WO2022257608A1 - 信号生成方法、装置、信号发射设备及可读存储介质 - Google Patents

信号生成方法、装置、信号发射设备及可读存储介质 Download PDF

Info

Publication number
WO2022257608A1
WO2022257608A1 PCT/CN2022/087581 CN2022087581W WO2022257608A1 WO 2022257608 A1 WO2022257608 A1 WO 2022257608A1 CN 2022087581 W CN2022087581 W CN 2022087581W WO 2022257608 A1 WO2022257608 A1 WO 2022257608A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
frequency
controller
target
input voltage
Prior art date
Application number
PCT/CN2022/087581
Other languages
English (en)
French (fr)
Inventor
吴居进
钟填荣
Original Assignee
广州极飞科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州极飞科技股份有限公司 filed Critical 广州极飞科技股份有限公司
Publication of WO2022257608A1 publication Critical patent/WO2022257608A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/28Details of pulse systems
    • G01S7/282Transmitters
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B11/00Automatic controllers
    • G05B11/01Automatic controllers electric
    • G05B11/36Automatic controllers electric with provision for obtaining particular characteristics, e.g. proportional, integral, differential
    • G05B11/42Automatic controllers electric with provision for obtaining particular characteristics, e.g. proportional, integral, differential for obtaining a characteristic which is both proportional and time-dependent, e.g. P. I., P. I. D.

Definitions

  • the present application relates to the technical field of signal processing, and in particular, to a signal generating method, device, signal transmitting device, and readable storage medium.
  • Frequency Modulated Continuous Wave (FMCW) radar refers to a continuous wave radar whose transmission frequency is modulated by a specific signal. FMCW radar measures the speed and distance of the measured object by transmitting FMCW signals whose frequency increases and decreases with time. This signal whose frequency increases and decreases with time is called chirp. FMCW radar needs to use the modulation cycle and bandwidth of the chirp signal when performing distance calculations. Wherein, the bandwidth of the chirp signal is the difference between the highest and lowest frequency components in the continuous frequency band. The modulation period of a chirp signal is the total time of frequency change within the bandwidth. Therefore, for FMCW radar, how to accurately control the modulation period and bandwidth of the linear frequency modulation signal is an important issue.
  • the FMCW signal is generated by a voltage controlled oscillator (Voltage Controlled Oscillator, referred to as VCO).
  • VCO Voltage Controlled Oscillator
  • PLL Phase-Locked Loop
  • One of the purposes of the present application is to provide a signal generating method, device, signal transmitting device and readable storage medium for the deficiencies in the above-mentioned prior art, so as to solve the problem of the high cost and low control flexibility of FMCW radar in the prior art. low problem.
  • an embodiment of the present application provides a signal generating method, which is applied to a signal transmitting device, and the signal transmitting device includes: a controller and a signal generating module;
  • the methods include:
  • the controller obtains the frequency of the output signal output by the signal generation module and the frequency of the target signal to be generated;
  • the controller adjusts the input voltage according to the frequency of the output signal and the frequency of the target signal to obtain an adjusted input voltage
  • the controller inputs the adjusted input voltage to the signal generation module, and the signal generation module generates a new actual signal frequency according to the adjusted input voltage, and the new actual signal frequency is consistent with the The frequency difference of the target signal is smaller than the preset value.
  • the controller adjusts the input voltage according to the output signal frequency and the target signal frequency to obtain an adjusted input voltage, including:
  • the controller determines a first parameter according to the frequency of the output signal
  • the controller determines a second parameter according to the target signal frequency
  • the controller takes the first parameter and the second parameter as input parameters, uses a proportional-integral-differential closed-loop control algorithm for processing, and uses the output parameters obtained through processing as the adjusted input voltage.
  • the controller determines the first parameter according to the frequency of the output signal, including:
  • the controller obtains a first actual capture count value and a second actual capture count value obtained by capturing the frequency of the output signal in the current capture cycle of the capture timer of the controller, and the first actual capture count value is Capture the capture count value of the output signal frequency at the beginning of the current cycle, and the second actual capture count value is the capture count value of the capture output signal frequency at the end of the current cycle;
  • the controller determines the first parameter based on the first actual capture count and the second actual capture count.
  • the controller determines the first parameter according to the first actual capture count value and the second actual capture count value, including:
  • the controller uses the difference between the second actual capture count value and the first actual capture count value as the first parameter.
  • the controller determines the first parameter according to the first actual capture count value and the second actual capture count value, including:
  • the controller calculates a first difference between the second actual capture count and the first actual capture count
  • the controller uses the ratio of the operating frequency of the capture timer to the first difference as the first parameter.
  • the output signal frequency is the actual signal frequency generated by the signal generating module, or the output signal frequency is a frequency-divided signal of the actual signal frequency generated by the signal generating module frequency.
  • the controller determines a second parameter according to the target signal frequency, including:
  • the controller uses the target signal frequency as the second parameter.
  • the controller determines a second parameter according to the target signal frequency, including:
  • the controller determines the target frequency division signal frequency according to the target signal frequency and the frequency division coefficient of the signal generation module
  • the controller uses the target frequency division signal frequency as the second parameter.
  • the controller determines a second parameter according to the target signal frequency, including:
  • the controller determines the target capture count value according to the target signal frequency and the operating frequency of the capture timer of the controller
  • the controller determines the second parameter according to the target capture count value.
  • the controller determines the second parameter according to the target capture count value, including:
  • the controller uses the target capture count value as the second parameter.
  • the controller determines the second parameter according to the target capture count value, including:
  • the controller determines the second parameter according to the target capture count value and the frequency division coefficient of the signal generating module.
  • the controller determines the target capture count value according to the target signal frequency and the working frequency of the capture timer of the controller, including:
  • the controller calculates a ratio between the operating frequency of the capture timer and the frequency of the target frequency-divided signal, and uses the ratio as the target capture count value.
  • the target signal frequency includes: the lowest target signal frequency and the highest target signal frequency
  • the controller adjusts the input voltage according to the frequency of the output signal and the frequency of the target signal to obtain an adjusted input voltage, including:
  • the controller adjusts the input voltage according to the output signal frequency and the minimum target signal frequency to obtain an adjusted minimum input voltage
  • the controller adjusts the input voltage according to the output signal frequency and the highest target signal frequency to obtain an adjusted highest input voltage.
  • the controller inputs the adjusted input voltage to the signal generating module, including:
  • the controller obtains multiple linearly varying input voltages according to the minimum input voltage and the maximum input voltage, and uses the multiple linearly varying input voltages as the adjusted input voltage;
  • the controller inputs the multiple linearly varying input voltages to the signal generating module according to the signal modulation period of the signal generating module.
  • the controller obtains multiple voltages that vary linearly according to the lowest input voltage and the highest input voltage, including:
  • the controller obtains the multiple linearly varying voltages according to the minimum input voltage, the maximum input voltage, and the signal modulation period of the signal generation module.
  • an embodiment of the present application provides a signal generating device, including:
  • An acquisition module configured to acquire the frequency of the output signal output by the signal generation module and the frequency of the target signal to be generated
  • An adjustment module configured to adjust the input voltage according to the frequency of the output signal and the frequency of the target signal, so as to obtain an adjusted input voltage
  • An input module configured to input the adjusted input voltage to the signal generation module, and the signal generation module generates a new actual signal frequency according to the adjusted input voltage, and the new actual signal frequency is the same as The frequency difference of the target signal is smaller than a preset value.
  • the adjustment module is specifically used for:
  • the first parameter and the second parameter are used as input parameters, and the proportional-integral-differential closed-loop control algorithm is used for processing, and the output parameters obtained through processing are used as the adjusted input voltage.
  • the adjustment module is specifically used for:
  • the first parameter is determined based on the first actual capture count value and the second actual capture count value.
  • the adjustment module is specifically used for:
  • the adjustment module is specifically used for:
  • a ratio of the operating frequency of the capture timer to the first difference is used as the first parameter.
  • the output signal frequency is the actual signal frequency generated by the signal generating module, or the output signal frequency is a frequency-divided signal of the actual signal frequency generated by the signal generating module frequency.
  • the adjustment module is specifically used for:
  • the target signal frequency is used as the second parameter.
  • the adjustment module is specifically used for:
  • the target frequency division signal frequency is used as the second parameter.
  • the adjustment module is specifically used for:
  • the second parameter is determined according to the target capture count value.
  • the adjustment module is specifically used for:
  • the target capture count value is used as the second parameter.
  • the adjustment module is specifically used for:
  • the second parameter is determined according to the target capture count value and the frequency division coefficient of the signal generation module.
  • the adjustment module is specifically used for:
  • the target signal frequency includes: the lowest target signal frequency and the highest target signal frequency
  • the adjustment module is specifically used for:
  • the input voltage is adjusted to obtain the adjusted highest input voltage.
  • the input module is specifically used for:
  • the plurality of linearly varying input voltages are input to the signal generating module according to a signal modulation cycle of the signal generating module.
  • the input module is specifically used for:
  • the controller obtains the multiple linearly varying voltages according to the minimum input voltage, the maximum input voltage, and the signal modulation period of the signal generating module.
  • an embodiment of the present application provides a signal transmitting device, the signal transmitting device includes: a controller and a signal generating module; the controller is used to control the signal generation according to the signal generating method described in the first aspect above The frequency of the signal generated by the block.
  • the signal transmitting device is a frequency modulated continuous wave radar.
  • a filter is connected in series between the voltage output end of the controller and the voltage input end of the signal generating module; the feedback receiving end of the controller and the splitter of the signal generating module Connect to the output terminal of the frequency signal.
  • the signal generating module is a voltage-controlled oscillator.
  • an embodiment of the present application provides a mobile platform, including a platform body and a signal transmitting device installed on the platform body, where the signal transmitting device is the signal transmitting device described in the third aspect above.
  • an embodiment of the present application provides an electronic device, including: a processor; a memory configured to store machine-readable instructions executable by the processor;
  • the embodiment of the present application provides a computer-readable storage medium, on which a computer program is stored, and when the computer program is executed by a processor, the steps of the signal generating method described in the above-mentioned first aspect are executed .
  • the controller of the signal transmitting device adjusts the input voltage to be input to the signal generating module based on the frequency of the output signal output by the signal generating module and the expected target signal frequency, and the signal generating module can output a new corresponding voltage based on the adjusted input voltage actual signal frequency.
  • the controller is adjusted, the expected target input voltage can be adjusted, and the signal generation module can generate the expected target signal based on the target input voltage, so that the expected target signal can be output without setting a digital phase-locked loop, so it is extremely
  • the hardware cost of the signal transmitting equipment is greatly reduced.
  • the controller adjusts the input voltage based on the output signal frequency of the signal generating module and the expected target signal frequency, the flexibility of signal control can be further improved.
  • FIG. 1 is a schematic structural diagram of an FMCW radar in the prior art
  • FIG. 2 is a structural example diagram of an FMCW radar provided in an embodiment of the present application.
  • FIG. 3 is a schematic flow chart of a signal generating method provided in an embodiment of the present application.
  • FIG. 4 is another schematic flowchart of a signal generating method provided in an embodiment of the present application.
  • Fig. 5 is an example diagram of the controller using the PID algorithm to obtain the adjusted input voltage
  • FIG. 6 is another schematic flowchart of a signal generating method provided in an embodiment of the present application.
  • FIG. 7 is a schematic diagram of the corresponding relationship between a linearly varying input voltage and a continuously varying frequency signal
  • FIG. 8 is a block diagram of a signal generating device provided in an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a signal transmitting device provided by an embodiment of the present application.
  • Fig. 1 is the structural representation of FMCW radar in the prior art, as shown in Fig. 1, in the prior art, in order to accurately control the modulation period and the bandwidth of chirp signal, digital phase-locked loop (PLL) is set in FMCW radar, digital lock The input end of the phase loop is connected to the controller of the FMCW, and the output end is connected to the voltage-controlled oscillator (VCO). In addition, the voltage-controlled oscillator is also connected to the digital phase-locked loop through the output frequency division signal. Based on the signal frequency to be generated, the controller controls the digital phase-locked loop to control the voltage-controlled oscillator to generate radar signals according to the frequency conversion requirements at the set time.
  • VCO voltage-controlled oscillator
  • the controller only controls the output voltage of the digital phase-locked loop based on the frequency of the signal that needs to be generated, without considering the actual output frequency of the voltage-controlled oscillator during the control process, thus making the signal control less flexible.
  • the embodiment of the present application does not need to set the digital phase-locked loop in the FMCW radar, but
  • the controller adjusts the input voltage to the voltage-controlled oscillator based on the frequency of the output signal output from the voltage-controlled oscillator to the controller and the frequency of the target signal that needs to be generated by the voltage-controlled oscillator, so that the voltage-controlled oscillator can be based on the adjusted input
  • the voltage outputs the target signal whose transmission frequency increases or decreases with time, which not only greatly reduces the hardware cost of the FMCW radar, but also improves the flexibility of signal control.
  • the embodiments of the present application can be applied to any signal transmitting device that generates a signal by outputting an analog voltage.
  • the signal transmitting device as an FMCW radar as an example.
  • the signal generated by the signal transmitting device applied in the embodiment of the present application may be a signal whose frequency changes with time, such as an FMCW signal, or may also be a fixed frequency signal. This embodiment of the present application does not specifically limit it.
  • the signal transmitting device to which the embodiment of the present application is applied may at least include: a controller and a signal generating module.
  • the controller may be a programmable logic controller (Programmable Logic Controller, PLC for short), and the signal generating module may be a voltage-controlled oscillator (VCO).
  • Fig. 2 is a structural example diagram of a FMCW radar provided by the embodiment of the present application. As shown in Fig.
  • the FMCW radar includes a controller and a voltage-controlled oscillator, wherein the voltage-controlled oscillator can divide the current output signal into The frequency signal is sent to the controller, and the controller can use the method of the embodiment of the present application to adjust the input voltage, and input the adjusted voltage into the voltage-controlled oscillator, so that the voltage-controlled oscillator can generate the FMCW signal.
  • the input voltage of the controller to the voltage-controlled oscillator may be an analog voltage obtained through digital-to-analog conversion.
  • a filter can be set between the controller and the voltage-controlled oscillator to filter the analog voltage output by the controller, and input the filtered analog voltage into the voltage-controlled oscillator, and the voltage-controlled oscillator Based on the input analog voltage, the signal to be transmitted is correspondingly generated.
  • Fig. 3 is a schematic flowchart of a signal generating method provided by an embodiment of the present application, and the method can be applied to the above-mentioned signal transmitting device, and the signal transmitting device includes the above-mentioned controller and a signal generating module.
  • the execution body of the method may be the controller. As shown in Figure 3, the method includes:
  • the controller obtains the frequency of the output signal output by the above-mentioned signal generation module and the frequency of the target signal to be generated.
  • the output signal frequency mentioned above refers to the signal frequency output to the controller after the signal generation module generates an actual signal frequency based on the analog voltage input by the controller.
  • the output signal frequency is related to the actual signal frequency generated by the signal generation module.
  • the output signal frequency may be the actual signal frequency, or may also refer to a frequency-divided signal frequency of the actual signal frequency.
  • the above target signal frequency refers to the frequency of the expected signal that needs to be generated by the signal generation module.
  • the frequency of the expected signal that needs to be generated by the signal generation module can be determined first.
  • the frequency of the target signal may include the lowest frequency and the highest frequency of the expected FMCW signal, the difference between the highest frequency and the lowest frequency is the bandwidth of the expected FMCW signal, and the controller may be based on the lowest frequency and the highest frequency.
  • the highest frequency is used to control the voltage controlled oscillator to generate and transmit the FMCW signal continuously changing from the lowest frequency to the highest frequency.
  • the target signal frequency may refer to a fixed frequency, which may be used to test the function and performance of the FMCW radar at the fixed frequency.
  • the controller may know and save the target signal frequency by inputting configuration information and other means. Furthermore, during the execution of this embodiment, the target signal frequency may remain unchanged, and through the following steps, the signal generation module finally generates an expected signal with the target signal frequency. It should be understood that when the target signal frequency includes the lowest frequency and the highest frequency, what the signal generating module finally generates is an expected signal linearly transformed from the lowest frequency to the highest frequency.
  • the controller adjusts the input voltage according to the frequency of the output signal and the frequency of the target signal, so as to obtain an adjusted input voltage.
  • the above-mentioned output signal frequency represents the signal frequency actually generated by the signal generation module at present
  • the above-mentioned target signal frequency represents the expected signal frequency that needs to be finally generated by the signal generation module.
  • the input voltage that needs to be input to the signal generating module is adjusted so that the deviation between the two decreases and finally converges to an acceptable deviation range. Therefore, the adjusted input voltage is affected by the frequency of the output signal and the frequency of the target signal.
  • the controller inputs the adjusted input voltage to the signal generation module, and the signal generation module generates a new actual signal frequency according to the adjusted input voltage.
  • the difference between the new actual signal frequency and the target signal frequency is smaller than a preset value.
  • the voltage-controlled oscillator refers to an oscillator circuit whose output signal frequency corresponds to the input control voltage.
  • the oscillator VCO whose output signal frequency is a function of the input voltage , the working state of the oscillator or the component parameters of the oscillation circuit are controlled by the input control voltage, and a voltage-controlled oscillator can be formed.
  • the voltage-controlled oscillator receives the adjusted input voltage, it can generate a new actual signal frequency based on the above working principle.
  • the above steps S301-S303 may be iterated cyclically so that the difference between the finally obtained new actual signal frequency and the target signal frequency is smaller than a preset value.
  • the controller may first input an initial input voltage to the signal generating module, and the value of the initial input voltage may be any preset value.
  • the signal generation module generates an initial signal based on the initial input voltage.
  • the controller can begin loop iterations. Specifically, the controller adjusts the input voltage currently in use based on the frequency of the output signal output by the signal generating module and the pre-obtained target signal frequency, and then inputs the adjusted input voltage into the signal generating module.
  • the signal generating module Based on the adjusted input power, a new actual signal frequency is regenerated, and so on, and iterated continuously. After each loop iteration, the obtained input voltage is closer to the expected target input voltage that enables the signal generation module to output the target signal.
  • the controller judges that the difference between the new output signal frequency output by the signal generation module and the target signal frequency is less than the above preset value, it can be determined that the input voltage at this time is the expected target input voltage, and then the adjustment can be stopped.
  • the target input voltage is input to the signal generation module, so that the signal generation module can continuously generate a target signal that meets expectations.
  • the controller of the signal transmitting device adjusts the input voltage to be input to the signal generating module based on the output signal frequency output by the signal generating module and the expected target signal frequency, and the signal generating module adjusts the input voltage based on the adjusted input voltage.
  • a new actual signal frequency can be output accordingly.
  • the controller adjusts the input voltage based on the output signal frequency of the signal generating module and the expected target signal frequency, the flexibility of signal control can be further improved.
  • a proportional-integral-derivative (proportion-integral-derivative, PID for short) closed-loop control manner may be used to implement the above-mentioned adjustment of the input voltage. This method will be described in detail below.
  • Fig. 4 is another schematic flowchart of the signal generation method provided by the embodiment of the present application. As shown in Fig. 4, an optional manner of the above step S302 includes:
  • the controller determines a first parameter according to the frequency of the output signal.
  • the controller determines a second parameter according to the target signal frequency.
  • the controller uses the above-mentioned first parameter and the above-mentioned second parameter as input parameters, uses a proportional-integral-differential closed-loop control algorithm to process, and uses the processed output parameters as the adjusted input voltage.
  • the PID algorithm is a closed-loop control algorithm.
  • the PID control algorithm forms a control deviation based on a given target value and an actual output value, and forms a control amount through a linear combination of the deviation according to proportion, integral and differential. object to control.
  • the PID algorithm has the advantages of simple structure, good stability, reliable operation and convenient adjustment.
  • the structure and parameters of the controlled object cannot be fully grasped, or an accurate mathematical model cannot be obtained, other control technologies cannot be used to achieve control.
  • the structure and working parameters of the system controller need to be determined by experience and on-site debugging. In this case, the PID algorithm can be used to achieve simple and precise control.
  • the signal transmission scenario applied in the embodiment of the present application belongs to the situation described above.
  • the electrical properties of the hardware circuit will be affected by various factors such as manufacturing process and ambient temperature, there is no relationship between the input voltage of the controller to the signal generation module and the signal frequency output by the signal generation module. constant correspondence.
  • the closed-loop control of the PID algorithm can be used to obtain the control quantity, that is, the input voltage of the controller to the signal generation module.
  • the above-mentioned first parameter and the second parameter are respectively used as input parameters of the PID algorithm, and these two parameters are controlled according to proportion, integral and differential in the PID algorithm Deviation, and the deviation is linearly combined according to proportion, integral and differential to form an adjusted input voltage, and the adjusted input voltage is input into the signal generation module.
  • the closed-loop control of the PID algorithm can be used to obtain the control amount of the controller to the signal generation module, that is, the input voltage.
  • the electrical properties of the hardware circuit will be affected by various factors such as the manufacturing process and the ambient temperature. Therefore, there is no constant corresponding relationship between the input voltage of the controller to the signal generation module and the signal frequency output by the signal generation module, and the closed-loop control of the PID algorithm can obtain accurate control quantities, that is, The input voltage of the controller to the signal generation module, therefore, the use of the PID algorithm can realize simple and accurate signal control without increasing hardware costs.
  • the first parameter is determined according to the frequency of the output signal
  • the second parameter is determined according to the frequency of the target signal.
  • the above-mentioned output signal frequency can refer to the actual signal frequency generated by the signal generation module, or it can also refer to the frequency division signal frequency of the actual signal frequency generated by the signal generation module.
  • the first parameter above can be determined in the following manner.
  • the controller acquires the first actual capture count value and the second actual capture count value obtained by capturing the frequency of the above-mentioned output signal in the current capture cycle by the capture timer of the controller, and the first actual capture count value is the current cycle
  • the capture count value of the frequency of the output signal is captured at the initial moment
  • the second actual capture count value is the capture count value of the frequency of the output signal captured at the end of the current period.
  • the controller may determine the above-mentioned first parameter according to the above-mentioned first actual capture count value and the second actual capture count value.
  • the controller may capture the actual signal frequency of the signal generating module by setting a capture timer in the controller.
  • the capture timer can perform signal capture according to a certain cycle. Specifically, at the beginning of a cycle, the output signal of the capture timer capture signal generation module obtains the first actual capture count value, and, in a cycle At the end moment of , the output signal of the capture timer capture signal generation module obtains the second actual capture count value.
  • the controller may determine the above-mentioned first parameter in the following two ways.
  • the controller may use the difference between the second actual capture count value and the first actual capture count value as the first parameter.
  • the controller takes the difference between the second actual capture count value and the first actual capture count value as the first parameter, therefore, in this manner, the physical meaning of the above-mentioned first parameter represents the capture count value.
  • the first parameter when the first parameter represents the capture count value, the first parameter may represent the capture count value for capturing the above-mentioned actual signal frequency, or may represent the capture count value for capturing the frequency-divided signal frequency of the above-mentioned actual signal frequency.
  • the controller first calculates the first difference between the second actual capture count value and the first actual capture count value, and then uses the ratio of the operating frequency of the capture timer to the first difference as the above-mentioned first parameter .
  • the capture timer works at a certain operating frequency, therefore, the capture count value of the capture timer capture output signal frequency is not directly equal to the above output signal frequency, but has a specific relationship with the above output signal frequency . Specifically, assuming that the output signal frequency is F_input, the operating frequency of the capture timer is F_clock, and the capture count value obtained by capturing the output signal frequency of the capture timer is capture, then the relationship between F_input and capture satisfies the following formula (1 ).
  • the obtained physical meaning represented by the above first parameter is the above output signal frequency.
  • the first parameter represents the frequency of the output signal
  • the first parameter may represent the above actual signal frequency, or may represent the frequency of the frequency-divided signal of the above actual signal frequency.
  • the above-mentioned first parameter may represent the capture count value for capturing the above-mentioned actual signal frequency, or may represent the capture count value for capturing the frequency-divided signal frequency of the above-mentioned actual signal frequency.
  • the above-mentioned first parameter may represent the above-mentioned actual signal frequency, or may represent the frequency-divided signal frequency of the above-mentioned actual signal frequency.
  • the physical meaning of the above-mentioned second parameter needs to be consistent with the physical meaning of the above-mentioned first parameter, so that when the subsequent PID closed-loop control process is performed, the physical meaning of the input first parameter and the second parameter will not be different. Inconsistencies exist to ensure that the results of the PID algorithm are accurate.
  • the above second parameter can represent the following meanings:
  • the above-mentioned second parameter represents the above-mentioned target signal frequency
  • the second parameter when the first parameter represents the frequency-divided signal frequency of the actual signal frequency, the second parameter represents the frequency-divided signal frequency of the target signal frequency.
  • the above-mentioned second parameter represents the capture count value corresponding to the above-mentioned target signal frequency
  • the capture count value acquired by it should be the capture count value represented by the above-mentioned second parameter.
  • the second parameter represents the capture count value corresponding to the frequency-divided signal frequency of the target signal frequency.
  • the capture count value acquired by it should be the capture count value represented by the above-mentioned second parameter.
  • the above target signal frequency may be a preset value, therefore, the controller may directly obtain the target signal frequency as the above second parameter.
  • the controller may determine the target frequency division signal frequency according to the above target signal frequency and the frequency division coefficient of the signal generating module, and use the target frequency division signal frequency as the above second parameter.
  • the signal generation module may include a frequency divider, which may have a preset frequency division coefficient, and the frequency divider may divide the actual signal frequency generated by the signal generation module based on the frequency division coefficient to obtain the frequency division signal, and send the divided signal to the controller.
  • the frequency of the frequency-divided signal may be used as the above-mentioned second parameter.
  • the controller may first determine the target frequency division signal frequency according to the target signal frequency and the frequency division coefficient of the above-mentioned signal generation module. Assuming that the target signal frequency is Fr, and the frequency division coefficient of the signal generation module is fs, the target frequency division signal frequency Fdev can be calculated using the following formula (2).
  • controller may use the target frequency-division signal frequency as the above-mentioned second parameter.
  • the controller may calculate a ratio between the operating frequency of the capture timer and the frequency of the target frequency-divided signal, and use the ratio as the above-mentioned second parameter.
  • the controller may determine the target capture count value according to the target signal frequency and the operating frequency of the capture timer of the controller. Furthermore, for the above-mentioned third meaning, the controller directly uses the target capture count value as the above-mentioned second parameter. For the above fourth meaning, the controller determines the above second parameter according to the above target capture count value and the frequency division coefficient of the above signal generating module.
  • the frequency of the output signal output by the signal generation module and the capture count value of the frequency of the output signal captured by the capture timer satisfy the relationship shown in the above formula (1).
  • the above formula (1) is transformed to obtain the following formula (3), and the following formula is used (3)
  • the above target capture count value Capture_dev can be calculated.
  • Capture_dev F_clock/Fdev (3)
  • F_clock refers to the operating frequency of the capture timer.
  • the controller After calculating the above-mentioned target capture count value, for the above-mentioned third meaning, the controller directly uses the target capture count value as the above-mentioned second parameter. For the above fourth meaning, the controller may calculate the ratio of the target capture count value to the above frequency division coefficient, and use this ratio as the above second parameter.
  • the controller can obtain the first parameter and the second parameter, and use the first parameter and the second parameter as the input parameters of the PID algorithm, and calculate the control quantity through the algorithm.
  • the physical meaning of the control quantity is the direction signal Generates the input voltage for the block.
  • Figure 5 is an example diagram of the adjusted input voltage obtained by the controller using the PID algorithm.
  • the first parameter and the second parameter are used as the input parameters of the PID algorithm, wherein the first parameter represents the actual capture count of the controller value, the second parameter represents the target capture count value of the controller.
  • the first parameter and the second parameter are input, in the PID algorithm, these two parameters are used to form the control deviation according to the proportion, integral and differential, and the deviation is linearly combined according to the proportional, integral and differential to form the adjusted input voltage (ie output voltage value).
  • the above describes the process of the controller using the PID algorithm to obtain the adjusted input voltage.
  • the voltage-controlled oscillator in some scenarios, such as the FMCW radar test scenario, it may only be necessary for the voltage-controlled oscillator to output a signal with a fixed frequency.
  • the target signal frequency described in the above embodiment is a fixed frequency.
  • the PID algorithm can be used to adjust the input voltage corresponding to the fixed frequency, and after inputting the adjusted input voltage into the voltage-controlled oscillator, the voltage-controlled oscillator can continuously generate signal of.
  • the FMCW radar it is necessary for the FMCW radar to generate an FMCW signal whose transmission frequency increases or decreases with time.
  • This FMCW signal has two parameters, bandwidth and modulation period, wherein the bandwidth refers to the difference between the highest frequency and the lowest frequency. Therefore, the FMCW signal actually has three parameters: the highest frequency, the lowest frequency, and the modulation period. These three parameters can be set in advance and saved by the controller. After setting these three parameters, it means that the FMCW radar needs to generate and send a signal that continuously changes from the lowest frequency to the highest frequency in each modulation cycle during the working process. In order to generate a signal that continuously changes from the lowest frequency to the highest frequency, the controller needs to input an input voltage that continuously and linearly changes from the lowest voltage to the highest voltage to the voltage-controlled oscillator in each modulation period.
  • the lowest voltage refers to the voltage corresponding to the lowest frequency, that is, when the controller inputs the lowest voltage to the voltage-controlled oscillator, the voltage-controlled oscillator can generate a signal of the lowest frequency.
  • the highest voltage refers to the voltage corresponding to the highest frequency, that is, when the controller inputs the highest voltage to the voltage-controlled oscillator, the voltage-controlled oscillator can generate a signal with the highest frequency.
  • the controller can respectively use the methods of the foregoing embodiments, and respectively use the lowest frequency and the highest frequency as the above-mentioned target signal frequencies to obtain the lowest input voltage corresponding to the lowest frequency and the highest frequency corresponding to the highest frequency.
  • input voltage and within one modulation cycle, input the input voltage linearly transformed from the lowest input voltage to the highest input voltage to the signal generation module, so that the signal generation module can generate a signal continuously transformed from the lowest frequency to the highest frequency.
  • Fig. 6 is another schematic flowchart of the signal generation method provided by the embodiment of the present application.
  • the above-mentioned target signal frequency includes the lowest target signal frequency and the highest target signal frequency
  • an optional way of the above-mentioned step S302 include:
  • the controller adjusts the input voltage according to the frequency of the output signal and the frequency of the minimum target signal, so as to obtain an adjusted minimum input voltage.
  • the controller adjusts the input voltage according to the frequency of the output signal and the frequency of the highest target signal, so as to obtain an adjusted highest input voltage.
  • the signal generation module is required to generate a signal continuously converted from the lowest frequency to the highest frequency.
  • the lowest target signal frequency in this embodiment refers to the lowest frequency
  • the highest target signal frequency refers to the highest frequency.
  • the controller may obtain the minimum input voltage corresponding to the minimum target signal frequency based on the above minimum target signal frequency, using the method of the above embodiment, for example, using the PID algorithm.
  • the controller may obtain the minimum input voltage corresponding to the minimum target signal frequency based on the above minimum target signal frequency, using the method of the above embodiment, for example, using the PID algorithm.
  • the controller can input a linearly varying input voltage to the signal generating module accordingly. It will be explained below.
  • an optional manner of the above step S303 includes:
  • the controller obtains multiple linearly varying input voltages according to the minimum input voltage and the maximum input voltage, and uses the multiple linearly varying input voltages as the adjusted input voltage. Furthermore, the controller inputs the plurality of linearly changing input voltages to the signal generating module according to the signal modulation period of the signal generating module.
  • the controller may obtain the above-mentioned multiple voltages that vary linearly according to the above-mentioned minimum input voltage, the above-mentioned maximum input voltage, and the signal modulation cycle of the above-mentioned signal generating module.
  • the controller can determine the rate of change from the lowest input voltage to the highest input voltage based on the minimum input voltage, the maximum input voltage, and the signal modulation period of the signal generating module, and the rate of change can be regarded as The slope of the line segment formed by the lowest input voltage and the highest input voltage. Furthermore, the controller may continuously input a linearly varying input voltage to the signal generating module based on the rate of change.
  • Figure 7 is a schematic diagram of the corresponding relationship between a linearly varying input voltage and a continuously varying frequency signal.
  • the controller adjusts to obtain the minimum input voltage ( V1) and the highest input voltage (V2), then within one modulation cycle, the controller inputs the input voltage linearly transformed from V1 to V2 to the signal generation module, and correspondingly, the signal generation module generates a signal that continuously changes from f1 to f2.
  • the embodiment of the present application also provides a signal generating device corresponding to the signal generating method. Since the problem-solving principle of the device in the embodiment of the present application is similar to the above-mentioned signal generating method in the embodiment of the present application, the implementation of the device Reference can be made to the implementation of the method, and repeated descriptions will not be repeated.
  • Fig. 8 is a module structure diagram of the signal generating device provided by the embodiment of the present application. As shown in Fig. 8, the device includes:
  • the acquiring module 801 is configured to acquire the frequency of the output signal output by the signal generating module and the frequency of the target signal to be generated.
  • the adjustment module 802 is configured to adjust the input voltage according to the frequency of the output signal and the frequency of the target signal, so as to obtain an adjusted input voltage.
  • the input module 803 is configured to input the adjusted input voltage to the signal generating module, and the signal generating module generates a new actual signal frequency according to the adjusted input voltage, and the new actual signal frequency The difference from the frequency of the target signal is less than a preset value.
  • the adjustment module 802 is specifically configured to:
  • the first parameter and the second parameter are used as input parameters, and the proportional-integral-differential closed-loop control algorithm is used for processing, and the output parameters obtained through processing are used as the adjusted input voltage.
  • the adjustment module 802 is specifically configured to:
  • the first parameter is determined based on the first actual capture count value and the second actual capture count value.
  • the adjustment module 802 is specifically configured to:
  • the adjustment module 802 is specifically configured to:
  • a ratio of the operating frequency of the capture timer to the first difference is used as the first parameter.
  • the output signal frequency is the actual signal frequency generated by the signal generating module, or the output signal frequency is a frequency-divided signal of the actual signal frequency generated by the signal generating module frequency.
  • the adjustment module 802 is specifically configured to:
  • the target signal frequency is used as the second parameter.
  • the adjustment module 802 is specifically configured to:
  • the target frequency division signal frequency is used as the second parameter.
  • the adjustment module 802 is specifically configured to:
  • the second parameter is determined according to the target capture count value.
  • the adjustment module 802 is specifically configured to:
  • the target capture count value is used as the second parameter.
  • the adjustment module 802 is specifically configured to:
  • the second parameter is determined according to the target capture count value and the frequency division coefficient of the signal generation module.
  • the adjustment module 802 is specifically configured to:
  • the adjustment module 802 is specifically configured to:
  • the second parameter is determined according to the target frequency division signal frequency.
  • the adjustment module 802 is specifically configured to:
  • the second parameter is determined according to the frequency of the target frequency division signal and the operating frequency of the capture timer of the controller.
  • the adjustment module 802 is specifically configured to:
  • the target signal frequency includes: a lowest target signal frequency and a highest target signal frequency.
  • the adjustment module 802 is specifically used for:
  • the input voltage is adjusted to obtain the adjusted highest input voltage.
  • the input module 803 is specifically configured to:
  • the signal modulation cycle of the signal generation module input the linearly varying multiple input voltages to the signal generation module.
  • the input module 803 is specifically configured to:
  • the controller obtains the multiple linearly varying voltages according to the minimum input voltage, the maximum input voltage, and the signal modulation period of the signal generating module.
  • An embodiment of the present application also provides a movable platform, which may include a platform body and a signal transmitting device installed on the platform body, where the signal transmitting device may be the signal transmitting device described in the foregoing embodiments.
  • the above-mentioned mobile platform may be an unmanned aerial vehicle, an unmanned vehicle or other mobile devices that operate based on control instructions.
  • the embodiment of the present application also provides an electronic device 90, as shown in FIG.
  • the memory 92 stores machine-readable instructions executable by the processor 91 (for example, execution instructions corresponding to the acquisition module, adjustment module, and input module in the device in FIG. 8 ), and when the electronic device 90 is running, the The processor 91 communicates with the memory 92 through the bus 93, and the processor 91 executes the machine-readable instructions to execute the steps of the signal generating method described in the above method embodiments.
  • the embodiment of the present application also provides a computer-readable storage medium, where a computer program is stored on the computer-readable storage medium, and when the computer program is run by a processor, the steps of the above-mentioned signal generation method are executed.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the functions described above are realized in the form of software function units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the essence of the technical solution of the present invention or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in various embodiments of the present invention.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disk or optical disc, etc., which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Automation & Control Theory (AREA)
  • Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

一种信号生成方法、装置、信号发射设备及可读存储介质,该方法包括:控制器获取信号生成模块已输出的输出信号频率以及待生成的目标信号频率(S301);控制器根据输出信号频率以及目标信号频率,调整输入电压,以得到调整后的输入电压(S302);控制器向信号生成模块输入调整后的输入电压,并由信号生成模块根据调整后的输入电压生成新的实际信号频率(S303)。该方法降低了信号发射设备的硬件成本,还能够进一步提升信号控制的灵活性。

Description

信号生成方法、装置、信号发射设备及可读存储介质 技术领域
本申请涉及信号处理技术领域,具体而言,涉及一种信号生成方法、装置、信号发射设备及可读存储介质。
背景技术
调频连续波(Frequency Modulated Continuous Wave,简称FMCW)雷达是指发射频率受特定信号调制的连续波雷达。FMCW雷达通过发射频率随时间增减的FMCW信号来测量被测物体的速度、距离等。这种频率随时间增减的信号称为线性调频信号(Chirp)。FMCW雷达在进行距离等计算时,需要使用线性调频信号的调制周期和带宽。其中,线性调频信号的带宽为连续频带中最高和最低频率分量之间的差值。线性调频信号的调制周期为带宽内频率变化的总时间。因此,对于FMCW雷达来说,如何准确控制线性调频信号的调制周期和带宽,是重要的问题。
现有技术中,FMCW信号通过压控振荡器(Voltage Controlled Oscillator,简称VCO)产生,为了准确控制线性调频信号的调制周期和带宽,FMCW雷达中设置数字锁相环(Phase-Locked Loop,简称PLL),将VCO与PLL连接,通过控制PLL在设定的时间按照频率变换要求控制VCO生成雷达信号。
但是,现有技术的方法会导致FMCW雷达的硬件成本较高,同时,对于信号控制的灵活性较低。
发明内容
本申请的目的之一在于,针对上述现有技术中的不足,提供一种信号生成方法、装置、信号发射设备及可读存储介质,以解决现有技术中FMCW雷达成本高且控制灵活性较低的问题。
为实现上述目的,本申请实施例采用的技术方案如下:
第一方面,本申请实施例提供一种信号生成方法,应用于信号发射设备,所述信号发射设备包括:控制器和信号生成模块;
所述方法包括:
所述控制器获取所述信号生成模块已输出的输出信号频率以及待生成的目标信号频率;
所述控制器根据所述输出信号频率以及所述目标信号频率,调整输入电压,以得到调整后的输入电压;
所述控制器向所述信号生成模块输入所述调整后的输入电压,并由所述信号生成模块根据所述调整后的输入电压生成新的实际信号频率,所述新的实际信号频率与所述目标信号频率的差异小于预设值。
作为一种可选的实现方式,所述控制器根据所述输出信号频率以及所述目标信号频率,调整输入电压,以得到调整后的输入电压,包括:
所述控制器根据所述输出信号频率确定第一参数;
所述控制器根据所述目标信号频率确定第二参数;
所述控制器以所述第一参数和所述第二参数作为输入参数,使用比例-积分-微分闭环控制算法进行处理,将处理得到的输出参数作为调整后的输入电压。
作为一种可选的实现方式,所述控制器根据所述输出信号频率确定第一参数,包括:
所述控制器获取由所述控制器的捕获定时器在当前捕获周期捕获所述输出信号频率所得到的第一实际捕获计数值和第二实际捕获计数值,所述第一实际捕获 计数值为所述当前周期起始时刻捕获输出信号频率的捕获计数值,所述第二实际捕获计数值为所述当前周期结束时刻捕获输出信号频率的捕获计数值;
所述控制器根据所述第一实际捕获计数值和所述第二实际捕获计数值,确定所述第一参数。
作为一种可选的实现方式,所述控制器根据所述第一实际捕获计数值和所述第二实际捕获计数值,确定所述第一参数,包括:
所述控制器将所述第二实际捕获计数值与所述第一实际捕获计数值的差值作为所述第一参数。
作为一种可选的实现方式,所述控制器根据所述第一实际捕获计数值和所述第二实际捕获计数值,确定所述第一参数,包括:
所述控制器计算所述第二实际捕获计数值与所述第一实际捕获计数值的第一差值;
所述控制器将所述捕获定时器的工作频率与所述第一差值的比值,作为所述第一参数。
作为一种可选的实现方式,所述输出信号频率为所述信号生成模块已生成的实际信号频率,或者,所述输出信号频率为所述信号生成模块已生成的实际信号频率的分频信号频率。
作为一种可选的实现方式,所述控制器根据所述目标信号频率确定第二参数,包括:
所述控制器将所述目标信号频率作为所述第二参数。
作为一种可选的实现方式,所述控制器根据所述目标信号频率确定第二参数,包括:
所述控制器根据所述目标信号频率以及所述信号生成模块的分频系数,确定目标分频信号频率;
所述控制器将所述目标分频信号频率作为所述第二参数。
作为一种可选的实现方式,所述控制器根据所述目标信号频率确定第二参数,包括:
所述控制器根据所述目标信号频率以及所述控制器的捕获定时器的工作频率,确定目标捕获计数值;
所述控制器根据所述目标捕获计数值,确定所述第二参数。
作为一种可选的实现方式,所述控制器根据所述目标捕获计数值,确定所述第二参数,包括:
所述控制器将所述目标捕获计数值作为所述第二参数。
作为一种可选的实现方式,所述控制器根据所述目标捕获计数值,确定所述第二参数,包括:
所述控制器根据所述目标捕获计数值以及所述信号生成模块的分频系数,确定所述第二参数。
作为一种可选的实现方式,所述控制器根据所述目标信号频率以及所述控制器的捕获定时器的工作频率,确定目标捕获计数值,包括:
所述控制器计算所述捕获定时器的工作频率与所述目标分频信号频率的比值,将所述比值作为所述目标捕获计数值。
作为一种可选的实现方式,所述目标信号频率包括:最低目标信号频率和最高目标信号频率;
所述控制器根据所述输出信号频率以及所述目标信号频率,调整输入电压,以得到调整后的输入电压,包括:
所述控制器根据所述输出信号频率以及所述最低目标信号频率,调整输入电 压,以得到调整后的最低输入电压;
所述控制器根据所述输出信号频率以及所述最高目标信号频率,调整输入电压,以得到调整后的最高输入电压。
作为一种可选的实现方式,所述控制器向所述信号生成模块输入调整后的输入电压,包括:
所述控制器根据所述最低输入电压和所述最高输入电压,得到线性变化的多个输入电压,将所述线性变化的多个输入电压作为所述调整后的输入电压;
所述控制器按照所述信号生成模块的信号调制周期,向所述信号生成模块输入所述线性变化的多个输入电压。
作为一种可选的实现方式,所述控制器根据所述最低输入电压和所述最高输入电压,得到线性变化的多个电压,包括:
所述控制器根据所述最低输入电压、所述最高输入电压以及所述信号生成模块的信号调制周期,得到所述线性变化的多个电压。
第二方面,本申请实施例提供一种信号生成装置,包括:
获取模块,用于获取所述信号生成模块已输出的输出信号频率以及待生成的目标信号频率;
调整模块,用于根据所述输出信号频率以及所述目标信号频率,调整输入电压,以得到调整后的输入电压;
输入模块,用于向所述信号生成模块输入所述调整后的输入电压,并由所述信号生成模块根据所述调整后的输入电压生成新的实际信号频率,所述新的实际信号频率与所述目标信号频率的差异小于预设值。
作为一种可选的实现方式,所述调整模块具体用于:
根据所述输出信号频率确定第一参数;
根据所述目标信号频率确定第二参数;
以所述第一参数和所述第二参数作为输入参数,使用比例-积分-微分闭环控制算法进行处理,将处理得到的输出参数作为调整后的输入电压。
作为一种可选的实现方式,所述调整模块具体用于:
获取由所述控制器的捕获定时器在当前捕获周期捕获所述输出信号频率所得到的第一实际捕获计数值和第二实际捕获计数值,所述第一实际捕获计数值为所述当前周期起始时刻捕获输出信号频率的捕获计数值,所述第二实际捕获计数值为所述当前周期结束时刻捕获输出信号频率的捕获计数值;
根据所述第一实际捕获计数值和所述第二实际捕获计数值,确定所述第一参数。
作为一种可选的实现方式,所述调整模块具体用于:
将所述第二实际捕获计数值与所述第一实际捕获计数值的差值作为所述第一参数。
作为一种可选的实现方式,所述调整模块具体用于:
计算所述第二实际捕获计数值与所述第一实际捕获计数值的第一差值;
将所述捕获定时器的工作频率与所述第一差值的比值,作为所述第一参数。
作为一种可选的实现方式,所述输出信号频率为所述信号生成模块已生成的实际信号频率,或者,所述输出信号频率为所述信号生成模块已生成的实际信号频率的分频信号频率。
作为一种可选的实现方式,所述调整模块具体用于:
将所述目标信号频率作为所述第二参数。
作为一种可选的实现方式,所述调整模块具体用于:
根据所述目标信号频率以及所述信号生成模块的分频系数,确定目标分频信 号频率;
将所述目标分频信号频率作为所述第二参数。
作为一种可选的实现方式,所述调整模块具体用于:
根据所述目标信号频率以及所述控制器的捕获定时器的工作频率,确定目标捕获计数值;
根据所述目标捕获计数值,确定所述第二参数。
作为一种可选的实现方式,所述调整模块具体用于:
将所述目标捕获计数值作为所述第二参数。
作为一种可选的实现方式,所述调整模块具体用于:
根据所述目标捕获计数值以及所述信号生成模块的分频系数,确定所述第二参数。
作为一种可选的实现方式,所述调整模块具体用于:
计算所述捕获定时器的工作频率与所述目标分频信号频率的比值,将所述比值作为所述目标捕获计数值。
作为一种可选的实现方式,所述目标信号频率包括:最低目标信号频率和最高目标信号频率;
所述调整模块具体用于:
根据所述输出信号频率以及所述最低目标信号频率,调整输入电压,以得到调整后的最低输入电压;
根据所述输出信号频率以及所述最高目标信号频率,调整输入电压,以得到调整后的最高输入电压。
作为一种可选的实现方式,所述输入模块具体用于:
根据所述最低输入电压和所述最高输入电压,得到线性变化的多个输入电压,将所述线性变化的多个输入电压作为所述调整后的输入电压;
按照所述信号生成模块的信号调制周期,向所述信号生成模块输入所述线性变化的多个输入电压。
作为一种可选的实现方式,所述输入模块具体用于:
所述控制器根据所述最低输入电压、所述最高输入电压以及所述信号生成模块的信号调制周期,得到所述线性变化的多个电压。
第三方面,本申请实施例提供一种信号发射设备,所述信号发射设备包括:控制器和信号生成模块;所述控制器用于根据上述第一方面所述的信号生成方法控制所述信号生成模块所生成的信号的频率。
作为一种可选的实现方式,所述信号发射设备为调频连续波雷达。
作为一种可选的实现方式,所述控制器的电压输出端和所述信号生成模块的电压输入端之间串联有滤波器;所述控制器的反馈接收端和所述信号生成模块的分频信号输出端连接。
作为一种可选的实现方式,所述信号生成模块为压控振荡器。
第四方面,本申请实施例提供一种可移动平台,包括平台本体和安装在平台本体上的信号发射设备,所述信号发射设备为上述第三方面所述的信号发射设备。
第五方面,本申请实施例提供一种电子设备,包括:处理器;存储器,用于存储所述处理器可执行的机器可读指令;
其中,所述处理器执行所述机器可读指令时,实现上述第一方面所述的信号生成方法的步骤。
第六方面,本申请实施例提供一种计算机可读存储介质,该计算机可读存储介质上存储有计算机程序,该计算机程序被处理器运行时执行上述第一方面所述的信号生成方法的步骤。
本申请实施例具有如下技术效果:
信号发射设备的控制器基于信号生成模块已输出的输出信号频率以及预期的目标信号频率对待输入至信号生成模块的输入电压进行调整,信号生成模块基于该调整后的输入电压,可以相应输出新的实际信号频率。控制器经过调整,即可以调整出预期的目标输入电压,信号生成模块基于该目标输入电压即可以生成预期的目标信号,从而实现了无需设置数字锁相环即可输出预期的目标信号,因而极大降低了信号发射设备的硬件成本。另外,由于控制器是基于信号生成模块的输出信号频率和预期的目标信号频率进行输入电压的调整,因此,还能够进一步提升信号控制的灵活性。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本申请的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为现有技术中FMCW雷达的结构示意图;
图2为本申请实施例所提供的一种FMCW雷达的结构示例图;
图3为本申请实施例提供的信号生成方法的一流程示意图;
图4为本申请实施例提供的信号生成方法的另一流程示意图;
图5为控制器利用PID算法得到调整后的输入电压的示例图;
图6为本申请实施例提供的信号生成方法的又一流程示意图;
图7为线性变化的输入电压与频率连续变化的信号的对应关系示意图;
图8为本申请实施例提供的信号生成装置的模块结构图;
图9为本申请实施例提供的信号发射设备的结构示意图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,应当理解,本申请中附图仅起到说明和描述的目的,并不用于限定本申请的保护范围。另外,应当理解,示意性的附图并未按实物比例绘制。本申请中使用的流程图示出了根据本申请的一些实施例实现的操作。应该理解,流程图的操作可以不按顺序实现,没有逻辑的上下文关系的步骤可以反转顺序或者同时实施。此外,本领域技术人员在本申请内容的指引下,可以向流程图添加一个或多个其他操作,也可以从流程图中移除一个或多个操作。
另外,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本申请实施例的组件可以以各种不同的配置来布置和设计。因此,以下对在附图中提供的本申请的实施例的详细描述并非旨在限制要求保护的本申请的范围,而是仅仅表示本申请的选定实施例。基于本申请的实施例,本领域技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本申请保护的范围。
为了使得本领域技术人员能够使用本申请内容,结合特定应用场景“FMCW雷达的信号生成”,给出以下实施方式。对于本领域技术人员来说,在不脱离本申请的精神和范围的情况下,可以将这里定义的一般原理应用于其他实施例和应用场景。虽然本申请主要围绕FMCW雷达的信号生成进行描述,但是应该理解,这仅是一个示例性实施例。
需要说明的是,本申请实施例中将会用到术语“包括”,用于指出其后所声明的特征的存在,但并不排除增加其它的特征。
图1为现有技术中FMCW雷达的结构示意图,如图1所示,现有技术中为了准确控制线性调频信号的调制周期和带宽,在FMCW雷达中设置数字锁相环(PLL),数字锁相环的输入端与FMCW的控制器连接,输出端与压控振荡器(VCO)连接,另外,压控振荡器还通过输出分频信号与数字锁相环相连。控制器基于需要生成的信号频率,控制数字锁相环在设定的时间按照频率变换要求控制压控振荡器生成雷达信号。
在上述现有技术的方法中,一方面,由于需要在FMCW雷达设置专门的数字锁相环用于控制线性调频信号的调制周期和带宽,因此,使得FMCW雷达的硬件成本较高。另一方面,控制器仅基于需要生成的信号频率来控制数字锁相环的输出电压,并未考虑控制过程中压控振荡器的实际输出频率,因此,使得对于信号控制的灵活性较低。
鉴于现有技术中通过设置数字锁相环控制线性调频信号的方法存在硬件成本过高以及信号控制的灵活性较低的问题,本申请实施例无需在FMCW雷达中设置数字锁相环,而是由控制器基于压控振荡器向控制器输出的输出信号频率以及需要压控振荡器生成的目标信号频率,调整向压控振荡器的输入电压,从而使得压控振荡器可以基于调整后的输入电压输出发射频率随时间增减的目标信号,从而既极大降低了FMCW雷达的硬件成本,又提升了信号控制的灵活性。
值得说明的是,本申请实施例可以应用于任何通过输出模拟电压生成信号的信号发射设备中。为便于本领域技术人员更好地理解本申请实施例的技术方案,以下均以信号发射设备为FMCW雷达为例进行说明。应理解,本申请实施例所应用的信号发射设备所生成的信号,可以是频率随时间变化的信号,例如FMCW信号,或者,也可以为固定频率的信号。本申请实施例对此不作具体限定。
本申请实施例所应用的信号发射设备至少可以包括:控制器和信号生成模块。当信号发射设备为FMCW雷达时,该控制器可以为可编程控制器(Programmable Logic Controller,简称PLC),该信号生成模块可以为压控振荡器(VCO)。图2为本申请实施例所提供的一种FMCW雷达的结构示例图,如图2所示,该FMCW雷达包括控制器以及压控振荡器,其中,压控振荡器可以将当前输出信号的分频信号发送给控制器,控制器可以使用本申请实施例的方法对输入电压进行调整,并将调整后的电压输入压控振荡器中,以使得压控振荡器可以生成FMCW信号。其中,控制器向压控振荡器的输入电压可以是通过数模转换得到的模拟电压。可选的,控制器与压控振荡器之间可以设置一滤波器,用于对控制器输出的模拟电压进行滤波,并将滤波后的模拟电压输入压控振荡器中,由压控振荡器基于输入的模拟电压相应生成待发射的信号。
图3为本申请实施例提供的信号生成方法的一流程示意图,该方法可以应用于上述的信号发射设备,该信号发射设备中包括上述的控制器和信号生成模块。该方法的执行主体可以为该控制器。如图3所示,该方法包括:
S301、控制器获取上述信号生成模块已输出的输出信号频率以及待生成的目标信号频率。
可选的,上述已输出的输出信号频率是指信号生成模块基于控制器输入的模拟电压生成实际信号频率后,向控制器输出的信号频率。该已输出的输出信号频率与信号生成模块已生成的实际信号频率相关。可选的,该输出信号频率可以是该实际信号频率,或者,也可以指该实际信号频率的分频信号频率。
可选的,上述目标信号频率是指需要信号生成模块生成的预期信号的频率。
在具体实施过程中,基于实际业务的需要,可以首先确定需要信号生成模块生成的预期信号的频率。例如,在FMCW雷达正常工作场景,该目标信号频率可以包括预期的FMCW信号的最低频率和最高频率,该最高频率和最低频率之差为预期的FMCW信号的带宽,控制器可以基于该最低频率和最高频率来控制压控振荡器生成并发送从该最低频率连续变换到该最高频率的FMCW信号。又例如,在FMCW雷达的测试场景下,该目标信号频率可以指一个固定的频率,可以用来测试FMCW雷达在该固定的频率下的功能、性能等。
在确定了上述目标信号频率之后,可以通过输入配置信息等方式使得控制器获知并保存该目标信号频率。进而,在执行本实施例的过程中,该目标信号频率可以保持不变,通过下述的步骤,使得信号生成模块最终生成具有该目标信号频率的预期信号。应理解,当该目标信号频率包括最低频率和最高频率时,信号生成模块最终生成的是从最低频率到最高频率线性变换的预期信号。
S302、控制器根据上述输出信号频率以及上述目标信号频率,调整输入电压,以得到调整后的输入电压。
可选的,上述输出信号频率表示了信号生成模块当前实际生成的信号频率,上述目标信号频率表示了需要信号生成模块最终生成的预期信号频率,基于两种信息,可以获知当前实际生成的信号与预期的目标信号的偏差,因此,以这两种信息作为依据,对需要输入至信号生成模块的输入电压进行调整,以使得二者的偏差减小,并最终收敛为可以接受的偏差范围。因此,调整后的输入电压是受到了输出信号频率和目标信号频率的作用和影响。
S303、控制器向上述信号生成模块输入上述调整后的输入电压,并由上述信号生成模块根据上述调整后的输入电压生成新的实际信号频率。
其中,上述新的实际信号频率与上述目标信号频率的差异小于预设值。
以信号生成模块为压控振荡器(VCO)为例,压控振荡器是指输出信号频率与输入控制电压有对应关系的振荡电路,具体的,输出信号频率是输入电压的函数的振荡器VCO,振荡器的工作状态或振荡回路的元件参数受输入控制电压的控制,就可构成一个压控振荡器。相应的,在本步骤中,压控振荡器接收到调整后的输入电压后,即可基于上述的工作原理生成新的实际信号频率。
在具体实施过程中,作为一种可选的方式,可以循环迭代上述步骤S301-S303以使得最终得到的新的实际信号频率与目标信号频率的差异小于预设值。在初始状态下,例如在信号发射设备启动之后,可以由控制器首先向信号生成模块输入一个初始输入电压,该初始输入电压的值可以为任意的预设值。信号生成模块基于该初始输入电压生成初始的信号。控制器即可开始循环迭代。具体的,控制器基于信号生成模块已输出的输出信号频率以及预先获得的目标信号频率,对当前正在使用的输入电压进行调整,并将调整后的输入电压再输入信号生成模块中,信号生成模块基于调整后的输入电源再生成新的实际信号频率,以此类推,不断循环迭代。每经过一次循环迭代,所得到的输入电压更接近预期的能使得信号生成模块输出目标信号的目标输入电压。当控制器判断出信号生成模块输出的新的输出信号频率与目标信号频率的差异小于上述预设值时,可以确定此时的输入电压为预期的目标输入电压,则可以停止调整,后续基于该目标输入电压向信号生成模块进行输入,从而使得信号生成模块可以持续生成满足预期的目标信号。
本实施例中,信号发射设备的控制器基于信号生成模块已输出的输出信号频率以及预期的目标信号频率对待输入至信号生成模块的输入电压进行调整,信号生成模块基于该调整后的输入电压,可以相应输出新的实际信号频率。控 制器经过调整,即可以调整出预期的目标输入电压,信号生成模块基于该目标输入电压即可以生成预期的目标信号。从而实现了无需设置数字锁相环即可输出预期的目标信号,从而极大降低了信号发射设备的硬件成本。另外,由于控制器是基于信号生成模块的输出信号频率和预期的目标信号频率进行输入电压的调整,因此,还能够进一步提升信号控制的灵活性。
作为一种可选的实施方式,本申请实施例可以使用比例-积分-微分(proportion-integral-derivative,简称PID)闭环控制方式实现上述的输入电压的调整。以下对这种方式进行详细说明。
图4为本申请实施例提供的信号生成方法的另一流程示意图,如图4所示,上述步骤S302的一种可选方式包括:
S401、控制器根据上述输出信号频率确定第一参数。
S402、控制器根据上述目标信号频率确定第二参数。
S403、控制器以上述第一参数和上述第二参数作为输入参数,使用比例-积分-微分闭环控制算法进行处理,将处理得到的输出参数作为调整后的输入电压。
可选的,PID算法是一种闭环控制算法,PID控制算法根据给定的目标值和实际的输出值构成控制偏差,并将偏差按照比例、积分和微分通过线性组合构成控制量,对被控对象进行控制。
PID算法具有结构简单、稳定性好、工作可靠、调整方便等优势。当被控对象的结构和参数不能完全掌握,或者无法得到精确的数学模型时,无法使用其他控制技术来实现控制,系统控制器的结构和工作参数需要依靠经验和现场调试来确定,在这种情况下,即可以使用PID算法来实现简单并且精确的控制。
本申请实施例所应用的信号发射场景即属于上述所描述的情况。对于信号发射设备来说,由于硬件电路的电气属性会受到制造工艺、环境温度等各种因素的影响,因此,控制器向信号生成模块的输入电压与信号生成模块输出的信号频率之间并没有恒定的对应关系。在这种情况下,可以利用PID算法的闭环控制,得到控制量,即得到控制器向信号生成模块的输入电压。
具体的,将PID算法应用于本申请实施例时,分别将上述的第一参数和第二参数作为PID算法的输入参数,并在PID算法中将这两种参数按照比例、积分和微分构成控制偏差,并将偏差按照比例、积分和微分通过线性组合构成调整后的输入电压,并将调整后的输入电压输入至信号生成模块中。
本实施例中,利用PID算法的闭环控制,可以得到控制器向信号生成模块的控制量,即输入电压,由于对于信号发射设备来说,硬件电路的电气属性会受到制造工艺、环境温度等各种因素的影响,因此,控制器向信号生成模块的输入电压与信号生成模块输出的信号频率之间并没有恒定的对应关系,而利用PID算法的闭环控制,可以得到准确的控制量,即得到控制器向信号生成模块的输入电压,因此,使用PID算法可以实现既不增加硬件成本同时又能简单精确地进行信号控制。
在上述实施例中,第一参数根据输出信号频率确定,第二参数根据目标信号频率确定。以下对于上述第一参数和第二参数的确定方式分别进行说明。
如前文所述,上述输出信号频率可以指信号生成模块已生成的实际信号频率,或者,也可以指信号生成模块已生成的实际信号频率的分频信号频率,针对这两种含义的输出信号频率,均可以使用如下方式确定上述第一参数。
可选的,控制器获取由控制器的捕获定时器在当前捕获周期捕获上述输出信号频率所得到的第一实际捕获计数值和第二实际捕获计数值,该第一实际捕获计数值为当前周期起始时刻捕获输出信号频率的捕获计数值,该第二实际捕 获计数值为所述当前周期结束时刻捕获输出信号频率的捕获计数值。进而,控制器可以根据上述第一实际捕获计数值和第二实际捕获计数值确定上述第一参数。
作为一种可选的实施方式,控制器可以通过设置在控制器中的捕获定时器来捕获信号生成模块的实际信号频率。
可选的,捕获定时器可以按照一定的周期进行信号捕获,具体的,在一个周期的起始时刻,捕获定时器捕获信号生成模块的输出信号得到第一实际捕获计数值,并且,在一个周期的结束时刻,捕获定时器捕获信号生成模块的输出信号得到第二实际捕获计数值。
在获取到上述第一实际捕获计数值和第二实际捕获计数值之后,控制器可以按照如下两种方式确定上述第一参数。
第一种方式,控制器可以将上述第二实际捕获计数值与上述第一实际捕获计数值的差值作为上述第一参数。
在这种方式中,控制器将第二实际捕获计数值与第一实际捕获计数值的差值作为第一参数,因此,在这种方式中,上述第一参数的物理含义表示捕获计数值。应理解,在该第一参数表示捕获计数值时,该第一参数可以表示捕获上述实际信号频率的捕获计数值,也可以表示捕获上述实际信号频率的分频信号频率的捕获计数值。
第二种方式,控制器首先计算第二实际捕获计数值与第一实际捕获计数值的第一差值,进而,将捕获定时器的工作频率与第一差值的比值,作为上述第一参数。
值得说明的是,捕获定时器工作在一定的工作频率下,因此,捕获定时器捕获输出信号频率的捕获计数值并不直接等同于上述输出信号频率,而是与上述输出信号频率具有特定的关系。具体的,假设输出信号频率为F_input,捕获定时器的工作频率为F_clock,捕获定时器捕获输出信号频率所得到的捕获计数值为capture,则F_input和capture之间的关系满足下述的公式(1)。
F_input=F_clock/capture    (1)
基于上述公式(1),在该第二种方式中,计算捕获定时器的工作频率与第一差值的比值之后,所得到的上述第一参数所表示的物理含义为上述输出信号频率。应理解,在该第一参数表示输出信号频率时,该第一参数可以表示上述实际信号频率,也可以表示上述实际信号频率的分频信号频率。
以下说明确定上述第二参数的可选方式。
如前文所述,上述第一参数可以表示捕获上述实际信号频率的捕获计数值,也可以表示捕获上述实际信号频率的分频信号频率的捕获计数值。或者,上述第一参数可以表示上述实际信号频率,也可以表示上述实际信号频率的分频信号频率。
在具体实施过程中,上述第二参数的物理含义需要与上述第一参数的物理含义一致,以使得后续在进行PID闭环控制处理时,所输入的第一参数和第二参数的物理含义不会存在不一致,以保证PID算法的结果准确。
基于上述的考虑,上述第二参数可以表示如下几种含义:
第一种,当第一参数表示上述实际信号频率时,上述第二参数表示上述目标信号频率。
第二种,当第一参数表示上述实际信号频率的分频信号频率时,上述第二参数表示上述目标信号频率的分频信号频率。
第三种,当第一参数表示捕获上述实际信号频率的捕获计数值时,上述第二参数表示上述目标信号频率对应的捕获计数值。
具体的,如果捕获定时器捕获的信号频率为上述目标信号频率,则其获取的捕获计数值应该为上述第二参数所表示的捕获计数值。
第四种,当第一参数表示捕获上述实际信号频率的分频信号频率的捕获计数值时,上述第二参数表示上述目标信号频率的分频信号频率对应的捕获计数值。
具体的,如果捕获定时器捕获的信号频率为上述目标信号频率的分频信号频率,则其获取的捕获计数值应该为上述第二参数所表示的捕获计数值。
以下分别说明确定上述四种含义的第二参数的方式。
针对上述第一种含义,上述目标信号频率可以为预先设置的值,因此,控制器可以直接获取该目标信号频率作为上述第二参数。
针对上述第二种含义,控制器可以根据上述目标信号频率以及信号生成模块的分频系数,确定目标分频信号频率,并将该目标分频信号频率作为上述第二参数。
信号生成模块中可以包括以分频器,该分频器可以具有预设的分频系数,分频器可以基于该分频系数,对信号生成模块生成的实际信号频率进行分频,得到分频信号,并将该分频信号发送给控制器。相应的,可以将该分频信号的频率作为上述第二参数。
具体的,控制器可以首先根据目标信号频率以及上述信号生成模块的分频系数,确定目标分频信号频率。假设目标信号频率为Fr,信号生成模块的分频系数为fs,则可以使用下述公式(2)计算得到目标分频信号频率Fdev。
Fdev=Fr/fs     (2)
进而,控制器可以将该目标分频信号频率作为上述第二参数。
可选的,控制器可以计算捕获定时器的工作频率与目标分频信号频率的比值,将该比值作为上述第二参数。
针对上述第三种含义和第四种含义,控制器可以根据目标信号频率以及控制器的捕获定时器的工作频率,确定目标捕获计数值。进而,针对上述第三种含义,控制器直接将该目标捕获计数值作为上述第二参数。针对上述第四种含义,控制器根据上述目标捕获计数值以及上述信号生成模块的分频系数,确定上述第二参数。
如前文所述,信号生成模块输出的输出信号频率与捕获定时器捕获输出信号频率的捕获计数值之间满足上述公式(1)所示的关系。相应的,基于上述公式(1)所示的关系,本实施例中,假设目标分频信号频率为Fdev,则对上述公式(1)进行变形,得到下述公式(3),利用下述公式(3)可以计算得到上述目标捕获计数值Capture_dev。
Capture_dev=F_clock/Fdev    (3)
其中,F_clock是指捕获定时器的工作频率。
在计算出上述目标捕获计数值之后,针对上述第三种含义,控制器直接将该目标捕获计数值作为上述第二参数。针对上述第四种含义,控制器可以计算目标捕获计数值与上述分频系数的比值,并将该比值作为上述第二参数。
经过上述处理,控制器可以得到第一参数和第二参数,并将该第一参数和第二参数作为PID算法的输入参数,经过算法计算得到控制量,该控制量的物理含义即为向信号生成模块的输入电压。
图5为控制器利用PID算法得到调整后的输入电压的示例图,如图5所示,第一参数和第二参数作为PID算法的输入参数,其中,第一参数表示控制器的实际捕获计数值,第二参数表示控制器的目标捕获计数值。第一参数和第二参数被输入后,在PID算法中将这两种参数按照比例、积分和微分构成控制 偏差,并将偏差按照比例、积分和微分通过线性组合构成调整后的输入电压(即输出电压值)。
以上说明了控制器利用PID算法得到调整后的输入电压的过程。如前文所述,在具体实施过程中,在某些场景下,例如FMCW雷达的测试场景下,可以仅需要压控振荡器输出一个具有固定频率的信号。对于这种场景来说,上述实施例中所述的目标信号频率是一个固定的频率。相应的,利用上述实施例,可以使用PID算法调整得到该固定的频率所对应的输入电压,将该调整得到的输入电压输入压控振荡器之后,可以使得压控振荡器持续生成具有该固定频率的信号。而在FMCW雷达正常工作场景下,需要FMCW雷达生成发射频率随时间增减的FMCW信号。这种FMCW信号具有带宽和调制周期这两种参数,其中,带宽是指最高频率和最低频率之差,因此,FMCW信号实际具有最高频率、最低频率以及调制周期这三种参数。这三种参数可以预先进行设置并由控制器进行保存。在设置了这三种参数之后,表示FMCW雷达在工作过程中,需要在每个调制周期内,生成并发送从该最低频率连续变换到该最高频率的信号。为了生成从最低频率连续变换到最高频率的信号,控制器在上述每个调制周期内,需要向压控振动器输入从最低电压连续线性变换到最高电压的输入电压。其中,该最低电压是指最低频率对应的电压,即当控制器向压控振荡器输入该最低电压时,压控振荡器可以生成该最低频率的信号。该最高电压是指最高频率对应的电压,即当控制器向压控振荡器输入该最高电压时,压控振荡器可以生成该最高频率的信号。
因此,作为一种可选的实施方式,控制器可以分别使用前述实施例的方法,分别以最低频率和最高频率作为上述的目标信号频率,得到最低频率对应的最低输入电压以及最高频率对应的最高输入电压,并在一个调制周期内,向信号生成模块输入从最低输入电压线性变换到最高输入电压的输入电压,进而使得信号生成模块可以生成从最低频率连续变换到最高频率的信号。
如前文所述,对于信号发射设备来说,由于硬件电路的电气属性会受到制造工艺、环境温度等各种因素的影响,因此,控制器向信号生成模块的输入电压与信号生成模块输出的信号频率之间并没有恒定的对应关系。具体到本实施例所涉及的场景,最低频率与最低输入电压,最高频率与最高输入电压之间并不存在恒定的对应关系,因此,可以使用下述的过程分别调整得到最低频率对应的最低输入电压,以及最高频率对应的最高输入电压。以下对这种方案进行说明。
图6为本申请实施例提供的信号生成方法的又一流程示意图,如图6所示,当上述目标信号频率包括最低目标信号频率和最高目标信号频率时,上述步骤S302的一种可选方式包括:
S601、控制器根据上述输出信号频率以及上述最低目标信号频率,调整输入电压,以得到调整后的最低输入电压。
S602、控制器根据上述输出信号频率以及上述最高目标信号频率,调整输入电压,以得到调整后的最高输入电压。
其中,如上所述,需要信号生成模块生成从最低频率连续变换到最高频率的信号,本实施例中所述的最低目标信号频率即指该最低频率,最高目标信号频率即指该最高频率。
具体实施过程中,上述步骤S601-S602的执行顺序不分先后。
以上述步骤S601为例,控制器可以基于上述最低目标信号频率,使用前述实施例的方法,例如使用PID算法,得到该最低目标信号频率对应的最低输入电压。具体执行过程可以参照前述实施例,此处不再赘述。
基于上述所得到的最低输入电压和最高输入电压,控制器可以相应向信号生成模块输入线性变化的输入电压。以下进行说明。
作为一种可选的实施方式,上述步骤S303的一种可选方式包括:
控制器根据上述最低输入电压和上述最高输入电压,得到线性变化的多个输入电压,将上述线性变化的多个输入电压作为上述调整后的输入电压。进而,控制器按照上述信号生成模块的信号调制周期,向上述信号生成模块输入上述线性变化的多个输入电压。
可选的,控制器可以根据上述最低输入电压、上述最高输入电压以及上述信号生成模块的信号调制周期,得到上述线性变化的多个电压。
可选的,控制器基于上述最低输入电压、上述最高输入电压以及上述信号生成模块的信号调制周期,可以确定出从最低输入电压向最高输入电压变化时的变化率,该变化率可以看作是最低输入电压与最高输入电压所形成的线段的斜率。进而,控制器可以基于该变化率,向信号生成模块持续输入线性变化的输入电压。
图7为线性变化的输入电压与频率连续变化的信号的对应关系示意图,如图7所示,基于最低目标信号频率(f1)和最高目标信号频率(f2),控制器调整得到最低输入电压(V1)和最高输入电压(V2),则在一个调制周期内,控制器向信号生成模块输入从V1至V2线性变换的输入电压,相应的,信号生成模块生成从f1连续变化到f2的信号。
基于同一发明构思,本申请实施例中还提供了与信号生成方法对应的信号生成装置,由于本申请实施例中的装置解决问题的原理与本申请实施例上述信号生成方法相似,因此装置的实施可以参见方法的实施,重复之处不再赘述。
图8为本申请实施例提供的信号生成装置的模块结构图,如图8所示,该装置包括:
获取模块801,用于获取所述信号生成模块已输出的输出信号频率以及待生成的目标信号频率。
调整模块802,用于根据所述输出信号频率以及所述目标信号频率,调整输入电压,以得到调整后的输入电压。
输入模块803,用于向所述信号生成模块输入所述调整后的输入电压,并由所述信号生成模块根据所述调整后的输入电压生成新的实际信号频率,所述新的实际信号频率与所述目标信号频率的差异小于预设值。
作为一种可选的实施方式,调整模块802具体用于:
根据所述输出信号频率确定第一参数;
根据所述目标信号频率确定第二参数;
以所述第一参数和所述第二参数作为输入参数,使用比例-积分-微分闭环控制算法进行处理,将处理得到的输出参数作为调整后的输入电压。
作为一种可选的实施方式,调整模块802具体用于:
获取由所述控制器的捕获定时器在当前捕获周期捕获所述输出信号频率所得到的第一实际捕获计数值和第二实际捕获计数值,所述第一实际捕获计数值为所述当前周期起始时刻捕获输出信号频率的捕获计数值,所述第二实际捕获计数值为所述当前周期结束时刻捕获输出信号频率的捕获计数值;
根据所述第一实际捕获计数值和所述第二实际捕获计数值,确定所述第一参数。
作为一种可选的实施方式,调整模块802具体用于:
将所述第二实际捕获计数值与所述第一实际捕获计数值的差值作为所述第一参数。
作为一种可选的实施方式,调整模块802具体用于:
计算所述第二实际捕获计数值与所述第一实际捕获计数值的第一差值;
将所述捕获定时器的工作频率与所述第一差值的比值,作为所述第一参数。
作为一种可选的实施方式,所述输出信号频率为所述信号生成模块已生成的实际信号频率,或者,所述输出信号频率为所述信号生成模块已生成的实际信号频率的分频信号频率。
作为一种可选的实施方式,调整模块802具体用于:
将所述目标信号频率作为所述第二参数。
作为一种可选的实施方式,调整模块802具体用于:
根据所述目标信号频率以及所述信号生成模块的分频系数,确定目标分频信号频率;
将所述目标分频信号频率作为所述第二参数。
作为一种可选的实施方式,调整模块802具体用于:
根据所述目标信号频率以及所述控制器的捕获定时器的工作频率,确定目标捕获计数值;
根据所述目标捕获计数值,确定所述第二参数。
作为一种可选的实施方式,调整模块802具体用于:
将所述目标捕获计数值作为所述第二参数。
作为一种可选的实施方式,调整模块802具体用于:
根据所述目标捕获计数值以及所述信号生成模块的分频系数,确定所述第二参数。
作为一种可选的实施方式,调整模块802具体用于:
计算所述捕获定时器的工作频率与所述目标分频信号频率的比值,将所述比值作为所述目标捕获计数值。
作为一种可选的实施方式,调整模块802具体用于:
根据所述目标信号频率以及所述信号生成模块的分频系数,确定目标分频信号频率;
根据所述目标分频信号频率,确定所述第二参数。
作为一种可选的实施方式,调整模块802具体用于:
根据所述目标分频信号频率以及所述控制器的捕获定时器的工作频率,确定所述第二参数。
作为一种可选的实施方式,调整模块802具体用于:
计算所述捕获定时器的工作频率与所述目标分频信号频率的比值,将所述比值作为所述第二参数。
作为一种可选的实施方式,所述目标信号频率包括:最低目标信号频率和最高目标信号频率。
调整模块802具体用于:
根据所述输出信号频率以及所述最低目标信号频率,调整输入电压,以得到调整后的最低输入电压;
根据所述输出信号频率以及所述最高目标信号频率,调整输入电压,以得到调整后的最高输入电压。
作为一种可选的实施方式,输入模块803具体用于:
根据所述最低输入电压和所述最高输入电压,得到线性变化的多个输入电压,将所述线性变化的多个输入电压作为所述调整后的输入电压;
按照所述信号生成模块的信号调制周期,向所述信号生成模块输入所述线 性变化的多个输入电压。
作为一种可选的实施方式,输入模块803具体用于:
所述控制器根据所述最低输入电压、所述最高输入电压以及所述信号生成模块的信号调制周期,得到所述线性变化的多个电压。
本申请实施例还提供一种可移动平台,该可移动平台可以包括平台本体和安装在平台本体上的信号发射设备,该信号发射设备可以为前述实施例中所述的信号发射设备。
可选的,上述可移动平台可以为无人机、无人车或者其他基于操控指令运行的移动设备。
本申请实施例还提供了一种电子设备90,如图9所示,为本申请实施例提供的电子设备90结构示意图,包括:处理器91、存储器92以及总线93。所述存储器92存储有所述处理器91可执行的机器可读指令(比如,图8中的装置中获取模块、调整模块、输入模块对应的执行指令等),当电子设备90运行时,所述处理器91与所述存储器92之间通过总线93通信,处理器91执行所述机器可读指令,以执行上述方法实施例中所述的信号生成方法的步骤。
本申请实施例还提供了一种计算机可读存储介质,该计算机可读存储介质上存储有计算机程序,该计算机程序被处理器运行时执行上述信号生成方法的步骤。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统和装置的具体工作过程,可以参考方法实施例中的对应过程,本申请中不再赘述。在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。以上所描述的装置实施例仅仅是示意性的,例如,所述模块的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,又例如,多个模块或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些通信接口,装置或模块的间接耦合或通信连接,可以是电性,机械或其它的形式。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。

Claims (23)

  1. 一种信号生成方法,其特征在于,应用于信号发射设备,所述信号发射设备包括:控制器和信号生成模块;
    所述方法包括:
    所述控制器获取所述信号生成模块已输出的输出信号频率以及待生成的目标信号频率;
    所述控制器根据所述输出信号频率以及所述目标信号频率,调整输入电压,以得到调整后的输入电压;
    所述控制器向所述信号生成模块输入所述调整后的输入电压,并由所述信号生成模块根据所述调整后的输入电压生成新的实际信号频率,所述新的实际信号频率与所述目标信号频率的差异小于预设值。
  2. 根据权利要求1所述的方法,其特征在于,所述控制器根据所述输出信号频率以及所述目标信号频率,调整输入电压,以得到调整后的输入电压,包括:
    所述控制器根据所述输出信号频率确定第一参数;
    所述控制器根据所述目标信号频率确定第二参数;
    所述控制器以所述第一参数和所述第二参数作为输入参数,使用比例-积分-微分闭环控制算法进行处理,将处理得到的输出参数作为调整后的输入电压。
  3. 根据权利要求2所述的方法,其特征在于,所述控制器根据所述输出信号频率确定第一参数,包括:
    所述控制器获取由所述控制器的捕获定时器在当前捕获周期捕获所述输出信号频率所得到的第一实际捕获计数值和第二实际捕获计数值,所述第一实际捕获计数值为所述当前周期起始时刻捕获输出信号频率的捕获计数值,所述第二实际捕获计数值为所述当前周期结束时刻捕获输出信号频率的捕获计数值;
    所述控制器根据所述第一实际捕获计数值和所述第二实际捕获计数值,确定所述第一参数。
  4. 根据权利要求3所述的方法,其特征在于,所述控制器根据所述第一实际捕获计数值和所述第二实际捕获计数值,确定所述第一参数,包括:
    所述控制器将所述第二实际捕获计数值与所述第一实际捕获计数值的差值作为所述第一参数。
  5. 根据权利要求3-4中任一项所述的方法,其特征在于,所述控制器根据所述第一实际捕获计数值和所述第二实际捕获计数值,确定所述第一参数,包括:
    所述控制器计算所述第二实际捕获计数值与所述第一实际捕获计数值的第一差值;
    所述控制器将所述捕获定时器的工作频率与所述第一差值的比值,作为所述第一参数。
  6. 根据权利要求1-5中任一项所述的方法,其特征在于,所述输出信号频率为所述信号生成模块已生成的实际信号频率,或者,所述输出信号频率为所述信号生成模块已生成的实际信号频率的分频信号频率。
  7. 根据权利要求2-6任一项所述的方法,其特征在于,所述控制器根据所述目标信号频率确定第二参数,包括:
    所述控制器将所述目标信号频率作为所述第二参数。
  8. 根据权利要求2-6任一项所述的方法,其特征在于,所述控制器根据所述目标信号频率确定第二参数,包括:
    所述控制器根据所述目标信号频率以及所述信号生成模块的分频系数,确定 目标分频信号频率;
    所述控制器将所述目标分频信号频率作为所述第二参数。
  9. 根据权利要求2-6任一项所述的方法,其特征在于,所述控制器根据所述目标信号频率确定第二参数,包括:
    所述控制器根据所述目标信号频率以及所述控制器的捕获定时器的工作频率,确定目标捕获计数值;
    所述控制器根据所述目标捕获计数值,确定所述第二参数。
  10. 根据权利要求9所述的方法,其特征在于,所述控制器根据所述目标捕获计数值,确定所述第二参数,包括:
    所述控制器将所述目标捕获计数值作为所述第二参数。
  11. 根据权利要求9所述的方法,其特征在于,所述控制器根据所述目标捕获计数值,确定所述第二参数,包括:
    所述控制器根据所述目标捕获计数值以及所述信号生成模块的分频系数,确定所述第二参数。
  12. 根据权利要求9所述的方法,其特征在于,所述控制器根据所述目标信号频率以及所述控制器的捕获定时器的工作频率,确定目标捕获计数值,包括:
    所述控制器计算所述捕获定时器的工作频率与所述目标分频信号频率的比值,将所述比值作为所述目标捕获计数值。
  13. 根据权利要求1-12任一项所述的方法,其特征在于,所述目标信号频率包括:最低目标信号频率和最高目标信号频率;
    所述控制器根据所述输出信号频率以及所述目标信号频率,调整输入电压,以得到调整后的输入电压,包括:
    所述控制器根据所述输出信号频率以及所述最低目标信号频率,调整输入电压,以得到调整后的最低输入电压;
    所述控制器根据所述输出信号频率以及所述最高目标信号频率,调整输入电压,以得到调整后的最高输入电压。
  14. 根据权利要求13所述的方法,其特征在于,所述控制器向所述信号生成模块输入调整后的输入电压,包括:
    所述控制器根据所述最低输入电压和所述最高输入电压,得到线性变化的多个输入电压,将所述线性变化的多个输入电压作为所述调整后的输入电压;
    所述控制器按照所述信号生成模块的信号调制周期,向所述信号生成模块输入所述线性变化的多个输入电压。
  15. 根据权利要求14所述的方法,其特征在于,所述控制器根据所述最低输入电压和所述最高输入电压,得到线性变化的多个电压,包括:
    所述控制器根据所述最低输入电压、所述最高输入电压以及所述信号生成模块的信号调制周期,得到所述线性变化的多个电压。
  16. 一种信号生成装置,其特征在于,包括:
    获取模块,用于获取所述信号生成模块已输出的输出信号频率以及待生成的目标信号频率;
    调整模块,用于根据所述输出信号频率以及所述目标信号频率,调整输入电压,以得到调整后的输入电压;
    输入模块,用于向所述信号生成模块输入所述调整后的输入电压,并由所述信号生成模块根据所述调整后的输入电压生成新的实际信号频率,所述新的实际信号频率与所述目标信号频率的差异小于预设值。
  17. 一种信号发射设备,其特征在于,包括控制器和信号生成模块;所述控制器用于根据权利要求1至15任一项所述的信号生成方法控制所述信号生成模块所 生成的信号的频率。
  18. 根据权利要求17所述的信号发射设备,其特征在于,所述信号发射设备为调频连续波雷达。
  19. 根据权利要求17或18所述的信号发射设备,其特征在于,所述控制器的电压输出端和所述信号生成模块的电压输入端之间串联有滤波器;所述控制器的反馈接收端和所述信号生成模块的分频信号输出端连接。
  20. 根据权利要求19所述的信号发射设备,其特征在于,所述信号生成模块为压控振荡器。
  21. 一种可移动平台,其特征在于,包括平台本体和安装在平台本体上的信号发射设备,所述信号发射设备为权利要求17-20任一项所述的信号发射设备。
  22. 一种电子设备,其特征在于,包括:
    处理器;
    存储器,用于存储所述处理器可执行的机器可读指令;
    其中,所述处理器执行所述机器可读指令时,实现权利要求1至15任一项所述的信号生成方法的步骤。
  23. 一种计算机可读存储介质,其特征在于,该计算机可读存储介质上存储有计算机程序,该计算机程序被处理器运行时实现权利要求1至15任一所述的信号生成方法的步骤。
PCT/CN2022/087581 2021-06-11 2022-04-19 信号生成方法、装置、信号发射设备及可读存储介质 WO2022257608A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110655966.9 2021-06-11
CN202110655966.9A CN113391273A (zh) 2021-06-11 2021-06-11 信号生成方法、装置、信号发射设备及可读存储介质

Publications (1)

Publication Number Publication Date
WO2022257608A1 true WO2022257608A1 (zh) 2022-12-15

Family

ID=77620775

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/087581 WO2022257608A1 (zh) 2021-06-11 2022-04-19 信号生成方法、装置、信号发射设备及可读存储介质

Country Status (2)

Country Link
CN (1) CN113391273A (zh)
WO (1) WO2022257608A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116366077A (zh) * 2023-06-02 2023-06-30 北京安天网络安全技术有限公司 一种软件定义无线电设备的控制方法、装置、设备及介质

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113391273A (zh) * 2021-06-11 2021-09-14 广州极飞科技股份有限公司 信号生成方法、装置、信号发射设备及可读存储介质
CN114422043B (zh) * 2022-03-28 2022-07-08 成都嘉纳海威科技有限责任公司 一种可靠性试验装置及方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103312325A (zh) * 2013-06-26 2013-09-18 龙迅半导体科技(合肥)有限公司 一种频率合成器
CN107040257A (zh) * 2017-03-17 2017-08-11 上海东软载波微电子有限公司 锁相环带宽控制电路及方法
CN107769769A (zh) * 2017-10-18 2018-03-06 西安全志科技有限公司 振荡器的功率控制电路及其控制方法、集成芯片
CN108199710A (zh) * 2017-12-25 2018-06-22 深圳市紫光同创电子有限公司 一种振荡器校正电路及振荡器校正方法
US20190052170A1 (en) * 2017-08-14 2019-02-14 The Government Of The United States, As Represented By The Secretary Of The Army Switched-Capacitor Tuning of a Proportional-Integral-Derivative Controller
DE102018109081A1 (de) * 2018-04-17 2019-10-17 Infineon Technologies Ag Bandbreitenanpassung in einem phasenregelkreis eines lokaloszillators
US20200403623A1 (en) * 2019-06-24 2020-12-24 Gowin Semiconductor Corporation Phase-locked loop and method for calibrating voltage-controlled oscillator therein
CN113391273A (zh) * 2021-06-11 2021-09-14 广州极飞科技股份有限公司 信号生成方法、装置、信号发射设备及可读存储介质

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2209533T3 (es) * 1998-11-11 2004-06-16 Siemens Aktiengesellschaft Procedimiento para la deteccion y correccion de no linealidades de osciladores de alta frecuencia, controlados con tension.
DE102010061041A1 (de) * 2010-12-06 2012-06-06 Hella Kgaa Hueck & Co. Vorrichtung mit einem spannungsgesteuerten Oszillator und Mitteln zur Eigenkalibrierung
US8686895B2 (en) * 2011-04-29 2014-04-01 Rosemount Tank Radar Ab Pulsed radar level gauge system with higher order harmonic regulation
CN202393907U (zh) * 2011-12-30 2012-08-22 北京华航无线电测量研究所 一种vco线性度校正装置
WO2015112845A2 (en) * 2014-01-23 2015-07-30 Moog Music, Inc. Voltage-controlled oscillator with variable core for electronic musical instrument and related methods
CN105978559B (zh) * 2016-04-29 2019-03-22 中国科学院半导体研究所 宽带线性调频微波信号发生器
CN108521792A (zh) * 2017-04-27 2018-09-11 深圳市大疆创新科技有限公司 微波雷达的测距方法、微波雷达、计算机存储介质、无人飞行器及其控制方法
CN110658496B (zh) * 2018-06-29 2021-07-20 比亚迪股份有限公司 雷达信号生成方法、装置及雷达
CN110471038A (zh) * 2019-08-16 2019-11-19 上海英恒电子有限公司 一种毫米波雷达的波形产生方法及装置
CN112688685B (zh) * 2020-12-24 2022-03-15 深圳市中承科技有限公司 压控振荡器频率校准装置、方法及存储介质

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103312325A (zh) * 2013-06-26 2013-09-18 龙迅半导体科技(合肥)有限公司 一种频率合成器
CN107040257A (zh) * 2017-03-17 2017-08-11 上海东软载波微电子有限公司 锁相环带宽控制电路及方法
US20190052170A1 (en) * 2017-08-14 2019-02-14 The Government Of The United States, As Represented By The Secretary Of The Army Switched-Capacitor Tuning of a Proportional-Integral-Derivative Controller
CN107769769A (zh) * 2017-10-18 2018-03-06 西安全志科技有限公司 振荡器的功率控制电路及其控制方法、集成芯片
CN108199710A (zh) * 2017-12-25 2018-06-22 深圳市紫光同创电子有限公司 一种振荡器校正电路及振荡器校正方法
DE102018109081A1 (de) * 2018-04-17 2019-10-17 Infineon Technologies Ag Bandbreitenanpassung in einem phasenregelkreis eines lokaloszillators
US20200403623A1 (en) * 2019-06-24 2020-12-24 Gowin Semiconductor Corporation Phase-locked loop and method for calibrating voltage-controlled oscillator therein
CN113391273A (zh) * 2021-06-11 2021-09-14 广州极飞科技股份有限公司 信号生成方法、装置、信号发射设备及可读存储介质

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116366077A (zh) * 2023-06-02 2023-06-30 北京安天网络安全技术有限公司 一种软件定义无线电设备的控制方法、装置、设备及介质
CN116366077B (zh) * 2023-06-02 2023-07-28 北京安天网络安全技术有限公司 一种软件定义无线电设备的控制方法、装置、设备及介质

Also Published As

Publication number Publication date
CN113391273A (zh) 2021-09-14

Similar Documents

Publication Publication Date Title
WO2022257608A1 (zh) 信号生成方法、装置、信号发射设备及可读存储介质
TWI419472B (zh) 鎖相迴路
TWI419471B (zh) 具有校正功能之鎖相迴路及其校正方法
CN107040257B (zh) 锁相环带宽控制电路及方法
JP6494888B2 (ja) Pll回路
CN110943468B (zh) 双模式储能变换器的控制方法、装置和系统
CN103684433A (zh) 一种宽带频综装置
CN110749875A (zh) 一种导频自适应的马赫曾德调制器激光脉冲调节模块
KR20150036966A (ko) Hvdc 시스템의 컨버터 제어 장치
CN104579324B (zh) 调频连续波雷达系统及其运用方法
US10146250B2 (en) Method and circuit for adjusting the frequency of a clock signal
CN110098885B (zh) 一种时钟同步电路、装置及其方法
CN113056180A (zh) 通过损耗与环境对流协同调节的功率变换器热管理系统
WO2012101318A1 (en) An arrangement and a method for synchronizing a generator set to an electric network
CN110471038A (zh) 一种毫米波雷达的波形产生方法及装置
CN109712591B (zh) 时序控制方法、时序控制芯片和显示装置
CN114337980B (zh) 一种面向5g智能电网的高精度时钟同步方法
US10536153B1 (en) Signal generator
CN109412589B (zh) 一种分数频率合成器整数边界杂散的优化方法及系统
CN107846218B (zh) 一种基于梳状滤波器的锁相环
CN102545886B (zh) Gfsk调制器、gfsk调制方法及发射机
CN104300973B (zh) 一种避免锁相环大跨度失锁的方法
CN116505363B (zh) 用于光生超稳微波源的飞秒光梳状态自动检测优化方法
CN108141282B (zh) 一种时钟性能监控系统、方法及装置
JP4815572B2 (ja) 補償された高速pll回路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22819211

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE