WO2022257129A1 - 一种降低量子点衰变的封装结构及其方法 - Google Patents

一种降低量子点衰变的封装结构及其方法 Download PDF

Info

Publication number
WO2022257129A1
WO2022257129A1 PCT/CN2021/099810 CN2021099810W WO2022257129A1 WO 2022257129 A1 WO2022257129 A1 WO 2022257129A1 CN 2021099810 W CN2021099810 W CN 2021099810W WO 2022257129 A1 WO2022257129 A1 WO 2022257129A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
quantum dot
water blocking
protective layer
light
Prior art date
Application number
PCT/CN2021/099810
Other languages
English (en)
French (fr)
Inventor
林立宸
Original Assignee
江苏新云汉光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏新云汉光电科技有限公司 filed Critical 江苏新云汉光电科技有限公司
Priority to PCT/CN2021/099810 priority Critical patent/WO2022257129A1/zh
Publication of WO2022257129A1 publication Critical patent/WO2022257129A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements

Definitions

  • the invention relates to a light-emitting structure, in particular to an encapsulation structure for reducing decay of quantum dots.
  • the encapsulation structure utilizes quantum dots with a protective layer to prolong the lifetime of quantum dots.
  • quantum dots are widely used in luminescence, but because quantum dots need to be close to the light source to operate at high temperature, the lifespan of quantum dots is generally not normal at present. The decline of quantum dots. Therefore, how to solve high temperature and package penetration is a problem that the industry needs to overcome urgently.
  • the present invention relates to a package structure that reduces the decay of quantum dots to solve the above-mentioned unachievable goals of the traditional technology.
  • the invention provides a packaging method for reducing the decay of quantum dots, which includes: providing a light-emitting layer, the light-emitting layer further includes at least one light-emitting chip; forming at least one first protective layer and completely sealing it on the light-emitting layer; forming at least one quantum dot The dot layer is completely sealed on the first protective layer; and at least one second protective layer is formed and completely sealed on the quantum dot layer; and at least one fifth water blocking layer is formed, and the fifth water blocking layer is completely sealed around The light emitting layer, the first protective layer, the quantum dot layer and the second protective layer.
  • a first support layer is formed in the first protection layer between the light emitting layer and the quantum dot layer, wherein the first support layer includes a plurality of fluorescent particles.
  • the first water blocking layer is formed in the first protective layer between the light emitting layer and the first supporting layer.
  • the second water blocking layer is formed in the first protection layer between the quantum dot layer and the first support layer.
  • the second support layer is formed in the second protection layer.
  • the second protection layer forms a third water blocking layer
  • the third water blocking layer is disposed between the quantum dot layer and the second support layer.
  • the second protective layer forms a fourth water blocking layer, and the fourth water blocking layer is disposed on a side different from that of the quantum dot layer on the second supporting layer.
  • the light emitting chip is a blue light chip or a flip chip.
  • the first support layer and the second support layer are transparent structures formed by curing procedures of transparent glue, silica gel, epoxy resin or a combination thereof, and the package is a package on carrier (COB) ) or chip-level packaging (CSP), the packaging is in a state of chip-level packaging (CSP), forming at least one sixth water-blocking layer and completely sealing on the light-emitting layer and opposite to the first protective layer.
  • COB package on carrier
  • CSP chip-level packaging
  • the present invention provides a packaging structure for reducing the decay of quantum dots, which includes: a light-emitting layer, the light-emitting layer further includes at least one light-emitting chip; a first protective layer, the first protective layer is located on the light-emitting chip; a quantum dot layer, The quantum dot layer is located on the first protective layer; the second protective layer, the second protective layer is located on the quantum dot layer; and the fifth water blocking layer, the fifth water blocking layer is completely sealed around the light emitting layer , the first protection layer, the quantum dot layer and the second protection layer.
  • the first protective layer further includes a first supporting layer, wherein the first supporting layer may include a plurality of fluorescent particles.
  • the first protection layer further includes a first water blocking layer, and the first water blocking layer is located between the light emitting layer and the first supporting layer.
  • the first protection layer further includes a second water blocking layer, and the second water blocking layer is located between the quantum dot layer and the first support layer.
  • the second protection layer further includes a second support layer.
  • the second protection layer further includes a third water blocking layer, and the third water blocking layer is located between the quantum dot layer and the second support layer.
  • the second protection layer further includes a fourth water blocking layer, and the fourth water blocking layer is located on a side different from that of the quantum dot layer on the second support layer.
  • the light emitting chip is a blue light chip or a flip chip.
  • the first supporting layer and the second supporting layer are transparent structures formed by curing procedures of transparent glue, silica gel, epoxy resin or a combination thereof.
  • the package is a package on board (COB) or a chip-level package (CSP), and the package is in the state of a chip-level package (CSP), and further includes a sixth water-blocking layer and is completely sealed opposite to the first protective layer on the light emitting layer.
  • COB package on board
  • CSP chip-level package
  • the wafers of this creation and the prior art are made into light boards respectively, as shown in Figure 12A and Figure 12B, after being lit, as shown in Figure 13A and Figure 13B, respectively add
  • the display results after the diffusion plate are shown in FIG. 14A and FIG. 14B .
  • the samples shown in Figure 14A and Figure 14B were tested, and the results were 318.5cd/m 2 and 274.5cd/m 2 respectively.
  • the brightness of the product can be effectively improved.
  • the above comparison test uses 1 diffuser plate, 2 prism sheets, and 2% transmittance LCD screen in the film structure.
  • the test current uses a single chip 2.88V, 0.5AOD8, and the detection equipment uses BM-7 luminance meter, BM-7 test height 350mm, test angle 2 degrees.
  • FIG. 15A and FIG. 15B they are the appearance diagrams of lamp beads made of wafers of the present invention and the prior art, respectively.
  • the part of the blue coil is phosphor.
  • FIG. 1 is a schematic cross-sectional view of an embodiment of the present invention.
  • Fig. 2 is a flow chart according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of an encapsulation method capable of emitting light and preventing quantum dots from decaying according to an embodiment of the present invention.
  • Fig. 4 is a trend diagram of luminous flux in a high temperature aging test according to an embodiment of the present invention.
  • Fig. 5 is a trend diagram of the luminous flux of a traditional package high temperature aging test according to the present invention.
  • Fig. 6 is a color temperature trend diagram of a high temperature aging test according to an embodiment of the present invention.
  • FIG. 7 is a color temperature trend diagram of a traditional package high temperature aging test according to the present invention.
  • Fig. 8 is a state diagram before a high temperature aging test according to an embodiment of the present invention.
  • Fig. 9 is a state diagram after a high temperature aging test according to an embodiment of the present invention.
  • FIG. 10 is a state diagram of a conventional package before a high temperature aging test according to the present invention.
  • FIG. 11 is a state diagram of a conventional package after a high temperature aging test according to the present invention.
  • Fig. 12A is a state view of a lamp panel manufactured according to an embodiment of the present invention.
  • Fig. 12B is a state diagram of a light board made of a conventional package according to the present invention.
  • Fig. 13A is a diagram showing the lighting state of a lamp panel made according to an embodiment of the present invention.
  • Fig. 13B is a light-on state diagram of a light board made of a traditional package according to the present invention.
  • Fig. 14A is a state diagram of lighting on the lamp panel and adding the diffusion plate according to an embodiment of the present invention.
  • Fig. 14B is a state view of a lamp panel made of a traditional package according to the present invention being lit and a diffuser plate added.
  • Fig. 15A is an appearance view of a lamp bead manufactured according to an embodiment of the present invention.
  • Fig. 15B is an appearance view of a lamp bead made of a traditional package according to the present invention.
  • the first protective layer 130 Quantum dot layer
  • Second support layer 141 Third water blocking layer
  • Light-emitting chip 220 The first protective layer
  • the first support layer 221 The first water-blocking layer
  • the third water blocking layer 243 The fourth water blocking layer
  • the present invention is a packaging structure 100 for reducing the decay of quantum dots, which includes: a light emitting layer 110, the light emitting layer 110 further includes at least one substrate 111 and a light emitting chip 112, the light emitting chip 112 is arranged on on the substrate 111, and is electrically connected with the substrate 111; the first protective layer 120, the first protective layer is located on the light-emitting chip 112; the quantum dot layer 130, the quantum dot layer 130 is located on the first protective layer 120 on; the second protective layer 140, the second protective layer is located on the quantum dot layer 130; and the fifth water blocking layer 150, the fifth water blocking layer 150 is completely sealed around the light emitting layer 110, the first supporting layer 120 , the quantum dot layer 130 and the second protective layer 140 .
  • the first protective layer further includes a first supporting layer 122, wherein the first protective layer 120 further includes a first water blocking layer 121, and the first water blocking layer 121 is located between the light emitting layer 130 and the first supporting layer 122. Between, wherein the first protective layer further includes a second water blocking layer 123 , the second water blocking layer 123 is located between the quantum dot layer 130 and the first support layer 122 .
  • the second protective layer 140 further includes a second supporting layer 142, wherein the second protective layer 140 further includes a third water blocking layer 141, and the third water blocking layer is located between the quantum dot layer 130 and the second supporting layer 142.
  • the second protective layer 140 further includes a fourth water blocking layer 143 , and the fourth water blocking layer 143 is located on a side different from the quantum dot layer 130 on the second supporting layer 142 .
  • the light emitting chip 112 is a blue light chip or a flip chip.
  • the first support layer 122 and the second support layer 142 are transparent structures formed by curing procedures of transparent glue, silica gel, epoxy resin or a combination thereof, wherein the first support layer 122 may contain a plurality of fluorescent particles .
  • the package is a carrier package (COB) or a chip-level package (CSP).
  • the package is in a chip-level package (CSP) state, and further includes a sixth water-blocking layer 160 that is completely sealed on the light-emitting layer 110 and the The first protective layer 120 is relatively
  • the present invention is a packaging structure 200 for reducing the decay of quantum dots, which includes: a light emitting layer 210, which further includes a light emitting chip 212; a first protective layer 220, which is Located on the light-emitting chip 212; the quantum dot layer 230, the quantum dot layer 230 is located on the first protective layer 220; the second protective layer 240, the second protective layer is located on the quantum dot layer 230; and the fifth The water blocking layer 250 , the fifth water blocking layer 250 completely seals and surrounds the light emitting layer 210 , the first support layer 220 , the quantum dot layer 130 and the second protection layer 240 .
  • the first protective layer further includes a first supporting layer 222, wherein the first protective layer 220 further includes a first water blocking layer 221, and the first water blocking layer 221 is located between the light emitting layer 230 and the first supporting layer 222. Between, wherein the first protection layer further includes a second water blocking layer 223 , the second water blocking layer 223 is located between the quantum dot layer 230 and the first support layer 222 .
  • the second protective layer 240 further includes a second supporting layer 242, wherein the second protective layer 240 further includes a third water blocking layer 241, and the third water blocking layer is located between the quantum dot layer 230 and the second supporting layer 242.
  • the second protection layer 240 further includes a fourth water blocking layer 243 , and the fourth water blocking layer 243 is located on a side different from the quantum dot layer 230 on the second supporting layer 242 .
  • the light emitting chip 212 is a blue light chip or a flip chip.
  • the first supporting layer 222 and the second supporting layer 242 are transparent structures formed by curing procedures of transparent glue, silica gel, epoxy resin or a combination thereof.
  • the package is in the chip level package (CSP) state, and further includes a sixth water blocking layer 260 completely sealed on the light emitting layer 20 and opposite to the first protection layer 220 .
  • the present invention is a packaging method 300 capable of emitting light and preventing quantum dots from decaying, which includes: providing a light emitting layer 310, the light emitting layer 210 further comprising at least one light emitting chip 212; forming at least one The first protective layer 320 is completely sealed on the luminescent layer 210; at least one quantum dot layer 330 is formed and completely sealed on the first protective layer 220; at least one second protective layer 340 is formed and completely sealed on the quantum dot layer 230 ; and at least one fifth water blocking layer 350 is formed, and the fifth water blocking layer 250 completely seals and surrounds the light emitting layer 210 , the first support layer 220 , the quantum dot layer 230 and the second protection layer 240 .
  • the first supporting layer 322 is formed in the first protective layer 220 between the light emitting layer 210 and the quantum dot layer 230
  • the first water blocking layer 321 is formed in the first protective layer 220 between the light emitting layer 210 and the quantum dot layer 230.
  • the second water blocking layer 323 is formed in the first protection layer 220 between the quantum dot layer 230 and the first support layer 222 .
  • the second support layer 342 is formed in the second protection layer 240, wherein the second protection layer 242 forms the third water blocking layer 341, and the third water blocking layer 241 is arranged between the quantum dot layer 230 and the second support layer. 242 , wherein the second protective layer 240 forms a fourth water blocking layer 343 , and the fourth water blocking layer 243 is disposed on a side different from that of the quantum dot layer 230 on the second supporting layer 242 .
  • the light emitting chip 212 is a blue light chip or a flip chip.
  • the first support layer 222 and the second support layer 242 are transparent structures formed by curing procedures of transparent glue, silica gel, epoxy resin or a combination thereof, wherein the first support layer 222 may contain a plurality of fluorescent particles .
  • the package is a carrier package (COB) or a chip-level package (CSP), and the package is in a chip-level package (CSP) state, at least one sixth water blocking layer 360 is formed and completely sealed on the light-emitting layer and the The first protective layer is opposite.
  • COB carrier package
  • CSP chip-level package
  • the present invention is a packaging method 300 for reducing quantum dot decay, which includes: providing a light emitting layer 310, the light emitting layer 210 further comprising at least one light emitting chip 212; forming at least one first protective layer 320 and Completely sealed on the luminescent layer 210; form at least one quantum dot layer 330 and completely seal on the first protective layer 220; form at least one second protective layer 340 and completely seal on the quantum dot layer 230; and form at least A fifth water blocking layer 350 completely seals around the light emitting layer 210 , the first protection layer 220 , the quantum dot layer 230 and the second protection layer 240 .
  • the above-mentioned first protective layer 220 forms a first supporting layer 322 between the light-emitting layer 210 and the quantum dot layer 230.
  • the first supporting layer 222 is made of transparent glue, silica gel, epoxy resin or a combination thereof through a curing process. In the formed transparent structure, the first supporting layer 222 may contain a plurality of fluorescent particles.
  • a first water blocking layer 321 is formed between the luminescent layer 210 and the first supporting layer 222, and in the first protection layer 220, a second water blocking layer 323 is formed on the quantum dot layer. 230 and the first support layer 222 .
  • the second support layer 342 is formed in the above-mentioned second protection layer 240 , and the second support layer 242 is a transparent structure formed by curing procedures of transparent glue, silica gel, epoxy resin or a combination thereof.
  • the above-mentioned second protective layer forms a third water blocking layer 341, the third water blocking layer 241 is arranged between the quantum dot layer 230 and the second supporting layer 242, and the second protective layer forms a fourth water blocking layer 343 , the fourth water blocking layer 243 is disposed on a side different from that of the quantum dot layer 230 on the second supporting layer 242 .
  • the above-mentioned package is a carrier package (COB) or a chip-level package (CSP).
  • the package is in a chip-level package (CSP) state, at least one sixth water-blocking layer 360 is formed and completely sealed on the light-emitting layer 210 and The first protection layer 220 is opposite to each other.
  • Fig. 4 and Fig. 5 are made from the data in the above table.
  • the encapsulation structure 200 for reducing quantum dot decay of the present invention does not begin to significantly decrease the luminous flux until 570 hours. In contrast, the luminous flux will drop significantly when the traditional packaging time reaches 100 hours.
  • Figure 6 and Figure 7 are drawn from the data in the table above, the packaging structure 200 for reducing quantum dot decay of the present invention maintains the color temperature between 5300-5900 at all times. In contrast, the color temperature of the traditional packaging has been rising all the time until the test is stopped, and the color temperature rises from 5830 to 18452.
  • the encapsulation structure 200 for reducing quantum dot decay of the present invention can effectively protect quantum dots from decaying compared with traditional encapsulation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Led Device Packages (AREA)

Abstract

一种降低量子点衰变的封装结构(100),包含发光层(110),该发光层(110)更包含至少一个基板(111)与发光晶片(112),发光晶片(112)是设置在基板(111)上,并且与该基板(111)电性连结;第一保护层(120),该第一保护层(120)是位于该发光晶片(112)上;量子点层(130),该量子点层(130)是位于该第一保护层(120)上;与第二保护层(140),该第二保护层(140)是位于该量子点层(130)上。

Description

一种降低量子点衰变的封装结构及其方法 技术领域
本发明是关于一种发光结构;特别关于一种降低量子点衰变的封装结构,该封装结构是利用具有保护层的量子点,延长量子点寿命。
背景技术
已知技术量子点在发光的应用相当广泛,但是由于量子点需要接近光源导致在高温下运作,目前量子点的寿命普遍不常,一般推测的原因是水气或气体渗入量子点的封装,导致量子点的衰退。因此,如何解决高温与封装渗入是工业界急需克服的问题。
发明内容
鉴于上述的创作背景中,为符合产业上特别的需求,本发明是关于一种降低量子点衰变的封装结构用以解决上述传统技艺未能达成的标的。
本发明提供一种降低量子点衰变的封装方法,其包含:提供发光层,该发光层更包含至少一个发光晶片;形成至少一个第一保护层并完整密封于该发光层上;形成至少一个量子点层并完整密封于该第一保护层上;与形成至少一个第二保护层并完整密封于该量子点层片上;与形成至少一个第五阻水层,该第五阻水层完整密封环绕该发光层、该第一保护层、该量子点层与第二保护层。
根据上述本创作的另一样态,其中第一保护层中形成第一支撑层于该发光层与该量子点层之间,其中该第一支撑层包含多个荧光颗粒。
根据上述本创作的另一样态,其中第一保护层中形成第一阻水层于该发光层与该第一支撑层之间。
根据上述本创作的另一样态,其中第一保护层中形成第二阻水层于该量子点层与该第一支撑层之间。
根据上述本创作的另一样态,其中第二保护层中形成第二支撑层。
根据上述本创作的另一样态,其中第二保护层形成第三阻水层,该第三阻水层是设置在该量子点层与第二支撑层之间。
根据上述本创作的另一样态,其中第二保护层形成第四阻水层,该第四阻水层是设置在该第二支撑层上与该量子点层不同侧。
根据上述本创作的另一样态,其中该发光晶片是蓝光晶片或覆晶式晶片。
根据上述本创作的另一样态,其中该第一支撑层与该第二支撑层是由透明胶水、硅胶、环氧树脂或其组合经固化程序所形成的透明结构该封装是载板封装(COB)或晶片级封装(CSP),该封装是晶片级封装(CSP)状态下,形成至少一个第六阻水层并完整密封于该发光层上与该第一保护层相对。
本发明提供一种降低量子点衰变的封装结构,其包含:发光层,该发光层更包含至少一个发光晶片;第一保护层,该第一保护层是位于该发光晶片上;量子点层,该量子点层是位于该第一保护层上;第二保护层,该第二保护层是位于该量子点层上;与第五阻水层,该第五阻水层完整密封环绕该发光层、该第一保护层、该量子点层与第二保护层。
根据上述本创作的另一样态,其中第一保护层更包含第一支撑层,其中该第一支撑层可以包含多个荧光颗粒。
根据上述本创作的另一样态,其中第一保护层更包含第一阻水层,该第一阻水层是位于该发光层与第一支撑层之间。
根据上述本创作的另一样态,其中第一保护层更包含第二阻水层,该第二阻水层是位于该量子点层与第一支撑层之间。
根据上述本创作的另一样态,其中第二保护层更包含第二支撑层。
根据上述本创作的另一样态,其中第二保护层更包含第三阻水层,该第三阻水层是位于该量子点层与第二支撑层之间。
根据上述本创作的另一样态,其中第二保护层更包含第四阻水层,该第四阻水层是位于该第二支撑层上与该量子点层不同侧。
根据上述本创作的另一样态,其中该发光晶片是蓝光晶片或覆晶式晶片。
根据上述本创作的另一样态,其中该第一支撑层与该第二支撑层是由透明胶水、硅胶、环氧树脂或其组合经固化程序所形成的透明结构。
根据上述本创作的另一样态,其中,该封装是载板封装(COB)或晶片级 封装(CSP),该封装是晶片级封装(CSP)状态下,更包含第六阻水层并完整密封于该发光层上与该第一保护层相对。
根据上述本创作的另一样态,将本创作与现有习知技艺的晶片分别制成灯板,如图12A与图12B所示,点亮后如图13A与图13B所示,分别加上扩散板后显示结果如图14A与图14B所示。针对如图14A与图14B的样品进行测试,分别得到318.5cd/m 2与274.5cd/m 2,本创作是加入微量荧光粉后,可以有效提升产品亮度。
上述比较测试是在膜片架构使用1扩散板、2棱镜片、2%透过率液晶屏测试电流使用单晶片2.88V、0.5AOD8,检测设备使用BM-7辉度计,BM-7测试高度350mm,测试角2度角。如图15A与图15B所示,分别是本创作与现有习知技艺的晶片分别制成的灯珠外观图。如图15A右下方图蓝色线圈的部分是荧光粉。
附图说明
图1是根据本发明的一实施例剖面示意图。
图2是根据本发明的一实施例流程图。
图3是根据本发明的一实施例可发光且防止量子点衰变的封装方法示意图。
图4是根据本发明的一实施例高温老化测试光通量趋势图。
图5是根据本发明的一传统封装高温老化测试光通量趋势图。
图6是根据本发明的一实施例高温老化测试色温趋势图。
图7是根据本发明的一传统封装高温老化测试色温趋势图。
图8是根据本发明的一实施例高温老化测试前状态图。
图9是根据本发明的一实施例高温老化测试后状态图。
图10是根据本发明的一传统封装高温老化测试前状态图。
图11是根据本发明的一传统封装高温老化测试后状态图。
图12A是根据本发明的一实施例制成灯板状态图。
图12B是根据本发明的一传统封装制成灯板状态图。
图13A是根据本发明的一实施例制成灯板点亮状态图。
图13B是根据本发明的一传统封装制成灯板点亮状状态图。
图14A是根据本发明的一实施例制成灯板点亮加上扩散板状态图。
图14B是根据本发明的一传统封装制成灯板点亮加上扩散板状态图。
图15A是根据本发明的一实施例制成的灯珠外观图。
图15B是根据本发明的一传统封装制成的灯珠外观图。
【主要元件符号说明】
100:降低量子点衰变的封装结构       110:发光层
111:基板                           112:发光晶片
120:第一保护层                     130:量子点层
140:第二保护层                     122:第一支撑层
121:第一阻水层                     123:第二阻水层
142:第二支撑层                     141:第三阻水层
143:第四阻水层                     150:第五阻水层
200:降低量子点衰变的封装结构       210:发光层
212:发光晶片                       220:第一保护层
230:量子点层                       240:第二保护层
222:第一支撑层                     221:第一阻水层
223:第二阻水层                     242:第二支撑层
241:第三阻水层                     243:第四阻水层
250:第五阻水层                     260:第六阻水层
300:降低量子点衰变的封装方法       310:提供一发光层
320:形成至少一个第一保护层         330:形成至少一个量子点层
340:形成至少一个第二保护层         322:形成第一支撑层
321:形成成第一阻水层               323:形成第二阻水层
342:形成第二支撑层                 341:形成第三阻水层
343形成第四阻水层                  350:形成第五阻水层
360:形成第六阻水层
具体实施方式
本发明在此所探讨的方向为应用于降低量子点衰变的封装结构,为了能彻底地了解本发明,将在下列的描述中提出详尽的结构及其元件与方法步骤。显然地,本发明的施行并未限定于应用于降低量子点衰变的封装结构的技艺者所熟习的特殊细节。另一方面,众所周知的结构及其元件并未描述于细节中,以避免造成本发明不必要的限制。此外,为提供更清楚的描述及使熟悉该项技艺者能理解本发明的创作内容,图示内各部分并没有依照其相对的尺寸而绘图,某些尺寸与其他相关尺度的比例会被突显而显得夸张,且不相关的细节部分亦未完全绘出,以求图示的简洁。本发明的较佳实施例会详细描述如下,然而除了这些详细描述之外,本发明还可以广泛地施行在其他的实施例中,且本发明范围不受限定,其以之后的专利范围为准。
请参阅图1所示,本发明是一种降低量子点衰变的封装结构100,其包含:发光层110,该发光层110更包含至少一个基板111与发光晶片112,该发光晶片112是设置在基板111上,并且与该基板111电性连结;第一保护层120,该第一保护层是位于该发光晶片112上;量子点层130,该量子点层130是位于该第一保护层120上;第二保护层140,该第二保护层是位于该量子点层130上;与第五阻水层150,该第五阻水层150完整密封环绕该发光层110、该第一支撑层120、该量子点层130与第二保护层140。
如上述,第一保护层更包含第一支撑层122,其中第一保护层120更包含第一阻水层121,该第一阻水层121是位于该发光层130与第一支撑层122之间,其中第一保护层更包含第二阻水层123,该第二阻水层123是位于该量子点层130与第一支撑层122之间。
如上述,第二保护层140更包含第二支撑层142,其中第二保护层140更包含第三阻水层141,该第三阻水层是位于该量子点层130与第二支撑层142之间,其中第二保护层140更包含第四阻水层143,该第四阻水层143是位于该第二支撑层142上与该量子点层130不同侧。
如上述,发光晶片112是蓝光晶片或覆晶式晶片。
如上述,第一支撑层122与该第二支撑层142是由透明胶水、硅胶、环氧树脂或其组合经固化程序所形成的透明结构,其中该第一支撑层122可以 包含多个荧光颗粒。
如上述,封装是载板封装(COB)或晶片级封装(CSP),该封装是晶片级封装(CSP)状态下,更包含第六阻水层160并完整密封于该发光层110上与该第一保护层120相对
请参阅图2所示,本发明是一种降低量子点衰变的封装结构200,其包含:发光层210,该发光层210更包含发光晶片212;第一保护层220,该第一保护层是位于该发光晶片212上;量子点层230,该量子点层230是位于该第一保护层220上;第二保护层240,该第二保护层是位于该量子点层230上;与第五阻水层250,该第五阻水层250完整密封环绕该发光层210、该第一支撑层220、该量子点层130与第二保护层240。
如上述,第一保护层更包含第一支撑层222,其中第一保护层220更包含第一阻水层221,该第一阻水层221是位于该发光层230与第一支撑层222之间,其中第一保护层更包含第二阻水层223,该第二阻水层223是位于该量子点层230与第一支撑层222之间。
如上述,第二保护层240更包含第二支撑层242,其中第二保护层240更包含第三阻水层241,该第三阻水层是位于该量子点层230与第二支撑层242之间,其中第二保护层240更包含第四阻水层243,该第四阻水层243是位于该第二支撑层242上与该量子点层230不同侧。如上述,发光晶片212是蓝光晶片或覆晶式晶片。
如上述,第一支撑层222与该第二支撑层242是由透明胶水、硅胶、环氧树脂或其组合经固化程序所形成的透明结构。如上述,该封装是晶片级封装(CSP)状态下,更包含第六阻水层260并完整密封于该发光层20上与该第一保护层220相对。
请参阅图2与图3所示,本发明是一种可发光且防止量子点衰变的封装方法300,其包含:提供发光层310,该发光层210更包含至少一个发光晶片212;形成至少一个第一保护层320并完整密封于该发光层210上;形成至少一个量子点层330并完整密封于该第一保护层220上;形成至少一个第二保护层340并完整密封于该量子点层230上;与形成至少一个第五阻水层350,该第五阻水层250完整密封环绕该发光层210、该第一支撑层220、该量子点 层230与第二保护层240。
如上述,其中第一保护层220中形成第一支撑层322于该发光层210与该量子点层230之间,其中第一保护层220中形成第一阻水层321于该发光层210与该第一支撑层222之间,其中第一保护层220中形成第二阻水层323于该量子点层230与该第一支撑层222之间。
如上述,第二保护层240中形成第二支撑层342,其中第二保护层242形成第三阻水层341,该第三阻水层241是设置在该量子点层230与第二支撑层242之间,其中第二保护层240形成第四阻水层343,该第四阻水层243是设置在该第二支撑层242上与该量子点层230不同侧。
如上述,发光晶片212是蓝光晶片或覆晶式晶片。
如上述,第一支撑层222与该第二支撑层242是由透明胶水、硅胶、环氧树脂或其组合经固化程序所形成的透明结构,其中该第一支撑层222可以包含多个荧光颗粒。
如上述,封装是载板封装(COB)或晶片级封装(CSP),该封装是晶片级封装(CSP)状态下,形成至少一个第六阻水层360并完整密封于该发光层上与该第一保护层相对。
请参阅图3所示,本发明是一种降低量子点衰变的封装方法300,其包含:提供发光层310,该发光层210更包含至少一个发光晶片212;形成至少一个第一保护层320并完整密封于该发光层210上;形成至少一个量子点层330并完整密封于该第一保护层220上;形成至少一个第二保护层340并完整密封于该量子点层230片上;与形成至少一个第五阻水层350,该第五阻水层350完整密封环绕该发光层210、该第一保护层220、该量子点层230与第二保护层240。
上述的第一保护层220中形成第一支撑层322于该发光层210与该量子点层230之间,该第一支撑层222是由透明胶水、硅胶、环氧树脂或其组合经固化程序所形成的透明结构,其中该第一支撑层222可以包含多个荧光颗粒。
上述的第一保护层220中形成第一阻水层321于该发光层210与该第一支撑层222之间,且该第一保护层220中形成第二阻水层323于该量子点层 230与该第一支撑层222之间。
上述的第二保护层240中形成第二支撑层342,该第二支撑层242是由透明胶水、硅胶、环氧树脂或其组合经固化程序所形成的透明结构。
上述的第二保护层形成第三阻水层341,该第三阻水层241是设置在该量子点层230与第二支撑层242之间,且该第二保护层形成第四阻水层343,该第四阻水层243是设置在该第二支撑层242上与该量子点层230不同侧。
上述的该封装是载板封装(COB)或晶片级封装(CSP),该封装是晶片级封装(CSP)状态下,形成至少一个第六阻水层360并完整密封于该发光层210上与该第一保护层220相对。
以下是QD-带支架CSP本发明封装结构与传统封装比对测试,在85℃进行高温老化试验数据。
Figure PCTCN2021099810-appb-000001
Figure PCTCN2021099810-appb-000002
Figure PCTCN2021099810-appb-000003
由上述表格数据做出图4与图5,本发明的降低量子点衰变的封装结构200,时间进行到570小时才开始光通量明显下降。反观传统封装时间进行到100小时光通量就很明显下降。
由上述表格数据做出图6与图7,本发明的降低量子点衰变的封装结构200,全部时间色温都保持在5300~5900之间。反观传统封装全部时间色温都一直上升直到停止测试时,色温由5830上升到18452。
由图8与图9无法比较出高温老化试验对于降低量子点衰变的封装结构200的差异。由图10与图11容易比较出高温老化试验对于传统封装的差异。
由此可知本发明的降低量子点衰变的封装结构200比传统封装,可以有效保护量子点不衰退。
以上所述,仅是本发明的较佳实施例而已,并非对本发明做任何形式上的限制,虽然本发明已以较佳实施例揭露如上,然而并非用以限定本发明,任何熟悉本专业的技术人员,在不脱离本发明技术方案范围内,当可利用上述揭示的技术内容做出些许更动或修饰为等同变化的等效实施例,但凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所做的任何简单修改、等同变化与修饰,均仍属于本发明技术方案的范围内。

Claims (12)

  1. 一种降低量子点衰变的封装方法,其特征在于,包含:
    提供发光层,该发光层更包含至少一个发光晶片;
    形成至少一个第一保护层并完整密封于该发光层上;
    形成至少一个量子点层并完整密封于该第一保护层上;
    形成至少一个第二保护层并完整密封于该量子点层片上;与
    形成至少一个第五阻水层,该第五阻水层完整密封环绕该发光层、该第一保护层、该量子点层与第二保护层。
  2. 根据权利要求1所述的降低量子点衰变的封装方法,其特征在于,第一保护层中形成第一支撑层于该发光层与该量子点层之间,该第一支撑层是由透明胶水、硅胶、环氧树脂或其组合经固化程序所形成的透明结构,其中该第一支撑层可以包含多个荧光颗粒。
  3. 根据权利要求2所述的降低量子点衰变的封装方法,其特征在于,第一保护层中形成第一阻水层于该发光层与该第一支撑层之间,且该第一保护层中形成第二阻水层于该量子点层与该第一支撑层之间。
  4. 根据权利要求1所述的降低量子点衰变的封装方法,其特征在于,第二保护层中形成第二支撑层,该第二支撑层是由透明胶水、硅胶、环氧树脂或其组合经固化程序所形成的透明结构。
  5. 根据权利要求4所述的降低量子点衰变的封装方法,其特征在于,第二保护层形成第三阻水层,该第三阻水层是设置在该量子点层与第二支撑层之间,且该第二保护层形成第四阻水层,该第四阻水层是设置在该第二支撑层上与该量子点层不同侧。
  6. 根据权利要求1所述的降低量子点衰变的封装方法,其特征在于,该封装是载板封装(COB)或晶片级封装(CSP),该封装是晶片级封装(CSP)状态下,形成至少一个第六阻水层并完整密封于该发光层上与该第一保护层相对。
  7. 一种降低量子点衰变的封装结构,其特征在于,包含:
    发光层,该发光层更包含至少一个发光晶片;
    第一保护层,该第一保护层是位于该发光晶片上;
    量子点层,该量子点层是位于该第一保护层上;
    第二保护层,该第二保护层是位于该量子点层上;与
    第五阻水层,该第五阻水层完整密封环绕该发光层、该第一保护层、该量子点层与第二保护层。
  8. 根据权利要求7所述的降低量子点衰变的封装结构,其特征在于,第一保护层更包含第一支撑层,该第一支撑层是由透明胶水、硅胶、环氧树脂或其组合经固化程序所形成的透明结构,其中该第一支撑层包含多个荧光颗粒。
  9. 根据权利要求8所述的降低量子点衰变的封装结构,其特征在于,第一保护层更包含第一阻水层,该第一阻水层是位于该发光层与第一支撑层之间,且该第一保护层更包含第二阻水层,该第二阻水层是位于该量子点层与第一支撑层之间。
  10. 根据权利要求7所述的降低量子点衰变的封装结构,其特征在于,第二保护层更包含第二支撑层,该第二支撑层是由透明胶水、硅胶、环氧树脂或其组合经固化程序所形成的透明结构。
  11. 根据权利要求10所述的降低量子点衰变的封装结构,其特征在于,第二保护层更包含第三阻水层,该第三阻水层是位于该量子点层与第二支撑层之间,且该第二保护层更包含第四阻水层,该第四阻水层是位于该第二支撑层上与该量子点层不同侧。
  12. 根据权利要求7所述的降低量子点衰变的封装结构,其特征在于,该封装是载板封装(COB)或晶片级封装(CSP),该封装是晶片级封装(CSP)状态下,更包含第六阻水层并完整密封于该发光层上与该第一保护层相对。
PCT/CN2021/099810 2021-06-11 2021-06-11 一种降低量子点衰变的封装结构及其方法 WO2022257129A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/099810 WO2022257129A1 (zh) 2021-06-11 2021-06-11 一种降低量子点衰变的封装结构及其方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/099810 WO2022257129A1 (zh) 2021-06-11 2021-06-11 一种降低量子点衰变的封装结构及其方法

Publications (1)

Publication Number Publication Date
WO2022257129A1 true WO2022257129A1 (zh) 2022-12-15

Family

ID=84425610

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/099810 WO2022257129A1 (zh) 2021-06-11 2021-06-11 一种降低量子点衰变的封装结构及其方法

Country Status (1)

Country Link
WO (1) WO2022257129A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108735879A (zh) * 2018-07-26 2018-11-02 易美芯光(北京)科技有限公司 一种含有量子点的smd封装结构
CN109004071A (zh) * 2018-07-18 2018-12-14 易美芯光(北京)科技有限公司 一种量子点led发光器件的封装结构
CN208298873U (zh) * 2018-03-30 2018-12-28 宝宸(厦门)光学科技有限公司 发光装置
CN109755357A (zh) * 2018-12-24 2019-05-14 华南师范大学 一种量子点led封装结构及封装方法
KR20200020141A (ko) * 2018-08-16 2020-02-26 (주)디씨티 양자점을 포함하는 led 패키지
CN111192947A (zh) * 2018-11-14 2020-05-22 易美芯光(北京)科技有限公司 一种量子点led封装器件及制造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN208298873U (zh) * 2018-03-30 2018-12-28 宝宸(厦门)光学科技有限公司 发光装置
CN109004071A (zh) * 2018-07-18 2018-12-14 易美芯光(北京)科技有限公司 一种量子点led发光器件的封装结构
CN108735879A (zh) * 2018-07-26 2018-11-02 易美芯光(北京)科技有限公司 一种含有量子点的smd封装结构
KR20200020141A (ko) * 2018-08-16 2020-02-26 (주)디씨티 양자점을 포함하는 led 패키지
CN111192947A (zh) * 2018-11-14 2020-05-22 易美芯光(北京)科技有限公司 一种量子点led封装器件及制造方法
CN109755357A (zh) * 2018-12-24 2019-05-14 华南师范大学 一种量子点led封装结构及封装方法

Similar Documents

Publication Publication Date Title
US9773955B2 (en) Light conversion plate, and light-emitting diode package, backlight unit, and display device including the plate
US10025139B2 (en) Display device
JP4796293B2 (ja) 照明装置の製造方法
TWI648878B (zh) Led發光源、led發光源之製造方法及其直下式顯示器
US10663795B1 (en) Display device and manufacturing method thereof
EP3605621B1 (en) Quantum dot led packaging structure
CN109459886B (zh) 一种背光模组、制作方法及显示装置
US9970630B2 (en) Quantum dot light-emitting device and display device
US10084119B2 (en) Light-emitting device
JP2009231273A (ja) 照明装置及びこれを備える表示装置
WO2020211597A1 (zh) 一种背光模组及显示装置
CN103207476B (zh) 一种led背光液晶显示装置及其发光材料的涂覆方法
WO2019140707A1 (zh) 一种白光led及其制备方法和应用
WO2017028352A1 (zh) 掺杂金属的量子点及led器件和背光模组
WO2021017123A1 (zh) 一种显示面板及其显示装置
US20170139092A1 (en) Polarizer, Quantum-Effect-Based Display Panel and Display Device
CN209624946U (zh) 一种直下式背光模组及电视机
WO2022257129A1 (zh) 一种降低量子点衰变的封装结构及其方法
WO2023041043A1 (zh) 一种降低量子点衰变的封装结构及其方法
CN208818988U (zh) 一种减小厚度的直下式背光源
TWM623487U (zh) 一種降低量子點衰變的封裝結構
TW202247496A (zh) 一種降低量子點衰變的封裝結構及其方法
CN216133871U (zh) 一种降低量子点衰变的封装结构
CN214847516U (zh) 量子点灯珠以及led显示屏
US11209697B1 (en) Backlight unit with phosphors and quantum dots

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21944636

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21944636

Country of ref document: EP

Kind code of ref document: A1