WO2022257790A1 - 一种通信方法及装置 - Google Patents

一种通信方法及装置 Download PDF

Info

Publication number
WO2022257790A1
WO2022257790A1 PCT/CN2022/095700 CN2022095700W WO2022257790A1 WO 2022257790 A1 WO2022257790 A1 WO 2022257790A1 CN 2022095700 W CN2022095700 W CN 2022095700W WO 2022257790 A1 WO2022257790 A1 WO 2022257790A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal device
service
data
data packet
data packets
Prior art date
Application number
PCT/CN2022/095700
Other languages
English (en)
French (fr)
Inventor
李晨琬
陈磊
许斌
于峰
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202110750254.5A external-priority patent/CN115515111A/zh
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP22819388.4A priority Critical patent/EP4354914A1/en
Publication of WO2022257790A1 publication Critical patent/WO2022257790A1/zh
Priority to US18/527,855 priority patent/US20240114383A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/06Selective distribution of broadcast services, e.g. multimedia broadcast multicast service [MBMS]; Services to user groups; One-way selective calling services
    • H04W4/08User group management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0268Traffic management, e.g. flow control or congestion control using specific QoS parameters for wireless networks, e.g. QoS class identifier [QCI] or guaranteed bit rate [GBR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/50Service provisioning or reconfiguring
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/22Alternate routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/28Routing or path finding of packets in data switching networks using route fault recovery

Definitions

  • the present application relates to the technical field of communication, and in particular to a communication method and device.
  • the new wireless (new radio, NR) system introduces a large number of machine connection application scenarios, such as industrial scenarios, intelligent monitoring scenarios, device defect detection scenarios, etc., this application will achieve large and fast data transmission, and then realize Real-time remote sensing, telemetry and management of everything.
  • the data transmission process is as follows: the programmable logic controller (programmable logic control, PLC) sends the generated data to the terminal equipment, and the terminal equipment sends it to the access network and the core network, and then the core network
  • the device sends to the server, which can manage various types of machinery or production processes in industrial scenarios.
  • the requirements for service reliability and transmission rate are relatively high.
  • the transmission reliability and transmission rate of existing terminal equipment cannot meet the requirements of related services, so the transmission performance is relatively low.
  • intelligent monitoring scenarios and device defect detection scenarios also have high requirements for the reliability and high speed of data transmission. Therefore, how to improve transmission reliability and transmission rate is an urgent problem to be solved.
  • the present application provides a communication method and device, which can improve transmission reliability and transmission rate.
  • the present application provides a communication method, and the execution subject of the method may be an access network device, or may be a chip or a circuit.
  • the method includes: determining the first information for configuring the data transmission rule of the first service, and sending it to the first terminal device among the N terminal devices, where the N terminal devices are related to the first service, and N is an integer greater than 1 .
  • the data of the first service can be transmitted on N terminal devices according to the configured data transmission rules, and the access network devices can flexibly configure the data transmission rules, so that Data transmission rules that meet the high reliability and high speed requirements of the first business, and improve the transmission performance of the first business.
  • configuration information from the first core network device is received, and the configuration information indicates that N terminal devices are related to the first service.
  • the access network device can determine the terminal device associated with the first service, so as to control the N terminal devices to cooperate to transmit the first service, and improve the transmission performance of the first service.
  • the configuration information may include configuration information of N terminal devices, where the configuration information of each terminal device includes identification information of the first service.
  • the correlation or binding relationship or association relationship, etc.
  • the configuration information may include configuration information of the first service, where the configuration information may carry identification information of the aforementioned N terminal devices.
  • the identification information of the N terminal devices By carrying the identification information of the N terminal devices in the configuration information of the first service, the correlation (or binding relationship or association relationship, etc.) between the N terminal devices and the first service can be indicated.
  • the data transmission rule is determined according to the transmission mode of the first service. Through the above design, the data transmission rules can be more in line with the requirements of the first service.
  • the transmission mode of the first service may be determined according to at least one of the following: the channel quality with at least one of the N terminal devices, the working status of at least one of the N terminal devices 1.
  • QoS requirements of the first service Through the above design, the data transmission rules can be determined according to the business requirements of the first service, the air interface quality of the terminal equipment, the working status of the terminal equipment, etc., so that the N terminal equipment can realize the backup or distribution function according to the business requirements or the air interface quality, thereby The reliability and transmission rate of service transmission can be improved.
  • the transmission mode of the first service may be determined according to receiving first indication information from the first core network device, where the first indication information indicates the transmission mode corresponding to the first service.
  • the access network device can be configured with a data transmission rule conforming to the transmission mode of the first service.
  • the transmission mode may be the first mode.
  • the N terminal devices include at least one master terminal device and at least one backup terminal device, wherein the backup terminal device is used to The first service is transmitted when all or part of the master terminal devices in the terminal devices fail.
  • the backup terminal device can continue to transmit the first service, thereby ensuring the reliability of the first service, and, in the first mode, the backup terminal device is on the main terminal When the equipment fails, the first service is transmitted, which can save resources and improve the efficiency of the system.
  • the transmission mode may be the second mode, and in the second mode, all the N terminal devices transmit the first service, and the data packets transmitted by the N terminal devices are the same.
  • the reliability of the first service can be guaranteed by transmitting the same data of the first service through multiple terminal devices.
  • the transmission mode may be a third mode.
  • the N terminal devices all transmit the first service, and the data packets transmitted by the N terminal devices are different.
  • the transmission rate of the first service can be guaranteed by transmitting different data of the first service through multiple terminal devices.
  • the transmission mode may be a fourth mode.
  • the fourth mode all N terminal devices transmit the first service, and the data packets transmitted by the first terminal device are the same as those of the second service among the N terminal devices. Compared with the data packets transmitted by the terminal equipment, there are identical data packets and different data packets. Through the above mode, both reliability and transmission rate can be improved.
  • the first information includes at least one of a first value and a threshold value corresponding to the first terminal device, and the first value and the threshold value are used to determine a data packet transmitted by the first terminal device.
  • the first terminal device can determine whether the data packet needs to be sent according to the sequence number, the first value and the threshold value of the data packet, that is, whether the data packet is included in the data packets to be sent.
  • the first information indicates whether the first terminal device sends a data packet of the first service.
  • the first terminal device can determine whether to transmit the first service.
  • a Packet Data Convergence Layer Protocol (PDCP) status report or a first sequence number may also be sent to the first terminal device, where the PDCP status report indicates successfully received data packets and/or unsuccessfully received
  • the first sequence number is the sequence number of the first data packet to be sent by the first terminal device or the sequence number corresponding to the data packet to be sent by the first terminal device.
  • the first information instructs the first terminal device to send a data packet whose sequence number is odd or even.
  • the first terminal device can determine whether the data packet needs to be sent according to the serial number of the data packet, that is, whether the data packet is included in the data packets to be sent.
  • the first information indicates a distribution ratio of the first terminal device, where the distribution ratio is a ratio of the number of data packets that the first terminal device needs to send to k among the k data packets.
  • the first terminal device can determine the number of data packets that need to be sent.
  • the first information further includes at least one of the following items: the position of the data packet, and the value of k, where the position of the data packet is used to indicate that the data packet to be sent by the first terminal device is within k data position in the package.
  • the first terminal device can determine the specific location of the data packet to be sent.
  • the first information indicates a range of sequence numbers of data packets that the first terminal device needs to send.
  • the first terminal device can determine the data packets that need to be sent.
  • the data packet is from at least one terminal device among the N terminal devices; deduplicate and reorder the received data packets; deduplicate and reorder The sorted data packets are sent to the second core network device.
  • the second terminal device among the N terminal devices may be instructed to send the first data packet.
  • the terminal device can transmit data packets other than its own data packets to be sent, which can improve transmission reliability.
  • the first terminal device when it is determined that the first terminal device fails to send the first data packet, it may receive second indication information from the first terminal device, and the second indication information indicates that the first terminal device has not received or failed to send the first data packet.
  • first packet “unsuccessfully sent” can be understood as that the first terminal device does not receive the first data packet from the application layer, so that the first data packet cannot be sent to the access network device.
  • the access network device can schedule other terminal devices to upload the first data packet in time, thereby improving reliability.
  • the access network device can allocate uplink resources according to the data volume of the data packets that the terminal device needs to send, so as to avoid allocating too many or too few transmission resources to the terminal device, thereby improving the rationality of resource allocation and improving resource utilization.
  • third indication information may also be sent to the first terminal device, where the third indication information is used to indicate to send the BSR.
  • the access network device can instruct some terminal devices to report the BSR, and the rest of the terminal devices may not report the BSR, thereby saving signaling overhead.
  • fourth indication information may also be sent to at least one terminal device among the remaining terminal devices, where the fourth indication information is used to indicate not to send a BSR, where the remaining terminal devices are N terminal devices except the first Terminal equipment other than terminal equipment.
  • the remaining terminal devices may not report the BSR, thereby saving signaling overhead.
  • second information may also be sent to the first terminal device, where the second information is used to configure the data radio bearer of the first service.
  • the present application provides a communication method, and the execution body of the method may be a first terminal device, or may be a chip or a circuit.
  • the method includes: receiving the first information from the access network device, the first information is used to configure the data transmission rules of the first service, the first service is related to N terminal devices, N is an integer greater than 1, and the N terminal devices include The first terminal device; determine the data packet to be sent of the first service according to the data transmission rule and send it to the access network device, where the data packet to be sent is at least one data packet that needs to be sent by the first terminal device.
  • the data of the first service is transmitted on N terminal devices, and the access network device can configure the data transmission rules of the N terminal devices, so that the configured data transmission
  • the rules meet the high reliability and high speed requirements of the first service, and improve the transmission performance of the first service.
  • the data transmission rule is determined according to the transmission mode of the first service. Through the above design, the data transmission rules can be more in line with the requirements of the first service.
  • the transmission mode may be the first mode.
  • the N terminal devices include at least one master terminal device and at least one backup terminal device, wherein the backup terminal device is used to The first service is transmitted when all or part of the master terminal devices in the terminal devices fail.
  • the backup terminal device can continue to transmit the first service, thereby ensuring the reliability of the first service, and, in the first mode, the backup terminal device is on the main terminal When the equipment fails, the first service is transmitted, which can save resources and improve the efficiency of the system.
  • the transmission mode may be the second mode, and in the second mode, all the N terminal devices transmit the first service, and the data packets transmitted by the N terminal devices are the same.
  • the reliability of the first service can be guaranteed by transmitting the same data of the first service through multiple terminal devices.
  • the transmission mode may be a third mode.
  • the N terminal devices all transmit the first service, and the data packets transmitted by the N terminal devices are different.
  • the transmission rate of the first service can be guaranteed by transmitting different data of the first service through multiple terminal devices.
  • the transmission mode may be a fourth mode.
  • the fourth mode all N terminal devices transmit the first service, and the data packets transmitted by the first terminal device are the same as those of the second service among the N terminal devices. Compared with the data packets transmitted by the terminal equipment, there are identical data packets and different data packets. Through the above mode, both reliability and transmission rate can be improved.
  • the first information includes at least one of a first value and a threshold value corresponding to the first terminal device, and the first value and the threshold value are used to determine a data packet transmitted by the first terminal device.
  • the first terminal device can determine whether the data packet needs to be sent according to the sequence number, the first value and the threshold value of the data packet, that is, whether the data packet is included in the data packets to be sent.
  • the first information indicates whether the first terminal device sends a data packet of the first service.
  • the first terminal device can determine whether to transmit the first service.
  • a PDCP status report or a first sequence number may also be accepted, where the PDCP status report indicates a successfully received data packet and/or an unsuccessfully received data packet, and the first sequence number is the first terminal device The sequence number of the first data packet to be sent or the sequence number corresponding to the data packet to be sent by the first terminal device.
  • the first terminal device can determine the initial data packet to be sent.
  • the first information instructs the first terminal device to send a data packet whose sequence number is odd or even.
  • the first terminal device can determine whether the data packet needs to be sent according to the serial number of the data packet, that is, whether the data packet is included in the data packets to be sent.
  • the first information indicates a distribution ratio of the first terminal device, where the distribution ratio is a ratio of the number of data packets that the first terminal device needs to send to k among the k data packets.
  • the first terminal device can determine the number of data packets that need to be sent.
  • the first information further includes at least one of the following items: the position of the data packet, and the value of k, where the position of the data packet is used to indicate that the data packet to be sent by the first terminal device is within k data position in the package.
  • the first terminal device can determine the specific location of the data packet to be sent.
  • the first information indicates a range of sequence numbers of data packets that the first terminal device needs to send.
  • the first terminal device can determine the data packets that need to be sent.
  • M data packets of the first service may be received, where M is an integer greater than 0, and the to-be-sent data packets are determined according to M packets are determined.
  • the first terminal device can send all or part of the M data packets according to the data transmission rule.
  • the data packets to be sent may be numbered according to the receiving sequence of the M data packets or the sequence numbers carried in the M data packets.
  • indication information from the access network device may also be received, where the indication information is used to instruct sending the second data packet, where the second data packet does not belong to the data packet to be sent.
  • the terminal device can transmit data packets other than its own data packets to be sent, which can improve transmission reliability.
  • M data packets before sending the data packets to be sent to the access network device, M data packets can also be buffered; the number of data packets to be sent is determined according to the second configuration information and M; A first buffer status report (BSR), where the first BSR indicates the number of data packets to be sent.
  • BSR first buffer status report
  • the first terminal device can determine its own data volume according to the data transmission rules, so that it can indicate the data volume that it needs to send when reporting the BSR, so that the access network device can according to the data packets that the first terminal device needs to transmit.
  • the amount of data allocates uplink resources for the first terminal device, thereby improving the accuracy of resource allocation and reducing waste of resources.
  • the data packets to be sent may also be buffered; and a second BSR is sent to the access network device, and the second BSR indicates the number of buffered data packets.
  • the terminal device can determine its own data volume according to the data transmission rules, and only buffer the data packets that need to be sent by itself, so that it can indicate the data volume that it needs to send when reporting to the BSR, so that the access network device can transmit data according to the needs of the terminal device
  • the amount of data corresponding to the transmitted data packets allocates uplink resources to the terminal device, thereby improving the accuracy of resource allocation, and improving the utilization rate of storage resources of the terminal device, thereby reducing waste of resources.
  • the third instruction information from the access network device may also be received, the third instruction information is used to instruct sending BSR; cache M data packets ; Send a third BSR to the access network device, where the third BSR indicates the amount of data buffered by the first terminal device.
  • the access network device since the access network device has delivered the data transmission rules to the terminal device, and the data packets of the first service received by the terminal device are the same, the access network device can infer each The amount of data corresponding to the terminal device, and then the uplink resource can be allocated to each terminal device according to the corresponding data amount, so that the accuracy of resource allocation can be improved, and resource waste can be reduced.
  • third indication information from the access network device may be received, where the third indication information is used to instruct sending the BSR.
  • the access network device can instruct some terminal devices to report the BSR, and the rest of the terminal devices may not report the BSR, thereby saving signaling overhead.
  • fourth indication information from the access network device may also be received, where the fourth indication information is used to indicate not to send the BSR. Therefore, the first terminal device may not trigger BSR reporting, and through the above design, signaling overhead may be saved.
  • second information from the access network device may also be received, the second information is used to configure the data radio bearer of the first service; and the data radio bearer of the first service is configured based on the second information.
  • the present application provides a communication method, and the execution body of the method may be an access network device, or may be a chip or a circuit.
  • the method includes: receiving first information, the first information indicating the QoS requirement of the first service; the access network device determining the QoS requirement actually corresponding to the first terminal device among the N terminal devices.
  • the QoS of the first terminal device is lower than the QoS requirement of the first service
  • N terminal devices are related to the first service
  • N is an integer greater than 1.
  • the first information includes at least one of the following: 5G QoS Indicator (5QI) information, Allocation Retention Priority (ARP), Guaranteed Bit Rate (GBR), and Aggregate Maximum Bit Rate (AMBR).
  • 5QI 5G QoS Indicator
  • ARP Allocation Retention Priority
  • GRR Guaranteed Bit Rate
  • AMBR Aggregate Maximum Bit Rate
  • the method further includes: when configuring the transmission parameters according to the actual QoS corresponding to the first terminal device, increasing the MCS used by the first terminal device for transmitting the first service.
  • the QoS of the terminal device can be reduced by configuring a higher MCS for the first terminal device.
  • the method further includes: when configuring the transmission parameters according to the actual QoS corresponding to the first terminal device, reducing time-frequency resources used by the first terminal device for transmitting the first service. In the foregoing manner, by configuring fewer time-frequency resources for the first terminal device, the data transmission rate can be reduced, thereby reducing the QoS of the terminal device.
  • the method further includes: when configuring the transmission parameters according to the actual QoS corresponding to the first terminal device, reducing the number of repeated transmissions for the first terminal device to transmit the first service.
  • the transmission parameters according to the actual QoS corresponding to the first terminal device, reducing the number of repeated transmissions for the first terminal device to transmit the first service.
  • the method further includes: receiving a first data packet from the first terminal device. If the second terminal device fails to send the first data packet, indication information may be sent to the second terminal device, where the indication information instructs the second terminal device not to retransmit the first data packet.
  • the indication information may be an ACK indication or no retransmission indication, or the indication information may be a PDCP status report and the status of the first data packet in the PDCP status report is successfully sent.
  • the method further includes: sending the data packets from the N terminal devices to the core network device after deduplication and reordering.
  • the method further includes: when it is determined that the first terminal device is working abnormally, improving the QoS of at least one of the N terminal devices that is not working abnormally.
  • the reliability of the first service can be guaranteed by improving the QoS of the remaining terminal equipment.
  • the number of terminal devices without working abnormalities among the N terminal devices is greater than 1, the QoS of the terminal devices without working abnormalities can be maintained unchanged, or the QoS of the terminal devices without working abnormalities can be improved.
  • the QoS of all or part of the terminal devices in the network, and the average QoS of the improved terminal devices without working abnormality is lower than the QoS requirement of the first service.
  • the QoS of the terminal device may be increased so that the QoS of the terminal device meets the QoS requirement of the first service.
  • improving the QoS of the terminal device includes: reducing the MCS used by the terminal device for transmitting the first service.
  • improving the QoS of the terminal device includes: increasing time-frequency resources used by the terminal device for transmitting the first service.
  • improving the QoS of the terminal device includes: increasing the number of repeated transmission times for the terminal device to transmit the first service.
  • the present application further provides a communication device, and the communication device implements any method provided in the first aspect or the third aspect.
  • the communication device may be realized by hardware, or may be realized by executing corresponding software by hardware.
  • the hardware or software includes one or more units or modules corresponding to the above functions.
  • the communication device includes: a processor, where the processor is configured to support the communication device to perform corresponding functions of the terminal device in the methods shown above.
  • the communication device may also include a memory, which may be coupled to the processor, which holds program instructions and data necessary for the communication device.
  • the communication device further includes an interface circuit, where the interface circuit is used to support communication between the communication device and equipment such as network equipment.
  • the communication device includes corresponding functional modules, respectively configured to implement the steps in the above method.
  • the functions may be implemented by hardware, or may be implemented by executing corresponding software through hardware.
  • Hardware or software includes one or more modules corresponding to the above-mentioned functions.
  • the structure of the communication device includes a processing unit and a communication unit, and these units can perform the corresponding functions in the above method examples.
  • these units can perform the corresponding functions in the above method examples.
  • the present application further provides a communication device, and the communication device implements any method provided in the second aspect above.
  • the communication device may be realized by hardware, or may be realized by executing corresponding software by hardware.
  • the hardware or software includes one or more units or modules corresponding to the above functions.
  • the communication device includes: a processor, where the processor is configured to support the communication device to perform corresponding functions of the terminal device in the methods shown above.
  • the communication device may also include a memory, which may be coupled to the processor, which holds program instructions and data necessary for the communication device.
  • the communication device further includes an interface circuit, where the interface circuit is used to support communication between the communication device and equipment such as network equipment.
  • the communication device includes corresponding functional modules, respectively configured to implement the steps in the above method.
  • the functions may be implemented by hardware, or may be implemented by executing corresponding software through hardware.
  • Hardware or software includes one or more modules corresponding to the above-mentioned functions.
  • the structure of the communication device includes a processing unit and a communication unit, and these units can perform corresponding functions in the above method examples.
  • these units can perform corresponding functions in the above method examples.
  • a communication device including a processor and an interface circuit, and the interface circuit is used to receive signals from other communication devices other than the communication device and transmit them to the processor or send signals from the processor
  • the processor is used to implement the method in the aforementioned first aspect or third aspect and any possible design through a logic circuit or executing code instructions.
  • a communication device including a processor and an interface circuit, and the interface circuit is used to receive signals from other communication devices other than the communication device and transmit them to the processor or send signals from the processor
  • the processor implements the method in the aforementioned second aspect and any possible design through a logic circuit or executing code instructions.
  • a computer-readable storage medium is provided, and a computer program or instruction is stored in the computer-readable storage medium.
  • the computer program or instruction is executed by a processor, the aforementioned first aspect and any possible design can be realized. , or, the method in the second aspect and any possible design, or, the method in the third aspect and any possible design.
  • a computer program product storing instructions.
  • the instructions When the instructions are executed by a processor, the aforementioned first aspect and any possible design, or the method in the second aspect and any possible design, Or, the method in the third aspect and any possible design.
  • a chip system in a tenth aspect, includes a processor, and may also include a memory, for implementing the aforementioned first aspect and any possible design, or the method in the second aspect and any possible design, or , a method in the third aspect and any possible design.
  • the system-on-a-chip may consist of chips, or may include chips and other discrete devices.
  • a communication system in an eleventh aspect, includes the device described in the first aspect (such as an access network device) and N terminal devices, wherein the N terminal devices include the device described in the second aspect (such as the first terminal device).
  • a twelfth aspect provides a communication system, the system includes the apparatus described in the third aspect (such as an access network device) and N terminal devices, where the N terminal devices are related to the first service.
  • Fig. 1 is a schematic diagram of a network protocol stack of an embodiment of the present application
  • FIG. 2 is a schematic diagram of backup transmission in an embodiment of the present application
  • FIG. 3 is a schematic structural diagram of a communication system according to an embodiment of the present application.
  • FIG. 4 is a schematic flowchart of a communication method according to an embodiment of the present application.
  • FIG. 5 is a schematic diagram of reordering according to an embodiment of the present application.
  • FIG. 6 is a schematic diagram of an application scenario of an embodiment of the present application.
  • FIG. 7 is a schematic flow diagram of a data transmission according to an embodiment of the present application.
  • FIG. 8 is a schematic diagram of data transmission according to an embodiment of the present application.
  • FIG. 9 is another schematic diagram of data transmission according to the embodiment of the present application.
  • FIG. 10 is another schematic diagram of data transmission in the embodiment of the present application.
  • FIG. 11 is a schematic diagram of packet loss in an embodiment of the present application.
  • FIG. 12A is a schematic flowchart of another communication method according to an embodiment of the present application.
  • FIG. 12B is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of another communication device according to an embodiment of the present application.
  • Network protocol architecture as shown in Figure 1, the network protocol stack includes application (APP) layer, service data adaptation protocol (service data adaptation protocol, SDAP), packet data convergence protocol (packet data convergence protocol, PDCP) ), radio link control (radio link control, RLC) layer, media access control (media access control, MAC) layer and physical (physical, PHY) layer, wherein the APP layer is above the SDAP layer, and the SDAP layer is above the PDCP The PDCP layer is located above the RLC layer, the RLC layer is located above the MAC layer, and the MAC layer is located above the PHY layer.
  • APP application
  • SDAP service data adaptation protocol
  • packet data convergence protocol packet data convergence protocol
  • RLC radio link control
  • media access control media access control
  • MAC media access control
  • PHY physical
  • the protocol stack of the core network equipment includes: general packet radio service (general packet radio service, GPRS) user plane tunneling protocol (GPRS tunneling protocol for the user plane, GTP-U) layer, user datagram protocol (user datagram protocol, UDP) layer, Internet protocol (internet protocol, IP) layer, data link layer (data link layer, DLL), PHY layer, wherein, the GTP-U layer is above the UDP layer, the UDP layer is above the IP layer, and the IP layer is above the Above the data link layer, the data link layer is above the physical layer.
  • the server includes the APP layer.
  • the packet generated by the APP layer can be a transmission control protocol (transmission control protocol, TCP)/IP packet, or a MAC packet in the Ethernet (Ethernet) protocol, or other packets, which are not limited here. It should be understood that the protocol layers listed above are only examples, and do not specifically limit the protocol layers included in the network protocol stack.
  • Multicast refers to a technology in which an access network device sends data in one resource and multiple terminal devices receive it together.
  • the access network device generally notifies the terminal device by broadcast or unicast: the multicast service supported by the access network device, the content of the notification may include a temporary mobile group identity (TMGI) TMGI and a group wireless Network temporary identifier (group radio network temporary identifier, G-RNTI), and configuration information for detecting G-RNTI, such as detection time-frequency position, detection cycle, etc.
  • TMGI temporary mobile group identity
  • G-RNTI group radio network temporary identifier
  • configuration information for detecting G-RNTI such as detection time-frequency position, detection cycle, etc.
  • Buffer status report (buffer status report, BSR) technology:
  • the data communication between the terminal device and the access network device is realized by resource scheduling for the terminal device by the access network device. For example, when a logical channel of the terminal device has new data or data with higher priority arrives, BSR will be triggered. If there is no directly available uplink resource, the terminal device will first send an uplink scheduling request (scheduling request, SR) Request resources from the access network device. After receiving the SR, the access network device will allocate a certain amount of resources for the terminal device to report the BSR to the terminal device. The terminal device sends a BSR on the allocated resources to indicate how much data it needs to send, so that The access network device further determines how many resources to allocate to the terminal device for data transmission according to the BSR.
  • SR uplink scheduling request
  • the terminal device When there are available uplink resources, the terminal device needs to assemble the BSR. Specifically, the data volume (buffer size, BS) information of all data to be sent in the logical channel group in the terminal device is encapsulated into the BSR MAC control element ( Control element, CE) is sent on the uplink resource.
  • the BSR report may be based on a logical channel group, which reflects the amount of data in all logical channels in the logical channel group. Exemplarily, the BSR may report an index value, and the index value corresponds to a data size range, rather than a precise amount of uplink data.
  • “at least one” means one or more, and “multiple” means two or more.
  • “And/or” describes the association relationship of associated objects, indicating that there can be three types of relationships, for example, A and/or B, which can mean: A exists alone, A and B exist at the same time, and B exists alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the contextual objects are an “or” relationship.
  • “At least one of the following” or similar expressions refer to any combination of these items, including any combination of single or plural items.
  • At least one item (piece) of a, b, or c can represent: a, b, c, a-b, a-c, b-c, or a-b-c, where a, b, c can be single or multiple .
  • first and second are used to distinguish multiple objects, and are not used to limit the size, content, order, and timing of multiple objects , priority or importance, etc.
  • first information and the second information are only for distinguishing different information, but do not indicate the difference in content, priority or importance of the two information.
  • the NR system introduces the application scenario of massive machine connection, which will realize a large amount of fast data transmission, and then realize real-time remote sensing, telemetry and management of all things. For example, industrial scenarios, intelligent monitoring scenarios, device defect detection scenarios, etc. In these application scenarios, the reliability of the business is relatively high. However, due to the cost of the existing terminal equipment, the reliability of the hardware and software cannot be achieved. According to the requirements of relevant services, how to ensure that the service transmission is not affected when the terminal fails is an urgent problem to be solved.
  • IoT devices such as devices that control various types of machinery or production processes in industrial scenarios (such as programmable logic controllers (programmable logic control, PLC)), smart
  • the monitoring equipment in the monitoring scene such as a camera, etc.
  • the detection equipment in the defect detection scene of the device, etc. can send data packets to two terminal devices respectively, and the two terminal devices send the same data packets to the access network and Core network, through the core network to reach the data destination, that is, the server of the Internet of Things (such as servers used to manage various types of machinery or production processes in industrial scenarios, etc.).
  • the server of the Internet of Things such as servers used to manage various types of machinery or production processes in industrial scenarios, etc.
  • downlink data can reach two terminal devices respectively through the core network and the access network, and the two terminal devices send it to the IoT device, and the IoT device processes related data.
  • the same data needs to be transmitted twice from the terminal device to the access network to the core network, so it needs to consume double the air interface resources, transmission resources, processing resources of the site, and power resources of the UE.
  • the failure of terminal equipment is sporadic. For sporadic things, a large amount of resources are consumed for a long time, which will reduce the efficiency of the system.
  • the data transmission rate is high.
  • Backhaul requires a very high transmission bandwidth. Due to the limited power and hardware capabilities of a single terminal device, it cannot guarantee the backhaul of high-speed video services. Therefore, how to solve high-speed transmission is also an urgent problem to be solved.
  • the embodiments of the present application provide two communication methods and devices.
  • the access network device may indicate the data transmission rules of multiple terminal devices according to the transmission mode of the service (or the transmission requirement or the air interface quality of the terminal device, etc.), for example, if the transmission mode of the service is high reliability transmission (or The transmission requirement of the service is high reliability), the access network device can instruct multiple terminal devices to transmit the same data packet for the service, so as to ensure the reliability of the service. If the transmission mode of the service is high-speed transmission (or the transmission requirement of the service is high-speed), the access network device may instruct multiple terminal devices to transmit different data packets for the service, thereby increasing the transmission rate.
  • the access network device can flexibly control the transmission mode of multiple terminal devices, so that backup or offloading can be realized according to service requirements (or the air interface quality of the terminal device), and thus highly reliable and high-speed transmission of services can be realized.
  • the communication method provided by this application can be applied to various communication systems, for example, it can be Internet of things (internet of things, IoT), narrowband Internet of things (narrow band internet of things, NB-IoT), long term evolution (long term evolution) , LTE), it can also be the fifth generation (5th generation, 5G) communication system, it can also be a hybrid architecture of LTE and 5G, it can also be 6G or a new communication system that will appear in future communication development.
  • the communication system may also be a machine to machine (machine to machine, M2M) network, a machine type communication (machine type communication, MTC) or other networks.
  • the communication method provided by the embodiment of the present application can be applied to the communication system shown in FIG. 3
  • the communication system includes: core network equipment (such as core network equipment 1 and core network equipment 2), access network equipment, Switches/routers/hubs, terminal devices (such as UE1-UE3) and industrial devices (such as industrial devices 1-3).
  • core network equipment such as core network equipment 1 and core network equipment 2
  • access network equipment such as UE1-UE3
  • terminal devices such as UE1-UE3
  • industrial devices such as industrial devices 1-3
  • industrial equipment 1 and industrial equipment 2 are connected to UE1 through a switch/router/hub
  • industrial equipment 3 is connected to UE2.
  • UE1, UE2, and UE3 are connected to access network equipment through wireless links
  • the access network equipment is connected to core network equipment 1 and core network equipment 2.
  • FIG. 3 is only an exemplary architecture of a communication system, and does not specifically limit the type, shape, quantity, connection relationship, etc. of communication devices included in the communication system.
  • the embodiments of the present application can also be used in other communication systems, as long as the data sending end in the communication system needs to transmit data to the data receiving end through terminal equipment, access network equipment, and core network equipment.
  • the terminal equipment shown above may be an entity on the user side for receiving or transmitting signals, and may also be called user equipment (user equipment, UE), access terminal, subscriber unit, subscriber station, mobile station, mobile station , a remote station, a remote terminal, a mobile device, a user terminal, a wireless communication device, a user agent, or a user device.
  • the terminal device in the embodiment of the present application may be a mobile phone, a tablet computer (Pad), a computer with a wireless transceiver function, a virtual reality (virtual reality, VR) terminal, an augmented reality (augmented reality, AR) terminal, an industrial Wireless terminals in industrial control, wireless terminals in self driving, wireless terminals in video surveillance, wearable terminal equipment, customer-premises equipment (CPE), etc.
  • the device for realizing the function of the terminal device may be the terminal device, or may be a device capable of supporting the terminal device to realize the function, such as a chip system, and the device may be installed in the terminal device.
  • the system-on-a-chip may be composed of chips, or may include chips and other discrete devices.
  • An access network device may be an entity on the network side for transmitting or receiving signals, for example, a device in an access network that communicates with a wireless terminal device through one or more cells over an air interface.
  • the access network device may be a next generation base station (next Generation node B, gNB) in the NR system, or an evolved base station (evolutional node B, eNB) in the LTE system, etc.
  • the device for implementing the function of the access network device may be the access network device, or a device capable of supporting the access network device to realize the function, such as a chip system, and the device may be installed on the access network device. into the network device.
  • the technical solution provided by the embodiment of the present application is described by taking the access network device as an example for realizing the function of the access network device.
  • Core network equipment can be a general term for various functional entities used to manage users, data transmission and access network equipment configuration on the network side, including access and mobility management function (access and mobility management function, AMF), user plane function (user plane function, UPF), session management function (session management function, SMF), etc.
  • access and mobility management function access and mobility management function, AMF
  • user plane function user plane function
  • UPF user plane function
  • session management function session management function, SMF
  • Industrial equipment can be used in industrial scenarios, responsible for the generation and processing of some control data, such as PLC or camera.
  • the network architecture and business scenarios described in the embodiments of the present application are for more clearly illustrating the technical solutions of the embodiments of the present application, and do not constitute limitations on the technical solutions provided by the embodiments of the present application. With the evolution of architecture and the emergence of new business scenarios, the technical solutions provided by the embodiments of this application are also applicable to similar technical problems.
  • the method can be applied to a scenario where a data sending end sends data to a data receiving end through a terminal device, an access network device, and a core network device, for example, an industrial scenario.
  • FIG. 4 it is a schematic flowchart of a communication method provided by the present application.
  • the method includes:
  • the access network device determines first information.
  • the first information may be used to configure a data transmission rule of the first service, and further, the first information may also indicate a transmission mode of the first service.
  • the data transmission rule can be understood as a distribution rule, which is used to instruct multiple terminal devices how to transmit the first service.
  • the specific data transmission rule, transmission mode, content of the first information, and the way the access network device determines the first information will be Described in detail below.
  • the presentation form of the first service may be, but not limited to: PDU session, QoS flow, etc.
  • the first information may be carried by high-layer signaling, and the high-layer signaling may be a radio resource control (radio resource control, RRC) message such as RRC reconfiguration, or a MAC control element (media access control control element, MAC CE).
  • RRC radio resource control
  • MAC CE media access control control element
  • the specific first information may also be in the configuration of a data radio bearer (data radio bearer, DRB).
  • the access network device sends the first information to at least one of the N terminal devices (the first terminal device is used as an example below), where the N terminal devices are related to the first service, and N is greater than 1 an integer of .
  • the first terminal device receives the first information.
  • the N terminal devices related to the first service may be understood as the N terminal devices participating in the transmission of the first service, wherein, at the same time, the N terminal devices may all transmit the first service, or only some terminals may transmit the first service.
  • the device transmits the first service, and other terminal devices can serve as backup devices to transmit the first service when needed.
  • the fact that N terminal devices are related to the first service can also be understood as that the first device transmits the first service through the N terminal devices, and the first device is a device that generates data of the first service in uplink transmission, for example, in an industrial scenario Equipment that controls various types of machinery or production processes (such as PLC), monitoring equipment in intelligent monitoring scenarios (such as cameras, etc.), testing equipment in device defect detection scenarios, etc.
  • the first device may transmit the first service through all of the N terminal devices, or may transmit the first service through some of the N terminal devices.
  • the N terminal devices may be under the same access network device, or may be under different access network devices.
  • Network access devices are different.
  • multiple terminal devices accessing the same access network device may be in the same cell, or may be in different cells, for example, at least two terminal devices are located in different cells.
  • the access network device may determine that the N terminal devices are related to the first service in the following manner: the first core network device (such as an AMF network element) may send configuration information to the access network device, and the configuration information may indicate that N A terminal device is related to the first service.
  • the first core network device such as an AMF network element
  • the configuration information may indicate that N A terminal device is related to the first service.
  • the configuration information may also be used to configure a transmission channel of the first service between the access network device and the core network device.
  • the configuration information may also include at least one of the following: information about the transmission channel between the access network and the core network, where the related information may include at least one of the following: a first service-related session ID, a quality of service flow identifier (Qos flow ID, QFI); tunnel (tunnel) address; service group identifier, used to indicate that a session (for example, a session corresponding to the first service) of N terminal devices is a group session.
  • QFI quality of service flow ID
  • tunnel tunnel
  • a possible form of configuration information is: the configuration information sent by the first core network device to the access network device may include configuration information of N terminal devices, wherein the configuration information of each terminal device may include the configuration information of the first service Identification information.
  • the configuration information sent by the first core network device to the access network device may include a piece of configuration information, where the configuration information may carry identification information of the aforementioned N terminal devices.
  • the first terminal device determines a data packet to be sent according to a data transmission rule, where the data packet to be sent is at least one data packet that needs to be sent by the first terminal device in the data packets of the first service.
  • Data packets to be sent can be understood as a collection.
  • the first terminal device may receive M data packets of the first service from the application layer or the upper layer, wherein, the received data packets from the application layer or the upper layer
  • the data packet can be an industrial Ethernet protocol packet, specifically, it can be an Ethernet/IP protocol packet, an industrial Ethernet (PROFINET) packet, a power combination (POWERLINK) protocol packet, an industrial bus protocol (EtherCAT) protocol packet, a third-generation serial One of the protocol packages of the Sercosserial real time communication specification (Sercosserial real time communication specification) interface (SERCOSIII), wherein M is an integer greater than 0. Therefore, when the first terminal device determines the data packet to be sent according to the data transmission rule, it may determine the data packet (that is, the data packet to be sent) that the first terminal device needs to send among the above M data packets.
  • Sercosserial real time communication specification Sercosserial real time communication specification
  • the first terminal device may number the data packets to be sent according to the receiving order of the M data packets or the upper layer sequence numbers carried in the M data packets .
  • the first terminal device sends the data packet to be sent to the access network device.
  • the access network device may sort the received data packets and send them to the second core network device (for example, a UPF network element).
  • the access network device receives the data packet of the first service from the first terminal device and the second terminal device After the data packets of the first service of the device, the received data packets may be deduplicated and reordered, and then sent to the second core network device.
  • the access network device deduplicates the received data packets, specifically, removing duplicate data packets from the received data packets.
  • the access network device reorders the received data packets, specifically: reordering the received data packets according to data transmission rules. For example, taking UE1 and UE2 as an example, according to the data transmission rules, UE1 sends a data packet with an even sequence number among the data packets of the first service, and UE2 sends a data packet with an odd sequence number among the data packets of the first service.
  • the network access device receives the data packets with the PDCP sequence number (sequence number, SN) of UE1 being 0, 2, 4, and 6, and the data packets with the PDCP SN of UE2 being 1, 3, and 5.
  • the data packets from UE2 and the data packets from UE2 are reordered, and the order of the data packets after reordering is: the data packet with PDCP SN 0 (from UE1), the data packet with PDCP SN 1 (from UE2), and the PDCP SN is 2 Packet with PDCP SN (from UE1), Packet with PDCP SN 3 (from UE2), Packet with PDCP SN 4 (from UE1), Packet with PDCP SN 5 (from UE2), Packet with PDCP SN 6 package (from UE1), as shown in Figure 5.
  • the first terminal device is used as an example for illustration, instead of the N terminal devices, only the first terminal device and the access network device perform the method described in this application, and other terminal devices can also perform the method described in the embodiment of this application.
  • the method executed by the first terminal device communicates with the access network device.
  • the data of the first service can be transmitted on N terminal devices according to the configured data transmission rules, and the access network devices can flexibly configure the data transmission rules, so that Data transmission rules that meet the high reliability and high speed requirements of the first business, and improve the transmission performance of the first business.
  • the first information is used to configure the data transmission rules of the first service, and the terminal device determines the data packets to be transmitted according to the first information.
  • the first information may also be other indication content, and this is only an example for illustration, and does not limit the specific content of the first information.
  • the first information includes at least one of a first value m and a threshold value corresponding to the first terminal device, and the first value and the threshold value are used to determine the data packets transmitted by the first terminal device, wherein the first value m It is the divisor in the remainder operation, and it is used to perform the remainder operation on the serial number of the data packet.
  • the first terminal device may determine whether the data packet needs to be sent according to the SN of the data packet, the first value m, and the threshold value, that is, whether the data packet is included in the data packets to be sent. Specifically, the first terminal device may determine whether the data packet is based on a comparison between a result of Mod(SN, m) and a threshold value, where Mod(SN, m) represents a remainder obtained by dividing SN by M.
  • the first information may also indicate the relationship between the result of Mod(SN, m) of the data packet to be sent and the threshold value, for example, the result of Mod(SN, m) of the data packet to be sent is greater than the threshold value, That is, the first terminal device needs to send a data packet that satisfies Mod(SN, m)>threshold value.
  • the threshold value may include one or more values, specifically, the threshold value may be related to the number of terminal devices, for example, for two terminal devices, the threshold value may include one value, for three terminal devices, The threshold value may include 2 values, and for N terminal devices, the threshold value may include N-1 values.
  • the first information sent by the access network device to UE1 may include a first value m and a threshold value n, and indicates to send a data packet whose sequence number SN satisfies the result of Mod(SN, m)>n, and the first information sent to UE2
  • the information may include a first value m and a threshold value n, and indicate to send a data packet whose sequence number SN satisfies the result of Mod(SN, m) ⁇ n.
  • UE1 may determine to send the data packet whose sequence number SN satisfies Mod(SN, m)>n.
  • UE2 may determine to send the data packet whose sequence number SN satisfies Mod(SN, m) ⁇ n.
  • the threshold value includes two values n, namely n1 and n2, where n1>n2.
  • the first information sent by the access network device to UE1 may include a first value m and a threshold value n1, and indicate to send a data packet whose sequence number SN satisfies the result of Mod(SN, m)>n1; the first information sent to UE2
  • the information may include a first value m and thresholds n1 and n2, and indicate to send a data packet whose sequence number SN satisfies n2 ⁇ Mod(SN, m) and the result ⁇ n1;
  • the first information sent to UE3 may include the first value m and a threshold value n2, and indicate to send a data packet whose sequence number SN satisfies the result of Mod(SN, m) ⁇ n2.
  • UE1 may determine to send the data packet whose sequence number SN satisfies Mod(SN, m)>n1.
  • UE2 may determine to send the data packet whose sequence number SN satisfies n2 ⁇ Mod(SN, m) ⁇ n1.
  • UE3 may determine to send the data packet whose sequence number SN satisfies Mod(SN, m) ⁇ n2.
  • the terminal device is instructed to send all data of the first service.
  • the access network device sends the first information of the above content to multiple terminal devices, and may instruct the multiple terminal devices to send all data of the first service, so that backup transmission of the first service may be realized.
  • the access network device can indicate that the terminal device is not Send the data of the first service.
  • the first value m may be preset, or pre-configured through other signaling (such as high-layer signaling), or may also be specified in a protocol.
  • the SN number described in the embodiment of the present application may be a PDCP SN number or an RLC SN number or an SDAP sequence number or an upper-layer SN number or other sequence numbers.
  • the first information may instruct the first terminal device not to send the data packet of the first service, or to send the data packet of the first service.
  • the access network device may also send a PDCP status report or a first sequence number to the first terminal device, where the PDCP status report indicates that the successfully received For a data packet and/or a data packet not successfully received, the first sequence number is the sequence number of the first data packet to be sent by the first terminal device or the sequence number corresponding to the data packet to be sent by the first terminal device. Therefore, the first terminal device can determine the data packet to be sent according to the PDCP status report or the first sequence number.
  • the first information may be carried in an RRC message or MAC CE or downlink control information (downlink control information, DCI).
  • DCI downlink control information
  • the first information may instruct the first terminal device to send a data packet whose sequence number is odd or even.
  • the first information may indicate the distribution ratio of the first terminal device, and the distribution ratio is used to indicate the difference between the number of data packets that the first terminal device needs to send in k data packets (which can be regarded as a data packet grouping) and k Proportion.
  • k may be the number of data packets set, or may be the number of data packets included in a period of time or a transmission window.
  • the distribution ratio may be a ratio of the number of data packets to be sent by the first terminal device to k among the k data packets.
  • the first information indicates that the first terminal device sends 1/2, 1/3, 3/7, or 10%, 23%, 40%, etc. of the k data packets.
  • the first information may also include at least one of the following items: the position of the data packet, and the value of k, where the position of the data packet is used to indicate the position of the data packet to be sent by the first terminal device among the k data packets . If the split ratio and k value are not integers after calculation, they can be rounded.
  • the position of the data packet may be preset, or may be pre-configured by the access network device through other signaling (such as high-level signaling), or may be specified by a protocol.
  • the distribution ratio may be an interval of data packets to be sent by the first terminal device relative to the k data packets among the k data packets.
  • the first information indicates the first 30% data packets, (30%, 60%) data packets, (60%, 100%) data packets, etc. It should be noted that this proportion division is only for illustration. Further, the first information may also indicate the value of k. If the split ratio and k value are not integers after calculation, they can be rounded. For example, it can be rounded up or down, or rounded according to the size of the remainder, such as the round function, which is used to round the value according to the specified number of digits.
  • UE1 may send the first 3 data packets of every 10 data packets
  • UE2 may send the 4th to 7th data packets of every 10 data packets
  • UE3 may send the last 3 data packets of every 10 data packets.
  • the value of k may be preset, or may be pre-configured by the access network device through other signaling (such as high-level signaling), or may be specified by a protocol.
  • the distribution ratio may be for each data packet group, or the distribution ratio may be indicated for each data packet group. In a specific embodiment, the split ratio can be updated.
  • the access network device may dynamically modify the data transmission rule.
  • the access network device may also update the data transmission rule after sending the first information.
  • the access network device can dynamically modify data transmission rules through MAC CE or RRC messages.
  • the first information may also indicate a range of sequence numbers of data packets that the first terminal device needs to send.
  • the above data transmission rules may only be sent to at least one terminal device (such as the first terminal device, the second terminal device, or other terminal devices among the N terminal devices, etc.), and the at least one terminal device may be determined based on the data transmission rule After the data packets to be sent, the remaining data packets can be sent to other terminal devices through the interface between the terminal devices.
  • the data packets transmitted to other terminal devices can be PDCP data packets, RLC data, MAC data packets, SDAP data package etc.
  • the interface between end devices can be wired or wireless.
  • the terminal device can determine which data packets are sent by different terminal devices under the instruction of the access network device, and transmit the data packets to other terminal devices through the interface between the terminal devices.
  • the application layer architecture it is not required that the application layer architecture be connected to multiple terminals, but only to be connected to at least one terminal.
  • the terminal equipment connected to the application layer distributes the data to other terminal equipment.
  • multiple terminal devices can jointly complete the uplink transmission task. Realize highly reliable transmission or large uplink rate.
  • the data transmission rule may be determined according to a transmission mode of the first service or a service requirement of the first service, or according to an air interface quality.
  • the transmission mode of the first service is described as an example below.
  • the transmission mode of the first service may be the first mode, and in the first mode, only some of the N terminal devices need to transmit the first service.
  • the N terminal devices may be divided into two types, one is the main terminal device, and the other is the backup terminal device, that is, the N terminal devices may include at least one main terminal device and at least one backup terminal device.
  • the main terminal device may transmit the first service preferentially, and the backup terminal device may be used to retransmit the first service when the main terminal device fails.
  • This mode can also be called backup mode.
  • the starting condition for the backup terminal equipment to transmit the first service may be that all the main terminal equipment fails, or there is a failure of the main terminal equipment (the number of failed main terminal equipment is not limited).
  • the backup terminal device may start transmitting the first service under the instruction of the access network device.
  • the N terminal devices include a primary terminal device and a backup terminal device, where the backup terminal device is used to transmit the first service when the primary terminal device fails.
  • the backup terminal equipment when the main terminal equipment transmitting the first service fails, the backup terminal equipment can continue to transmit the first service, thereby ensuring the reliability of the first service, and, in the first mode, the backup terminal equipment The transmission of the first service starts when the main terminal equipment fails.
  • the backup mode shown in FIG. 2 resources can be saved and system efficiency can be improved.
  • the transmission mode of the first service may also be the second mode.
  • the second mode all N terminal devices transmit the first service, and the data packets transmitted by the N terminal devices are the same.
  • This mode can also be called a high-reliability mode.
  • the reliability of the first service can be guaranteed by transmitting the same data of the first service through multiple terminal devices.
  • the transmission mode of the first service may also be a third mode, and in the third mode, the N terminal devices all transmit the first service, and the data packets transmitted by the N terminal devices are different.
  • This mode may also be referred to as high rate mode.
  • the transmission rate of the first service can be guaranteed by transmitting different data of the first service through multiple terminal devices.
  • the transmission mode of the first service can also be the fourth mode, in the fourth mode, the N terminal devices all transmit the first service, and the data packet transmitted by the first terminal device and the second terminal among the N terminal devices There are identical packets and different packets compared to the packets transmitted by the device.
  • This mode can also be called mixed mode.
  • the data packets that need to be sent according to the data transmission rules for different terminal devices can be repeated. For example, according to the data transmission rules, one terminal device sends the first 50% of the data packets, and another terminal device sends the last 60% of the data packets. , then the two end devices have 10% packet overlap.
  • the transmission mode of the first service may be determined by the access network device.
  • the access network device may determine the transmission mode of the first service according to at least one of the following: the channel quality with at least one terminal device among the N terminal devices (that is, the air interface quality between the terminal device and the access network device ), the working status of at least one of the N terminal devices (such as whether it is faulty, whether it is working normally, load conditions, etc.), and the quality of service (quality of service, Qos) requirements of the first business.
  • the access network device can be determined to be in the first mode according to the air interface quality of the terminal device. Specifically, when the air interface quality of a certain terminal device is relatively good, only the terminal device is required to transmit the first service. If there is a problem with the working state of the terminal device (such as failure, too much load, etc.), the access network device may instruct another terminal to take over the first service of the terminal device.
  • the access network device may be determined to be in the third mode according to the air interface quality, working status, and QoS requirements of the first service of the terminal device, and further, the first service mode may be determined according to the air interface quality and load of the terminal device. split ratio. For example, if one terminal device has a good air interface quality and another terminal device has a poor air interface quality, the access network device can instruct the terminal device with a good air interface quality to send more data packets, and the other terminal device to send less data packets.
  • the load situation is also similar, and the access network device may indicate that a terminal device with a light load may send more data packets than a terminal device with a heavy load.
  • the way for the access network device to determine the channel quality with the terminal device may be: determine through the channel quality information (channel quality information, CQI) reported by the terminal device, determine through the measurement report reported by the terminal device, access The network equipment is determined through uplink measurement.
  • channel quality information channel quality information, CQI
  • the way for the access network device to determine the working state of the terminal device may be: other terminal devices report to the access network device that the above-mentioned terminal device is working normally or fails, and the above-mentioned terminal device reports its own load situation and/or interference situation.
  • UE1 and UE2 are working, if UE1 judges that UE2 has a transmission failure, UE1 sends indication information to the access network device, such as a MAC CE or RRC message, to indicate UE2 failure.
  • UE1 may determine that UE2 is in a failure state or an abnormal working state through heartbeat packets between terminal devices or other interfaces between terminal devices.
  • the way for the access network device to determine the working state of the terminal device may also be: the access network device may determine the link or status of the terminal device according to the uplink data transmission status of the terminal device and the feedback of an acknowledgment message (acknowledgment, ACK) or a reference signal. The device is malfunctioning.
  • acknowledgment message acknowledgeledgment, ACK
  • the transmission mode of the first service may also be indicated by the first core network device.
  • the first core network device sends first indication information to the access network device, where the first indication information indicates the transmission mode corresponding to the first service.
  • the first indication information may be displayed indication information, or may be implicitly determined according to QoS information or session-related information.
  • the access network device may send indication information to the terminal equipment, and the indication information is used for switching the first service mode, such as switching from the first mode to the second mode. model.
  • the access network device may also configure the DRB of the above-mentioned at least one terminal device, for example, may send second information to the above-mentioned at least one terminal device, and the second information is used for Configure the DRB of the first service.
  • the second information may be carried in an RRC connection reconfiguration message.
  • the foregoing at least one terminal device may configure the data radio bearer of the first service based on the second information.
  • the DRB configured in the second information may be a dedicated DRB, and the dedicated DRB may be used for data transmission in one or several transmission modes.
  • mode transmission indication information may be included in the second information configuration DRB field, where the mode indication information is used to indicate the transmission mode corresponding to the DRB, or the mode indication information is used to indicate activated (or enabled) transmission model.
  • the access network device can indicate the transmission mode corresponding to the DRB in any of two ways:
  • the access network device may send an RRC connection reconfiguration message, and the DRB configuration (ie, the second information) of the RRC connection reconfiguration message may include information such as DRB ID and mode indication information, wherein the DRB ID is used to identify the corresponding The DRB.
  • the access network device may send an RRC connection reconfiguration message, the RRC connection reconfiguration message includes DRB configuration (ie, second information) and PDCP configuration or RLC configuration or MAC configuration corresponding to DRB, wherein the PDCP configuration corresponding to DRB Or the RLC configuration or the MAC configuration may indicate the transmission mode corresponding to the DRB, or indicate the activated (or enabled) transmission mode.
  • DRB configuration ie, second information
  • PDCP configuration or RLC configuration or MAC configuration corresponding to DRB
  • the RLC configuration or the MAC configuration may indicate the transmission mode corresponding to the DRB, or indicate the activated (or enabled) transmission mode.
  • the data transmission rule (ie, the first information) and the DRB configuration (ie, the second information) of the first service may be indicated through different messages, or may be indicated to the terminal device through the same message. Further, if the first information and the second information are indicated to the terminal device through the same message, for example, the DRB configuration (that is, the second information) of the RRC connection reconfiguration message includes the first information, then the DRB may also be indicated through the first information.
  • the corresponding transmission mode, that is, the first information may be used as the mode indication information to indicate the transmission mode corresponding to the DRB.
  • the first core network device as an AMF network element
  • the second core network device as a UPF network element as an example
  • performs the data transmission process of the first service in combination with the scenario shown in Figure 6 Exemplary description.
  • PLC1 is connected to UE1, and UE1 is responsible for sending and receiving PLC1-related business data
  • PLC3 is connected to UE1 and UE2, and the uplink business data of PLC3 is sent to UE1 and UE2 through itself or through other devices, and the downlink business passes through UE1 and/or UE2 send to PLC3.
  • PLC2 is connected to UE2, and UE2 is responsible for sending and receiving service data related to PLC2.
  • the first service of PLC3 is taken as an example for illustration.
  • the data transmission process of the first service may include:
  • the AMF network element sends configuration information of the first service to the access network device.
  • the configuration information of the first service is used to configure a transmission channel of the first service between the access network and the core network.
  • the configuration information of the first service may include at least one of the following: UE1 and UE2 are related to the first service; information about the transmission channel between the access network and the core network, where the related information may include at least one of the following: The first service-related session ID, QFI; tunnel address; service group identifier, is used to indicate that a certain session between UE1 and UE2 is a group session.
  • the AMF sends the configuration information of UE1 and the configuration information of UE2 to the access network device, and the configuration information of each terminal device may include the identification information of the first service.
  • the AMF sends configuration information to the access network device, where the configuration information may carry identification information of UE1 and identification information of UE2.
  • step S701 may be an optional step.
  • the access network device configures UE1 and UE2.
  • the access network device may configure UE1 and UE2 according to the binding relationship (or association relationship or correlation relationship) between UE1 and UE2 and the first service and the transmission mode of the first service, wherein the transmission mode of the first service See the related description above.
  • the transmission mode of the first service may be indicated by the AMF network element to the access network device through the configuration information of the first service, or may be determined by the access network device itself. For the specific determination method, refer to the previous section, which will not be repeated here.
  • the access network device may configure the DRBs of UE1 and UE2.
  • the access network device may configure dedicated DRBs for UE1 and UE2, and the DRBs may be used for data transmission in one or more transmission modes.
  • the access network device when configuring UE1 and UE2, sends an RRC connection reconfiguration message to UE1 and UE2.
  • the DRB configuration of the RRC connection reconfiguration message may include at least one piece of information such as DRB ID and mode indication information, wherein the DRB ID is used to identify the corresponding DRB, and the mode indication information is used to indicate the transmission mode corresponding to the DRB, or, Indicates the transmission mode in which the DRB is activated (or enabled).
  • the PDCP configuration, or RLC configuration, or MAC configuration corresponding to the DRB in the RRC connection reconfiguration message may also indicate the transmission mode corresponding to the DRB, or indicate the activated (or enabled) transmission mode of the DRB.
  • the access network device When the access network device configures UE1 and UE2, it may also configure data transmission rules of UE1 and UE2.
  • data transmission rules please refer to the previous description, so I won’t go into details here.
  • S703, UE1 and UE2 transmit data of the first service based on a data transmission rule.
  • UE1 may determine the data packets that need to be sent by itself in the data packets of the first service according to the data transmission rules and send them to the access network device, wherein the data packets of the first service come from the application layer or the upper layer.
  • the data packets of the first service come from the application layer or the upper layer.
  • UE1 may send a data packet with an odd sequence number in the data packets of the first service
  • UE2 may send a data packet with an even sequence number in the data packets of the first service.
  • the access network device deduplicates and reorders the data packets from UE1 and UE2.
  • the process of deduplication and reordering performed by the access network device can refer to the foregoing, and will not be repeated here.
  • the access network device sends the deduplicated and reordered data packets to the UPF.
  • QoS flow 1 represents the service of PLC1
  • QoS flow 2 represents the service of PLC2
  • QoS flow 3 represents the service of PLC3 (such as the first service).
  • UE1 and UE2 may perform data transmission based on the protocol stack shown in FIG. 8 .
  • the PDCP layer at the UE side has the ability to generate the serial number of the PDCP packet according to the upper layer sequence number of the upper layer data packet.
  • the PDCP layer on the access network side has the ability to process two sets of security parameters (that is, the security parameters of UE1 and the security parameters of UE2), and then has the ability to process PDCP packets from two UEs.
  • the access network device passes a PDCP layer The entity processes PDCP packets from both UEs.
  • the uplink transmission is taken as an example for description.
  • the uplink transmission process of UE1 and UE2 based on the protocol stack shown in FIG. 8 includes: the application layer entities of UE1 and UE2 receive the data packets of the first service. It should be noted that UE1 and UE2 receive the same data packets. UE1 and UE2 perform numbering based on the order in which the data packets of the first service are received or the sequence numbers carried in the data packets of the first service.
  • the PDCP layer entity of UE1 performs PDCP layer numbering for the data packets according to the order of the data packets transmitted by QoS flow 3 or the sequence number in the data packets.
  • the data packets transmitted by QoS flow 3 are industrial Ethernet protocol packets, Specifically, it may be one of Ethernet/IP, PROFINET, POWERLINK, EtherCAT, and SERCOSIII.
  • the PDCP layer entity can correspondingly skip the number when numbering. For example, if the data packet No. The PDCP SN number corresponding to the packet is skipped and directly increased by 1.
  • the PDCP layer entity of UE2 may also perform PDCP layer numbering in the above manner.
  • UE1 can cache data packets that do not need to be sent, and the cache time can be indicated to the UE by the access network device, or can be a default duration, or can be preset. Optionally, if the cache time expires, the corresponding data packet may be discarded. Alternatively, UE1 (or UE2) may also discard data packets that do not need to be sent.
  • UE1 may only cache data packets that need to be sent, and discard data packets that do not need to be sent. Specifically, the buffered data packets can be discarded based on the underlying transmission instruction, or discarded based on a timer.
  • the access network device may also indicate whether UE1 (or UE2) needs to buffer data packets that do not need to be sent. For example, the access network device may instruct UE1 and UE2 to buffer data packets that do not need to be sent, so that when one terminal device (such as UE1) fails, the access network device may instruct another terminal device (such as UE2) to transmit the first service of all packets. Further, when UE1 fails, the access network device may send indication information to UE2, and the indication information includes the PDCP SN sequence number, which is used to instruct UE2 to transmit all data packets starting from the SN number.
  • the embodiment of the present application may also be based on the above architecture without PDCP enhancement (that is, the terminal device side does not support PDCP layer numbering according to the upper layer sequence number of the upper layer data packet, but only according to the arrival sequence of the data packet).
  • the terminal device side does not support PDCP layer numbering according to the upper layer sequence number of the upper layer data packet, but only according to the arrival sequence of the data packet.
  • the SN number arrangement of each UE PDCP layer is reliable, and multiple UEs are consistent in the arrangement of unified service data packets.
  • the process of the access network device performing uplink processing based on the protocol stack shown in FIG. 8 includes: the access network device establishes a PDCP layer entity for UE1 and UE2, and the PDCP layer entity is used to send According to the serial number (SN) carried by the packet, the PDCP layer data packets are deduplicated and reordered, and the data packets are delivered in sequence to a public tunnel established by UE1 and UE2 for QoS flow 3, and transmitted to UPF.
  • the process of deduplication and reordering performed by the access network device can refer to the relevant description above, and will not be repeated here.
  • the downlink transmission process of the access network device based on the protocol stack shown in Figure 8 includes: the PDCP layer entity of the access network device (that is, the PDCP layer entity established by the access network device for UE1 and UE2) for the corresponding QoS flow 3 from the UPF
  • the data packets are numbered, and the data packets are transmitted to the RLC layer entity 1, or to the RLC layer entity 2, or to the RLC layer entity 1 and the RLC layer entity 2, wherein the RLC layer entity 1 is an access network device
  • the RLC layer entity corresponding to Qos flow3 of UE1 in , and the RLC layer entity 2 is the RLC layer entity corresponding to Qos flow3 of UE2 in the access network device.
  • the PDCP layer of the access network device may support two terminal devices to use the same security parameters, or may support two terminal devices to use different security parameters.
  • the allocation of data packets between the RLC layer entity 1 and the RLC layer entity 2 may be determined by the access network device based on the channel quality of UE1 and UE2 (other factors may also be referred to, such as data transmission rules, UE status, etc.), It may also be indicated by AMF (or UPF or other core network equipment).
  • the access network device may independently number different UEs when performing PDCP layer numbering.
  • UE1 and UE2 can use the existing mechanism to receive data packets and submit them to the application layer, such as PLC3.
  • the access network device may uniformly number data packets when performing PDCP layer numbering. In this manner, UE1 and UE2 need to have the ability to support out-of-order delivery of PDCP layer data packets.
  • the access network device can use multicast for downlink transmission, that is, use the same G-RNTI scrambling for UE1 and UE2, use the same security encrypted data for encryption, and perform unified data number.
  • the access network device can only send one copy of data, while UE1 and UE2 can receive the data on the same resource and submit it to the application layer, thereby saving transmission resources.
  • the PDCP layer on the terminal device side supports sequence numbers for data packets according to the upper layer sequence numbers of the upper layer data packets, so that unified data sequence numbers from the application layer to the access layer data can be realized.
  • the PDCP layer on the access network device side supports reordering and deduplication functions, which can enable only one copy of data to be sent between the access network device and the core network device without duplication and disorder.
  • UE1 and UE2 may perform data transmission based on the protocol stack shown in FIG. 9 .
  • an adaptation layer can be added on the UE side and the access network device side, and the adaptation layer can be located in the terminal device, for example, above the SDAP layer, or on the terminal device side
  • the adaptation layer may also be middleware located between the terminal device and the industrial device (or the data sending end of the first service), such as a switch, a router, a hub, and the like.
  • the adaptation layer on the access network device side may be located in the access network device, for example, above the SDAP layer, or may also be middleware located between the terminal device and the access network device.
  • the UE-side adaptation layer has the capability of numbering according to the upper-layer sequence number of the upper-layer data packets.
  • the adaptation layer on the access network side is capable of processing the adaptation layer packets from two UEs, wherein the access network device processes the adaptation layer packets from the two UEs through one adaptation layer entity.
  • the process of UE1 and UE2 performing uplink and downlink transmission with access network equipment is similar to the process of UE1 and UE2 performing uplink and downlink transmission with access network equipment in the first example, the difference is that in the first example Functions such as numbering according to the sequence number of the upper-layer data packet are implemented by the PDCP layer entity, and functions such as numbering are performed by the adaptation layer entity according to the sequence number of the upper-layer data packet in the second example, and repeated descriptions are omitted.
  • the terminal device side can support the sequence number of the data packet according to the upper layer sequence number of the upper layer data packet, so that the connection between the application layer and the access layer can be realized.
  • the unified data sequence number of the incoming data can support reordering and deduplication functions, so that only one copy of data is sent between the access network device and the core network device, without duplication and disorder.
  • UE1 and UE2 may perform data transmission based on the protocol stack shown in FIG. 10 .
  • the SDAP layer at the UE side has the capability of numbering according to the upper layer sequence number of the upper layer data packets.
  • the SDAP layer on the access network side is capable of processing SDAP packets from two UEs, wherein the access network device processes SDAP packets from two UEs through one SDAP layer entity.
  • the process of UE1 and UE2 performing uplink and downlink transmission with access network equipment is similar to the process of UE1 and UE2 performing uplink and downlink transmission with access network equipment in the first example, the difference is that in the first example Functions such as numbering according to the sequence number of the upper-layer data packet are implemented by the PDCP layer entity, and functions such as numbering are performed by the SDAP layer entity according to the sequence number of the upper-layer data packet in the second example, and repeated descriptions are omitted.
  • the SDAP layer on the terminal device side supports sequence numbers for the data packets according to the upper layer sequence numbers of the upper layer data packets, so that unified data sequence numbers from the application layer to the access layer data can be realized.
  • the SDAP layer on the access network device side supports reordering and deduplication functions, enabling only one copy of data to be sent between the access network device and the core network device without duplication and disorder.
  • the above describes the data transmission process of the first service in combination with the scenario shown in FIG. 6 .
  • packet loss will inevitably occur.
  • the terminal device fails to send a certain data packet to the access network device.
  • UE1 needs to transmit the data packet with sequence number 1/3/5
  • UE2 needs to transmit the data packet with sequence number 2/4/6
  • UE1 does not transmit the data packet with sequence number 3 to the access network device, causing the packet with sequence number 3 to be lost.
  • packet loss of UE1 as an example, the method for handling packet loss during uplink transmission and the method for dealing with packet loss during downlink transmission are introduced below.
  • the access network device determines that UE1 fails to send the first data packet, and may instruct UE2 to send the first data packet, where the first data packet is UE1's
  • the data packet that needs to be sent determined by the data transmission rule (for example, the data packet with the sequence number 3 in FIG. 11 ).
  • the manner in which the access network device instructs UE2 to send the first data packet is: sending the sequence number of the first data packet to UE2, so as to instruct the UE to send the first data packet.
  • UE2 After receiving the serial number, UE2 sends the data packet corresponding to the serial number to the access network device.
  • the sequence number of the first data packet may be included in a PDCP packet (such as a PDCP control PDU).
  • the access network device may also send the identifier of the DRB. The UE may send the data packet corresponding to the sequence number of the DRB.
  • the access network device instructs UE2 to send the first data packet by sending a PDCP status report to UE2, where the PDCP status report indicates the sequence number of the successfully received data packet and/or the sequence number of the unsuccessfully received data packet. The sequence number of the packet. After receiving the PDCP status report, UE2 sends to the access network device the data packet that the access network device did not receive successfully.
  • the access network device may determine that UE1 fails to send the first data packet in the following manner: receiving second indication information from UE1, where the second indication information indicates that the first data packet is lost.
  • the second indication information may indicate that UE1 has not received or failed to send the first data packet.
  • "unsuccessfully sent” can also be understood as UE1 does not receive the first data packet from the application layer, so that the first data packet cannot be sent to the access network device.
  • UE1 may determine that the first data packet is lost according to the condition of the data packet received from the application layer (for example, according to the sequence number of the data packet).
  • the access network device may also determine that UE1 fails to send the first data packet in the following manner: the access network device determines that the first data packet is lost according to the receiving situation of the data packet (for example, according to the sequence number of the data packet), such as If the data packets with sequence numbers 1 and 3 are not received, the data packet with sequence number 2 can be determined to be lost.
  • UE2 can send the data packets lost by UE1 in addition to the data packets to be sent by UE2, thereby improving service reliability.
  • this embodiment of the present application only uses the split transmission between UE1 and UE2 as an example for illustration, and is not limited to UE2 transmitting the first data packet of UE1. If there are other UEs related to the first service, other UEs can also transmit the first data packet. For the data packet, the other UE may transmit all or part of the data of the first service according to the data transmission rule, or may not transmit the data of the first service at the current time node, which is not specifically limited here.
  • the implementation solution that the access network device instructs the terminal device to send the data packet to be sent that is not its own is not limited to the scenario of packet loss, and the above solution can also be implemented in other scenarios.
  • UE1 determines that the downlink data packet has not been received normally, and may indicate the sequence number of the data packet to the access network device.
  • the access network device may send the data packet corresponding to the sequence number to UE2, or send it to UE1 at the same time.
  • the data transmission process described above is based on the data transmission rules indicated by the access network equipment through the first information, and in the process of transmitting the first service, the data transmission rules can be changed, for example, between UE1 and UE2 and the access network equipment During data transmission, the access network device may also update the data transmission rule. It should be understood that, when updating the data transmission rules, the data transmission process is similar to the data transmission process before the update, the difference lies in the adopted data transmission rules are different, and the repetition will not be repeated.
  • the access network device may also perform service switching between two UEs, for example, switch the data packets that need to be sent by UE among the data packets of the first service to UE2, and UE2 sends the data packets that UE1 needs to send.
  • the access network device can also instruct one of the two UEs to take over the service of the other UE. For example, it can instruct UE2 to take over the first service of UE1, that is, after sending the data packets that need to be sent by itself, UE2 also sends the required For the data packets sent by UE1, UE1 may stop sending the data packets of the first service.
  • the access network device updates the data transmission rules, switches the first service of UE1 to UE2, and instructs UE2 to take over the first service of UE1)
  • the access network device can instruct UE1 to report PDCP data Status report
  • the PDCP data status report can indicate the downlink data packets that UE1 has not received successfully or the downlink data packets that have been successfully received
  • the access network device can start sending downlink data packets to UE2 from the data packets that UE1 has not received normally.
  • the data communication between the terminal device and the access network device is realized based on resource scheduling performed by the access network device for the terminal device.
  • the terminal device triggers the access network device to allocate uplink resources for the terminal device based on the BSR reporting mechanism.
  • the BSR reporting mechanism of the terminal device is: when a logical channel of the terminal device has new data or data with higher priority arrives, the BSR report will be triggered, and the reported BSR reflects the total data volume of the terminal device .
  • the uplink resource allocated by the access network device based on the BSR reported by the terminal device may not match the amount of data that the terminal device needs to report.
  • the embodiment of the present application further provides three BSR reporting methods. It should be understood that the BSR reporting method provided in the embodiment of the present application may also be implemented independently of the foregoing data transmission process.
  • the following describes three BSR reporting methods by taking h terminal devices as an example, where h is an integer greater than 0, and the h terminal devices are all or part of the above N terminal devices.
  • Method 1 h terminal devices cache all received data packets of the first service, and all or some of the h terminal devices trigger and report a BSR indicating the amount of data buffered by the terminal devices.
  • the access network device allocates uplink resources for the h terminal devices according to the received BSR and data transmission rules. Specifically, the access network device can determine the number of data packets that each of the h terminal devices needs to send according to the data transmission rules and BSR , and for each terminal device, allocate uplink resources to the terminal device according to the number of data packets that the terminal device needs to send.
  • the terminal device that reports the BSR among the h terminal devices may be indicated by the access network device, for example, the access network device may instruct one or more of the h terminal devices to report the BSR, and indicate that the remaining Terminal equipment does not report BSR.
  • the specific indication manner of the access network device is not specifically limited here.
  • the access network device may indicate to send the BSR through the third indication information, and indicate not to send the BSR through the fourth indication information.
  • the access network device may also indicate to send the BSR through the third indication information, and implicitly indicate not to send the BSR by not sending the third indication information.
  • the access network device may also indicate not to send the BSR through the fourth indication information, and implicitly indicate to send the BSR by not sending the fourth indication information.
  • the fourth indication information may be used to indicate that for some specific logical channel groups (the logical channel groups are used to transmit the first service), if new data arrives or there is higher priority data When it arrives, there is no need to trigger the BSR. If the BSR is triggered by a logical channel in another logical channel group, there is no need to report the data volume of the above-mentioned specific logical channel group when reporting. Further, the fourth indication information may also indicate which logical channels or logical channel groups do not need to trigger the BSR, for example, it may indicate whether the BSR needs to be triggered by carrying the corresponding logical channel number or logical channel group number in the fourth indication information.
  • the fourth indication information may be sent by MAC CE.
  • the fourth indication information can also be sent through an RRC reconfiguration message, for example, it can be carried in the configured logical channel or logical channel group configuration of the RRC reconfiguration message to indicate whether BSR needs to be triggered, or carried in other configuration information .
  • the third indication information may indicate that the BSR is triggered normally. For a terminal device that normally reports a BSR, it may report the data volume of all data (that is, including data packets that do not need to be sent by the terminal device), or may report only the data volume that needs to be transmitted by the terminal device.
  • the third indication information may be sent by MAC CE or RRC message.
  • the access network device since the access network device has delivered the data transmission rule to the terminal device, and the data packets of the first service received by the h terminal devices are the same, the access network device, according to the BSR reported by any terminal device, The amount of data corresponding to the h terminal devices can be inferred, and then uplink resources can be allocated to each terminal device according to the corresponding data amount, so that the accuracy of resource allocation can be improved, and the signaling overhead caused by multiple reporting of BSR can be reduced .
  • Method 2 The h terminal devices cache all the received data packets of the first service, and the h terminal devices determine the data packets that need to be sent by themselves among the received data packets of the first service according to the data transmission rules (ie number of packets to send).
  • the h terminal devices respectively report a BSR to the access network device, and the BSR sent by each terminal device indicates the number of data packets of the terminal device to be sent instead of the total amount of cached data packets.
  • both UE1 and UE2 receive and cache data packets numbered 1-4 of the first service, and the access network device indicates that data packets 1 and 3 are sent by UE1, and data packets 2 and 4 are sent by UE2, then UE1 reports
  • the data volume of the BSR is the sum of the sizes of data packet 1 and data packet 3
  • the data volume of the BSR reported by UE2 is the sum of the sizes of data packet 2 and data packet 4.
  • the terminal device can determine its own data volume according to the data transmission rules, so that it can indicate the data volume that it needs to send when reporting the BSR, that is, when calculating the logical channel group data volume during the BSR assembly process, there is no need to send the received All the data packets of the first service received are included in the calculation, but only the amount of data corresponding to the data packets that the terminal equipment needs to transmit according to the data transmission rules is calculated, so that the access network equipment can correspond to the data packets that the terminal equipment needs to transmit. Allocate uplink resources for the terminal equipment, thereby improving the accuracy of resource allocation, reducing unnecessary reporting, and avoiding waste of resources.
  • Method 3 The h terminal devices determine according to the data transmission rules the data packets that need to be sent by themselves among the received data packets of the first service, and cache the data packets that need to be sent by themselves.
  • the h terminal devices report a BSR to the access network device respectively, and the BSR sent by one terminal device indicates the number of data packets to be sent by the terminal device.
  • UE1 and UE2 both receive data packets numbered 1-4 of the first service, and the access network device indicates that data packets 1 and 3 are sent by UE1, and data packets 2 and 4 are sent by UE2, then UE1 buffers the data packets 1 and 3, and report the BSR to the access network device.
  • the data volume of the reported BSR is the sum of the sizes of data packet 1 and data packet 3.
  • UE2 caches data packets 2 and 4, and reports a BSR to the access network device, and the data volume of the reported BSR is the sum of the sizes of data packet 2 and data packet 4.
  • the terminal device can determine its own data volume according to the data transmission rules, and only cache the data packets that need to be sent by itself, so that it can indicate the data volume that it needs to send when reporting the BSR, that is, the calculation logic in the BSR assembly process
  • the terminal device can determine its own data volume according to the data transmission rules, and only cache the data packets that need to be sent by itself, so that it can indicate the data volume that it needs to send when reporting the BSR, that is, the calculation logic in the BSR assembly process
  • an associated discard timer can be started for each data packet at the PDCP layer, and when the discard timer expires Afterwards, the corresponding data packets are discarded, and before the discard timer expires, the data packets in the buffer can be initially transmitted or retransmitted according to the instruction of the access network device.
  • whether the terminal device uses method 2 or method 3 to perform BSR reporting may depend on the indication of the access network device. For example, the terminal device may cache all received data packets by default (that is, method 2 by default), If the access network device instructs to cache only data packets that need to be sent (that is, indication method 3), the terminal device may discard all data packets that do not need to be sent. Exemplarily, the access network device may instruct the terminal device to adopt method 2 or method 3 through the MAC CE.
  • the data of the first service can be transmitted on N terminal devices according to the configured data transmission rules, and the access network devices can flexibly configure the data transmission rules, such as accessing
  • the network device can determine the data transmission rules according to the business requirements of the first service, the air interface quality of the terminal equipment, the working status of the terminal equipment, etc., so that the N terminal equipment can realize the backup or distribution function according to the business requirements or the air interface quality, so that it can be configured Data transmission rules that meet the high reliability and high speed requirements of the first business, and improve the transmission performance of the first business.
  • the PDCP layer on the terminal device side supports sequence numbers for data packets according to the upper layer sequence numbers of the upper layer data packets, or by introducing a new layer called an adaptation layer between the application layer and the access layer,
  • the terminal device side can support the sequence number of the data packet according to the upper layer sequence number of the upper layer data packet, or, by enhancing the SDAP layer, the SDAP layer on the terminal device side supports the sequence number of the data packet according to the upper layer sequence number of the upper layer data packet, so that it can realize Unified data sequence number from the application layer to the access layer data.
  • the PDCP layer on the access network device side supports reordering and deduplication functions
  • the adaptation layer on the access network device side can support reordering and deduplication functions
  • the SDAP layer on the access network device side supports The reordering and deduplication functions enable only one copy of data to be sent between the access network device and the core network device without duplication and disorder.
  • the access network device can allocate uplink resources according to the data volume of the data packets that the terminal device needs to send, so as to avoid allocating too many or too few transmission resources to the terminal device, and further It can improve the rationality of resource allocation and improve resource utilization.
  • FIG. 12A it is a schematic flow chart of another communication method provided by this application, and the method includes:
  • the core network device sends first information to the access network device, where the first information indicates the QoS requirement of the first service.
  • the first information may include but not limited to: 5G QoS indicator (5G QoS identifier, 5QI) information, allocation and retention priority (allocation and retention priority, ARP), guaranteed bit rate (guaranteed bit rate, GBR), Aggregate maximum bit rate (AMBR).
  • 5G QoS indicator 5G QoS identifier, 5QI
  • ARP allocation and retention priority
  • GBR guaranteed bit rate
  • AMBR Aggregate maximum bit rate
  • the 5QI information can include at least one of dynamic 5QI information and non-dynamic 5QI information
  • dynamic 5QI information can be understood as non-standard or non-preconfigured 5QI, including: priority, data packet delay budget, packet error rate, 5QI , delay threshold and other parameters
  • non-dynamic 5QI information can be understood as standardized or pre-configured 5QI, including: 5QI, priority and other parameters.
  • the first information may also include other QoS flow information, which is not specifically limited here.
  • the access network device and the core network device may receive the foregoing first information when establishing a session.
  • the presentation form of the first service may be, but not limited to: PDU session, QoS flow, etc.
  • the first information can be transmitted through an interface message between the access network device and the core network device, such as an NGAP message, such as a PDU session resource establishment request message, or it can be carried by high-level signaling, and the high-level signaling can be an RRC message such as RRC reconfiguration, or MAC CE.
  • the specific first information may also be in the configuration of the DRB.
  • the access network device determines a QoS requirement actually corresponding to at least one terminal device among the N terminal devices (the first terminal device is used as an example for description below).
  • the QoS of the first terminal device is lower than the QoS requirement of the first service, for example, the priority of the first terminal device (such as priority in 5QI information, ARP, etc.) is lower than the priority of the first service, and the first The rate of the terminal device (such as GBR, AMBR, etc.) is lower than the rate of the first service, or the parameters in the 5QI information of the first terminal device are lower than the parameters in the 5QI information of the first service, the N terminal devices and the first service Business-related, N is an integer greater than 1.
  • the QoS of the first terminal device is lower than the QoS requirement of the first service. It can be understood that the parameter configuration used by the first terminal device during transmission is lower than the parameter configuration corresponding to the QoS requirement of the first service itself.
  • the N terminal devices since there are N terminal devices related to the first service, by reducing the QoS of some or all of the N terminal devices, the average QoS of the N terminal devices can be lower than the QoS requirement of the first service, Therefore, the N terminal devices can transmit the first service with fewer resources, reducing resource consumption.
  • N terminal devices are related to the first service
  • the description of "N terminal devices” and the way the access network device determines that the N terminal devices are related to the first service please refer to the related description in S402 above. , which will not be repeated here.
  • QoS of the terminal device in the embodiment of the present application may be understood as the QoS of the first service transmitted by the terminal device.
  • step S1202 by lowering the QoS of the first terminal device, the access network device can reduce resources for the first terminal device to transmit the first service, thereby reducing resource consumption.
  • step S1202 may be an optional step.
  • the access network device configures transmission parameters of the first terminal device according to the actual QoS requirements corresponding to the first terminal device.
  • the transmission parameters may include: the first MCS used to transmit the first service, the number of time-frequency resources used to transmit the first service, the number of repeated transmissions used to transmit the first service, PDCP duplication transmission indication, etc. .
  • the PDCP duplication transmission indication is used to indicate whether to enable PDCP duplication transmission when transmitting the first service.
  • PDCP duplication transmission can be understood as transmitting a PDCP packet to two RLC entities, and the two RLC entities independently process the received PDCP packet and transmit it. to the MAC layer.
  • the transmission parameters can meet at least one of the following:
  • the first MCS may be higher than the second MCS, wherein the first MCS is an MCS used by the first terminal device to transmit the first service, and the second MCS may meet the QoS requirement of the first service. It can be understood that the lower the MCS, the more resources are required for transmission.
  • the above method can reduce resource consumption and improve resource utilization by configuring a higher MCS for the first terminal device;
  • the number of time-frequency resources used by the first terminal device to transmit the first service may be smaller than a first value, where the number of time-frequency resources equal to the first value meets the QoS requirement of the first service. It can be understood that the higher the data transmission rate, the more resources are required for transmission.
  • the above method can reduce resource consumption and improve resource utilization by configuring fewer time-frequency resources for the first terminal device;
  • the value of the number of repeated transmissions used by the first terminal device to transmit the first service may be smaller than the second value, wherein the number of repeated transmissions whose value is the second value can meet the QoS requirement of the first service. It can be understood that the higher the number of repeated transmissions, the more resources are required for transmission.
  • the above method can reduce resource consumption and improve resource utilization by configuring a lower number of repeated transmissions for the first terminal device;
  • the PDCP duplicate transmission indication is used to indicate not to use PDCP duplicate transmission.
  • the above method does not require multiple copies of data to be transmitted at the same time, which can reduce resource consumption.
  • the first terminal device transmits the first service according to the transmission parameters configured by the access network device.
  • N terminal devices need to consume N times the air interface resources, transmission resources, site processing resources, and UE power resources to transmit the first service.
  • the QoS can reduce the consumption of resources (such as air interface resources, etc.) for the first terminal device to transmit the first service, thereby reducing the amount of resources that N terminal devices need to consume to transmit the first service.
  • resources such as air interface resources, etc.
  • the access network device receives the first data packet from the first terminal device, and if the second terminal device fails to send the first data packet, the access network device may send indication information to the second terminal device, The indication information may instruct the second terminal device not to retransmit the first data packet.
  • the access network device receives the first data packet from the first terminal device, and if the second terminal device fails to send the first data packet, the PDCP status sent by the access network device to the second terminal device The status of the first data packet in the report may be sent successfully.
  • the access network device receives the first data packet from the first terminal device, and if the second terminal device fails to send the first data packet, the access network device may send an ACK indication to the second terminal device Alternatively, no retransmission instruction is sent, so that the second terminal device does not retransmit the first data packet, so as to reduce resource consumption.
  • the access network device may send the data packets to the core network device after receiving the data packets of the N terminal devices. Specifically, the access network device may send the data packets from the N terminal devices to the core network device after deduplication and reordering. Through the above method, only one copy of data can be sent between the access network device and the core network device without duplication and disorder.
  • the access network device may also send the data packets from the N terminal devices to the core network device independently. Furthermore, the core network device can deduplicate and reorder the data packets from N terminal devices and send them to the server. Through the above method, only one copy of data can be sent between the core network device and the server without duplication and disorder etc. Alternatively, the core network device may also independently send the data packets from the N terminal devices to the server, and the server performs deduplication and reordering after receiving the data packets from the N terminal devices.
  • the process of deduplication and reordering in this application (such as the process of deduplication and reordering of access network equipment, the process of deduplication and reordering of core network equipment, and the process of deduplication and reordering of servers) can be Refer to the process of deduplication and reordering in step S404 above, and will not be repeated here.
  • N terminal devices transmit the first service is introduced above by taking the first terminal device as an example.
  • some terminal devices may have abnormal working status (such as terminal device failure, excessive load, etc.), in view of this situation, this application provides a possible
  • the solution is described below by taking the abnormal operation of the first terminal device as an example.
  • the access network device may improve the QoS of at least one terminal device that is not working abnormally.
  • the QoS of the terminal devices without abnormal operation can be maintained unchanged, or the QoS of all terminal devices among the terminal devices without abnormal operation can be increased or The QoS of some terminal equipments, but the average QoS of the terminal equipments without working abnormality after being improved is still lower than the QoS requirement of the first service.
  • the QoS of the terminal device may be increased so that the QoS of the terminal device meets the QoS requirement of the first service.
  • the way for the access network device to determine the working status of the terminal device may be: other terminal devices report to the access network device that the above-mentioned terminal device is working normally or fails, and the above-mentioned terminal device reports its own load situation and/or interference situation.
  • other terminal devices can determine that the above-mentioned terminal device is in a failure state or abnormal working state through the heartbeat packets between the terminal devices or other interfaces between the terminal devices.
  • the way for the access network device to determine the working status of the terminal device can also be: the access network device can judge the link or device of the terminal device according to the uplink data transmission status of the terminal device, the reference signal transmission status, and the ACK feedback status or reference signal. error occured.
  • the access network device may improve the QoS of the terminal device in at least one of the following four ways:
  • the access network device reduces the MCS used by the terminal device to transmit the first service.
  • the access network device increases time-frequency resources used by the terminal device to transmit the first service.
  • Mode 3 The access network device increases the number of repeated transmission times that the terminal device uses to transmit the first service.
  • Mode 4 The access network device configures the terminal device to transmit the first service in a PDCP duplication mode.
  • the resources consumed by the N terminal devices when transmitting the first service are less than N times the resources consumed by one terminal device for the first service, thereby reducing resource consumption.
  • the reliability of the first service can be guaranteed to a certain extent by improving the QoS of the remaining terminal equipment.
  • this embodiment of the present application provides a communication device, the structure of which may be as shown in FIG. 12B , including a processing unit 1201 and a first communication unit 1202 .
  • a second communication unit 1203 may also be included. It can be understood that, in this embodiment, the first communication unit and the second communication unit may be the same communication unit, or may be different communication units.
  • the communication device may be specifically used to implement the method performed by the access network device in the embodiment in FIG. 4 , and the device may be the access network device itself, or a chip or A chip set or a part of a chip for performing the function of the related method.
  • the processing unit 1201 is configured to determine the first information, and the first information is used to configure the data transmission rule of the first service;
  • the first communication unit 1202 is configured to send the first information to the first terminal device among the N terminal devices , N terminal devices are related to the first service, and N is an integer greater than 1.
  • the second communication unit 1203 is configured to receive configuration information from the first core network device, where the configuration information indicates that the N terminal devices are related to the first service.
  • the processing unit 1201 may also be configured to: determine the transmission mode of the first service according to at least one of the following: channel quality with at least one terminal device among the N terminal devices, and working status of at least one terminal device among the N terminal devices , Qos requirements of the first service.
  • the processing unit 1201 may be further configured to: determine the transmission mode of the first service according to the first indication information received through the second communication unit 1203, where the first indication information indicates the transmission mode corresponding to the first service.
  • the first communication unit 1202 may also be configured to: receive a data packet of the first service, the data packet is from at least one terminal device among the N terminal devices.
  • the processing unit 1201 is further configured to: deduplicate and reorder the received data packets.
  • the second communication unit 1203 is further configured to: send the deduplicated and reordered data packets to the second core network device.
  • the processing unit 1201 may be further configured to: determine that the first terminal device fails to send the first data packet, and instruct a second terminal device among the N terminal devices to send the first data packet.
  • the processing unit 1201 may be configured to: determine that the first terminal device fails to send the first data packet according to the second indication information received through the first communication unit 1202, and the second indication information indicates that the first terminal device has not received or failed to receive the first data packet. The first packet was sent successfully.
  • the first communication unit 1202 is further configured to receive a BSR from the first terminal device, where the BSR indicates the amount of data buffered by the first terminal device.
  • the processing unit 1201 is further configured to: determine the number of data packets that the first terminal device needs to send according to the data transmission rule and the BSR, and allocate uplink resources for the first terminal device according to the number of data packets that the first terminal device needs to send.
  • the first communication unit 1202 is further configured to: send third indication information to the first terminal device, where the third indication information is used to instruct sending the BSR.
  • the first communication unit 1202 may also be configured to: send fourth instruction information to at least one of the remaining terminal devices, where the fourth instruction information is used to indicate not to send a BSR, wherein the remaining terminal devices are N terminal devices except the first A terminal equipment other than a terminal equipment.
  • the first communication unit 1202 may also be configured to: send second information to the first terminal device, where the second information is used to configure the data radio bearer of the first service.
  • the communication device may specifically be used to implement the method performed by the first terminal device in the embodiment of FIG. 4 , and the device may be the first terminal device itself, or a chip in the first terminal device Or a part of a chipset or a chip for performing the function of the related method.
  • the first communication unit 1202 is configured to: receive first information from the access network device, the first information is used to configure the data transmission rules of the first service, the first service is related to N terminal devices, and N is greater than 1 is an integer, and the N terminal devices include the first terminal device.
  • the processing unit 1201 is configured to determine the to-be-sent data packet of the first service according to the data transmission rule, and the to-be-sent data packet is at least one data packet that needs to be sent by the first terminal device; The device sends a pending data packet.
  • the second communication unit 1203 is configured to: before the processing unit 1201 determines the data packets to be sent of the first service according to the data transmission rules, receive M data packets of the first service, where M is an integer greater than 0, and wait for Sending data packets is determined based on M data packets.
  • the processing unit 1201 is further configured to number the data packets to be sent according to the receiving order of the M data packets or the sequence numbers carried in the M data packets.
  • the first communication unit 1202 is further configured to: receive indication information from the access network device, where the indication information is used to indicate to send the second data packet, where the second data packet does not belong to the data packet to be sent.
  • the processing unit 1201 is further configured to: buffer M data packets before the first communication unit 1202 sends the data packets to be sent to the access network device; determine the data packets to be sent according to the second configuration information and M quantity.
  • the first communication unit 1202 is further configured to send a first BSR to the access network device, where the first BSR indicates the number of data packets to be sent.
  • the processing unit 1201 is also configured to: before the first communication unit 1202 sends the data packet to be sent to the access network device, buffer the data packet to be sent; The network access device sends a second BSR, where the second BSR indicates the number of buffered data packets.
  • the first communication unit 1202 is further configured to receive third instruction information from the access network device before sending the data packet to be sent to the access network device, the third instruction information being used to instruct sending the BSR
  • the processing unit 1201 is further configured to: buffer M data packets; the first communication unit 1202 is further configured to send a third BSR to the access network device, where the third BSR indicates the amount of data buffered by the first terminal device.
  • the first communication unit 1202 is further configured to receive fourth indication information from the access network device, where the fourth indication information is used to indicate not to send the BSR.
  • the first communication unit 1202 is further configured to receive second information from the access network device, where the second information is used to configure the data radio bearer of the first service.
  • the processing unit 1201 is further configured to configure a data radio bearer of the first service based on the second information.
  • the communication device may be specifically used to implement the method performed by the access network device in the embodiment in FIG. 12A , and the device may be the access network device itself, or a chip in the access network device Or a part of a chipset or a chip for performing the function of the related method.
  • the first communication unit 1202 is configured to: receive first information, where the first information indicates the QoS requirement of the first service.
  • the processing unit 1201 is configured to: determine the actually corresponding QoS requirement of the first terminal device among the N terminal devices. Wherein, the QoS of the first terminal device is lower than the QoS requirement of the first service, N terminal devices are related to the first service, and N is an integer greater than 1.
  • the first information includes at least one of the following: 5QI information, ARP, GBR, AMBR.
  • the processing unit 1201 is further configured to: increase the MCS used by the first terminal device for transmitting the first service when the transmission parameters are configured according to the actual QoS corresponding to the first terminal device.
  • the processing unit 1201 is further configured to: reduce time-frequency resources used by the first terminal device for transmitting the first service when configuring transmission parameters according to the actual QoS corresponding to the first terminal device.
  • the processing unit 1201 is further configured to: reduce the number of repeated transmissions for the first terminal device to transmit the first service when configuring transmission parameters according to the actual QoS corresponding to the first terminal device.
  • the second communication unit 1203 is configured to: receive the first data packet from the first terminal device. And, if the second terminal device fails to send the first data packet, indication information may be sent to the second terminal device, where the indication information instructs the second terminal device not to retransmit the first data packet.
  • the indication information may be an ACK indication or no retransmission indication, or the indication information may be a PDCP status report and the status of the first data packet in the PDCP status report is successfully sent.
  • the processing unit 1201 is also configured to: deduplicate and reorder the data packets from the N terminal devices; the first communication unit 1202 is also configured to: send the deduplicated and reordered data reports to Core network equipment.
  • the processing unit 1201 is further configured to: when it is determined that the first terminal device is working abnormally, the QoS of at least one terminal device that does not have working abnormality among the N terminal devices may be increased.
  • the processing unit 1201 is also configured to: if the number of terminal devices without abnormal operation among the N terminal devices is greater than 1, the QoS of the terminal devices without abnormal operation can be maintained unchanged, or the QoS of the terminal devices without abnormal operation can be increased, The QoS of all or part of the terminal devices among the abnormal terminal devices, and the improved average QoS of the terminal devices without working abnormality are lower than the QoS requirement of the first service.
  • the processing unit 1201 is further configured to: if the number of terminal devices that have not experienced abnormal operation among the N terminal devices is equal to 1, increase the QoS of the terminal device so that the QoS of the terminal device meets the QoS requirements of the first service .
  • the processing unit 1201, when improving the QoS of the terminal device is specifically configured to: reduce the MCS used by the terminal device for transmitting the first service.
  • the processing unit 1201, when improving the QoS of the terminal device is specifically configured to: increase time-frequency resources used by the terminal device for transmitting the first service.
  • the processing unit 1201, when improving the QoS of the terminal device is specifically configured to: increase the number of repeated transmission times for the terminal device to transmit the first service.
  • each functional module in each embodiment of the present application can be integrated into a processing In the controller, it can also be physically present separately, or two or more modules can be integrated into one module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or in the form of software function modules. It can be understood that, for the function or implementation of each module in the embodiment of the present application, further reference may be made to the relevant description of the method embodiment.
  • the communication device may be as shown in Figure 13, the device may be a communication device or a chip in a communication device, where the communication device may be the first terminal device in the above embodiment or it may be the terminal device in the above embodiment access network equipment.
  • the device includes a processor 1301 and a first communication interface 1302 , and may further include a second communication interface 1305 and a memory 1303 .
  • the processing unit 1201 may be the processor 1301 .
  • the first communication unit 1202 may be a first communication interface 1302 .
  • the second communication unit 1203 may be a second communication interface 1305 .
  • the processor 1301 may be a CPU, or a digital processing unit or the like.
  • the first communication interface 1302 and the second communication interface 1305 may be transceivers, interface circuits such as transceiver circuits, transceiver chips, and the like.
  • the device also includes: a memory 1303 for storing programs executed by the processor 1301 .
  • the memory 1303 can be a non-volatile memory, such as a hard disk (hard disk drive, HDD) or a solid-state drive (solid-state drive, SSD), etc., and can also be a volatile memory (volatile memory), such as a random access memory (random -access memory, RAM).
  • the memory 1303 is any other medium that can be used to carry or store desired program codes in the form of instructions or data structures and can be accessed by a computer, but is not limited thereto.
  • the processor 1301 is configured to execute the program codes stored in the memory 1303, and is specifically configured to execute the actions of the above-mentioned processing unit 1201, which will not be repeated in this application.
  • the first communication interface 1302 is specifically configured to execute the above-mentioned actions of the first communication unit 1202, which will not be repeated in this application.
  • the second communication interface 1305 is specifically configured to execute the actions of the above-mentioned second communication unit 1203, which will not be repeated in this application.
  • the specific connection medium among the first communication interface 1302 , the second communication interface 1305 , the processor 1301 and the memory 1303 is not limited in the embodiment of the present application.
  • the memory 1303, the processor 1301, and the first communication interface 1302 are connected through the bus 1304.
  • the bus is represented by a thick line in FIG. 13, and the connection mode between other components is only for illustration Descriptions are not intended to be limiting.
  • the bus can be divided into address bus, data bus, control bus and so on. For ease of representation, only one thick line is used in FIG. 13 , but it does not mean that there is only one bus or one type of bus.
  • the embodiments of the present application may be provided as methods, systems, or computer program products. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to operate in a specific manner, such that the instructions stored in the computer-readable memory produce an article of manufacture comprising instruction means, the instructions
  • the device realizes the function specified in one or more procedures of the flowchart and/or one or more blocks of the block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种通信方法及装置,可以提高传输可靠性和传输速率。该方法包括:接入网设备确定用于配置第一业务的数据传输规则的第一信息,并向N个终端设备中的第一终端设备进行发送,N个终端设备与该第一业务相关,N为大于1的整数。通过接入网侧的控制,使得第一业务的数据可以按照配置的数据传输规则在N个终端设备上进行传输,并且接入网设备可以灵活配置数据传输规则,从而可以配置满足第一业务的高可靠性、高速率等需求的数据传输规则,提高第一业务的传输性能。

Description

一种通信方法及装置
相关申请的交叉引用
本申请要求在2021年06月07日提交中国专利局、申请号为202110633975.8、申请名称为“一种通信方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中;本申请要求在2021年07月02日提交中国专利局、申请号为202110750254.5、申请名称为“一种通信方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种通信方法及装置。
背景技术
新无线(new radio,NR)系统中引入了海量机器连接的应用场景,例如,工业场景、智能监控场景、器件的缺陷检测场景等等,这种应用将实现大量、快速的数据传输,进而实现对万物实时的遥感、遥测和管理。
以工业场景为例进行说明,数据传输过程为:可编程逻辑控制器(programmable logic control,PLC)将产生的数据发送给终端设备,由终端设备向接入网和核心网发送,然后由核心网设备向服务器发送,该服务器可以对工业场景中各种类型的机械或生产过程进行管理。在工业场景中对业务的可靠性要求以及传输速率的要求比较高,然而现有的终端设备由于成本的原因,传输的可靠性以及速率不能达到相关业务的要求,因此传输性能比较低。同样,在智能监控场景,以及器件的缺陷检测场景也对数据传输的可靠性和大速率有较高的要求,因此,如何提升传输可靠性和传输速率是一个亟待解决的问题。
发明内容
本申请提供一种通信方法及装置,可以提高传输可靠性和传输速率。
第一方面,本申请提供一种通信方法,该方法的执行主体可以是接入网设备,也可以是芯片或电路。方法包括:确定用于配置第一业务的数据传输规则的第一信息,并向N个终端设备中的第一终端设备进行发送,N个终端设备与第一业务相关,N为大于1的整数。
本申请实施例中基于接入网侧的控制,使得第一业务的数据可以按照配置的数据传输规则在N个终端设备上进行传输,并且接入网设备可以灵活配置数据传输规则,从而可以配置满足第一业务的高可靠性、高速率等需求的数据传输规则,提高第一业务的传输性能。
在一种可能的设计中,接收来自第一核心网设备的配置信息,配置信息指示N个终端设备与第一业务相关。通过上述设计,接入网设备可以确定第一业务关联的终端设备,从而可以控制该N个终端设备协作传输第一业务,提高第一业务的传输性能。
在一种可能的设计中,该配置信息可以包括N个终端设备的配置信息,其中,每个终端设备的配置信息均包括第一业务的标识信息。通过在终端设备的配置信息中包括第一业务的标识,可以指示该终端设备与第一业务的相关关系(或者绑定关系或者关联关系等)。
在一种可能的设计中,配置信息可以包括第一业务的配置信息,其中,该配置信息可 以携带上述N个终端设备的标识信息。通过在第一业务的配置信息中携带N个终端设备的标识信息,可以指示N个终端设备与第一业务的相关关系(或者绑定关系或者关联关系等)。
在一种可能的设计中,数据传输规则为根据第一业务的传输模式确定的。通过上述设计,使得数据传输规则可以更符合第一业务的需求。
在一种可能的设计中,可以根据如下至少一项确定第一业务的传输模式:与N个终端设备中至少一个终端设备之间的信道质量、N个终端设备中至少一个终端设备的工作状态、第一业务的服务质量Qos需求。通过上述设计,可以根据第一业务的业务需求、终端设备的空口质量、终端设备的工作状态等确定数据传输规则,使得N个终端设备可以根据业务需求或者空口质量实现备份或者分流的功能,从而可以提高业务传输的可靠性以及传输速率。
在一种可能的设计中,可以根据接收来自第一核心网设备的第一指示信息确定第一业务的传输模式,第一指示信息指示第一业务对应的传输模式。通过上述设计,使接入网设备可以配置符合第一业务的传输模式的数据传输规则。
在一种可能的设计中,传输模式可以为第一模式,在第一模式中,N个终端设备包括至少一个主终端设备和至少一个备份终端设备,其中,备份终端设备用于在至少一个主终端设备中的全部主终端设备或部分主终端设备故障时传输第一业务。上述设计中,当传输第一业务的主终端设备故障时可以通过备份终端设备继续传输第一业务,从而可以保证第一业务的可靠性,并且,在第一模式中,备份终端设备在主终端设备故障时开始传输第一业务,可以节省资源,提高系统的效率。
在一种可能的设计中,传输模式可以为第二模式,在第二模式中,N个终端设备均传输第一业务,且N个终端设备传输的数据包相同。上述设计中,通过多个终端设备传输第一业务相同的数据,可以保证第一业务的可靠性。
在一种可能的设计中,传输模式可以为第三模式,在第三模式中,N个终端设备均传输第一业务,且N个终端设备传输的数据包不同。上述设计中,通过多个终端设备传输第一业务不同的数据,可以保证第一业务的传输速率。
在一种可能的设计中,传输模式可以为第四模式,在第四模式中,N个终端设备均传输第一业务,且第一终端设备传输的数据包与N个终端设备中的第二终端设备传输的数据包相比存在相同的数据包和不同的数据包。通过上述模式既可以提高可靠性,也可以提高传输速率。
在一种可能的设计中,第一信息包括第一终端设备对应的第一值、门限值中至少一个,第一值、门限值用于确定第一终端设备传输的数据包。通过上述设计,第一终端设备可以根据数据包的序列号、第一值和门限值确定是否需要发送该数据包,也就是该数据包是否包括在待发送数据包中。
在一种可能的设计中,第一信息指示第一终端设备是否发送第一业务的数据包。通过上述设计,第一终端设备可以确定是否需要传输第一业务。
在一种可能的设计中,还可以向第一终端设备发送分组数据汇聚层协议(PDCP)状态报告或者第一序列号,其中,PDCP状态报告指示成功接收的数据包和/或未成功接收的数据包,第一序列号为第一终端设备需要发送的第一个数据包的序列号或者为第一终端设备需要发送的数据包对应的序列号。通过上述设计,第一终端设备可以确定发送的起始数据包。
在一种可能的设计中,第一信息指示第一终端设备发送序列号为奇数或者偶数的数据包。通过上述设计,第一终端设备可以根据数据包的序列号确定是否需要发送该数据包,也就是该数据包是否包括在待发送数据包中。
在一种可能的设计中,第一信息指示第一终端设备的分流比例,分流比例为在k个数据包中第一终端设备需要发送的数据包的数量与k的比例。通过上述设计,第一终端设备可以确定需要发送的数据包的数量。
在一种可能的设计中,第一信息还包括如下至少一项:数据包的位置、k的取值,其中,数据包的位置用于指示第一终端设备需要发送的数据包在k个数据包中的位置。通过上述设计,第一终端设备可以确定需要发送的数据包的具体位置。
在一种可能的设计中,第一信息指示第一终端设备需要发送的数据包的序列号的范围。通过上述设计,第一终端设备可以确定需要发送的数据包。
在一种可能的设计中,还可以接收第一业务的数据包,数据包来自N个终端设备中的至少一个终端设备;将接收到的数据包进行去重和重排序;将去重和重排序后的数据包向第二核心网设备发送。通过上述设计,可以使得接入网设备到核心网设备之间只发送一份数据,且没有重复和乱序等情况。
在一种可能的设计中,还可以在确定第一终端设备发送第一数据包失败时,指示N个终端设备中的第二终端设备发送第一数据包。通过上述设计,终端设备可以传输自己的待发送数据包以外的数据包,可以提高传输的可靠性。
在一种可能的设计中,确定第一终端设备发送第一数据包失败时,可以接收来自第一终端设备的第二指示信息,第二指示信息指示第一终端设备未接收到或者未成功发送第一数据包。其中,“未成功发送”可以理解为第一终端设备未从应用层接收到第一数据包,导致不能向接入网设备发送第一数据包。通过上述设计,使接入网设备可以及时调度其他终端设备上传该第一数据包,从而可以提高可靠性。
在一种可能的设计中,确定来自第一终端设备的缓冲区状态报告(BSR),BSR指示第一终端设备缓存的数据量;根据数据传输规则和BSR确定第一终端设备需要发送的数据包的数量;根据第一终端设备需要发送的数据包的数量为第一终端设备分配上行资源。上述设计中,接入网设备可以根据终端设备需要发送的数据包的数据量分配上行资源,从而可以避免为终端设备分配过多或过少的传输资源,进而可以提高资源分配的合理性,提升资源利用率。
在一种可能的设计中,还可以向第一终端设备发送第三指示信息,第三指示信息用于指示发送BSR。通过上述设计,接入网设备可以指示部分终端设备上报BSR,剩下的终端设备可以不上报BSR,从而可以节省信令开销。
在一种可能的设计中,还可以向剩余终端设备中的至少一个终端设备发送第四指示信息,第四指示信息用于指示不发送BSR,其中,剩余终端设备为N个终端设备除第一终端设备以外的终端设备。上述设计中,剩下的终端设备可以不上报BSR,从而可以节省信令开销。
在一种可能的设计中,还可以向第一终端设备发送第二信息,第二信息用于配置第一业务的数据无线承载。
第二方面,本申请提供一种通信方法,该方法的执行主体可以是第一终端设备,也可以是芯片或电路。方法包括:接收来自接入网设备的第一信息,第一信息用于配置第一业 务的数据传输规则,第一业务与N个终端设备相关,N为大于1的整数,N个终端设备包括第一终端设备;根据数据传输规则确定第一业务的待发送数据包并向接入网设备发送,待发送数据包为第一终端设备需要发送的至少一个数据包。
本申请实施例中基于接入网侧的控制,将第一业务的数据在N个终端设备上进行传输,并且接入网设备可以配置N个终端设备的数据传输规则,从而可以配置的数据传输规则满足第一业务的高可靠性、高速率等需求,提高第一业务的传输性能。
在一种可能的设计中,数据传输规则为根据第一业务的传输模式确定的。通过上述设计,使得数据传输规则可以更符合第一业务的需求。
在一种可能的设计中,传输模式可以为第一模式,在第一模式中,N个终端设备包括至少一个主终端设备和至少一个备份终端设备,其中,备份终端设备用于在至少一个主终端设备中的全部主终端设备或部分主终端设备故障时传输第一业务。上述设计中,当传输第一业务的主终端设备故障时可以通过备份终端设备继续传输第一业务,从而可以保证第一业务的可靠性,并且,在第一模式中,备份终端设备在主终端设备故障时开始传输第一业务,可以节省资源,提高系统的效率。
在一种可能的设计中,传输模式可以为第二模式,在第二模式中,N个终端设备均传输第一业务,且N个终端设备传输的数据包相同。上述设计中,通过多个终端设备传输第一业务相同的数据,可以保证第一业务的可靠性。
在一种可能的设计中,传输模式可以为第三模式,在第三模式中,N个终端设备均传输第一业务,且N个终端设备传输的数据包不同。上述设计中,通过多个终端设备传输第一业务不同的数据,可以保证第一业务的传输速率。
在一种可能的设计中,传输模式可以为第四模式,在第四模式中,N个终端设备均传输第一业务,且第一终端设备传输的数据包与N个终端设备中的第二终端设备传输的数据包相比存在相同的数据包和不同的数据包。通过上述模式既可以提高可靠性,也可以提高传输速率。
在一种可能的设计中,第一信息包括第一终端设备对应的第一值、门限值中至少一个,第一值、门限值用于确定第一终端设备传输的数据包。通过上述设计,第一终端设备可以根据数据包的序列号、第一值和门限值确定是否需要发送该数据包,也就是该数据包是否包括在待发送数据包中。
在一种可能的设计中,第一信息指示第一终端设备是否发送第一业务的数据包。通过上述设计,第一终端设备可以确定是否需要传输第一业务。
在一种可能的设计中,还可以接受PDCP状态报告或者第一序列号,其中,PDCP状态报告指示成功接收的数据包和/或未成功接收的数据包,第一序列号为第一终端设备需要发送的第一个数据包的序列号或者为第一终端设备需要发送的数据包对应的序列号。通过上述设计,第一终端设备可以确定发送的起始数据包。
在一种可能的设计中,第一信息指示第一终端设备发送序列号为奇数或者偶数的数据包。通过上述设计,第一终端设备可以根据数据包的序列号确定是否需要发送该数据包,也就是该数据包是否包括在待发送数据包中。
在一种可能的设计中,第一信息指示第一终端设备的分流比例,分流比例为在k个数据包中第一终端设备需要发送的数据包的数量与k的比例。通过上述设计,第一终端设备可以确定需要发送的数据包的数量。
在一种可能的设计中,第一信息还包括如下至少一项:数据包的位置、k的取值,其中,数据包的位置用于指示第一终端设备需要发送的数据包在k个数据包中的位置。通过上述设计,第一终端设备可以确定需要发送的数据包的具体位置。
在一种可能的设计中,第一信息指示第一终端设备需要发送的数据包的序列号的范围。通过上述设计,第一终端设备可以确定需要发送的数据包。
在一种可能的设计中,在根据数据传输规则确定第一业务的待发送数据包之前,可以接收第一业务的M个数据包,M为大于0的整数,待发送数据包是根据M个数据包确定的。通过上述设计,第一终端设备可以根据数据传输规则发送M个数据包的全部数据包或部分数据包。
在一种可能的设计中,在向接入网设备发送待发送数据包之前,可以根据M个数据包的接收顺序或者M个数据包中携带的序号为待发送数据包进行编号。通过上述设计,可以实现应用层到接入层数据的统一数据编排序号。
在一种可能的设计中,还可以接收来自接入网设备的指示信息,指示信息用于指示发送第二数据包,其中,第二数据包不属于待发送数据包。通过上述设计,终端设备可以传输自己的待发送数据包以外的数据包,可以提高传输的可靠性。
在一种可能的设计中,在向接入网设备发送待发送数据包之前,还可以缓存M个数据包;根据第二配置信息以及M确定待发送数据包的数量;向接入网设备发送第一缓冲区状态报告(BSR),第一BSR指示待发送数据包的数量。
上述设计中,第一终端设备可以根据数据传输规则确定自己的数据量,从而可以BSR上报时指示自己需要发送的数据量,使得接入网设备可以根据第一终端设备需要传输的数据包对应的数据量为该第一终端设备分配上行资源,从而可以提升资源分配的准确性,降低资源浪费。
在一种可能的设计中,在向接入网设备发送待发送数据包之前,还可以缓存待发送数据包;向接入网设备发送第二BSR,第二BSR指示缓存的数据包的数量。
上述设计中,终端设备可以根据数据传输规则确定自己的数据量,并且只缓存需要自己发送的数据包,从而可以BSR上报时指示自己需要发送的数据量,使得接入网设备可以根据终端设备需要传输的数据包对应的数据量为该终端设备分配上行资源,从而可以提升资源分配的准确性,并且可以提升终端设备存储资源的利用率,从而可以降低资源浪费。
在一种可能的设计中,在向接入网设备发送待发送数据包之前,还可以接收来自接入网设备的第三指示信息,第三指示信息用于指示发送BSR;缓存M个数据包;向接入网设备发送第三BSR,第三BSR指示第一终端设备缓存的数据量。
上述设计中,由于接入网设备已经向终端设备下发了数据传输规则,而且终端设备接收到第一业务的数据包相同,所以接入网设备根据第一终端设备上报的BSR可以推断出各个终端设备对应的数据量,然后可以根据对应的数据量为各个终端设备分配上行资源,从而可以提升资源分配的准确性,从而可以降低资源浪费。
在一种可能的设计中,在向接入网设备发送第三BSR之前,可以接收来自接入网设备的第三指示信息,第三指示信息用于指示发送BSR。通过上述设计,接入网设备可以指示部分终端设备上报BSR,剩下的终端设备可以不上报BSR,从而可以节省信令开销。
在一种可能的设计中,还可以接收来自接入网设备的第四指示信息,第四指示信息用于指示不发送BSR。从而第一终端设备可以不触发BSR上报,通过上述设计中,可以节 省信令开销。
在一种可能的设计中,还可以接收来自接入网设备的第二信息,第二信息用于配置第一业务的数据无线承载;基于第二信息配置第一业务的数据无线承载。
第三方面,本申请提供一种通信方法,该方法的执行主体可以是接入网设备,也可以是芯片或电路。方法包括:接收第一信息,第一信息指示第一业务的QoS需求;接入网设备确定N个终端设备中的第一终端设备实际对应的QoS需求。其中,第一终端设备的QoS比第一业务的QoS需求低,N个终端设备与第一业务相关,N为大于1的整数。本申请实施例中通过降低第一终端设备的QoS,可以降低第一终端设备传输第一业务的资源,从而可以降低资源消耗。
在一种可能的设计中,第一信息包括如下至少一项:5G QoS指示符(5QI)信息、分配保持优先级(ARP)、保证比特速率(GBR)、聚合最大比特速率(AMBR)。
在一种可能的设计中,该方法还包括:根据第一终端设备实际对应的QoS配置传输参数时,可以提高第一终端设备用于传输第一业务的MCS。上述方式通过为第一终端设备配置更高的MCS,可以降低终端设备的QoS。
在一种可能的设计中,该方法还包括:根据第一终端设备实际对应的QoS配置传输参数时,可以减少第一终端设备用于传输第一业务的时频资源。上述方式通过为第一终端设备配置更少的时频资源,可以降低数据传输速率,进而降低终端设备的QoS。
在一种可能的设计中,该方法还包括:根据第一终端设备实际对应的QoS配置传输参数时,可以降低第一终端设备用于传输第一业务的重复传输次数。上述方式通过为第一终端设备配置更低的重复传输次数,可以降低数据传输的可靠性,进而第一终端设备的QoS。
在一种可能的设计中,该方法还包括:接收到来自第一终端设备的第一数据包。若第二终端设备发送第一数据包失败,可以向该第二终端设备发送指示信息,该指示信息指示第二终端设备不重传第一数据包。
在一种可能的设计中,该指示信息可以为ACK指示或者不发送重传指示,或者,该指示信息可以为PDCP状态报告且该PDCP状态报告中第一数据包的状态为成功发送。
在一种可能的设计中,该方法还包括:将来自N个终端设备的数据包进行去重和重排序后发送给核心网设备。
在一种可能的设计中,该方法还包括:在确定第一终端设备工作异常时可以提升N个终端设备中至少一个未发生工作异常的终端设备的QoS。上述设计中,当出现终端设备故障时,通过提升剩余终端设备的QoS,可以保证第一业务的可靠性。
在一种可能的设计中,若N个终端设备中未发生工作异常的终端设备的数量大于1,可以维持未发生工作异常的终端设备的QoS不变,或者,提升未发生工作异常的终端设备中全部终端设备或者部分终端设备的QoS,且经过提升后的未发生工作异常的终端设备的平均QoS低于第一业务的QoS需求。
在一种可能的设计中,若N个终端设备中未发生工作异常的终端设备的数量等于1,可以提升该终端设备的QoS,使得该终端设备的QoS满足第一业务的QoS需求。
在一种可能的设计中,提升终端设备的QoS,包括:降低终端设备用于传输第一业务的MCS。
在一种可能的设计中,提升终端设备的QoS,包括:增加终端设备用于传输第一业务的时频资源。
在一种可能的设计中,提升终端设备的QoS,包括:提升终端设备用于传输第一业务的重复传输次数。
第四方面,本申请还提供一种通信装置,该通信装置具有实现上述第一方面或第三方面提供的任一方法。该通信装置可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的单元或模块。
在一种可能的设计中,该通信装置包括:处理器,该处理器被配置为支持该通信装置执行以上所示方法中终端设备的相应功能。该通信装置还可以包括存储器,该存储可以与处理器耦合,其保存该通信装置必要的程序指令和数据。可选地,该通信装置还包括接口电路,该接口电路用于支持该通信装置与网络设备等设备之间的通信。
在一种可能的设计中,该通信装置包括相应的功能模块,分别用于实现以上方法中的步骤。功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。硬件或软件包括一个或多个与上述功能相对应的模块。
在一种可能的设计中,通信装置的结构中包括处理单元和通信单元,这些单元可以执行上述方法示例中相应功能,具体参见第一方面或第三方面提供的方法中的描述,此处不做赘述。
第五方面,本申请还提供一种通信装置,该通信装置具有实现上述第二方面提供的任一方法。该通信装置可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的单元或模块。
在一种可能的设计中,该通信装置包括:处理器,该处理器被配置为支持该通信装置执行以上所示方法中终端设备的相应功能。该通信装置还可以包括存储器,该存储可以与处理器耦合,其保存该通信装置必要的程序指令和数据。可选地,该通信装置还包括接口电路,该接口电路用于支持该通信装置与网络设备等设备之间的通信。
在一种可能的设计中,该通信装置包括相应的功能模块,分别用于实现以上方法中的步骤。功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。硬件或软件包括一个或多个与上述功能相对应的模块。
在一种可能的设计中,通信装置的结构中包括处理单元和通信单元,这些单元可以执行上述方法示例中相应功能,具体参见第二方面提供的方法中的描述,此处不做赘述。
第六方面,提供了一种通信装置,包括处理器和接口电路,接口电路用于接收来自该通信装置之外的其它通信装置的信号并传输至该处理器或将来自该处理器的信号发送给该通信装置之外的其它通信装置,该处理器通过逻辑电路或执行代码指令用于实现前述第一方面或第三方面以及任意可能的设计中的方法。
第七方面,提供了一种通信装置,包括处理器和接口电路,接口电路用于接收来自该通信装置之外的其它通信装置的信号并传输至该处理器或将来自该处理器的信号发送给该通信装置之外的其它通信装置,该处理器通过逻辑电路或执行代码指令用于实现前述第二方面以及任意可能的设计中的方法。
第八方面,提供了一种计算机可读存储介质,该计算机可读存储介质中存储有计算机程序或指令,当该计算机程序或指令被处理器执行时,实现前述第一方面以及任意可能的设计,或者,第二方面以及任意可能的设计中的方法,或者,第三方面以及任意可能的设计中的方法。
第九方面,提供了一种存储有指令的计算机程序产品,当该指令被处理器运行时,实 现前述第一方面以及任意可能的设计,或者,第二方面以及任意可能的设计中的方法,或者,第三方面以及任意可能的设计中的方法。
第十方面,提供一种芯片系统,该芯片系统包括处理器,还可以包括存储器,用于实现前述第一方面以及任意可能的设计,或者,第二方面以及任意可能的设计中的方法,或者,第三方面以及任意可能的设计中的方法。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
第十一方面,提供一种通信系统,所述系统包括第一方面所述的装置(如接入网设备)以及N个终端设备,其中,N个终端设备包括第二方面所述的装置(如第一终端设备)。
第十二方面,提供一种通信系统,所述系统包括第三方面所述的装置(如接入网设备)以及N个终端设备,其中,N个终端设备与第一业务相关。
附图说明
图1为本申请实施例的一种网络协议栈示意图;
图2为本申请实施例的一种备份传输示意图;
图3为本申请实施例的一种通信系统的架构示意图;
图4为本申请实施例的一种通信方法的流程示意图;
图5为本申请实施例的一种重排序示意图;
图6为本申请实施例的一种应用场景示意图;
图7为本申请实施例的一种数据传输的流程示意图;
图8为本申请实施例的一种数据传输示意图;
图9为本申请实施例的另一种数据传输示意图;
图10为本申请实施例的另一种数据传输示意图;
图11为本申请实施例的丢包示意图;
图12A为本申请实施例的另一种通信方法的流程示意图;
图12B为本申请实施例的一种通信装置的结构示意图;
图13为本申请实施例的另一种通信装置的结构示意图。
具体实施方式
为了使本申请实施例的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施例作进一步地详细描述。
以下,对本申请实施例中的部分用语进行解释说明,以便于本领域技术人员理解。
1)网络协议架构:如图1所示,网络协议栈包括应用(application,APP)层、业务数据适配协议(service data adaptation protocol,SDAP)、分组数据汇聚层协议(packet data convergence protocol,PDCP)、无线链路控制(radio link control,RLC)层,媒体接入控制(media access control,MAC)层和物理(physical,PHY)层,其中,APP层在SDAP层之上,SDAP层在PDCP层之上,PDCP层位于RLC层之上,RLC层位于MAC之上,MAC层位于PHY层以上。核心网设备的协议栈包括:通用分组无线业务(general packet radio service,GPRS)用户面隧道协议(GPRS tunnelling protocol for the user plane,GTP-U)层、用户数据报协议(user datagram protocol,UDP)层、互联网协议(internet protocol, IP)层、数据链路层(data link layer,DLL)、PHY层,其中,GTP-U层在UDP层之上,UDP层在IP层之上,IP层在data link layer之上,data link layer在physical layer之上。服务器(server)包括APP层。APP层生成的包可以是传输控制协议(transmission control protocol,TCP)/IP包,也可以是以太网(Ethernet)协议里的MAC包,也可以为其他包,在这里并不限制。应理解,上述列举的协议层仅是一种示例,并不对网络协议栈包括的协议层进行具体限定。
2)多播技术:多播是指接入网设备在一份资源发送数据,多个终端设备共同接收的一项技术。接入网设备一般会通过广播或者单播的方式通知终端设备:接入网设备支持的多播业务,通知的内容可以包括一个临时移动组标识(temporary mobile group identity,TMGI)TMGI和一个组无线网络临时标识符(group radio network temporary identifier,G-RNTI),以及检测G-RNTI的配置信息,例如检测时频位置,检测周期等。应理解,上述通知的内容仅是一种示例,并不对接入网设备通知终端设备的具体内容进行限定。
3)缓冲区状态报告(buffer status report,BSR)技术:目前,无线通信系统中,终端设备与接入网设备之间的数据通信,是依靠接入网设备为终端设备进行资源调度实现的。例如,当终端设备的某个逻辑信道有新数据或者有更高优先级的数据到达的时候,会触发BSR,如果没有直接可用的上行资源,终端设备先发送上行调度请求(scheduling request,SR)向接入网设备请求资源,接入网设备收到SR会为终端设备分配一定大小的资源用于终端设备上报BSR,终端设备在分配的资源上发送BSR来指示自己有多少数据需要发送,以便接入网设备进一步根据BSR决定给终端设备分配多大资源用来传输数据。
BSR组装:当有可用的上行资源的时候,终端设备需要组装BSR,具体的,将终端设备中逻辑信道组中所有待发送数据的数据量(buffer size,BS)信息封装到BSR MAC控制元素(control element,CE)中在上行资源上进行发送。BSR上报可以是基于逻辑信道组进行上报的,体现逻辑信道组中所有逻辑信道一共有多少数据量。示例性的,BSR可以上报一个索引值,该索引值对应一个数据大小的范围,而不是一个精确的上行数据量。
本申请实施例中“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。
以及,除非有相反的说明,本申请实施例提及“第一”、“第二”等序数词是用于对多个对象进行区分,不用于限定多个对象的大小、内容、顺序、时序、优先级或者重要程度等。例如,第一信息和第二信息,只是为了区分不同的信息,而并不是表示这两个信息的内容、优先级或者重要程度等的不同。
前文介绍了本申请实施例所涉及到的一些名词概念,下面介绍本申请实施例涉及的技术特征。
NR系统中引入了海量机器连接的应用场景,这种应用将实现大量、快速的数据传输,进而实现对万物实时的遥感、遥测和管理。例如,工业场景、智能监控场景、器件的缺陷检测场景等等,在这些应用场景中对业务的可靠性要求比较高,然而现有的终端设备由于成本的原因,硬件和软件的可靠性不能达到相关业务的要求,如何保证在终端故障时,不 影响业务传输是一个亟待解决的问题。一种可能的解决方案为:如图2所示,物联网设备(例如工业场景中控制各种类型的机械或生产过程的设备(如可编程逻辑控制器(programmable logic control,PLC))、智能监控场景中的监控设备(如摄像头等)、器件的缺陷检测场景中的检测设备等)可以将数据包分别发送到两个终端设备,两个终端设备将相同的数据包发送到接入网和核心网,通过核心网到达数据目的端,也就是物联网的服务器(例如工业场景中用于管理各种类型的机械或生产过程的服务器等)。类似的,下行数据可以通过核心网和接入网分别到达两个终端设备,由两个终端设备发送到物联网设备,物联网设备处理相关数据。通过上述方式,即使一个终端设备发生故障,业务也不会受到影响。但是,上述方式中同一份数据需要从终端设备到接入网到核心网被传输两遍,因此需要消耗双倍空口资源、传输资源、站点的处理资源以及UE的功率资源等。而终端设备的故障是偶发的,为了偶发的事情,长时间消耗大量资源,会降低系统的效率。
另外,在机器连接的应用场景中对数据的传输速率要求较高,例如,工业场景中有大量高清摄像头业务需要回传的控制单元,以便于实时监测工业生产,而高清摄像头的产生高清视频的回传需要非常高的传输带宽,单个终端设备由于功率,硬件能力受限,无法保证大速率的视频业务的回传,因此,如何解决大速率传输也是一个亟待解决的问题。
基于此,本申请实施例提供两种通信方法及装置。本申请实施例中接入网设备可以根据业务的传输模式(或者传输需求或者终端设备的空口质量等)指示多个终端设备的数据传输规则,例如,若业务的传输模式为高可靠传输(或者业务的传输需求为高可靠),接入网设备可以指示多个终端设备为该业务传输相同的数据包,从而可以保证该业务的可靠性。若业务的传输模式为高速率传输(或者业务的传输需求为高速率),接入网设备可以指示多个终端设备为该业务传输不同的数据包,从而提高传输速率。通过上述方式,接入网设备可以灵活控制多个终端设备的传输方式,从而根据业务需求(或者终端设备的空口质量)可以实现备份或者分流,进而可以实现业务的高可靠传输和高速率传输。
本申请提供的通信方法可以应用于各类通信系统中,例如,可以是物联网(internet of things,IoT)、窄带物联网(narrow band internet of things,NB-IoT)、长期演进(long term evolution,LTE),也可以是第五代(5th generation,5G)通信系统,还可以是LTE与5G混合架构,也可以是6G或者未来通信发展中出现的新的通信系统等。通信系统还可以是机器到机器(machine to machine,M2M)网络、机器类通信(machine type communication,MTC)或者其他网络。
示例性的,本申请实施例提供的通信方法可应用于如图3所示的通信系统,该通信系统包括:核心网设备(如核心网设备1和核心网设备2)、接入网设备、交换机/路由器/集线器、终端设备(如UE1~UE3)以及工业设备(如工业设备1~工业设备3)。在该通信系统中,工业设备1和工业设备2通过交换机/路由器/集线器连接到UE1,工业设备3连接到UE2。UE1,UE2,UE3通过无线链路和接入网设备连接,接入网设备与核心网设备1以及核心网设备2相连。应理解,图3仅是通信系统的一种示例性架构,并不对通信系统中包括的通信设备的类型、形态、数量、连接关系等进行具体限定。
本申请实施例也可用于其他通信系统,只要该通信系统中数据发送端需要通过终端设备、接入网设备以及核心网设备将数据传输到数据接收端。
以上所示终端设备,可以为用户侧的一种用于接收或发射信号的实体,也可以称为用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、 远程终端、移动设备、用户终端、无线通信设备、用户代理或用户装置。本申请实施例中的终端设备可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端、增强现实(augmented reality,AR)终端、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、视频监控中的无线终端以及可穿戴终端设备、客户终端设备(customer-premises equipment,CPE)等。
本申请实施例中,用于实现终端设备的功能的装置可以是终端设备,也可以是能够支持终端设备实现该功能的装置,例如芯片系统,该装置可以被安装在终端设备中。本申请实施例中,芯片系统可以由芯片构成,也可以包括芯片和其他分立器件。本申请实施例提供的技术方案中,以用于实现终端的功能的装置是终端设备为例,描述本申请实施例提供的技术方案。
接入网设备可以是网络侧的一种用于发射或接收信号的实体,例如接入网中在空口通过一个或多个小区与无线终端设备通信的设备。接入网设备可以是NR系统中的下一代基站(next Generation node B,gNB),可以是LTE系统中的演进型基站(evolutional node B,eNB)等。本申请实施例中,用于实现接入网设备的功能的装置可以是接入网设备,也可以是能够支持接入网设备实现该功能的装置,例如芯片系统,该装置可以被安装在接入网设备中。在本申请实施例提供的技术方案中,以用于实现接入网设备的功能的装置是接入网设备为例,描述本申请实施例提供的技术方案。
核心网设备可以是网络侧用于管理用户、数据传输以及接入网设备配置的多种功能实体的统称,包括访问和移动管理功能(access and mobility management function,AMF),用户面功能(user plane function,UPF),会话管理功能(session management function,SMF)等。
工业设备可以是工业场景使用的设备,负责一些控制数据的产生和处理,比如PLC或者摄像头。
本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题同样适用。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。该方法可以应用于数据发送端通过终端设备和接入网设备和核心网设备将数据发送到数据接收端的场景中,例如,工业场景。
参见图4,为本申请提供的一种通信方法的流程示意图。该方法包括:
S401,接入网设备确定第一信息。
其中,第一信息可以用于配置第一业务的数据传输规则,进一步的,第一信息还可以指示第一业务的传输模式。其中,数据传输规则可以理解为分流规则,用于指示多个终端设备如何传输第一业务,具体的数据传输规则、传输模式、第一信息的内容以及接入网设备确定第一信息的方式将在下文详细描述。
示例性的,第一业务的呈现形式可以为但不限于:PDU会话,服务质量流(Qos flow)等。
第一信息可以通过高层信令来承载,高层信令可以为无线资源控制(radio resource control,RRC)消息如RRC重配,或者MAC控制元素(media access control control element, MAC CE)。具体的第一信息也可以在数据无线承载(data radio bearer,DRB)的配置中。
S402,接入网设备向N个终端设备中的至少一个终端设备(下面以其中的第一终端设备为例进行说明)发送第一信息,N个终端设备与第一业务相关,N为大于1的整数。相应的,第一终端设备接收第一信息。应理解,N个终端设备与第一业务相关可以理解为该N个终端设备参与第一业务的传输,其中,在同一时间,该N个终端设备可以都传输第一业务,也可以只有部分终端设备传输第一业务,其他终端设备可以作为备用设备在需要时传输第一业务。或者,N个终端设备与第一业务相关也可以理解为第一设备通过该N个终端设备传输第一业务,第一设备为上行传输中产生第一业务的数据的设备,例如,工业场景中控制各种类型的机械或生产过程的设备(如PLC)、智能监控场景中的监控设备(如摄像头等)、器件的缺陷检测场景中的检测设备等。具体的,第一设备可以通过该N个终端设备中的全部终端设备传输第一业务或者也可以通过该N个终端设备中的部分终端设备传输第一业务。
需要说明的是,该N个终端设备可以在同一个接入网设备下,或者,也可以在不同的接入网设备下,例如,该N个终端设备中至少两个终端设备接入的接入网设备不同。其中,接入同一个接入网设备的多个终端设备可以在同一个小区,也可以在不同的小区,例如,至少两个终端设备所在的小区不同。
可选的,接入网设备可以通过如下方式确定N个终端设备与第一业务相关:第一核心网设备(例如AMF网元)可以向接入网设备发送配置信息,该配置信息可以指示N个终端设备与第一业务相关。
一个实施例中,该配置信息还可以用于配置第一业务在接入网设备与核心网设备之间的传输通道。例如,配置信息还可以包括如下至少一项:接入网与核心网之间传输通道的相关信息,其中,相关信息可以包括如下至少一项:第一业务相关会话ID,服务质量流标识(Qos flow ID,QFI);隧道(tunnel)地址;业务组标识,用于指示N个终端设备的一个会话(例如第一业务对应的会话)是一个组会话。
配置信息的一种可能的形式为:第一核心网设备向接入网设备发送的配置信息可以包括N个终端设备的配置信息,其中,每个终端设备的配置信息均可以包括第一业务的标识信息。
配置信息的另一种可能的形式为:第一核心网设备向接入网设备发送的配置信息可以包括一个配置信息,其中,该配置信息可以携带上述N个终端设备的标识信息。
S403,第一终端设备根据数据传输规则确定待发送数据包,待发送数据包为第一业务的数据包中第一终端设备需要发送的至少一个数据包。“待发送数据包”可以理解为一个集合。
一种可能的实施方式中,第一终端设备在根据数据传输规则确定待发送数据包之前,可以从应用层或者上层接收第一业务的M个数据包,其中,从应用层或者上层接收到的数据包可以是工业以太协议包,具体的,可以是Ethernet/IP协议包,工业以太网(PROFINET)包,动力联合(POWERLINK)协议包,工业总线协议(EtherCAT)协议包,第三代串行实时通信协议(Sercosserial real time communication specification)接口(SERCOSIII)协议包中的一种,其中,M为大于0的整数。从而,第一终端设备在根据数据传输规则确定待发送数据包时,可以确定上述M个数据包中第一终端设备需要发送的数据包(即待发送数据包)。
可选的,第一终端设备在向接入网设备发送所述待发送数据包之前,可以有根据M个数据包的接收顺序或M个数据包中携带的上层序号为待发送数据包进行编号。
例如,第一终端设备接收到来自应用层或者上层的第一个数据包,将该数据包编号为PDCP SN=0(也可以是SDAP SN等等),接收到来自应用层或者上层的第二个数据包,将该数据包编号为PDCP SN=1,以此类推。
又例如,第一终端设备接收到来自应用层或者上层的上层序号为0的数据包,将该数据包编号为PDCP SN=0(也可以是SDAP SN等等),接收到来自应用层或者上层的上层序号为1的数据包,将该数据包编号为PDCP SN=1,若上层序号为2的数据包丢失,则可以将上层序号为2的数据包对应的PDCP SN号跳过,直接加1,接收到来自应用层或者上层的上层序号为3的数据包,将该数据包编号为PDCP SN=3。以此类推。
S404,第一终端设备向接入网设备发送待发送数据包。
相应的,接入网设备可以对接收到的数据包进行整理后向第二核心网设备(例如UPF网元)进行发送。以上述至少一个终端设备包括第一终端设备和第二终端设备为例,一种具体的实现方式中,接入网设备在接收到来自第一终端设备的第一业务的数据包和第二终端设备的第一业务的数据包之后,可以将接收到的数据包进行去重和重排序后向第二核心网设备发送。
其中,接入网设备将接收的数据包进行去重,具体可以为:将接收到的数据包中重复的数据包去掉。
接入网设备将接收的数据包进行重排序,具体可以为:根据数据传输规则将接收到的数据包进行排序。举例说明,以UE1和UE2为例,根据数据传输规则,UE1发送第一业务的数据包中序列号为偶数的数据包,UE2发送第一业务的数据包中序列号为奇数的数据包,接入网设备接收到UE1的PDCP序列号(sequence number,SN)为0、2、4、6的数据包,以及UE2的PDCP SN为1、3、5的数据包,接入网设备将来自UE1的数据包和来自UE2的数据包进行重排序,重排序后数据包的顺序为:PDCP SN为0的数据包(来自UE1)、PDCP SN为1的数据包(来自UE2)、PDCP SN为2的数据包(来自UE1)、PDCP SN为3的数据包(来自UE2)、PDCP SN为4的数据包(来自UE1)、PDCP SN为5的数据包(来自UE2)、PDCP SN为6的数据包(来自UE1),如图5所示。
应理解,这里仅以第一终端设备为例进行说明,而不是N个终端设备只有第一终端设备与接入网设备执行本申请所述的方法,其他终端设备也可以执行本申请实施例中第一终端设备执行的方法与接入网设备进行通信。
本申请实施例中基于接入网侧的控制,使得第一业务的数据可以按照配置的数据传输规则在N个终端设备上进行传输,并且接入网设备可以灵活配置数据传输规则,从而可以配置满足第一业务的高可靠性、高速率等需求的数据传输规则,提高第一业务的传输性能。
第一信息用于配置第一业务的数据传输规则,终端设备根据第一信息确定待传输的数据包,下面介绍第一信息的几种可能的示例。应理解,第一信息也可以为其他指示内容,这里仅是举例说明,并不限定第一信息的具体内容。
示例一,第一信息包括第一终端设备对应的第一值m、门限值中至少一个,第一值、门限值用于确定第一终端设备传输的数据包,其中,第一值m为取余运算中的除数,用于对数据包的序列号进行取余运算。
相应的,第一终端设备可以根据数据包的SN、第一值m和门限值确定是否需要发送 该数据包,也就是该数据包是否包括在待发送数据包中。具体的,第一终端设备可以根据Mod(SN,m)的结果与门限值的比较确定是否该数据包,其中,Mod(SN,m)表示SN除以M得到的余数。进一步的,第一信息还可以指示待发送数据包的Mod(SN,m)的结果与门限值的大小关系,例如,待发送数据包的Mod(SN,m)的结果大于门限值,也就是第一终端设备需要发送满足Mod(SN,m)>门限值的数据包。
其中,门限值可以包括一个或多个值,具体的,门限值可以与终端设备的数量有关,例如,针对两个终端设备,门限值可以包括1个值,针对三个终端设备,门限值可以包括2个值,针对N个终端设备,门限值可以包括N-1个值。
一种举例说明中,以两个终端设备,即UE1和UE2为例,门限值包括一个值n。接入网设备向UE1发送的第一信息可以包括第一值m和门限值n,并指示发送序列号SN满足Mod(SN,m)的结果>n的数据包,向UE2发送的第一信息可以包括第一值m和门限值n,并指示发送序列号SN满足Mod(SN,m)的结果≤n的数据包。从而,UE1在接收到对应的第一信息后可以确定发送序列号SN满足Mod(SN,m)>n的数据包。UE2在接收到对应的第一信息后可以确定发送序列号SN满足Mod(SN,m)≤n的数据包。
另一种举例说明中,以三个终端设备,即UE1、UE2和UE3为例,门限值包括2个值n,即n1和n2,其中,n1>n2。接入网设备向UE1发送的第一信息可以包括第一值m以及门限值n1,并指示发送序列号SN满足Mod(SN,m)的结果>n1的数据包;向UE2发送的第一信息可以包括第一值m和门限值n1和n2,并指示发送序列号SN满足n2≤Mod(SN,m)的结果≤n1的数据包;向UE3发送的第一信息可以包括第一值m和门限值n2,并指示发送序列号SN满足Mod(SN,m)的结果<n2的数据包。从而,UE1在接收到对应的第一信息后可以确定发送序列号SN满足Mod(SN,m)>n1的数据包。UE2在接收到对应的第一信息后可以确定发送序列号SN满足n2≤Mod(SN,m)≤n1的数据包。UE3在接收到对应的第一信息后可以确定发送序列号SN满足Mod(SN,m)<n2的数据包。
基于该示例一,接入网设备可以通过第一值为m=1,门限值为0且指示发送的数据包满足:Mod(SN,m)与门限值的大小关系为相等的方式,指示终端设备发送第一业务的全部数据。进一步的,接入网设备向多个终端设备发送上述内容的第一信息,可以指示该多个终端设备均发送第一业务的全部数据,从而可以实现第一业务的备份传输。
接入网设备可以通过第一值为m=1,门限值为0且Mod(SN,m)与指示发送的数据包满足:门限值的大小关系为不相等的方式,指示终端设备不发送第一业务的数据。
在上述示例一中,第一值m(或者门限值n)可以是预先设置的,或者,通过其他信令(如高层信令)预先配置的,或者,也可以协议规定的。
需要说明的是,本申请实施例所述SN号可以为PDCP SN号或RLC SN号或者SDAP序号或者上层SN号或者其他序列号。
示例二,第一信息可以指示第一终端设备不发送第一业务的数据包,或者,发送第一业务的数据包。
进一步的,若第一信息指示第一终端设备发送第一业务的数据包,接入网设备还可以向第一终端设备发送PDCP状态报告或者第一序列号,其中,PDCP状态报告指示成功接收的数据包和/或未成功接收的数据包,第一序列号为第一终端设备需要发送的第一个数据包的序列号或者为第一终端设备需要发送的数据包对应的序列号。从而,第一终端设备可以根据PDCP状态报告或者第一序列号确定待发送数据包。
可选的,第一信息可以承载在RRC消息或者MAC CE或者下行控制信息(downlink control information,DCI)中。
示例三,第一信息可以指示第一终端设备发送序列号为奇数或者偶数的数据包。
示例四,第一信息可以指示第一终端设备的分流比例,分流比例用于指示在k个数据包(可以视为一个数据包分组)中第一终端设备需要发送的数据包的数量与k的比例。其中,k可以为设置的数据包的数量,也可以为一段时间或者一个传输窗内包括的数据包的数量。
一种实现方式中,该分流比例可以为在k个数据包中第一终端设备需要发送的数据包的数量与k的比例大小。例如,第一信息指示第一终端设备发送k个数据包的1/2、1/3、3/7或者10%、23%、40%等等。进一步的,第一信息还可以包括如下至少一项:数据包的位置、k的取值,其中,数据包的位置用于指示第一终端设备需要发送的数据包在k个数据包中的位置。如果分流比例和k值在计算后不是整数,可以进行取整。
举例说明,接入网设备向UE1发送的第一信息可以包括:k=10(即以10个数据包为单位进行划分)、分流比例(30%)、数据包的位置为10个数据包的前面(即每10个数据包的前3个数据包)。接入网设备向UE2发送的第一信息可以包括:k=10(即以10个数据包为单位进行划分)、分流比例(70%)、数据包的位置为10个数据包的后面(即每10个数据包的后7个数据包)。
需要说明的是,数据包的位置可以预先设置的,也可以是接入网设备通过其他信令(如高层信令)预先配置的,也可以是协议规定的。
另一种实现方式中,分流比例可以为在k个数据包中第一终端设备需要发送的数据包相对于该k个数据包的区间。例如,第一信息指示前30%的数据包、(30%,60%)的数据包、(60%,100%)的数据包等等,应注意,该比例划分仅是举例说明。进一步的,第一信息还可以指示k的取值。如果分流比例和k值在计算后不是整数,可以进行取整。例如可以向上取整或者向下取整,或者根据余数大小取整,比如round函数,round函数用于按指定的位数对数值进行四舍五入。
举例说明,接入网设备向UE1发送的第一信息可以包括:k=10(即以10个数据包为单位进行划分)、分流比例(前30%)。接入网设备向UE2发送的第一信息可以包括:k=10(即以10个数据包为单位进行划分)、分流比例(30%~70%)。接入网设备向UE3发送的第一信息可以包括:k=10(即以10个数据包为单位进行划分)、分流比例(70%~100%)。相应的,UE1可以发送每10个数据包的前3个数据包,UE2可以发送每10个数据包的第4~7个数据包,UE3可以发送每10个数据包的最后3个数据包。
需要说明的是,k的取值可以预先设置的,也可以是接入网设备通过其他信令(如高层信令)预先配置的,也可以是协议规定的。分流比例可以是针对每个数据包分组的,也可以是针对每个数据包分组分别指示分流比例。在具体实施方式中,分流比例可以进行更新。
可选的,接入网设备可以动态修改数据传输规则,例如,接入网设备在发送第一信息之后,还可以更新数据传输规则。具体的,接入网设备可以通过MAC CE,或者RRC消息等动态修改数据传输规则。
示例五,第一信息也可以指示第一终端设备需要发送的数据包的序列号的范围。
具体的上述数据传输规则可以只对至少一个终端设备(例如第一终端设备、第二终端 设备或者N个终端设备中的其他终端设备等)进行发送,该至少一个终端设备可以基于数据传输规则确定要发送的数据包后,可以通过终端设备之间的接口,将其余数据包发送给其他终端设备,其中,传输到其他终端设备的数据包可以PDCP数据包、RLC数据、MAC数据包、SDAP数据包等。终端设备之间的接口可以是有线的也可以是无线的。具体的,终端设备可以在接入网设备的指示下,确定不同终端设备发送哪些数据包,并通过终端设备之间接口将该数据包传输给其他终端设备。在这种场景下不要求应用层架构与多个终端相连接,与至少一个终端连接即可。由连接应用层的终端设备将数据分流至其他终端设备。
通过上述方式使得多个终端设备可以共同完成上行传输任务。实现高可靠传输或者大上行速率。
可选的,本申请实施例中,数据传输规则可以根据第一业务的传输模式或者第一业务的业务需求或者根据空口质量确定。下面对第一业务的传输模式进行示例性说明。
第一业务的传输模式可以为第一模式,在第一模式中,N个终端设备中只需要部分终端设备传输第一业务。进一步的,N个终端设备可以分为两类,一类为主终端设备,另一类为备份终端设备,也就是,N个终端设备可以包括至少一个主终端设备和至少一个备份终端设备。其中,主终端设备可以优先传输第一业务,备份终端设备可以用于在主终端设备故障时再传输第一业务。该模式也可以称为备份模式。其中,备份终端设备传输第一业务的启动条件可以是主终端设备全部故障,也可以是存在主终端设备故障(发生故障的主终端设备的数量不限)。可选的,备份终端设备可以在接入网设备的指示下开始传输第一业务。
以N等于2为例,N个终端设备包括一个主终端设备和一个备份终端设备,该备份终端设备用于在该主终端设备故障时传输第一业务。
在上述第一模式中,当传输第一业务的主终端设备故障时可以通过备份终端设备继续传输第一业务,从而可以保证第一业务的可靠性,并且,在第一模式中,备份终端设备在主终端设备故障时开始传输第一业务,相比于图2所示的备份方式,可以节省资源,提高系统的效率。
或者,第一业务的传输模式也可以为第二模式,在第二模式中,N个终端设备均传输第一业务,且N个终端设备传输的数据包相同。该模式也可以称为高可靠模式。
在上述第二模式中,通过多个终端设备传输第一业务相同的数据,可以保证第一业务的可靠性。
或者,第一业务的传输模式还可以为第三模式,在第三模式中,N个终端设备均传输第一业务,且N个终端设备传输的数据包不同。该模式也可以称为高速率模式。
在上述第三模式中,通过多个终端设备传输第一业务不同的数据,可以保证第一业务的传输速率。
或者,第一业务的传输模式还可以为第四模式,在第四模式中,N个终端设备均传输第一业务,且第一终端设备传输的数据包与N个终端设备中的第二终端设备传输的数据包相比存在相同的数据包和不同的数据包。该模式也可以称为混合模式。比如数据传输规则针对不同的终端设备指示的需要发送的数据包可以有重复的地方,比如根据数据传输规则,一个终端设备发送前50%的数据包,另一个终端设备发送后60%的数据包,则这两个终端设备有10%的数据包的重合。
一种可能的实施方式中,第一业务的传输模式可以是接入网设备确定的。例如,接入 网设备可以根据如下至少一项确定第一业务的传输模式:与N个终端设备中至少一个终端设备之间的信道质量(也就是终端设备和接入网设备之间的空口质量)、N个终端设备中至少一个终端设备的工作状态(例如是否故障、是否正常工作、负载情况等)、第一业务的服务质量(quality of service,Qos)需求。
举例说明,接入网设备可以根据终端设备的空口质量确定为第一模式,具体的,当某个终端设备的空口质量比较好时,则可以只需要该终端设备传输第一业务,若检测到该终端设备工作状态出现问题(例如故障、负载太大等),则接入网设备可以指示另一个终端接管上述终端设备的第一业务。
再比如,接入网设备可以根据终端设备的空口质量、工作状态、第一业务的Qos需求等情况确定为第三模式,进一步的,可以根据终端设备的空口质量、负载等确定第一业务的分流比例。例如,一个终端设备的空口质量好,另一个终端设备的空口质量差,则接入网设备可以指示空口质量好的终端设备发送更多的数据包,另外一个终端设备发送较少的数据包。负载情况也类似,接入网设备可以指示负载小的终端设备发送的数据包可以比负载大的终端设备发送的数据包多。
其中,接入网设备确定与终端设备之间的信道质量的方式可以为:通过该终端设备上报的信道质量信息(channel quality information,CQI)确定、通过该终端设备上报的测量报告确定、接入网设备通过上行测量确定等。
接入网设备确定终端设备的工作状态的方式可以为:其他终端设备向接入网设备上报上述终端设备正常工作或出现故障、上述终端设备上报自己的负载情况和/或干扰情况。一种具体的实施方式中,UE1和UE2在工作时,若UE1判断UE2发送故障,UE1向接入网设备发送指示信息,比如MAC CE或者RRC消息,用于指示UE2故障。其中,UE1可以通过终端设备之间的心跳包或者终端设备之间的其他接口判断UE2处于故障状态或者非正常工作状态。
接入网设备确定终端设备的工作状态的方式还可以为:接入网设备可以根据终端设备上行的数据传输情况以及应答消息(acknowledgement,ACK)反馈情况或者参考信号来判断终端设备的链路或者设备出现故障。
另一种可能的实施方式中,第一业务的传输模式也可以是第一核心网设备指示的。例如,第一核心网设备向接入网设备发送第一指示信息,第一指示信息指示第一业务对应的传输模式。示例性的,第一指示信息可以是显示的指示信息,也可以是根据QoS信息或者会话相关信息隐式确定的。
另一种可能的实施方式中,接入网设备确定第一业务的传输模式后,可以向终端设备发送指示信息,指示信息用于第一业务模式的切换,比如从第一模式切换至第二模式。
可选的,除了通过上述第一信息配置数据传输规则以外,接入网设备还可以配置上述至少一个终端设备的DRB,例如,可以向上述至少一个终端设备发送第二信息,第二信息用于配置第一业务的DRB。示例性的,第二信息可以承载在RRC连接重配置消息中。相应的,上述至少一个终端设备可以基于第二信息配置第一业务的数据无线承载。
示例性的,第二信息配置的DRB可以为专用DRB,该专用DRB可以用于某一种或某几种传输模式的数据传输。具体的,可以在第二信息配置DRB的字段中包含模式传输指示信息,该模式指示信息用于指示该DRB对应的传输模式,或者,模式指示信息用于指示被激活(或者使能)的传输模式。具体的,接入网设备可以通过两种方式中任一种方式 指示该DRB对应的传输方式:
方式一:接入网设备可以发送RRC连接重配置消息,该RRC连接重配置消息的DRB配置(即第二信息)中可以包含DRB ID、模式指示信息等信息,其中,DRB ID用于标识对应的DRB。
方式二:接入网设备可以发送RRC连接重配置消息,该RRC连接重配置消息包括DRB配置(即第二信息)以及DRB对应的PDCP配置或者RLC配置或者MAC配置,其中,DRB对应的PDCP配置或者RLC配置或者MAC配置可以指示该DRB对应的传输模式,或者,指示被激活(或者使能)的传输模式。
需要说明的是,该第一业务的数据传输规则(即第一信息)与DRB配置(即第二信息)可以通过不同消息指示,也可以是通过同一个消息指示给终端设备。进一步的,若第一信息和第二信息通过同一个消息指示给终端设备,如RRC连接重配置消息的DRB配置(即第二信息)中包括第一信息,则也可以通过第一信息指示DRB对应的传输模式,也就是第一信息可以作为上述模式指示信息来指示DRB对应的传输模式。
为了便于理解本申请实施例提供的方案,下面以第一核心网设备为AMF网元,第二核心网设备为UPF网元为例,结合图6所示场景对第一业务的数据传输过程进行示例性描述。图6所示场景中,PLC1连接到UE1,UE1负责发送和接收PLC1相关的业务数据;PLC3连接到UE1和UE2,PLC3的上行业务数据通过自己或者通过其他设备发送到UE1和UE2,下行业务通过UE1和/或UE2发送到PLC3。PLC2连接到UE2,UE2负责发送和接收PLC2相关的业务数据。以PLC3的第一业务为例进行说明。
参考图7的示例性说明,第一业务的数据传输过程可以包括:
S701,AMF网元向接入网设备发送第一业务的配置信息。
其中,第一业务的配置信息用于配置第一业务在接入网与核心网之间的传输通道。具体的,第一业务的配置信息可以包括如下至少一项:UE1和UE2与第一业务相关;接入网与核心网之间传输通道的相关信息,其中,相关信息可以包括如下至少一项:第一业务相关会话ID,QFI;tunnel地址;业务组标识,用于指示UE1和UE2的某个会话是一个组会话。
一种具体的实现方式中,AMF向接入网设备发送的UE1的配置信息和UE2的配置信息,且每个终端设备的配置信息均可以包括第一业务的标识信息。
另一种具体的实现方式中,AMF向接入网设备发送一个配置信息,其中,该配置信息可以携带UE1的标识信息和UE2的标识信息。
需要说明的是,步骤S701可以是一个可选的步骤。
S702,接入网设备对UE1和UE2进行配置。
具体的,接入网设备可以根据UE1和UE2与第一业务的绑定关系(或者关联关系或者相关关系)以及第一业务的传输模式对UE1和UE2进行配置,其中,第一业务的传输模式可以参阅上文的相关描述。
第一业务的传输模式可以AMF网元通过第一业务的配置信息指示给接入网设备的,也可以是接入网设备自己确定的,具体确定方法参阅前文,这里不再重复赘述。
一种实施方式中,接入网设备可以对UE1和UE2的DRB进行配置。例如,接入网设备可以向UE1和UE2配置专用DRB,所述DRB可以用于一种或多种传输模式的数据传输。
可选的,接入网设备对UE1和UE2进行配置时,向UE1和UE2发送RRC连接重配置消息。其中,RRC连接重配置消息的DRB配置中可以包含对DRB ID,模式指示信息等至少一个信息,其中DRB ID用于标识对应的DRB,模式指示信息用于指示该DRB对应的传输模式,或者,指示该DRB被激活(或者使能)的传输模式。或者,RRC连接重配置消息的DRB对应的PDCP配置,或者RLC配置,或者MAC配置也可以指示该DRB对应的传输模式,或者,指示该DRB被激活(或者使能)的传输模式。
接入网设备对UE1和UE2进行配置时,还可以对UE1和UE2的数据传输规则进行配置。数据传输规则可以参阅前文描述,这里不再赘述。
S703,UE1和UE2基于数据传输规则传输第一业务的数据。
具体的,UE1(或UE2)可以根据数据传输规则确定第一业务的数据包中需要自己发送的数据包并发送给接入网设备,其中,第一业务的数据包来自应用层或上层。以上述示例三所述数据传输规则为例,UE1可以发送第一业务的数据包中序列号为奇数的数据包,UE2可以发送第一业务的数据包中序列号为偶数的数据包。
S704,接入网设备将来自UE1和UE2的数据包进行去重和重排序。
其中,接入网设备进行去重和重排序的过程可以参阅前文所述,这里不再赘述。
S705,接入网设备将去重和重排序后的数据包发送给UPF。
下面结合终端设备的协议栈对UE1和UE2传输第一业务的过程进行示例性描述。在下面的示例性描述中,QoS flow 1代表PLC1的业务;QoS flow 2代表PLC2的业务,QoS flow 3代表PLC3的业务(如第一业务)。
第一种示例,UE1和UE2可以基于如图8所示的协议栈进行数据传输。在图8所示协议架构中,UE侧PDCP层具有根据上层数据包的上层序号来生成PDCP包的编号的能力。接入网侧PDCP层具有处理两套安全参数(即UE1的安全参数和UE2的安全参数)的能力,进而具有处理来自两个UE的PDCP包的能力,其中,接入网设备通过一个PDCP层实体处理来自两个UE的PDCP包。
以上行传输为例进行说明。
UE1和UE2基于图8所示的协议栈进行上行传输过程包括:UE1和UE2的应用层实体接收第一业务的数据包,需要说明的是,UE1和UE2接收到的是相同的数据包。UE1和UE2基于第一业务的数据包的接收顺序或第一业务的数据包中携带的序号进行编号。
具体的,UE1的PDCP层实体根据QoS flow 3传输的数据包的顺序或者数据包中的序列号为数据包进行PDCP层编号,示例性的,QoS flow 3传输的数据包为工业以太协议包,具体的,可以是Ethernet/IP,PROFINET,POWERLINK,EtherCAT,SERCOSIII中的一种。其中,当上层(如应用层实体)出现丢包时,PDCP层实体进行编号时可以相应的进行跳号,例如,QoS flow 3传输的数据包2号丢失,则PDCP层实体可以将2号数据包对应的PDCP SN号跳过,直接加1。类似的,UE2的PDCP层实体也可以采用上述方式进行PDCP层编号。
在进行PDCP层编号之后,UE1和UE2可以基于数据传输规则传输第一业务。例如,UE1和UE2接收到上述示例一的数据传输规则,且第一值m=3,门限值n=0,UE1发送PDCP SN Mod 3=0(即Mod(SN,3)=0)的数据包,UE2发送PDCP SN Mod 3不为0(即Mod(SN,3)≠0)的数据包。
其中,UE1(或UE2)对于不需要发送的数据包可以进行缓存,缓存时间可以是接入 网设备向UE指示的,也可以默认时长,也可以是预先设置的。可选的,若缓存时间超时则可以丢弃相应的数据包。或者,UE1(或UE2)对于不需要发送的数据包也可以进行丢弃。
或者,UE1(或UE2)也可以只缓存需要发送的数据包,不需要发送的数据包可以丢弃。具体的,缓存的数据包可以基于底层传输指示丢弃,也可以基于定时器丢弃。
或者,接入网设备也可以指示UE1(或UE2)是否需要缓存不需要发送的数据包。例如,接入网设备可以指示UE1和UE2缓存不需要发送的数据包,从而当其中一个终端设备(例如UE1)出现故障,接入网设备可以指示另一个终端设备(例如UE2)传输第一业务的所有数据包。进一步的,当UE1故障时,接入网设备可以向UE2发送指示信息,指示信息中包含PDCP SN序号,用于指示UE2从该SN号开始,传输所有的数据包。
此外,本申请实施例也可以基于上述架构,不做PDCP的增强(即终端设备侧不支持根据上层数据包的上层序号进行PDCP层编号,仅根据数据包到达顺序进行编号)。默认每个UE PDCP层的SN号编排都是可靠的,多个UE对统一业务数据包编排是一致的。
相应的,接入网设备基于图8所示的协议栈进行上行处理的过程包括:接入网设备为UE1和UE2建立一个PDCP层实体,该PDCP层实体用于将UE1和UE2发送的数据包根据包携带的编号(SN),进行PDCP层数据包的去重和重排序,并将数据包按序递交到一个UE1和UE2为QoS flow 3建立的公共tunnel上,传输到UPF。其中,接入网设备进行去重和重排序的过程可以参阅前文的相关描述,这里不再重复赘述。
以下行传输为例进行说明。
接入网设备基于图8所示的协议栈进行下行传输过程包括:接入网设备的PDCP层实体(即接入网设备为UE1和UE2建立的PDCP层实体)对来自UPF的对应QoS flow 3的数据包进行编号,并将数据包传输到RLC层实体1,或者,传输到RLC层实体2,或者传输到RLC层实体1和RLC层实体2,其中,RLC层实体1为接入网设备中对应UE1的Qos flow3的RLC层实体,RLC层实体2为接入网设备中对应UE2的Qos flow3的RLC层实体。其中,下行传输中接入网设备的PDCP层可以支持两个终端设备使用相同的安全参数,也可以支持两个终端设备使用不同的安全参数。
具体的,RLC层实体1和RLC层实体2的数据包分配情况,可以是接入网设备基于UE1和UE2的信道质量(也可以参考其他因素,例如数据传输规则、UE状态等)确定的,也可以是AMF(或者UPF或者其他核心网设备)指示的。
进一步的,若接入网设备向UE1和UE2分别发送一部分数据包,接入网设备在进行PDCP层编号时可以针对不同UE独立编号。通过上述方式,使得UE1和UE2可以使用现有机制接收数据包并递交到应用层,如PLC3。或者,接入网设备在进行PDCP层编号时也可以将数据包统一进行编号,在该方式中,UE1和UE2需要具有支持PDCP层数据包乱序递交的能力。
一种具体的实施方式中,接入网设备进行下行传输时可以采用组播的方式,也就是对UE1和UE2使用相同的G-RNTI加扰,采用相同的安全加密数据进行加密,并统一进行数据编号。通过上述方式,接入网设备可以只发一份数据,而UE1和UE2可以在相同的资源上接收数据,并递交给应用层,从而可以节省传输资源。
上述示例中,通过增强PDCP层,使得终端设备侧的PDCP层支持根据上层数据包的上层序号为数据包编排序号,从而可以实现应用层到接入层数据的统一数据编排序号。接 入网设备侧的PDCP层支持重排序和去重功能,可以使得接入网设备到核心网设备之间只发送一份数据,而没有重复和乱序等情况。
第二种示例,UE1和UE2可以基于如图9所示的协议栈进行数据传输。在图9所示协议架构中,可以在UE侧和接入网设备侧各增加一个适配层,该适配层可以位于终端设备中,例如,在SDAP层之上,或者,终端设备侧的适配层也可以是位于终端设备和工业设备(或者第一业务的数据发送端)之间的中间件,比如交换机、路由器、集线器等。接入网设备侧的适配层可以位于接入网设备中,例如,在SDAP层之上,或者,也可以是位于终端设备和接入网设备之间的中间件。
UE侧适配层具有根据上层数据包的上层序号进行编号的能力。接入网侧适配层可以处理来自两个UE的适配层包的能力,其中,接入网设备通过一个适配层实体处理来自两个UE的适配层包。
第二种示例中,UE1和UE2与接入网设备进行上下行传输的过程与第一种示例中UE1和UE2与接入网设备进行上下行传输的过程类似,区别在于,第一种示例中通过PDCP层实体实现根据上层数据包的序号来进行编号等功能,而在第二种示例中通过适配层实体根据上层数据包的序号来进行编号等功能,重复之处不再赘述。
上述示例中,通过在应用层和接入层之间引入新的一层叫适配层,使得终端设备侧可以支持根据上层数据包的上层序号为数据包编排序号,从而可以实现应用层到接入层数据的统一数据编排序号。接入网设备侧可以支持重排序和去重功能,可以使得接入网设备到核心网设备之间只发送一份数据,而没有重复和乱序等情况。
第三种示例,UE1和UE2可以基于如图10所示的协议栈进行数据传输。在图10所示协议架构中,UE侧SDAP层具有根据上层数据包的上层序号进行编号的能力。接入网侧SDAP层可以处理来自两个UE的SDAP包的能力,其中,接入网设备通过一个SDAP层实体处理来自两个UE的SDAP包。
第三种示例中,UE1和UE2与接入网设备进行上下行传输的过程与第一种示例中UE1和UE2与接入网设备进行上下行传输的过程类似,区别在于,第一种示例中通过PDCP层实体实现根据上层数据包的序号来进行编号等功能,而在第二种示例中通过SDAP层实体根据上层数据包的序号来进行编号等功能,重复之处不再赘述。
上述实现方式中,通过增强SDAP层,使得终端设备侧的SDAP层支持根据上层数据包的上层序号为数据包编排序号,从而可以实现应用层到接入层数据的统一数据编排序号。接入网设备侧的SDAP层支持重排序和去重功能,可以使得接入网设备到核心网设备之间只发送一份数据,而没有重复和乱序等情况。
以上结合图6所示场景介绍了第一业务的数据传输过程。而在第一业务的数据传输中,难免会出现丢包的情况。例如,在上行传输过程中,终端设备未成功向接入网设备发送某个数据包。例如,如图11所示,UE1需要传输序列号为1/3/5的数据包,UE2需要传输序列号为2/4/6的数据包,但是UE1未将序列号为3的数据包传输到接入网设备,导致序列号为3的数据包丢包。下面以UE1丢包为例,介绍处理上行传输过程中丢包的方法以及处理下行传输过程中丢包的方法。
针对上行传输过程中丢包的情况,一种可能的实施方式中,接入网设备确定UE1发送第一数据包失败,可以指示UE2发送该第一数据包,其中,第一数据包为UE1根据数据传输规则确定的需要发送的数据包(例如图11中的序列号为3的数据包)。
一种实现方式中,接入网设备指示UE2发送该第一数据包的方式为:向UE2发送第一数据包的序列号,以指示UE发送该第一数据包。UE2在接收到该序列号后,向接入网设备发送该序列号对应的数据包。所述第一数据包的序列号可以包含在PDCP包(如PDCP控制PDU)中。可选的,接入网设备还可以发送DRB的标识。UE可以发送该DRB的该序列号对应的数据包。
另一种实现方式中,接入网设备指示UE2发送该第一数据包的方式为:向UE2发送PDCP状态报告,该PDCP状态报告指示成功接收的数据包的序列号和/或未成功接收的数据包的序列号。UE2在接收到该PDCP状态报告后向接入网设备发送该接入网设备未成功接收的数据包。
可选的,接入网设备可以通过如下方式确定UE1发送第一数据包失败:接收到来自UE1的第二指示信息,第二指示信息指示第一数据包丢包。具体的,第二指示信息可以指示UE1未接收到或者未成功发送第一数据包。其中,“未成功发送”也可以理解为UE1未从应用层接收到第一数据包,导致不能向接入网设备发送第一数据包。可选的,UE1可以根据从应用层接收到的数据包的情况(例如根据数据包的序列号)确定第一数据包丢包。
或者,接入网设备也可以通过如下方式确定UE1发送第一数据包失败:接入网设备根据数据包的接收情况(例如根据数据包的序列号)确定第一数据包丢包,比如接收到序列号为1和3的数据包,未接收到序列号为2的数据包,则可以确定序列号为2的数据包丢失。
通过上述实施方式,当UE1需要发送的数据包出现丢包时,UE2可以在发送自己需要发送的数据包之外还可发送UE1丢包的数据包,从而可以提高业务的可靠性。
应理解,本申请实施例仅以UE1和UE2分流传输为例进行说明,并不限定为UE2传输UE1的第一数据包,如果有其他UE与第一业务相关,也可以通过其他UE传输第一数据包,该其他UE根据数据传输规则可以传输第一业务的全部数据或者部分数据,也可以在当前时间节点没有传输第一业务的数据,这里不做具体限定。
此外,接入网设备指示终端设备发送不是自己的待发送数据包的实施方案并不限于丢包的场景中,在其他场景中也可以实施上述方案。
针对下行传输过程中丢包的情况,UE1确定下行数据包未正常收到,可以向接入网设备指示该数据包序列号。接入网设备可以将该序列号对应的数据包向UE2发送,也可以同时向UE1发送。
以上介绍的数据传输过程基于接入网设备通过第一信息指示的数据传输规则进行的,而在传输第一业务的过程中,数据传输规则可以改变,例如,在UE1和UE2与接入网设备进行数据传输过程中,接入网设备也可以更新数据传输规则。应理解,在更新数据传输规则,数据传输过程与更新前的数据传输过程类似,区别在于采用的数据传输规则不同,重复之处不再赘述。
具体的,在更新数据传输规则时可以只更新部分参数,另一部分参数可以维持不变。接入网设备也可以在两个UE之间进行业务切换,例如,将第一业务的数据包中需要UE的发送的数据包切换到UE2,由UE2发送UE1需要发送的数据包。接入网设备还可以指示两个UE中的一个UE接管另一个UE的业务,例如,可以指示UE2接管UE1的第一业务,也就是,UE2除了发送需要自己发送的数据包之后,还发送需要UE1发送的数据包,UE1可以停止发送第一业务的数据包。
进一步的,在上述三种场景中(即接入网设备更新数据传输规则、将UE1的第一业务切换到UE2、指示UE2接管UE1的第一业务),接入网设备可以指示UE1上报PDCP数据状态报告,该PDCP数据状态报告可以指示UE1未成功接收的下行数据包或已经成功接收的下行数据包,接入网设备可以从UE1未正常接收的数据包开始向UE2发送下行数据包。
在第一业务的数据传输中,终端设备与接入网设备之间的数据通信,是基于接入网设备为终端设备进行资源调度实现的。以上行传输为例,终端设备基于BSR上报机制触发接入网设备为该终端设备分配上行资源。目前,终端设备的BSR上报机制为:当终端设备的某个逻辑信道有新数据或者有更高优先级的数据到达的时候,会触发BSR上报,且上报的BSR体现终端设备一共有多少数据量。而基于申请实施例提供的数据传输方法,接入网设备基于终端设备上报的BSR分配的上行资源可能与终端设备需要上报的数据量不匹配,例如,终端设备在接收到第一业务的数据包后将其中的一部分数据包向接入网设备发送(例如根据上述示例3所述的数据传输规则发送数据包),而接入网设备基于BSR上报的数据量为终端设备分配上行资源可能会导致资源浪费。基于此,本申请实施例还提供三种BSR上报方法。应理解,本申请实施例提供的BSR上报方法也可以不依赖于上述数据传输过程,单独实施。
下面以h个终端设备为例介绍三种BSR上报方法,其中,h为大于0的整数,h个终端设备为上述N个终端设备中全部终端设备或部分终端设备。
方法一,h个终端设备将接收到的第一业务的数据包全部进行缓存,h个终端设备中的全部终端设备或部分终端设备触发并上报BSR,该BSR指示终端设备缓存的数据量。接入网设备根据接收到的BSR以及数据传输规则为该h个终端设备分配上行资源,具体的,接入网设备可以根据数据传输规则和BSR确定h个终端设备各自需要发送的数据包的数量,并针对每个终端设备,根据该终端设备需要发送的数据包的数量为该终端设备分配上行资源。
进一步的,h个终端设备中进行BSR上报的终端设备可以是接入网设备指示的,例如,接入网设备可以指示该h个终端设备中的一个或多个终端设备上报BSR,指示剩余的终端设备不上报BSR。其中,接入网设备具体的指示方式,这里不做具体限定。例如,接入网设备可以通过第三指示信息指示发送BSR,通过第四指示信息指示不发送BSR。又例如,接入网设备也可以通过第三指示信息指示发送BSR,通过不发送第三指示信息的方式隐式指示不发送BSR。又例如,接入网设备也可以通过第四指示信息指示不发送BSR,通过不发送第四指示信息的方式隐式指示发送BSR。
一种具体的实现方式中,第四指示信息可以用于指示对于某些特定的逻辑信道组(该逻辑信道组用于传输第一业务),如果有新数据到达或者有更高优先级的数据到达时,无需触发BSR。如果是其他逻辑信道组中的逻辑信道触发的BSR,在上报的时候也无需上报上述特定的逻辑信道组的数据量。进一步的,第四指示信息还可以指示出哪些逻辑信道或者逻辑信道组无需触发BSR,例如可以通过在第四指示信息中携带相应的逻辑信道号或者逻辑信道组号码指示是否需要触发BSR。
可选的,第四指示信息可以通过MAC CE发送。或者,第四指示信息也可以通过RRC重配消息发送,例如,可以携带在RRC重配消息的配置逻辑信道或逻辑信道组配置中,用于指示是否需要触发BSR,或者携带在其他配置信息中。
第三指示信息可以指示正常触发BSR。对于正常上报BSR的终端设备来说,可以上报全部数据的数据量(即包括不需要该终端设备发送的数据包),也可以仅上报需要该终端设备传输的数据量。所述第三指示信息可以是通过MAC CE发送的或者RRC消息发送的。
上述方法一中,由于接入网设备已经向终端设备下发了数据传输规则,而且该h个终端设备接收到第一业务的数据包相同,所以接入网设备根据任意一个终端设备上报的BSR可以推断出该h个终端设备对应的数据量,然后可以根据对应的数据量为每个终端设备分配上行资源,从而可以提升资源分配的准确性,从而可以降低多次上报BSR导致的信令开销。
方法二,h个终端设备将接收到的第一业务的数据包全部进行缓存,且该h个终端设备根据数据传输规则确定接收到的第一业务的数据包中需要自己发送的数据包(即待发送数据包)的数量。该h个终端设备分别向接入网设备上报BSR,且每个终端设备发送的BSR指示该终端设备的待发送数据包的数量而不是缓存的数据包总量。
例如,UE1和UE2均接收到第一业务的编号为1~4的数据包并缓存,而接入网设备指示数据包1和3由UE1发送,数据包2和4由UE2发送,则UE1上报的BSR的数据量为数据包1加数据包3的大小之和,UE2上报的BSR的数据量为数据包2加数据包4的大小之和。
上述方法二中,终端设备可以根据数据传输规则确定自己的数据量,从而可以BSR上报时指示自己需要发送的数据量,也就是在BSR组装过程中计算逻辑信道组数据量的时候,无需将接收到的第一业务的所有数据包都计算进去,而是只计算根据数据传输规则需要本终端设备需要传输的数据包对应的数据量,使得接入网设备可以根据终端设备需要传输的数据包对应的数据量为该终端设备分配上行资源,从而可以提升资源分配的准确性,减少不必要的上报,进而可以避免资源浪费。
方法三,h个终端设备根据数据传输规则确定接收到的第一业务的数据包中需要自己发送的数据包,并将需要自己发送的数据包进行缓存。该h个终端设备分别向接入网设备上报BSR,且一个终端设备发送的BSR指示该终端设备的待发送数据包的数量。
例如,UE1和UE2均接收到第一业务的编号为1~4的数据包,而接入网设备指示数据包1和3由UE1发送,数据包2和4由UE2发送,则UE1缓存数据包1和3,并向接入网设备上报BSR,上报的BSR的数据量为数据包1加数据包3的大小之和。UE2缓存数据包2和4,并向接入网设备上报BSR,上报的BSR的数据量为数据包2加数据包4的大小之和。
上述方法三中,终端设备可以根据数据传输规则确定自己的数据量,并且只缓存需要自己发送的数据包,从而可以BSR上报时指示自己需要发送的数据量,也就是在BSR组装过程中计算逻辑信道组数据量的时候,无需将接收到的第一业务的所有数据包都计算进去,而是只计算根据数据传输规则需要本终端设备需要传输的数据包对应的数据量,使得接入网设备可以根据终端设备需要传输的数据包对应的数据量为该终端设备分配上行资源,从而可以提升资源分配的准确性,并且可以提升终端设备存储资源的利用率,从而可以降低资源浪费。
可选的,上述方法一~方法三中,该h个终端设备缓存了第一业务的数据包后,可以 在PDCP层为每一个数据包启动一个相关联的丢弃定时器,当丢弃定时器超时以后,才将相应的数据包丢弃,而在丢弃定时器超时之前,缓存中的数据包可以根据接入网设备的指示进行初传或者重传。
一种具体实施方式中,终端设备采用方法二还是方法三进行BSR上报可以依赖于接入网设备的指示,例如,终端设备可以默认将接收到数据包都进行缓存(即默认为方法二),若接入网设备指示仅缓存需要发送的数据包(即指示方法三)时,终端设备可以将不需要发送的数据包都丢弃掉。示例性的,接入网设备可以通过MAC CE指示终端设备采用方法二或者方法三。
本申请实施例中基于接入网侧的控制,使得第一业务的数据可以按照配置的数据传输规则在N个终端设备上进行传输,并且接入网设备可以灵活配置数据传输规则,例如接入网设备可以根据第一业务的业务需求、终端设备的空口质量、终端设备的工作状态等确定数据传输规则,使得N个终端设备可以根据业务需求或者空口质量实现备份或者分流的功能,从而可以配置满足第一业务的高可靠性、高速率等需求的数据传输规则,提高第一业务的传输性能。
并且,通过增强PDCP层,使得终端设备侧的PDCP层支持根据上层数据包的上层序号为数据包编排序号,或者,通过在应用层和接入层之间引入新的一层叫适配层,使得终端设备侧可以支持根据上层数据包的上层序号为数据包编排序号,或者,通过增强SDAP层,使得终端设备侧的SDAP层支持根据上层数据包的上层序号为数据包编排序号,从而可以实现应用层到接入层数据的统一数据编排序号。
相应的,接入网设备侧的PDCP层支持重排序和去重功能,或者,接入网设备侧的适配层可以支持重排序和去重功能,或者,接入网设备侧的SDAP层支持重排序和去重功能,可以使得接入网设备到核心网设备之间只发送一份数据,而没有重复和乱序等情况。
此外,本申请实施例中当终端设备需要发送的数据包出现丢包时,其他终端设备可以在发送自己需要发送的数据包之外还可发送上述丢包的数据包,从而可以提高业务的可靠性。
此外,本申请实施例中在BSR上报机制中,接入网设备可以根据终端设备需要发送的数据包的数据量分配上行资源,从而可以避免为终端设备分配过多或过少的传输资源,进而可以提高资源分配的合理性,提升资源利用率。
如图12A所示,为本申请提供的另一种通信方法的流程示意图,该方法包括:
S1201,核心网设备向接入网设备发送第一信息,第一信息指示第一业务的QoS需求。
示例性的,第一信息可以包括但不限于:5G QoS指示符(5G QoS identifier,5QI)信息、分配保持优先级(allocation and retention priority,ARP)、保证比特速率(guaranteed bit rate,GBR)、聚合最大比特速率(aggregate maximum bit rate,AMBR)。其中,5QI信息可以包括动态5QI信息和非动态5QI信息中的至少一种,动态5QI信息可以理解为非标准化或者没有预配置的5QI,包括:优先级、数据包延迟预算、包错误率、5QI、延迟临界等参数,非动态5QI信息可以理解为标准化的或者预配置的5QI,包括:5QI、优先级等参数。当然,第一信息也可以包括其他QoS流信息,这里不做具体限定。
一种实现方式中,接入网设备与核心网设备在建立会话时可以接收上述第一信息。
示例性的,第一业务的呈现形式可以为但不限于:PDU会话,QoS flow等。
第一信息可以通过接入网设备与核心网设备之间的接口消息来传递,如NGAP消息, 如PDU会话资源建立请求消息,也可以通过高层信令来承载,高层信令可以为RRC消息如RRC重配,或者MAC CE。具体的第一信息也可以在DRB的配置中。
S1202,接入网设备确定N个终端设备中的至少一个终端设备(下面以其中的第一终端设备为例进行说明)实际对应的QoS需求。
其中,第一终端设备的QoS比第一业务的QoS需求低,例如该第一终端设备的优先级(如5QI信息中的优先级、ARP等)比第一业务的优先级低、该第一终端设备的速率(如GBR、AMBR等)比第一业务的速率低、或者该第一终端设备的5QI信息中的参数比第一业务的5QI信息中的参数低,N个终端设备与第一业务相关,N为大于1的整数。第一终端设备的QoS比第一业务的QoS需求低,可以理解为第一终端设备在传输时使用的参数配置低于第一业务本身QoS需求对应的参数配置。
可以理解,由于有N个终端设备与第一业务相关,通过降低N个终端设备中部分终端设备或全部终端设备的QoS,可以使得N个终端设备的平均QoS低于第一业务的QoS需求,从而N个终端设备可以以较少的资源传输第一业务,减少资源消耗。
对于“N个终端设备与第一业务相关”的说明、对于“N个终端设备”的说明、以及接入网设备确定N个终端设备与第一业务相关的方式可以参阅上述S402中的相关描述,这里不再重复赘述。
需要说明的是,本申请实施例中“终端设备的QoS”可以理解为终端设备传输第一业务的QoS。
步骤S1202中,接入网设备通过降低第一终端设备的QoS,可以降低第一终端设备传输第一业务的资源,从而可以降低资源消耗。
需要说明的是,步骤S1202可以是一个可选的步骤。
S1203,接入网设备根据第一终端设备实际对应的QoS需求配置第一终端设备的传输参数。
示例性的,传输参数可以包括:用于传输第一业务的第一MCS、用于传输第一业务的时频资源的数量、用于传输第一业务的重复传输次数、PDCP复制传输指示等等。其中,PDCP复制传输指示用于指示传输第一业务时是否开启PDCP复制传输,PDCP复制传输可以理解为将一个PDCP包传输给两个RLC实体,两个RLC实体独自处理接收到的PDCP包并传输给MAC层。传输参数可以满足如下至少一项:
第一MCS可以高于第二MCS,其中,第一MCS为第一终端设备用于传输第一业务的MCS,第二MCS可以满足第一业务的QoS需求。可以理解的,MCS越低,需要更多的资源进行传输,上述方式通过为第一终端设备配置更高的MCS,可以减少资源消耗,提升资源利用率;
第一终端设备用于传输第一业务的时频资源的数量可以小于第一值,其中,数量为第一值的时频资源满足第一业务的QoS需求。可以理解的,数据传输速率越高,需要更多的资源进行传输,上述方式通过为第一终端设备配置更少的时频资源,从而可以减少资源消耗,提升资源利用率;
第一终端设备用于传输第一业务的重复传输次数的值可以小于第二值,其中,取值为第二值的重复传输次数可以满足第一业务的QoS需求。可以理解的,重复传输次数越高,需要更多的资源进行传输,上述方式通过为第一终端设备配置更低的重复传输次数,可以减少资源消耗,提升资源利用率;
PDCP复制传输指示用于指示不使用PDCP复制传输。上述方式不需要多份数据同时传输,可以减少资源消耗。
S1204,第一终端设备根据接入网设备配置的传输参数传输第一业务。
相比于图2所示的传输方式中N个终端设备传输第一业务需要消耗N倍空口资源、传输资源、站点的处理资源以及UE的功率资源等,本申请中,通过降低第一终端设备的QoS,可以降低第一终端设备传输第一业务的资源(如空口资源等)消耗,从而降低N个终端设备传输第一业务需要消耗的资源数量。并且,本申请中通过多个终端设备传输第一业务,可以获取分级增益,从而实现第一业务的可靠性。
一种可能的实施方式中,若第一终端设备成功发送第一业务的第一数据包,其他终端设备在传输第一数据包失败时可以不对该第一数据包进行重传。一种实现方式中,接入网设备接收到来自第一终端设备的第一数据包,若第二终端设备发送第一数据包失败,接入网设备可以向该第二终端设备发送指示信息,该指示信息可以指示第二终端设备不重传第一数据包。另一种实现方式中,接入网设备接收到来自第一终端设备的第一数据包,若第二终端设备发送第一数据包失败,接入网设备向该第二终端设备发送的PDCP状态报告中第一数据包的状态可以为成功发送。通过上述方式,可以进一步降低资源消耗。另一种实现方式中,接入网设备接收到来自第一终端设备的第一数据包,若第二终端设备发送第一数据包失败,接入网设备可以向该第二终端设备发送ACK指示或者不发送重传指示,可以实现第二终端设备不重传第一数据包,以减少资源消耗。
接入网设备在接收到N个终端设备的数据包后可以向核心网设备进行发送。具体的,接入网设备可以将来自N个终端设备的数据包进行去重和重排序后发送给核心网设备。通过上述方式,可以使得接入网设备到核心网设备之间只发送一份数据,且没有重复和乱序等情况。
或者,接入网设备也可以将来自N个终端设备的数据包分别独立的发送给核心网设备。进一步的,核心网设备可以将来自N个终端设备的数据包进行去重和重排序后发送给服务器,通过上述方式,可以使得核心网设备到服务器之间只发送一份数据,且没有重复和乱序等情况。或者,核心网设备也可以将来自N个终端设备的数据包分别独立的发送给服务器,服务器在接收到来自N个终端设备的数据包后进行去重和重排序。
其中,本申请中去重和重排序的过程(如接入网设备进行去重和重排序的过程、核心网设备进行去重和重排序的过程、服务器进行去重和重排序的过程)可以参阅上述步骤S404中进行去重和重排序的过程,这里不再重复赘述。
上文以第一终端设备为例介绍了N个终端设备传输第一业务的方式。N个终端设备基于上述方式传输第一业务的过程中,可能会出现部分终端设备的工作状态异常(例如终端设备故障、负载过大等),针对这种情况,本申请中提供一种可能的解决方式,下面以第一终端设备工作异常为例进行说明。
接入网设备在确定第一终端设备工作异常时可以提升至少一个未发生工作异常的终端设备的QoS。一种具体的实现方式中,若未发生工作异常的终端设备的数量大于1,可以维持未发生工作异常的终端设备的QoS不变,或者,提升未发生工作异常的终端设备中全部终端设备或者部分终端设备的QoS但经过提升后的未发生工作异常的终端设备的平均QoS仍然低于第一业务的QoS需求。若未发生工作异常的终端设备的数量等于1,可以提升该终端设备的QoS,使得该终端设备的QoS满足第一业务的QoS需求。
其中,接入网设备确定终端设备的工作状态的方式可以为:其他终端设备向接入网设备上报上述终端设备正常工作或出现故障、上述终端设备上报自己的负载情况和/或干扰情况。其中,其他终端设备可以通过终端设备之间的心跳包或者终端设备之间的其他接口判断上述终端设备处于故障状态或者非正常工作状态。
接入网设备确定终端设备的工作状态的方式还可以为:接入网设备可以根据终端设备上行的数据传输情况,参考信号传输情况以及ACK反馈情况或者参考信号来判断终端设备的链路或者设备出现故障。
一种实现方式中,接入网设备可以通过如下四种方式中至少一种方式提升终端设备的QoS:
方式一,接入网设备降低终端设备用于传输第一业务的MCS。
方式二,接入网设备增加终端设备用于传输第一业务的时频资源。
方式三,接入网设备提升终端设备用于传输第一业务的重复传输次数。
方式四,接入网设备配置终端设备使用PDCP复制方式传输第一业务。
在图12A所述通信方法中,与图4~图11所述方法相关的参数定义和步骤可以参阅图4~图11中的相关描述,重复之处不再赘述。
本申请中,通过降低N个终端设备的QoS,使得N个终端设备传输第一业务时消耗的资源小于一个终端设备针对第一业务消耗的资源的N倍,从而可以降低资源消耗。并且,当出现终端设备故障时,通过提升剩余终端设备的QoS,可以在一定程度上保证第一业务的可靠性。
基于与方法实施例的同一技术构思,本申请实施例提供一种通信装置,该通信装置的结构可以如图12B所示,包括处理单元1201和第一通信单元1202。还可以包括第二通信单元1203。可以理解的,在本实施方式中,第一通信单元和第二通信单元可以为同一个通信单元,也可以为不同的通信单元。
一种可能的实施方式中,通信装置具体可以用于实现图4的实施例中接入网设备执行的方法,该装置可以是接入网设备本身,也可以是接入网设备中的芯片或芯片组或芯片中用于执行相关方法功能的一部分。其中,处理单元1201,用于确定第一信息,第一信息用于配置第一业务的数据传输规则;第一通信单元1202,用于向N个终端设备中的第一终端设备发送第一信息,N个终端设备与第一业务相关,N为大于1的整数。
可选的,第二通信单元1203,用于接收来自第一核心网设备的配置信息,配置信息指示N个终端设备与第一业务相关。
处理单元1201,还可以用于:根据如下至少一项确定第一业务的传输模式:与N个终端设备中至少一个终端设备之间的信道质量、N个终端设备中至少一个终端设备的工作状态、第一业务的Qos需求。
或者,处理单元1201,还可以用于:根据通过第二通信单元1203接收的第一指示信息确定第一业务的传输模式,第一指示信息指示第一业务对应的传输模式。
第一通信单元1202,还可以用于:接收第一业务的数据包,数据包来自N个终端设备中的至少一个终端设备。处理单元1201,还用于:将接收到的数据包进行去重和重排序。第二通信单元1203,还用于:将去重和重排序后的数据包向第二核心网设备发送。
可选的,处理单元1201,还可以用于:确定第一终端设备发送第一数据包失败,并指示N个终端设备中的第二终端设备发送第一数据包。
具体的,处理单元1201,可以用于:根据通过第一通信单元1202接收的第二指示信息确定第一终端设备发送第一数据包失败,第二指示信息指示第一终端设备未接收到或者未成功发送第一数据包。
一种实现方式中,第一通信单元1202,还用于接收来自第一终端设备的BSR,BSR指示第一终端设备缓存的数据量。处理单元1201,还用于:根据数据传输规则和BSR确定第一终端设备需要发送的数据包的数量,并根据第一终端设备需要发送的数据包的数量为第一终端设备分配上行资源。
可选的,第一通信单元1202,还用于:向第一终端设备发送第三指示信息,第三指示信息用于指示发送BSR。
第一通信单元1202,还可以用于:向剩余终端设备中的至少一个终端设备发送第四指示信息,第四指示信息用于指示不发送BSR,其中,剩余终端设备为N个终端设备除第一终端设备以外的终端设备。
此外,第一通信单元1202,还可以用于:向第一终端设备发送第二信息,第二信息用于配置第一业务的数据无线承载。
另一种可能的实施方式中,通信装置具体可以用于实现图4的实施例中第一终端设备执行的方法,该装置可以是第一终端设备本身,也可以是第一终端设备中的芯片或芯片组或芯片中用于执行相关方法功能的一部分。其中,第一通信单元1202,用于:接收来自接入网设备的第一信息,第一信息用于配置第一业务的数据传输规则,第一业务与N个终端设备相关,N为大于1的整数,N个终端设备包括第一终端设备。处理单元1201,用于根据数据传输规则确定第一业务的待发送数据包,待发送数据包为第一终端设备需要发送的至少一个数据包;第一通信单元1202,还用于向接入网设备发送待发送数据包。
可选的,第二通信单元1203,用于:在处理单元1201根据数据传输规则确定第一业务的待发送数据包之前,接收第一业务的M个数据包,M为大于0的整数,待发送数据包是根据M个数据包确定的。
处理单元1201,还用于根据M个数据包的接收顺序或者M个数据包中携带的序号为待发送数据包进行编号。
可选的,第一通信单元1202,还用于:接收来自接入网设备的指示信息,指示信息用于指示发送第二数据包,其中,第二数据包不属于待发送数据包。
一种实现方式中,处理单元1201,还用于:在第一通信单元1202向接入网设备发送待发送数据包之前,缓存M个数据包;根据第二配置信息以及M确定待发送数据包的数量。第一通信单元1202,还用于向接入网设备发送第一BSR,第一BSR指示待发送数据包的数量。
另一种实现方式中,处理单元1201,还用于:在第一通信单元1202向接入网设备发送待发送数据包之前,缓存待发送数据包;第一通信单元1202,还用于向接入网设备发送第二BSR,第二BSR指示缓存的数据包的数量。
另一种实现方式中,第一通信单元1202,还用于在向接入网设备发送待发送数据包之前,接收来自接入网设备的第三指示信息,第三指示信息用于指示发送BSR;处理单元1201,还用于:缓存M个数据包;第一通信单元1202,还用于向接入网设备发送第三BSR,第三BSR指示第一终端设备缓存的数据量。
可选的,第一通信单元1202,还用于接收来自接入网设备的第四指示信息,第四指示 信息用于指示不发送BSR。
可选的,第一通信单元1202,还用于接收来自接入网设备的第二信息,第二信息用于配置第一业务的数据无线承载。处理单元1201,还用于基于第二信息配置第一业务的数据无线承载。
另一种可能的实施方式中,通信装置具体可以用于实现图12A的实施例中接入网设备执行的方法,该装置可以是接入网设备本身,也可以是接入网设备中的芯片或芯片组或芯片中用于执行相关方法功能的一部分。其中,第一通信单元1202,用于:接收第一信息,第一信息指示第一业务的QoS需求。处理单元1201,用于:确定N个终端设备中的第一终端设备确定实际对应的QoS需求。其中,第一终端设备的QoS比第一业务的QoS需求低,N个终端设备与第一业务相关,N为大于1的整数。
示例性的,第一信息包括如下至少一项:5QI信息、ARP、GBR、AMBR。
可选的,处理单元1201,还用于:根据第一终端设备实际对应的QoS配置传输参数时,提高第一终端设备用于传输第一业务的MCS。
可选的,处理单元1201,还用于:根据第一终端设备实际对应的QoS配置传输参数时,减少第一终端设备用于传输第一业务的时频资源。
可选的,处理单元1201,还用于:根据第一终端设备实际对应的QoS配置传输参数时,降低第一终端设备用于传输第一业务的重复传输次数。
可选的,第二通信单元1203,用于:接收到来自第一终端设备的第一数据包。以及,若第二终端设备发送第一数据包失败,可以向该第二终端设备发送指示信息,该指示信息指示第二终端设备不重传第一数据包。
示例性的,该指示信息可以为ACK指示或者不发送重传指示,或者,该指示信息可以为PDCP状态报告且该PDCP状态报告中第一数据包的状态为成功发送。
可选的,处理单元1201,还用于:将来自N个终端设备的数据包进行去重和重排序;第一通信单元1202,还用于:将去重和重排序后的数据报告发送给核心网设备。
可选的,处理单元1201,还用于:在确定第一终端设备工作异常时可以提升N个终端设备中至少一个未发生工作异常的终端设备的QoS。
可选的,处理单元1201,还用于:若N个终端设备中未发生工作异常的终端设备的数量大于1,可以维持未发生工作异常的终端设备的QoS不变,或者,提升未发生工作异常的终端设备中全部终端设备或者部分终端设备的QoS,且经过提升后的未发生工作异常的终端设备的平均QoS低于第一业务的QoS需求。
可选的,处理单元1201,还用于:若N个终端设备中未发生工作异常的终端设备的数量等于1,提升该终端设备的QoS,使得该终端设备的QoS满足第一业务的QoS需求。
可选的,处理单元1201,在提升终端设备的QoS时,具体用于:降低终端设备用于传输第一业务的MCS。
可选的,处理单元1201,在提升终端设备的QoS时,具体用于:增加终端设备用于传输第一业务的时频资源。
可选的,处理单元1201,在提升终端设备的QoS时,具体用于:提升终端设备用于传输第一业务的重复传输次数。
本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,另外,在本申请各个实施例中的各功能模块可以集成在一个处理器 中,也可以是单独物理存在,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。可以理解的是,本申请实施例中各个模块的功能或者实现可以进一步参考方法实施例的相关描述。
一种可能的方式中,通信装置可以如图13所示,该装置可以是通信设备或者通信设备中的芯片,其中该通信设备可以为上述实施例中的第一终端设备也可以是上述实施例中的接入网设备。该装置包括处理器1301和第一通信接口1302,还可以包括第二通信接口1305、存储器1303。其中,处理单元1201可以为处理器1301。第一通信单元1202可以为第一通信接口1302。第二通信单元1203可以为第二通信接口1305。
处理器1301,可以是一个CPU,或者为数字处理单元等等。第一通信接口1302和第二通信接口1305可以是收发器、也可以为接口电路如收发电路等、也可以为收发芯片等等。该装置还包括:存储器1303,用于存储处理器1301执行的程序。存储器1303可以是非易失性存储器,比如硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD)等,还可以是易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM)。存储器1303是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其它介质,但不限于此。
处理器1301用于执行存储器1303存储的程序代码,具体用于执行上述处理单元1201的动作,本申请在此不再赘述。第一通信接口1302具体用于执行上述第一通信单元1202的动作,本申请在此不再赘述。第二通信接口1305具体用于执行上述第二通信单元1203的动作,本申请在此不再赘述。
本申请实施例中不限定上述第一通信接口1302、第二通信接口1305、处理器1301以及存储器1303之间的具体连接介质。本申请实施例在图13中以存储器1303、处理器1301以及第一通信接口1302之间通过总线1304连接,总线在图13中以粗线表示,其它部件之间的连接方式,仅是进行示意性说明,并不引以为限。总线可以分为地址总线、数据总线、控制总线等。为便于表示,图13中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (72)

  1. 一种通信方法,其特征在于,所述方法包括:
    确定第一信息,所述第一信息用于配置第一业务的数据传输规则;
    向N个终端设备中的第一终端设备发送所述第一信息,所述N个终端设备与所述第一业务相关,所述N为大于1的整数。
  2. 如权利要求1所述的方法,其特征在于,所述方法还包括:
    接收来自第一核心网设备的配置信息,所述配置信息指示所述N个终端设备与所述第一业务相关。
  3. 如权利要求1或2所述的方法,其特征在于,所述数据传输规则为根据所述第一业务的传输模式确定的。
  4. 如权利要求3所述的方法,其特征在于,所述方法还包括:
    根据如下至少一项确定所述第一业务的传输模式:与所述N个终端设备中至少一个终端设备之间的信道质量、所述N个终端设备中至少一个终端设备的工作状态、所述第一业务的服务质量Qos需求;或者
    根据来自第一核心网设备的第一指示信息确定所述第一业务的传输模式,所述第一指示信息指示所述第一业务对应的传输模式。
  5. 如权利要求3或4所述的方法,其特征在于,所述传输模式为如下四种模式中的一种:
    第一模式,在所述第一模式中,所述N个终端设备包括至少一个主终端设备和至少一个备份终端设备,其中,所述备份终端设备用于在所述至少一个主终端设备中的全部主终端设备或部分主终端设备故障时传输所述第一业务;
    第二模式,在所述第二模式中,所述N个终端设备均传输所述第一业务,且所述N个终端设备传输的数据包相同;
    第三模式,在所述第三模式中,所述N个终端设备均传输所述第一业务,且所述N个终端设备传输的数据包不同;
    第四模式,在所述第四模式中,所述N个终端设备均传输所述第一业务,且所述第一终端设备传输的数据包与所述N个终端设备中的第二终端设备传输的数据包相比存在相同的数据包和不同的数据包。
  6. 如权利要求5所述的方法,其特征在于,所述第一信息包括所述第一终端设备对应的第一值、门限值中至少一个,所述第一值、所述门限值用于确定所述第一终端设备传输的数据包;或者
    所述第一信息指示所述第一终端设备是否发送所述第一业务的数据包;或者
    所述第一信息指示所述第一终端设备发送序列号为奇数或者偶数的数据包;或者
    所述第一信息指示所述第一终端设备的分流比例,所述分流比例为在k个数据包中所述第一终端设备需要发送的数据包的数量与所述k的比例;或者
    所述第一信息指示所述第一终端设备需要发送的数据包的序列号的范围。
  7. 如权利要求5所述的方法,其特征在于,所述方法还包括:
    向所述第一终端设备发送分组数据汇聚层协议PDCP状态报告或者第一序列号,其中,所述PDCP状态报告指示成功接收的数据包和/或未成功接收的数据包,所述第一序列号为 所述第一终端设备需要发送的第一个数据包的序列号或者为所述第一终端设备需要发送的数据包对应的序列号。
  8. 如权利要求5所述的方法,其特征在于,所述第一信息还包括如下至少一项:数据包的位置、所述k的取值,其中,所述数据包的位置用于指示所述第一终端设备需要发送的数据包在所述k个数据包中的位置。
  9. 如权利要求1-8任一项所述的方法,其特征在于,所述方法还包括:
    接收所述第一业务的数据包,所述数据包来自所述N个终端设备中的至少一个终端设备;
    将接收到的数据包进行去重和重排序;
    将去重和重排序后的数据包向第二核心网设备发送。
  10. 如权利要求1-9任一项所述的方法,其特征在于,所述方法还包括:
    接收来自所述第一终端设备的缓冲区状态报告BSR,所述BSR指示所述第一终端设备缓存的数据量;
    根据所述数据传输规则和所述BSR确定所述第一终端设备需要发送的数据包的数量;
    根据所述第一终端设备需要发送的数据包的数量为所述第一终端设备分配上行资源。
  11. 一种通信方法,其特征在于,所述方法适用于第一终端设备或者所述第一终端设备的芯片,所述方法包括:
    接收来自接入网设备的第一信息,所述第一信息用于配置第一业务的数据传输规则,所述第一业务与N个终端设备相关,所述N为大于1的整数,所述N个终端设备包括所述第一终端设备;
    根据所述数据传输规则确定所述第一业务的待发送数据包,所述待发送数据包为所述第一终端设备需要发送的至少一个数据包;
    向所述接入网设备发送所述待发送数据包。
  12. 如权利要求11所述的方法,其特征在于,所述数据传输规则为根据所述第一业务的传输模式确定的。
  13. 如权利要求12所述的方法,其特征在于,所述传输模式为如下四种模式中的一种:
    第一模式,在所述第一模式中,所述N个终端设备包括至少一个主终端设备和至少一个备份终端设备,其中,所述备份终端设备用于在所述至少一个主终端设备中的全部主终端设备或部分主终端设备故障时传输所述第一业务;
    第二模式,在所述第二模式中,所述N个终端设备均传输所述第一业务,且所述N个终端设备传输的数据包相同;
    第三模式,在所述第三模式中,所述N个终端设备均传输所述第一业务,且所述N个终端设备传输的数据包不同;
    第四模式,在所述第四模式中,所述N个终端设备均传输所述第一业务,且所述第一终端设备传输的数据包与所述N个终端设备中的第二终端设备传输的数据包相比存在相同的数据包和不同的数据包。
  14. 如权利要求11-13任一项所述的方法,其特征在于,所述第一信息包括所述第一终端设备对应的第一值、门限值中至少一个,所述第一值、所述门限值用于确定所述第一终端设备传输的数据包;或者
    所述第一信息指示所述第一终端设备是否发送所述第一业务的数据包;或者
    所述第一信息指示所述第一终端设备发送序列号为奇数或者偶数的数据包;或者
    所述第一信息指示所述第一终端设备的分流比例,所述分流比例为在k个数据包中所述第一终端设备需要发送的数据包的数量与所述k的比例;或者
    所述第一信息指示所述第一终端设备需要发送的数据包的序列号的范围。
  15. 如权利要求14所述的方法,其特征在于,所述方法还包括:
    接收来自所述接入网设备的分组数据汇聚层协议PDCP状态报告或者第一序列号,其中,所述PDCP状态报告指示成功发送的数据包和/或未成功发送的数据包,所述第一序列号为所述第一终端设备需要发送的第一个数据包的序列号或者为所述第一终端设备需要发送的数据包对应的序列号;
    所述根据所述数据传输规则确定所述第一业务的待发送数据包,包括:
    基于所述PDCP状态报告或者所述第一序列号确定所述待发送数据包。
  16. 如权利要求14所述的方法,其特征在于,所述第一信息还包括如下至少一项:数据包的位置、所述k的取值,其中,所述数据包的位置用于指示所述第一终端设备需要发送的数据包在所述k个数据包中的位置。
  17. 如权利要求11-16任一项所述的方法,其特征在于,在根据所述数据传输规则确定所述第一业务的待发送数据包之前,所述方法还包括:
    接收所述第一业务的M个数据包,所述M为大于0的整数,所述待发送数据包是根据所述M个数据包确定的。
  18. 如权利要求17所述的方法,其特征在于,在向接入网设备发送所述待发送数据包之前,所述方法还包括:
    根据所述M个数据包的接收顺序或者所述M个数据包中携带的序号为所述待发送数据包进行编号。
  19. 如权利要求17或18所述的方法,其特征在于,在向所述接入网设备发送所述待发送数据包之前,所述方法还包括:
    缓存所述M个数据包;
    根据所述第二配置信息以及所述M确定所述待发送数据包;
    向所述接入网设备发送第一缓冲区状态报告BSR,所述第一BSR指示所述待发送数据包的数量。
  20. 如权利要求17-19任一项所述的方法,其特征在于,在向所述接入网设备发送所述待发送数据包之前,所述方法还包括:
    缓存所述待发送数据包;
    向所述接入网设备发送第二缓冲区状态报告BSR,所述第二BSR指示缓存的数据包的数量。
  21. 一种通信方法,其特征在于,所述方法包括:
    接收第一信息,所述第一信息指示第一业务的服务质量QoS需求;
    确定N个终端设备中的第一终端设备实际对应的QoS,其中,所述第一终端设备的QoS比所述第一业务的QoS需求低,所述N个终端设备与所述第一业务相关,所述N为大于1的整数。
  22. 如权利要求21所述的方法,其特征在于,所述第一信息包括如下至少一项:5G QoS指示符信息、分配保持优先级、保证比特速率、聚合最大比特速率。
  23. 如权利要求21或22所述的方法,其特征在于,所述方法还包括:
    根据所述第一终端设备实际对应的QoS配置传输参数时,提高所述第一终端设备用于传输所述第一业务的调制编码方案MCS。
  24. 如权利要求21-23任一项所述的方法,其特征在于,所述方法还包括:
    根据所述第一终端设备实际对应的QoS配置传输参数时,减少所述第一终端设备用于传输所述第一业务的时频资源。
  25. 如权利要求21-24任一项所述的方法,其特征在于,所述方法还包括:
    根据所述第一终端设备实际对应的QoS配置传输参数时,降低所述第一终端设备用于传输所述第一业务的重复传输次数。
  26. 如权利要求21-25任一项所述的方法,其特征在于,所述方法还包括:
    接收到来自所述第一终端设备的第一数据包;
    若第二终端设备发送所述第一数据包失败,向所述第二终端设备发送指示信息,所述指示信息指示所述第二终端设备不重传所述第一数据包。
  27. 如权利要求26所述的方法,其特征在于,所述指示信息为确认ACK指示或者不发送重传指示,或者,所述指示信息为分组数据汇聚协议PDCP状态报告且所述PDCP状态报告中所述第一数据包的状态为成功发送。
  28. 如权利要求21-27任一项所述的方法,其特征在于,所述方法还包括:
    将来自所述N个终端设备的数据包进行去重和重排序后发送给核心网设备。
  29. 如权利要求21-28任一项所述的方法,其特征在于,所述方法还包括:
    在确定所述第一终端设备工作异常时提升所述N个终端设备中至少一个未发生工作异常的终端设备的QoS。
  30. 如权利要求21-29任一项所述的方法,其特征在于,若所述N个终端设备中未发生工作异常的终端设备的数量大于1,维持未发生工作异常的终端设备的QoS不变,或者,提升未发生工作异常的终端设备中全部终端设备或者部分终端设备的QoS,且经过提升后的未发生工作异常的终端设备的平均QoS低于所述第一业务的QoS需求。
  31. 如权利要求21-30任一项所述的方法,其特征在于,若所述N个终端设备中未发生工作异常的终端设备的数量等于1,提升所述终端设备的QoS。
  32. 如权利要求21-31任一项所述的方法,其特征在于,所述提升所述终端设备的QoS,包括:
    降低所述终端设备用于传输所述第一业务的MCS。
  33. 如权利要求21-32任一项所述的方法,其特征在于,所述提升所述终端设备的QoS,包括:
    增加所述终端设备用于传输所述第一业务的时频资源。
  34. 如权利要求21-33任一项所述的方法,其特征在于,所述提升所述终端设备的QoS,包括:
    提升所述终端设备用于传输所述第一业务的重复传输次数。
  35. 一种通信装置,其特征在于,所述装置包括:
    处理单元,用于确定第一信息,所述第一信息用于配置第一业务的数据传输规则;
    第一通信单元,用于向N个终端设备中的第一终端设备发送所述第一信息,所述N个终端设备与所述第一业务相关,所述N为大于1的整数。
  36. 如权利要求35所述的装置,其特征在于,所述装置还包括第二通信单元;
    所述第二通信单元,用于接收来自第一核心网设备的配置信息,所述配置信息指示所述N个终端设备与所述第一业务相关。
  37. 如权利要求35或36所述的装置,其特征在于,所述数据传输规则为根据所述第一业务的传输模式确定的。
  38. 如权利要求37所述的装置,其特征在于,所述处理单元,还用于:
    根据如下至少一项确定所述第一业务的传输模式:与所述N个终端设备中至少一个终端设备之间的信道质量、所述N个终端设备中至少一个终端设备的工作状态、所述第一业务的服务质量Qos需求;或者
    根据来自第一核心网设备的第一指示信息确定所述第一业务的传输模式,所述第一指示信息指示所述第一业务对应的传输模式。
  39. 如权利要求37或38所述的装置,其特征在于,所述传输模式为如下四种模式中的一种:
    第一模式,在所述第一模式中,所述N个终端设备包括至少一个主终端设备和至少一个备份终端设备,其中,所述备份终端设备用于在所述至少一个主终端设备中的全部主终端设备或部分主终端设备故障时传输所述第一业务;
    第二模式,在所述第二模式中,所述N个终端设备均传输所述第一业务,且所述N个终端设备传输的数据包相同;
    第三模式,在所述第三模式中,所述N个终端设备均传输所述第一业务,且所述N个终端设备传输的数据包不同;
    第四模式,在所述第四模式中,所述N个终端设备均传输所述第一业务,且所述第一终端设备传输的数据包与所述N个终端设备中的第二终端设备传输的数据包相比存在相同的数据包和不同的数据包。
  40. 如权利要求39所述的装置,其特征在于,所述第一信息包括所述第一终端设备对应的第一值、门限值中至少一个,所述第一值、所述门限值用于确定所述第一终端设备传输的数据包;或者
    所述第一信息指示所述第一终端设备是否发送所述第一业务的数据包;或者
    所述第一信息指示所述第一终端设备发送序列号为奇数或者偶数的数据包;或者
    所述第一信息指示所述第一终端设备的分流比例,所述分流比例为在k个数据包中所述第一终端设备需要发送的数据包的数量与所述k的比例;或者
    所述第一信息指示所述第一终端设备需要发送的数据包的序列号的范围。
  41. 如权利要求39所述的装置,其特征在于,所述第一通信单元,还用于:
    向所述第一终端设备发送分组数据汇聚层协议PDCP状态报告或者第一序列号,其中,所述PDCP状态报告指示成功接收的数据包和/或未成功接收的数据包,所述第一序列号为所述第一终端设备需要发送的第一个数据包的序列号或者为所述第一终端设备需要发送的数据包对应的序列号。
  42. 如权利要求39所述的装置,其特征在于,所述第一信息还包括如下至少一项:数据包的位置、所述k的取值,其中,所述数据包的位置用于指示所述第一终端设备需要发送的数据包在所述k个数据包中的位置。
  43. 如权利要求35-42任一项所述的装置,其特征在于,所述第一通信单元,还用于: 接收所述第一业务的数据包,所述数据包来自所述N个终端设备中的至少一个终端设备;
    所述处理单元,还用于:将接收到的数据包进行去重和重排序;
    所述装置还包括第二通信单元,所述第二通信单元用于将去重和重排序后的数据包向第二核心网设备发送。
  44. 如权利要求35-43任一项所述的装置,其特征在于,所述第一通信单元,还用于:接收来自所述第一终端设备的缓冲区状态报告BSR,所述BSR指示所述第一终端设备缓存的数据量;
    所述处理单元,还用于:根据所述数据传输规则和所述BSR确定所述第一终端设备需要发送的数据包的数量;以及
    根据所述第一终端设备需要发送的数据包的数量为所述第一终端设备分配上行资源。
  45. 一种通信装置,其特征在于,所述装置适用于第一终端设备或者所述第一终端设备的芯片,所述装置包括:
    第一通信单元,用于接收来自接入网设备的第一信息,所述第一信息用于配置第一业务的数据传输规则,所述第一业务与N个终端设备相关,所述N为大于1的整数,所述N个终端设备包括所述第一终端设备;
    处理单元,用于根据所述数据传输规则确定所述第一业务的待发送数据包,所述待发送数据包为所述第一终端设备需要发送的至少一个数据包;
    所述第一通信单元,还用于向所述接入网设备发送所述待发送数据包。
  46. 如权利要求45所述的装置,其特征在于,所述数据传输规则为根据所述第一业务的传输模式确定的。
  47. 如权利要求46所述的装置,其特征在于,所述传输模式为如下四种模式中的一种:
    第一模式,在所述第一模式中,所述N个终端设备包括至少一个主终端设备和至少一个备份终端设备,其中,所述备份终端设备用于在所述至少一个主终端设备中的全部主终端设备或部分主终端设备故障时传输所述第一业务;
    第二模式,在所述第二模式中,所述N个终端设备均传输所述第一业务,且所述N个终端设备传输的数据包相同;
    第三模式,在所述第三模式中,所述N个终端设备均传输所述第一业务,且所述N个终端设备传输的数据包不同;
    第四模式,在所述第四模式中,所述N个终端设备均传输所述第一业务,且所述第一终端设备传输的数据包与所述N个终端设备中的第二终端设备传输的数据包相比存在相同的数据包和不同的数据包。
  48. 如权利要求45-47任一项所述的装置,其特征在于,所述第一信息包括所述第一终端设备对应的第一值、门限值中至少一个,所述第一值、所述门限值用于确定所述第一终端设备传输的数据包;或者
    所述第一信息指示所述第一终端设备是否发送所述第一业务的数据包;或者
    所述第一信息指示所述第一终端设备发送序列号为奇数或者偶数的数据包;或者
    所述第一信息指示所述第一终端设备的分流比例,所述分流比例为在k个数据包中所述第一终端设备需要发送的数据包的数量与所述k的比例;或者
    所述第一信息指示所述第一终端设备需要发送的数据包的序列号的范围。
  49. 如权利要求48所述的装置,其特征在于,所述第一通信单元,还用于:接收来自 所述接入网设备的分组数据汇聚层协议PDCP状态报告或者第一序列号,其中,所述PDCP状态报告指示成功发送的数据包和/或未成功发送的数据包,所述第一序列号为所述第一终端设备需要发送的第一个数据包的序列号或者为所述第一终端设备需要发送的数据包对应的序列号;
    所述处理单元,在根据所述数据传输规则确定所述第一业务的待发送数据包时,具体用于:
    基于所述PDCP状态报告或者所述第一序列号确定所述待发送数据包。
  50. 如权利要求48所述的装置,其特征在于,所述第一信息还包括如下至少一项:数据包的位置、所述k的取值,其中,所述数据包的位置用于指示所述第一终端设备需要发送的数据包在所述k个数据包中的位置。
  51. 如权利要求45-50任一项所述的装置,其特征在于,所述装置还包括第二通信单元;
    所述第二通信单元,用于:在所述处理单元根据所述数据传输规则确定所述第一业务的待发送数据包之前,接收所述第一业务的M个数据包,所述M为大于0的整数,所述待发送数据包是根据所述M个数据包确定的。
  52. 如权利要求51所述的装置,其特征在于,所述处理单元,还用于:
    在所述第一通信单元向接入网设备发送所述待发送数据包之前,根据所述M个数据包的接收顺序或者所述M个数据包中携带的序号为所述待发送数据包进行编号。
  53. 如权利要求51或52所述的装置,其特征在于,所述处理单元,还用于:在所述第一通信单元向所述接入网设备发送所述待发送数据包之前,缓存所述M个数据包;以及
    根据所述第二配置信息以及所述M确定所述待发送数据包;
    所述第一通信单元,还用于:向所述接入网设备发送第一缓冲区状态报告BSR,所述第一BSR指示所述待发送数据包的数量。
  54. 如权利要求51-53任一项所述的装置,其特征在于,所述处理单元,还用于:在所述第一通信单元向所述接入网设备发送所述待发送数据包之前,缓存所述待发送数据包;
    所述第一通信单元,还用于向所述接入网设备发送第二缓冲区状态报告BSR,所述第二BSR指示缓存的数据包的数量。
  55. 一种通信装置,其特征在于,所述装置包括:
    通信单元,用于接收第一信息,所述第一信息指示第一业务的服务质量QoS需求;
    处理单元,用于确定N个终端设备中的第一终端设备实际对应的QoS,其中,所述第一终端设备的QoS比所述第一业务的QoS需求低,所述N个终端设备与所述第一业务相关,所述N为大于1的整数。
  56. 如权利要求55所述的装置,其特征在于,所述第一信息包括如下至少一项:5G QoS指示符信息、分配保持优先级、保证比特速率、聚合最大比特速率。
  57. 如权利要求55或56所述的装置,其特征在于,所述处理单元,还用于:
    根据所述第一终端设备实际对应的QoS配置传输参数时,提高所述第一终端设备用于传输所述第一业务的调制编码方案MCS。
  58. 如权利要求55-57任一项所述的装置,其特征在于,所述处理单元,还用于:
    根据所述第一终端设备实际对应的QoS配置传输参数时,减少所述第一终端设备用于传输所述第一业务的时频资源。
  59. 如权利要求55-58任一项所述的装置,其特征在于,所述处理单元,还用于:
    根据所述第一终端设备实际对应的QoS配置传输参数时,降低所述第一终端设备用于传输所述第一业务的重复传输次数。
  60. 如权利要求55-59任一项所述的装置,其特征在于,所述通信单元,还用于:
    接收到来自所述第一终端设备的第一数据包;
    若第二终端设备发送所述第一数据包失败,向所述第二终端设备发送指示信息,所述指示信息指示所述第二终端设备不重传所述第一数据包。
  61. 如权利要求60所述的装置,其特征在于,所述指示信息为确认ACK指示或者不发送重传指示,或者,所述指示信息为分组数据汇聚协议PDCP状态报告且所述PDCP状态报告中所述第一数据包的状态为成功发送。
  62. 如权利要求55-61任一项所述的装置,其特征在于,所述处理单元,还用于:
    将来自所述N个终端设备的数据包进行去重和重排序;
    所述通信单元,还用于将去重和重排序后的所述N个终端设备的数据包发送给核心网设备。
  63. 如权利要求55-62任一项所述的装置,其特征在于,所述处理单元,还用于:
    在确定所述第一终端设备工作异常时提升所述N个终端设备中至少一个未发生工作异常的终端设备的QoS。
  64. 如权利要求55-63任一项所述的装置,其特征在于,若所述N个终端设备中未发生工作异常的终端设备的数量大于1,维持未发生工作异常的终端设备的QoS不变,或者,提升未发生工作异常的终端设备中全部终端设备或者部分终端设备的QoS,且经过提升后的未发生工作异常的终端设备的平均QoS低于所述第一业务的QoS需求。
  65. 如权利要求55-64任一项所述的装置,其特征在于,若所述N个终端设备中未发生工作异常的终端设备的数量等于1,提升所述终端设备的QoS。
  66. 如权利要求55-65任一项所述的装置,其特征在于,所述处理单元,在提升所述终端设备的QoS时,具体用于:
    降低所述终端设备用于传输所述第一业务的MCS。
  67. 如权利要求55-66任一项所述的装置,其特征在于,所述处理单元,在提升所述终端设备的QoS时,具体用于:
    增加所述终端设备用于传输所述第一业务的时频资源。
  68. 如权利要求55-67任一项所述的装置,其特征在于,所述处理单元,在提升所述终端设备的QoS时,具体用于:
    提升所述终端设备用于传输所述第一业务的重复传输次数。
  69. 一种通信装置,其特征在于,所述装置包括处理器和接口电路,所述接口电路用于接收来自所述通信装置之外的其它通信装置的信号并传输至所述处理器或将来自所述处理器的信号发送给所述通信装置之外的其它通信装置,所述处理器通过逻辑电路或执行代码指令用于实现如权利要求1~10中任意一项所述的方法或者如权利要求21~34中任意一项所述的方法。
  70. 一种通信装置,其特征在于,所述装置包括处理器和接口电路,所述接口电路用于接收来自所述通信装置之外的其它通信装置的信号并传输至所述处理器或将来自所述处理器的信号发送给所述通信装置之外的其它通信装置,所述处理器通过逻辑电路或执行代码指令用于实现如权利要求11~20中任意一项所述的方法。
  71. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质用于存储计算机指令,当所述计算机指令在计算机上运行时,使得所述计算机执行如权利要求1~10中任意一项所述的方法,或者使得所述计算机执行如权利要求11~20中任意一项所述的方法,或者使得所述计算机执行如权利要求21~34中任意一项所述的方法。
  72. 一种存储有指令的计算机程序产品,其特征在于,当所述指令被处理器运行时,实现如权利要求1~10中任意一项所述的方法,或者如权利要求11~20中任意一项所述的方法,或者如权利要求21~34中任意一项所述的方法。
PCT/CN2022/095700 2021-06-07 2022-05-27 一种通信方法及装置 WO2022257790A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22819388.4A EP4354914A1 (en) 2021-06-07 2022-05-27 Communication method and apparatus
US18/527,855 US20240114383A1 (en) 2021-06-07 2023-12-04 Communication method and apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202110633975.8 2021-06-07
CN202110633975 2021-06-07
CN202110750254.5A CN115515111A (zh) 2021-06-07 2021-07-02 一种通信方法及装置
CN202110750254.5 2021-07-02

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/527,855 Continuation US20240114383A1 (en) 2021-06-07 2023-12-04 Communication method and apparatus

Publications (1)

Publication Number Publication Date
WO2022257790A1 true WO2022257790A1 (zh) 2022-12-15

Family

ID=84424622

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/095700 WO2022257790A1 (zh) 2021-06-07 2022-05-27 一种通信方法及装置

Country Status (3)

Country Link
US (1) US20240114383A1 (zh)
EP (1) EP4354914A1 (zh)
WO (1) WO2022257790A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117241241A (zh) * 2023-11-13 2023-12-15 武汉本物科技股份有限公司 太阳能蓄热采暖系统的联合通信方法、装置及电子设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112312575A (zh) * 2019-07-31 2021-02-02 华为技术有限公司 一种通信方法及装置
WO2021017949A1 (zh) * 2019-07-31 2021-02-04 华为技术有限公司 一种数据传输方法、装置及系统
US11006358B1 (en) * 2018-12-17 2021-05-11 Sercomm Corporation Reconfigurable data transmission system with terminal devices of different data transmission modes
US20210168647A1 (en) * 2018-09-25 2021-06-03 Fujitsu Limited Method and apparatus for transmitting data and communication system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210168647A1 (en) * 2018-09-25 2021-06-03 Fujitsu Limited Method and apparatus for transmitting data and communication system
US11006358B1 (en) * 2018-12-17 2021-05-11 Sercomm Corporation Reconfigurable data transmission system with terminal devices of different data transmission modes
CN112312575A (zh) * 2019-07-31 2021-02-02 华为技术有限公司 一种通信方法及装置
WO2021017949A1 (zh) * 2019-07-31 2021-02-04 华为技术有限公司 一种数据传输方法、装置及系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZTE CORPORATION, SANECHIPS, CHINA SOUTHERN POWER GRID CO., LTD: "New QoS related parameters in TSN", 3GPP DRAFT; R2-2009062, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. E-meeting; 20201102 - 20201113, 23 October 2020 (2020-10-23), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051942106 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117241241A (zh) * 2023-11-13 2023-12-15 武汉本物科技股份有限公司 太阳能蓄热采暖系统的联合通信方法、装置及电子设备
CN117241241B (zh) * 2023-11-13 2024-01-19 武汉本物科技股份有限公司 太阳能蓄热采暖系统的联合通信方法、装置及电子设备

Also Published As

Publication number Publication date
US20240114383A1 (en) 2024-04-04
EP4354914A1 (en) 2024-04-17

Similar Documents

Publication Publication Date Title
TWI387380B (zh) 處理排程資訊回報的方法及通訊裝置
JP5957435B2 (ja) 効率的な共用e−dch管理のための信号伝送方式
US20220182185A1 (en) Systems and Methods to Reduce Consecutive Packet Loss for Delay Critical Traffic
JP2020515195A (ja) データ伝送方法、端末、ネットワーク側機器およびコンピュータ読み取り可能な記憶媒体
JP7052056B2 (ja) データ伝送方法及び装置
JP2017513371A (ja) データパケットの処理方法及び装置
CN108337633B (zh) 数据分流配置方法、基站系统和用户终端
KR20070080557A (ko) 이동통신시스템의 향상된 rlc/mac 엔티티 동작 방법및 그 시스템
WO2019149248A1 (zh) 通信的方法和装置
JP2017509231A (ja) データ伝送方法及びデータ伝送システム並びにデータ伝送装置
JP2018521568A (ja) データ伝送方法、送信装置及び受信装置
WO2010099718A1 (zh) 一种数据传输控制方法、装置及系统
US20240114383A1 (en) Communication method and apparatus
KR20220153031A (ko) 멀티캐스트/브로드캐스트 서비스 제공의 동적 변경
US11166193B2 (en) Terminal and base station in wireless communication system, and communication method thereof
WO2017020302A1 (zh) 一种建立数据无线承载的方法及装置
CN105472658A (zh) 业务流删除方法和装置
CN115515111A (zh) 一种通信方法及装置
WO2021056589A1 (zh) 一种数据传输方法及装置
CN110167067B (zh) 数据传输方法及装置、存储介质、终端、基站
WO2022227998A1 (zh) 一种数据传输方法及装置
WO2021249190A1 (zh) 协议数据单元处理方法、装置、发送设备及存储介质
WO2022188686A1 (zh) 一种通信方法及设备
TW201921977A (zh) 服務資料單元處理方法、丟棄方法、相應的使用者設備和電腦可讀媒體
WO2022027464A1 (en) Multicast and broadcast service status reporting

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22819388

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022819388

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022819388

Country of ref document: EP

Effective date: 20231215

NENP Non-entry into the national phase

Ref country code: DE