酰胺、聚丙烯、全氟烷氧基、聚甲基戊烯和上述材料的衍生聚合物。
在一些实施例中,散射层内的微结构可以包括纳米颗粒。纳米颗粒在散射层内可以形成固-固界面以增加散射效果。在一些实施例中,纳米颗粒的数量是多个。
在一些实施例中,纳米颗粒的总体积与散射层的体积之比在1%~30%范围内。在一些实施例中,纳米颗粒的总重量与散射层的重量之比在1%~30%范围内。可以理解地,纳米颗粒的数量可以是多个,纳米颗粒的总体积可以理解为所有纳米颗粒的体积的总和,纳米颗粒的总重量可以理解为所有纳米颗粒的重量的总和。散热层的体积包括基材层的体积和纳米颗粒的体积,散热层的重量包括基材层的重量和纳米颗粒的重量。通过控制纳米颗粒的总体积和总重量在散射层中的占比,可以控制纳米颗粒添加到散射层中的量,避免纳米颗粒过少或过多而起不到增加散射效果。
在一些实施例中,任意两个相邻的纳米颗粒之间的距离的平均值为0.05μm~50μm。在一些实施例中,统计任意两个相邻的纳米颗粒之间的距离,将所有相邻的纳米颗粒之间的距离取平均值,该平均值在0.05μm~50μm范围内,从而控制纳米颗粒在基材层内的分散均匀程度,使纳米颗粒能够较为均匀的分散在散射层内。
在一些实施例中,纳米颗粒的平均粒径为1~100mm。纳米颗粒过小或过大都会导致降低光散射效果,而平均粒径为1~100mm的纳米颗粒能较好的起到增加光散射效果。
在一些实施例中,散射层为具有多层的复合层。在一些实施例中,当散射层设置在储存容器的底面时,散射层能够与光固化树脂接触的表层可以具有防粘特性,以便于光固化树脂固化后能够从散射层分离。例如,散射层能够与光固化树脂接触的表层可以由弹性材料和/ 或防粘材料制成。在一些实施例中,当散射层设置在储存容器的底面时,散射层不与光固化树脂接触的其他层可以由能够增加散射效果的材料制成,或者,其它层可以通过添加微结构来增加散射效果。
在一些实施例中,复合层包括聚二甲基硅氧烷(PDMS)层和纸质层。在一些实施例中,聚二甲基硅氧烷(PDMS)层具有一定的弹性和防粘性,因此,聚二甲基硅氧烷(PDMS)层可以设置为散射层中能够与光固化树脂接触的表层。在一些实施例中,纸质层可以由具有透光性的透明或半透明的纸质材料制成,示例地,在纸浆中添加丙烯酸树脂可以制成透光的纸质层。在一些实施例中,该纸质层的透明度为40%~100%。在一些实施例中,纸质层可以设置为不与光固化树脂接触的其他层,通过纸质层可以起到较好的散射效果。
在一些实施例中,复合层包括聚二甲基硅氧烷(PDMS)层和具有微结构的聚合物膜。在一些实施例中,在一些实施例中,聚二甲基硅氧烷(PDMS)层具有一定的弹性和防粘性,因此,聚二甲基硅氧烷(PDMS)层可以设置为散射层中能够与光固化树脂接触的表层。在一些实施例中,具有微结构的聚合物膜的材料可以参见上述散射层的材料描述,本说明书实施例在此不再赘述。在一些实施例中,聚合物膜内的微结构包括但不限于表面纹理、微孔、纤维结构和纳米颗粒中的至少一种。有关表面纹理、微孔、纤维结构和纳米颗粒的更多详细描述可以参见上文相关描述。
在一些实施例中,复合层为离型膜,离型膜包括塑性层和弹性层。其中塑性层上表面作为光固化成型表面,材料与光固化树脂不相溶。在一些实施例中,离型膜的塑性层材料与光固化树脂材料互相不浸润,因此当光固化树脂材料在塑性层上表面发生固化反应形成固化层后,固化层与塑性层之间的粘合力较小,有利于固化层与光固化成型表面的分离。本发明所披露的“不浸润”的定义为光固化树脂材料在塑性层上表面的接触角不小于60°。在一些实施例中,光固化树脂材料在塑性层上表面的接触角不小于70°;在一些实施例中,光固化树脂材料在塑性层上表面的接触角不小于80°;在一些实施例中,光固化树脂材料在塑性层上表面的接触角不小于90°。
在一些实施例中,塑性层的材料包括但不限于:聚四氟乙烯(PTFE)、聚乙烯(PE)、聚偏二氟乙烯(PVDF)、氟化乙烯丙烯(FEP)、全氟烷氧基树脂(PFA)、聚三氟氯乙烯(PCTFE)、乙烯-四氟乙烯共聚物(ETFE)、聚氟乙烯(PVF)、聚对苯二甲酸乙二醇酯(PET)、聚丁二烯缩甲醛(PBT)、热塑性聚氨酯(TPU)、聚酰胺或者尼龙(PA)、聚酰亚胺(PI)、聚丙烯(PP)、聚氯乙烯(PVC)、聚甲基丙烯酸甲酯(PMMA)、聚苯乙烯(PS)、聚丁烯(PB)、聚甲醛(POM)、聚碳酸酯(PC)、聚砜(PSU)、聚苯醚(PPO)、聚乙烯醇 (PVA)、聚丙烯腈苯乙烯(AS)、聚丙烯腈丁二烯苯乙烯(ABS)、氟树脂(FR)的一种或者多种的组合,或者任选它们中的两种或两种以上的聚合物或者其单体聚合形成的共混聚合物或者嵌段聚合物或者互穿网络聚合物。
在一些实施例中,离型膜的弹性层包括韧性支架及填充于韧性支架中的弹性层基体。在一些实施例中,弹性层基体填充于韧性支架的孔隙中。弹性层的主要作用为提供离型过程中的弹性回复力,弹性层韧性支架的作用为提高弹性层的机械强度,使其能够更长时间的使用,而弹性层基体主要提供离型过程中的弹性回复力。
在一些实施例中,弹性层韧性支架由高分子纤维材料组成,可以有多种结构。在一些实施例中,弹性层韧性支架为蜘蛛网状的微孔结构,其中微孔由高分子微纤维互相搭接而形成。在另一些实施例中,弹性层韧性支架由短高分子纤维材料有序排列组成,其中短高分子纤维互相平行从而不搭接。在另一些实施例中,弹性层韧性支架由短高分子纤维材料无序排列组成。在一些实施例中,本发明披露的复合型离型膜的弹性层韧性支架的高分子纤维材料直径在50nm~10μm范围内,或者在100nm~5μm范围内,或者在200nm~2μm范围内。
在一些实施例中,离型膜的弹性层韧性支架为多孔聚四氟乙烯(PTFE)膜,其表面形态为具有蜘蛛网状的微孔结构,聚四氟乙烯微纤维之间形成孔隙,该微孔结构由众多微纤维纠缠相连形成,该孔隙的直径可以在50nm~10μm范围之内。在一些实施例中,PTFE膜纵向横截面是一种网络结构,在微孔的三维上有网状连通、孔镶套、孔道弯曲等非常复杂的变化,可能由多个微孔组成一个通道,也有可能一个微孔与多个通道相连。
在一些实施例中,弹性层韧性支架在弹性层基体中,与弹性层基体形成固-固界面,可以对穿过弹性层基体的光产生散射作用。弹性层韧性支架材料的示例包括但不限于聚乙烯(PE)、聚偏二氟乙烯(PVDF)、氟化乙烯丙烯(FEP)、全氟烷氧基树脂(PFA)、聚三氟氯乙烯(PCTFE)、乙烯-四氟乙烯共聚物(ETFE)、聚氟乙烯(PVF)、聚对苯二甲酸乙二醇酯(PET)、聚丁二烯缩甲醛(PBT)、热塑性聚氨酯(TPU)、聚酰胺或者尼龙(PA)、聚酰亚胺(PI)、聚丙烯(PP)、聚氯乙烯(PVC)、聚甲基丙烯酸甲酯(PMMA)、聚苯乙烯(PS)、聚丁烯(PB)、聚甲醛(POM)、聚碳酸酯(PC)、聚砜(PSU)、聚苯醚(PPO)、聚乙烯醇(PVA)、聚丙烯腈苯乙烯(AS)、聚丙烯腈丁二烯苯乙烯(ABS)、氟树脂(FR)的一种或者多种的组合,或者任选它们中的两种或两种以上的聚合物或者其单体聚合形成的共混聚合物或者嵌段聚合物或者互穿网络聚合物。在一些实施例中,离型膜的弹性层韧性支架材料可以选择和塑性层的材料相同。
在一些实施例中,离型膜的弹性层基体材料可以为任何适合的弹性体。弹性层基体材 料的示例可以包括但不限于聚酯弹性体、丙烯基弹性体、苯乙烯类弹性体、烯烃类弹性体、双烯类弹性体、氯乙烯类弹性体、脂类弹性体、酰胺类弹性体、硅氧烷聚合物、环氧聚合物、有机硅类弹性体、有机氟类弹性体等材料。
在一些实施例中,弹性层基体材料可以使用但不限于以下材料:硅胶、橡胶、硅橡胶、热塑性硫化橡胶(TPV)、丁腈橡胶(NBR)、丁基橡胶、热塑性聚氨酯(TPU)、聚酯橡胶(TPEE)、聚酰胺类热塑性弹性体(TPAE)、T-NR-反式聚异戊二烯橡胶(TPI)、间同1,2-聚丁二烯(TPB)、有机氟类热塑性弹性体(TPF)、热塑性酚醛树脂(Novalc树脂)、热塑性氯化聚乙烯(TCPE)、甲基氯硅烷、乙基氯硅烷、苯基氯硅烷、热塑性聚氯乙烯弹性体(PVC)、聚二甲基硅氧烷(PDMS)、聚乙烯、聚苯乙烯、聚丁二烯、聚氨酯、聚异戊二烯、聚烯烃弹性体(POE)、三元乙丙橡胶(EPDM)、苯乙烯类热塑性橡胶(SEBS,SBS)、聚醚嵌段酰胺(PEBA)、乙烯-醋酸乙烯酯共聚物(EVA,EVM)、线性低密度聚乙烯(LLDPE)、聚丙烯酸橡胶、氟硅橡胶和含氟弹性体的一种或者多种的组合,或者任选它们中的两种或两种以上的聚合物或者其单体聚合形成的共混聚合物或者嵌段聚合物或者互穿网络聚合物。
在一些实施例中,散射层可以是包括微结构的多层复合层。在一些实施例中,微结构可以沉积于多层复合层的其中一层或多层。其中,微结构可以参见上文对微结构的相关描述。
图5A是根据本说明书一些实施例所示的增材制造装置打印的示例性实验牙齿矫正器。图5B是根据本说明书一些实施例所示的增材制造装置打印的示例性对照牙齿矫正器。
本说明书实施例提供一种选用同一台打印机打印牙齿矫正器的示例性打印对照结果。其中,图5A中示出的是使用本说明书任意实施例中的光扩散机构而打印的实验牙齿矫正器,图5B中示出的是使用从杜邦公司的普通FEP薄膜作为分离膜(该分离膜不具备散射光的功能)而打印的对照牙齿矫正器。两者其他实验条件、实验设备、实验参数均相同,其中实验参数如表1所示:
表1根据本说明书一些实施例所示的增材制造装置的打印实例的参数表
打印层厚(mm) 0.1
光强(mw/cm2) 2.0
曝光时长(ms) 2400
打印温度(℃) 40
如图所示,图5A中的实验牙齿矫正器明显比图5B中的对照牙齿矫正器透明度更高,且更清晰。因此,本说明书任意实施例中的光扩散机构具有提高三维物体打印的透明度的技 术效果。
图6是根据本说明书一些实施例所示的增材制造方法的示例性流程图。
本说明书的一些实施例还提供一种增材制造方法,该方法基于任一实施例的增材制造装置进行增材制造,该方法包括流程600:
步骤610:在成型设备的储存容器内放置光固化树脂。
在一些实施例中,成型设备的储存容器内放置光固化树脂,该光固化树脂呈液态。
在一些实施例中,在光源和成型设备之间放置光散射机构,光散射机构能够散射通过光散射机构的光。
步骤620:将光源发出的光通过光散射机构散射后照射到光固化树脂上,使得光固化树脂固化。
在一些实施例中,将光源发出的光通过光散射机构散射后照射到光固化树脂上,使得光固化树脂固化,固化后的固化层可以附着在成型平台上。
步骤630:控制成型平台朝向远离光源的方向移动,以使得固化后的光固化树脂远离成型表面。通过光源再次照射光固化树脂,使光固化树脂固化为附着在先前形成的固化层上的新的固化层。
在一些实施例中,控制成型设备朝向远离光源的方向移动,以使得固化后的光固化树脂远离成型表面,通过控制固化层远离成型表面,以便于打印新的固化层。在一些实施例中,成型设备包括升降机构和成型平台,固化层可以附着在成型平台上,通过控制升降机构带动成型平台以预设的间距朝向远离光源的方向移动,使先前固化层从成型表面分离,此时液态的光固化树脂会流动到先前固化层和成型表面之间。然后,再次使光源发出的光通过光散射机构散射后照射到光固化树脂上,使光固化树脂固化,以在先前固化层上形成新的固化层。通过重复此步骤,可以逐层打印出三维物体。在一些实施例中,新的固化层与先前形成的固化层形成为一体成型结构。
本申请实施例可能带来的有益效果包括但不限于:
(1)通过上述增材制造装置的结构,光源在成型表面上形成的光图像由多个像素组成,单个像素对应的光图像内的光强随位置的变化而变化,像素的边界区域的光强较弱,像素的中心区域的光强较强。而通过设置光散射机构使光源发出的光产生散射后,由于光的角度的改变,像素的边缘区域的光强得到增强,像素的中间区域的光强减弱,像素与像素之间的边界被模糊,从而减小打印的三维物体的表面的凸起和凹陷,提高打印的三维物体的透明度;
(2)在使用光散射机构后,可以调整像素内的不同位置的光强,使光源在成型表面上形成的单个像素的光强I的最大值I max和最小值I min之间的比值有所减小,从而使不同位置之间的光强差值减小,以提高三维物体的表面平整度,以及提高三维物体的打印透明度或清晰度;
(3)在使用光散射机构后,光源在成型表面上形成的单个像素的光强I随照射位置变化的曲线的半高宽(full width at half maximum,FWHM)FWHM1有所增加,半高宽越大,曲线越平整,则不同位置之间的光强差值越小,三维物体的透明度越高;
(4)通过匀光设备能够使像素的边界的光强和像素中间的光强的差值减小,从而模糊三维物体表面的像素的边界,增加三维物体的透明度和清晰度;
(5)通过光源轮廓修改器能够模糊像素的边界,从而提高三维物体的透明度;
(6)通过光源抖动器用于使得数字光处理投影设备的显示芯片抖动,从而使输出光束产生抖动,使输出光束在相邻像素之间按照顺时针或逆时针快速移动,从而使像素的边界模糊,提高三维物体的透明度;
(7)光源的输出光束透过散射层散射到成型表面上,使成型表面的像素的边界模糊,从而提高打印的三维物体的透明度和清晰度。
需要说明的是,不同实施例可能产生的有益效果不同,在不同的实施例里,可能产生的有益效果可以是以上任意一种或几种的组合,也可以是其他任何可能获得的有益效果。
上文已对基本概念做了描述,显然,对于本领域技术人员来说,上述详细披露仅仅作为示例,而并不构成对本说明书的限定。虽然此处并没有明确说明,本领域技术人员可能会对本说明书进行各种修改、改进和修正。该类修改、改进和修正在本说明书中被建议,所以该类修改、改进、修正仍属于本说明书示范实施例的精神和范围。
一些实施例中使用了描述成分、属性数量的数字,应当理解的是,此类用于实施例描述的数字,在一些示例中使用了修饰词“大约”、“近似”或“大体上”来修饰。除非另外说明,“大约”、“近似”或“大体上”表明所述数字允许有±20%的变化。相应地,在一些实施例中,说明书和权利要求中使用的数值参数均为近似值,该近似值根据个别实施例所需特点可以发生改变。在一些实施例中,数值参数应考虑规定的有效数位并采用一般位数保留的方法。尽管本说明书一些实施例中用于确认其范围广度的数值域和参数为近似值,在具体实施例中,此类数值的设定在可行范围内尽可能精确。
最后,应当理解的是,本说明书中所述实施例仅用以说明本说明书实施例的原则。其他的变形也可能属于本说明书的范围。因此,作为示例而非限制,本说明书实施例的替代配 置可视为与本说明书的教导一致。相应地,本说明书的实施例不仅限于本说明书明确介绍和描述的实施例。

Claims (45)

  1. 一种增材制造装置,其特征在于,包括:
    光源,提供光照以固化光固化树脂;
    成型设备,其包括储存容器,所述储存容器用于储存所述光固化树脂,所述成型设备具有成型表面,所述光固化树脂在成型表面上固化;
    光散射机构,设于所述光源和所述成型表面之间,所述光散射机构能够使光源的光在传播方向上发生偏离,从而使所述成型表面上像素内的光强变化。
  2. 如权利要求1所述的增材制造装置,其特征在于,所述光源发出的光穿过所述光散射机构后在所述成型表面上固化所述光固化树脂而形成的第一打印件的第一透明度为T1,所述光源发出的光未穿过所述光散射机构后在所述成型表面上固化所述光固化树脂而形成的第二打印件的第二透明度为T2,所述第一透明度T1大于所述第二透明度T2。
  3. 如权利要求1所述的增材制造装置,其特征在于,所述成型设备还包括成型平台,所述成型平台用于向远离所述光源的方向运动,以使得固化后的所述光固化树脂远离所述成型表面。
  4. 如权利要求1所述的增材制造装置,其特征在于,所述光源发出的光穿过所述光散射机构后在所述成型表面上单个像素内的光强的最大值和最小值之间的比值为第一比值A1,所述光源发出的光未穿过所述光散射机构在所述成型表面上单个像素内的光强的最大值和最小值之间的比值为第二比值A2,至少一个像素的所述第一比值A1小于对应的所述第二比值A2。
  5. 如权利要求1所述的增材制造装置,其特征在于,所述光源发出的光穿过所述光散射机构后在所述成型表面上单个像素内的光强的高斯分布曲线的半高宽为第一半高宽FWHM1,所述光源发出的光未穿过所述光散射机构在所述成型表面上单个像素内的光强的高斯分布曲线的半高宽为第二半高宽FWHM2,至少一个像素的所述第一半高宽FWHM1大于对应的所述第二半高宽FWHM2。
  6. 如权利要求1-5中任一项所述的增材制造装置,其特征在于,所述光源为液晶显示光源或者数字光处理投影设备的光源。
  7. 如权利要求1所述的增材制造装置,其特征在于,所述光散射机构包括匀光设备,所述匀光设备与所述成型表面之间的距离小于所述匀光设备与所述光源之间的距离,所述匀光设备用于调整所述光源的一个或多个像素内的光强分布。
  8. 如权利要求7所述的增材制造装置,其特征在于,所述匀光设备包括光源轮廓修改器,所述光源轮廓修改器设置在所述光源的光路上,所述光源轮廓修改器用于修改所述光源的一个或多个像素的轮廓;所述光源为液晶显示光源。
  9. 如权利要求7所述的增材制造装置,其特征在于,所述匀光设备包括匀光片。
  10. 如权利要求7所述的增材制造装置,其特征在于,所述匀光设备包括玻璃结构,所述玻璃结构包括磨砂玻璃、喷砂玻璃或蚀刻玻璃。
  11. 如权利要求10所述的增材制造装置,其特征在于,当所述像素的尺寸为Xμm时,所述玻璃结构的表面粗糙度Ra为:X~5×Xμm。
  12. 如权利要求7所述的增材制造装置,其特征在于,所述匀光设备包括光源抖动器;所述光源为数字光处理投影设备;所述光源抖动器用于使得所述数字光处理投影设备的显示芯片抖动。
  13. 如权利要求1所述的增材制造装置,其特征在于,所述光散射机构包括透明的散射层,所述散射层设于所述成型表面和所述光源之间,所述散射层能够使穿过的光束产生散射。
  14. 如权利要求13所述的增材制造装置,其特征在于,所述散射层构成所述成型表面。
  15. 如权利要求13所述的增材制造装置,其特征在于,所述散射层包括基体和设于所述基体上的微结构,所述微结构包括表面纹理、微孔、纤维结构和纳米颗粒中的至少一种。
  16. 如权利要求15所述的增材制造装置,其特征在于,所述表面纹理包括阵列设置的表面凸起或凹陷;或者,所述表面纹理包括波浪形或锯齿形的纹理。
  17. 如权利要求15所述的增材制造装置,其特征在于,所述表面纹理的特征尺寸为 10nm~20μm。
  18. 如权利要求15所述的增材制造装置,其特征在于,所述微孔包括形成在所述散射层内部的封闭孔;或者,所述微孔包括形成在所述散射层表面的半开孔。
  19. 如权利要求15所述的增材制造装置,其特征在于,所述微孔的直径范围为2nm~20μm。
  20. 如权利要求15所述的增材制造装置,其特征在于,所述基体包括基材层,所述纤维结构沉积在所述基材层内部,所述基材层的折射率和所述纤维结构的折射率之间的差值小于所述纤维结构的折射率的20%。
  21. 如权利要求20所述的增材制造装置,其特征在于,所述纤维结构的总体积与所述散射层的体积之比在5%~90%范围内。
  22. 如权利要求20所述的增材制造装置,其特征在于,所述纤维结构的总重量与所述散射层的重量之比在5%~90%范围内。
  23. 如权利要求20所述的增材制造装置,其特征在于,任意两个相邻的所述纤维结构之间的最大距离的平均值为0.05μm~50μm。
  24. 如权利要求20所述的增材制造装置,其特征在于,所述纤维结构的平均长度为0.1~30mm。
  25. 如权利要求15所述的增材制造装置,其特征在于,所述纳米颗粒的总体积与所述散射层的总体积之比在1%~30%范围内。
  26. 如权利要求15所述的增材制造装置,其特征在于,所述纳米颗粒的总重量与所述散射层的总重量之比在1%~30%范围内。
  27. 如权利要求15所述的增材制造装置,其特征在于,任意两个相邻的所述纳米颗粒之间的距离的平均值为0.05μm~50μm。
  28. 如权利要求15所述的增材制造装置,其特征在于,所述纳米颗粒的平均粒径为1~100mm。
  29. 如权利要求15所述的增材制造装置,其特征在于,所述散射层为具有多层的复合层。
  30. 如权利要求29所述的增材制造装置,其特征在于,所述复合层包括聚二甲基硅氧烷(PDMS)层和纸质层。
  31. 如权利要求29所述的增材制造装置,其特征在于,所述复合层包括聚二甲基硅氧烷(PDMS)层和具有微结构的聚合物膜。
  32. 如权利要求29所述的增材制造装置,其特征在于,所述复合层为离型膜,所述离型膜包括塑性层和弹性层。
  33. 如权利要求32所述的增材制造装置,其特征在于,所述塑性层包括聚四氟乙烯(PTFE)、聚乙烯(PE)、聚偏二氟乙烯(PVDF)、氟化乙烯丙烯(FEP)、全氟烷氧基树脂(PFA)、聚三氟氯乙烯(PCTFE)、乙烯-四氟乙烯共聚物(ETFE)、聚氟乙烯(PVF)、聚对苯二甲酸乙二醇酯(PET)、聚丁二烯缩甲醛(PBT)、热塑性聚氨酯(TPU)、聚酰胺或者尼龙(PA)、聚酰亚胺(PI)、聚丙烯(PP)、聚氯乙烯(PVC)、聚甲基丙烯酸甲酯(PMMA)、聚苯乙烯(PS)、聚丁烯(PB)、聚甲醛(POM)、聚碳酸酯(PC)、聚砜(PSU)、聚苯醚(PPO)、聚乙烯醇(PVA)、聚丙烯腈苯乙烯(AS)、聚丙烯腈丁二烯苯乙烯(ABS)、氟树脂(FR)的一种或者多种的组合,或者任选它们中的两种或两种以上的聚合物或者其单体聚合形成的共混聚合物或者嵌段聚合物或者互穿网络聚合物。
  34. 如权利要求32所述的增材制造装置,其特征在于,所述弹性层包括所述弹性层包括弹性层基体与弹性层韧性支架,所述弹性层基体填充于所述弹性层韧性支架的孔隙中。
  35. 如权利要求34所述的增材制造装置,其特征在于,所述弹性层韧性支架材料的包括但不限于聚乙烯(PE)、聚偏二氟乙烯(PVDF)、氟化乙烯丙烯(FEP)、全氟烷氧基树脂(PFA)、聚三氟氯乙烯(PCTFE)、乙烯-四氟乙烯共聚物(ETFE)、聚氟乙烯(PVF)、聚对苯二甲酸乙二醇酯(PET)、聚丁二烯缩甲醛(PBT)、热塑性聚氨酯(TPU)、聚酰胺或者尼龙(PA)、 聚酰亚胺(PI)、聚丙烯(PP)、聚氯乙烯(PVC)、聚甲基丙烯酸甲酯(PMMA)、聚苯乙烯(PS)、聚丁烯(PB)、聚甲醛(POM)、聚碳酸酯(PC)、聚砜(PSU)、聚苯醚(PPO)、聚乙烯醇(PVA)、聚丙烯腈苯乙烯(AS)、聚丙烯腈丁二烯苯乙烯(ABS)、氟树脂(FR)的一种或者多种的组合,或者任选它们中的两种或两种以上的聚合物或者其单体聚合形成的共混聚合物或者嵌段聚合物或者互穿网络聚合物。
  36. 如权利要求34所述的增材制造装置,其特征在于,所述弹性层基体的材料包括聚酯弹性体、丙烯基弹性体、苯乙烯类弹性体、烯烃类弹性体、双烯类弹性体、氯乙烯类弹性体、脂类弹性体、酰胺类弹性体、硅氧烷聚合物、环氧聚合物、有机硅类弹性体、有机氟类弹性体、硅胶、橡胶、硅橡胶、热塑性硫化橡胶(TPV)、丁腈橡胶(NBR)、丁基橡胶、热塑性聚氨酯(TPU)、聚酯橡胶(TPEE)、聚酰胺类热塑性弹性体(TPAE)、T-NR-反式聚异戊二烯橡胶(TPI)、间同1,2-聚丁二烯(TPB)、有机氟类热塑性弹性体(TPF)、热塑性酚醛树脂(Novalc树脂)、热塑性氯化聚乙烯(TCPE)、甲基氯硅烷、乙基氯硅烷、苯基氯硅烷、热塑性聚氯乙烯弹性体(PVC)、聚二甲基硅氧烷(PDMS)、聚乙烯、聚苯乙烯、聚丁二烯、聚氨酯、聚异戊二烯、聚烯烃弹性体(POE)、三元乙丙橡胶(EPDM)、苯乙烯类热塑性橡胶(SEBS,SBS)、聚醚嵌段酰胺(PEBA)、乙烯-醋酸乙烯酯共聚物(EVA,EVM)、线性低密度聚乙烯(LLDPE)、聚丙烯酸橡胶、氟硅橡胶和含氟弹性体的一种或者多种的组合,或者任选它们中的两种或两种以上的聚合物或者其单体聚合形成的共混聚合物或者嵌段聚合物或者互穿网络聚合物。
  37. 如权利要求15所述的增材制造装置,其特征在于,所述散射层为所述储存容器的至少一部分底面。
  38. 如权利要求15所述的增材制造装置,其特征在于,所述散射层由柔性和/或弹性材料制成。
  39. 如权利要求15所述的增材制造装置,其特征在于,所述散射层的透明度为40%~100%。
  40. 如权利要求15所述的增材制造装置,其特征在于,所述散射层由天然和/或合成橡胶、聚四氟乙烯、聚氨酯、聚丁二烯、聚异丁烯、氯丁橡胶、硅树脂、聚全氟乙烯丙烯、乙烯-氯三氟乙烯共聚物、聚偏二氟乙烯、乙烯-四氟乙烯共聚物、四氟乙烯-偏二氟乙烯共聚物、氯三氟乙烯-偏二氟乙烯共聚物、邻苯基苯酚、聚对苯二甲酸、聚异戊二烯、聚丙烯酸橡胶、 氟硅橡胶、氟橡胶、甲基氯硅烷、乙基氯硅烷、苯基氯硅烷、聚三氟氯乙烯、聚四氟乙烯、聚偏二氟乙烯、聚(氟乙烯)、聚三氯乙烯、全氟烷基聚醚、六氟丙烯、氟化聚(氯乙烯)、聚(4-甲基-1-戊烯)、聚二甲基硅氧烷(PDMS)以及上述材料的衍生物中的一种或多种制成。
  41. 如权利要求15所述的增材制造装置,其特征在于,所述散射层的弹性模量为1~50MPa。
  42. 如权利要求15所述的增材制造装置,其特征在于,所述散射层的拉伸强度5~50MPa。
  43. 如权利要求15所述的增材制造装置,其特征在于,所述散射层的断裂伸长率为50%~800%。
  44. 如权利要求1所述的增材制造装置,其特征在于,所述增材制造装置用于制造透明的牙齿矫正器。
  45. 一种增材制造方法,基于权利要求1-44中任一项的增材制造装置进行增材制造,其特征在于,包括:
    在成型设备的储存容器内放置光固化树脂;
    将光源发出的光通过光散射机构散射后照射到所述光固化树脂上,使得所述光固化树脂固化。
PCT/CN2022/097817 2021-06-09 2022-06-09 一种增材制造装置及方法 WO2022258006A1 (zh)

Priority Applications (12)

Application Number Priority Date Filing Date Title
CA3222032A CA3222032A1 (en) 2021-06-09 2022-06-09 Additive manufacturing devices and methods
DE212022000144.3U DE212022000144U1 (de) 2021-06-09 2022-06-09 Vorrichtung zur additiven Herstellung
AU2022291205A AU2022291205B2 (en) 2021-06-09 2022-06-09 Additive manufacturing devices and methods
CN202280007145.7A CN116457176A (zh) 2021-06-09 2022-06-09 一种增材制造装置及方法
IL309228A IL309228A (en) 2021-06-09 2022-06-09 Methods and devices for additive manufacturing
JP2023600128U JP3246104U (ja) 2021-06-09 2022-06-09 付加製造装置および方法
CR20230602A CR20230602A (es) 2021-06-09 2022-06-09 Dispositivos y procedimientos de fabricación aditiva
EP22819603.6A EP4299287A4 (en) 2021-06-09 2022-06-09 ADDITIVE MANUFACTURING APPARATUS AND METHOD
MX2023014797A MX2023014797A (es) 2021-06-09 2022-06-09 Dispositivos y métodos para la manufactura aditiva.
US18/190,059 US12130445B2 (en) 2023-03-24 Additive manufacturing devices and methods
US18/540,833 US20240123683A1 (en) 2021-06-09 2023-12-14 Additive manufacturing devices and methods
AU2024204916A AU2024204916A1 (en) 2021-06-09 2024-07-17 Additive manufacturing apparatus and method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202163208543P 2021-06-09 2021-06-09
US63/208,543 2021-06-09

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/190,059 Continuation US12130445B2 (en) 2021-06-09 2023-03-24 Additive manufacturing devices and methods

Publications (1)

Publication Number Publication Date
WO2022258006A1 true WO2022258006A1 (zh) 2022-12-15

Family

ID=84424767

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/097817 WO2022258006A1 (zh) 2021-06-09 2022-06-09 一种增材制造装置及方法

Country Status (10)

Country Link
EP (1) EP4299287A4 (zh)
JP (1) JP3246104U (zh)
CN (1) CN116457176A (zh)
AU (2) AU2022291205B2 (zh)
CA (1) CA3222032A1 (zh)
CR (1) CR20230602A (zh)
DE (1) DE212022000144U1 (zh)
IL (1) IL309228A (zh)
MX (1) MX2023014797A (zh)
WO (1) WO2022258006A1 (zh)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030214812A1 (en) * 2002-05-16 2003-11-20 Eastman Kodak Company Light diffuser with variable diffusion
JP2006323327A (ja) * 2005-05-16 2006-11-30 Korea Inst Of Machinery & Materials 光拡散シートとその製造方法及びその製造装置
WO2011027903A1 (ja) * 2009-09-04 2011-03-10 住友化学株式会社 光拡散フィルムおよびその製造方法、光拡散性偏光板、ならびに液晶表示装置
US20130295215A1 (en) * 2012-05-03 2013-11-07 Li-Han Wu Three-dimensional printing apparatus
US20160193786A1 (en) * 2015-01-06 2016-07-07 Carbon3D, Inc. Three-dimensional printing with build plates having a rough or patterned surface and related methods
US20170210072A1 (en) 2016-01-22 2017-07-27 Indizen Optical Technologies of America, LLC Creating homogeneous optical elements by additive manufacturing
US20180065302A1 (en) * 2016-09-07 2018-03-08 Canon Kabushiki Kaisha Three-dimensional manufacturing apparatus, three-dimensional manufactured object producing method, and container for three-dimensional manufacturing apparatus
US10000023B2 (en) 2011-06-28 2018-06-19 Global Filtration Systems Apparatus and method for forming three-dimensional objects using linear solidification
CN108456385A (zh) * 2018-05-05 2018-08-28 宁波市石生科技有限公司 一种用于光固化3d打印的离型膜及其制造工艺
US20200215747A1 (en) 2017-06-30 2020-07-09 Nikon Corporation A method of producing an optical device and a corresponding system
US20200324466A1 (en) * 2018-01-12 2020-10-15 University Of Florida Research Foundation, Incorporated Three-dimensional fabrication at inert immiscible liquid interface
EP3766670A1 (en) 2018-05-05 2021-01-20 Luxcreo (Beijing) Inc. Adhesion blocking element, three-dimensional printing device, and three-dimensional printing method
EP4070955A1 (en) 2020-01-07 2022-10-12 Luxcreo (Beijing) Inc. Composite release film, and apparatus and method using release film in field of additive manufacturing

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2722902C1 (ru) * 2016-09-01 2020-06-04 Олег Юрьевич Халип Способ формирования трехмерного изделия из жидкого фотополимера с применением преобразования волнового фронта актиничного излучения и устройство для его осуществления

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030214812A1 (en) * 2002-05-16 2003-11-20 Eastman Kodak Company Light diffuser with variable diffusion
JP2006323327A (ja) * 2005-05-16 2006-11-30 Korea Inst Of Machinery & Materials 光拡散シートとその製造方法及びその製造装置
WO2011027903A1 (ja) * 2009-09-04 2011-03-10 住友化学株式会社 光拡散フィルムおよびその製造方法、光拡散性偏光板、ならびに液晶表示装置
US10000023B2 (en) 2011-06-28 2018-06-19 Global Filtration Systems Apparatus and method for forming three-dimensional objects using linear solidification
US20130295215A1 (en) * 2012-05-03 2013-11-07 Li-Han Wu Three-dimensional printing apparatus
US20160193786A1 (en) * 2015-01-06 2016-07-07 Carbon3D, Inc. Three-dimensional printing with build plates having a rough or patterned surface and related methods
CN109311222A (zh) * 2016-01-22 2019-02-05 美国因迪森光学技术有限责任公司 通过加法制造来生产同质均匀的光学元件
US20170210072A1 (en) 2016-01-22 2017-07-27 Indizen Optical Technologies of America, LLC Creating homogeneous optical elements by additive manufacturing
US20180065302A1 (en) * 2016-09-07 2018-03-08 Canon Kabushiki Kaisha Three-dimensional manufacturing apparatus, three-dimensional manufactured object producing method, and container for three-dimensional manufacturing apparatus
US20200215747A1 (en) 2017-06-30 2020-07-09 Nikon Corporation A method of producing an optical device and a corresponding system
US20200324466A1 (en) * 2018-01-12 2020-10-15 University Of Florida Research Foundation, Incorporated Three-dimensional fabrication at inert immiscible liquid interface
CN108456385A (zh) * 2018-05-05 2018-08-28 宁波市石生科技有限公司 一种用于光固化3d打印的离型膜及其制造工艺
EP3766670A1 (en) 2018-05-05 2021-01-20 Luxcreo (Beijing) Inc. Adhesion blocking element, three-dimensional printing device, and three-dimensional printing method
EP4070955A1 (en) 2020-01-07 2022-10-12 Luxcreo (Beijing) Inc. Composite release film, and apparatus and method using release film in field of additive manufacturing

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4299287A4

Also Published As

Publication number Publication date
AU2022291205B2 (en) 2024-06-13
CA3222032A1 (en) 2022-12-15
EP4299287A4 (en) 2024-10-16
JP3246104U (ja) 2024-03-22
CN116457176A (zh) 2023-07-18
MX2023014797A (es) 2024-01-11
US20230236430A1 (en) 2023-07-27
IL309228A (en) 2024-02-01
AU2022291205A1 (en) 2023-10-12
CR20230602A (es) 2024-05-28
EP4299287A1 (en) 2024-01-03
AU2024204916A1 (en) 2024-08-01
DE212022000144U1 (de) 2024-04-05

Similar Documents

Publication Publication Date Title
Kowsari et al. High-efficiency high-resolution multimaterial fabrication for digital light processing-based three-dimensional printing
JP7469478B2 (ja) 複合型離型フィルムと付加製造分野で該離型フィルムを使用する装置及び方法
US10335997B2 (en) Method of stabilizing a photohardening inhibitor-permeable film in the manufacture of three-dimensional objects
CN108367495A (zh) 用于连续液体相间打印的具有发光面板的构造板组合件和相关方法、系统及装置
KR102255002B1 (ko) 패터닝 방법 및 패터닝 장치
JP2007272065A (ja) 光学フィルムおよびその製造方法
JP2021518289A (ja) 独立した弾性膜システムおよび傾斜基準を備えた、ボトムアップ光硬化型の3d印刷用の装置および関連する使用方法
CN110802838A (zh) 一种3d打印装置与方法
WO2022258006A1 (zh) 一种增材制造装置及方法
US12130445B2 (en) Additive manufacturing devices and methods
CN113085171A (zh) 一种复合型离型膜及使用该离型膜的设备及方法
US20240123683A1 (en) Additive manufacturing devices and methods
JP2003279709A (ja) マイクロレンズとその製造方法、光学膜、プロジェクション用スクリーン、及びプロジェクターシステム
US11472107B2 (en) Container for stereolithography apparatus
JP2001205708A (ja) 光学的立体造形方法および装置
TWI287504B (en) Manufacturing method of a 3-D micro lens array with predetermined surface curvature controlled by centrifugal force surface
US20240300174A1 (en) Substrates and associated materials for additive manufacturing
JP2020187332A (ja) 微小光学構造体の製造方法
JP2005053037A (ja) レンズシートおよびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22819603

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280007145.7

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2023600128

Country of ref document: JP

Ref document number: 2022819603

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: AU2022291205

Country of ref document: AU

Ref document number: 2022291205

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2022819603

Country of ref document: EP

Effective date: 20230926

ENP Entry into the national phase

Ref document number: 2022291205

Country of ref document: AU

Date of ref document: 20220609

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: MX/A/2023/014797

Country of ref document: MX

Ref document number: 3222032

Country of ref document: CA

Ref document number: 309228

Country of ref document: IL