WO2022257413A1 - 一种微波连续热解制碳纳米纤维及氢气的系统及方法 - Google Patents

一种微波连续热解制碳纳米纤维及氢气的系统及方法 Download PDF

Info

Publication number
WO2022257413A1
WO2022257413A1 PCT/CN2021/139450 CN2021139450W WO2022257413A1 WO 2022257413 A1 WO2022257413 A1 WO 2022257413A1 CN 2021139450 W CN2021139450 W CN 2021139450W WO 2022257413 A1 WO2022257413 A1 WO 2022257413A1
Authority
WO
WIPO (PCT)
Prior art keywords
pyrolysis
hydrogen
microwave
melting
outlet
Prior art date
Application number
PCT/CN2021/139450
Other languages
English (en)
French (fr)
Inventor
张会岩
王艺涵
李晓迪
Original Assignee
东南大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东南大学 filed Critical 东南大学
Priority to US18/010,383 priority Critical patent/US11760635B2/en
Publication of WO2022257413A1 publication Critical patent/WO2022257413A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J6/00Heat treatments such as Calcining; Fusing ; Pyrolysis
    • B01J6/005Fusing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/12Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
    • B01J19/122Incoherent waves
    • B01J19/123Ultraviolet light
    • B01J19/124Ultraviolet light generated by microwave irradiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/12Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
    • B01J19/122Incoherent waves
    • B01J19/126Microwaves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J6/00Heat treatments such as Calcining; Fusing ; Pyrolysis
    • B01J6/008Pyrolysis reactions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/008Details of the reactor or of the particulate material; Processes to increase or to retard the rate of reaction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/08Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with moving particles
    • B01J8/087Heating or cooling the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/08Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with moving particles
    • B01J8/10Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with moving particles moved by stirrers or by rotary drums or rotary receptacles or endless belts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/22Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds
    • C01B3/24Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds of hydrocarbons
    • C01B3/26Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds of hydrocarbons using catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • C01B32/162Preparation characterised by catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • C01B32/164Preparation involving continuous processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/184Preparation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B53/00Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form
    • C10B53/07Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form of solid raw materials consisting of synthetic polymeric materials, e.g. tyres
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B57/00Other carbonising or coking processes; Features of destructive distillation processes in general
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B57/00Other carbonising or coking processes; Features of destructive distillation processes in general
    • C10B57/04Other carbonising or coking processes; Features of destructive distillation processes in general using charges of special composition
    • C10B57/06Other carbonising or coking processes; Features of destructive distillation processes in general using charges of special composition containing additives
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B43/00Engines characterised by operating on gaseous fuels; Plants including such engines
    • F02B43/10Engines or plants characterised by use of other specific gases, e.g. acetylene, oxyhydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M31/00Apparatus for thermally treating combustion-air, fuel, or fuel-air mixture
    • F02M31/02Apparatus for thermally treating combustion-air, fuel, or fuel-air mixture for heating
    • F02M31/04Apparatus for thermally treating combustion-air, fuel, or fuel-air mixture for heating combustion-air or fuel-air mixture
    • F02M31/042Combustion air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/12Processes employing electromagnetic waves
    • B01J2219/1203Incoherent waves
    • B01J2219/1206Microwaves
    • B01J2219/1209Features relating to the reactor or vessel
    • B01J2219/1212Arrangements of the reactor or the reactors
    • B01J2219/1218Multiple reactors
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/10Particle morphology extending in one dimension, e.g. needle-like
    • C01P2004/16Nanowires or nanorods, i.e. solid nanofibres with two nearly equal dimensions between 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock
    • Y02P20/143Feedstock the feedstock being recycled material, e.g. plastics

Definitions

  • the invention relates to the technical field of pyrolysis, in particular to a system and method for producing carbon nanofibers and hydrogen by microwave continuous pyrolysis.
  • waste plastics are disposed of by extensive methods of incineration and landfill, and the problems of water, air and soil pollution and land occupation cannot be ignored.
  • Higher value-added utilization of waste plastics can be achieved by preparing higher-performance carbon nanomaterials under fine reaction regulation and applying them to high-tech industries such as fuel cells, flexible materials, and sensors.
  • the traditional pyrolytic vapor deposition preparation method requires high reaction temperature and long deposition time, and there are bottleneck problems such as low recovery rate of the target product, poor quality and high energy consumption of the system.
  • the invention provides a system and method for producing carbon nanofibers and hydrogen by microwave continuous pyrolysis, which solves the technical problems of low product yield and high energy consumption in traditional pyrolysis methods.
  • a system for producing carbon nanofibers and hydrogen by microwave continuous pyrolysis comprising:
  • the melting feeding device is used to heat and melt the material
  • a microwave pyrolysis device for catalytic pyrolysis of materials including a material inlet, a pyrolysis gas outlet and a carbon product outlet, the material inlet is connected to the material outlet of the melting feeding device;
  • the pyrolysis gas purification and utilization device is connected to the pyrolysis gas outlet, and is used for hydrogen purification and residual gas separation of the pyrolysis gas generated by catalytic pyrolysis;
  • the power generation device includes a small internal combustion engine and a generator.
  • the small internal combustion engine uses the residual gas as fuel, and transports the flue gas generated by combustion to the melting feeding device to be used as a heat source for material melting.
  • It also includes a carbon product collection device, the inlet of which is connected to the carbon product outlet, for recovering the solid material pyrolyzed by the microwave pyrolysis device, and using the waste heat of the solid material to heat the air, and the heated air Supplies auxiliary combustion to the small internal combustion engine.
  • the structure of the microwave pyrolysis device includes a drum, the inside of the drum is provided with a microwave generating device, and the outer side is provided with a fixed housing forming a cavity with the outer wall of the drum; the upper part of the fixed housing is provided with the The material inlet and the wave-absorbing catalyst inlet; the inner wall of the fixed housing is provided with an upper scraper assembly, which is used to guide the material to be coated on the rotating drum to form a material film, and at the same time guide the catalyst to be coated on the material film to form a catalyst material film.
  • the structure of the upper end scraper assembly includes a front scraper and a rear scraper, and one end of the front scraper and the rear scraper are respectively connected to both sides of the inlet of the wave-absorbing catalyst to form a flow guide channel for the catalyst, and the The other ends of the front scraper and the rear scraper are inclined to the rotation direction of the drum and form a gap with the outer wall of the drum.
  • the carbon product outlet is provided at the lower part of the fixed housing, and a lower scraper is provided near the carbon product outlet, one end of which is connected to the fixed housing, and the other end is in contact with the outer wall of the drum, for pyrolysis The final solid matter is scraped off the outer wall of the drum.
  • the carbon product collection device includes an inner cylinder and an outer cylinder sleeved outside the inner cylinder, an air flow channel is formed between the outer cylinder and the inner cylinder; one end of the outer cylinder is provided with a hot air outlet, which is controlled by the air-fuel ratio
  • the device is connected with the small internal combustion engine; the inner cylinder is provided with a screw conveying structure, and the outlet at one end is connected with the carbon storage tank.
  • the structure of the pyrolysis gas purification and utilization device includes a hydrogen purification device, and the hydrogen purification device is provided with a pyrolysis gas inlet, an upper outlet for separating high-purity hydrogen, and a lower outlet for separating residual pyrolysis gas.
  • the upper outlet is connected with the hydrogen storage tank; the lower outlet is connected with the small internal combustion engine through an air-fuel ratio controller.
  • the structure of the melting feeding device includes an inner cylinder and an outer cylinder sleeved outside the inner cylinder, the inner cylinder is provided with a feed port, the outer cylinder is provided with a flue gas inlet, and the outer cylinder is The flue gas flow channel is formed between the inner cylinder and the inner cylinder; a screw conveying mechanism is arranged in the inner cylinder.
  • a method for producing carbon nanofibers and hydrogen by microwave continuous pyrolysis comprising the following steps:
  • Waste plastic raw materials enter the melting feeding device for heating and melting, and the required heat source is provided by indirect heat transfer of high-temperature flue gas;
  • the melted material and the microwave-absorbing catalyst enter the microwave pyrolysis device for pyrolysis reaction: the material and the microwave-absorbing catalyst form a double-layer material film that evenly covers the drum in the microwave pyrolysis device, and the inner layer of the double-layer material film
  • the layer is material
  • the outer layer is a carbon-coated metal-loaded catalyst, which is catalytically converted under the action of microwaves to generate pyrolysis gas containing high-concentration hydrogen and three-dimensional carbon nanofibers;
  • the pyrolysis gas is purified by a pyrolysis gas purification and utilization device to purify high-concentration hydrogen and store it.
  • the remaining pyrolysis gas enters a small internal combustion engine for combustion to generate electricity, and the generated electric energy is used to supplement the energy demand of the system.
  • the feeding device is used as a heat source for heating and melting;
  • the three-dimensional carbon nanofibers are transported to the carbon product collection device for collection and utilization, and the carbon product collection device uses the waste heat of the three-dimensional carbon nanofibers to heat air, and the heated air is provided to the small internal combustion engine for auxiliary combustion, as shown
  • a small internal combustion engine converts internal energy into mechanical energy and drives a generator to generate electricity to supplement the energy requirements of the system.
  • the waste plastic raw material enters the melting and feeding device for heating and melting, and the melting temperature is 150°C-200°C; the melted material and the absorbing catalyst enter the microwave pyrolysis device for pyrolysis reaction, and the pyrolysis temperature is 400°C °C to 500 °C; the high-temperature flue gas is used as a heat source, and its temperature is 300 °C to 400 °C;
  • the inlet of the small internal combustion engine is connected to the air-fuel ratio controller, and the inlet of the air-fuel ratio controller is respectively connected to the outlet of the carbon product collection device and the pyrolysis gas purification and utilization device for controlling the heated air, the Describe the proportion of residual pyrolysis gas.
  • the waste plastics continuous melting feed and microwave confinement catalysis to prepare high-quality carbon nanofibers and hydrogen system of the present invention form a polygeneration system in which plastic wastes co-produce high-performance carbon materials and hydrogen, which greatly improves the energy utilization rate .
  • the invention proposes a method of utilizing the non-absorbing properties of plastics, adding a wave-absorbing catalyst, and confinement catalysis to convert it into carbon nanofibers and hydrogen in an efficient and directional manner. Using flash heat transfer of wave-absorbing catalysts to realize confinement heating and interface catalysis at the same time, multi-process coupling integration, short process and simple operation.
  • the invention provides a novel high-efficiency carbon nanofiber-coated nickel-iron composite oxide wave-absorbing catalyst. Realize the rapid conversion of waste plastics at low temperature. Compared with the traditional vapor deposition process of waste plastics, the new technology has a low reaction temperature, greatly reduced energy consumption, high yield of carbon nanofibers, high hydrogen purity, high quality, and greatly improved overall economy.
  • Fig. 1 is a schematic diagram of the system structure of a specific embodiment of the present invention.
  • Fig. 2 is a schematic structural diagram of a microwave pyrolysis device according to a specific embodiment of the present invention.
  • the system for producing carbon nanofibers and hydrogen by microwave continuous pyrolysis of the present embodiment includes:
  • the melting feeding device 1 is used to heat and melt the material
  • the microwave pyrolysis device 5 is used to carry out catalytic pyrolysis to the material, including a material inlet, a pyrolysis gas outlet 10 and a carbon product outlet, and the material inlet is connected to the material outlet of the melting feeding device 1;
  • the pyrolysis gas purification and utilization device is connected to the pyrolysis gas outlet 10, and is used for hydrogen purification and residual gas separation of the pyrolysis gas generated by catalytic pyrolysis;
  • the power generation device includes a small internal combustion engine 16 and a generator 17.
  • the small internal combustion engine 16 uses residual gas as fuel, and transports the flue gas generated by combustion to the melting feeding device 1, which is used as a heat source for material melting.
  • the structure of the melting feeding device 1 includes an inner cylinder, an outer cylinder sleeved outside the inner cylinder, the inner cylinder is provided with a feed port 2, and the outer cylinder is provided with a flue gas inlet connected to the flue gas outlet of the small internal combustion engine 16, and the outer cylinder A flue gas flow channel is formed between the inner cylinder and the inner cylinder; a screw conveying mechanism is provided in the inner cylinder, specifically a helical auger, one end of which is driven by a motor 3 .
  • the melting feeding device 1 is in the shape of a double-layer tube (tube), and the high-temperature flue gas circulates outside for material delivery inside, and the plastic and the flue gas conduct heat indirectly through the tube wall.
  • the structure of the microwave pyrolysis device 5 includes a drum 6, the inside of the drum 6 is provided with a microwave generating device 7, and the outer side is provided with a fixed shell forming a cavity with the outer wall of the drum 6; the upper part of the fixed shell is provided with a material inlet and a microwave absorbing Catalyst inlet 9, the lower part is provided with carbon product outlet; the inner wall of the fixed shell is provided with an upper end scraper assembly 4, which is used to guide the material to be coated on the rotating drum 6 to form a material film, and at the same time guide the catalyst to be coated on the material film A catalyst film is formed.
  • the lower part of the fixed housing is provided with a lower scraper 8 at a position close to the carbon product outlet, one end of which is connected to the fixed housing, and the other end is in contact with the outer wall of the drum 6, which is used to remove the pyrolyzed solid carbon product from the outer wall of the drum 6. scrape off.
  • the structure of the upper end scraper assembly 4 includes a front scraper 21 and a rear scraper 22, and one end of the front scraper 21 and the rear scraper 22 are respectively connected to both sides of the wave-absorbing catalyst inlet 9 to form a guide for the catalyst. flow channel, and the other ends of the front scraper 21 and the rear scraper 22 are both inclined to the rotation direction of the drum 6 and form a gap with the outer wall of the drum 6 .
  • the drum 6 is preferably made of high-temperature ceramic materials, including but not limited to alumina and one or more of borides, carbides and nitrides of transition metals (zirconium, tantalum, titanium).
  • the microwave generating device 7 is fixed on the inner axis of the drum 6 .
  • the structure of the microwave generating device 7 includes an alumina substrate 25 for fixed support, on which a waveguide 24 and a wave feeding port 23 are arranged.
  • the molten material enters from the material inlet on the fixed shell of the microwave pyrolysis device 5, and the drum 6 keeps rotating during operation, and the direction of rotation is shown in the direction of the arrow in Fig. 2, and the molten waste plastic acts on the high-temperature ceramic drum 6 Under the pressure of the front scraper 21, the molten waste plastic is attached to the outer wall of the drum 6 to form a uniform low-thickness film.
  • the wave-absorbing catalyst from The catalyst inlet 9 enters, and the rear scraper 22 evenly coats the wave-absorbing catalyst on the surface of the material film, and the microwave generator 7 arranged symmetrically about the axis ensures sufficient conversion of the raw material.
  • the carbon product outlet is connected to the carbon product collection device 19, and the pyrolysis gas outlet is connected to the pyrolysis gas purification and utilization system
  • the carbon product collection device 19 is in the shape of a double-layer tube (tube), including an inner tube and an outer tube sleeved outside the inner tube, and an air flow channel is formed between the outer tube and the inner tube; one end of the outer tube is provided with a hot air outlet, and its The air-fuel ratio controller 15 is connected to the small internal combustion engine 16; the other end of the outer cylinder is provided with a cold air inlet;
  • a helical auger driven by a motor is provided on the central axis of the inner cylinder.
  • the cold air after heat exchange enters the air-fuel ratio controller 15, thereby reducing the heat transfer end difference to reduce energy consumption.
  • the structure of the pyrolysis gas purification utilization device includes a hydrogen purification device 13, the hydrogen purification device 13 is provided with a pyrolysis gas inlet, an upper outlet for separating high-purity hydrogen, and an outlet for separating residual pyrolysis gas.
  • the lower outlet and the upper outlet are connected to the hydrogen storage tank 14 ; the lower outlet is connected to the small internal combustion engine 16 through the air-fuel ratio controller 15 .
  • the pyrolysis gas inlet of the hydrogen purification device 13 is connected to the pyrolysis gas outlet 10 of the microwave pyrolysis device 5 , and a centrifuge 11 and a compressor 12 are connected to the connecting pipeline.
  • the hydrogen purification device 13 is preferably provided with three outlets, upper, middle and lower. The uppermost outlet is the separated high-purity hydrogen outlet, and the outlet is connected to the above-mentioned hydrogen storage tank 14; the middle and lower outlets are used to discharge residual pyrolysis gas.
  • a vacuum pump 18 is arranged on the exhaust pipeline, and the compressor 12 and the vacuum pump 18 ensure the effect of hydrogen separation and purification.
  • the two inlets of the air-fuel ratio controller 15 are respectively connected to the outlet of the residual pyrolysis gas and the air outlet through the heat exchange of the outer layer of the carbon product collection device 19.
  • the air-fuel ratio controller 15 is connected in series with the small internal combustion engine 16 for controlling the heated air, The proportion of residual pyrolysis gas.
  • the small internal combustion engine 16 utilizes gas heat energy to drive a generator 17 coaxially connected with it to generate electricity.
  • the absorbing catalyst is preferably a carbon-coated cheap metal-supported catalyst, which is prepared by mixing carbon-based materials with cheap transition metal salt alcohol solutions, drying them and annealing them at high temperatures in a reducing atmosphere.
  • carbon-based materials include but are not limited to one or more of melamine, biomass, waste plastics, graphite carbon, and carbon nanofibers
  • cheap transition metals include but are not limited to one or more of iron, copper, and nickel species
  • the reducing atmosphere includes but is not limited to one or more of nitrogen, hydrogen, and argon, and the annealing temperature ranges from 600°C to 900°C.
  • an insulation layer is provided outside the melting feed device 1 , the microwave pyrolysis device 5 and the carbon product collection device 19 .
  • Waste plastic raw materials enter the melting feeding device 1 for heating and melting the required heat source is provided by indirect heat transfer of high-temperature flue gas, and the melting temperature is 150°C to 200°C;
  • the material and the microwave-absorbing catalyst enter the microwave pyrolysis device 5 for pyrolysis reaction: the material and the microwave-absorbing catalyst form a double-layer material film that is evenly covered on the drum 6 in the microwave pyrolysis device 5, and the inner layer of the double-layer material film
  • the outer layer is a carbon-coated metal-supported catalyst, which is catalytically converted under the action of microwaves to generate pyrolysis gas containing high-concentration hydrogen and three-dimensional carbon nanofibers;
  • the pyrolysis temperature is 400 ° C to 500 ° C; among them, the produced
  • the yield of carbon nanofiber is about 40wt%, and the concentration of hydrogen in the non-condensable gas is about 70%;
  • the pyrolysis gas is purified by the pyrolysis gas purification and utilization device to purify high-concentration hydrogen and store it.
  • the residual pyrolysis gas enters the small internal combustion engine 16 to burn for power generation.
  • the generated electric energy is used to supplement the energy demand of the system, and the discharged high-temperature flue gas is passed into the melting feeding device 1 As a heat source for heating and melting, the temperature of high-temperature flue gas is 300°C to 400°C
  • the three-dimensional carbon nanofibers are transported to the carbon product collection device 19 for collection and utilization.
  • the carbon product collection device 19 uses the waste heat of the three-dimensional carbon nanofibers to heat the air, and the heated air is provided to the small internal combustion engine 16 for auxiliary combustion, and the small internal combustion engine 16 converts the internal energy To generate mechanical energy and drive the generator 17 to supplement the energy demand of the system;
  • the carbon product collection device 19 is cooled by air cooling, and the discharge temperature after cooling is 50°C-100°C
  • This application has constructed a spiral melting continuous feeding coupled microwave pyrolysis integrated preparation process, which uses high-temperature flue gas to melt waste plastics, and uses carbon-coated cheap metal-loaded catalysts to confine catalytically convert molten raw materials under microwaves to efficiently prepare carbon nanofibers. Produce high-concentration hydrogen to realize high-value recycling of waste plastics.
  • This application provides a new type of inexpensive metal-loaded carbon-based catalyst with strong wave-absorbing ability and excellent catalytic performance, which can be evenly added to waste plastics to realize microwave confinement heating, interfacial catalytic cracking and deposition multi-process coupling integration, and realize low-temperature short-term High-yield preparation of carbon nanofibers co-production of high-concentration hydrogen.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Toxicology (AREA)
  • Combustion & Propulsion (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Electromagnetism (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

一种微波连续热解制碳纳米纤维及氢气的系统及方法,包括:熔融进料装置(1),用于对物料进行加热熔融处理;微波热解装置(5),用于对物料进行催化热解,包括物料入口、热解气出口(10)和碳产物出口,物料入口与熔融进料装置(1)的物料出口连接;热解气纯化利用装置,与热解气出口(10)连接,用于对催化热解产生的热解气进行氢气提纯和残余气体分离;发电装置,包括小型内燃机(16)和发电机(17),小型内燃机(16)利用残余气体为燃料,并将燃烧产生的烟气输送至熔融进料装置(1),用作物料熔融的热源。

Description

一种微波连续热解制碳纳米纤维及氢气的系统及方法 技术领域
本发明涉及热解技术领域,尤其是一种微波连续热解制碳纳米纤维及氢气的系统及方法。
背景技术
世界范围内有超过60%的废塑料采用焚烧和填埋粗放式方法处理,带来的水气土污染及占地问题不容忽视。借由精细反应调控下制备更高性能的碳纳米材料,将其应用于燃料电池、柔性材料及传感器等高新产业中可实现废塑料的高附加值利用。然而传统热解气相沉积制备方式所需反应温度高,沉积时间长,存在目标产物回收率低、品质差和系统能耗高等瓶颈问题。
发明内容
本发明提供了一种微波连续热解制碳纳米纤维及氢气的系统及方法,解决了传统热解方法产物收率低、能耗高的技术问题。
本发明采用的技术方案如下:
一种微波连续热解制碳纳米纤维及氢气的系统,包括:
熔融进料装置,用于对物料进行加热熔融处理;
微波热解装置,用于对物料进行催化热解,包括物料入口、热解气出口和碳产物出口,所述物料入口与所述熔融进料装置的物料出口连接;
热解气纯化利用装置,与所述热解气出口连接,用于对催化热解产生的热解气进行氢气提纯和残余气体分离;
发电装置,包括小型内燃机和发电机,所述小型内燃机利用所述残余气体为燃料,并将燃烧产生的烟气输送至所述熔融进料装置,用作物料熔融的热源。
其进一步技术方案为:
还包括碳产物收集装置,其入口与所述碳产物出口连接,用于回收经所述微波热解装置热解后的固态物料,并利用所述固态物料的余热加热空气,将加热后的空气供给所述小型内燃机辅助燃烧。
所述微波热解装置的结构包括滚筒,所述滚筒的内部设有微波发生装置,外侧设有与所述滚筒外壁之间形成腔体的固定壳体;所述固定壳体上部设有所述物料入口以及吸波催化剂入口;所述固定壳体的内壁设有上端刮板组件,用于引导物料包覆在旋转的滚筒上形成物料料膜,同时引导催化剂包覆在物料料膜上形成催化剂料膜。
所述上端刮板组件的结构包括前刮板和后刮板,所述前刮板和后刮板一端分别连接在所述吸波催化剂入口的两侧,形成催化剂的导流通道,且所述前刮板和后刮板另一端均向滚筒转动方向倾斜并与滚筒外壁之间形成间隙。
所述固定壳体下部设置所述碳产物出口,并在靠近所述碳产物出口的位置设有下刮板,其一端与固定壳体连接,另一端与滚筒外壁抵接,用于将热解后的固态物质从滚筒外壁上刮 下。
碳产物收集装置包括内筒、套设在所述内筒外部的外筒,所述外筒与内筒之间形成空气流道;所述外筒一端设有热空气出口,其通过空燃比控制器与所述小型内燃机连接;所述内筒中设有螺旋输送结构,其一端出口与储碳罐连接。
所述热解气纯化利用装置的结构包括氢气纯化装置,所述氢气纯化装置上设有热解气入口、用于分离高纯氢气的上部出口、用于分离残余热解气的下部出口,所述上部出口与储氢罐连接;所述下部出口通过空燃比控制器与所述小型内燃机连接。
所述熔融进料装置的结构包括内筒、套设在所述内筒外部的外筒,所述内筒上设有进料口,所述外筒上设有烟气入口,所述外筒与内筒之间形成所述烟气的流动通道;所述内筒中设有螺旋输送机构。
一种微波连续热解制碳纳米纤维及氢气的方法,包括以下步骤:
废塑料原料进入熔融进料装置进行加热熔融,所需的热源由高温烟气间接传热的方式提供;
熔融后的物料及吸波催化剂进入微波热解装置进行热解反应:物料及吸波催化剂形成双层料膜均匀覆盖在所述微波热解装置中的滚筒上,所述双层料膜的内层为物料,外层为碳包覆金属负载催化剂,并在微波作用下限域催化转化生成包含高浓度氢气的热解气以及三维碳纳米纤维;
所述热解气经过热解气纯化利用装置提纯高浓度氢气并存储,残余的热解气进入小型内燃机燃烧发电,产生的电能用以补充系统能量需求,排出的高温烟气通入所述熔融进料装置作为加热熔融的热源;
所述三维碳纳米纤维输送至碳产物收集装置收集利用,所述碳产物收集装置利用所述三维碳纳米纤维的余热加热空气,加热后的空气提供给所述小型内燃机用于辅助燃烧,所示小型内燃机将内能转化为机械能并驱动发电机发电,用以补充系统能量需求。
其进一步技术方案为:
所述的废塑料原料进入熔融进料装置进行加热熔融,熔融温度为150℃~200℃;所述的熔融后的物料及吸波催化剂进入微波热解装置进行热解反应,热解温度为400℃~500℃;所述高温烟气作为热源,其温度为300℃~400℃;
所述小型内燃机进口与空燃比控制器连接,所述空燃比控制器的入口分别与所述碳产物收集装置、热解气纯化利用装置的出口连接,用于控制所述加热后的空气、所述残余的热解气的比例。
本发明的有益效果如下:
本发明的废塑料连续熔融进料、微波限域催化制备高品质碳纳米纤维和氢气系统,形成了塑料废弃物联产高性能碳材料和氢气的多联产系统,极大地提高了能源利用率。
本发明提出了利用塑料不吸波的特性,添加吸波催化剂,限域催化将其高效定向转化为碳纳米纤维和氢气的方法。利用吸波催化剂闪速传热实现限域加热同时进行界面催化,多过程耦合集成,流程短,操作简单。
本发明提供了新型高效碳纳米纤维包覆镍铁复合氧化体吸波催化剂。实现低温快速转化废塑料。相比传统废塑料气相沉积工艺,新技术反应温度低,能耗大幅下降,碳纳米纤维收率高、氢气纯度高、品质高,整体经济性大幅提升。
附图说明
图1为本发明具体实施例的系统结构示意图。
图2为本发明具体实施例的微波热解装置的结构示意图。
图中:1、熔融进料装置;2、进料口;3、电机;4、上端刮板组件;5、微波热解装置;6、滚筒;7、微波发生装置;8、下刮板;9、催化剂入口;10、热解气出口;11、离心机;12、压缩机;13、氢气纯化装置;14、储氢罐;15、空燃比控制器;16、小型内燃机;17、发电机;18、真空泵;19、碳产物收集装置;20、储碳罐;21、前刮板;22、后刮板;23、馈波口;24、波导;25、氧化铝基底。
具体实施方式
以下结合附图说明本发明的具体实施方式。
本实施例的微波连续热解制碳纳米纤维及氢气的系统,如图1所示,包括:
熔融进料装置1,用于对物料进行加热熔融处理;
微波热解装置5,用于对物料进行催化热解,包括物料入口、热解气出口10和碳产物出口,物料入口与熔融进料装置1的物料出口连接;
热解气纯化利用装置,与热解气出口10连接,用于对催化热解产生的热解气进行氢气提纯和残余气体分离;
发电装置,包括小型内燃机16和发电机17,小型内燃机16利用残余气体为燃料,并将燃烧产生的烟气输送至熔融进料装置1,用作物料熔融的热源。
还包括碳产物收集装置19,其入口与微波热解装置5的碳产物出口连接,用于回收经微波热解装置5热解后的固态物料,并利用固态物料的余热加热空气,将加热后的空气供给小型内燃机16辅助燃烧。
熔融进料装置1的结构包括内筒、套设在内筒外部的外筒,内筒上设有进料口2,外筒上设有连接小型内燃机16烟气出口的烟气入口,外筒与内筒之间形成烟气的流动通道;内筒中设有螺旋输送机构,具体采用螺旋状绞龙,其一端由电机3驱动。熔融进料装置1呈双层筒(管)状结构,外部流通高温烟气内部进行物料输送,塑料与烟气通过筒壁间接传热。
微波热解装置5的结构包括滚筒6,滚筒6的内部设有微波发生装置7,外侧设有与滚筒6外壁之间形成腔体的固定壳体;固定壳体上部设有物料入口以及吸波催化剂入口9,下部设置碳产物出口;固定壳体的内壁设有上端刮板组件4,用于引导物料包覆在旋转的滚筒6上形成物料料膜,同时引导催化剂包覆在物料料膜上形成催化剂料膜。固定壳体下部在靠近碳产物出口的位置设有下刮板8,其一端与固定壳体连接,另一端与滚筒6外壁抵接,用于将热解后的固态碳产物从滚筒6外壁上刮下。
如图2所示,上端刮板组件4的结构包括前刮板21和后刮板22,前刮板21和后刮板22一端分别连接在吸波催化剂入口9的两侧,形成催化剂的导流通道,且前刮板21和后刮板22另一端均向滚筒6转动方向倾斜并与滚筒6外壁之间形成间隙。
滚筒6优先采用高温陶瓷材料,包括但不限于氧化铝以及过渡金属(锆、钽、钛)的硼化物、碳化物和氮化物中的一种或多种。微波发生装置7固定于滚筒6内部轴线位置。微波发生装置7的结构包括用于固定支撑的氧化铝基底25,其上设有波导24以及馈波口23。
由图2可知,熔融物料从微波热解装置5的固定壳体上的物料入口进入,工作时滚筒6 保持旋转,转动方向如图2中箭头方向所示,熔融废塑料在高温陶瓷滚筒6作用下输送至上端刮板组件4中的前刮板21,在前刮板21的压制作用下,熔融废塑料贴附于滚筒6外壁,形成均匀成低厚度料膜,同样地,吸波催化剂从催化剂入口9进入,后刮板22将吸波催化剂均匀涂覆于料膜表面,关于轴线对称设置的微波发生装置7保证原料的充分转化。
碳产物出口与碳产物收集装置19连接,热解气体出口连接热解气纯化利用系统
碳产物收集装置19呈双层管(筒)状,包括内筒、套设在内筒外部的外筒,外筒与内筒之间形成空气流道;外筒一端设有热空气出口,其通过空燃比控制器15与小型内燃机16连接;外筒另一端设有冷空气入口;内筒中设有螺旋输送结构,其一端出口与储碳罐20连接。
内筒中轴线处设有由电机驱动的螺旋状绞龙,优选地,换热结束的冷空气进入空燃比控制器15,由此降低传热端差以减少能量消耗。
如图1所示,热解气纯化利用装置的结构包括氢气纯化装置13,氢气纯化装置13上设有热解气入口、用于分离高纯氢气的上部出口、用于分离残余热解气的下部出口,上部出口与储氢罐14连接;下部出口通过空燃比控制器15与小型内燃机16连接。
氢气纯化装置13的热解气入口与微波热解装置5的热解气出口10连接,连接管路上连接有离心机11、压缩机12。所述氢气纯化装置13优选地设有上中下三处出口,最上部出口为分离后的高纯氢出口,该出口连接上述储氢罐14;中部、下部出口用于排出残余热解气,到空燃比控制器15中,并且排气管路上设有真空泵18,压缩机12及真空泵18保证氢气分离提纯效果。
空燃比控制器15的两个入口分别连接残余热解气出口以及经过碳产物收集装置19外层换热的空气出口,空燃比控制器15与小型内燃机16串联,用于控制加热后的空气、残余的热解气的比例。小型内燃机16利用燃气热能推动与其同轴相连的发电机17发电。
吸波催化剂优选地采用的碳包覆廉价金属负载催化剂,其制备方式为碳基材料与廉价过渡金属盐类醇溶液混合,烘干后于还原气氛下高温退火获得。优选地,碳基材料包括但不限于三聚氰胺,生物质,废塑料,石墨碳,碳纳米纤维中的一种或多种;廉价过渡金属包括但不限于铁、铜、镍中的一种或多种;还原气氛包括但不限于氮气、氢气、氩气中的一种或多种,退火温度范围为600℃~900℃。
优选地,熔融进料装置1、微波热解装置5和碳产物收集装置19外部设有保温层。
本实施例的微波连续热解制碳纳米纤维及氢气的方法,包括以下步骤:
废塑料原料进入熔融进料装置1进行加热熔融,所需的热源由高温烟气间接传热的方式提供,熔融温度为150℃~200℃;
熔融后的物料及吸波催化剂进入微波热解装置5进行热解反应:物料及吸波催化剂形成双层料膜均匀覆盖在微波热解装置5中的滚筒6上,双层料膜的内层为物料,外层为碳包覆金属负载催化剂,并在微波作用下限域催化转化生成包含高浓度氢气的热解气以及三维碳纳米纤维;热解温度为400℃~500℃;其中,产生的碳纳米纤维产率约为40wt%,氢气在不凝气体中浓度约为70%;
热解气经过热解气纯化利用装置提纯高浓度氢气并存储,残余的热解气进入小型内燃机16燃烧发电,产生的电能用以补充系统能量需求,排出的高温烟气通入熔融进料装置1作为加热熔融的热源,高温烟气的温度为300℃~400℃
三维碳纳米纤维输送至碳产物收集装置19收集利用,碳产物收集装置19利用三维碳纳 米纤维的余热加热空气,加热后的空气提供给小型内燃机16用于辅助燃烧,小型内燃机16将内能转化为机械能并驱动发电机17发电,用以补充系统能量需求;
碳产物收集装置19采用空冷方式冷却,经冷却后排出温度为50℃~100℃
本申请构建了螺旋熔融连续进料耦合微波热解一体化制备工艺,采用高温烟气熔融废塑料,在微波下通过碳包覆廉价金属负载催化剂限域催化转化熔融原料,高效制备碳纳米纤维联产高浓度氢,实现废塑料的高值化回收利用。本申请提供了吸波能力强、催化性能优异的新型廉价金属负载的碳基催化剂,将其均匀添加到废塑料中,实现微波限域加热、界面催化裂解沉积多过程耦合集成,实现低温短时高产率制备碳纳米纤维联产高浓度氢气。

Claims (10)

  1. 一种微波连续热解制碳纳米纤维及氢气的系统,其特征在于,包括:
    熔融进料装置(1),用于对物料进行加热熔融处理;
    微波热解装置(5),用于对物料进行催化热解,包括物料入口、热解气出口(10)和碳产物出口,所述物料入口与所述熔融进料装置(1)的物料出口连接;
    热解气纯化利用装置,与所述热解气出口(10)连接,用于对催化热解产生的热解气进行氢气提纯和残余气体分离;
    发电装置,包括小型内燃机(16)和发电机(17),所述小型内燃机(16)利用所述残余气体为燃料,并将燃烧产生的烟气输送至所述熔融进料装置(1),用作物料熔融的热源。
  2. 根据权利要求1所述的微波连续热解制碳纳米纤维及氢气的系统,其特征在于,还包括碳产物收集装置(19),其入口与所述碳产物出口连接,用于回收经所述微波热解装置(5)热解后的固态物料,并利用所述固态物料的余热加热空气,将加热后的空气供给所述小型内燃机(16)辅助燃烧。
  3. 根据权利要求2所述的微波连续热解制碳纳米纤维及氢气的系统,其特征在于,所述微波热解装置(5)的结构包括滚筒(6),所述滚筒(6)的内部设有微波发生装置(7),外侧设有与所述滚筒(6)外壁之间形成腔体的固定壳体;所述固定壳体上部设有所述物料入口以及吸波催化剂入口(9);所述固定壳体的内壁设有上端刮板组件(4),用于引导物料包覆在旋转的滚筒(6)上形成物料料膜,同时引导催化剂包覆在物料料膜上形成催化剂料膜。
  4. 根据权利要求3所述的微波连续热解制碳纳米纤维及氢气的系统,其特征在于,所述上端刮板组件(4)的结构包括前刮板(21)和后刮板(22),所述前刮板(21)和后刮板(22)一端分别连接在所述吸波催化剂入口(9)的两侧,形成催化剂的导流通道,且所述前刮板(21)和后刮板(22)另一端均向滚筒(6)转动方向倾斜并与滚筒(6)外壁之间形成间隙。
  5. 根据权利要求3所述的微波连续热解制碳纳米纤维及氢气的系统,其特征在于,所述固定壳体下部设置所述碳产物出口,并在靠近所述碳产物出口的位置设有下刮板(8),其一端与固定壳体连接,另一端与滚筒(6)外壁抵接,用于将热解后的固态物质从滚筒(6)外壁上刮下。
  6. 根据权利要求2所述的微波连续热解制碳纳米纤维及氢气的系统,其特征在于,碳产物收集装置(19)包括内筒、套设在所述内筒外部的外筒,所述外筒与内筒之间形成空气流道;所述外筒一端设有热空气出口,其通过空燃比控制器(15)与所述小型内燃机(16)连接;所述内筒中设有螺旋输送结构,其一端出口与储碳罐(20)连接。
  7. 根据权利要求1所述的微波连续热解制碳纳米纤维及氢气的系统,其特征在于,所述热解气纯化利用装置的结构包括氢气纯化装置(13),所述氢气纯化装置(13)上设有热解气入口、用于分离高纯氢气的上部出口、用于分离残余热解气的下部出口,所述上部出口与储氢罐(14)连接;所述下部出口通过空燃比控制器(15)与所述小型内燃机(16)连接。
  8. 根据权利要求1所述的微波连续热解制碳纳米纤维及氢气的系统,其特征在于,所述熔融进料装置(1)的结构包括内筒、套设在所述内筒外部的外筒,所述内筒上设有进料口(2),所述外筒上设有烟气入口,所述外筒与内筒之间形成所述烟气的流动通道;所述内筒中设有螺旋输送机构。
  9. 一种基于权利要求1所述的微波连续热解制碳纳米纤维及氢气的系统的微波连续热解制碳纳米纤维及氢气的方法,其特征在于,包括以下步骤:
    废塑料原料进入熔融进料装置(1)进行加热熔融,所需的热源由高温烟气间接传热的方式提供;
    熔融后的物料及吸波催化剂进入微波热解装置(5)进行热解反应:物料及吸波催化剂形成双层料膜均匀覆盖在所述微波热解装置(5)中的滚筒(6)上,所述双层料膜的内层为物料,外层为碳包覆金属负载催化剂,并在微波作用下限域催化转化生成包含高浓度氢气的热解气以及三维碳纳米纤维;
    所述热解气经过热解气纯化利用装置提纯高浓度氢气并存储,残余的热解气进入小型内燃机(16)燃烧发电,产生的电能用以补充系统能量需求,排出的高温烟气通入所述熔融进料装置(1)作为加热熔融的热源;
    所述三维碳纳米纤维输送至碳产物收集装置(19)收集利用,所述碳产物收集装置(19)利用所述三维碳纳米纤维的余热加热空气,加热后的空气提供给所述小型内燃机(16)用于辅助燃烧,所示小型内燃机(16)将内能转化为机械能并驱动发电机(17)发电,用以补充系统能量需求。
  10. 根据权利要求9所述的微波连续热解制碳纳米纤维及氢气的方法,其特征在于,所述的废塑料原料进入熔融进料装置(1)进行加热熔融,熔融温度为150℃~200℃;所述的熔融后的物料及吸波催化剂进入微波热解装置(5)进行热解反应,热解温度为400℃~500℃;所述高温烟气作为热源,其温度为300℃~400℃;
    所述小型内燃机(16)进口与空燃比控制器(15)连接,所述空燃比控制器(15)的入口分别与所述碳产物收集装置(19)、热解气纯化利用装置的出口连接,用于控制所述加热后的空气、所述残余的热解气的比例。
PCT/CN2021/139450 2021-06-07 2021-12-20 一种微波连续热解制碳纳米纤维及氢气的系统及方法 WO2022257413A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/010,383 US11760635B2 (en) 2021-06-07 2021-12-20 System and method for preparing carbon nanofiber and hydrogen through continuous microwave pyrolysis

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110634200.2A CN113457575B (zh) 2021-06-07 2021-06-07 一种微波连续热解制碳纳米纤维及氢气的系统及方法
CN202110634200.2 2021-06-07

Publications (1)

Publication Number Publication Date
WO2022257413A1 true WO2022257413A1 (zh) 2022-12-15

Family

ID=77868641

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/139450 WO2022257413A1 (zh) 2021-06-07 2021-12-20 一种微波连续热解制碳纳米纤维及氢气的系统及方法

Country Status (3)

Country Link
US (1) US11760635B2 (zh)
CN (1) CN113457575B (zh)
WO (1) WO2022257413A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111978971A (zh) * 2020-07-23 2020-11-24 东南大学 一种热能-微波能优化匹配的生物质热解装置及方法
CN113457575B (zh) 2021-06-07 2022-08-12 东南大学 一种微波连续热解制碳纳米纤维及氢气的系统及方法
CN114621779A (zh) * 2022-03-22 2022-06-14 苏州大学 一种微波催化裂解聚烯烃废塑料及生产氢气和碳纳米纤维的方法
CN115108546A (zh) * 2022-04-27 2022-09-27 东南大学 一种有机固废高聚物连续制备碳材料联产氢的系统和方法
CN115123999A (zh) * 2022-07-19 2022-09-30 武汉新碳科技有限公司 一种含碳固体制氢的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170283707A1 (en) * 2013-09-13 2017-10-05 Virens Energy, LLC. Process and Apparatus For Producing Hydrocarbon Fuel From Waste Plastic
CN107934938A (zh) * 2017-12-06 2018-04-20 武汉光谷环保科技股份有限公司 二段法催化裂解废弃塑料制备碳纳米管的方法
CN108587671A (zh) * 2018-05-21 2018-09-28 华北电力大学 一种生物质快速催化热解的装置与方法
CN111778046A (zh) * 2020-05-26 2020-10-16 汕头市谷源新能源有限公司 一种将塑料废弃物高效资源化利用的方法和系统
CN113457575A (zh) * 2021-06-07 2021-10-01 东南大学 一种微波连续热解制碳纳米纤维及氢气的系统及方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4308740B2 (ja) * 2004-09-24 2009-08-05 株式会社カナック ハイブリッド反応炉とそれを利用した高機能材料の製造方法
CN105349161A (zh) * 2015-11-06 2016-02-24 河北工业大学 一种用废旧轮胎和生物质热解生产氢气和碳纳米管的方法
CN109305875B (zh) * 2017-07-28 2021-08-06 中国石油化工股份有限公司 一种环烷烃类化合物的合成方法
CN108126705B (zh) * 2017-12-06 2021-01-26 武汉光谷环保科技股份有限公司 Fe-Mn陶瓷膜催化剂及其用于热转化废弃塑料为碳纳米材料的应用
CN111978967A (zh) * 2020-07-23 2020-11-24 东南大学 一种生物质辐射微波耦合热解系统及方法
CN111978971A (zh) * 2020-07-23 2020-11-24 东南大学 一种热能-微波能优化匹配的生物质热解装置及方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170283707A1 (en) * 2013-09-13 2017-10-05 Virens Energy, LLC. Process and Apparatus For Producing Hydrocarbon Fuel From Waste Plastic
CN107934938A (zh) * 2017-12-06 2018-04-20 武汉光谷环保科技股份有限公司 二段法催化裂解废弃塑料制备碳纳米管的方法
CN108587671A (zh) * 2018-05-21 2018-09-28 华北电力大学 一种生物质快速催化热解的装置与方法
CN111778046A (zh) * 2020-05-26 2020-10-16 汕头市谷源新能源有限公司 一种将塑料废弃物高效资源化利用的方法和系统
CN113457575A (zh) * 2021-06-07 2021-10-01 东南大学 一种微波连续热解制碳纳米纤维及氢气的系统及方法

Also Published As

Publication number Publication date
CN113457575A (zh) 2021-10-01
US11760635B2 (en) 2023-09-19
US20230192490A1 (en) 2023-06-22
CN113457575B (zh) 2022-08-12

Similar Documents

Publication Publication Date Title
WO2022257413A1 (zh) 一种微波连续热解制碳纳米纤维及氢气的系统及方法
CN105524662B (zh) 一种生物质微波热解气化制合成气的方法
CN201497336U (zh) 卧式连续高温石墨化炉
WO2023207044A1 (zh) 一种有机固废高聚物连续制备碳材料联产氢的系统和方法
CN201530810U (zh) 用于内热式连续制备生物质热解气化煤气的方法中的回转炉
RU2521647C2 (ru) Многотрубное устройство для разложения угля с внешним нагреванием
CN102249219A (zh) 一种高效制备石墨烯的方法及专用于高效制备石墨烯的引爆高温真空连续炉
CN101407320B (zh) 一种批量制备纳米碳纤维的立式反应装置
CN114031071B (zh) 一种微波激励催化自蔓延制备石墨烯的方法与设备
CN201279590Y (zh) 一种金属陶瓷等离子纳米材料制备装置
CN201313818Y (zh) 一种批量制备纳米碳纤维的立式反应装置
CN102533293B (zh) 一种湿法制备生物炭的装置
CN107057731A (zh) 利用电磁波进行生物质碳化的设备
CN209636171U (zh) 一种微波辅助热解生物油装置
CN206308316U (zh) 一种生物质裂解气化微波加热炉
CN210085370U (zh) 催化剂再生的生物质微波催化热解一体化装置
CN110819366A (zh) 一种生物质螺旋热解碳化系统
CN201284235Y (zh) 一种纳米碳管材料生成设备
CN111440626A (zh) 一种新型热解干馏炉
CN211497492U (zh) 一种生物质螺旋热解碳化装置
CN206204179U (zh) 一种用生物质和乙炔制取苯的系统
CN109879290A (zh) 利用含硅生物质连续化制备一氧化硅的方法
CN212102687U (zh) 一种新型热解干馏炉
CN220867333U (zh) 一种生物质连续热解制生物炭和热解油的装置
CN220258002U (zh) 一种硅氧负极材料制备装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21944909

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE