WO2022257923A1 - 一种基于双层光刻胶的光刻方法 - Google Patents

一种基于双层光刻胶的光刻方法 Download PDF

Info

Publication number
WO2022257923A1
WO2022257923A1 PCT/CN2022/097391 CN2022097391W WO2022257923A1 WO 2022257923 A1 WO2022257923 A1 WO 2022257923A1 CN 2022097391 W CN2022097391 W CN 2022097391W WO 2022257923 A1 WO2022257923 A1 WO 2022257923A1
Authority
WO
WIPO (PCT)
Prior art keywords
photoresist
positive
exposure
negative
layer
Prior art date
Application number
PCT/CN2022/097391
Other languages
English (en)
French (fr)
Inventor
高艺佼
Original Assignee
上海微起光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海微起光电科技有限公司 filed Critical 上海微起光电科技有限公司
Priority to EP22819521.0A priority Critical patent/EP4354223A1/en
Priority to KR1020237041058A priority patent/KR20240003445A/ko
Publication of WO2022257923A1 publication Critical patent/WO2022257923A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0274Photolithographic processes
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/095Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers having more than one photosensitive layer
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/16Coating processes; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/16Coating processes; Apparatus therefor
    • G03F7/162Coating on a rotating support, e.g. using a whirler or a spinner
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/16Coating processes; Apparatus therefor
    • G03F7/168Finishing the coated layer, e.g. drying, baking, soaking
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2002Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image
    • G03F7/2004Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image characterised by the use of a particular light source, e.g. fluorescent lamps or deep UV light
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2022Multi-step exposure, e.g. hybrid; backside exposure; blanket exposure, e.g. for image reversal; edge exposure, e.g. for edge bead removal; corrective exposure
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/30Imagewise removal using liquid means
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/38Treatment before imagewise removal, e.g. prebaking
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70383Direct write, i.e. pattern is written directly without the use of a mask by one or multiple beams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34

Definitions

  • the invention relates to the technical field of semiconductor microstructure processing, in particular to a photolithography method based on a double-layer photoresist.
  • Photolithography is a precise microfabrication technique.
  • Conventional photolithography technology uses a wavelength of The ultraviolet light is used as the image information carrier, and the photoresist is used as the intermediate or image recording medium to realize the transformation, transfer and processing of the graphics, and finally transfer the image information to the wafer, mainly referring to a silicon wafer or a layer on the dielectric layer. kind of craft.
  • photolithography refers to the technology of transferring the pattern on the mask plate to the substrate by means of photoresist (also known as photoresist) under the action of light.
  • the main process is as follows: first, ultraviolet light is irradiated on the surface of the substrate with a layer of photoresist film through the mask plate, causing the photoresist in the exposed area to undergo a chemical reaction; then the exposed area or the unexposed area is dissolved and removed by developing technology The photoresist, so that the pattern on the mask plate is copied to the photoresist film; finally, the pattern is transferred to the substrate by etching technology.
  • the photoresist can be mainly divided into a positive photoresist and a negative photoresist.
  • the positive photoresist has the following characteristics: the exposed part will undergo photochemical reaction and dissolve in the developer, while the unexposed part is insoluble in the developer.
  • the negative photoresist has the following characteristics: its exposed part will be insoluble in the developer due to crosslinking and curing or photochemical reaction, while the unexposed part will be soluble in the developer.
  • Photolithography is the most important processing technology for integrated circuits, and its function is like that of a lathe in a metalworking workshop. In the entire chip manufacturing process, the implementation of almost every process is inseparable from lithography technology. Lithography is also the most critical technology for making chips, accounting for more than 35% of chip manufacturing costs.
  • Lithography technology is mainly divided into optical lithography according to the exposure source.
  • Common light sources include ultraviolet light source (UV), deep ultraviolet light source (DUV), extreme ultraviolet light source (EUV), and particle beam lithography.
  • UV ultraviolet light source
  • DUV deep ultraviolet light source
  • EUV extreme ultraviolet light source
  • particle beam lithography mainly There are X-ray, electron beam and ion beam lithography, etc.
  • UV energy can only achieve a pattern resolution of around one micron.
  • DUV and EUV can achieve higher resolution, they need to use expensive machines that only industry giants can afford.
  • electron beam lithography and focused ion beam lithography can also improve the resolution to a certain extent, they require a long time-consuming and multiple-cycle writing process, which greatly reduces work efficiency.
  • the purpose of the present invention is to provide a simple method, smaller line width than the traditional technology, widely used in semiconductor technology, and has extensive research and application value based on double-layer optical Resist photolithography method.
  • the original pattern is obtained.
  • the contour line pattern of the feature can achieve the contour line width smaller than the original pattern feature line width and double the line density. After that, the pattern can be further transferred to the target material by combining the etching process for the base material or deposition material.
  • the specific scheme is as follows :
  • a photolithography method based on double-layer photoresist comprises the following steps:
  • the template pattern is converted into an outline pattern
  • the outline pattern is transferred to the base material.
  • the base material includes semiconductor, metal, insulator, polymer or composite material.
  • semiconductor metal, insulator, polymer or composite material.
  • a silicon wafer or a silicon wafer with a layer of silicon oxide film attached to the surface For example, a silicon wafer or a silicon wafer with a layer of silicon oxide film attached to the surface.
  • the method of transferring the outline pattern after double-layer photolithography to the deposition material on the silicon wafer substrate specifically includes the following steps:
  • Exposure tightly fix the silicon wafer base that has gone through the above steps on the exposure table, place it under the exposure source, turn on the light source, and perform exposure operation through the mask plate or the exposure source focusing device, according to the photoresist pairing group Adjust the exposure time or exposure dose according to the type of photoresist layer and the thickness of the photoresist layer; after the exposure, move the exposed silicon wafer to the heating table for drying;
  • the silicon wafer After the post-baking is over, after the silicon wafer is cooled to room temperature, develop separately.
  • the process is: place the photoetched silicon wafer in a negative photoresist developer to make the unexposed negative photoresist on the silicon wafer Afterwards, take out the silicon wafer and clean it with deionized water, and blow it dry with nitrogen; (Note: If the positive and negative offset developers are the same, the deionized water cleaning step can be omitted)
  • Material deposition place the developed silicon wafer in an evaporation coating apparatus, thermally evaporate a 5-nanometer titanium film and a 50-nanometer gold film respectively, and use a 5-nanometer titanium film as a gold film the adhesive layer.
  • Removing the photoresist After the cavity is cooled, release the vacuum, and take out the coated silicon wafer. The silicon wafer is immersed in acetone and ultrasonically cleaned until the photoresist is completely removed, leaving a metal outline pattern.
  • the silicon oxide outline pattern is prepared on the surface of a silicon wafer with a thick silicon oxide film grown on the surface, specifically comprising the following steps:
  • Exposure tightly fix the silicon wafer base that has gone through the above steps on the exposure table, place it under the exposure source, turn on the light source, and perform exposure operation through the mask plate or the exposure source focusing device, according to the photoresist pairing group Adjust the exposure time or exposure dose according to the type of photoresist layer and the thickness of the photoresist layer; after the exposure, move the exposed silicon wafer to the heating table for drying;
  • the silicon wafer After the post-baking is over, after the silicon wafer is cooled to room temperature, develop separately.
  • the process is: place the photoetched silicon wafer in a negative photoresist developer to make the unexposed negative photoresist on the silicon wafer Afterwards, the silicon wafer is taken out and cleaned with deionized water, and dried with nitrogen; (Note: If the positive and negative offset developers are the same, the steps of cleaning with deionized water and drying with nitrogen can be omitted)
  • Dry etching place the silicon wafer in an ion etching machine, etch the silicon dioxide mask layer through plasma gas, and remove the silicon dioxide deposited in advance at the square outline pattern layer, exposing the underlying silicon base.
  • the spin-coating process includes spin-coating at a rotational speed of 500-8000 rpm; the drying temperature after spin-coating is 30°C-300°C.
  • the spin-coating process includes spin-coating at a rotational speed of 2000-8000 rpm for 30-40 s; after the spin-coating, the drying temperature is 90-100° C. and the drying time is 30-90 s.
  • the exposure adopts a single exposure method.
  • the exposure may also adopt the manner of multiple exposures. That is, it can also be decomposed into multiple exposures with shorter times or smaller doses.
  • the exposure source may be ultraviolet light source, deep ultraviolet light source, extreme ultraviolet light source, ion beam, electron beam or X-ray.
  • the wavelength of the exposure source is 1-500nm
  • the drying temperature after exposure is 30-300°C.
  • the wavelength of the exposure source is 350-400nm, and the drying temperature after exposure is 95-105°C.
  • the positive photoresist includes positive ultraviolet photoresist, positive deep ultraviolet photoresist, positive extreme ultraviolet photoresist, positive electron beam photoresist, positive ion beam photoresist Or positive X-ray photoresist, including MICROPOSIT S1800 series photoresist, BCI-3511 photoresist, AZ series photoresist (such as AZ111, AZ 1500, AZ 3300, AZ 4999, AZ 6600, AZ 8112, AZ 3000 , AZ 1075, AZ 700, AZ 900), HNR 500 series photoresist, OiR series photoresist, TDMR-AR80 HP 6CP, PR1 series photoresist, ma-P 1200 series photoresist, SPR series photoresist (such as SPR 220, SPR 660, SPR3000, etc.), PMMA series photoresists, etc.
  • the negative photoresist includes negative ultraviolet photoresist, negative deep ultraviolet photoresist, negative developing deep ultraviolet photoresist, negative extreme ultraviolet photoresist, negative electron beam photoresist, negative photoresist Positive ion beam photoresist or positive X-ray photoresist, including but not limited to NANO TM SU-8Series series, HSQ, AZ series photoresist (such as AZ N4000, AZ N6000), HNR series photoresist, SC series Photoresist, ma-N series photoresist (eg ma-N 400, ma-N 1400), 2000 Series, 5500 Photoresis, NR7-PY Series, NR9-PY Series, JSR WPR Series, NR71 Series NR9Series, etc.
  • NANO TM SU-8Series series HSQ
  • AZ series photoresist such as AZ N4000, AZ N6000
  • HNR series photoresist SC series Photoresist
  • the photoresist developer is generally a developer corresponding to the photoresist used.
  • the positive photoresist developer can be TMAH 2.38%, MF-26A, and the negative photoresist developer can be TMAH 2.38%, SU-8 developer, etc.
  • the characteristic line width or characteristic size of the template pattern is 2nm-1000 ⁇ m.
  • the characteristic line width or characteristic size of the template pattern is 2 nm-1 ⁇ m.
  • the material deposition techniques include but are not limited to electrochemical deposition, electroplating, CVD deposition, laser sputtering, magnetron sputtering, thermal evaporation, electron beam evaporation or atomic deposition;
  • the etching technique includes wet etching or dry etching; the wet etching includes electrochemical etching or selective etching liquid etching, and the dry etching includes ion etching Or chemical reactive ion etching.
  • the two layers of photoresist are exposed through the photolithography mask carrying the template pattern under the exposure source by means of projection exposure.
  • the two layers of photoresist are exposed through the photolithography mask carrying the template pattern under the exposure source by means of masking exposure.
  • the two layers of photoresist are exposed by means of reflective exposure under the exposure source by reflecting on the photolithographic mask carrying the template pattern.
  • the focused direct writing includes and is not limited to ultraviolet direct writing, deep ultraviolet direct writing, extreme ultraviolet direct writing, ion beam direct writing, electron beam direct writing or X-ray direct writing.
  • the base material includes semiconductor, metal, insulator, polymer or composite material.
  • the present invention also provides a photolithography system, including a spin coating unit, a drying unit, an exposure unit, a development unit, a deposition etching unit, and a photoresist removal unit, and the photolithography system is used to perform the following steps:
  • the present invention also provides a photolithography system control method, which is used to control the above-mentioned photolithography system to execute various steps.
  • the present invention also provides a computer device, including: a memory, a processor, and a computer program stored on the memory and operable on the processor, wherein, when the processor executes the computer program, the The above-mentioned photolithography system control method.
  • the present invention also provides a computer-readable medium on which a computer program is stored, and when the computer program is executed by a processor, the above method for controlling a photolithography system is realized.
  • the present invention has the following advantages:
  • the present invention continues the characteristics of high efficiency, low cost and simple operation of traditional photolithography, and makes up for the limitations of traditional photolithography in the preparation of submicron resolution patterns;
  • the present invention realizes the miniaturization of the original mask pattern.
  • Fig. 1 is the schematic flow sheet in embodiment 1;
  • Fig. 2 is the schematic flow sheet in embodiment 2;
  • FIG. 3 is a pattern of gold nanowires prepared in Example 1.
  • the invention provides a kind of photolithography method based on double-layer photoresist, and this method comprises the following steps:
  • Positive-working photoresists include positive-working UV photoresists, positive-working deep-UV photoresists, positive-working extreme ultraviolet photoresists, positive-working e-beam photoresists, positive-working ion beam photoresists, or positive-working X-ray photoresists Engraving.
  • Negative-tone photoresists include negative-tone UV photoresists, negative-tone deep-UV photoresists, negative-tone extreme ultraviolet photoresists, negative-tone e-beam photoresists, negative-tone ion beam photoresists, or positive X-ray photoresists Engraving.
  • Two positive and negative photoresist pairing groups are given below: the first group, the positive photoresist model is SPR 660, and the negative photoresist model is SU-8 2; the second group, the positive photoresist model is AZ 1500, and the negative photoresist model is AZ nlof 2020;
  • the process of spin-coating positive photoresist (take SPR 660, AZ 1500 as an example) is: first spin-coat at 800-1000 rpm for 5-10 seconds (this step can be omitted), and then at 2000-5000 Spin coating for 30-40 seconds at a speed of rpm, and bake for 30-50 seconds at 90-100°C.
  • the process of spin-coating negative photoresist (taking SU-8 2, AZ nlof 2020 as an example) is: first spin-coat at a speed of 800-1000 rpm for 5-10 seconds (this step can be omitted), and then Spin coating at 4000-8000 rpm for 30-40 seconds, and bake at 95-100°C for 60-90 seconds. Different rotational speeds determine the thickness of the photoresist film. According to different film thicknesses, adjust the temperature and time of pre-baking, as well as the subsequent exposure amount, exposure time, development time, etc.
  • the base material includes semiconductor, metal, insulator, polymer or composite material.
  • the exposure source uses a photolithographic mask plate carrying a template pattern or by focusing direct writing to perform a single exposure to the two layers of photoresist.
  • the negative photoresist and the positive photoresist Exposure patterns of different sizes are formed on the surface, and then dried; wherein, the exposure sources include ultraviolet light sources, deep ultraviolet light sources, extreme ultraviolet light sources, ion beams, electron beams or X-rays.
  • Focused direct writing includes ultraviolet direct writing, deep ultraviolet direct writing, extreme ultraviolet direct writing, ion beam direct writing, electron beam direct writing or X-ray direct writing.
  • the characteristic line width or characteristic size of the template pattern is 2 nm-1000 ⁇ m.
  • the pre-baked silicon wafer is fixed under the mask, and then placed under the ultraviolet light source, and the ultraviolet light source is turned on for photolithography.
  • the exposure time is adjusted according to the positive and negative photoresist pairing group used. Taking the pairing mentioned above as an example, the exposure flux of 100-200mJ/ cm2 at 350-400nm wavelength is suitable for the photoresist pairing group of SPR 660 and SU-8 2, AZ 1500 and AZ nlof 2020.
  • the use of UV wavelength and exposure flux should take into account the absorption of UV light by negative photoresists (such as SU-8 2, AZ nlof 2020) of different thicknesses to ensure that the underlying positive photoresist (such as SPR 660 , AZ 1500) can obtain sufficient exposure flux. Because the photoresist pairs of SPR 660 and SU-8 2, AZ 1500 and AZ nlof 2020 respond differently to the exposure flux at a specific wavelength, patterns of different sizes based on the mask pattern can be obtained.
  • the silicon wafer was taken out and washed with water, and dried with a nitrogen stream;
  • the exposed positive photoresist is washed away, while the unexposed negative photoresist under the exposed negative photoresist is not completely removed; then the silicon wafer is taken out and washed with water, and blown dry with nitrogen flow .
  • a hollow line pattern based on the template pattern is prepared.
  • the material deposition technology includes electrochemical deposition, electroplating, CVD deposition, laser sputtering, magnetron sputtering, thermal evaporation, E-beam evaporation or atomic deposition.
  • the etching technique includes wet etching or dry etching; the wet etching includes electrochemical etching or selective etching liquid etching, and the dry etching includes ion etching or chemical reaction ion etching etch.
  • the present invention also provides a photolithography system, including a spin coating part, a drying part, an exposure part, a development part, a deposition etching part, and a photoresist removal part, and the photolithography system is used to implement the above-mentioned double-layer photolithography based on Resist photolithography method. Specifically, it can be used to perform the following steps:
  • the present invention also provides a photolithography system control method, which is used to control the above-mentioned photolithography system to execute various steps.
  • the present invention also provides a computer device, including: a memory, a processor, and a computer program stored on the memory and operable on the processor, wherein, when the processor executes the computer program, the The above-mentioned photolithography system control method.
  • the present invention also provides a computer-readable medium on which a computer program is stored, and when the computer program is executed by a processor, the above method for controlling a photolithography system is realized.
  • the silicon substrate is blown dry with nitrogen, placed in a dry etcher, and cleaned by oxygen plasma etching for 1-2 minutes.
  • the silicon substrate that has passed the above steps is tightly fixed under the mask plate of the 5 micron line array, vacuumed and placed under the ultraviolet light source, and the light source is turned on for photolithography operation. Adjust the exposure time according to the type of photoresist paired group and the thickness of the photoresist layer. After the exposure is over, the mask plate is removed, and the exposed silicon wafer is moved to a heating table, and baked at 100° C. for 45 seconds. Wherein, the exposure flux is, for example, 100 mJ/cm 2 , which can be changed according to requirements.
  • the silicon wafer After the post-baking is over, after the silicon wafer is cooled to room temperature, develop separately.
  • the process is as follows: put the silicon wafer after photolithography in the corresponding negative photoresist developer SU-8 developer or TMAH-2.38%, so that the silicon The unexposed negative photoresist on the chip is washed away; then the silicon wafer is taken out and cleaned with deionized water, and blown dry with nitrogen flow; steps can be omitted)
  • the scanning electron micrograph of the metal nanowire obtained by this method has a characteristic line width of less than 200nm.
  • the silicon wafer substrate that has gone through the above steps is tightly fixed under the 5 micron square pattern mask, vacuumed and placed under the ultraviolet light source, and the light source is turned on for photolithography operation. Adjust the exposure time according to the type of photoresist paired group and the thickness of the photoresist layer. After the exposure is over, the mask plate is removed, and the exposed silicon wafer is moved to a heating table, and baked at 100° C. for 45 seconds. Wherein, the exposure flux is, for example, 100 mJ/cm 2 , and the exposure flux can be changed according to requirements.
  • the silicon wafer After the post-baking is over, after the silicon wafer is cooled to room temperature, develop separately.
  • the process is as follows: put the silicon wafer after photolithography in the negative photoresist developer SU-8 developer or TMAH-2.38%, and make the silicon wafer The unexposed negative photoresist is washed away; then the silicon wafer is taken out and cleaned with deionized water, and dried with nitrogen flow; (note: if the positive and negative photoresists are the same, the deionized water cleaning and nitrogen blowing steps can be omitted)
  • Silica square outlines were prepared by immersing the silicon wafer in acetone and cleaning it ultrasonically until the photoresist was completely removed.
  • the exposure method in which the silicon wafer substrate is tightly fixed under the mask and vacuumed and placed under the ultraviolet light source is used, but the present invention is not limited thereto.
  • the positive and negative double-layer photoresist lithography technology of the present invention can also use projection exposure.
  • Embodiment 3 the main steps of the positive and negative double-layer photoresist lithography technology of the present invention will be described by taking a projection ultraviolet lithography system with a wavelength of ultraviolet light less than 400 nm as an example.
  • the silicon wafer substrate that has gone through the above steps is tightly fixed on the sample stage of the projection lithography machine, and the projection ultraviolet exposure operation is performed through the photolithography mask. Adjust the exposure time according to the type of photoresist paired group and the thickness of the photoresist layer. After the exposure, the exposed silicon wafer was moved to a heating table, and baked at 110° C. for 90 seconds. Wherein, the exposure flux is, for example, 100 mJ/cm 2 , which can be changed according to requirements.
  • the silicon wafer After the post-baking is over, after the silicon wafer is cooled to room temperature, develop separately.
  • the process is as follows: the silicon wafer after photolithography is placed in a negative offset developer (TMAH-2.38%) to make the unexposed negative on the silicon wafer The photoresist is washed away;
  • TMAH-2.38% a positive photoresist developer
  • Embodiments 1 and 2 the exposure method of tightly fixing the silicon wafer substrate under the mask and vacuuming it and placing it under the ultraviolet light source is used.
  • Embodiment 3 projection exposure is used.
  • the present invention is not limited thereto.
  • the positive and negative double-layer photoresist lithography technology of the present invention can also use electron beam direct writing exposure.
  • Embodiment 4 the main steps of the positive and negative double-layer photoresist lithography technology of the present invention using electron beam direct writing exposure will be described.
  • Negative electron beam photoresist HSQ is drop-coated, photoresist is spin-coated, and pre-baked.
  • the exposed silicon wafer is moved to a heating table for post-baking.
  • the exposure flux is, for example, 500 ⁇ C/cm 2 , which can be changed according to requirements.
  • TMAH developer electron beam negative film developer
  • Silicon wafer is then placed in positive electron beam photoresist developing solution (MIBK:IPA developing solution), partly removes the unexposed positive photoresist PMMA below the negative photoresist that has been exposed;
  • MIBK positive electron beam photoresist developing solution
  • the wafers were taken out, rinsed with water, and dried with a stream of nitrogen.
  • An outline pattern based on the template pattern is prepared.
  • Embodiments 1 and 2 the exposure method of tightly fixing the silicon wafer substrate under the mask and vacuuming it and placing it under the ultraviolet light source is used.
  • Embodiment 3 projection exposure is used.
  • Example 4 the way of electron beam direct writing exposure was used.
  • the present invention is not limited thereto.
  • the positive and negative double-layer photoresist lithography technology of the present invention can also use the way of ultraviolet direct writing exposure.
  • Embodiment 5 the main steps of the positive and negative double-layer photoresist photolithography technology of the present invention using ultraviolet direct writing exposure will be described.
  • a spin coater Place the cleaned silicon wafer in a spin coater and fix it in vacuum.
  • a dropper to drop-coat a positive photoresist (such as AZ 1500), spin-coat the photoresist under the conditions of 500rpm ⁇ 5s+4000rpm ⁇ 40s, and bake at 100°C for 10 seconds.
  • a positive photoresist such as AZ 1500
  • the silicon wafer substrate that has gone through the above steps is tightly fixed under the exposure source, and the ultraviolet direct writing system is turned on for direct writing exposure operation. Adjust the exposure time according to the type of photoresist paired group and the thickness of the photoresist layer. After the exposure is over, the mask plate is removed, and the exposed silicon wafer is moved to a heating table, and baked at 110° C. for 60 seconds. Wherein, the exposure flux is, for example, 100 mJ/cm 2 , which can be changed according to requirements.
  • the silicon wafer After the post-baking is over, after the silicon wafer is cooled to room temperature, develop separately.
  • the process is as follows: the silicon wafer after photolithography is placed in a negative offset developer (TMAH-2.38%) to make the unexposed negative on the silicon wafer The photoresist is washed away;
  • TMAH-2.38% a positive photoresist developer
  • the photolithography method based on the double-layer photoresist of the present invention can be widely used in semiconductor technology, chip manufacturing and other fields, and has extensive research and application value.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Materials For Photolithography (AREA)

Abstract

本发明涉及一种基于双层光刻胶的光刻方法,该方法包括以下步骤:(1)在基底上涂抹一层正性光刻胶,并烘干,再在正性光刻胶上涂抹一层负性光刻胶,并烘干;(2)在曝光源下,使用载有模板图案的光刻掩膜版或者通过聚焦直写,对两层光刻胶进行曝光,然后进行烘干;(3)用负胶显影液对负性光刻胶进行显影;(4)用正胶显影液对正性光刻胶进行可控显影;(5)通过材料沉积技术或者刻蚀技术,在基底材料上形成图案;(6)去除光刻胶。与现有单次曝光的光刻技术相比,本发明方法简单,通过图案轮廓化,实现比传统技术更高小的线宽,该方法可广泛应用于半导体工艺,并具有广泛研究和应用价值。

Description

一种基于双层光刻胶的光刻方法 技术领域
本发明涉及半导体微结构加工技术领域,具体涉及一种基于双层光刻胶的光刻方法。
背景技术
集成电路的飞速发展有赖于相关的制造工艺—光刻技术的发展,光刻技术是迄今所能达到的最高精度的加工技术。光刻技术是一种精密的微细加工技术。常规光刻技术是采用波长为
Figure PCTCN2022097391-appb-000001
的紫外光作为图像信息载体,以光致抗蚀剂为中间或图像记录媒介,实现图形的变换、转移和处理,最终把图像信息传递到晶圆,主要指硅片,或介质层上的一种工艺。
从原理上,光刻技术是指在光照作用下,借助光致抗蚀剂(又名光刻胶)将掩膜版上的图形转移到基片上的技术。其主要过程为:首先,紫外光通过掩膜版照射到附有一层光刻胶薄膜的基片表面,引起曝光区域的光刻胶发生化学反应;再通过显影技术溶解去除曝光区域或未曝光区域的光刻胶,使掩膜版上的图形被复制到光刻胶薄膜上;最后,利用刻蚀技术将图形转移到基片上。其中,光刻胶主要可以分为正性光刻胶和负性光刻胶。正性光刻胶具有如下特性:其曝光部分会发生光化学反应而溶于显影液,而未曝光部分不溶于显影液。负性光刻胶具有如下特性:其曝光部分会因交联固化或光化学反应而不溶于显影液,而未曝光部分溶于显影液。
光刻是集成电路最重要的加工工艺,它的作用,如同金工车间中车床的作用。在整个芯片制造工艺中,几乎每个工艺的实施,都离不开光刻的技术。光刻也是制造芯片的最关键技术,它占芯片制造成本的35%以上。
光刻技术按曝光源主要分为光学光刻,常见的光源包括紫外光源(UV)、深紫外光源(DUV)、极紫外光源(EUV),以及粒子束光刻,常见的粒子束光刻主 要有X射线、电子束和离子束光刻等。
通常,在光学光刻中,UV能只能实现一微米左右的图案分辨率。而DUV、EUV等虽然能实现更高的分辨率,但需要使用到只有业界巨头才有能力入手的昂贵机器。此外,在粒子束光刻中,电子束光刻、聚焦离子束光刻虽然也能一定程度上提高分别率,但需要耗时长、多次循环的书写制程,大大降低了工作效率。
发明内容
本发明的目的就是为了克服上述现有技术存在的缺陷而提供一种方法简单、比传统技术具有更小的线宽、可广泛应用于半导体工艺,并具有广泛研究和应用价值的基于双层光刻胶的光刻方法。
本发明的目的可以通过以下技术方案来实现:
利用正负性光刻胶,即正胶和负胶对光源响应的不同和曝光中得到曝光能量的不同,利用相互匹配的正负性光刻胶实际显影后图案大小的差异,得到基于原图案的特征的轮廓线型图案,实现轮廓线宽小于原图案特征线宽和线条密度倍增,之后可以通过结合针对基底材料或者沉积材料的刻蚀工艺,可将图案进一步转移至目标材料,具体方案如下:
一种基于双层光刻胶的光刻方法,该方法包括以下步骤:
(1)在基底材料进行清洗,然后在基底上涂抹一层正性光刻胶,并烘干;再在正性光刻胶上涂抹一层负性光刻胶,并烘干;
(2)在曝光源下,使用载有模板图案的光刻掩膜版或者通过聚焦直写,对两层光刻胶进行曝光,曝光后,在负性光刻胶和正性光刻胶上分别形成大小不同的曝光图案,然后进行烘干;
(3)用负胶显影液对负性光刻胶进行显影;
(4)用正胶显影液对正性光刻胶进行可控显影,仅洗去正性光刻胶上曝光图案的边缘部分,并暴露基底材料;
(5)通过材料沉积技术或者刻蚀技术,在基底材料上形成图案;
(6)去除光刻胶。
进一步地,通过执行上述步骤(4),从而将模板图案转换成轮廓线型图案,通过执行上述步骤(5),从而将轮廓线型图案转移到基底材料上。
进一步地,所述的基底材料包括半导体、金属、绝缘体、聚合物或复合材料。比如硅片或者表面附着一层氧化硅薄膜的硅片。
进一步地,对于在硅片基底上进行将双层光刻后的轮廓线图案转移至沉积材料的方法,具体包括以下步骤:
(1)旋涂正性光刻胶:将清洗过后的硅片放置于旋涂仪,真空固定;喷涂或者滴涂正性光刻胶,进行光刻胶的旋涂,然后烘干;
(2)旋涂负性光刻胶:将冷却过后的硅片放置于旋涂仪,真空固定;喷涂或者滴涂负性光刻胶,进行负性光刻胶的旋涂,然后烘干;
(3)曝光:将经过以上步骤的硅片基底紧密固定在曝光台上,正置于曝光源下,打开光源,通过掩膜版或者曝光源聚焦装置,进行曝光操作,根据光刻胶配对组的种类和光刻胶层的厚度调整曝光时间或者曝光剂量;曝光结束后,将曝光过的硅片移到加热台上进行烘干;
(4)显影:
后烘结束,待硅片冷却到室温后,进行分别显影,过程为:将光刻后的硅片置于负性光刻胶显影液中,使硅片上未被曝光的负性光刻胶被清洗掉;之后将硅片取出并用去离子水清洗,用氮气吹干;(注:如果正负胶显影液相同,去离子水清洗步骤可略去)
再将硅片置于正性光刻胶显影液中,同时不完全去除曝光过的负性光刻胶下面的未被曝光过的正性光刻胶;之后将硅片取出并用去离子水清洗,用氮气吹干,制备出基于模板图案的轮廓线型图案;
(6)材料沉积(以金属材料为例):将显影之后的硅片置于蒸发镀膜仪内,分别热蒸发5纳米的钛薄膜和50纳米的金薄膜,5纳米的钛薄膜用作金薄膜的粘附层。
(7)去除光刻胶:待腔体冷却后,解除真空,将镀膜之后的硅片取出。把硅片浸没在丙酮中,超声清洗直到光刻胶被全部除去,留下金属轮廓线图案。
进一步地,对于在表面生长有厚氧化硅薄膜的硅片表面制备氧化硅轮廓线 图案,具体包括以下步骤:
(1)旋涂正性光刻胶:将氧化硅硅片,进行正性光刻胶的旋涂,然后烘烤;
(2)旋涂负性光刻胶:将冷却过后的硅片放置于旋涂仪,真空固定,进行负性光刻胶的旋涂,然后烘烤;
(3)曝光:将经过以上步骤的硅片基底紧密固定在曝光台上,正置于曝光源下,打开光源,通过掩膜版或者曝光源聚焦装置,进行曝光操作,根据光刻胶配对组的种类和光刻胶层的厚度调整曝光时间或者曝光剂量;曝光结束后,将曝光过的硅片移到加热台上进行烘干;
(4)显影:
后烘结束,待硅片冷却到室温后,进行分别显影,过程为:将光刻后的硅片置于负性光刻胶显影液中,使硅片上未被曝光的负性光刻胶被清洗掉;之后将硅片取出并用去离子水清洗,用氮气吹干;(注:如果正负胶显影液相同,去离子水清洗和氮气吹干步骤可略去)
再将硅片置于正性光刻胶显影液中,同时不完全去除曝光过的负性光刻胶下面的未被曝光过的正性光刻胶;之后将硅片取出并用去离子水清洗,用氮气吹干,制备出基于模板图案的轮廓线型图案;
(5)干法刻蚀:将硅片置于离子刻蚀机内,通过等离子体气体刻蚀二氧化硅掩模层,即可在正方形轮廓线型图案处,除掉提前沉积的二氧化硅层,使下面的硅基暴露出来。
(6)去除光刻胶:将硅片浸没在丙酮中,超声清洗直到光刻胶被全部除去,从而制备出二氧化硅正方形轮廓线。
进一步地,所述的旋涂过程包括在500-8000rpm的转速下旋涂;旋涂后烘干的温度为30℃-300℃。
更进一步地,所述的旋涂过程包括在2000-8000rpm的转速下旋涂30-40s;旋涂后烘干的温度为90-100℃,时间为30-90s。
进一步地,所述曝光采用单次曝光的方式。
进一步地,所述曝光还可采用多次曝光的方式。即,也可以分解为多 次更短时间或者更小剂量的多次曝光叠加实现。进一步地,所述的曝光源可以是紫外光源、深紫外光源、极紫外光源、离子束、电子束或X射线。
进一步地,所述曝光源的波长为1-500nm,曝光后烘干的温度为30-300℃。
更进一步地,所述曝光源的波长为350-400nm,曝光后烘干的温度为95-105℃。
进一步地,所述的正性光刻胶包括正性紫外光刻胶、正性深紫外光刻胶、正性极紫外光刻胶、正性电子束光刻胶、正性离子束光刻胶或正性X射线光刻胶,包括MICROPOSIT S1800系列光刻胶,BCI-3511光刻胶,AZ系列光刻胶(例如AZ111,AZ 1500,AZ 3300,AZ 4999,AZ 6600,AZ 8112,AZ 3000,AZ 1075,AZ 700,AZ 900),HNR 500系列光刻胶,OiR系列光刻胶,TDMR-AR80 HP 6CP,PR1系列光刻胶,ma-P 1200系列光刻胶,SPR系列光刻胶(例如SPR 220,SPR 660,SPR3000等),PMMA系列光刻胶等。
所述的负性光刻胶,包括负性紫外光刻胶、负性深紫外光刻胶、负显影深紫外光刻胶、负性极紫外光刻胶、负性电子束光刻胶、负性离子束光刻胶或正性X射线光刻胶,包括但是不限于NANO TM SU-8Series系列,HSQ,AZ系列光刻胶(例如AZ N4000,AZ N6000),HNR系列光刻胶,SC系列光刻胶,ma-N系列光刻胶(例如ma-N 400,ma-N 1400),
Figure PCTCN2022097391-appb-000002
2000 Series,
Figure PCTCN2022097391-appb-000003
5500 Photoresis,NR7-PY Series,NR9-PY Series,JSR WPR Series,NR71 Series NR9Series等。
进一步地,光刻胶显影液一般为所用光刻胶所对应的显影液。比如,正性光刻胶显影液可以是TMAH 2.38%,MF-26A,负性光刻胶显影液可以是TMAH 2.38%,SU-8 developer等。
进一步地,所述模板图案的特征线宽或者特征尺寸为2nm-1000μm。
更进一步地,所述模板图案的特征线宽或者特征尺寸为2nm-1μm。
进一步地,所述的材料沉积技术包括且不限于电化学沉积、电镀、CVD沉积、激光溅射、磁控溅射、热蒸发、电子束蒸发或原子沉积;
所述的刻蚀技术,包括湿法刻蚀或干法刻蚀;所述的湿法刻蚀包括电化学 刻蚀或选择性刻蚀液体刻蚀,所述的干法刻蚀包括离子刻蚀或化学反应离子刻蚀。
进一步地,在曝光的步骤中,利用投影式曝光的方式,在曝光源下,透过载有模板图案的光刻掩膜版,对两层光刻胶进行曝光。
进一步地,在曝光的步骤中,利用遮蔽式曝光的方式,在曝光源下,透过载有模板图案的光刻掩膜版,对两层光刻胶进行曝光。
进一步地,在曝光的步骤中,利用反射式曝光的方式,在曝光源下,通过在载有模板图案的光刻掩膜版上进行反射,对两层光刻胶进行曝光。
进一步地,所述的聚焦直写包括且不限于紫外光直写、深紫外光直写、极紫外光直写、离子束直写、电子束直写或X射线直写。
进一步地,所述的基底材料包括半导体、金属、绝缘体、聚合物或复合材料。
本发明还提供一种光刻系统,包括旋涂部、烘干部、曝光部、显影部、沉积刻蚀部、以及光刻胶去除部,所述光刻系统用于执行以下步骤:
(1)利用旋涂部在基底上旋涂一层正性光刻胶,并利用烘干部进行烘干;再利用旋涂部在正性光刻胶上旋涂一层与正性光刻胶相匹配的负性光刻胶,并利用烘干部进行烘干;
(2)利用曝光部在曝光源下,使用载有模板图案的光刻掩膜版或者通过聚焦直写,对两层光刻胶进行曝光,从而在负性光刻胶和正性光刻胶上分别形成大小不同的曝光图案,然后利用烘干部进行烘干;
(3)利用显影部用负胶显影液对负性光刻胶进行显影;
(4)利用显影部用正胶显影液对正性光刻胶进行可控显影,仅洗去正性光刻胶上曝光图案的边缘部分,并暴露基底材料;
(5)利用沉积刻蚀部通过材料沉积技术或者刻蚀技术,在基底材料上形成图案;
(6)利用光刻胶去除部去除光刻胶。
本发明还提供一种光刻系统控制方法,用于控制上述的光刻系统执行各个步骤。
本发明还提供一种计算机设备,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,其特征在于,所述处理器执行所述计算机程序时实现上述的光刻系统控制方法。
本发明还提供一种计算机可读取介质,其上存储有计算机程序,该计算机程序被处理器执行时实现上述的光刻系统控制方法。
与现有技术相比,本发明具有以下优点:
(1)本发明延续了传统光刻效率高,成本低,操作简单的特点,弥补了传统光刻在亚微米分辨率图案制备方面的局限性;
(2)本发明实现了针对原始掩模图案的尺寸微缩。
附图说明
图1为实施例1中的流程示意图;
图2为实施例2中的流程示意图;
图3为实施例1中制备的金纳米线图案。
具体实施方式
下面结合附图和具体实施例对本发明进行详细说明。本实施例在以本发明技术方案为前提下进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。
<基于双层光刻胶的光刻方法>
本发明提供一种基于双层光刻胶的光刻方法,该方法包括以下步骤:
(1)在基底上涂抹一层正性光刻胶,并烘干;
再在正性光刻胶上涂抹一层负性光刻胶,并烘干;
正性光刻胶包括正性紫外光刻胶、正性深紫外光刻胶、正性极紫外光刻胶、正性电子束光刻胶、正性离子束光刻胶或正性X射线光刻胶。负性光刻胶包括负性紫外光刻胶、负性深紫外光刻胶、负性极紫外光刻胶、负性电子束光刻胶、负性离子束光刻胶或正性X射线光刻胶。
其实,不同型号的正负光刻胶需要预先确认匹配度,下面给出两个正负光 刻胶配对组:第一组,正性光刻胶型号为SPR 660,负性光刻胶型号为SU-8 2;第二组,正性光刻胶型号为AZ 1500,负性光刻胶型号为AZ nlof 2020;
旋涂正性光刻胶(以SPR 660,AZ 1500为例)过程为:先在800-1000转/分的转速下旋涂5-10秒(此步骤可以省去),再在2000-5000转/分的转速下旋涂30-40秒,以90-100℃烘烤30-50秒。
旋涂负性光刻胶(以SU-8 2,AZ nlof 2020为例)过程为:先在800-1000转/分的转速下旋涂5-10秒(此步骤可以省去),再在4000-8000转/分的转速下旋涂30-40秒,以95-100℃烘烤60-90秒。不同的转速决定光刻胶膜厚程度。根据不同的膜厚,调整前烘的温度和时间、以及之后的曝光量、曝光时间、显影时间等。
其中,基底材料包括半导体、金属、绝缘体、聚合物或复合材料。
(2)在曝光源下,使用载有模板图案的光刻掩膜版或者通过聚焦直写,对两层光刻胶进行单次曝光,曝光后,在负性光刻胶和正性光刻胶上分别形成大小不同的曝光图案,然后进行烘干;其中,曝光源包括紫外光源、深紫外光源、极紫外光源、离子束、电子束或X射线。聚焦直写包括紫外光直写、深紫外光直写、极紫外光直写、离子束直写、电子束直写或X射线直写。模板图案的特征线宽或者特征尺寸为2nm-1000μm。
将前烘过的硅片固定在掩膜版下,之后置于紫外光光源之下,打开紫外光光源进行光刻,曝光时间根据使用的正负光刻胶配对组调整。以上面提到的配对为例,350-400nm波长下100-200mJ/cm 2的曝光通量适用于SPR 660与SU-8 2,AZ 1500与AZ nlof 2020的光刻胶配对组。UV波长的使用和曝光通量应考虑不同厚度的负性光刻胶(例如SU-8 2,AZ nlof 2020)对紫外光的吸收作用,以确保在下层的正性光刻胶(例如SPR 660,AZ 1500)能获得足够的曝光通量。因为SPR 660与SU-8 2,AZ 1500与AZ nlof 2020的光刻胶配对组对特定波长下的曝光通量响应不同,可以得到基于掩膜版图案的不同尺寸的图案。
(3)用负胶显影液对负性光刻胶进行显影;
(4)用正胶显影液对正性光刻胶进行可控显影,仅洗去正性光刻胶上曝光图案的边缘部分,并暴露基底材料,从而将模板图案转换成轮廓线型图案;
以上面提到的配对为例,曝光结束后,取下掩膜版,将曝光过的硅片移到加热台上,以95-105℃烘烤40-90秒。后烘结束,进行分别显影,过程为:将光刻后的硅片置于对应的负性光刻胶显影液(例如SU-8 developer,TMAH-2.38%)中,使硅片上未被曝光的负性光刻胶被清洗掉。之后将硅片取出并用水清洗,氮气流吹干;再将硅片置于对应的正性光刻胶显影液(例如MF-26A,TMAH-2.38%)中,使硅片上暴露出来的未被曝光的正性光刻胶被清洗掉,同时不完全去除曝光过的负性光刻胶下面的未被曝光过的负性光刻胶;之后将硅片取出并用水清洗,氮气流吹干。制备出基于模板图案的空心线型图案。
在选择显影液时,当选取的显影液主要成分不同时,负胶显影液不会作用于正胶上,保证显影的分步进行,以获得最高质量的图案。同时,经研究发现,当使用的负胶显影液会同时对正胶显影时,可以把两步的显影时间叠加在一起,从而在去除未曝光的负胶后,实现对正胶的部分显影,经过扫描电镜的证实,并不会对外轮廓的图案化造成明显影响。综上所述,在实验前,应当对正胶和负胶以及对应的显影液进行交叉实验,从而制定最合适的显影工序。
(5)通过材料沉积技术或者刻蚀技术,将轮廓线型图案转移到基底材料上;其中,材料沉积技术包括电化学沉积、电镀、CVD沉积、激光溅射、磁控溅射、热蒸发、电子束蒸发或原子沉积。刻蚀技术包括湿法刻蚀或干法刻蚀;所述的湿法刻蚀包括电化学刻蚀或选择性刻蚀液体刻蚀,所述的干法刻蚀包括离子刻蚀或化学反应离子刻蚀。
(6)去除光刻胶。
<光刻系统>
本发明还提供一种光刻系统,包括旋涂部、烘干部、曝光部、显影部、沉积刻蚀部、以及光刻胶去除部,所述光刻系统用于实施上述基于双层光刻胶的光刻方法。具体而言,可用于执行以下步骤:
(1)利用旋涂部在基底上旋涂一层正性光刻胶,并利用烘干部进行烘干;再利用旋涂部在正性光刻胶上旋涂一层与正性光刻胶相匹配的负性光刻胶,并利用烘干部进行烘干;
(2)利用曝光部在曝光源下,使用载有模板图案的光刻掩膜版或者通过聚焦直写,对两层光刻胶进行曝光,从而在负性光刻胶和正性光刻胶上分别形成大小不同的曝光图案,然后利用烘干部进行烘干;
(3)利用显影部用负胶显影液对负性光刻胶进行显影;
(4)利用显影部用正胶显影液对正性光刻胶进行可控显影,仅洗去正性光刻胶上曝光图案的边缘部分,并暴露基底材料;
(5)利用沉积刻蚀部通过材料沉积技术或者刻蚀技术,在基底材料上形成图案;
(6)利用光刻胶去除部去除光刻胶。
本发明还提供一种光刻系统控制方法,用于控制上述的光刻系统执行各个步骤。
本发明还提供一种计算机设备,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,其特征在于,所述处理器执行所述计算机程序时实现上述的光刻系统控制方法。
本发明还提供一种计算机可读取介质,其上存储有计算机程序,该计算机程序被处理器执行时实现上述的光刻系统控制方法。
<实施例>
下面,对本发明的基于双层光刻胶的光刻方法的具体实施例进行详细说明。
实施例1
在本实施例1中,基于正负双层光刻胶光刻技术的金纳米线阵列制备过程如图1所示,具体包括以下步骤:
(1)清洗硅片:
用浓硫酸超声清洗20-30分钟;
用去离子水超声清洗20-30分钟;
用乙醇超声清洗20-30分钟;
硅片基底用氮气吹干,放置于干法刻蚀仪中,用氧等离子体刻蚀清洗1-2分钟。
(2)旋涂正性光刻胶
将清洗过后的硅片放置于旋涂仪,真空固定。用滴管滴涂2-4滴正性光刻胶SPR 660或AZ 1500,在800rpm×5s+2500rpm×30s的条件下,进行光刻胶的旋涂,以95-100℃烘烤40秒。
(3)旋涂负性光刻胶
将冷却过后的硅片放置于旋涂仪,真空固定。用滴管滴涂2-4滴负性光刻胶SU-8 2或AZ nlof 2020,在1000rpm×5s+4000rpm×40s的条件下,进行光刻胶的旋涂,以100-110℃烘烤60秒。
(4)紫外曝光
将经过以上步骤的硅片基底紧密固定在5微米线阵列的掩膜版下,抽真空并正置于紫外光光源之下,打开光源进行光刻操作。根据光刻胶配对组的种类和光刻胶层的厚度调整曝光时间。曝光结束后,取下掩膜版,将曝光过的硅片移到加热台上,以100℃烘烤45秒。其中,曝光通量例如为100mJ/cm 2,其可以根据需求进行改变。
(5)显影
后烘结束,待硅片冷却到室温后,进行分别显影,过程为:将光刻后的硅片置于对应的负性光刻胶显影液SU-8 developer或TMAH-2.38%中,使硅片上未被曝光的负性光刻胶被清洗掉;之后将硅片取出并用去离子水清洗,氮气流吹干;(注:如果正负胶显影液相同,去离子水清洗和氮气吹干步骤可略去)
再将硅片置于对应的正性光刻胶显影液MF-26A或TMAH-2.38%中,不完全去除曝光过的负性光刻胶下面的未被曝光过的正性光刻胶;之后将硅片取出并用水清洗,氮气流吹干。制备出基于模板图案的轮廓线型图案。
(6)材料沉积
将显影之后的硅片置于蒸发镀膜仪内,分子泵抽真空到10 -6Pa,用
Figure PCTCN2022097391-appb-000004
Figure PCTCN2022097391-appb-000005
的速率分别热蒸发5纳米的钛薄膜和50纳米的金薄膜。5纳米的钛薄膜用作金薄膜的粘附层。
(7)去除光刻胶
待腔体冷却后,解除真空,将镀膜之后的硅片取出。把硅片浸没在丙酮中, 超声清洗直到光刻胶被全部除去,留下线宽~200nm的金纳米线图案。如图3所示,利用该方法得到的金属纳米线的扫描电镜照片,其特征线宽小于200nm。
实施例2
在本实施例2中,基于正负双层光刻胶光刻技术,在表面生长有100nm厚氧化硅薄膜的硅片表面制备氧化硅轮廓化图案的过程如图2所示,具体包括以下步骤:
(1)旋涂正性光刻胶
将氧化硅硅片,在2500rpm的条件下,进行正性光刻胶SPR 660或AZ 1500的旋涂30-40秒,以95-100℃烘烤40秒。
(2)旋涂负性光刻胶
将冷却过后的硅片放置于旋涂仪,真空固定。在4000rpm的条件下,进行负性光刻胶SU-8 2或AZ nlof 2020的旋涂30-40秒,以100-110℃烘烤60秒。
(3)紫外曝光
将经过以上步骤的硅片基底紧密固定在5微米正方形图案掩膜版下,抽真空并正置于紫外光光源之下,打开光源进行光刻操作。根据光刻胶配对组的种类和光刻胶层的厚度调整曝光时间。曝光结束后,取下掩膜版,将曝光过的硅片移到加热台上,以100℃烘烤45秒。其中,曝光通量例如为100mJ/cm 2,曝光通量可以根据需求进行改变。
(4)显影
后烘结束,待硅片冷却到室温后,进行分别显影,过程为:将光刻后的硅片置于负性光刻胶显影液SU-8 developer或TMAH-2.38%中,使硅片上未被曝光的负性光刻胶被清洗掉;之后将硅片取出并用去离子水清洗,氮气流吹干;(注:如果正负胶显影液相同,去离子水清洗和氮气吹干步骤可略去)
再将硅片置于正性光刻胶显影液MF-26A或TMAH-2.38%中,不完全去除曝光过的负性光刻胶下面的未被曝光过的正性光刻胶;之后将硅片取出并用水清洗,氮气流吹干。制备出基于模板图案的正方形轮廓线型图案。
(5)干法刻蚀
将硅片置于离子刻蚀机内,通过等离子体气体刻蚀二氧化硅掩模层,即可在正方形轮廓线型图案处,除掉提前沉积的二氧化硅层,使下面的硅基暴露出来。
(6)去除光刻胶
将硅片浸没在丙酮中,超声清洗直到光刻胶被全部除去,从而制备出二氧化硅正方形轮廓线。
实施例3
关于曝光,在实施例1、2中,使用了将硅片基底紧密固定在掩膜版下抽真空并正置于紫外光光源之下的曝光方式,但本发明并不局限于此。例如,本发明的正负双层光刻胶光刻技术也可使用投影式曝光的方式。以下,在本实施例3中,以紫外光波长小于400nm的投影式紫外光刻系统为例,对本发明的正负双层光刻胶光刻技术的主要步骤进行说明。
(1)旋涂正性光刻胶
将清洗过后的硅片放置于旋涂仪,真空固定。用滴管滴涂正性光刻胶,在500rpm×5s+4000rpm×40s的条件下,进行光刻胶的旋涂,以130℃烘烤10秒。
(2)旋涂负性光刻胶
将冷却过后的硅片放置于旋涂仪,真空固定。用滴管滴涂负性光刻胶,在500rpm×5s+4000rpm×40s的条件下,进行光刻胶的旋涂,以90℃烘烤60秒。
(3)投影式紫外曝光
将经过以上步骤的硅片基底紧密固定在投影式光刻机的样品台上,透过光刻掩膜版,进行投影式紫外曝光操作。根据光刻胶配对组的种类和光刻胶层的厚度调整曝光时间。曝光结束后,将曝光过的硅片移到加热台上,以110℃烘烤90秒。其中,曝光通量例如为100mJ/cm 2,其可以根据需求进行改变。
(4)显影
后烘结束,待硅片冷却到室温后,进行分别显影,过程为:将光刻后的硅片置于负胶显影液(TMAH-2.38%)中,使硅片上未被曝光的负性光刻胶被清洗掉;
利用正胶显影液(TMAH-2.38%),部分显影去除曝光过的负性光刻胶下面的未被曝光过的正性光刻胶;之后将硅片取出并用水清洗,用氮气流吹干。制备出基于模板图案的轮廓线型图案。
(5)后续可进一步结合材料沉积或者干法/湿法刻蚀等步骤去实现凸起或者下凹的结构,由于与实施例1中的步骤(6)(7)、实施例2中的步骤(5)(6)相似,这里不再进行重复说明。
实施例4
关于曝光,在实施例1、2中,使用了将硅片基底紧密固定在掩膜版下抽真空并正置于紫外光光源之下的曝光方式,在实施例3中,使用了投影式曝光的方式。但本发明并不局限于此。例如,本发明的正负双层光刻胶光刻技术也可使用电子束直写曝光的方式。以下,在本实施例4中,对使用电子束直写曝光的本发明的正负双层光刻胶光刻技术的主要步骤进行说明。
(1)旋涂正性光刻胶
将清洗过后的硅片放置于旋涂仪,真空固定。滴涂正性电子束光刻胶PMMA,进行光刻胶的旋涂,进行前烘。
(2)旋涂负性光刻胶
将冷却过后的硅片放置于旋涂仪,真空固定。滴涂负性电子束光刻胶HSQ,进行光刻胶的旋涂,进行前烘。
(3)电子束直写曝光
将经过以上步骤的硅片基底放置于电子束直写系统内,进行电子束直写操作。根据光刻胶配对组的种类和光刻胶层的厚度调整电子束曝光剂量。电子束直写曝光结束后,将曝光过的硅片移到加热台上,进行后烘。其中,曝光通量例如为500μC/cm 2,其可以根据需求进行改变。
(4)显影
后烘结束,待硅片冷却到室温后,进行分别显影,过程为:将光刻后的硅片置于电子束负胶显影液(TMAH显影液)中,使硅片上未被曝光的负性光刻胶被清洗掉;之后将硅片取出并用水清洗,用氮气流吹干;
再将硅片置于正性电子束光刻胶显影液(MIBK:IPA显影液)中,部分去除曝光过的负性光刻胶下面的未被曝光过的正性光刻胶PMMA;之后将硅片取出并用水清洗,用氮气流吹干。制备出基于模板图案的轮廓线型图案。
(5)后续可进一步结合材料沉积或者干法/湿法刻蚀等步骤去实现凸起或者下凹的结构,由于与实施例1中的步骤(6)(7)、实施例2中的步骤(5)(6)相似,这里不再进行重复说明。
实施例5
关于曝光,在实施例1、2中,使用了将硅片基底紧密固定在掩膜版下抽真空并正置于紫外光光源之下的曝光方式,在实施例3中,使用了投影式曝光的方式,在实施例4中,使用了电子束直写曝光的方式。但本发明并不局限于此。例如,本发明的正负双层光刻胶光刻技术也可使用紫外直写曝光的方式。以下,在本实施例5中,对使用紫外直写曝光的本发明的正负双层光刻胶光刻技术的主要步骤进行说明。
(1)旋涂正性光刻胶
将清洗过后的硅片放置于旋涂仪,真空固定。用滴管滴涂正性光刻胶(例如AZ 1500),在500rpm×5s+4000rpm×40s的条件下,进行光刻胶的旋涂,以100℃烘烤10秒。
(2)旋涂负性光刻胶
将冷却过后的硅片放置于旋涂仪,真空固定。用滴管滴涂负性光刻胶(例如AZ nlof 2020),在500rpm×5s+4000rpm×40s的条件下,进行光刻胶的旋涂,以110℃烘烤60秒。
(3)紫外直写曝光
将经过以上步骤的硅片基底紧密固定在曝光源下,打开紫外直写系统进行直写曝光操作。根据光刻胶配对组的种类和光刻胶层的厚度调整曝光时间。曝光结束后,取下掩膜版,将曝光过的硅片移到加热台上,以110℃烘烤60秒。其中,曝光通量例如为100mJ/cm 2,其可以根据需求进行改变。
(4)显影
后烘结束,待硅片冷却到室温后,进行分别显影,过程为:将光刻后的硅 片置于负胶显影液(TMAH-2.38%)中,使硅片上未被曝光的负性光刻胶被清洗掉;
利用正胶显影液(TMAH-2.38%),部分显影去除曝光过的负性光刻胶下面的未被曝光过的正性光刻胶;之后将硅片取出并用水清洗,用氮气流吹干。制备出基于模板图案的轮廓线型图案。
(5)后续可进一步结合材料沉积或者干法/湿法刻蚀等步骤去实现凸起或者下凹的结构,由于与实施例1中的步骤(6)(7)、实施例2中的步骤(5)(6)相似,这里不再进行重复说明。
以上所述,仅是本发明的较佳实施例而已,并非是对本发明作其它形式的限制,任何熟悉本专业的技术人员可能利用上述揭示的技术内容加以变更或改型为等同变化的等效实施例。但是凡是未脱离本发明技术方案内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与改型,仍属于本发明技术方案的保护范围。
工业上的实用性
本发明的基于双层光刻胶的光刻方法可广泛应用于半导体工艺、芯片制造等领域,其具有广泛的研究和应用价值。

Claims (20)

  1. 一种基于双层光刻胶的光刻方法,其特征在于,该方法包括以下步骤:
    (1)在基底上旋涂一层正性光刻胶,并烘干;再在正性光刻胶上旋涂一层与正性光刻胶相匹配的负性光刻胶,并烘干;
    (2)在曝光源下,使用载有模板图案的光刻掩膜版或者通过聚焦直写,对两层光刻胶进行曝光,从而在负性光刻胶和正性光刻胶上分别形成大小不同的曝光图案,然后进行烘干;
    (3)用负胶显影液对负性光刻胶进行显影;
    (4)用正胶显影液对正性光刻胶进行可控显影,仅洗去正性光刻胶上曝光图案的边缘部分,并暴露基底材料;
    (5)通过材料沉积技术或者刻蚀技术,在基底材料上形成图案;
    (6)去除光刻胶。
  2. 根据权利要求1所述的基于双层光刻胶的光刻方法,其特征在于,
    通过执行步骤(4),从而将模板图案转换成轮廓线型图案,
    通过执行步骤(5),从而将轮廓线型图案转移到基底材料上。
  3. 根据权利要求1所述的基于双层光刻胶的光刻方法,其特征在于,
    所述旋涂的过程包括在500~8000rpm的转速下旋涂,旋涂后烘干的温度为30~300℃。
  4. 根据权利要求1所述的基于双层光刻胶的光刻方法,其特征在于,
    所述曝光采用单次曝光的方式。
  5. 根据权利要求1所述的基于双层光刻胶的光刻方法,其特征在于,
    所述曝光采用多次曝光的方式。
  6. 根据权利要求1所述的基于双层光刻胶的光刻方法,其特征在于,
    所述曝光源包括紫外光源、深紫外光源、极紫外光源、离子束、电子束或X射线。
  7. 根据权利要求1或6所述的基于双层光刻胶的光刻方法,其特征在 于,
    所述曝光源的波长为1~500nm,曝光后烘干的温度为30~300℃。
  8. 根据权利要求1所述的基于双层光刻胶的光刻方法,其特征在于,
    所述正性光刻胶包括正性紫外光刻胶、正性深紫外光刻胶、正性极紫外光刻胶、正性电子束光刻胶、正性离子束光刻胶或正性X射线光刻胶;
    所述负性光刻胶包括负性紫外光刻胶、负性深紫外光刻胶、负显影深紫外光刻胶、负性极紫外光刻胶、负性电子束光刻胶、负性离子束光刻胶或正性X射线光刻胶。
  9. 根据权利要求1所述的基于双层光刻胶的光刻方法,其特征在于,
    所述显影液为所用光刻胶所对应的显影液。
  10. 根据权利要求1所述的基于双层光刻胶的光刻方法,其特征在于,
    所述模板图案的特征线宽或者特征尺寸为2nm~1000μm。
  11. 根据权利要求1所述的基于双层光刻胶的光刻方法,其特征在于,
    所述材料沉积技术包括且不限于电化学沉积、电镀、CVD沉积、激光溅射、磁控溅射、热蒸发、电子束蒸发或原子沉积;
    所述刻蚀技术包括湿法刻蚀或干法刻蚀,所述湿法刻蚀包括电化学刻蚀或选择性刻蚀液体刻蚀,所述干法刻蚀包括离子刻蚀或化学反应离子刻蚀。
  12. 根据权利要求1所述的基于双层光刻胶的光刻方法,其特征在于,
    在步骤(2)中,利用投影式曝光的方式,在曝光源下,透过载有模板图案的光刻掩膜版,对两层光刻胶进行曝光。
  13. 根据权利要求1所述的基于双层光刻胶的光刻方法,其特征在于,
    在步骤(2)中,利用遮蔽式曝光的方式,在曝光源下,透过载有模板图案的光刻掩膜版,对两层光刻胶进行曝光。
  14. 根据权利要求1所述的基于双层光刻胶的光刻方法,其特征在于,
    在步骤(2)中,利用反射式曝光的方式,在曝光源下,通过在载有模板图案的光刻掩膜版上进行反射,对两层光刻胶进行曝光。
  15. 根据权利要求1所述的基于双层光刻胶的光刻方法,其特征在于,
    所述聚焦直写包括且不限于紫外光直写、深紫外光直写、极紫外光直写、离子束直写、电子束直写或X射线直写。
  16. 根据权利要求1所述的基于双层光刻胶的光刻方法,其特征在于,
    所述基底材料包括半导体、金属、绝缘体、聚合物或复合材料。
  17. 一种光刻系统,包括旋涂部、烘干部、曝光部、显影部、沉积刻蚀部、以及光刻胶去除部,所述光刻系统用于执行以下步骤:
    (1)利用旋涂部在基底上旋涂一层正性光刻胶,并利用烘干部进行烘干;再利用旋涂部在正性光刻胶上旋涂一层与正性光刻胶相匹配的负性光刻胶,并利用烘干部进行烘干;
    (2)利用曝光部在曝光源下,使用载有模板图案的光刻掩膜版或者通过聚焦直写,对两层光刻胶进行曝光,从而在负性光刻胶和正性光刻胶上分别形成大小不同的曝光图案,然后利用烘干部进行烘干;
    (3)利用显影部用负胶显影液对负性光刻胶进行显影;
    (4)利用显影部用正胶显影液对正性光刻胶进行可控显影,仅洗去正性光刻胶上曝光图案的边缘部分,并暴露基底材料;
    (5)利用沉积刻蚀部通过材料沉积技术或者刻蚀技术,在基底材料上形成图案;
    (6)利用光刻胶去除部去除光刻胶。
  18. 一种光刻系统控制方法,用于控制权利要求17所述的光刻系统执行各个步骤。
  19. 一种计算机设备,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,其特征在于,所述处理器执行所述计算机程序时实现权利要求18所述的光刻系统控制方法。
  20. 一种计算机可读取介质,其上存储有计算机程序,该计算机程序被处理器执行时实现权利要求18所述的光刻系统控制方法。
PCT/CN2022/097391 2021-06-11 2022-06-07 一种基于双层光刻胶的光刻方法 WO2022257923A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22819521.0A EP4354223A1 (en) 2021-06-11 2022-06-07 Photolithography method based on bilayer photoresist
KR1020237041058A KR20240003445A (ko) 2021-06-11 2022-06-07 이중층 포토레지스트 기반의 포토리소그래피 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110653553.7 2021-06-11
CN202110653553.7A CN115469511A (zh) 2021-06-11 2021-06-11 一种基于双层光刻胶的光刻方法

Publications (1)

Publication Number Publication Date
WO2022257923A1 true WO2022257923A1 (zh) 2022-12-15

Family

ID=84365266

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/097391 WO2022257923A1 (zh) 2021-06-11 2022-06-07 一种基于双层光刻胶的光刻方法

Country Status (5)

Country Link
EP (1) EP4354223A1 (zh)
KR (1) KR20240003445A (zh)
CN (1) CN115469511A (zh)
TW (1) TWI803344B (zh)
WO (1) WO2022257923A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115793414A (zh) * 2022-12-26 2023-03-14 有研国晶辉新材料有限公司 一种可调控高度比例的高深宽比微结构的制备方法
CN116449655A (zh) * 2023-04-19 2023-07-18 深圳品微光学科技有限公司 一种纳米级硬质掩模的制备方法
CN116449655B (zh) * 2023-04-19 2024-05-31 深圳品微光学科技有限公司 一种纳米级硬质掩模的制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116054770B (zh) * 2023-03-30 2023-07-04 北京中科飞鸿科技股份有限公司 剥离工艺制备叉指电极的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61294815A (ja) * 1985-06-21 1986-12-25 Toshiba Corp 半導体装置の製造方法
CN101969098A (zh) * 2010-08-11 2011-02-09 上海腾怡半导体有限公司 一种磁阻传感器的制造方法
CN104199252A (zh) * 2014-09-10 2014-12-10 中国科学院高能物理研究所 一种实现光刻胶微结构的方法
CN105116685A (zh) * 2015-09-24 2015-12-02 京东方科技集团股份有限公司 一种光刻胶图案的制作方法、彩色滤光片及显示装置
CN110989295A (zh) * 2019-11-18 2020-04-10 中国科学院上海光学精密机械研究所 一种激光热模光刻图像反转胶及其光刻方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010025198A1 (en) * 2008-08-26 2010-03-04 Tokyo Electron Limited Method of patterning a substrate using dual tone development

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61294815A (ja) * 1985-06-21 1986-12-25 Toshiba Corp 半導体装置の製造方法
CN101969098A (zh) * 2010-08-11 2011-02-09 上海腾怡半导体有限公司 一种磁阻传感器的制造方法
CN104199252A (zh) * 2014-09-10 2014-12-10 中国科学院高能物理研究所 一种实现光刻胶微结构的方法
CN105116685A (zh) * 2015-09-24 2015-12-02 京东方科技集团股份有限公司 一种光刻胶图案的制作方法、彩色滤光片及显示装置
CN110989295A (zh) * 2019-11-18 2020-04-10 中国科学院上海光学精密机械研究所 一种激光热模光刻图像反转胶及其光刻方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GUO JING, WU PING: "Introduction of Developing Mechanism of Positive and Negative Photoresist Developing Liquid", DIANZI SHIJIE - ELECTRONICS WORLD, DIANZI SHIJIE ZAZHISHE, CN, no. 19, 15 October 2020 (2020-10-15), CN , pages 150 - 151, XP093012520, ISSN: 1003-0522, DOI: 10.19353/j.cnki.dzsj.2020.19.070 *
LAI WUXING ͨ¹Ý¸Ä±Ä¹Â¿Ì½º²ÄÁÏΜÄÐÔÖÊ£¬, SHU-ZI: "Comparison of Characteristics of Photoresists in Photoithography Process on Micromachining ", SEMICONDUCTOR TECHNOLOGY, GAI-KAN BIANJIBU, SHIJIAZHUANG, CN, vol. 29, no. 11, 23 November 2004 (2004-11-23), CN , pages 22 - 25, XP093012599, ISSN: 1003-353X, DOI: 10.13290/j.cnki.bdtjs.2004.11.007 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115793414A (zh) * 2022-12-26 2023-03-14 有研国晶辉新材料有限公司 一种可调控高度比例的高深宽比微结构的制备方法
CN116449655A (zh) * 2023-04-19 2023-07-18 深圳品微光学科技有限公司 一种纳米级硬质掩模的制备方法
CN116449655B (zh) * 2023-04-19 2024-05-31 深圳品微光学科技有限公司 一种纳米级硬质掩模的制备方法

Also Published As

Publication number Publication date
CN115469511A (zh) 2022-12-13
EP4354223A1 (en) 2024-04-17
TW202303297A (zh) 2023-01-16
TWI803344B (zh) 2023-05-21
KR20240003445A (ko) 2024-01-09

Similar Documents

Publication Publication Date Title
WO2022257923A1 (zh) 一种基于双层光刻胶的光刻方法
TWI351582B (en) Photoresist
TWI387998B (zh) 微影方法
KR20130123408A (ko) 측벽 화상 전사 피치 더블링 및 인라인 임계 치수 슬리밍
US9599888B2 (en) Reflective lithography masks and systems and methods
JP2010503993A (ja) リフトオフ・パターニング向けの向上したエッチング技法
WO2011037809A1 (en) High normality solution for removing freeze material in lithographic applications
JPH0210362A (ja) 微細パターン形成方法
JP5343378B2 (ja) ステンシルマスクおよびその製造方法
WO2024027782A1 (zh) 光刻方法及光刻系统
JP2024520859A (ja) 2層フォトレジストに基づくフォトリソグラフィ方法
TW202416055A (zh) 微影方法及微影系統
JP2012109322A (ja) パターン形成方法
JPH0334053B2 (zh)
US20240030029A1 (en) Patterning Method Using Secondary Resist Surface Functionalization for Mask Formation
TW200403538A (en) Method for manufacturing resist pattern and photomask
Mednikarov et al. Photolithographic structuring with evaporated inorganic photoresist
JP3627137B2 (ja) パターン形成方法
US8512937B2 (en) Lithographic dry development using optical absorption
JPH08328265A (ja) 微細パターン形成方法
TW573232B (en) Photolithography process and rework process of photoresist
TWI244121B (en) Chemical shrink process applied in the method of manufacturing micro-nanometer circuit
CN115868012A (zh) 形成窄槽接触部的方法
JPS646448B2 (zh)
JPH05291130A (ja) 多層レジスト法及び半導体装置の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22819521

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20237041058

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2023576424

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2022819521

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022819521

Country of ref document: EP

Effective date: 20240111