WO2022257767A1 - 矿区运输卡车自动控制路径的方法 - Google Patents

矿区运输卡车自动控制路径的方法 Download PDF

Info

Publication number
WO2022257767A1
WO2022257767A1 PCT/CN2022/094942 CN2022094942W WO2022257767A1 WO 2022257767 A1 WO2022257767 A1 WO 2022257767A1 CN 2022094942 W CN2022094942 W CN 2022094942W WO 2022257767 A1 WO2022257767 A1 WO 2022257767A1
Authority
WO
WIPO (PCT)
Prior art keywords
point
stage
mining area
transport truck
task
Prior art date
Application number
PCT/CN2022/094942
Other languages
English (en)
French (fr)
Inventor
马广玉
张波
袁金祥
潘博
赵耀忠
刘跃
田�文明
咸金龙
刘强
曹鋆程
刘金龙
谭益农
Original Assignee
华能伊敏煤电有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华能伊敏煤电有限责任公司 filed Critical 华能伊敏煤电有限责任公司
Publication of WO2022257767A1 publication Critical patent/WO2022257767A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W60/00Drive control systems specially adapted for autonomous road vehicles
    • B60W60/001Planning or execution of driving tasks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W60/00Drive control systems specially adapted for autonomous road vehicles
    • B60W60/001Planning or execution of driving tasks
    • B60W60/0011Planning or execution of driving tasks involving control alternatives for a single driving scenario, e.g. planning several paths to avoid obstacles

Definitions

  • the invention relates to a method for automatically controlling the path of a transport truck in a mining area.
  • the purpose of the present invention is to provide a method for automatically controlling the path of a mine transport truck, which can effectively realize the control tasks of various paths of the unmanned mine vehicle in the working process, complete the entire operation process, and transfer the information of the planning module It is handed over to the lower-level control module for execution, and at the same time communicates with the cloud dispatching center to ensure that the unmanned mining vehicle can drive safely and accurately.
  • a method for automatically controlling the path of a mine transport truck comprising the following steps: firstly, the work flow of the mine transport truck includes four work processes of loading, return, unloading, and outbound, and the differences between the subtasks of the work process are as follows: Larger, each sub-task is independent of each other, the central control platform sends a scheduling command, selects an unmanned mine transport truck to execute the specified sub-task operation command, and the planning module is responsible for executing the current task and feedbacks the real-time execution status;
  • Driving stage the mining area transport truck drives from the unloading area to the fixed terminal position a of the loading area;
  • the first stage of warehousing the location of the excavator is reported to the dispatching platform, and the dispatching platform calculates a suitable reversing point b, and sends it to the planning module, and the mining area transport truck drives to the position of point a;
  • the second stage of warehousing after the mining area transport truck finishes its automatic driving at point b, the dispatching platform sends an instruction, and the mining area transport truck starts to back up to the position of the forklift, travels to within 2 meters of the forklift range c, or encounters obstacles After 10-30 seconds when the object cannot move, the mission ends;
  • the dispatching platform calculates a suitable position to return to the road point according to the loading position c, and the mining area transport truck starts from c, returns to the road, and prepares for the task of the next driving stage;
  • Driving stage the mining area transport truck drives from the loading area to the fixed end position d of the unloading area, waiting for the cloud to send an unloading command;
  • the first stage of warehousing the location of the unloading point is reported to the dispatching platform by the bulldozer, and the dispatching platform calculates a suitable reversing point e, and sends it to the planning module, and the mining area transport truck drives to point e;
  • the second stage of warehousing after the mining area transport truck finishes its automatic driving at point e, the dispatching platform sends an instruction, and the mining area transport truck starts to back up to the unloading position, and travels to the unloading point within 1 meter f, or encounters obstacles and cannot After traveling for 10 seconds to 30 seconds, the task ends;
  • Departure stage the dispatching platform calculates the appropriate return to road point position according to the point f of the soil discharge position, and the mining area transport truck starts from point f and returns to the road to prepare for the task of the next driving stage.
  • the driving phase is a general point-to-point automatic driving task, and the normal automatic driving planning module can be used;
  • the goal of the first stage of warehousing is to find a feasible initial reversing point for the second stage of warehousing, as the end of the task of this stage, because the forklift point or unloading point may change for each task cycle , it is necessary to dynamically determine the end position;
  • Determination method draw a vertical line from the forklift point or unloading point to the road, and extend 20m forward from the intersection point.
  • the specific value is determined by the turning radius of the truck transporting the mining area. It needs to be greater than twice the turning radius of the vehicle.
  • the dispatching platform is calculating After leaving the end position, it is sent to the planning module, and the normal automatic driving planning module can still be used;
  • the task of the second phase of the warehousing is a vehicle planning without lane lines.
  • the dispatching platform sends the position of the forklift point or the unloading point of the target point and the target orientation angle information to the planning module, and the planning module receives the target point
  • the planning module receives the target point
  • use the Dubins curve to construct the lane centerline select the one with the shortest total distance among the four line types RSR, LSL, RSL, and LSR as the optimal lane centerline, and then expand the left and right sides of the centerline by half a car Width + 1 meter as the lane boundary, then the normal planning module can be used to construct the trajectory information.
  • the present invention mainly provides a method for automatically controlling the path of trucks in mining areas. This method can effectively solve the disadvantages of the existing technology that there is no automatic control path for unmanned mining trucks in the mine scene.
  • the central control platform is used to send and dispatch Command, select unmanned mining vehicles to execute the specified sub-task operation command, and execute the current task through the planning module, and hand over the planning module information to the lower control module for execution, and communicate with the cloud dispatching center at the same time to ensure that no one Driving a minecart enables safe and precise driving.
  • the present invention is suitable for automatic driving application scenarios in open-pit mines, and can assist in realizing stable operation of automatic driving.
  • the method of the present invention solves the problems of harsh environment in the mining area, high risk of operation, and high cost of manual work.
  • the use of unmanned mine vehicles can reduce labor costs in the long run, and at the same time reduce the safety risks of operators.
  • a method for automatically controlling the path of a mine transport truck comprising the following steps: first, the work flow of the mine transport truck includes four work processes of loading, return, unloading, and outbound, and the differences between the various subtasks of the work process Larger, each sub-task is independent of each other, the central control platform sends a scheduling command, selects an unmanned mine transport truck to execute the specified sub-task operation command, and the planning module is responsible for executing the current task and feedbacks the real-time execution status;
  • Driving stage the mining area transport truck drives from the unloading area to the fixed terminal position a of the loading area;
  • the first stage of warehousing the location of the excavator is reported to the dispatching platform, and the dispatching platform calculates a suitable reversing point b, and sends it to the planning module, and the mining area transport truck drives to the position of point a;
  • the second stage of warehousing after the mining area transport truck finishes its automatic driving at point b, the dispatching platform sends an instruction, and the mining area transport truck starts to back up to the position of the forklift, travels to within 2 meters of the forklift range c, or encounters obstacles After 10-30 seconds when the object cannot move, the mission ends;
  • the dispatching platform calculates a suitable position to return to the road point according to the loading position c, and the mining area transport truck starts from c, returns to the road, and prepares for the task of the next driving stage;
  • Driving stage the mining area transport truck drives from the loading area to the fixed end position d of the unloading area, waiting for the cloud to send an unloading command;
  • the first stage of warehousing the location of the unloading point is reported to the dispatching platform by the bulldozer, and the dispatching platform calculates a suitable reversing point e, and sends it to the planning module, and the mining area transport truck drives to point e;
  • the second stage of warehousing after the mining area transport truck finishes its automatic driving at point e, the dispatching platform sends an instruction, and the mining area transport truck starts to reverse to the unloading position, and travels to the unloading point within 1 meter f, or encounters obstacles and cannot After traveling for 10 seconds to 30 seconds, the task ends;
  • Departure stage the dispatching platform calculates the appropriate return to road point position according to the point f of the soil discharge position, and the mining area transport truck starts from point f and returns to the road to prepare for the task of the next driving stage.
  • the described driving stage is a general point-to-point automatic driving task, and a normal automatic driving planning module that can be used;
  • the goal of the first stage of warehousing is to find a feasible initial reversing point for the second stage of warehousing, as the end of the task of this stage, because the forklift point or unloading point may change for each task cycle , it is necessary to dynamically determine the end position;
  • Determination method draw a vertical line from the forklift point or unloading point to the road, and extend 20m forward from the intersection point.
  • the specific value is determined by the turning radius of the truck transporting the mining area. It needs to be greater than twice the turning radius of the vehicle.
  • the dispatching platform is calculating After leaving the end position, it is sent to the planning module, and the normal automatic driving planning module can still be used;
  • the task of the second phase of the warehousing is a vehicle planning without lane lines.
  • the dispatching platform sends the position of the forklift point or the unloading point of the target point and the target orientation angle information to the planning module, and the planning module receives the target point
  • the planning module receives the target point
  • use the Dubins curve to construct the lane centerline select the one with the shortest total distance among the four line types RSR, LSL, RSL, and LSR as the optimal lane centerline, and then expand the left and right sides of the centerline by half a car Width + 1 meter as the lane boundary, then the normal planning module can be used to construct the trajectory information.
  • the planning module will not respond, and it needs to wait for the task feedback failure of the map drop platform or manual takeover before responding to the new task request.
  • Task failure Due to factors such as changing environment and unstable vehicle wire control, task failures often occur during actual operation. Task failures reported by manual takeover and planning module feedback are considered failures. At this time, the next task Divided into two situations:
  • the dispatching platform judges whether the task can be restarted according to the status of the main vehicle and the position of the target point. If the initiation condition is met, resend the corresponding task information to the planning module;
  • RSR in the accompanying drawing 4 is that the driving path of the mining area transport truck is straight right
  • LSL in the accompanying drawing 5 is that the driving path of the mining area transport truck is left straight left
  • RSL in the accompanying drawing 6 is that the driving path of the mining area transport truck is right Straight to the left
  • the LSR in Figure 7 means that the driving path of the transport truck in the mining area is left and straight to the right (specifically: L is left, S is a straight line, and R is right).

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Human Computer Interaction (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

一种矿区运输卡车自动控制路径的方法。该方法包括如下步骤:矿区运输卡车的工作流程包括装载、回程、卸载、去程4个工作过程,工作流程各个子任务之间差异较大,每个子任务之间互相独立,中控平台发送调度命令,选定无人驾驶的矿区运输卡车执行指定子任务作业命令,规划模块负责执行当前的任务,并反馈实时执行情况,其中装载区与卸载区的任务具体包括行驶阶段、入库第一阶段、入库第二阶段、出库阶段。

Description

矿区运输卡车自动控制路径的方法 技术领域
本发明涉及一种矿区运输卡车自动控制路径的方法。
背景技术
露天矿场相比城市道路,行驶路线较为单一,障碍物与各种场景较为可控,是无人驾驶的一个很有前景的落地方向,同时,矿区的作业条件艰苦,运用无人驾驶技术也可以避免人工作业的各种风险,然而,矿区道路地形条件复杂,车道等地图信息不明显,同时会随着作业流程不断变化,这些因素也为自动驾驶实现矿区运输全作业流程提出了很大挑战;现有技术的无人驾驶的路径技术主要聚焦城市道路场景,是基于高精地图的点对点驾驶,并没有成熟的应用与矿山场景的控制路径方法。同时矿山的地图具有可变性大,无明显车道线等问题,而且任务流程较为复杂,现有城市道路的无人驾驶技术并不能很好的适应矿用卡车的作业场景。
发明内容
本发明的目的是提供一种矿区运输卡车自动控制路径的方法,该方法能够有效实现了无人驾驶矿车在工作过程中的各种路径的控制任务,完成全作业流程,并将规划模块信息交由下层控制模块进行执行,同时与云端调度中心进行通信,保证无人驾驶矿车能够安全精准行驶。
技术解决方案
上述的目的通过以下的技术方案实现:
一种矿区运输卡车自动控制路径的方法,该方法包括如下步骤:首先是矿区运输卡车的工作流程包括装载、回程、卸载、去程4个工作过程,所述的工作流程各个子任务之间差异较大,每个子任务之间互相独立,中控平台发送调度命令,选定无人驾驶的矿区运输卡车执行指定子任务作业命令,规划模块负责执行当前的任务,并反馈实时执行情况;
(1)装载区
行驶阶段:所述的矿区运输卡车从卸载区场驾驶至装载区的固定终点位置a;
入库第一阶段:挖掘机位置上报调度平台,所述的调度平台计算适合的倒车点b,并发送给规划模块,所述的矿区运输卡车行驶至点a的位置;
入库第二阶段:所述的矿区运输卡车在点b结束自动驾驶后,调度平台发送指令,所述的矿区运输卡车开始向铲车位置倒车,行至铲车范围2米内c,或遇障碍物无法行进10秒-30秒后,任务结束;
出库阶段:所述的调度平台根据装载位置c计算出合适的重新回道路点的位置,所述的矿区运输卡车从c出发,重新回到道路,准备下一个行驶阶段的任务;
(2)卸载区
行驶阶段:所述的矿区运输卡车从装载区驾驶至卸载区的固定终点位置d,等待云端发送卸载指令;
入库第一阶段:卸载点位置由推土机上报调度平台,调度平台计算适合的倒车点e,并发送给规划模块,所述的矿区运输卡车行驶至点e;
入库第二阶段:所述的矿区运输卡车在点e结束自动驾驶后,调度平台发送指令,所述的矿区运输卡车开始向卸载位置倒车,行至卸载点1米内f,或遇障碍物无法行进10秒-30秒后,任务结束;
出库阶段:调度平台根据排土位置f点,计算出合适的重新回道路点的位置,所述的矿区运输卡车从f点出发,重新回到道路,准备下一个行驶阶段的任务。
所述的矿区运输卡车自动控制路径的方法,所述的行驶阶段为一般的点对点自动驾驶任务,可以沿用的正常的自动驾驶规划模块;
所述的入库第一阶段的任务,目标是找到可行的入库第二阶段的初始倒车点,作为该阶段任务的终点,由于铲车点或卸载点对于每个任务循环都有可能发生变化,需要动态确定该终点位置;
确定方法:从铲车点或卸载点往道路做垂线,交点往前延伸20m,具体数值由所述的矿区运输卡车的转弯半径而定,需要大于2倍的车辆转弯半径,调度平台在计算出终点位置以后,发送给规划模块,依然可以沿用正常的自动驾驶规划模块;
所述的入库第二阶段的任务,是一个没有车道线的车辆规划,调度平台将目标点铲车点或者卸载点的位置以及目标朝向角信息发给规划模块,规划模块在收到目标点信息后,采用Dubins曲线构造车道中心线,在RSR、LSL、RSL、LSR四种线型中选取总距离最短的一种作为最优的车道中心线,然后把该中心线的左右各扩展半车宽+1米作为车道边界,然后可以使用正常的规划模块构造轨迹信息。
有益效果
1.本发明主要是提供一种矿区运输卡车自动控制路径的方法,该方法能够有效解决现有技术没有针对无人驾驶的矿区卡车在矿山场景的自动控制路径的弊病,采用中控平台发送调度命令,选定无人驾驶矿车执行指定子任务作业命令,并且通过规划模块负责执行当前的任务,并将规划模块信息交由下层控制模块进行执行,同时与云端调度中心进行通信,保证无人驾驶矿车能够安全精准行驶。
2.本发明适用于矿山露天矿自动驾驶应用场景,可辅助实现自动驾驶稳定运行。
3.本发明的方法解决了矿区环境艰苦,作业的危险性高,人工作业成本高的难题,使用无人驾驶矿车长期来看可以降低人力成本,同时降低作业人员的安全风险。
附图说明
附图1是本发明的工作流程图。
附图2是本发明的装载区运输卡车行程示意图。
附图3是本发明的卸载区运输卡车行程示意图。
附图4是本发明的矿区运输卡车行驶示意图之一。
附图5是本发明的矿区运输卡车行驶示意图之二。
附图6是本发明的矿区运输卡车行驶示意图之三。
附图7是本发明的矿区运输卡车行驶示意图之四。
附图8是本发明的矿区运输卡车升降示意图。
具体实施方式
实施例1:
一种矿区运输卡车自动控制路径的方法,该方法包括如下步骤:首先是矿区运输卡车的工作流程包括装载、回程、卸载、去程4个工作过程,所述的工作流程各个子任务之间差异较大,每个子任务之间互相独立,中控平台发送调度命令,选定无人驾驶的矿区运输卡车执行指定子任务作业命令,规划模块负责执行当前的任务,并反馈实时执行情况;
(1)装载区
行驶阶段:所述的矿区运输卡车从卸载区场驾驶至装载区的固定终点位置a;
入库第一阶段:挖掘机位置上报调度平台,所述的调度平台计算适合的倒车点b,并发送给规划模块,所述的矿区运输卡车行驶至点a的位置;
入库第二阶段:所述的矿区运输卡车在点b结束自动驾驶后,调度平台发送指令,所述的矿区运输卡车开始向铲车位置倒车,行至铲车范围2米内c,或遇障碍物无法行进10秒-30秒后,任务结束;
出库阶段:所述的调度平台根据装载位置c计算出合适的重新回道路点的位置,所述的矿区运输卡车从c出发,重新回到道路,准备下一个行驶阶段的任务;
(2)卸载区
行驶阶段:所述的矿区运输卡车从装载区驾驶至卸载区的固定终点位置d,等待云端发送卸载指令;
入库第一阶段:卸载点位置由推土机上报调度平台,调度平台计算适合的倒车点e,并发送给规划模块,所述的矿区运输卡车行驶至点e;
入库第二阶段:所述的矿区运输卡车在点e结束自动驾驶后,调度平台发送指令,所述的矿区运输卡车开始向卸载位置倒车,行至卸载点1米内f,或遇障碍物无法行进10秒-30秒后,任务结束;
出库阶段:调度平台根据排土位置f点,计算出合适的重新回道路点的位置,所述的矿区运输卡车从f点出发,重新回到道路,准备下一个行驶阶段的任务。
实施例2:
根据实施例1所述的矿区运输卡车自动控制路径的方法,所述的行驶阶段为一般的点对点自动驾驶任务,可以沿用的正常的自动驾驶规划模块;
所述的入库第一阶段的任务,目标是找到可行的入库第二阶段的初始倒车点,作为该阶段任务的终点,由于铲车点或卸载点对于每个任务循环都有可能发生变化,需要动态确定该终点位置;
确定方法:从铲车点或卸载点往道路做垂线,交点往前延伸20m,具体数值由所述的矿区运输卡车的转弯半径而定,需要大于2倍的车辆转弯半径,调度平台在计算出终点位置以后,发送给规划模块,依然可以沿用正常的自动驾驶规划模块;
所述的入库第二阶段的任务,是一个没有车道线的车辆规划,调度平台将目标点铲车点或者卸载点的位置以及目标朝向角信息发给规划模块,规划模块在收到目标点信息后,采用Dubins曲线构造车道中心线,在RSR、LSL、RSL、LSR四种线型中选取总距离最短的一种作为最优的车道中心线,然后把该中心线的左右各扩展半车宽+1米作为车道边界,然后可以使用正常的规划模块构造轨迹信息。
对于矿区运输卡车的升降任务,车辆只需在原地进行货箱的举升下降即可,相应的货箱倾倒策略如图8所示:
此外,在任务执行的过程中存在执行失败的可能性,需要对状态异常进行额外的处理以及保护措施:
任务中途:如果异常收到了调度平台新的任务指令,规划模块不予响应,需要等待掉图平台任务反馈失败或者人工接管后,才响应新的任务请求。
任务失败:由于环境多变、车辆线控不稳定等因素,因此真正运行过程中会经常出现任务失败的情况,人工接管以及规划模块反馈的任务失败均视为失败,此时,下一步的任务分为两种情况:
(1)排除障碍后,可重新尝试本阶段任务:由安全员发起,调度平台根据主车以及目标点的位置等状态判断该任务是否还能重新进行。如果满足发起条件,则重新给规划模块发送对应的任务信息;
(2)人工操作直接完成本阶段任务,开始下阶段任务:由安全员发起,调度平台根据主车以及目标点的位置等状态判断下个任务能否进行。如果满足发起条件,则给规划模块发送对应的任务信息;
其中:附图4中的RSR是矿区运输卡车行驶路径为右直右;附图5中的LSL是矿区运输卡车行驶路径为左直左;附图6中的RSL是矿区运输卡车行驶路径为右直左;附图7中的LSR是矿区运输卡车行驶路径为左直右(具体:L为左,S为直线,R为右)。

Claims (2)

  1. 一种矿区运输卡车自动控制路径的方法,其特征是:该方法包括如下步骤:首先是矿区运输卡车的工作流程包括装载、回程、卸载、去程4个工作过程,所述的工作流程各个子任务之间差异较大,每个子任务之间互相独立,中控平台发送调度命令,选定无人驾驶的矿区运输卡车执行指定子任务作业命令,规划模块负责执行当前的任务,并反馈实时执行情况;
    (1)装载区
    行驶阶段:所述的矿区运输卡车从卸载区场驾驶至装载区的固定终点位置a;
    入库第一阶段:挖掘机位置上报调度平台,所述的调度平台计算适合的倒车点b,并发送给规划模块,所述的矿区运输卡车行驶至点a的位置;
    入库第二阶段:所述的矿区运输卡车在点b结束自动驾驶后,调度平台发送指令,所述的矿区运输卡车开始向铲车位置倒车,行至铲车范围2米内c,或遇障碍物无法行进10秒-30秒后,任务结束;
    出库阶段:所述的调度平台根据装载位置c计算出合适的重新回道路点的位置,所述的矿区运输卡车从c出发,重新回到道路,准备下一个行驶阶段的任务;
    (2)卸载区
    行驶阶段:所述的矿区运输卡车从装载区驾驶至卸载区的固定终点位置d,等待云端发送卸载指令;
    入库第一阶段:卸载点位置由推土机上报调度平台,调度平台计算适合的倒车点e,并发送给规划模块,所述的矿区运输卡车行驶至点e;
    入库第二阶段:所述的矿区运输卡车在点e结束自动驾驶后,调度平台发送指令,所述的矿区运输卡车开始向卸载位置倒车,行至卸载点1米内f,或遇障碍物无法行进10秒-30秒后,任务结束;
    出库阶段:调度平台根据排土位置f点,计算出合适的重新回道路点的位置,所述的矿区运输卡车从f点出发,重新回到道路,准备下一个行驶阶段的任务。
  2. 根据权利要求1所述的矿区运输卡车自动控制路径的方法,其特征是:所述的行驶阶段为一般的点对点自动驾驶任务,可以沿用的正常的自动驾驶规划模块;
    所述的入库第一阶段的任务,目标是找到可行的入库第二阶段的初始倒车点,作为该阶段任务的终点,由于铲车点或卸载点对于每个任务循环都有可能发生变化,需要动态确定该终点位置;
    确定方法:从铲车点或卸载点往道路做垂线,交点往前延伸20m,具体数值由所述的矿区运输卡车的转弯半径而定,需要大于2倍的车辆转弯半径,调度平台在计算出终点位置以后,发送给规划模块,依然可以沿用正常的自动驾驶规划模块;
    所述的入库第二阶段的任务,是一个没有车道线的车辆规划,调度平台将目标点铲车点或者卸载点的位置以及目标朝向角信息发给规划模块,规划模块在收到目标点信息后,采用Dubins曲线构造车道中心线,在RSR、LSL、RSL、LSR四种线型中选取总距离最短的一种作为最优的车道中心线,然后把该中心线的左右各扩展半车宽+1米作为车道边界,然后可以使用正常的规划模块构造轨迹信息。
PCT/CN2022/094942 2021-06-11 2022-05-25 矿区运输卡车自动控制路径的方法 WO2022257767A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110651414.0 2021-06-11
CN202110651414.0A CN113525418A (zh) 2021-06-11 2021-06-11 矿区运输卡车自动控制路径的方法

Publications (1)

Publication Number Publication Date
WO2022257767A1 true WO2022257767A1 (zh) 2022-12-15

Family

ID=78095819

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/094942 WO2022257767A1 (zh) 2021-06-11 2022-05-25 矿区运输卡车自动控制路径的方法

Country Status (2)

Country Link
CN (1) CN113525418A (zh)
WO (1) WO2022257767A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115649186A (zh) * 2022-12-26 2023-01-31 北京易控智驾科技有限公司 基于有人驾驶的无人驾驶作业方法、装置、电子设备及存储介质
CN116205388A (zh) * 2023-02-07 2023-06-02 上海伯镭智能科技有限公司 一种针对矿车集群的路径分配方法和装置
CN117068793A (zh) * 2023-09-26 2023-11-17 南京移腾电力技术有限公司 一种矿仓桥式抓斗自动装车方法及其系统
CN117549891A (zh) * 2024-01-11 2024-02-13 上海伯镭智能科技有限公司 一种矿区无人驾驶车辆预测碰撞的方法及系统
CN117558147A (zh) * 2024-01-11 2024-02-13 上海伯镭智能科技有限公司 一种矿区无人驾驶车辆路权分配远程管控方法
CN117669997A (zh) * 2024-02-01 2024-03-08 山东新云鹏电气有限公司 一种基于人工智能的矿用运输调度管理系统

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113525418A (zh) * 2021-06-11 2021-10-22 华能伊敏煤电有限责任公司 矿区运输卡车自动控制路径的方法
CN114326469B (zh) * 2021-11-26 2023-12-08 江苏徐工工程机械研究院有限公司 一种无人矿山智能辅助作业安全控制方法及系统
CN114326738B (zh) * 2021-12-30 2023-02-10 中铁十九局集团矿业投资有限公司北京信息技术分公司 一种矿用无人运输车控制方法、装置、介质和电子设备
CN114510050A (zh) * 2022-02-14 2022-05-17 北京路凯智行科技有限公司 矿区无人驾驶系统卸载位的指定方法以及指定系统
CN114911239B (zh) * 2022-05-27 2024-10-18 上海伯镭智能科技有限公司 一种无人驾驶矿车的异常识别方法及系统
CN114812566B (zh) * 2022-06-27 2022-10-04 青岛慧拓智能机器有限公司 矿区车辆的行驶路径规划方法、装置及计算机设备
CN114791288B (zh) * 2022-06-27 2022-09-30 青岛慧拓智能机器有限公司 矿区车辆的行驶路径规划方法、装置及计算机设备
CN115409293B (zh) * 2022-10-31 2023-01-20 宁波长壁流体动力科技有限公司 一种基于数字孪生的智慧矿山管控方法和管控设施
CN115743187B (zh) * 2023-01-10 2023-04-28 湖南中矿金禾机器人研究院有限公司 一种分布驱动式矿用轨道运输系统及其方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1179217A (zh) * 1995-03-24 1998-04-15 株式会社小松制作所 无人驾驶自卸卡车行驶路线数据制定方法及制定装置
US5752207A (en) * 1995-09-29 1998-05-12 Caterpillar Inc. Method and apparatus for determining a path for a machine between a predetermined route and a final position
US20180354557A1 (en) * 2017-06-12 2018-12-13 Safemine Ag Driving assistance system for reversing a mining haulage vehicle
JP2019200462A (ja) * 2018-05-14 2019-11-21 日立建機株式会社 車両管制システム
CN113525418A (zh) * 2021-06-11 2021-10-22 华能伊敏煤电有限责任公司 矿区运输卡车自动控制路径的方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9823082B2 (en) * 2011-08-24 2017-11-21 Modular Mining Systems, Inc. Driver guidance for guided maneuvering
EP2631729B1 (en) * 2012-02-27 2016-06-08 Sandvik Mining and Construction Oy Apparatus and method for drive path search
US9974225B2 (en) * 2016-01-14 2018-05-22 Cnh Industrial America Llc System and method for generating and implementing an end-of-row turn path
US9968025B2 (en) * 2016-01-14 2018-05-15 CNH Industrial American LLC System and method for generating and implementing an end-of-row turn path
CN110428161B (zh) * 2019-07-25 2020-06-02 北京航空航天大学 一种基于端边云架构的无人驾驶矿车云智能调度方法
CN111260913B (zh) * 2020-01-16 2021-07-30 江苏徐工工程机械研究院有限公司 一种露天矿山无人化运输系统的矿用卡车卸载方法及系统
CN112198875B (zh) * 2020-09-25 2024-06-04 中科慧拓(北京)科技有限公司 一种防止道路碾压车辙的无人驾驶矿车控制方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1179217A (zh) * 1995-03-24 1998-04-15 株式会社小松制作所 无人驾驶自卸卡车行驶路线数据制定方法及制定装置
US5752207A (en) * 1995-09-29 1998-05-12 Caterpillar Inc. Method and apparatus for determining a path for a machine between a predetermined route and a final position
US20180354557A1 (en) * 2017-06-12 2018-12-13 Safemine Ag Driving assistance system for reversing a mining haulage vehicle
JP2019200462A (ja) * 2018-05-14 2019-11-21 日立建機株式会社 車両管制システム
CN113525418A (zh) * 2021-06-11 2021-10-22 华能伊敏煤电有限责任公司 矿区运输卡车自动控制路径的方法

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115649186A (zh) * 2022-12-26 2023-01-31 北京易控智驾科技有限公司 基于有人驾驶的无人驾驶作业方法、装置、电子设备及存储介质
CN115649186B (zh) * 2022-12-26 2023-11-07 北京易控智驾科技有限公司 基于有人驾驶的无人驾驶作业方法、装置、电子设备及存储介质
CN116205388A (zh) * 2023-02-07 2023-06-02 上海伯镭智能科技有限公司 一种针对矿车集群的路径分配方法和装置
CN117068793A (zh) * 2023-09-26 2023-11-17 南京移腾电力技术有限公司 一种矿仓桥式抓斗自动装车方法及其系统
CN117068793B (zh) * 2023-09-26 2024-03-08 南京移腾电力技术有限公司 一种矿仓桥式抓斗自动装车方法及其系统
CN117549891A (zh) * 2024-01-11 2024-02-13 上海伯镭智能科技有限公司 一种矿区无人驾驶车辆预测碰撞的方法及系统
CN117558147A (zh) * 2024-01-11 2024-02-13 上海伯镭智能科技有限公司 一种矿区无人驾驶车辆路权分配远程管控方法
CN117558147B (zh) * 2024-01-11 2024-03-26 上海伯镭智能科技有限公司 一种矿区无人驾驶车辆路权分配远程管控方法
CN117549891B (zh) * 2024-01-11 2024-03-29 上海伯镭智能科技有限公司 一种矿区无人驾驶车辆预测碰撞的方法及系统
CN117669997A (zh) * 2024-02-01 2024-03-08 山东新云鹏电气有限公司 一种基于人工智能的矿用运输调度管理系统
CN117669997B (zh) * 2024-02-01 2024-06-18 山东新云鹏电气有限公司 一种基于人工智能的矿用运输调度管理系统

Also Published As

Publication number Publication date
CN113525418A (zh) 2021-10-22

Similar Documents

Publication Publication Date Title
WO2022257767A1 (zh) 矿区运输卡车自动控制路径的方法
WO2021228147A1 (zh) 矿车运输驾驶控制方法、装置、矿车和存储介质
JP5200297B2 (ja) 車両の走行システムおよびその走行方法
JP4082831B2 (ja) 車両の管制装置
JP5809710B2 (ja) 管理システム及び管理方法
JP6604846B2 (ja) 鉱山機械運行管理システム
JP4605805B2 (ja) 車両の走行管制装置
CN105900031B (zh) 用于计算期望的预计到达时间的系统
WO2011055823A1 (ja) 車両の走行制御装置および方法
JP5700884B1 (ja) 管理システム及び管理システムの動作方法
JP2001109519A (ja) 車両の走行管制装置
CN115116220B (zh) 一种用于矿区装卸场景的无人驾驶多车协同控制方法
CN115179929A (zh) 自动驾驶车辆调度方法、装置及自动驾驶车辆
CN113501242B (zh) 一种堆垛机多巷道作业的方法及系统
CN110347156B (zh) 一种agv进出岸桥下作业车道的路径优化方法及系统
JP6151366B2 (ja) タイヤ管理システム及びタイヤ管理方法
JP7462457B2 (ja) 運搬車両の自動運転方法
CN115629587B (zh) 轨道搬运小车的调度方法及装置
JPH10312216A (ja) 無人車運行制御装置及び方法
CN214397020U (zh) 挖掘机重载agv装配线
CN115185264A (zh) 一种交通管制方法和系统
CN115857482A (zh) 基于关键点的死锁预防方法以及小车控制系统
EP2964561B1 (en) A method, an apparatus, and a computer program for controlling a container carrier
JP2021125169A (ja) 隊列走行システム
US20230244246A1 (en) Systems, methods, and computer-program products for collaborative path planning of mobile machines in unstructured area

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22819365

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22819365

Country of ref document: EP

Kind code of ref document: A1