WO2022255802A1 - Auto teaching method and auto teaching system for transfer robot - Google Patents

Auto teaching method and auto teaching system for transfer robot Download PDF

Info

Publication number
WO2022255802A1
WO2022255802A1 PCT/KR2022/007799 KR2022007799W WO2022255802A1 WO 2022255802 A1 WO2022255802 A1 WO 2022255802A1 KR 2022007799 W KR2022007799 W KR 2022007799W WO 2022255802 A1 WO2022255802 A1 WO 2022255802A1
Authority
WO
WIPO (PCT)
Prior art keywords
port
cassette
obtaining
transfer robot
auto
Prior art date
Application number
PCT/KR2022/007799
Other languages
French (fr)
Korean (ko)
Inventor
윤정태
최대규
김성휘
Original Assignee
로체 시스템즈
삼성디스플레이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 로체 시스템즈, 삼성디스플레이 주식회사 filed Critical 로체 시스템즈
Publication of WO2022255802A1 publication Critical patent/WO2022255802A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67763Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations the wafers being stored in a carrier, involving loading and unloading
    • H01L21/67766Mechanical parts of transfer devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G49/00Conveying systems characterised by their application for specified purposes not otherwise provided for
    • B65G49/05Conveying systems characterised by their application for specified purposes not otherwise provided for for fragile or damageable materials or articles
    • B65G49/06Conveying systems characterised by their application for specified purposes not otherwise provided for for fragile or damageable materials or articles for fragile sheets, e.g. glass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G49/00Conveying systems characterised by their application for specified purposes not otherwise provided for
    • B65G49/05Conveying systems characterised by their application for specified purposes not otherwise provided for for fragile or damageable materials or articles
    • B65G49/06Conveying systems characterised by their application for specified purposes not otherwise provided for for fragile or damageable materials or articles for fragile sheets, e.g. glass
    • B65G49/063Transporting devices for sheet glass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67259Position monitoring, e.g. misposition detection or presence detection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/673Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere using specially adapted carriers or holders; Fixing the workpieces on such carriers or holders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/673Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere using specially adapted carriers or holders; Fixing the workpieces on such carriers or holders
    • H01L21/6734Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere using specially adapted carriers or holders; Fixing the workpieces on such carriers or holders specially adapted for supporting large square shaped substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67763Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations the wafers being stored in a carrier, involving loading and unloading
    • H01L21/67769Storage means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/68Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/68Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment
    • H01L21/681Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment using optical controlling means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68707Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a robot blade, or gripped by a gripper for conveyance

Definitions

  • the present invention relates to an auto-teaching method and an auto-teaching system for a transfer robot, and more particularly, to an auto-teaching method and auto-teaching system for a transfer robot for transferring a large glass substrate for manufacturing a flat panel display.
  • FPDs Flat panel displays
  • PDPs plasma display panels
  • LCDs liquid crystal display panels
  • OLEDs organic electroluminescent displays
  • flat panel displays are implemented by forming electronic circuit patterns on a glass substrate.
  • the transferred glass substrates are taken out of the cassette or drawn into the cassette by a transfer robot. More specifically, when a glass substrate is introduced into a cassette or taken out of a cassette using a hand of a transfer robot, when the control of the robot hand is not accurate, the glass substrate may be damaged.
  • the problem to be solved by the present invention is to provide an auto-teaching method for a transfer robot capable of teaching the position of a cassette to a transfer robot without having a sensor in each cassette, and an auto-teaching system capable of applying the same. is to provide
  • An auto teaching method for solving these problems is a port where a cassette loaded with a plurality of substrates is placed, and a transfer robot that moves the substrates loaded in the cassette while moving between the ports.
  • the auto teaching system having a step of acquiring the absolute position of the port, obtaining the relative position of the cassette with respect to the port, and using the absolute position of the port and the relative position of the cassette with respect to the port , calculating the absolute position of the cassette.
  • the obtaining of the absolute position of the port may include obtaining a center position of the port, obtaining a reference height value of the port, and obtaining a rotation angle of the transfer robot with respect to the port.
  • obtaining the relative position of the cassette with respect to the port obtaining a separation distance between both ends of the front portion of the cassette and the port, and obtaining a separation distance between the side portion of the cassette and the side portion of the port steps may be included.
  • the obtaining of the relative position of the cassette with respect to the port may further include obtaining a depth value of the cassette and calculating a displacement of the cassette.
  • An auto teaching system includes a port, a transfer robot, and a control unit.
  • a cassette loaded with a plurality of substrates may be disposed in the port.
  • the transfer robot may move substrates loaded in a cassette through a hand equipped with a plurality of fingers while moving between ports along a travel axis.
  • the control unit may control the transfer robot. At this time, the control unit obtains the absolute position of the port, and after acquiring the relative position of the cassette with respect to the port, using the absolute position of the port and the relative position of the cassette with respect to the port, the absolute position of the cassette Calculate the position.
  • the port may include first and second front displacement sensors and side displacement sensors.
  • the first and second front displacement sensors may respectively measure separation distances between the port and both front end portions of the cassette.
  • the lateral displacement sensor may measure a separation distance between the port and the side portion of the cassette, respectively.
  • a first detection sensor is provided at an end of the finger, and the port may include a first reflector that reacts with the detection sensor when the transfer robot moves along the travel axis.
  • second and third sensors may be formed at the front end of the port to sense entry of both ends of the fingers, respectively.
  • a second reflector for detecting it may be further formed in the port.
  • FIG. 1 is a schematic perspective view of an auto teaching system according to an exemplary embodiment of the present invention.
  • FIG. 2 is a flowchart illustrating an auto teaching method according to an exemplary embodiment of the present invention.
  • FIG. 3 is a flowchart illustrating step S110 shown in FIG. 2 in more detail.
  • FIG. 4 is a flowchart illustrating step S120 shown in FIG. 2 in more detail.
  • FIG. 5 is a perspective view showing a process of step S111 of obtaining a center position of a port shown in FIG. 3 as a detailed process of step S110 shown in FIG. 2 .
  • FIG. 6 is a perspective view showing a process of step S112 of acquiring a reference height value of a port shown in FIG. 3 as a detailed process of step S110 shown in FIG. 2 .
  • step S113 of acquiring the rotation angle of the transfer robot with respect to the port shown in FIG. 3 as a detailed process of step S110 shown in FIG. 2 .
  • Figure 10 is a perspective view showing the configuration of the port for the process of step S120 shown in Figure 2.
  • 11 and 12 are a plan view and a perspective view for explaining the process of step S123 of FIG. 4, respectively.
  • FIG. 13 is a plan view for explaining the process of step S124 of FIG. 4 .
  • first and second may be used to describe various components, but the components should not be limited by the terms. These terms are only used for the purpose of distinguishing one component from another. For example, a first element may be termed a second element, and similarly, a second element may be termed a first element, without departing from the scope of the present invention.
  • FIG. 1 is a schematic perspective view of an auto teaching system according to an exemplary embodiment of the present invention.
  • an auto teaching system includes a port 10, a transfer robot 100, and a controller (not shown).
  • a fence 30 may be partitioned between the transfer robot 100 and the port 10, but the fence 30 is not essential.
  • the transfer robot 100 may be disposed on one side of the fence 30, and a plurality of ports 10 may be arranged on the other side of the fence 30.
  • the first port 11 and the second port 12 may be disposed.
  • a cassette 20 loaded with a plurality of substrates may be disposed in the port 10 .
  • the transfer robot 100 moves between the first port 11 and the second port 12 along the driving axis 40, and transfers the substrate loaded on the cassette 20 through a hand equipped with a plurality of fingers. can be moved
  • the control unit may control the transfer robot 100 . At this time, the control unit obtains the absolute position of the port 10 and obtains the relative position of the cassette 20 with respect to the port 10, and then the absolute position of the port 10 and the port 10 Using the relative position of the cassette 20 to ), the absolute position of the cassette 20 is calculated.
  • the transfer robot 100 can be directly taught the absolute position of the cassette 20, but in the present invention, the cassette 20 is not equipped with a sensor. Therefore, the position of the port 10 is first taught to the transfer robot 100, and the relative position of the cassette 20 on the port 10 is taught.
  • the port 10 when the port 10 is provided with a cassette 20 clamping device (not shown), the position of the cassette 20 relative to the port 10 is fixed, so the port 10 senses the position of the cassette 20 You don't have to.
  • the hexahedron-shaped cassette 20 on which the rectangular glass substrate for forming a flat panel display is loaded is placed in the port 10, and then the clamping devices in the shape of '' and '' are placed on the cassette 20. Align the edges of both sides by pushing them. Therefore, although the relative position of the cassette 20 with respect to the port 10 is constant, in the process of aligning the cassette 20 by a clamping device (not shown), particles may be generated or the substrate may be damaged. have.
  • the port 10 does not have a clamping device, and the relative position of the cassette 20 placed on the port 10 is measured, and the transfer robot 100 is taught the relative position, so that the transfer robot 100
  • the absolute position of the cassette 20 can be known using the absolute position of the port 10 and the relative position of the cassette 20 with respect to the port 10 .
  • the port 10 may include first and second front displacement sensors 111 and 112 and a side displacement sensor 113 .
  • the first and second front displacement sensors 111 and 112 may measure the separation distance between the port 10 and both front ends of the cassette 20, respectively.
  • the lateral displacement sensor 113 may measure the separation distance between the port 10 and the side surface of the cassette 20, respectively.
  • a first detection sensor 114 is provided at the end of the finger, and the port, when the transfer robot 100 moves along the traveling axis 40, the first p detection sensor ( 114) may be provided with a first reflector 117 that reacts.
  • second and third detection sensors 116 for sensing the entry of both ends, respectively, may be formed.
  • a second reflector 118 may be further formed in the port 10 to sense when the first detection sensor rises.
  • FIG. 2 is a flowchart illustrating an auto teaching method according to an exemplary embodiment of the present invention.
  • FIG. 3 is a flowchart showing step S110 shown in FIG. 2 in more detail
  • FIG. 4 is a flow chart showing step S120 shown in FIG. 2 in more detail.
  • a cassette 20 loaded with a plurality of substrates is disposed between a port 10 and ports 11 and 12.
  • Acquiring the absolute position of the port 10 by an auto teaching system equipped with a transfer robot 100 that moves the substrate loaded on the cassette 20 while moving the substrate (S110), and the port 10 Obtaining a relative position of the cassette 20 with respect to (S120), and using the absolute position of the port 10 and the relative position of the cassette 20 with respect to the port 10, the cassette 20 and calculating the absolute position of (S130).
  • obtaining the absolute position of the port 10 (S110) includes obtaining the center position of the port 10 (S111) and obtaining a reference height value of the port 10 ( S112), and obtaining a rotation angle of the transfer robot 100 with respect to the port 10 (S113).
  • obtaining the relative position of the cassette 20 with respect to the port 10 (S120) is the step of obtaining a separation distance between both ends of the front portion of the cassette 20 and the port 10 (S121). ), and obtaining a separation distance between the side part of the cassette 20 and the side part of the port 10 (S122).
  • obtaining the relative position of the cassette 20 with respect to the port 10 (S120) includes obtaining the depth (arm axis) value of the cassette (S123) and calculating the displacement of the cassette (S124). ) may further include.
  • FIG. 5 is a perspective view showing a process of step S111 of obtaining a center position of a port shown in FIG. 3 as a detailed process of step S110 shown in FIG. 2 .
  • the transfer robot 100 starts moving along the travel axis 40 .
  • absolute coordinate values of respective positions of the respective ports 10 may be obtained.
  • FIG. 6 is a perspective view showing a process of step S112 of acquiring a reference height value of a port shown in FIG. 3 as a detailed process of step S110 shown in FIG. 2 .
  • a second reflector 118 is formed on each of the ports 11 and 12 to detect it.
  • a reference height value may be obtained using coordinate values at which the first detection sensor 114 and the second reflector 118 are aligned in a line.
  • the transfer robot acquires the absolute positions of the first port 11 and the second port 12 .
  • FIG. 1 only two ports 11 and 12 are shown for convenience, but this is only illustrative, and even when a larger number of ports are provided, the absolute position, twist, etc. of each port 10 is performed through the same method. will obtain the position of
  • step S113 of acquiring the rotation angle of the transfer robot with respect to the port shown in FIG. 3 as a detailed process of step S110 shown in FIG. 2 .
  • the front end of the port 10, the second detection sensor 115 and the third detection sensor 117 are formed, respectively.
  • the second detection sensor 115 and the third detection sensor 117 may be formed to correspond to the outermost finger part among fingers attached to the hand of the transfer robot 100, respectively.
  • a second detection sensor 115 and a third detection sensor 117 are formed at the front end of each of the ports 11 and 12, respectively.
  • the transfer robot 100 after the absolute position of the port is obtained, the transfer robot 100, for example, after being located in the center of the first port 11, performs an operation of advancing the hand forward. At this time, when both fingers enter at the same time, the twist does not occur, but when the entry times of both fingers are different, twist has occurred. In this case, the twist (rotation angle) can be calculated.
  • the rotation angle (twist angle) is ⁇
  • the excessive distance passing through the second detection sensor 115 is A
  • the excessive distance passing through the third detection sensor 116 is B
  • the second detection is L
  • the rotation angle ⁇ can be calculated by Equation 1 below.
  • the compensation amount X of the driving axis according to the compensation of the twisted angle of the hand can be expressed as Equation 2 below.
  • Such absolute position acquisition of the ports 10 may be performed every operation of the transfer robot 100, but after setting the equipment, after applying only once and acquiring, after saving, the stored values may be used, Considering that the positions of the ports 10 are shifted during the use process, it may be performed and stored at regular intervals.
  • the cassette is always placed at the same position of the port, so position teaching of the ports 10 is sufficient, but the present invention Since it does not have a clamping device, when the cassette 20 is placed on the ports 10, it may not be placed in a certain position.
  • the board when a board is drawn in or taken out by entering the finger into the cassette 20, the board may be damaged.
  • Figure 10 is a perspective view showing the configuration of the port for the process of step S120 shown in Figure 2.
  • the entirety of the cassette is not shown, only the bottom part is shown.
  • the port 10 includes a first front displacement sensor 111 and a second front displacement sensor for measuring the separation distance between the port 10 and both front ends of the cassette 20, respectively. (112) is provided.
  • the port 10 is provided with a lateral displacement sensor 113 for measuring a separation distance between the port 10 and the side parts of the cassette 20 .
  • a second lateral displacement sensor 119 may be further provided.
  • the first front displacement sensor 111 and the second front displacement sensor 112 can measure the separation distance of the front part of the cassette 20, and through this, the distortion of the cassette 20 can also be measured.
  • the relative position of the cassette 20 with respect to the port 10 can be obtained.
  • the front side through the first front displacement sensor 111 or the second front displacement sensor 112 By obtaining the negative separation distance, the relative position of the cassette 20 with respect to the port 10 can be obtained.
  • 11 and 12 are a plan view and a perspective view for explaining the process of step S123 of FIG. 4, respectively.
  • the depth of the arm axis can be calculated as a + L .
  • FIG. 13 is a plan view for explaining the process of step S124 of FIG. 4 .
  • the distortion of the port was calculated, but since this distortion does not accurately reflect the depth value, it is necessary to calculate a precise distortion in which the depth value is reflected around the cassette for more precise correction.
  • A denotes a position value sensed from the right side
  • B denotes a position value sensed from the left side
  • L is the distance between A and B sensing
  • h is the side sensing distance of the hand
  • H' is the distance to the hand side sensing sensor
  • a is the distance from the origin of the arm to the cassette edge, of (A+B)/2
  • D is the distance from the edge of the cassette to the teaching position
  • I is the distance from the center of the robot to the side of the hand.
  • the robot advances the arm at the port location until the sensor is sensed. At this time, when A and B are simultaneously detected, there is no misalignment, but if they are different, the value at the moment when the misalignment is detected is stored, and the angle of the hand misalignment can be detected using this value.
  • the twist angle of the hand can be calculated through Equation 1 described above.
  • the traveling axis correction amount x can be obtained through Equation 3 below.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Robotics (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

Disclosed are an auto teaching method and an auto teaching system for a transfer robot, which are capable of implementing full automation by means of artificial intelligence teaching so as to be capable of achieving an unmanned production line and omitting aligning of a cassette, on a port and thus can prevent substrate damage from alignment. The auto teaching method, in which the auto teaching system comprises a port at which a cassette having a plurality of substrates loaded thereon is arranged, and a transfer robot for transferring the substrates loaded on the cassette while moving between ports, comprises the steps of: acquiring the absolute position of the port; acquiring the relative position of the cassette with respect to the port; and calculating the absolute position of the cassette by using the absolute position of the port and the relative position of the cassette with respect to the port.

Description

이송로봇의 오토 티칭 방법 및 오토 티칭 시스템Transfer robot auto teaching method and auto teaching system
본 발명은 이송로봇의 오토 티칭 방법 및 오토 티칭 시스템에 관한 것으로, 보다 상세히, 평판 디스플레이를 제조하기 위한 대형 유리기판을 이송하기 위한 이송로봇의 오토 티칭 방법 및 오토 티칭 시스템에 관한 것이다.The present invention relates to an auto-teaching method and an auto-teaching system for a transfer robot, and more particularly, to an auto-teaching method and auto-teaching system for a transfer robot for transferring a large glass substrate for manufacturing a flat panel display.
플라즈마 디스플레이 패널(PDP), 액정 표시 패널(LCD) 및 유기 전계 발광 디스플레이 장치(OLED)와 같은 평판 디스플레이(FPD)들은 TV, 옥외광고판 등 다양한 디바이스의 형태로 오늘날 우리 생활에서 쉽게 접할 수 있다.Flat panel displays (FPDs) such as plasma display panels (PDPs), liquid crystal display panels (LCDs), and organic electroluminescent displays (OLEDs) can be easily encountered in our lives today in the form of various devices such as TVs and billboards.
일반적으로, 평판 디스플레이들은 글라스 기판 위에 전자 회로 패턴을 형성함으로써 구현된다.In general, flat panel displays are implemented by forming electronic circuit patterns on a glass substrate.
글라스 기판 상에 전자 회로 패턴을 형성하기 위해 다양한 공정들이 진행되는데, 각 공정 간의 원활한 진행을 위해 다수의 글라스 기판들이 카세트(Cassette)에 적재되어 이송된다.Various processes are performed to form an electronic circuit pattern on a glass substrate, and a plurality of glass substrates are loaded and transported in a cassette for smooth progress between each process.
이송된 글라스 기판들은 이송 로봇에 의해 카세트에서 인출되거나, 카세트로 인입된다. 보다 구체적으로, 이송 로봇의 핸드를 이용하여 카세트에 글라스 기판을 인입하거나, 카세트로부터 글라스 기판을 인출하는데, 로봇 핸드의 제어가 정확하지 않은 경우, 글라스 기판이 파손되는 문제가 발생한다.The transferred glass substrates are taken out of the cassette or drawn into the cassette by a transfer robot. More specifically, when a glass substrate is introduced into a cassette or taken out of a cassette using a hand of a transfer robot, when the control of the robot hand is not accurate, the glass substrate may be damaged.
이러한 문제점을 해결하기 위해서, 당사의 등록특허 제10-1725406, "이송로봇의 오토 티칭 시스템" 및 등록특허 제10-1816992, "이송로봇의 오토 티칭 시스템"에서는, 센서를 통해서, 카세트 내부로 로봇 핸드를 인입시키는 경우, 로봇 핸드를 티칭하는 시스템을 개발하였다.In order to solve this problem, in our Patent Registration No. 10-1725406, "Transfer Robot Auto Teaching System" and Registration Patent No. 10-1816992, "Transfer Robot Auto Teaching System", the robot enters the cassette through the sensor. When the hand is retracted, a system for teaching the robot hand was developed.
이러한 종래 기술에서는, 변위센서가 카세트에 구비되어 있어서, 글라스 기판들이 적재되어 이송되는 카세트 마다 센서를 설치해야 되는 문제가 있다.In this prior art, since the displacement sensor is provided in the cassette, there is a problem in that the sensor must be installed in each cassette on which the glass substrates are loaded and transported.
그에 따라서, 본 발명이 해결하고자 하는 과제는, 개별적인 카세트에 센서를 구비함이 없이, 카세트의 포지션을 이송로봇에게 티칭할 수 있는, 이송로봇의 오토 티칭 방법 및 이를 적용할 수 있는 오토 티칭 시스템을 제공하는 것이다.Accordingly, the problem to be solved by the present invention is to provide an auto-teaching method for a transfer robot capable of teaching the position of a cassette to a transfer robot without having a sensor in each cassette, and an auto-teaching system capable of applying the same. is to provide
이러한 과제를 해결하기 위한 본 발명의 예시적인 일 실시예에 의한 오토 티칭 방법은, 다수의 기판이 적재된 카세트가 배치되는 포트와, 포트 사이를 이동하면서, 카세트에 적재된 기판을 이동시키는 이송 로봇을 구비한 오토 티칭 시스템이, 상기 포트의 절대적인 포지션을 획득하는 단계와, 상기 포트에 대한 카세트의 상대적인 포지션을 획득하는 단계, 및 상기 포트의 절대적인 포지션 및 상기 포트에 대한 카세트의 상대적인 포지션을 이용하여, 상기 카세트의 절대적인 포지션을 연산하는 단계를 포함한다.An auto teaching method according to an exemplary embodiment of the present invention for solving these problems is a port where a cassette loaded with a plurality of substrates is placed, and a transfer robot that moves the substrates loaded in the cassette while moving between the ports. The auto teaching system having a step of acquiring the absolute position of the port, obtaining the relative position of the cassette with respect to the port, and using the absolute position of the port and the relative position of the cassette with respect to the port , calculating the absolute position of the cassette.
예컨대, 상기 포트의 절대적인 포지션을 획득하는 단계는, 상기 포트의 중심위치를 획득하는 단계와, 상기 포트의 기준 높이값을 획득하는 단계, 및 상기 포트에 대한 상기 이송 로봇의 회전각을 획득하는 단계를 포함할 수 있다.For example, the obtaining of the absolute position of the port may include obtaining a center position of the port, obtaining a reference height value of the port, and obtaining a rotation angle of the transfer robot with respect to the port. can include
한편, 상기 포트에 대한 카세트의 상대적인 포지션을 획득하는 단계는, 상기 카세트의 전면부 양측 단부와 상기 포트의 이격거리를 획득하는 단계, 및 상기 카세트의 측면부와 상기 포트의 측면부의 이격거리를 획득하는 단계를 포함할 수 있다.On the other hand, obtaining the relative position of the cassette with respect to the port, obtaining a separation distance between both ends of the front portion of the cassette and the port, and obtaining a separation distance between the side portion of the cassette and the side portion of the port steps may be included.
또한, 상기 포트에 대한 카세트의 상대적인 포지션을 획득하는 단계는, 카세트의 깊이값을 획득하는 단계, 및 카세트의 틀어짐을 연산하는 단계를 더 포함할 수 있다.Also, the obtaining of the relative position of the cassette with respect to the port may further include obtaining a depth value of the cassette and calculating a displacement of the cassette.
본 발명에 의한 오토 티칭 시스템은, 포트, 이송 로봇 및 제어부를 포함한다. 상기 포트에는 다수의 기판이 적재된 카세트가 배치될 수 있다. 상기 이송 로봇은 주행축을 따라서 포트 사이를 이동하면서, 다수의 핑거가 구비된 핸드를 통해 카세트에 적재된 기판을 이동시킬 수 있다. 상기 제어부는 상기 이송 로봇을 제어할 수 있다. 이때, 상기 제어부는, 상기 포트의 절대적인 포지션을 획득하고, 상기 포트에 대한 카세트의 상대적인 포지션을 획득한 후, 상기 포트의 절대적인 포지션 및 상기 포트에 대한 카세트의 상대적인 포지션을 이용하여, 상기 카세트의 절대적인 포지션을 연산한다.An auto teaching system according to the present invention includes a port, a transfer robot, and a control unit. A cassette loaded with a plurality of substrates may be disposed in the port. The transfer robot may move substrates loaded in a cassette through a hand equipped with a plurality of fingers while moving between ports along a travel axis. The control unit may control the transfer robot. At this time, the control unit obtains the absolute position of the port, and after acquiring the relative position of the cassette with respect to the port, using the absolute position of the port and the relative position of the cassette with respect to the port, the absolute position of the cassette Calculate the position.
이때, 상기 포트는, 제1 및 제2 전면 변위 센서 및 측면 변위 센서를 포함할 수 있다. 상기 제1 및 제2 전면 변위 센서는, 상기 포트와 카세트의 전면 양단부와의 이격거리를 각각 측정할 수 있다. 상기 측면 변위 센서는, 상기 포트와 상기 카세트의 측면부와의 이격거리를 각각 측정할 수 있다.In this case, the port may include first and second front displacement sensors and side displacement sensors. The first and second front displacement sensors may respectively measure separation distances between the port and both front end portions of the cassette. The lateral displacement sensor may measure a separation distance between the port and the side portion of the cassette, respectively.
한편, 상기 핑거들 중에서, 핑거의 단부에는 제1 감지센서가 구비되고, 상기 포트는, 상기 이송 로봇이 상기 주행축을 따라 이동할 때, 상기 감지센서와 반응하는 제1 반사판을 구비할 수 있다.Meanwhile, among the fingers, a first detection sensor is provided at an end of the finger, and the port may include a first reflector that reacts with the detection sensor when the transfer robot moves along the travel axis.
또한, 상기 포트의 전단부에는, 상기 핑거들 중에서, 상기 양 단부가 각각 진입하는 것을 센싱하기 위한 제2 및 제3 감지센서가 형성될 수 있다.In addition, second and third sensors may be formed at the front end of the port to sense entry of both ends of the fingers, respectively.
또한, 상기 포트에는 상기 제1 감지센서가 상승할 때, 이를 감지하기 위한 제2 반사판이 더 형성될 수 있다.In addition, when the first detection sensor rises, a second reflector for detecting it may be further formed in the port.
본 발명에 의하면, 각각의 카세트에 센서 등을 구비함이 없이, 포트에 센서등을 구비함으로써, 인공지능 티칭에 의한 전면 자동화를 구현할 수 있다.According to the present invention, it is possible to implement full-scale automation by artificial intelligence teaching by providing a sensor or the like to a port without providing a sensor or the like to each cassette.
그에 따라서, 생산 라인의 무인화가 가능하다.Accordingly, unmanned production lines are possible.
또한, 포트 위에서, 카세트를 정렬하는 과정을 생략할 수 있어, 정렬과정에서의 기판 파손을 방지할 수 있다.In addition, since the process of aligning the cassette on the port can be omitted, damage to the substrate during the alignment process can be prevented.
도 1은 본 발명의 예시적인 일 실시예에 의한 오토 티칭 시스템의 개략적인 사시도이다.1 is a schematic perspective view of an auto teaching system according to an exemplary embodiment of the present invention.
도 2는 본 발명의 예시적인 일 실시예에 의한 오토 티칭 방법을 도시한 순서도이다.2 is a flowchart illustrating an auto teaching method according to an exemplary embodiment of the present invention.
도 3은 도 2에서 도시된 단계 S110를 보다 상세히 도시한 순서도이다.FIG. 3 is a flowchart illustrating step S110 shown in FIG. 2 in more detail.
도 4는 도 2에서 도시된 단계 S120를 보다 상세히 도시한 순서도이다.FIG. 4 is a flowchart illustrating step S120 shown in FIG. 2 in more detail.
도 5은, 도 2에서 도시된 단계 S110의 세부과정으로서, 도 3에서 도시된, 포트의 중심위치를 획득하는 단계 S111의 과정을 도시한 사시도이다.FIG. 5 is a perspective view showing a process of step S111 of obtaining a center position of a port shown in FIG. 3 as a detailed process of step S110 shown in FIG. 2 .
도 6은, 도 2에서 도시된 단계 S110의 세부과정으로서, 도 3에서 도시된, 포트의 기준 높이값을 획득하는 단계 S112의 과정을 도시한 사시도이다.FIG. 6 is a perspective view showing a process of step S112 of acquiring a reference height value of a port shown in FIG. 3 as a detailed process of step S110 shown in FIG. 2 .
도 7 내지 도 9는, 도 2에서 도시된 단계 S110의 세부과정으로서, 도 3에서 도시된, 포트에 대한 이송 로봇의 회전각을 획득하는 단계 S113의 과정을 도시한 사시도이다.7 to 9 are perspective views showing the process of step S113 of acquiring the rotation angle of the transfer robot with respect to the port shown in FIG. 3 as a detailed process of step S110 shown in FIG. 2 .
도 10은, 도 2에서 도시된 단계 S120의 과정을 위한 포트의 구성을 도시한 사시도이다.Figure 10 is a perspective view showing the configuration of the port for the process of step S120 shown in Figure 2.
도 11 및 도 12는, 각각 도 4의 단계 S123의 과정을 설명하기 위한 평면도 및 사시도이다.11 and 12 are a plan view and a perspective view for explaining the process of step S123 of FIG. 4, respectively.
도 13은 도 4의 단계 S124의 과정을 설명하기 위한 평면도이다.FIG. 13 is a plan view for explaining the process of step S124 of FIG. 4 .
본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 본문에 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 각 도면을 설명하면서 유사한 참조 부호를 유사한 구성 요소에 대해 사용하였다. 첨부된 도면에 있어서, 구조물들의 치수는 본 발명의 명확성을 기하기 위하여 실제보다 과장하여 도시한 것일 수 있다. Since the present invention may have various changes and various forms, specific embodiments are illustrated in the drawings and described in detail in the text. However, it should be understood that this is not intended to limit the present invention to the specific disclosed form, and includes all modifications, equivalents, and substitutes included in the spirit and scope of the present invention. Like reference numbers have been used for like elements in describing each figure. In the accompanying drawings, the dimensions of the structures may be exaggerated than actual figures for clarity of the present invention.
제1, 제2 등의 용어는 다양한 구성 요소들을 설명하는데 사용될 수 있지만, 상기 구성 요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성 요소를 다른 구성 요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성 요소는 제2 구성 요소로 명명될 수 있고, 유사하게 제2 구성 요소도 제1 구성 요소로 명명될 수 있다. Terms such as first and second may be used to describe various components, but the components should not be limited by the terms. These terms are only used for the purpose of distinguishing one component from another. For example, a first element may be termed a second element, and similarly, a second element may be termed a first element, without departing from the scope of the present invention.
본 출원에서 사용한 용어는 단지 특정한 실시예들을 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서에 기재된 특징, 숫자, 단계, 동작, 구성 요소, 부분품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성 요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다. 또한, A와 B가'연결된다', '결합된다'라는 의미는 A와 B가 직접적으로 연결되거나 결합하는 것 이외에 다른 구성요소 C가 A와 B 사이에 포함되어 A와 B가 연결되거나 결합되는 것을 포함하는 것이다.Terms used in this application are only used to describe specific embodiments, and are not intended to limit the present invention. Singular expressions include plural expressions unless the context clearly dictates otherwise. In this application, the terms "comprise" or "having" are intended to indicate that there is a feature, number, step, operation, component, part, or combination thereof described in the specification, but one or more other features or It should be understood that the presence or addition of numbers, steps, operations, components, parts, or combinations thereof is not precluded. In addition, the meaning of 'connected' and 'coupled' between A and B means that in addition to A and B being directly connected or combined, another component C is included between A and B so that A and B are connected or combined. that includes
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다. 또한, 방법 발명에 대한 특허청구범위에서, 각 단계가 명확하게 순서에 구속되지 않는 한, 각 단계들은 그 순서가 서로 바뀔 수도 있다.Unless defined otherwise, all terms used herein, including technical or scientific terms, have the same meaning as commonly understood by one of ordinary skill in the art to which the present invention belongs. Terms such as those defined in commonly used dictionaries should be interpreted as having a meaning consistent with the meaning in the context of the related art, and unless explicitly defined in this application, it should not be interpreted in an ideal or excessively formal meaning. don't Also, in the claims for the method invention, the steps may be reversed in order unless the order is clearly constrained.
이하, 본 발명의 실시예를 도면을 참조하여 보다 상세히 설명한다.Hereinafter, embodiments of the present invention will be described in more detail with reference to the drawings.
도 1은 본 발명의 예시적인 일 실시예에 의한 오토 티칭 시스템의 개략적인 사시도이다.1 is a schematic perspective view of an auto teaching system according to an exemplary embodiment of the present invention.
도 1 및 도 10을 참조하면, 본 발명의 예시적인 일 실시예에 의한 본 발명에 의한 오토 티칭 시스템은, 포트(10), 이송 로봇(100) 및 제어부(도시안됨)를 포함한다.1 and 10 , an auto teaching system according to an exemplary embodiment of the present invention includes a port 10, a transfer robot 100, and a controller (not shown).
예컨대, 이송 로봇(100)과 포트(10) 사이에는 펜스(30)에 의해 구획될 수 있지만, 상기 펜스(30)는 필수적인 구성은 아니다. For example, a fence 30 may be partitioned between the transfer robot 100 and the port 10, but the fence 30 is not essential.
펜스(30)의 일측에는 이송 로봇(100)이 배치될 수 있으며, 펜스(30)의 타측에는 다수의 포트(10)가 배열될 수 있다. 예컨대, 제1 포트(11) 및 제2 포트(12)가 배치될 수 있다. 상기 포트(10)에는 다수의 기판이 적재된 카세트(20)가 배치될 수 있다.The transfer robot 100 may be disposed on one side of the fence 30, and a plurality of ports 10 may be arranged on the other side of the fence 30. For example, the first port 11 and the second port 12 may be disposed. A cassette 20 loaded with a plurality of substrates may be disposed in the port 10 .
상기 이송 로봇(100)은 주행축(40)을 따라서 제1 포트(11) 및 제2 포트(12) 사이를 이동하면서, 다수의 핑거가 구비된 핸드를 통해 카세트(20)에 적재된 기판을 이동시킬 수 있다.The transfer robot 100 moves between the first port 11 and the second port 12 along the driving axis 40, and transfers the substrate loaded on the cassette 20 through a hand equipped with a plurality of fingers. can be moved
상기 제어부(도시안됨)는 상기 이송 로봇(100)을 제어할 수 있다. 이때, 상기 제어부는, 상기 포트(10)의 절대적인 포지션을 획득하고, 상기 포트(10)에 대한 카세트(20)의 상대적인 포지션을 획득한 후, 상기 포트(10)의 절대적인 포지션 및 상기 포트(10)에 대한 카세트(20)의 상대적인 포지션을 이용하여, 상기 카세트(20)의 절대적인 포지션을 연산한다.The control unit (not shown) may control the transfer robot 100 . At this time, the control unit obtains the absolute position of the port 10 and obtains the relative position of the cassette 20 with respect to the port 10, and then the absolute position of the port 10 and the port 10 Using the relative position of the cassette 20 to ), the absolute position of the cassette 20 is calculated.
종래와 같이, 카세트(20)에 센서를 구비하는 경우에는, 이송 로봇(100)에게 카세트(20)의 절대적인 포지션을 직접적으로 티칭할 수 있지만, 본 발명에서는 카세트(20)에 센서를 구비하고 있지 않기 때문에, 이송 로봇(100)에게 먼저 포트(10)의 포지션을 티칭하고, 포트(10) 위에서의 카세트(20)의 상대적인 위치를 티칭하게 되는 것이다.As in the prior art, when the cassette 20 is provided with a sensor, the transfer robot 100 can be directly taught the absolute position of the cassette 20, but in the present invention, the cassette 20 is not equipped with a sensor. Therefore, the position of the port 10 is first taught to the transfer robot 100, and the relative position of the cassette 20 on the port 10 is taught.
한편, 포트(10)가 카세트(20) 클램핑 장치(도시안됨)를 구비하는 경우에는 포트(10)에 대한 카세트(20)의 위치가 고정되므로 포트(10)가 카세트(20)의 위치를 센싱할 필요는 없다. 보다 상세히, 평판 디스플레이를 형성하기 위한 사각형의 글라스 기판이 적재되는 육면체 모양의 카세트(20)는 포트(10)에 배치된 후, '『' 및 '』' 형상의 클램핑 장치가, 카세트(20)의 양측 모서리를 푸쉬하여 정렬시킨다. 따라서, 포트(10)에 대한 카세트(20)의 상대적인 위치가 일정하지만, 이와 같이 클램핑 장치(도시안됨)가 카세트(20)를 정렬시키는 과정에서, 파티클이 발생되거나, 기판의 파손이 발생될 수 있다.On the other hand, when the port 10 is provided with a cassette 20 clamping device (not shown), the position of the cassette 20 relative to the port 10 is fixed, so the port 10 senses the position of the cassette 20 You don't have to. In more detail, the hexahedron-shaped cassette 20 on which the rectangular glass substrate for forming a flat panel display is loaded is placed in the port 10, and then the clamping devices in the shape of '' and '' are placed on the cassette 20. Align the edges of both sides by pushing them. Therefore, although the relative position of the cassette 20 with respect to the port 10 is constant, in the process of aligning the cassette 20 by a clamping device (not shown), particles may be generated or the substrate may be damaged. have.
그에 따라서, 본 발명에서는 포트(10)는 클램핑 장치를 구비하지 않으며, 포트(10)에 놓여진 카세트(20)의 상대적인 위치를 측정하고, 이를 이송 로봇(100)에 티칭함으로써, 이송 로봇(100)은 포트(10)의 절대적인 위치와, 포트(10)에 대한 카세트(20)의 상대적인 위치를 이용하여, 카세트(20)의 절대적인 위치를 알 수 있게 된다.Accordingly, in the present invention, the port 10 does not have a clamping device, and the relative position of the cassette 20 placed on the port 10 is measured, and the transfer robot 100 is taught the relative position, so that the transfer robot 100 The absolute position of the cassette 20 can be known using the absolute position of the port 10 and the relative position of the cassette 20 with respect to the port 10 .
이를 위하여, 상기 포트(10)는, 제1 및 제2 전면 변위 센서(111, 112) 및 측면 변위 센서(113)를 포함할 수 있다. 상기 제1 및 제2 전면 변위 센서(111, 112)는, 상기 포트(10)와 카세트(20)의 전면 양단부와의 이격거리를 각각 측정할 수 있다. 상기 측면 변위 센서(113)는, 상기 포트(10)와 상기 카세트(20)의 측면부와의 이격거리를 각각 측정할 수 있다.To this end, the port 10 may include first and second front displacement sensors 111 and 112 and a side displacement sensor 113 . The first and second front displacement sensors 111 and 112 may measure the separation distance between the port 10 and both front ends of the cassette 20, respectively. The lateral displacement sensor 113 may measure the separation distance between the port 10 and the side surface of the cassette 20, respectively.
한편, 상기 핑거들 중에서, 핑거의 단부에는 제1 감지센서(114)가 구비되고, 상기 포트는, 상기 이송 로봇(100)이 상기 주행축(40)을 따라 이동할 때, 제1 p감지센서(114)와 반응하는 제1 반사판(117)을 구비할 수 있다.On the other hand, among the fingers, a first detection sensor 114 is provided at the end of the finger, and the port, when the transfer robot 100 moves along the traveling axis 40, the first p detection sensor ( 114) may be provided with a first reflector 117 that reacts.
또한, 상기 포트(10)의 전단부에는, 상기 핑거들 중에서, 상기 양 단부가 각각 진입하는 것을 센싱하기 위한 제2 및 제3 감지센서(116)가 형성될 수 있다.In addition, at the front end of the port 10, among the fingers, second and third detection sensors 116 for sensing the entry of both ends, respectively, may be formed.
또한, 상기 포트(10)에는 상기 제1 감지센서가 상승할 때, 이를 감지하기 위한 제2 반사판(118)이 더 형성될 수 있다.In addition, a second reflector 118 may be further formed in the port 10 to sense when the first detection sensor rises.
각종 센서 및 반사판 등의 구성요소에 대해서는 추후 도면을 바탕으로 상세히 설명될 것이다.Components such as various sensors and reflectors will be described in detail later based on drawings.
도 2는 본 발명의 예시적인 일 실시예에 의한 오토 티칭 방법을 도시한 순서도이다. 도 3은 도 2에서 도시된 단계 S110를 보다 상세히 도시한 순서도이고, 도 4는 도 2에서 도시된 단계 S120를 보다 상세히 도시한 순서도이다.2 is a flowchart illustrating an auto teaching method according to an exemplary embodiment of the present invention. FIG. 3 is a flowchart showing step S110 shown in FIG. 2 in more detail, and FIG. 4 is a flow chart showing step S120 shown in FIG. 2 in more detail.
도 1 내지 도 3을 참조하면, 본 발명의 예시적인 일 실시예에 의한 오토 티칭 방법은, 다수의 기판이 적재된 카세트(20)가 배치되는 포트(10)와, 포트(11, 12) 사이를 이동하면서, 카세트(20)에 적재된 기판을 이동시키는 이송 로봇(100)을 구비한 오토 티칭 시스템이, 상기 포트(10)의 절대적인 포지션을 획득하는 단계(S110)와, 상기 포트(10)에 대한 카세트(20)의 상대적인 포지션을 획득하는 단계(S120), 및 상기 포트(10)의 절대적인 포지션 및 상기 포트(10)에 대한 카세트(20)의 상대적인 포지션을 이용하여, 상기 카세트(20)의 절대적인 포지션을 연산하는 단계(S130)를 포함한다.1 to 3 , in the auto teaching method according to an exemplary embodiment of the present invention, a cassette 20 loaded with a plurality of substrates is disposed between a port 10 and ports 11 and 12. Acquiring the absolute position of the port 10 by an auto teaching system equipped with a transfer robot 100 that moves the substrate loaded on the cassette 20 while moving the substrate (S110), and the port 10 Obtaining a relative position of the cassette 20 with respect to (S120), and using the absolute position of the port 10 and the relative position of the cassette 20 with respect to the port 10, the cassette 20 and calculating the absolute position of (S130).
예컨대, 상기 포트(10)의 절대적인 포지션을 획득하는 단계(S110)는, 상기 포트(10)의 중심위치를 획득하는 단계(S111)와, 상기 포트(10)의 기준 높이값을 획득하는 단계(S112), 및 상기 포트(10)에 대한 상기 이송 로봇(100)의 회전각을 획득하는 단계(S113)를 포함할 수 있다.For example, obtaining the absolute position of the port 10 (S110) includes obtaining the center position of the port 10 (S111) and obtaining a reference height value of the port 10 ( S112), and obtaining a rotation angle of the transfer robot 100 with respect to the port 10 (S113).
한편, 상기 포트(10)에 대한 카세트(20)의 상대적인 포지션을 획득하는 단계(S120)는, 상기 카세트(20)의 전면부 양측 단부와 상기 포트(10)의 이격거리를 획득하는 단계(S121), 및 상기 카세트(20)의 측면부와 상기 포트(10)의 측면부의 이격거리를 획득하는 단계(S122)를 포함할 수 있다. 또한, 상기 포트(10)에 대한 카세트(20)의 상대적인 포지션을 획득하는 단계(S120)는, 카세트의 깊이(암 축) 값을 획득하는 단계(S123) 및 카세트의 틀어짐을 연산하는 단계(S124)를 더 포함할 수 있다.On the other hand, obtaining the relative position of the cassette 20 with respect to the port 10 (S120) is the step of obtaining a separation distance between both ends of the front portion of the cassette 20 and the port 10 (S121). ), and obtaining a separation distance between the side part of the cassette 20 and the side part of the port 10 (S122). In addition, obtaining the relative position of the cassette 20 with respect to the port 10 (S120) includes obtaining the depth (arm axis) value of the cassette (S123) and calculating the displacement of the cassette (S124). ) may further include.
이하, 각 단계들을 도면을 중심으로 보다 상세히 설명한다.Hereinafter, each step will be described in more detail with reference to the drawings.
도 5은, 도 2에서 도시된 단계 S110의 세부과정으로서, 도 3에서 도시된, 포트의 중심위치를 획득하는 단계 S111의 과정을 도시한 사시도이다.FIG. 5 is a perspective view showing a process of step S111 of obtaining a center position of a port shown in FIG. 3 as a detailed process of step S110 shown in FIG. 2 .
도 1 및 도 5를 참조하면, 최초 원점위치에서, 이송 로봇(100)이 주행축(40)을 따라서 이동을 시작한다. 이송 로봇(100)의 핸드에 부착된 핑거의 단부에 형성된 제1 감지센서(114)와 포트(10)에 부착된 제1 반사판(117)이 마주하는 순간의 X축 좌표값(예컨대, 주행축(40) 방향이 X축 방향)을 저장함으로써, 제1 포트(11) 및 제2 포트(12)의 절대적인 위치를 획득할 수 있다. 또한, 제1 포트(11) 및 제2 포트(12)의 설계상 수치를 적용하면, 각 포트들(10)의 각 위치의 절대적인 좌표값을 획득할 수 있다.Referring to FIGS. 1 and 5 , at the initial origin position, the transfer robot 100 starts moving along the travel axis 40 . X-axis coordinate values at the moment when the first sensor 114 formed at the end of the finger attached to the hand of the transfer robot 100 and the first reflector 117 attached to the port 10 face each other (eg, the driving axis (40) direction is the X-axis direction), it is possible to obtain the absolute positions of the first port 11 and the second port 12. In addition, by applying design numerical values of the first port 11 and the second port 12, absolute coordinate values of respective positions of the respective ports 10 may be obtained.
도 6은, 도 2에서 도시된 단계 S110의 세부과정으로서, 도 3에서 도시된, 포트의 기준 높이값을 획득하는 단계 S112의 과정을 도시한 사시도이다.FIG. 6 is a perspective view showing a process of step S112 of acquiring a reference height value of a port shown in FIG. 3 as a detailed process of step S110 shown in FIG. 2 .
도 1 및 도 6을 참조하면, 각각의 포트들(11, 12)에는 제1 감지센서(114)가 상승할 때, 이를 감지하기 위한 제2 반사판(118)이 형성되어 있다.Referring to FIGS. 1 and 6 , when the first detection sensor 114 rises, a second reflector 118 is formed on each of the ports 11 and 12 to detect it.
따라서, 이송 로봇(100)이 핸드를 상승시킬 때, 상기 제1 감지센서(114)와 상기 제2 반사판(118)이 일렬로 정렬되는 좌표값을 이용하여 기준 높이값을 획득할 수 있다.Accordingly, when the transfer robot 100 raises its hand, a reference height value may be obtained using coordinate values at which the first detection sensor 114 and the second reflector 118 are aligned in a line.
이러한 동작을 통해서, 이송 로봇은 상기 제1 포트(11)과 제2 포트(12)의 절대적인 포지션을 획득하게 된다. 도 1에서는 편의상 두 개의 포트(11, 12)만을 도시하고 있으나, 이는 예시적인 것일 뿐, 더 많은 수의 포트들이 구비되는 경우에도 동일한 방법을 통해서 각각의 포트들(10)의 절대적인 위치, 틀어짐 등의 포지션을 획득하게 된다.Through this operation, the transfer robot acquires the absolute positions of the first port 11 and the second port 12 . In FIG. 1, only two ports 11 and 12 are shown for convenience, but this is only illustrative, and even when a larger number of ports are provided, the absolute position, twist, etc. of each port 10 is performed through the same method. will obtain the position of
도 7 내지 도 9는, 도 2에서 도시된 단계 S110의 세부과정으로서, 도 3에서 도시된, 포트에 대한 이송 로봇의 회전각을 획득하는 단계 S113의 과정을 도시한 사시도이다.7 to 9 are perspective views showing the process of step S113 of acquiring the rotation angle of the transfer robot with respect to the port shown in FIG. 3 as a detailed process of step S110 shown in FIG. 2 .
도 1 및 도 7 내지 도 9를 참조하면, 포트(10)의 전단부에는, 제2 감지센서(115) 및 제3 감지센서(117)이 각각 형성되어 있다. 예컨대, 상기 제2 감지센서(115) 및 제3 감지센서(117)는 상기 이송 로봇(100)의 핸드에 부착된 핑거들 중에서 각각 최 외곽의 핑거부에 대응하도록 형성될 수 있다.Referring to Figures 1 and 7 to 9, the front end of the port 10, the second detection sensor 115 and the third detection sensor 117 are formed, respectively. For example, the second detection sensor 115 and the third detection sensor 117 may be formed to correspond to the outermost finger part among fingers attached to the hand of the transfer robot 100, respectively.
일반적으로, 포트들(11, 12)은 생산라인에 설치되는 경우, 상기 주행축(40)과 완전하게 나란하게 배치되지 못하고, 일부 틀어짐이 발생될 수 있다. 그에 따라서, 틀어짐의 정도를 이송 로봇(100)에게 티칭하는 것이 필요하다. 이를 위해서, 각각의 포트들(11, 12)의 전단부에는, 제2 감지센서(115) 및 제3 감지센서(117)이 각각 형성된다.In general, when the ports 11 and 12 are installed in a production line, they may not be completely aligned with the driving shaft 40, and some distortion may occur. Accordingly, it is necessary to teach the transfer robot 100 the degree of distortion. To this end, a second detection sensor 115 and a third detection sensor 117 are formed at the front end of each of the ports 11 and 12, respectively.
앞서 설명된 도 1 및 6에서와 같이, 포트의 절대적인 포지션이 획득된 이후, 이송 로봇(100)은 예컨대 제1 포트(11)의 중앙에 위치한 이후, 핸드를 앞으로 전진시키는 동작을 수행한다. 이때, 양 핑거가 동시에 진입하는 경우, 틀어짐이 발생된 경우가 아니지만, 양 핑거의 진입 시간이 상이한 경우, 틀어짐이 발생된 것으로, 이 경우 틀어짐(회전각)을 계산할 수 있다.As in FIGS. 1 and 6 described above, after the absolute position of the port is obtained, the transfer robot 100, for example, after being located in the center of the first port 11, performs an operation of advancing the hand forward. At this time, when both fingers enter at the same time, the twist does not occur, but when the entry times of both fingers are different, twist has occurred. In this case, the twist (rotation angle) can be calculated.
예컨대, 도 9에서와 같이, 회전각(틀어짐 각도)를 θ, 제2 감지센서(115)를 통과하여 지나친 거리를 A, 제3 감지센서(116)를 통과하여 지나친 거리를 B, 제2 감지센서(115)와 제3 감지센서(116) 사이의 거리를 L이라고 하는 경우, 회전각 θ는 다음의 수학식 1에 의해서 계산될 수 있다.For example, as shown in FIG. 9, the rotation angle (twist angle) is θ, the excessive distance passing through the second detection sensor 115 is A, the excessive distance passing through the third detection sensor 116 is B, and the second detection When the distance between the sensor 115 and the third sensor 116 is L, the rotation angle θ can be calculated by Equation 1 below.
Figure PCTKR2022007799-appb-img-000001
Figure PCTKR2022007799-appb-img-000001
따라서, 핸드의 틀어진 각도 보상에 따른 주행축 보정량 X는 아래의 수학식 2와 같이 표현될 수 있다.Therefore, the compensation amount X of the driving axis according to the compensation of the twisted angle of the hand can be expressed as Equation 2 below.
Figure PCTKR2022007799-appb-img-000002
Figure PCTKR2022007799-appb-img-000002
이와 같이, 틀어짐이 보정된 이후, 포트의 기준 높이값을 획득 할 수 있다.In this way, after the distortion is corrected, a reference height value of the port may be obtained.
이러한, 포트들(10)의 절대적인 포지션 획득은 이송 로봇(100)의 동작시마다 수행될 수도 있으나, 설비의 세팅 후, 1회만을 적용하여 획득한 이후, 저장한 후, 저장값들을 사용할 수도 있으며, 사용과정에서 포트들(10)의 위치가 틀어짐을 고려하여, 일정 주기별로, 수행되어 저장될 수도 있다.Such absolute position acquisition of the ports 10 may be performed every operation of the transfer robot 100, but after setting the equipment, after applying only once and acquiring, after saving, the stored values may be used, Considering that the positions of the ports 10 are shifted during the use process, it may be performed and stored at regular intervals.
한편, 앞서 설명된 바와 같이, 포트들(10)이 클램핑 장치(도시안됨)를 구비하는 경우, 카세트는 항상 포트의 동일한 위치에 배치되므로, 포트들(10)의 포지션 티칭으로 충분하지만, 본 발명에서는 클램핑 장치를 구비하지 않으므로, 포트들(10) 위에 카세트(20)가 배치될 때, 일정한 위치에 배치되지 않을 수도 있다.On the other hand, as described above, when the ports 10 have a clamping device (not shown), the cassette is always placed at the same position of the port, so position teaching of the ports 10 is sufficient, but the present invention Since it does not have a clamping device, when the cassette 20 is placed on the ports 10, it may not be placed in a certain position.
이 경우, 카세트(20)에 핑거를 진입하여 기판을 인입시키거나 인출할 때, 기판의 파손을 유발 할 수 있다.In this case, when a board is drawn in or taken out by entering the finger into the cassette 20, the board may be damaged.
그에 따라서, 본 발명에서는 카세트(20)의 정확한 포지션을 획득하기 위해서, 포트(10)에 대한 카세트(20)의 상대적인 좌표값을 획득하게 된다. 이하, 도 10을 참조하여 보다 상세히 설명한다.Accordingly, in the present invention, in order to obtain an accurate position of the cassette 20, relative coordinate values of the cassette 20 with respect to the port 10 are acquired. Hereinafter, it will be described in more detail with reference to FIG. 10 .
도 10은, 도 2에서 도시된 단계 S120의 과정을 위한 포트의 구성을 도시한 사시도이다. 도 10에서, 카세트는 전체를 도시하진 않고, 바닥부만을 도시하였다.Figure 10 is a perspective view showing the configuration of the port for the process of step S120 shown in Figure 2. In Fig. 10, the entirety of the cassette is not shown, only the bottom part is shown.
도 1 및 도 10을 참조하면, 포트(10)에는 상기 포트(10)와 카세트(20)의 전면 양 단부의 이격거리를 각각 측정하기 위한 제1 전면 변위센서(111) 및 제2 전면 변위센서(112)가 구비되어 있다. 또한, 상기 포트(10)에는, 상기 포트(10)와 상기 카세트(20)의 측면부 이격거리를 측정하기 위한 측면 변위센서(113)가 구비되어 있다. 보다 정확한 측정을 위해서 제2 측면 변위센서(119)가 더 구비될 수도 있다.1 and 10, the port 10 includes a first front displacement sensor 111 and a second front displacement sensor for measuring the separation distance between the port 10 and both front ends of the cassette 20, respectively. (112) is provided. In addition, the port 10 is provided with a lateral displacement sensor 113 for measuring a separation distance between the port 10 and the side parts of the cassette 20 . For more accurate measurement, a second lateral displacement sensor 119 may be further provided.
제1 전면 변위센서(111) 및 제2 전면 변위센서(112)는 카세트(20)의 전면부 이격거리를 측정할 수 있으며, 이를 통해서 카세트(20)의 틀어짐 또한 측정할 수 있다.The first front displacement sensor 111 and the second front displacement sensor 112 can measure the separation distance of the front part of the cassette 20, and through this, the distortion of the cassette 20 can also be measured.
또한, 측면 변위센서(113)를 통해서 카세트(20)의 측면부 이격거리를 구하면, 포트(10)에 대한 카세트(20)의 상대적인 포지션을 획득할 수 있다.In addition, when the separation distance of the side part of the cassette 20 is obtained through the lateral displacement sensor 113, the relative position of the cassette 20 with respect to the port 10 can be obtained.
한편, 이와 다르게, 측면 변위센서(113)과 제2 측면 변위센서(119)를 통해서 위치 및 틀어짐을 계산한 후, 제1 전면 변위센서(111) 또는 제2 전면 변위센서(112)를 통해서 전면부 이격거리를 획득함으로써, 포트(10)에 대한 카세트(20)의 상대적인 포지션을 획득할 수 있다.On the other hand, differently from this, after calculating the position and twist through the side displacement sensor 113 and the second side displacement sensor 119, the front side through the first front displacement sensor 111 or the second front displacement sensor 112 By obtaining the negative separation distance, the relative position of the cassette 20 with respect to the port 10 can be obtained.
즉, 먼저, 포트(10)의 절대적인 좌표값을 획득하고, 포트(10)에 대한 카세트(20)의 상대적인 좌표값을 획득한 이후, 이 둘을 이용하여, 카세트(20)의 절대적인 좌표값을 획득하게 된다.That is, first, after obtaining the absolute coordinate values of the port 10 and acquiring the relative coordinate values of the cassette 20 with respect to the port 10, using these two, the absolute coordinate values of the cassette 20 will be obtained
도 11 및 도 12는, 각각 도 4의 단계 S123의 과정을 설명하기 위한 평면도 및 사시도이다.11 and 12 are a plan view and a perspective view for explaining the process of step S123 of FIG. 4, respectively.
도 11 및 12를 참조하면, a값을 원점 위치부터 센싱된 거리값으로 정의하고, L을 카세트 감지지점에서 글라스 티칭 위치까지의 거리라고 정의하면, 암 축의 깊이는 a+L로 연산될 수 있다.11 and 12, if a value is defined as a distance value sensed from the origin position and L is defined as the distance from the cassette sensing point to the glass teaching position, the depth of the arm axis can be calculated as a + L .
도 13은 도 4의 단계 S124의 과정을 설명하기 위한 평면도이다.FIG. 13 is a plan view for explaining the process of step S124 of FIG. 4 .
앞서, 포트의 틀어짐을 계산하였으나, 이러한 틀어짐은 깊이 값이 정밀하게 반영된 것이 아니므로, 보다 정밀한 보정을 위해, 카세트를 중심으로 깊이 값이 반영된 정밀한 틀어짐을 연산할 필요가 있다.Previously, the distortion of the port was calculated, but since this distortion does not accurately reflect the depth value, it is necessary to calculate a precise distortion in which the depth value is reflected around the cassette for more precise correction.
도 13에서, A는 우측에서 센싱된 포지션값을 의미하며, B는 좌측에서 센싱된 포지션값을 의미한다. L은 A, B 센싱간의 거리, h는 핸드의 측면 감지거리, H'은 핸드 측면 감지 센서까지 거리, a는 암(arm) 원점에서 카세트 에지까지의 거리로서, (A+B)/2의 값, D는 카세트 에지부분에서 티칭 위치까지 거리, I는 로봇 중심에서 핸드 측면까지의 거리라고 정의한다.In FIG. 13 , A denotes a position value sensed from the right side, and B denotes a position value sensed from the left side. L is the distance between A and B sensing, h is the side sensing distance of the hand, H' is the distance to the hand side sensing sensor, and a is the distance from the origin of the arm to the cassette edge, of (A+B)/2 The value, D, is the distance from the edge of the cassette to the teaching position, and I is the distance from the center of the robot to the side of the hand.
로봇은 포트 위치에서, 센서가 감지될 때까지 암을 전진시킨다. 이때, A와 B에서 동시에 감지된 경우에는 틀어짐발생이 없는 경우이나, 상이한 경우에는 틀어짐이 발생된 것으로 감지된 순간의 값을 저장하고, 이 값을 이용하여 핸드의 틀어짐 각도를 검출할 수 있다.The robot advances the arm at the port location until the sensor is sensed. At this time, when A and B are simultaneously detected, there is no misalignment, but if they are different, the value at the moment when the misalignment is detected is stored, and the angle of the hand misalignment can be detected using this value.
이때, 핸드의 틀어짐 각도는 앞서 설명된 수학식 1을 통해서, 계산할 수 있다.At this time, the twist angle of the hand can be calculated through Equation 1 described above.
이후, 로봇 핸드의 주행축을 보정한다.Then, the driving axis of the robot hand is corrected.
이때, 주행축 보정량 x 아래의 수학식 3을 통해서 구해질 수 있다.At this time, the traveling axis correction amount x can be obtained through Equation 3 below.
Figure PCTKR2022007799-appb-img-000003
Figure PCTKR2022007799-appb-img-000003
이와 같이, 본 발명에 의하면, 각각의 카세트에 센서 등을 구비함이 없이, 포트에 센서등을 구비함으로써, 인공지능에 의한 전면 자동화를 구현할 수 있다.In this way, according to the present invention, it is possible to implement full-scale automation by artificial intelligence by providing a sensor or the like to a port without providing a sensor or the like to each cassette.
그에 따라서, 생산 라인의 무인화가 가능하다.Accordingly, unmanned production lines are possible.
또한, 포트 위에서, 카세트를 정렬하는 과정을 생략할 수 있어, 정렬과정에서의 기판 파손을 방지할 수 있다.In addition, since the process of aligning the cassette on the port can be omitted, damage to the substrate during the alignment process can be prevented.
앞서 설명한 본 발명의 상세한 설명에서는 본 발명의 바람직한 실시예들을 참조하여 설명하였지만, 해당 기술분야의 숙련된 당업자 또는 해당 기술분야에 통상의 지식을 갖는 자라면 후술될 특허청구범위에 기재된 본 발명의 사상 및 기술 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.Although the detailed description of the present invention described above has been described with reference to preferred embodiments of the present invention, those skilled in the art or those having ordinary knowledge in the art will find the spirit of the present invention described in the claims to be described later. And it will be understood that the present invention can be variously modified and changed without departing from the technical scope.

Claims (9)

  1. 다수의 기판이 적재된 카세트가 배치되는 포트와, 포트 사이를 이동하면서, 카세트에 적재된 기판을 이동시키는 이송 로봇을 구비한 오토 티칭 시스템이,An auto teaching system equipped with a port where a cassette loaded with a plurality of substrates is placed, and a transfer robot that moves the substrate loaded on the cassette while moving between the ports,
    상기 포트의 절대적인 포지션을 획득하는 단계;obtaining the absolute position of the port;
    상기 포트에 대한 카세트의 상대적인 포지션을 획득하는 단계; 및obtaining the position of the cassette relative to the port; and
    상기 포트의 절대적인 포지션 및 상기 포트에 대한 카세트의 상대적인 포지션을 이용하여, 상기 카세트의 절대적인 포지션을 연산하는 단계;calculating an absolute position of the cassette using the absolute position of the port and the position of the cassette relative to the port;
    를 포함하는 이송 로봇의 오토 티칭 방법.Auto-teaching method of a transfer robot comprising a.
  2. 제1 항에 있어서,According to claim 1,
    상기 포트의 절대적인 포지션을 획득하는 단계는,Obtaining the absolute position of the port,
    상기 포트의 중심위치를 획득하는 단계;obtaining a center position of the port;
    상기 포트의 기준 높이값을 획득하는 단계; 및obtaining a reference height value of the port; and
    상기 포트에 대한 상기 이송 로봇의 회전각을 획득하는 단계;obtaining a rotational angle of the transfer robot with respect to the port;
    를 포함하는 것을 특징으로 하는 이송 로봇의 오토 티칭 방법.Auto teaching method of the transfer robot, characterized in that it comprises a.
  3. 제1 항에 있어서,According to claim 1,
    상기 포트에 대한 카세트의 상대적인 포지션을 획득하는 단계는,Obtaining the position of the cassette relative to the port comprises:
    상기 카세트의 전면부 양측 단부와 상기 포트의 이격거리를 획득하는 단계; 및obtaining a separation distance between both ends of the front portion of the cassette and the port; and
    상기 카세트의 측면부와 상기 포트의 측면부의 이격거리를 획득하는 단계;obtaining a separation distance between the side part of the cassette and the side part of the port;
    를 포함하는 것을 특징으로 하는 이송 로봇의 오토 티칭 방법.Auto teaching method of the transfer robot, characterized in that it comprises a.
  4. 제3 항에 있어서,According to claim 3,
    상기 포트에 대한 카세트의 상대적인 포지션을 획득하는 단계는,Obtaining the position of the cassette relative to the port comprises:
    카세트의 깊이값을 획득하는 단계; 및obtaining a depth value of the cassette; and
    카세트의 틀어짐을 연산하는 단계;calculating the displacement of the cassette;
    를 더 포함하는 것을 특징으로 하는 이송 로봇의 오토 티칭 방법.Auto teaching method of the transfer robot, characterized in that it further comprises.
  5. 다수의 기판이 적재된 카세트가 배치되는 포트;a port in which a cassette loaded with a plurality of substrates is placed;
    주행축을 따라서 포트 사이를 이동하면서, 다수의 핑거가 구비된 핸드를 통해 카세트에 적재된 기판을 이동시키는 이송 로봇; 및a transfer robot that moves the substrate loaded in the cassette through a hand equipped with a plurality of fingers while moving between ports along the traveling axis; and
    상기 이송 로봇을 제어하는 제어부;a control unit controlling the transfer robot;
    를 포함하고,including,
    상기 제어부는, The control unit,
    상기 포트의 절대적인 포지션을 획득하고, 상기 포트에 대한 카세트의 상대적인 포지션을 획득한 후, 상기 포트의 절대적인 포지션 및 상기 포트에 대한 카세트의 상대적인 포지션을 이용하여, 상기 카세트의 절대적인 포지션을 연산하는 것을 특징으로 하는 오토 티칭 시스템.Obtaining the absolute position of the port, obtaining the relative position of the cassette with respect to the port, and then calculating the absolute position of the cassette using the absolute position of the port and the relative position of the cassette with respect to the port. Auto Teaching System.
  6. 제5 항에 있어서,According to claim 5,
    상기 포트는,The port is
    상기 포트와 카세트의 전면 양단부와의 이격거리를 각각 측정하기 제1 및 제2 전면 변위 센서; 및first and second front displacement sensors for measuring a separation distance between the port and both front end portions of the cassette, respectively; and
    상기 포트와 상기 카세트의 측면부와의 이격거리를 각각 측정하기 위한 측면 변위 센서;a lateral displacement sensor for measuring a separation distance between the port and the side portion of the cassette, respectively;
    를 포함하는 것을 특징으로 하는 오토 티칭 시스템.Auto teaching system comprising a.
  7. 제5 항에 있어서,According to claim 5,
    상기 핑거들 중에서, 핑거의 단부에는 제1 감지센서가 구비되고,Among the fingers, a first sensor is provided at the end of the finger,
    상기 포트는, 상기 이송 로봇이 상기 주행축을 따라 이동할 때, 상기 감지센서와 반응하는 제1 반사판을 구비하는 것을 특징으로 하는 오토 티칭 시스템.The auto teaching system, characterized in that the port is provided with a first reflector that reacts with the detection sensor when the transfer robot moves along the travel axis.
  8. 제5 항에 있어서,According to claim 5,
    상기 포트의 전단부에는, 상기 핑거들 중에서, 상기 양 단부가 각각 진입하는 것을 센싱하기 위한 제2 및 제3 감지센서가 형성된 것을 특징으로 하는 오토 티칭 시스템.At the front end of the port, among the fingers, the auto teaching system, characterized in that the second and third detection sensors for sensing the entry of both ends, respectively, are formed.
  9. 제5 항에 있어서,According to claim 5,
    상기 포트에는 상기 제1 감지센서가 상승할 때, 이를 감지하기 위한 제2 반사판이 더 형성된 것을 특징으로 하는 오토 티칭 시스템.The auto teaching system, characterized in that the port is further formed with a second reflector for detecting when the first detection sensor rises.
PCT/KR2022/007799 2021-06-04 2022-06-02 Auto teaching method and auto teaching system for transfer robot WO2022255802A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020210072955A KR102538337B1 (en) 2021-06-04 2021-06-04 Method and system of auto teaching for a transfer robot and system
KR10-2021-0072955 2021-06-04

Publications (1)

Publication Number Publication Date
WO2022255802A1 true WO2022255802A1 (en) 2022-12-08

Family

ID=84324450

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/007799 WO2022255802A1 (en) 2021-06-04 2022-06-02 Auto teaching method and auto teaching system for transfer robot

Country Status (2)

Country Link
KR (1) KR102538337B1 (en)
WO (1) WO2022255802A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020095844A (en) * 2001-06-16 2002-12-28 삼성전자 주식회사 cassette loader equipment of semiconductor device manufacturing equipment
KR20060015945A (en) * 2004-08-16 2006-02-21 삼성전자주식회사 Teaching apparatus of transfer robot
KR20070051035A (en) * 2005-11-14 2007-05-17 엘지.필립스 엘시디 주식회사 Teaching port for cassette transfer robot and transfer method using thereof
KR20160047803A (en) * 2014-10-23 2016-05-03 세메스 주식회사 Fork robot and methode of calculating inserting distance of a fork
KR102069894B1 (en) * 2019-04-12 2020-01-23 (주)세스텍 An glass transer system with an on-the-spot auto teaching of transfer robot and an auto teaching method of transfer robot therof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6349910A (en) * 1986-08-20 1988-03-02 Matsushita Seiko Co Ltd Detecting method for humidity
KR101725406B1 (en) 2016-03-31 2017-04-11 로체 시스템즈(주) Auto teaching system for a transferring robot
KR101816992B1 (en) 2016-04-15 2018-01-11 로체 시스템즈(주) Auto teaching system for a transferring robot

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020095844A (en) * 2001-06-16 2002-12-28 삼성전자 주식회사 cassette loader equipment of semiconductor device manufacturing equipment
KR20060015945A (en) * 2004-08-16 2006-02-21 삼성전자주식회사 Teaching apparatus of transfer robot
KR20070051035A (en) * 2005-11-14 2007-05-17 엘지.필립스 엘시디 주식회사 Teaching port for cassette transfer robot and transfer method using thereof
KR20160047803A (en) * 2014-10-23 2016-05-03 세메스 주식회사 Fork robot and methode of calculating inserting distance of a fork
KR102069894B1 (en) * 2019-04-12 2020-01-23 (주)세스텍 An glass transer system with an on-the-spot auto teaching of transfer robot and an auto teaching method of transfer robot therof

Also Published As

Publication number Publication date
KR102538337B1 (en) 2023-06-01
KR20220164858A (en) 2022-12-14

Similar Documents

Publication Publication Date Title
WO2015026048A1 (en) Display panel inspection device
WO2010082795A2 (en) Input device
WO2017026610A1 (en) Flexible tactile sensor and manufacturing method therefor
WO2018143506A1 (en) Transfer location-measuring test dummy used in semiconductor or display system field and precise transfer measuring method using transfer location-measuring test dummy used in semiconductor or display system field
WO2019045345A1 (en) Mutual inductive force sensor module for implementing three-dimensional touch
WO2019132181A1 (en) Touch display device and method for manufacturing touch display device
WO2020171527A1 (en) Mobile robot and robot arm alignment method thereof
WO2016095242A1 (en) Array substrate, liquid crystal display panel and liquid crystal display panel detection method
WO2016104844A1 (en) Delay-etching member and display panel etching method by means of same
WO2022255802A1 (en) Auto teaching method and auto teaching system for transfer robot
WO2020179980A1 (en) Wafer teaching jig
WO2017018676A1 (en) Method for producing curved display
WO2021025422A1 (en) Display device and manufacturing method therefor
WO2021107214A1 (en) Film-attaching device for display panel
WO2014010887A1 (en) Printed material fixing piece, printing device, and printing method
WO2014189192A1 (en) Apparatus and method for synchronizing roll-to-roll transfer equipment
WO2010140814A2 (en) Wafer probe station capable of actively controlling tilt of chuck and controlling method thereof
WO2010053229A1 (en) Method and system of measuring motion error in precision linear stage
WO2013071495A1 (en) Touch panel and touch position detection method thereof and touch display device
WO2014010888A1 (en) Printing plate for reverse offset printing and method for manufacturing same
WO2019245311A1 (en) Method for quantifying whether adhesive of polarization plate leaks or leakage degree
WO2015130138A1 (en) Aligner structure and alignment method
WO2019147096A1 (en) Glass substrate transfer device with horizontal and vertical direction switching and aligning function
WO2017200324A1 (en) Substrate defect inspection device and inspection method using same
WO2016173030A1 (en) Detecting installation device for liquid crystal display panel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22816461

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22816461

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 17.05.2024)