WO2022257004A1 - 衍射光学元件、投射模组及电子设备 - Google Patents

衍射光学元件、投射模组及电子设备 Download PDF

Info

Publication number
WO2022257004A1
WO2022257004A1 PCT/CN2021/098835 CN2021098835W WO2022257004A1 WO 2022257004 A1 WO2022257004 A1 WO 2022257004A1 CN 2021098835 W CN2021098835 W CN 2021098835W WO 2022257004 A1 WO2022257004 A1 WO 2022257004A1
Authority
WO
WIPO (PCT)
Prior art keywords
subunit
optical element
diffractive optical
axis direction
subunits
Prior art date
Application number
PCT/CN2021/098835
Other languages
English (en)
French (fr)
Inventor
成纯森
冯坤亮
鞠晓山
李宗政
Original Assignee
欧菲光集团股份有限公司
江西欧迈斯微电子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 欧菲光集团股份有限公司, 江西欧迈斯微电子有限公司 filed Critical 欧菲光集团股份有限公司
Priority to PCT/CN2021/098835 priority Critical patent/WO2022257004A1/zh
Publication of WO2022257004A1 publication Critical patent/WO2022257004A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only

Definitions

  • the invention relates to the technical field of three-dimensional detection, in particular to a diffractive optical element, a projection module and electronic equipment.
  • Time of Flight or structured light technology
  • dToF direct time of flight
  • diffractive optical elements to split the light emitted by the light source to form a dot matrix of light spots and project them on the object to be measured.
  • the performance of diffractive optical elements has great influence on the three-dimensional Detection accuracy has a significant impact.
  • a diffractive optical element a projection module and an electronic device are provided.
  • a diffractive optical element for splitting a single beam of light into 3 ⁇ 3 multiple beams of light comprising:
  • a plurality of microstructures are arranged in a rectangular array along the X-axis direction and the Y-axis direction on the substrate, wherein the X-axis direction and the Y-axis direction are two mutually perpendicular directions on a plane parallel to the substrate, so
  • the projection of the microstructure on the substrate includes a first subunit and a second subunit spaced apart, and the angle between the line connecting the geometric centers of the first subunit and the second subunit and the X-axis direction is Between 40° and 50°, the area of the first subunit is larger than the area of the second subunit;
  • A is the maximum dimension of the second subunit in the direction of the X axis
  • B is the maximum dimension of the second subunit in the direction of the Y axis
  • C is the maximum dimension of the first subunit in the direction of the Y axis.
  • the shortest distance of the second subunit, D is the maximum dimension of the first subunit in the direction of the X axis
  • E is the maximum dimension of the first subunit in the direction of the Y axis.
  • a diffractive optical element comprising:
  • the beam splitting array is arranged on the base and includes a plurality of first subunits and a plurality of second subunits, the number of the first subunits and the second subunits is equal, and the X-axis direction and the In the Y-axis direction, a plurality of the first subunits are spaced apart and arranged in a rectangular array, and a plurality of the second subunits are spaced apart and arranged in a rectangular array, and the X-axis direction and the Y
  • the axis direction is two directions perpendicular to each other on the plane parallel to the base, the first subunits correspond to the second subunits one by one, and each of the first subunits corresponds to a corresponding one of the first subunits.
  • the two subunits are spaced apart, and the included angle between the geometric center of each of the first subunits and the corresponding one of the second subunits and the X-axis direction is between 40° and 50°;
  • A is the maximum dimension of the second subunit in the direction of the X axis
  • B is the maximum dimension of the second subunit in the direction of the Y axis
  • C is the maximum dimension of the second subunit in the direction of the Y axis.
  • the shortest distance of the second subunit, D is the maximum dimension of the first subunit in the direction of the X axis
  • E is the maximum dimension of the first subunit in the direction of the Y axis.
  • a projection module includes a light source and the diffractive optical element according to any one of the above embodiments, where the diffractive optical element is used to split the light emitted by the light source.
  • An electronic device includes a receiving module and the above-mentioned projection module, the projection module is used for projecting light to the object to be measured, and the receiving module is used for receiving the light reflected by the object to be measured.
  • Fig. 1 is a schematic diagram of a partial structure of a diffractive optical element in some embodiments
  • Fig. 2 is a schematic diagram of beam splitting of a diffractive optical element to form 3*3 multi-beams in some embodiments
  • Figure 3 is a schematic diagram of microstructures in some embodiments.
  • Fig. 4 is the schematic diagram of the microstructure in the first to fifteenth embodiments.
  • Fig. 5 is a schematic cross-sectional view of a diffractive optical element in some embodiments.
  • Figure 6 is a schematic diagram of an electronic device in some embodiments.
  • 100 diffractive optical element
  • 110 substrate; 120, beam splitting array; 121, microstructure; 122, first subunit; 123, second subunit; 124, X-axis direction; 125, Y-axis direction; 130 , residual glue layer; 200, electronic equipment; 210, projection module; 211, light source; 220, receiving module; 230, object to be measured.
  • FIG. 1 shows a schematic diagram of a partial structure of a diffractive optical element 100 in some embodiments
  • FIG. Schematic, Figure 3 shows a schematic of microstructure 121 in some embodiments.
  • the diffractive optical element 100 includes a substrate 110 and a plurality of microstructures 121 disposed on the substrate 110, and the plurality of microstructures 121 are arranged in a rectangular array along the X-axis direction 124 and the Y-axis direction 125 on the substrate 110
  • a beam splitting array 120 is formed, wherein the X-axis direction 124 and the Y-axis direction 125 are two mutually perpendicular directions on the plane perpendicular to the substrate 110, so that the diffractive optical element 100 can split a single beam of light into a 3*3 beam Multiple beams of light.
  • the diffractive optical element 100 can be applied to the projection module of an electronic device using speckle structured light or dToF technology.
  • the diffractive optical element 100 is used to split the single beam of light emitted by the light source in the projection module into 3* 3 multiple beams of light, thus forming a dot matrix of light spots and projecting them on the object to be measured, which can meet the needs of electronic equipment to obtain the depth information of the object to be measured.
  • the projection of the microstructure 121 on the substrate 110 includes a first subunit 122 and a second subunit 123 spaced apart, and the first subunit 122 and the second subunit 123 are spaced apart.
  • the angle between the line connecting the geometric centers of the two subunits 123 and the X-axis direction 124 is between 40° and 50°, for example, 45°.
  • the first subunit 122 and the second subunit 123 are arranged diagonally.
  • the direction of the bisection angle between the X-axis direction 124 and the Y-axis direction 125 can be understood as a diagonal direction formed by the X-axis direction 124 and the Y-axis direction 125 (not shown).
  • the first subunit 122 and the second subunit 123 are arranged diagonally, which can be understood as a line connecting the geometric center of the first subunit 122 and the geometric center of the second subunit 123 is parallel to the diagonal direction. It should be noted that the fact that the first subunit 122 and the second subunit 123 are arranged diagonally does not mean that the line connecting the geometric centers of the first subunit 122 and the second subunit 123 must be strictly parallel to the diagonal direction.
  • first subunits 122 and the second subunits 123 are staggered in the X-axis direction 124 and the Y-axis direction 125, and the first subunits 122 and the second subunits 123 are roughly arranged at intervals along the diagonal direction, That is to say, the first subunit 122 and the second subunit 123 are arranged diagonally.
  • the X-axis direction 124 and the Y-axis direction 125 form a plane rectangular coordinate system.
  • the X-axis direction 124 has positive and negative directions
  • the Y-axis direction 125 also has positive and negative directions.
  • the geometric center of the second subunit 123 is located on the negative side of the X-axis of the geometric center of the first subunit 122, and the geometric center of the second subunit 123 is located at the geometric center of the first subunit 122 The negative direction of the Y axis.
  • the area of the first subunit 122 is larger than the area of the second subunit 123, and the diffractive optical element 100 satisfies the following conditional formula:
  • A is the distance between the two extreme points of the second subunit 123 in the X-axis direction 124, that is, the maximum size of the second subunit 123 in the X-axis direction 124
  • B is the distance between the second subunit 123 in the Y direction 124.
  • C is the shortest distance between the first subunit 122 and the second subunit 123, wherein, in In the embodiment shown in FIG.
  • C can be understood as the shortest distance between the first subunit 122 and the second subunit 123 on the dotted line G, and in some embodiments, the dotted line G is parallel to the diagonal direction, and D is the first The distance between the two extreme points of a subunit 122 in the X-axis direction 124, that is, the maximum size of the first subunit 122 in the X-axis direction 124, E is the first subunit 122 in the Y-axis direction 125 The distance between the two endpoints of the uppermost edge is the maximum dimension of the first subunit 122 in the Y-axis direction 125 .
  • the shapes of the first subunit 122 and the second subunit 123 are approximately rounded rectangles, the length direction of the first subunit 122 and the second subunit 123 is parallel to the Y-axis direction 125, and the width direction Parallel to the X-axis direction 124, A is the width dimension of the second subunit 123, B is the length dimension of the second subunit 123, D is the width dimension of the first subunit 122, and E is the length direction of the first subunit 122 .
  • the maximum dimension of the first subunit 122 in the Y-axis direction 125 is greater than the maximum dimension of the first subunit 122 in the X-axis direction 124, and the maximum dimension of the second subunit 123 in the Y-axis direction 125 is greater than the maximum dimension of the first subunit 122 in the Y-axis direction 125.
  • the maximum size of a subunit 122 in the X-axis direction 124, the maximum size of the first subunit 122 in the X-axis direction 124 is greater than the maximum size of the second subunit 123 in the X-axis direction 124, the first subunit 122 in The maximum size in the Y-axis direction 125 is greater than the maximum size of the second subunit 123 in the Y-axis direction 125 , and the first subunit 122 and the second subunit 123 are arranged at intervals in the diagonal direction.
  • the microstructures 121 are arranged in a rectangular array on the substrate 110, the shortest distance F>0 in the X-axis direction 124 between the first subunits 122 of two adjacent microstructures 121, and F is greater than the distance between the geometric center of the first subunit 122 and the geometric center of the second subunit 123 in the X-axis direction 124 in each microstructure 121 .
  • F is greater than the distance between the geometric center of the first subunit 122 and the geometric center of the second subunit 123 in the X-axis direction 124 in each microstructure 121 .
  • two first subunits 122 are located on both sides of the geometric center of one of the second subunits 123 .
  • first subunits 122 and second subunits 123 are equal, and in the X-axis direction 124 and the Y-axis direction 125
  • the first subunits 122 are also arranged in a rectangular array
  • the second subunits 123 are also arranged in a rectangular array. All the first subunits 122 and the second subunits 123 together constitute the beam splitting array 120 of the diffractive optical element 100 , and each first subunit 122 is spaced from a corresponding second subunit 123 and arranged diagonally.
  • a plurality of microstructures 121 are arranged in a rectangular array along the X-axis direction 124 and the Y-axis direction 125. It can be understood that, in the X-axis direction 124, the geometric centers of two adjacent first subunits 122 They are located on the same straight line, and the orientations of the two adjacent first subunits 122 are the same, for example, the length directions of the two adjacent first subunits 122 are parallel to each other. In the X-axis direction 124 , the geometric centers of the two adjacent second subunits 123 are located on the same straight line, and the orientations of the two adjacent second subunits 123 are the same.
  • the geometric centers of the first subunits 122 are located on the same straight line, the orientations between the first subunits 122 are the same, the geometric centers of the second subunits 123 are located on the same straight line, and the second subunits 123 are located on the same straight line.
  • the orientation of the units 123 is the same.
  • the array of microstructures 121 forms a regularly arranged rectangular array, which can more accurately split a single beam and improve the optical performance of the diffractive optical element 100 . It can be understood that, in the X-axis direction 124 and the Y-axis direction 125 , the first subunits 122 and the second subunits 123 are arranged alternately in sequence.
  • FIG. 1 only shows a schematic diagram of a part of the microstructure 121 of the diffractive optical element 100. In the part shown in FIG.
  • the 121 is the smallest unit of the beam splitting array 120, no matter whether the number of microstructures 121 in the beam splitting array 120 increases or decreases, the number of the first subunit 122 and the second subunit 123 should be equal, and each corresponding first subunit The relative positions of the subunit 122 and the second subunit 123 are also the same.
  • the above-mentioned diffractive optical element 100 can split a single beam of light to form 3*3 multi-beams of light as shown in FIG. , for the electronic device to obtain the depth information of the object to be measured.
  • the beam-splitting array 120 formed by the microstructure 121 is arranged in the diffractive optical element 100, which is beneficial for the 3*3 multiple beams of light emitted by the diffractive optical element 100 to have good uniformity and diffraction efficiency, and the diffractive optical element 100 has good optical properties. performance, which can meet the needs of high detection accuracy of electronic equipment.
  • the diffractive optical element 100 has good optical performance.
  • the pixel size is 200*264 pixels, each pixel size is 13nm, and the wavelength of the incident light is 940nm.
  • the diffractive optical element 100 splits the incident beam into 3*3 multi-beams.
  • the uniformity is 7.13%, the zero-order energy intensity accounts for 10.3% of the total energy, and the diffraction efficiency is 85.2%.
  • the uniformity is the ratio of the difference between the energy of the beam with the highest energy and the beam with the lowest energy among the 3*3 multi-beams and the energy sum
  • the diffraction efficiency is the ratio of the energy sum of the 3*3 beams to the total energy of the outgoing light .
  • the wavelength of incident light used by the diffractive optical element 100 can be in the near-infrared band, such as the near-infrared short-wave band of 780nm-1100nm. Further, in some embodiments, the wavelength of the incident light is 940 ⁇ 50 nm, which is beneficial to improve the optical performance of the diffractive optical element 100, thereby improving the three-dimensional detection accuracy.
  • the microstructures 121 form a rectangular array of n*n, and n is a natural number greater than 1.
  • the number of rows and columns of the beam splitting array 120 are the same, and the number of microstructures 121 in the beam splitting array 120 is not limited, as long as it can It only needs to satisfy the beam splitting requirement of the incident beam, and there is no limitation here.
  • the number of microstructures 121 and the occupied area of the beam splitting array 120 can be increased, so that the beam splitting array 120 can cover the entire spot range of the incident light beam, and the utilization rate of the incident light can be improved.
  • the diffractive optical element 100 satisfies the following conditional formula: 1 ⁇ B/A ⁇ 2.5; 1 ⁇ E/D ⁇ 2.5; 2 ⁇ D/A ⁇ 2.5; 2 ⁇ E/B ⁇ 2.5; 1 ⁇ A/C ⁇ 2.
  • the size and shape of the second subunit 123 are designed to obtain the numerical range of B/A
  • the size and shape of the first subunit 122 are designed to obtain the numerical range of E/D
  • the relative sizes of the two subunits 123 are designed to obtain the numerical ranges of D/A and E/B
  • the relative positions of the first subunit 122 and the second subunit 123 are designed to obtain the numerical ranges of A/C. Satisfying the above relationship formula can specifically design the size and shape of the microstructure 121 to further improve the optical performance of the diffractive optical element 100 .
  • the diffractive optical element 100 satisfies the following conditional formula: 150nm ⁇ A ⁇ 1000nm; 150nm ⁇ F ⁇ 1000nm. Satisfying the lower limit of the above conditional formula, the sizes of A and F will not be too small to cause difficulty in manufacturing the microstructure 121 , which is beneficial to improve the manufacturing yield of the microstructure 121 and make the microstructure 121 applicable to more manufacturing processes. If the above conditional formula is satisfied, the size of the microstructure 121 is close to the incident wavelength, and the diffractive optical element 100 has a good diffraction effect, which is beneficial to improve the optical performance of the diffractive optical element 100 .
  • the diffractive optical element 100 satisfies the following conditional formula: 750nm ⁇ A ⁇ 900nm; 700nm ⁇ F ⁇ 850nm; 1.2 ⁇ B/A ⁇ 2.4; 1.2 ⁇ E/ D ⁇ 2.4; 1.5 ⁇ A/C ⁇ 2.3.
  • the size characteristics of the microstructure 121 are different, and the diffraction angles of the diffractive optical element 100 in the X-axis direction 124 and/or the Y-axis direction 125 are also different. Diversified diffraction angle designs enable the diffractive optical element 100 to meet more different scenarios and The projection needs of different electronic devices. Specifically, referring to FIG. 2 again, the diffraction angle of the diffractive optical element 100 in the X-axis direction 124 is between 15° and 25°, specifically, it can be: 15°, 17.5°, 20°, 22.5° or 25°, The diffraction angle in the Y-axis direction 125 is between 10° and 20°, specifically 10°, 12.5°, 15°, 17.5° or 20°.
  • the diffractive optical element 100 splits the beams to form three columns of beams. Taking the middle column of beams as the origin, the deviation angle of the beams on both sides relative to the middle column of beams can be understood as the angle of the diffractive optical element 100 in the X-axis direction. Diffraction angle on 124. According to different scenarios and requirements of electronic equipment, the diffraction angles of the diffractive optical element 100 in the X-axis direction 124 and the Y-axis direction 125 can be arbitrarily matched.
  • H corresponds to the horizontal direction of the image sensor, and corresponds to the X-axis direction 124, that is, H is the diffraction angle of the X-axis direction 124
  • V is the vertical direction of the image sensor, that is, the diffraction angle of the Y-axis direction 125
  • D1 is the selection of the diffraction angle of the diffractive optical element 100 in the first embodiment.
  • the diffraction angle of the diffractive optical element 100 is 15°*10°
  • D2 is the selection of the diffraction angle of the diffractive optical element 100 in the second embodiment.
  • the diffraction angle of the diffractive optical element 100 is 17.5°*10°.
  • D3-D15 are the diffraction angle selections of the diffractive optical element 100 in the third embodiment to the fifteenth embodiment.
  • the diffractive optical element 100 splits a single beam of light into 3*3
  • the diffractive optical element 100 splits a single beam of light into 3*3
  • only two diffraction angles need to be controlled in the X-axis direction 124 and the Y-axis direction 125 , which makes the design and production of the beam splitting array 120 easier.
  • the dimensional characteristics of the microstructure 121 in each embodiment are given in Table 2, and the numerical units in Table 2 are nm, and the dimensional characteristics of the microstructure 121 in Table 2 all satisfy the above-mentioned conditional expressions, and the diffractive optical element 100 in each embodiment With good optical performance. It can be seen from Table 2 that by adjusting the size characteristics of the microstructure 121 , the diffraction angle of the diffractive optical element 100 can be adjusted, so as to meet the projection requirements of different scenarios or electronic devices.
  • Example A B C D. E. f D1 819 1222 377 1820 2613 780 D2 819 1391 403 1820 3016 780 D3 819 1131 390 1820 2444 780 D4 819 1547 494 1820 3367 780 D5 819 1274 429 1820 2769 780 D6 819 1092 364 1820 2327 780 D7 819 1768 481 1820 3861 780 D8 819 1417 403 1820 3094 780 D9 819 1170 377 1820 2509 780 D10 819 1053 364 1820 2236 780 D11 819 1911 546 1820 4251 780 D12 819 1560 468 1820 3419 780 D13 819 1326 429 1820 2860 780 D14 819 1157 364 1820 2483 780 D15 819 1027 364 1820 2184 780
  • FIG. 4 shows schematic diagrams of microstructures 121 in the first to fifteenth embodiments.
  • D1 represents the schematic diagram of the microstructure 121 in the first embodiment
  • D2 represents the schematic diagram of the microstructure 121 in the second embodiment
  • D3 represents the schematic diagram of the microstructure 121 in the third embodiment, and so on.
  • the parameters of one of the embodiments can be selected according to the required diffraction angle, and the corresponding microstructure 121 beam splitting array 120 can be manufactured according to the parameters of the embodiment.
  • the sixth embodiment D6 can be used corresponding to Table 1, so as to manufacture the corresponding diffractive optical element 100 according to the parameters in Table 2 and Table 3.
  • FIG. 5 shows a schematic cross-sectional view of a diffractive optical element 100 in some embodiments.
  • the production process of the diffractive optical element 100 is not limited, including but not limited to nanolithography technology or nanoimprinting technology, as long as the beam splitting array 120 composed of microstructures 121 can be formed on the surface of the substrate 110 .
  • a mold corresponding to the beam-splitting array 120 is first manufactured using nanolithography technology.
  • the array 120 corresponds to the concave structure, and the substrate 110 is coated with photoresist, so that the photoresist on the substrate 110 is imprinted through the mold using nanoimprint technology to form the beam splitting array 120 .
  • the beam-splitting array 120 may also be composed of a plurality of microstructures 121 recessed on the surface of the substrate 110 , and the mold has a protruding structure corresponding to the beam-splitting array 120 .
  • the beam-splitting array 120 can also be fabricated directly on the substrate 110 by using nanolithography technology.
  • the area of the lithography template is usually much smaller than the area of the beam splitting array 120, if the beam splitting array 120 is directly prepared on the substrate 110 using nanolithography technology, it is necessary to move the lithography template many times to meet the requirements of the large-area beam splitting array. 120 made.
  • the mold is manufactured first, and then the beam-splitting array 120 is prepared by mold imprinting. It only needs to move the photolithography template several times during the mold manufacturing process. After the mold is made, the beam-splitting array 120 can be mass-produced quickly through the mold, which is conducive to improving production. efficiency.
  • the beam splitting array 120 in order to cooperate with the manufacturing process, smoothly produce the beam splitting array 120 and avoid damage to the substrate 110 , after the beam splitting array 120 is manufactured through photoresist, there will be a residual glue layer 130 between the substrate 110 and the microstructure 121 .
  • the surface of the substrate 110 is covered with an adhesive residue layer 130 , and the microstructure 121 is formed on the adhesive residue layer 130 .
  • the thickness of the substrate 110 is 0.1mm-0.5mm, specifically 0.3mm
  • the thickness of the remaining glue layer 130 is 1um-5um, specifically 3um
  • the height of the microstructure 121, that is, the microstructure 121 is The size in the direction perpendicular to the surface of the residual glue layer 130 is 0.5um-1um, specifically 0.8um.
  • Such setting can smoothly form the beam splitting array 120 on the substrate 110 in accordance with the manufacturing process, and can also make the obtained diffractive optics
  • the element 100 has sufficient structural strength.
  • the material of the substrate 110 is not limited, and may be any applicable light-transmitting material, including but not limited to silicon, silicon dioxide, sodium borosilicate glass, sapphire, and the like. It can be understood that, in the embodiment shown in FIG. 1 , the black area represents the substrate 110 , and the white area represents the microstructure 121 formed on the substrate 110 .
  • FIG. 6 shows a schematic diagram of an electronic device 200 in some embodiments.
  • the diffractive optical element 100 is assembled with the light source 211 to form a projection module 210 , which is applied in an electronic device 200 , and the electronic device 200 also includes a receiving module 220 .
  • the electronic device 200 may adopt any applicable technologies such as speckle structured light or dToF that need to obtain depth information by dot matrix projection.
  • the light source 211 can emit an infrared beam, for example, the light source 211 emits an infrared beam of 940 ⁇ 50 nm.
  • the diffractive optical element 100 is located on the light emitting side of the light source 211 , and the diffractive optical element 100 can split the single beam emitted by the light source 211 into 3*3 multi-beams and project them onto the object 230 to be measured.
  • the light beam projected by the projection module 210 onto the object is received by the receiving module 220 after being reflected by the object to be measured 230 , wherein the receiving module 220 may be configured with an image sensor.
  • the receiving module 220 can obtain the depth information of the object 230 to be measured according to the beam signal projected by the projection module 210 and the beam signal reflected by the object 230 to be measured, thereby realizing the three-dimensional detection function.
  • the above-mentioned diffractive optical element 100 is used in the electronic device 200 .
  • the diffractive optical element 100 can split a single beam into 3*3 multi-beams and has good optical performance, which is beneficial to improve the detection accuracy of the electronic device 200 .
  • first and second are used for descriptive purposes only, and cannot be interpreted as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features.
  • the features defined as “first” and “second” may explicitly or implicitly include at least one of these features.
  • “plurality” means at least two, such as two, three, etc., unless otherwise specifically defined.
  • the first feature may be in direct contact with the first feature or the first and second feature may be in direct contact with the second feature through an intermediary. touch.
  • “above”, “above” and “above” the first feature on the second feature may mean that the first feature is directly above or obliquely above the second feature, or simply means that the first feature is higher in level than the second feature.
  • “Below”, “beneath” and “beneath” the first feature may mean that the first feature is directly below or obliquely below the second feature, or simply means that the first feature is less horizontally than the second feature.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

衍射光学元件(100)包括基底(110)和在基底(110)上沿X轴与Y轴呈矩形阵列排布的多个微结构(121)。微结构(121)的第一子单元(122)与第二子单元(123)呈对角设置,第一子单元(122)的面积大于第二子单元(123)的面积。满足:1<B/A<2.5;1<E/D<2.5;2<D/A<2.5;2<E/B<2.5;1<A/C<2;A为第二子单元(123)在X轴方向上的最大尺寸,B为第二子单元(123)在Y轴方向上的最大尺寸,C为第一子单元(122)与第二子单元(123)的最短距离,D为第一子单元(122)在X轴方向上的最大尺寸,E为第一子单元(122)在Y轴方向上的最大尺寸。

Description

衍射光学元件、投射模组及电子设备 技术领域
本发明涉及三维探测技术领域,特别是涉及一种衍射光学元件、投射模组及电子设备。
背景技术
基于飞行时间(Time of Flight,ToF)或结构光技术常被应用于电子设备中,通过主动向待测物体投射光线,并接收从待测物体反射的光线,从而获取待测物体的三维深度信息。散斑结构光以及直接测量飞行时间(direct Time of Flight,dToF)技术通常借助衍射光学元件对光源出射光线进行分束,以形成点阵光斑投射到待测物体上,衍射光学元件的性能对三维检测精度有着重要影响。
然而,目前衍射光学元件的光学性能还有待提升,难以满足高检测精度的需求。
发明内容
根据本申请的各种实施例,提供一种衍射光学元件、投射模组及电子设备。
一种衍射光学元件,用于将单束光分束为3×3的多束光,所述衍射光学元件包括:
基底;以及
多个微结构,在所述基底上沿X轴方向与Y轴方向呈矩形阵列排布,其中,X轴方向与Y轴方向为平行于所述基底的平面上两个相互垂直的方向,所述微结 构在所述基底上的投影包括相间隔的第一子单元与第二子单元,所述第一子单元与所述第二子单元的几何中心的连线与X轴方向的夹角在40°至50°之间,所述第一子单元的面积大于所述第二子单元的面积;
且所述衍射光学元件满足以下条件式:
1<B/A<2.5;1<E/D<2.5;2<D/A<2.5;2<E/B<2.5;1<A/C<2;
其中,A为所述第二子单元在所述X轴方向上的最大尺寸,B为所述第二子单元在所述Y轴方向上的最大尺寸,C为所述第一子单元与所述第二子单元的最短距离,D为所述第一子单元在所述X轴方向上的最大尺寸,E为所述第一子单元在所述Y轴方向上的最大尺寸。
一种衍射光学元件,包括:
基底;以及
分束阵列,设置于所述基底上并包括多个第一子单元与多个第二子单元,所述第一子单元与所述第二子单元的数量相等,在所述X轴方向与所述Y轴方向上,多个所述第一子单元相间隔并呈矩形阵列排布,多个所述第二子单元相间隔并呈矩形阵列排布,所述X轴方向与所述Y轴方向为平行于所述基底的平面上两个相互垂直的方向,所述第一子单元与所述第二子单元一一对应,每个所述第一子单元与对应的一个所述第二子单元相间隔,且每个所述第一子单元与对应的一个所述第二子单元的几何中心的连线与所述X轴方向的夹角在40°至50°之间;
且所述分束阵列满足以下条件式:
1<B/A<2.5;1<E/D<2.5;2<D/A<2.5;2<E/B<2.5;1<A/C<2;
其中,A为所述第二子单元于所述X轴方向上的最大尺寸,B为所述第二子单元于所述Y轴方向上的最大尺寸,C为所述第一子单元与所述第二子单元的最 短距离,D为所述第一子单元于所述X轴方向上的最大尺寸,E为所述第一子单元于所述Y轴方向上的最大尺寸。
一种投射模组,包括光源以及如上述任一实施例所述的衍射光学元件,所述衍射光学元件用于对所述光源发出的光线进行分束。
一种电子设备,包括接收模组以及如上述的投射模组,所述投射模组用于向待测物体投射光线,所述接收模组用于接收被待测物体反射的光线。
本发明的一个或多个实施例的细节在下面的附图和描述中提出。本发明的其它特征、目的和优点将从说明书、附图以及权利要求书变得明显。
附图说明
为了更好地描述和说明这里公开的那些发明的实施例和/或示例,可以参考一幅或多幅附图。用于描述附图的附加细节或示例不应当被认为是对所公开的发明、目前描述的实施例和/或示例以及目前理解的这些发明的最佳模式中的任何一者的范围的限制。
图1为一些实施例中衍射光学元件部分结构的示意图;
图2为一些实施例中衍射光学元件分束形成3*3多束光的示意图;
图3为一些实施例中微结构的示意图;
图4为第一至第十五实施例中微结构的示意图;
图5为一些实施例中衍射光学元件的剖面示意图;
图6为一些实施例中电子设备的示意图。
其中,100、衍射光学元件;110、基底;120、分束阵列;121、微结构;122、第一子单元;123、第二子单元;124、X轴方向;125、Y轴方向;130、余胶层;200、电子设备;210、投射模组;211、光源;220、接收模组;230、待测物体。
具体实施方式
为了便于理解本发明,下面将参照相关附图对本发明进行更全面的描述。附图中给出了本发明的较佳实施方式。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施方式。相反地,提供这些实施方式的目的是使对本发明的公开内容理解的更加透彻全面。
需要说明的是,当元件被称为“固定于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。本文所使用的术语“内”、“外”、“左”、“右”以及类似的表述只是为了说明的目的,并不表示是唯一的实施方式。
请参见图1、图2和图3,图1示出了一些实施例中衍射光学元件100部分结构的示意图,图2为一些实施例中衍射光学元件100分束形成3*3多束光的示意图,图3示出了一些实施例中微结构121的示意图。在一些实施例中,衍射光学元件100包括基底110以及设置于基底110上的多个微结构121,多个微结构121在基底110上沿X轴方向124与Y轴方向125呈矩形阵列排布形成分束阵列120,其中,X轴方向124与Y轴方向125为垂直于基底110的平面上两个相互垂直的方向,从而使得衍射光学元件100能够将单束光分束形成3*3的多束光。由此,衍射光学元件100可应用于采用散斑结构光或dToF技术的电子设备的投射模组中,衍射光学元件100用于将投射模组内的光源发射的单束光分束成3*3的多束光,从而形成点阵光斑投射到待测物体上,能够满足电子设备获取待测物体深度信息的需求。
具体地,参考图1和图3所示,在一些实施例中,微结构121在基底110上 的投影包括相间隔的第一子单元122与第二子单元123,第一子单元122与第二子单元123的几何中心的连线与X轴方向124的夹角在40°至50°之间,例如可以为45°。在每个微结构121中,第一子单元122与第二子单元123呈对角设置。例如,X轴方向124与Y轴方向125的等分角所在方向可以理解为X轴方向124与Y轴方向125形成的对角方向(图未标出)。第一子单元122与第二子单元123呈对角设置,可以理解为第一子单元122的几何中心与第二子单元123的几何中心的连线平行于该对角方向。需要说明的是,第一子单元122与第二子单元123呈对角设置,并不意味着第一子单元122与第二子单元123的几何中心的连线一定严格平行于对角方向,只要第一子单元122与第二子单元123的几何中心在X轴方向124与Y轴方向125上相错开,且第一子单元122与第二子单元123大致沿对角方向间隔排布,即可认为第一子单元122与第二子单元123呈对角设置。
更具体地,在一些实施例中,X轴方向124与Y轴方向125构成一平面直角坐标系,换言之,X轴方向124具有正负方向,Y轴方向125也具有正负方向。在每个微结构121中,第二子单元123的几何中心位于第一子单元122的几何中心的X轴负方向一侧,第二子单元123的几何中心位于第一子单元122的几何中心的Y轴负方向。
进一步地,在一些实施例中,第一子单元122的面积大于第二子单元123的面积,且衍射光学元件100满足以下条件式:
B>A;C>0;E>D;D>A;E>B;
其中,A为第二子单元123在X轴方向124上最边缘两个端点之间的距离,即第二子单元123在X轴方向124上的最大尺寸,B为第二子单元123在Y轴方向125上最边缘两个端点之间的距离,即第二子单元123在Y轴方向125上的 最大尺寸,C为第一子单元122与第二子单元123的最短距离,其中,在图3所示的实施例中,C可以理解为第一子单元122与第二子单元123在虚线G上的最短距离,且在一些实施例中,虚线G平行于对角方向,D为第一子单元122在X轴方向124上最边缘两个端点之间的距离,即第一子单元122在X轴方向124上的最大尺寸,E为第一子单元122在所述Y轴方向125上最边缘两个端点之间的距离,即第一子单元122在Y轴方向125上的最大尺寸。
在一些实施例中,第一子单元122与第二子单元123的形状均大致为圆角矩形,则第一子单元122与第二子单元123的长度方向与Y轴方向125平行,宽度方向与X轴方向124平行,A为第二子单元123的宽度尺寸,B为第二子单元123的长度尺寸,D为第一子单元122的宽度尺寸,E为第一子单元122的长度方向。
总结而言,第一子单元122于Y轴方向125上的最大尺寸大于第一子单元122于X轴方向124上的最大尺寸,第二子单元123于Y轴方向125上的最大尺寸大于第一子单元122于X轴方向124上的最大尺寸,第一子单元122于X轴方向124上的最大尺寸大于第二子单元123于X轴方向124上的最大尺寸,第一子单元122于Y轴方向125上的最大尺寸大于第二子单元123于Y轴方向125上的最大尺寸,且第一子单元122与第二子单元123在对角方向上间隔设置。
另外,在一些实施例中,微结构121于基底110上呈矩形阵列排布,相邻两个微结构121的第一子单元122之间于X轴方向124上的最短距离F>0,且F大于每个微结构121中第一子单元122的几何中心与第二子单元123的几何中心在X轴方向124上的距离。换言之,参考图3所示,相邻两个微结构121中,两个第一子单元122位于其中一个第二子单元123的几何中心的两侧。
参考图1所示,可以理解的是,当多个微结构121呈矩形阵列排布时,第一 子单元122与第二子单元123的数量相等,且在X轴方向124与Y轴方向125上,各第一子单元122之间也呈矩形阵列排布,各第二子单元123之间也呈矩形阵列排布。所有的第一子单元122与第二子单元123共同构成衍射光学元件100的分束阵列120,每个第一子单元122与对应的一个第二子单元123相间隔并呈对角设置。
需要说明的是,描述多个微结构121沿X轴方向124与Y轴方向125呈矩形阵列排布,可以理解为,在X轴方向124上,相邻两个第一子单元122的几何中心位于同一直线上,且相邻两个第一子单元122的朝向相同,例如相邻两个第一子单元122的长度方向相互平行。在X轴方向124上,相邻两个第二子单元123的几何中心位于同一直线上,且相邻两个第二子单元123的朝向相同。同理,在Y轴方向125上,第一子单元122的几何中心位于同一直线上,第一子单元122之间的朝向相同,第二子单元123的几何中心位于同一直线上,第二子单元123的朝向相同。如此,微结构121阵列形成排布规则的矩形阵列,能够更精确地对单光束进行分束,提升衍射光学元件100的光学性能。可以理解的是,在X轴方向124与Y轴方向125上,第一子单元122与第二子单元123均依次交替排布。
需要说明的是,在本申请中,描述平行于基底110的平面,可以理解为基底110设置有微结构121的平面,或者是平行于基底110设置有微结构121的表面的虚拟平面。描述第一子单元122与第二子单元123的尺寸,可以理解为第一子单元122与第二子单元123于基底110的表面上的投影的尺寸。另外,图1仅示出了衍射光学元件100部分微结构121的示意图,在图1示出的部分中,第一子单元122与第二子单元123的数量不相等,而实际上,微结构121作为分束阵列120的最小单元,无论分束阵列120中微结构121的数量增多还是减小, 第一子单元122与第二子单元123的数量都应该相等,且每一对应的第一子单元122与第二子单元123的相对位置也相同。
请再参见图1和图2,上述衍射光学元件100,能够将单束光分束形成图2所示的3*3多束光,进而形成3*3的点阵光斑投射的待测物体上,供电子设备获取待测物体的深度信息。在衍射光学元件100中设置由上述微结构121形成的分束阵列120,有利于衍射光学元件100出射的3*3多束光具备良好的均匀度与衍射效率,衍射光学元件100具备良好的光学性能,能够满足电子设备高检测精度的需求。
具体地,以下以其中一个分束实验数据证明上述衍射光学元件100具备良好的光学性能。在分束实验中,像素大小为200*264像素,每个像素尺寸为13nm,入射光的波长为940nm,衍射光学元件100将入射光束分束形成3*3多束光,分束后多数光的均匀度为7.13%,零级能量强度占总能量的10.3%,衍射效率为85.2%。其中,均匀度为3*3多束光中能量最高的光束与能量最低的光束的能量之差与能量之和的比值,衍射效率为3*3光束的能量之和与出射光总能量的比值。从实验数据可得知衍射光学元件100具备良好的光学性能,能够满足高检测精度的需求。具体实验数值如下表:
设计档案 y像素 x像素 pixsel size(nm) 均匀度 零级 衍射效率
3*3分束 264 200 13 7.13% 10.30% 85.20%
需要说明的是,电子设备通常采用近红外波段光线进行检测,因而衍射光学元件100的使用入射光波长可以为近红外波段,例如780nm-1100nm的近红外短波波段。进一步地,在一些实施例中,入射光波长在940±50nm,有利于提升衍射光学元件100的光学性能,从而提升三维检测精度。另外,微结构121形成n*n的矩形阵列,n为大于1的自然数,换言之,分束阵列120的行数与列数相同,且分束阵列120中微结构121的数量不限,只要能够满足入射光束的分束 需求即可,此处不做限定。例如,当入射光束的光斑尺寸较大,可以增大微结构121的数量以及分束阵列120的占用面积,以使得分束阵列120能够覆盖整个入射光束的光斑范围,提升入射光的利用率。
更进一步地,参考图1和图3所示,在一些实施例中,衍射光学元件100满足以下条件式:1<B/A<2.5;1<E/D<2.5;2<D/A<2.5;2<E/B<2.5;1<A/C<2。其中,对第二子单元123的尺寸与形状进行设计得到B/A的数值范围,对第一子单元122的尺寸与形状进行设计得到E/D的数值范围,对第一子单元122与第二子单元123的相对尺寸进行设计得到D/A与E/B的数值范围,对第一子单元122与第二子单元123的相对位置进行设计得到A/C的数值范围。满足上述关系式,能够对微结构121的尺寸及形状进行具体设计,进一步提升衍射光学元件100的光学性能。
在一些实施例中,衍射光学元件100满足以下条件式:150nm≤A≤1000nm;150nm≤F≤1000nm。满足以上条件式的下限,A与F的尺寸不会过小而导致微结构121的制造困难,有利于提升微结构121的制造良率,使微结构121适用于更多的制造工艺。满足上述条件式,微结构121的尺寸与入射波长接近,衍射光学元件100具有良好的衍射效应,有利于提升衍射光学元件100的光学性能。为进一步提升衍射光学元件100的光学性能,在一些实施例中,衍射光学元件100满足以下条件式:750nm≤A≤900nm;700nm≤F≤850nm;1.2≤B/A≤2.4;1.2≤E/D≤2.4;1.5≤A/C≤2.3。
微结构121的尺寸特征不同,衍射光学元件100于X轴方向124和/或Y轴方向125上的衍射角度也不同,多样化的衍射角度设计,使得衍射光学元件100能够满足更多不同场景以及不同电子设备的投射需求。具体地,请再参见图2,衍射光学元件100在X轴方向124上的衍射角度在15°至25°之间,具体可以 为:15°、17.5°、20°、22.5°或25°,在Y轴方向125上的衍射角度在10°至20°之间,具体可以为:10°、12.5°、15°、17.5°或20°。其中,以X轴方向124为例,衍射光学元件100分束形成3列光束,以中间列光束为原点,两侧光束相对中间列光束的偏离角即可理解为衍射光学元件100于X轴方向124上的衍射角度。根据不同场景及电子设备的需求,衍射光学元件100在X轴方向124与Y轴方向125上的衍射角度可以有任意搭配。
基于上述记载,以下将提供15个具体的实施例进行说明,各实施例的衍射光学元件100衍射角度如表1所示。其中,H对应图像传感器的水平方向,并与X轴方向124对应,即H为X轴方向124的衍射角度,同理,V为图像传感器的竖直方向,即Y轴方向125的衍射角度,D1为第一实施例中衍射光学元件100的衍射角选型,在D1中,衍射光学元件100的衍射角为15°*10°,D2为第二实施例中衍射光学元件100的衍射角选型,在D2中,衍射光学元件100的衍射角为17.5°*10°,同理,D3-D15分别为第三实施例至第十五实施例衍射光学元件100的衍射角选型。可以理解的是,衍射光学元件100的衍射角为15°*10°,则衍射光学元件100投射光的FOI为30°*20°,衍射光学元件100将单束光分束形成3*3的多束光,在X轴方向124及Y轴方向125均仅需要控制两个衍射角,使得分束阵列120的设计的生产更加简单。
表1
Figure PCTCN2021098835-appb-000001
各实施例中微结构121的尺寸特征由表2给出,表2中数值单位均为nm,表2中微结构121的尺寸特征均满足上述各条件式,各实施例中的衍射光学元件100具备良好的光学性能。由表2可看出,特过调整微结构121的尺寸特征,能够调节衍射光学元件100的衍射角,从而满足不同场景或电子设备的投射需求。
表2
实施例 A B C D E F
D1 819 1222 377 1820 2613 780
D2 819 1391 403 1820 3016 780
D3 819 1131 390 1820 2444 780
D4 819 1547 494 1820 3367 780
D5 819 1274 429 1820 2769 780
D6 819 1092 364 1820 2327 780
D7 819 1768 481 1820 3861 780
D8 819 1417 403 1820 3094 780
D9 819 1170 377 1820 2509 780
D10 819 1053 364 1820 2236 780
D11 819 1911 546 1820 4251 780
D12 819 1560 468 1820 3419 780
D13 819 1326 429 1820 2860 780
D14 819 1157 364 1820 2483 780
D15 819 1027 364 1820 2184 780
根据表2的数值,在一些实施例中,微结构121还满足以下条件式:1020nm<B<2000nm;420nm<C<550nm;D=1820nm;2236nm<E<4260nm。满足上述条件式,能够对微结构121的尺寸特征进行进一步设计,从而进一步提升衍射光学元件100的光学性能。
另外,图4示出了第一实施例到第十五实施例中微结构121的示意图。其中,D1表示第一实施例中微结构121的示意图,D2表示第二实施例中微结构 121的示意图,D3表示第三实施例中微结构121的示意图,以此类推。
根据表2的数值,可以得到如表3所示的数据,表3中的数据均满足上述各关系式。
表3
实施例 A(nm) B/A E/D D/A E/B A/C F(nm)
D1 819 1.49 1.44 2.22 2.14 2.17 780
D2 819 1.70 1.66 2.22 2.17 2.03 780
D3 819 1.38 1.34 2.22 2.16 2.10 780
D4 819 1.89 1.85 2.22 2.18 1.66 780
D5 819 1.56 1.52 2.22 2.17 1.91 780
D6 819 1.33 1.28 2.22 2.13 2.25 780
D7 819 2.16 2.12 2.22 2.18 1.70 780
D8 819 1.73 1.70 2.22 2.18 2.03 780
D9 819 1.43 1.38 2.22 2.14 2.17 780
D10 819 1.29 1.23 2.22 2.12 2.25 780
D11 819 2.33 2.34 2.22 2.22 1.50 780
D12 819 1.90 1.88 2.22 2.19 1.75 780
D13 819 1.62 1.57 2.22 2.16 1.91 780
D14 819 1.41 1.36 2.22 2.15 2.25 780
D15 819 1.25 1.20 2.22 2.13 2.25 780
可以理解的是,在衍射光学元件100的生产中,可以根据所需要的衍射角度,选用其中一个实施例的参数,并根据该实施例的参数制得相应的微结构121分束阵列120。例如,当需要20°*15°的衍射角时,对应表1可采用第六实施例D6,从而根据表2及表3中的参数制得对应的衍射光学元件100。
请参见图1和图5,图5示出了一些实施例中衍射光学元件100的剖面示意图。衍射光学元件100的生产工艺不限,包括但不限于为纳米光刻技术或纳米压印技术等,只要能够在基底110的表面形成由微结构121构成的分束阵列120即可。在一些实施例中,先采用纳米光刻技术制造出与分束阵列120相对应的 模具,例如,分束阵列120由多个基底110表面凸起的微结构121构成,则模具具有与分束阵列120相对应的凹陷结构,并在基底110上涂覆光刻胶,从而通过模具采用纳米压印技术将基底110上的光刻胶压印形成分束阵列120。需要说明的是,分束阵列120还可以由多个基底110表面凹陷的微结构121构成,则模具具有与分束阵列120相对应的凸起结构。
当然,也可直接在基底110上采用纳米光刻技术制备分束阵列120。然而,由于光刻模板面积通常远小于分束阵列120的面积,若直接在基底110上采用纳米光刻技术制备分束阵列120,则需要多次移动光刻模板方能满足大面积分束阵列120的制造。而先制造模具,再通过模具压印制备分束阵列120,仅需在模具制造过程中多次移动光刻模板,制得模具后便可通过模具快速量产分束阵列120,有利于提升生产效率。
可以理解的是,为配合制造工艺,顺利生产分束阵列120并避免损伤基底110,通过光刻胶制得分束阵列120后,基底110与微结构121之间会留有余胶层130。例如,在图5所示的实施例中,基底110的表面覆盖有余胶层130,微结构121形成于余胶层130上。在一些实施例中,基底110的厚度为0.1mm-0.5mm,具体可以为0.3mm,余胶层130的厚度为1um-5um,具体可以为3um,微结构121的高度,即微结构121在垂直于余胶层130表面的方向上的尺寸为0.5um-1um,具体可以为0.8um,如此设置,能够配合制造工艺顺利在基底110上形成分束阵列120,也能够使得制得的衍射光学元件100具备足够的结构强度。
另外,基底110的材质不限,可以为任意适用的透光材质,包括但不限于为硅、二氧化硅、硼硅酸钠玻璃、蓝宝石等。可以理解的是,在图1所示的实施例中,黑色区域表示基底110,白色区域表示微结构121,微结构121形成于基底110上。
请参见图1与图6,图6示出了一些实施例中电子设备200的示意图。在一些实施例中,衍射光学元件100与光源211组装形成投射模组210,并应用于电子设备200中,电子设备200还包括接收模组220。具体地,电子设备200可以采用散斑结构光或dToF等任意适用需借助点阵投射获取深度信息的技术。光源211能够发射红外光束,例如光源211发射940±50nm的红外光束。衍射光学元件100位于光源211的出光侧,衍射光学元件100能够将光源211出射的单光束分束为3*3的多光束,并投射到待测物体230上。投射模组210投射到物体上的光束经待测物体230反射后被接收模组220接收,其中,接收模组220可配置有图像传感器。接收模组220能够根据投射模组210投射的光束信号以及经待测物体230反射的光束信号,获取待测物体230的深度信息,从而实现三维检测功能。
在电子设备200中采用上述衍射光学元件100,衍射光学元件100能够将单光束分束为3*3的多光束并具备良好的光学性能,有利于提升电子设备200的检测精度。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个” 的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (20)

  1. 一种衍射光学元件,其特征在于,用于将单束光分束为3×3的多束光,所述衍射光学元件包括:
    基底;以及
    多个微结构,在所述基底上沿X轴方向与Y轴方向呈矩形阵列排布,其中,所述X轴方向与所述Y轴方向为平行于所述基底的平面上两个相互垂直的方向,所述微结构在所述基底上的投影包括相间隔的第一子单元与第二子单元,所述第一子单元与所述第二子单元的几何中心的连线与所述X轴方向的夹角在40°至50°之间,所述第一子单元的面积大于所述第二子单元的面积;
    且所述衍射光学元件满足以下条件式:
    1<B/A<2.5;1<E/D<2.5;2<D/A<2.5;2<E/B<2.5;1<A/C<2;
    其中,A为所述第二子单元在所述X轴方向上的最大尺寸,B为所述第二子单元在所述Y轴方向上的最大尺寸,C为所述第一子单元与所述第二子单元的最短距离,D为所述第一子单元在所述X轴方向上的最大尺寸,E为所述第一子单元在所述Y轴方向上的最大尺寸。
  2. 根据权利要求1所述的衍射光学元件,其特征在于,所述X轴方向与所述Y轴方向构成一平面直角坐标系;
    所述第二子单元的几何中心位于所述第一子单元的几何中心的X轴负方向一侧,所述第二子单元的几何中心位于所述第一子单元的几何中心的Y轴负方向一侧。
  3. 根据权利要求1所述的衍射光学元件,其特征在于,在所述X轴方向上,相邻两个所述第一子单元的几何中心位于同一直线上,且相邻两个所述第一子单元的朝向相同;和/或
    在所述X轴方向上,相邻两个所述第二子单元的几何中心位于同一直线上,且相邻两个所述第二子单元的朝向相同。
  4. 根据权利要求1所述的衍射光学元件,其特征在于,满足以下条件式:
    150nm≤A≤1000nm;150nm≤F≤1000nm;
    其中,F为所述X轴方向上相邻两个所述第一子单元之间的最短距离。
  5. 根据权利要求4所述的衍射光学元件,其特征在于,满足以下条件式:
    750nm≤A≤900nm;700nm≤F≤850nm;1.2≤B/A≤2.4;1.2≤E/D≤2.4;1.5≤A/C≤2.3。
  6. 根据权利要求1-5任一项所述的衍射光学元件,其特征在于,所述衍射光学元件在所述X轴方向上的衍射角度在15°至25°之间。
  7. 根据权利要求6所述的衍射光学元件,其特征在于,所述衍射光学元件在所述X轴方向上的衍射角度为:15°、17.5°、20°、22.5°或25。
  8. 根据权利要求1-5任一项所述的衍射光学元件,其特征在于,所述衍射光学元件在所述Y轴方向上的衍射角度在10°至20°之间。
  9. 根据权利要求8所述的衍射光学元件,其特征在于,所述衍射光学元件在所述Y轴方向上的衍射角度为10°、12.5°、15°、17.5°或20°。
  10. 根据权利要求1-5任一项所述的衍射光学元件,其特征在于,所述第一子单元及所述第二子单元的形状均大致呈圆角矩形。
  11. 根据权利要求1-5任一项所述的衍射光学元件,其特征在于,所述第一子单元与所述第二子单元的几何中心的连线与所述X轴方向的夹角为45°。
  12. 根据权利要求1-5任一项所述的衍射光学元件,其特征在于,相邻两个所述微结构中,两个所述第一子单元分别位于其中一个所述第二子单元的几何中心的两侧。
  13. 根据权利要求1-5任一项所述的衍射光学元件,其特征在于,所述衍射光学元件的入射光波长为940±50nm。
  14. 根据权利要求1-5任一项所述的衍射光学元件,其特征在于,多个所述微结构形成的矩形阵列的行数和列数相等。
  15. 根据权利要求1-5任一项所述的衍射光学元件,其特征在于,还包括余胶层,所述余胶层设置于所述基底上,所述微结构设置于所述余胶层上。
  16. 根据权利要求15所述的衍射光学元件,其特征在于,所述基底的厚度为0.1mm-0.5mm,所述余胶层的厚度为1um-5um,所述微结构的高度为0.5um-1um。
  17. 一种衍射光学元件,其特征在于,包括:
    基底;以及
    分束阵列,设置于所述基底上并包括多个第一子单元与多个第二子单元,所述第一子单元与所述第二子单元的数量相等,在X轴方向与Y轴方向上,多个所述第一子单元相间隔并呈矩形阵列排布,多个所述第二子单元相间隔并呈矩形阵列排布,所述X轴方向与所述Y轴方向为平行于所述基底的平面上两个相互垂直的方向,所述第一子单元与所述第二子单元一一对应,每个所述第一子单元与对应的一个所述第二子单元相间隔,且每个所述第一子单元与对应的一个所述第二子单元的几何中心的连线与所述X轴方向的夹角在40°至50°之间;
    且所述分束阵列满足以下条件式:
    1<B/A<2.5;1<E/D<2.5;2<D/A<2.5;2<E/B<2.5;1<A/C<2;
    其中,A为所述第二子单元于所述X轴方向上的最大尺寸,B为所述第二子单元于所述Y轴方向上的最大尺寸,C为所述第一子单元与所述第二子单元的最短距离,D为所述第一子单元于所述X轴方向上的最大尺寸,E为所述第一子单 元于所述Y轴方向上的最大尺寸。
  18. 一种投射模组,其特征在于,包括光源以及如权利要求1-17任一项所述的衍射光学元件,所述衍射光学元件用于对所述光源发出的光线进行分束。
  19. 一种电子设备,其特征在于,包括接收模组以及如权利要求18所述的投射模组,所述投射模组用于向待测物体投射光线,所述接收模组用于接收被待测物体反射的光线。
  20. 根据权利要求19所述的电子设备,其特征在于,所述电子设备采用结构光或飞行时间技术获取待测物体的深度信息。
PCT/CN2021/098835 2021-06-08 2021-06-08 衍射光学元件、投射模组及电子设备 WO2022257004A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/098835 WO2022257004A1 (zh) 2021-06-08 2021-06-08 衍射光学元件、投射模组及电子设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/098835 WO2022257004A1 (zh) 2021-06-08 2021-06-08 衍射光学元件、投射模组及电子设备

Publications (1)

Publication Number Publication Date
WO2022257004A1 true WO2022257004A1 (zh) 2022-12-15

Family

ID=84424654

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/098835 WO2022257004A1 (zh) 2021-06-08 2021-06-08 衍射光学元件、投射模组及电子设备

Country Status (1)

Country Link
WO (1) WO2022257004A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106292144A (zh) * 2015-06-23 2017-01-04 手持产品公司 光学图案投影仪
CN107703641A (zh) * 2017-09-08 2018-02-16 深圳奥比中光科技有限公司 一种结构光投影模组和深度相机
US20180307051A1 (en) * 2015-08-28 2018-10-25 Everready Precision Ind. Corp. Lighting apparatus for generating structured light
CN111650681A (zh) * 2020-06-24 2020-09-11 欧菲微电子技术有限公司 衍射光学元件、tof深度传感器、光学系统及装置
CN211878344U (zh) * 2020-05-13 2020-11-06 浙江水晶光电科技股份有限公司 一种激光发射模组和3d成像装置
CN112051581A (zh) * 2020-11-09 2020-12-08 深圳市汇顶科技股份有限公司 光分束器和光投射器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106292144A (zh) * 2015-06-23 2017-01-04 手持产品公司 光学图案投影仪
US20180307051A1 (en) * 2015-08-28 2018-10-25 Everready Precision Ind. Corp. Lighting apparatus for generating structured light
CN107703641A (zh) * 2017-09-08 2018-02-16 深圳奥比中光科技有限公司 一种结构光投影模组和深度相机
CN211878344U (zh) * 2020-05-13 2020-11-06 浙江水晶光电科技股份有限公司 一种激光发射模组和3d成像装置
CN111650681A (zh) * 2020-06-24 2020-09-11 欧菲微电子技术有限公司 衍射光学元件、tof深度传感器、光学系统及装置
CN112051581A (zh) * 2020-11-09 2020-12-08 深圳市汇顶科技股份有限公司 光分束器和光投射器

Similar Documents

Publication Publication Date Title
US11327283B2 (en) Nanostructured meta-materials and meta-surfaces to collimate light emissions from LEDs
JP7269712B2 (ja) メタレンズを含むプロジェクタ
CN113281909A (zh) 衍射光学元件、投射模组及电子设备
US11217967B2 (en) Laser arrangement with reduced building height
WO2022257004A1 (zh) 衍射光学元件、投射模组及电子设备
CN114200556B (zh) 微光学透镜、制备方法及显示系统
US11137246B2 (en) Optical device
WO2022257113A1 (zh) 衍射光学元件、投射模组及电子设备
CN215297842U (zh) 衍射光学元件、投射模组及电子设备
TWI822136B (zh) 用於三維測距系統的線陣投影器
US11892154B2 (en) Illumination device
JP6543825B2 (ja) マイクロレンズアレイ
WO2023011031A1 (zh) 光发射模组、深度相机及终端
TWI803862B (zh) 微透鏡陣列裝置
CN211236319U (zh) 微透镜阵列、光发射模组、深度相机和电子设备
CN113625461A (zh) 衍射光学元件、投射模组及电子设备
JP2002260422A (ja) Led光源装置
CN113391387A (zh) 衍射光学元件、投射模组及电子设备
TWI454798B (zh) 直下式背光模組及應用其之顯示裝置
CN113466981A (zh) 衍射光学元件、投射模组及电子设备
TW201903438A (zh) 透鏡
CN217902084U (zh) 匀光片
CN113703175B (zh) 衍射光学元件、投射模组及电子设备
TW200923267A (en) Optical lens and light source module
WO2021097747A1 (zh) 微透镜阵列元件以及扩散片和电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21944514

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21944514

Country of ref document: EP

Kind code of ref document: A1