WO2022257266A1 - 一种功能纺织品材料、其制备方法及在环境补水或防蒸发中的应用 - Google Patents

一种功能纺织品材料、其制备方法及在环境补水或防蒸发中的应用 Download PDF

Info

Publication number
WO2022257266A1
WO2022257266A1 PCT/CN2021/112446 CN2021112446W WO2022257266A1 WO 2022257266 A1 WO2022257266 A1 WO 2022257266A1 CN 2021112446 W CN2021112446 W CN 2021112446W WO 2022257266 A1 WO2022257266 A1 WO 2022257266A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrophobic
functional textile
fabric
hydrophilic
textile material
Prior art date
Application number
PCT/CN2021/112446
Other languages
English (en)
French (fr)
Inventor
张悦
刘帅
徐梦佳
马玲
徐佳雯
李岫锦
彭雪
Original Assignee
苏州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州大学 filed Critical 苏州大学
Publication of WO2022257266A1 publication Critical patent/WO2022257266A1/zh

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M10/00Physical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. ultrasonic, corona discharge, irradiation, electric currents, or magnetic fields; Physical treatment combined with treatment with chemical compounds or elements
    • D06M10/04Physical treatment combined with treatment with chemical compounds or elements
    • D06M10/08Organic compounds
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M10/00Physical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. ultrasonic, corona discharge, irradiation, electric currents, or magnetic fields; Physical treatment combined with treatment with chemical compounds or elements
    • D06M10/04Physical treatment combined with treatment with chemical compounds or elements
    • D06M10/06Inorganic compounds or elements
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/03Non-macromolecular organic compounds
    • D21H17/05Non-macromolecular organic compounds containing elements other than carbon and hydrogen only
    • D21H17/18Non-macromolecular organic compounds containing elements other than carbon and hydrogen only forming new compounds in situ, e.g. within the pulp or paper, by chemical reaction with itself, or other added substances, e.g. by grafting on the fibres
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/63Inorganic compounds
    • D21H17/67Water-insoluble compounds, e.g. fillers, pigments
    • D21H17/68Water-insoluble compounds, e.g. fillers, pigments siliceous, e.g. clays
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/71Mixtures of material ; Pulp or paper comprising several different materials not incorporated by special processes
    • D21H17/74Mixtures of material ; Pulp or paper comprising several different materials not incorporated by special processes of organic and inorganic material
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2200/00Functionality of the treatment composition and/or properties imparted to the textile material
    • D06M2200/10Repellency against liquids
    • D06M2200/12Hydrophobic properties

Definitions

  • the invention belongs to the technical field of textile materials, and in particular relates to a functional textile material, its preparation method and its application in environmental hydration or anti-evaporation.
  • the textile material can be used for hydration of trees in arid areas and anti-evaporation of surface water.
  • the present invention provides a novel functional textile material, its preparation method and its application in environmental water replenishment or anti-evaporation.
  • the functional textile material has certain wettability and can absorb water in the surrounding air
  • the steam is condensed, and it can be used to replenish water for trees in arid areas, prevent surface water from evaporating, etc.
  • the invention provides a functional textile material, which is a fabric with a special wettable surface, both surfaces of the fabric are hydrophobic coating surfaces with micron-scale protrusions, and several nano-scale hydrophilic protrusions are distributed area.
  • the invention provides a kind of preparation method of functional textile material, comprises the following steps:
  • the hydrophobic fabric has a hydrophobic coating with micron-scale protrusions on both sides;
  • Hydrophilic treatment is performed on both sides of the hydrophobic fabric to form several nanoscale hydrophilic raised areas on the surface of the hydrophobic coating with micron scaled protrusions to obtain a functional textile material with special wettability.
  • the contact angles of the hydrophobic fabrics are all greater than 110°, preferably greater than 150°.
  • the hydrophobic fabric is obtained according to the following hydrophobic finishing method: through plasma treatment, hydrophobic molecules are polymerized and grafted on both sides of the fabric substrate to obtain a hydrophobic fabric with micron-scale protrusions on the surface.
  • the hydrophobic functional group of the hydrophobic molecule is one or more of a fluorinated alkane group and a long-chain hydrocarbon group, and considering the impact on the environment, it is preferably a straight chain with a chain length greater than fifteen chain hydrocarbon group.
  • the fabric substrate is recycled waste textiles or degradable textiles.
  • the step S2) specifically includes: pre-coating both sides of the hydrophobic fabric with hydrophilic molecules, and then performing plasma treatment, so that the surface of the hydrophobic coating with micron-scale protrusions forms several nanometer scales. Scale the hydrophilic raised areas to obtain the functional textile material.
  • the plasma treatment is carried out using a DBD plasma treatment device at normal temperature and pressure;
  • the hydrophilic molecules are preferably compounds containing amino and/or carboxyl groups.
  • the surface of the hydrophobic coating with micron-scale protrusions further includes nano-scale hydrophilic particles.
  • the functional textile material with special wettability provided by the present invention can be prepared by the preparation method described above.
  • the present invention provides the application of the above-mentioned functional textile material in plant water replenishment and/or surface water evaporation prevention.
  • the present invention builds a special wettable surface on the surface of the textile through special functional finishing, that is, the surface of the prepared functional textile material is a hydrophobic coating as a primer, and a number of hydrophilic raised areas are evenly distributed on the surface, and the raised areas on the coated surface
  • the scale is micro-nano scale.
  • the special wetting material obtained in the present invention uses the distributed hydrophilic raised area as the core of water molecule condensation, and the surface energy gradient formed by the hydrophobic and hydrophilic areas can drive water molecules to gather to the hydrophilic area. When the droplet size reaches The critical size is then transported through the hydrophobic region.
  • the present invention preferably adopts plasma treatment to prepare the special wettable textile material.
  • the method has the advantages of no special pretreatment, simple polymerization reactor, no special working gas, normal temperature and pressure, fast reaction speed, short reaction time, minimal consumption of reagents, low energy consumption, no "three wastes" discharge, and clean production process
  • the obtained functional textile material is a new type of textile material that has great market application potential and is used for replenishing water in forests in arid areas and preventing surface water from evaporating.
  • Figure 1 is a schematic diagram of a plasma processing device in some embodiments of the present invention.
  • Fig. 2 is the AFM picture of the special wettability surface of the fabric obtained in Example 1 of the present invention.
  • Fig. 3 is a schematic diagram of test mist collection in the embodiment of the present invention.
  • the invention provides a kind of preparation method of functional textile material, comprises the following steps:
  • the hydrophobic fabric has a hydrophobic coating with micron-scale protrusions on both sides;
  • Hydrophilic treatment is performed on both sides of the hydrophobic fabric to form several nanoscale hydrophilic raised areas on the surface of the hydrophobic coating with micron scaled protrusions to obtain a functional textile material with special wettability.
  • the functional textile material prepared by the invention has special wettability, can absorb water vapor in the surrounding air and condense into liquid droplets, and can be used for replenishing water for trees in arid areas, preventing evaporation of surface water, and the like.
  • a hydrophobic fabric is obtained by carrying out hydrophobic finishing on the fabric substrate, and both surfaces of the fabric are coated with a hydrophobic coating having micron-scale protrusions; specifically, the contact angle of the hydrophobic fabric (a liquid droplet contacts The angles between the surfaces) are greater than 110°, preferably greater than 150°, which is a super-hydrophobic surface.
  • the fabric substrate is subjected to the following dry hydrophobic finishing:
  • the hydrophobic molecules are polymerized and grafted on both sides of the fabric substrate to obtain a hydrophobic fabric with micron-scale protrusions.
  • the preparation process of the hydrophobic fabric includes two parts: 1) pre-coating; 2) plasma treatment.
  • the present invention preferably adopts the method of dip coating to coat the surface of the fabric substrate with a hydrophobic agent;
  • the hydrophobic agent mainly includes a hydrophobic substance (also known as a hydrophobic molecule, a hydrophobic compound, which contains a hydrophobic functional group in its molecular structure) and a solvent .
  • the fabric substrate of the present invention is a flexible porous sheet or membrane obtained through textile technology (such as weaving, knitting, non-woven, etc.), and has no special restrictions on its main structure, composition, specifications, etc.
  • the fabric substrate to be coated is a cellulose component; in other embodiments, a polyester fabric is selected as the substrate.
  • the fabric base material can be recycled waste textiles or degradable textiles, which is beneficial to environmental protection.
  • the hydrophobic substance is one or more hydrophobic molecules in siloxane containing fluorinated alkanes or long-chain hydrocarbon functional groups; wherein the present invention preferably adopts relatively environmentally friendly and safe long-term Paraffinic siloxane, more preferably hexadecyltrimethoxysilane.
  • the embodiment of the present invention adds a certain amount of nano-silica particles (eg, particle size 30-50nm) when preparing the hydrophobic ethanol solution.
  • hydrophobic substance and silicon dioxide particles into ethanol and stir evenly to prepare a hydrophobic agent; then put the fabric base material into the hydrophobic agent and dip-coat for a certain period of time (for example, 1 -5 minutes), can be air-dried or oven-dried to obtain a dry sample pre-coated with a hydrophobic agent.
  • the plasma treatment described in the embodiment of the present invention adopts a dielectric barrier discharge (DBD) plasma treatment device, which can be used for the rapid preparation of a wettable surface;
  • DBD dielectric barrier discharge
  • the polymerized monomer molecules are polymerized and grafted on the surface of the substrate, thereby in-situ polymerized on the surface of the substrate to prepare a wet coating.
  • the schematic diagram of the plasma processing device is shown in Figure 1, which mainly includes: 1 plasma generator power supply with a certain power that meets the production capacity requirements, 1 parallel plate DBD plasma polymerization reactor, fixed bracket and power cord, etc.; the grounding of the power supply
  • the end wires are well connected to the earth.
  • the DBD plasma polymerization reactors all include: two quartz plates of 150mm ⁇ 150mm ⁇ 2mm; two aluminum electrodes ( ⁇ 100mm ⁇ 50mm); the discharge electrodes are respectively fixed on the outer center of the upper and lower quartz plates.
  • the upper electrode is a high-voltage electrode, which is connected to the high-voltage output end of the power supply by a high-voltage wire; the lower side is a ground electrode, which is connected to the ground electrode of the power supply by a wire.
  • the discharge distance is 2mm; the size of the discharge area can be adjusted by replacing electrodes and quartz plates of different sizes according to the size of the textile.
  • DBD common parallel plate dielectric barrier discharge
  • a rubber sealing gasket is added in the discharge area.
  • This sealing ring isolates the sample from the outside air, and only uses the limited air in the discharge area as the working gas, so that it can use air as the working gas under normal pressure and room temperature to generate plasma to induce
  • the monomer molecules are polymerized and grafted on the surface of the substrate, thereby realizing the preparation of a hydrophobic coating on the surface of the substrate.
  • the dry sample pre-coated with a hydrophobic agent is placed in the discharge area between the dielectrics in Figure 1, the plasma power supply is turned on, adjusted to a suitable working voltage, and an appropriate treatment time is selected to complete the hydrophobicity of the sample. tidy.
  • the operating voltage can be 20-40V, preferably 30V; the treatment time is preferably 1-6 minutes, more preferably 5 minutes, which is beneficial to ensure good siloxane polymerization without causing the discharge to be too strong Causes intense etching of the substrate by the plasma.
  • the preferred embodiment of the present invention pre-coats the hydrophobic sample with a hydrophilic agent (a solution containing a hydrophilic substance or a hydrophilic molecule), and then receives the same dose of plasma treatment to make the fabric with micron-scale protrusions
  • a hydrophilic agent a solution containing a hydrophilic substance or a hydrophilic molecule
  • the hydrophilic treatment preferably also includes pre-finishing by dip coating and DBD plasma treatment.
  • the preferred preparation method of the embodiment of the present invention does not require special pretreatment, no special working gas, fast reaction speed and short reaction time at normal temperature and pressure, minimal reagent consumption, low energy consumption, no waste water discharge, clean production process, and many advantages. Technical advantages.
  • the hydrophilic molecule is preferably a compound containing an amino group and/or carboxyl group; the hydrophilic substance is preferably 3-aminopropyltrimethoxysilane, which has better hydrophilicity.
  • textile materials with special wettability are prepared after fabric samples are subjected to 30V operating voltage and plasma hydrophobic and hydrophilic treatments for 5 minutes.
  • the invention provides a functional textile material, which is a fabric with special wettability, both surfaces of the fabric are hydrophobic coating surfaces with micron-scale protrusions, and several nano-scale hydrophilic protrusions are distributed
  • the region can be prepared by the above-mentioned preparation method.
  • the bottom layer of the functional textile material coating is a hydrophobic coating with micron-scale protrusions.
  • the hydrophobic coating is a hydrophobic area uniformly formed by micron-scale hydrophobic particles, and a number of nano-scale hydrophilic raised areas are compounded on it.
  • the nanoscale hydrophilic raised regions are a large number of uniformly distributed hydrophilic regions with a size ranging from 100nm to 100 ⁇ m.
  • the functional textile material with special surface morphology prepared in the embodiment of the present invention has special wettability, and the special wettability surface is mainly through the uniformly distributed hydrophilic raised regions and the surface energy gradient between hydrophobic and hydrophilic regions.
  • the surrounding discrete water molecules gather and drive the water molecules to gather in the hydrophilic area to condense, and when the droplet size reaches the critical size, the transport is completed through the hydrophobic area.
  • the coating surface of the functional textile material is similar to the special wettability surface of the carapace surface of the beetle.
  • the beetle in the Namib Desert survives by collecting water vapor from the surrounding atmosphere from protrusions on its back. It has been found that the bumpy carapace surface of this beetle contains alternately waxy hydrophobic regions and non-waxy areas. Water vapor will condense on the carapace, and the convex surface contains a large number of hydrophilic regions with a size of about 100 ⁇ m, which serve as nucleation sites for water vapor condensation. When the condensate droplet reaches the critical size, the droplet will be transported in the waxy hydrophobic area, and when the critical droplet is transported along the waxy hydrophobic area to its mouth, it can supply water for it.
  • the protrusions in the hydrophobic coating with micron-scale protrusions are composed of silicon dioxide hydrophobic particles, which is beneficial to improve the hydrophobic performance of the coating;
  • the nano-scale hydrophilic protrusion area is composed of two Silica hydrophilic particles are combined with micron-sized silica hydrophobic particles through chemical bonds to form a surface energy gradient to facilitate water vapor condensation.
  • the coating of the functional textile material with the bionic surface described in the embodiment of the present invention is uniform and firm, can quickly collect water vapor, has good weather resistance, and has no pollution to the environment.
  • the embodiment of the present invention also provides the application of the above-mentioned functional textile material in water replenishment and anti-evaporation of plants and/or anti-evaporation of surface water and other environments.
  • the water vapor in the surrounding air is "captured" in the relatively high humidity in the morning and evening in the western arid region, making it condense on the hydrophilic sites on the surface of the fabric, When the water droplets reach the critical size, they are transported to the trees along the hydrophobic area.
  • this functional textile material is coated on the surface of the trunk, the surrounding water vapor can be collected in the morning and evening, and transported to the roots of the tree by gravity, which can effectively relieve the pressure of drip irrigation water; if the material is covered on the surface and combined with drip irrigation, it can Effectively prevent moisture from evaporating, and the "intercepted" moisture will flow back to the ground through the hydrophobic area on the coating.
  • this functional textile material is used for replenishing water for trees and other plants in arid areas and preventing evaporation of surface water, which has great market application potential.
  • hydrophobic substance (0.1M) and 1.2g/L nano silicon dioxide particles (30-50nm) into ethanol, stir evenly, and prepare the hydrophobic reagent.
  • hydrophilic substance (0.1M) and 1.2g/L nano-silica particles (30-50nm) into the alcohol aqueous solution (volume ratio 10:3), and after stirring overnight, the hydrophilic silica particles were separated, and the Dispersed into ethanol to prepare a hydrophilic reagent.
  • polyester fabric sample into the hydrophobic reagent and dip-coat it for 1 minute, and let it dry naturally; then put the dry sample pre-coated with the hydrophobic substance into the discharge area for plasma treatment (device as shown in Figure 1), specifically After 30V operating voltage, 5 minutes of plasma hydrophobic treatment; then, the obtained hydrophobic sample was immersed in a hydrophilic reagent for 1 minute, and then received the same dose of plasma hydrophilic treatment to prepare a special wettability Polyester fabric.
  • Figure 2 is an AFM image of the special wettability surface of the obtained fabric.
  • the hydrophobic area is the surface of hydrophobic silicon particles on a micron scale, and the fine protrusions distributed on the surface are hydrophilic silicon particles.
  • Fig. 3 is a schematic diagram of test mist collection in the embodiment of the present invention.
  • the test conditions include: 40% humidity, 15 minutes of collection time, and 10 cm of test distance.
  • This application collects the mist and makes it condense and gathers it in a container, and weighs the condensed water droplets.
  • the test results are shown in Table 1, and Table 1 shows the mist collection ability of the fabric before and after treatment.
  • Table 1 The mist collection ability of polyester samples before and after treatment
  • the special wettable polyester fabric of this application can effectively collect water vapor in the surrounding environment and condense into water droplets.
  • the untreated sample is a polyester fabric, which has difficulty collecting condensed moisture effectively.
  • the sample was placed in ultrapure water for 10 minutes, and then the mist was collected again. There was no obvious decrease in its performance, and it can be seen that the coating has good bonding fastness. .
  • the cellulose slow filter paper of the same size is coated and modified, and the mist collection ability of the sample is tested (see Table 2).
  • Table 2 the preparation method of the special wetting coating of this application is also applicable to filter paper.
  • the special wetting filter paper of this application can effectively collect water vapor in the surrounding environment and condense into water droplets.
  • the sample was placed in ultrapure water for 10 minutes, and then the mist was collected again. There was no obvious decrease in its performance, and it can be seen that the coating has good bonding fastness.
  • Table 2 The mist collection ability of cellulose filter paper samples before and after treatment
  • the surface of the functional textile material prepared by the present invention is a hydrophobic coating, and several hydrophilic raised areas are evenly distributed on the surface, and the scale of the raised areas on the coating surface is micro-nano scale.
  • the special wetting material obtained in the present invention uses the distributed hydrophilic raised area as the core of water molecule condensation, and the surface energy gradient formed by the hydrophobic and hydrophilic areas can drive water molecules to gather to the hydrophilic area. When the droplet size reaches The critical size is then transported through the hydrophobic region.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Abstract

一种功能纺织品材料、其制备方法和在环境补水或防蒸发中的应用,该方法包括:S1)提供疏水织物,所述疏水织物双面具有微米尺度凸起的疏水性涂层;S2)将所述疏水织物双面进行亲水处理,在具有微米尺度凸起的疏水性涂层表面均匀形成若干纳米尺度亲水性凸起区域,宏观上得到具有特殊浸润性的功能纺织品材料。本发明通过特殊的功能整理将特殊浸润性表面构筑于纺织品表面,即所制备的功能纺织品材料表面是疏水涂层打底、在其上分布若干亲水凸起区域,涂层表面的凸起为微纳尺度。本发明该功能纺织品材料具有较好的浸润性,能够吸收周围空气中的水蒸气并凝结形成液滴,可用于干旱地区林木补水、防地表水蒸发等环境补水或防蒸发。

Description

一种功能纺织品材料、其制备方法及在环境补水或防蒸发中的应用
本申请要求于2021年06月07日提交中国专利局、申请号为202110633297.5、发明名称为“一种功能纺织品材料、其制备方法及在环境补水或防蒸发中的应用”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明属于纺织品材料技术领域,尤其涉及一种功能纺织品材料、其制备方法及在环境补水或防蒸发中的应用,例如,该纺织品材料可用于干旱地区林木补水、防地表水蒸发。
背景技术
近年来,国家对西部地区水土治理,退耕还林,三北防护林湿地保护与恢复及退牧还草等重点工程投资总额325.8亿,森林建设呈“总量增加”的特点。但从根本上来看,我国总体上仍然是一个缺林少绿、生态脆弱的国家。植树造林,改善生态,任重而道远。其中,我国西北干旱及半干旱地区林木水分供给问题还面临巨大挑战。由于西北地区降水稀少,水土流失严重,地表蒸发量大(蒸发能力是降水量的4~10倍),为当地植被的成活带来了巨大挑战。此外,西部地区水资源稀缺,可用于树木生存的水资源更是少之又少,树木生存环境恶劣。虽然当地政府在绿化灌溉方面投入巨大,但由于地表蒸发迅速,真正被树木吸收的水分有限。在减少水资源浪费的同时又能满足树木正常生长供水,“精细化”供水就显得尤为重要。因此,解决林木水源短缺问题,提高植被供水效率,实现水资源充分利用,是减少成本投入的关键。植物获得生存必需的水分,防风固沙,改善当地的生态环境,推进西部地区生态环境建设迫在眉睫。
目前,用于树木供水大多通过滴灌、喷灌、浇灌等方式来完成,但对于水资源紧缺的西部地区而言,负担相对较重。亦有一些技术是将雨水收集到储水罐中,通过自吸式或水泵将水运送到树木根系附近供其汲取水分,或是通过塑料地膜来收集雨水供植被吸收,但这些均不适用于雨水稀少的西部地区。
发明内容
针对干旱地区的补水问题,本发明提供了一种新型的功能纺织品材料、其制备方法和在环境补水或防蒸发中的应用,该功能纺织品材料具有一定的浸润性,能够吸收周围空气中的水蒸气并凝结,可用于干旱地区林木补水、防地表水蒸发等。
本发明提供一种功能纺织品材料,其是具有特殊浸润性表面的织物,所述织物两个表面均为具有微米尺度凸起的疏水性涂层表面,并且分布有若干纳米尺度亲水性凸起区域。
本发明提供一种功能纺织品材料的制备方法,包括以下步骤:
S1)提供疏水织物,所述疏水织物双面具有微米尺度凸起的疏水性涂层;
S2)将所述疏水织物双面进行亲水处理,在具有微米尺度凸起的疏水性涂层表面形成若干纳米尺度亲水性凸起区域,得到具有特殊浸润性的功能纺织品材料。
在本发明的实施例中,所述疏水织物的接触角均大于110°,优选均大于150°。
在本发明的实施例中,所述疏水织物按照以下疏水整理方式获得:通过等离子体处理,使疏水分子在织物基材双面聚合接枝,得到表面具有微米尺度凸起的疏水织物。
在本发明的实施例中,所述疏水分子的疏水功能基为氟化烷烃基团和长链烃基中的一种或多种,考虑到对环境的影响,优选为链长大于十五的直链烃基。
在本发明的实施例中,所述织物基材为回收废旧纺织品或可降解纺织品。
在本发明的实施例中,所述步骤S2)具体为:将所述疏水织物双面预涂饰亲水分子,然后进行等离子体处理,使具有微米尺度凸起的疏水性涂层表面形成若干纳米尺度亲水性凸起区域,得到所述功能纺织品材料。
在本发明的实施例中,所述等离子体处理采用DBD等离子体处理装置在常温常压的条件下进行;所述亲水分子优选为含有氨基和/或羧基的化合物。
在本发明的实施例中,所述具有微米尺度凸起的疏水性涂层表面还包含纳米尺度的亲水颗粒。
本发明提供的所述具有特殊浸润性的功能纺织品材料可由前文所述的制 备方法制得。
此外,本发明提供如前所述的功能纺织品材料在植物补水和/或防地表水蒸发中的应用。
本发明通过特殊的功能整理将特殊浸润性表面构筑于纺织品表面,即所制备的功能纺织品材料表面是疏水涂层打底、在其表面均匀分布若干亲水凸起区域,涂层表面的凸起尺度为微纳尺度。本发明得到的该种特殊浸润性材料以分布的亲水凸起区域作为水分子凝结的核心,疏水和亲水区域形成的表面能梯度能够驱使水分子向亲水区域聚集,当液滴尺寸达到临界尺寸后再通过疏水区域完成输送。利用本发明这种功能纺织品材料表面的特殊浸润性,在西部干旱地区每天早晚湿度相对较大的时段来“捕获”周围空气中的水蒸气,使其凝结于织物表面的亲水位点,当水滴达到临界尺寸后再沿着疏水区域输送给树木。如将这种功能纺织品材料包覆于树干表面,即可在早晚时段收集周围水汽,并靠重力传输至树木的根部,可有效缓解滴灌用水的压力;如将该材料覆盖于地表配合滴灌,可有效防止水分蒸发,“拦截”的水分会通过涂层上的疏水区域重新流回地面。该种材料具有涂层均匀牢固、收集水汽快速、无需能源动力、对环境无污染、耐侯性好、透气性好等诸多技术优势。
进一步地,本发明优选采用等离子体处理的方式制备此特殊浸润性的纺织品材料。该方法具有无需特别前处理、聚合反应器简易、无需特殊工作气体、常温常压、反应速度快、反应时间短、试剂消耗极小、能耗低、无“三废”排放、生产过程清洁的技术特点;所获得的功能纺织品材料是一种具有极大市场应用潜力的用于干旱地区林木补水、防地表水蒸发的新型纺织品材料。
附图说明
图1为本发明一些实施例中等离子体处理装置示意图;
图2为本发明实施例1所得织物特殊浸润性表面的AFM图;
图3为本发明实施例中测试雾气收集示意图。
具体实施方式
下面对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述 的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明提供了一种功能纺织品材料的制备方法,包括以下步骤:
S1)提供疏水织物,所述疏水织物双面具有微米尺度凸起的疏水性涂层;
S2)将所述疏水织物双面进行亲水处理,在具有微米尺度凸起的疏水性涂层表面形成若干纳米尺度亲水性凸起区域,得到具有特殊浸润性的功能纺织品材料。
本发明制备的功能纺织品材料具有特殊的浸润性,能够吸收周围空气中的水蒸气并凝结成液滴,可用于干旱地区林木补水、防地表水蒸发等。
本发明实施例首先通过对织物基材进行疏水整理得到疏水织物,其两个表面均涂覆具有微米尺度凸起的疏水性涂层;具体地,所述疏水织物的接触角(液滴与其接触表面之间的夹角)均大于110°,优选均大于150°,为超疏水表面。在本发明的实施例中,优选将织物基材进行以下干法疏水整理:
通过等离子体处理,使疏水分子在织物基材双面聚合接枝,得到具有微米尺度凸起的疏水织物。
具体地,所述疏水织物的制备过程共包括两个部分:1)预涂饰;2)等离子处理。其中,本发明优选采用浸涂的方式将织物基材表面涂饰疏水试剂;所述疏水试剂主要包含疏水性物质(也可称疏水分子、疏水化合物,其分子结构中含有疏水功能基团)和溶剂。
本发明所述的织物基材是通过纺织技术(如梭织、针织、非织造等)获得的柔性多孔片材或膜材,对其主体结构、成分、规格等并无特殊限制。一些实施例中,待涂饰的织物基材为纤维素成分;另一些实施例中,选择涤纶织物作为基材。作为优选,所述织物基材可为回收废旧纺织品或可降解纺织品,利于环保。
在本发明的实施例中,所述疏水性物质为含有氟化烷烃或长链烃功能基团的硅氧烷中的一种或多种疏水分子;其中本发明优选采用相对环保、安全的长链烃硅氧烷,更优地选择十六烷基三甲氧基硅烷。此外,为增加表面粗糙度,本发明实施例在配制疏水乙醇溶液时加入一定量的纳米二氧化硅颗粒(例如粒 径30-50nm)。本发明具体实施例将所述的疏水性物质及二氧化硅颗粒放入乙醇中搅拌均匀,即制备得到了疏水试剂;然后将所述织物基材放入疏水试剂中浸涂一定时间(例如1-5分钟),可自然晾干或烘箱烘干,得到预涂饰有疏水试剂的干燥样品。
本发明实施例所述的等离子体处理采用介质阻挡放电(DBD)等离子体处理装置,可用于浸润性表面的快速制备;其是通过放电过程产生的高能电子、强氧化性的活性基团等诱导聚合单体分子在基材表面发生聚合接枝,从而在基材表面原位聚合制备浸润性涂层。
该等离子体处理装置示意图参见图1,主要包括:1只满足生产能力要求的一定功率的等离子体发生电源、1只平行板DBD等离子体聚合反应器,以及固定支架与电源线等;电源的接地端用导线与大地良好相接。DBD等离子体聚合反应器均包括:两支150mm×150mm×2mm的石英平板;两支铝制电极(φ100mm×50mm);放电电极分别固定于上下石英板的外侧中央。上侧电极为高压电极,用高压导线与电源的高压输出端相接;下侧为接地电极,用导线与电源的接地电极相连。放电间距为2mm;可根据纺织品大小替换不同尺寸的电极、石英板来调整放电区的大小。
此外,还可在常见的平行板介质阻挡放电(DBD)等离子体发生器的基础上进行改进,在放电区增设橡胶密封垫圈。此密封圈使得样品与外界空气隔绝,仅使用放电区内有限的空气作为工作气体,使得其能够在常压室温的条件下,以空气作为工作气体,以产生等离子体来诱导含有疏水基团的单体分子聚合接枝于基材表面,从而实现在基材表面疏水涂层的制备。
本发明实施例将预涂饰有疏水试剂的干燥样品放置于图1电介质之间的放电区,接通等离子体电源,调至合适的工作电压,选择适当的处理时长,即可完成对样品的疏水整理。其中,所述的操作电压可为20~40V,优选为30V;处理时长优选为1~6分钟,更优选为5分钟,这样利于保证良好的硅氧烷聚合,同时又不会使放电太强引起等离子体对基材的强烈刻蚀。
得到疏水织物后,本发明优选实施例将所述疏水样品预涂饰亲水试剂(含有亲水性物质或亲水分子的溶液),再接受相同剂量的等离子体处理,使具有微米尺度凸起的疏水性涂层表面均匀形成若干纳米尺度亲水性凸起区域,具有 特殊浸润性的功能纺织品材料即制备完成。
其中,所述的亲水处理优选也包括浸涂方式预涂饰、DBD等离子体处理。本发明实施例优选的制备方法无需特别前处理,无需特殊工作气体,常温常压下反应速度快、反应时间短,试剂消耗极小、能耗低,无废水等排放、生产过程清洁,具有诸多技术优势。
在本发明的实施例中,所述亲水分子优选为含有氨基和/或羧基的化合物;所述亲水性物质优选为3-氨丙基三甲氧基硅烷,亲水性较好。为增加表面粗糙度等,在配制疏水及亲水乙醇溶液时分别加入0~1.2g/L纳米二氧化硅颗粒(30-50nm)。将疏水性物质及二氧化硅颗粒放入乙醇中搅拌均匀即制备了疏水试剂;将亲水性物质和二氧化硅颗粒放入醇水溶液(体积比10:3),搅拌过夜后分离出亲水二氧化硅颗粒,将其分散到乙醇中即制备了亲水试剂。
本发明一些实施例将织物样品分别经过30V操作电压,5分钟时长的等离子体疏水及亲水处理后,即制备了具有特殊浸润性的纺织品材料。
本发明提供了一种功能纺织品材料,其是具有特殊浸润性的织物,所述织物两个表面均为具有微米尺度凸起的疏水性涂层表面,并且分布有若干纳米尺度亲水性凸起区域,可由前文所述的制备方法制得。所述的功能纺织品材料涂层底层为具有微米尺度凸起的疏水性涂层,该疏水性涂层是微米尺度疏水颗粒均匀形成的疏水区域,其上复合有若干纳米尺度亲水性凸起区域,所述的纳米尺度亲水性凸起区域是大量均匀分布的、尺寸范围100nm-100μm的亲水区域。
本发明实施例制备的特殊表面形貌的功能纺织品材料具有特殊的浸润性,该特殊浸润性表面主要通过均匀分布的亲水凸起区域,以及疏水和亲水区域之间的表面能梯度,将周围离散的水分子聚集并驱使水分子聚集于亲水区域发生凝结,当液滴尺寸达到临界尺寸后通过疏水区域完成输送。
在本发明中,所述的功能纺织品材料的涂层表面与甲虫甲壳表面的特殊浸润性表面相似。分布于纳米布沙漠的甲虫能够靠从背上的凸起收集周围大气中的水蒸气来维持生存,经研究发现,这种甲虫凹凸不平的背甲表面包含了交替涂蜡的疏水区域和非蜡质的亲水区域,水蒸气会在背甲上发生凝结,而凸起表面含有大量尺寸约为100μm的亲水区域,作为水汽凝结的成核的位点。当冷凝液滴达到临界尺寸后,液滴会在蜡质疏水区域进行输送,当临界液滴沿蜡质 疏水区运输到其口中时,即可供其补充水分。
在本发明的优选实施例中,所述的具有微米尺度凸起的疏水性涂层中凸起由二氧化硅疏水颗粒组成,利于提升涂层疏水性能;纳米尺度亲水性凸起区域由二氧化硅亲水颗粒组成,通过化合键与微米尺度的二氧化硅疏水颗粒结合在一起,共同形成表面能梯度,便于水汽凝结。
本发明实施例所述具有仿生表面的功能纺织品材料的涂层均匀牢固,可快速收集水汽,耐候性好,此外对环境无污染。
具体地,本发明实施例还提供了如前所述的功能纺织品材料在植物补水和/或防地表水蒸发等环境补水、防蒸发中的应用。
利用本发明实施例这种仿生表面材料的特殊浸润性,在西部干旱地区每天早晚湿度相对较大的时段来“捕获”周围空气中的水蒸气,使其凝结于织物表面的亲水位点,当水滴达到临界尺寸后再沿着疏水区域输送给树木。如将这种功能纺织品材料包覆于树干表面,即可在早晚时段收集周围水汽,并靠重力传输至树木的根部,可有效缓解滴灌用水的压力;如将该材料覆盖于地表配合滴灌,可有效防止水分蒸发,“拦截”的水分会通过涂层上的疏水区域重新流回地面。本发明实施例将这种功能纺织品材料用于干旱地区林木等植物补水、防地表水蒸发,具有极大市场应用潜力。
为了进一步理解本申请,下面结合实施例对本申请提供的功能纺织品材料、其制备方法和在环境补水、防蒸发中的应用进行具体地描述。但是应当理解,这些实施例是在以本发明技术方案为前提下进行实施,给出了详细的实施方式和具体的操作过程,只是为进一步说明本发明的特征和优点,而不是对本发明权利要求的限制,本发明的保护范围也不限于下述的实施例。
实施例中未注明具体技术或条件的,按照本领域内的文献所描述的技术或条件或者按照产品说明书进行。所用试剂或仪器未注明生产厂商者,均为可以通过市场购得的常规产品。
实施例1
选择涤纶织物(218g/m 2)作为基材,裁剪为100mm×100mm大小。疏水性物质选择十六烷基三甲氧基硅烷,亲水性物质选择3-氨丙基三甲氧基硅烷。
将疏水性物质(0.1M)及1.2g/L纳米二氧化硅颗粒(30-50nm)放入乙醇 中,搅拌均匀,制备得到疏水试剂。将亲水性物质(0.1M)和1.2g/L纳米二氧化硅颗粒(30-50nm)放入醇水溶液(体积比10:3),搅拌过夜后分离出亲水二氧化硅颗粒,将其分散到乙醇中,制备得到亲水试剂。
先将所述涤纶织物样品放入疏水试剂中浸涂1分钟,自然晾干;再将预涂饰有疏水性物质的干燥样品放入放电区进行等离子体处理(装置如图1所示),具体经过30V操作电压,5分钟时长的等离子体疏水处理;随后,将得到的疏水样品放入亲水试剂中浸涂1分钟,再接受相同剂量的等离子体亲水处理,制备了具有特殊浸润性的涤纶织物。
图2是所得织物特殊浸润性表面的AFM图,疏水区域为微米尺度的疏水硅颗粒表面,其表面分布的细小凸起为亲水硅颗粒。
图3为本发明实施例中测试雾气收集示意图,测试条件包括:40%湿度,收集时间15min,测试距离10cm。本申请通过收集雾气并使其凝结后汇聚于容器中,对凝结的水滴进行称量。测试结果参见表1,表1是处理前后织物的雾气收集能力。
表1处理前后涤纶样品的雾气收集能力
Figure PCTCN2021112446-appb-000001
可以看到,本申请特殊浸润性的涤纶织物能够有效收集周围环境中的水汽,并凝结成水滴。未处理的样品是涤纶织物,其难以有效收集凝结的水汽。将样品放置于超纯水中超声10分钟后再次进行雾气收集,其性能未见明显降低,可见涂层具有较好的结合牢度。。
常规的亲水处理仅能提升织物的回潮率,提高抗静电性能,但周围空气中的水分子未能形成聚集态,仍然还是离散地吸附于织物纤维上。
实施例2
同样地,按照实施例1上述方法对于同等尺寸的纤维素慢速滤纸进行涂层修饰,并对样品的雾气收集能力进行的测试(见表2)。由表中数据可以看出,本申请特殊浸润性涂层制备方法同样适用于滤纸,本申请特殊浸润性的滤纸能够有效收集周围环境中的水汽,并凝结成水滴。但由于两个案例中的基材组织结构存在差异,导致雾气收集能力存在差异。将样品放置于超纯水中超声10分钟后再次进行雾气收集,其性能未见明显降低,可见涂层具有较好的结合牢度。
表2处理前后纤维素滤纸样品的雾气收集能力
Figure PCTCN2021112446-appb-000002
由以上实施例可知,本发明所制备的功能纺织品材料表面是疏水涂层打底、在其表面均匀分布若干亲水凸起区域,涂层表面的凸起尺度为微纳尺度。本发明得到的该种特殊浸润性材料以分布的亲水凸起区域作为水分子凝结的核心,疏水和亲水区域形成的表面能梯度能够驱使水分子向亲水区域聚集,当液滴尺寸达到临界尺寸后再通过疏水区域完成输送。利用本发明这种功能纺织品材料表面的特殊浸润性,在西部干旱地区每天早晚湿度相对较大的时段来“捕获”周围空气中的水蒸气,使其凝结于织物表面的亲水位点,当水滴达到临界尺寸后再沿着疏水区域输送给树木。如将这种功能纺织品材料包覆于树干表面,即可在早晚时段收集周围水汽,并靠重力传输至树木的根部,可有效缓解滴灌用水的压力;如将该材料覆盖于地表配合滴灌,可有效防止水分蒸发,“拦截”的水分会通过涂层上的疏水区域重新流回地面。该种材料具有涂层均匀牢固、收集水汽快速、无需能源动力、对环境无污染、耐侯性好、透气性好等优势,是一种具有极大市场应用潜力的用于干旱地区林木补水、防地表水蒸 发的新型纺织品材料。
以上所述仅是本发明的优选实施方式,应当指出,对于使本技术领域的专业技术人员,在不脱离本发明技术原理的前提下,是能够实现对这些实施例的多种修改的,而这些修改也应视为本发明应该保护的范围。

Claims (10)

  1. 一种功能纺织品材料,其特征在于,是具有特殊浸润性表面的织物,所述织物两个表面均为具有微米尺度凸起的疏水性涂层表面,并且分布有若干纳米尺度亲水性凸起区域。
  2. 一种功能纺织品材料的制备方法,其特征在于,包括以下步骤:
    S1)提供疏水织物,所述疏水织物双面具有微米尺度凸起的疏水性涂层;
    S2)将所述疏水织物双面进行亲水处理,在具有微米尺度凸起的疏水性涂层表面形成若干纳米尺度亲水性凸起区域,得到具有特殊浸润性的功能纺织品材料。
  3. 根据权利要求2所述的功能纺织品材料的制备方法,其特征在于,所述疏水织物的接触角均大于110°,优选均大于150°。
  4. 根据权利要求2所述的功能纺织品材料的制备方法,其特征在于,所述疏水织物按照以下疏水整理方式获得:通过等离子体处理,使疏水分子在织物基材双面聚合接枝,得到表面具有微米尺度凸起的疏水织物。
  5. 根据权利要求4所述的功能纺织品材料的制备方法,其特征在于,所述疏水分子的疏水功能基为氟化烷烃基团和长链烃基中的一种或多种,优选为链长大于十五的直链烃基。
  6. 根据权利要求4所述的功能纺织品材料的制备方法,其特征在于,所述织物基材为回收废旧纺织品或可降解纺织品。
  7. 根据权利要求2所述的功能纺织品材料的制备方法,其特征在于,所述步骤S2)具体为:将所述疏水织物双面预涂饰亲水分子,然后进行等离子体处理,使具有微米尺度凸起的疏水性涂层表面形成若干纳米尺度亲水性凸起区域,得到所述功能纺织品材料。
  8. 根据权利要求7所述的功能纺织品材料的制备方法,其特征在于,所述等离子体处理采用DBD等离子体处理装置在常温常压的条件下进行;所述亲水分子优选为含有氨基和/或羧基的化合物。
  9. 根据权利要求2-8任一项所述的功能纺织品材料的制备方法,其特征在于,所述具有微米尺度凸起的疏水性涂层表面还包含纳米尺度的亲水颗粒。
  10. 如权利要求1所述的功能纺织品材料或权利要求2-9任一项所述方法制备的功能纺织品材料在植物补水和/或防地表水蒸发中的应用。
PCT/CN2021/112446 2021-06-07 2021-08-13 一种功能纺织品材料、其制备方法及在环境补水或防蒸发中的应用 WO2022257266A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110633297.5 2021-06-07
CN202110633297.5A CN113308872A (zh) 2021-06-07 2021-06-07 一种功能纺织品材料、其制备方法及在环境补水或防蒸发中的应用

Publications (1)

Publication Number Publication Date
WO2022257266A1 true WO2022257266A1 (zh) 2022-12-15

Family

ID=77377866

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/112446 WO2022257266A1 (zh) 2021-06-07 2021-08-13 一种功能纺织品材料、其制备方法及在环境补水或防蒸发中的应用

Country Status (2)

Country Link
CN (1) CN113308872A (zh)
WO (1) WO2022257266A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115608327B (zh) * 2022-08-11 2024-02-02 武汉纺织大学 限域结构复合材料的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050271821A1 (en) * 2004-06-04 2005-12-08 Taiwan Textile Research Institute Method for treating surfaces of textile
CN104831520A (zh) * 2015-05-11 2015-08-12 湖州哲豪丝绸有限公司 一种超疏水耐水洗的纺织品的制备方法
CN110820329A (zh) * 2019-12-02 2020-02-21 苏州大学 一种疏水吸湿织物涂层及其制备方法
CN111069001A (zh) * 2019-12-31 2020-04-28 上海大学 一种具有仿生疏水-亲水表面的材料及其制备方法和应用

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104878591B (zh) * 2015-06-12 2017-03-15 中原工学院 一种超疏水、亲水双面异性棉织物的整理方法
CN110067129A (zh) * 2019-04-28 2019-07-30 东华大学 等离子体处理纳米颗粒复合涂层制备超疏水织物的方法
CN110656499B (zh) * 2019-11-12 2021-09-21 苏州大学 双面疏油的超疏水-超亲水Janus型材料的制备方法及应用
CN111218816B (zh) * 2020-03-05 2022-03-18 南通大学 一种改性纳米二氧化硅防紫外超疏水纤维素织物制备方法
CN111441166A (zh) * 2020-04-02 2020-07-24 海泰纺织(苏州)有限公司 一种油水分离织物制备方法及其油水分离织物

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050271821A1 (en) * 2004-06-04 2005-12-08 Taiwan Textile Research Institute Method for treating surfaces of textile
CN104831520A (zh) * 2015-05-11 2015-08-12 湖州哲豪丝绸有限公司 一种超疏水耐水洗的纺织品的制备方法
CN110820329A (zh) * 2019-12-02 2020-02-21 苏州大学 一种疏水吸湿织物涂层及其制备方法
CN111069001A (zh) * 2019-12-31 2020-04-28 上海大学 一种具有仿生疏水-亲水表面的材料及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YANG XIAOJING; LIU SHUAI; ZHAO ZEYU; HE ZHENGYANG; LIN TONG; ZHAO YAN; LI GANG; QU JING; HUANG LEI; PENG XUE; LIU DEQI: "A facile, clean construction of biphilic surface on filter paper via atmospheric air plasma for highly efficient separation of water-in-oil emulsions", SEPARATION AND PURIFICATION TECHNOLOGY, ELSEVIER SCIENCE, AMSTERDAM, NL, vol. 255, 6 September 2020 (2020-09-06), NL , XP086321549, ISSN: 1383-5866, DOI: 10.1016/j.seppur.2020.117672 *

Also Published As

Publication number Publication date
CN113308872A (zh) 2021-08-27

Similar Documents

Publication Publication Date Title
Zhou et al. Excellent fog droplets collector via an extremely stable hybrid hydrophobic-hydrophilic surface and Janus copper foam integrative system with hierarchical micro/nanostructures
Jing et al. Durable lubricant-impregnated surfaces for water collection under extremely severe working conditions
Garrod et al. Mimicking a Stenocara Beetle's back for microcondensation using plasmachemical patterned superhydrophobic− superhydrophilic surfaces
CN102795786B (zh) 超疏水自清洁涂层及其制备方法
Fan et al. WO3-based slippery coatings with long-term stability for efficient fog harvesting
CN107722343B (zh) 利用多巴胺和碳纳米管改性的超疏水密胺海绵的制备方法
CN104449357A (zh) 一种透明超疏水涂层材料及其制备透明超疏水涂层的方法
CN103691433B (zh) 一种Ag掺杂TiO2材料、及其制备方法和应用
WO2022257266A1 (zh) 一种功能纺织品材料、其制备方法及在环境补水或防蒸发中的应用
CN110176541A (zh) 一种基于对流组装沉积法的硫化铅胶体量子点太阳能电池及制备方法
CN108862478A (zh) 一种用于淡化海水的膜蒸馏装置
CN103143493B (zh) 一种超双疏自清洁表面精细纳米结构的人工种植方法
CN106215461A (zh) 用于油水分离的超疏水/超亲油多孔网膜及其制备方法与应用
Wang et al. Design and Synthesis of self-Healable superhydrophobic coatings for oil/water separation
Wu et al. Chitosan assisted MXene decoration onto polymer fabric for high efficiency solar driven interfacial evaporation of oil contaminated seawater
Li et al. A quadruple biomimetic hydrophilic/hydrophobic Janus composite material integrating Cu (OH) 2 micro-needles and embedded bead-on-string nanofiber membrane for efficient fog harvesting
CN110510690A (zh) 一种具有抗盐析出性能的多孔光热膜及其制备和应用
CN109560204A (zh) 一种钙钛矿薄膜及其制备方法和其应用
CN104198560B (zh) 一种石墨烯修饰的多孔二氧化钛复合膜的制备方法
CN109216041A (zh) 基于石墨烯/碳纳米管复合织物电极的超级电容器及制备
Chen et al. Durable underwater super-oleophobic/super-hydrophilic conductive polymer membrane for oil-water separation
Zhu et al. Antisoiling performance of lotus leaf and other leaves after prolonged outdoor exposure
Xiao et al. Nanotree array textured lubricant-infused frame for efficient fog harvesting
CN108774447A (zh) 一种碳-银微球/环氧树脂超疏水涂层制备方法
Ouyang et al. Flexible solar absorber using hydrophile/hydrophobe amphipathic Janus nanofiber as building unit for efficient vapor generation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21944768

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE