WO2020179980A1 - Wafer teaching jig - Google Patents

Wafer teaching jig Download PDF

Info

Publication number
WO2020179980A1
WO2020179980A1 PCT/KR2019/011814 KR2019011814W WO2020179980A1 WO 2020179980 A1 WO2020179980 A1 WO 2020179980A1 KR 2019011814 W KR2019011814 W KR 2019011814W WO 2020179980 A1 WO2020179980 A1 WO 2020179980A1
Authority
WO
WIPO (PCT)
Prior art keywords
wafer
robot arm
unit
sensor
detection
Prior art date
Application number
PCT/KR2019/011814
Other languages
French (fr)
Korean (ko)
Inventor
오세덕
Original Assignee
오세덕
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 오세덕 filed Critical 오세덕
Priority to CN201980093601.2A priority Critical patent/CN113519042B/en
Publication of WO2020179980A1 publication Critical patent/WO2020179980A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67259Position monitoring, e.g. misposition detection or presence detection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67763Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations the wafers being stored in a carrier, involving loading and unloading
    • H01L21/67766Mechanical parts of transfer devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67763Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations the wafers being stored in a carrier, involving loading and unloading
    • H01L21/67778Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations the wafers being stored in a carrier, involving loading and unloading involving loading and unloading of wafers

Definitions

  • the present invention relates to a wafer teaching jig, and more particularly, to a wafer teaching jig capable of measuring a horizontal state of a wafer transfer robot arm and a wafer.
  • a photolithography process forms a desired resist pattern by applying a resist solution to a wafer substrate and exposing and developing it using a photo mask.
  • a plurality of wafer transfer robots and a plurality of processing units are arranged in a line and/or stacked structure, and a resist solution is applied, exposed and exposed using a wafer transfer robot. Wafers are loaded and unloaded into each processing unit that processes development.
  • semiconductor manufacturing facilities need to set the position of the wafer transfer robot in order to accurately supply wafers to each processing unit.
  • the wafer is transferred while being supported by the arm of the robot for transfer.
  • the equipment state of the robot arm that is, the transfer stroke and the vertical state to the working surface, are very important for accurate wafer transfer. It acts as an element.
  • the mounting height of the robot arm is related to the working distance of the arm, and when the mounting height is different from the initial set height, an impact is applied to the wafer.
  • the robot arm's transfer stroke (height between the working surface and the arm) is larger than the set value, the wafer is transferred to the working surface while the robot arm is supporting the wafer.
  • the wafer is in contact and the wafer is loaded, scratches or breaks on the wafer surface may occur.
  • the present invention was created to improve the problems of the prior art as described above, it is possible to measure the horizontal state of the wafer transfer robot arm and the wafer, and by measuring the gap between the upper and lower facing wafers, the robot arm is loaded and The purpose of this is to provide a wafer teaching jig that can prevent collisions with the wafer during the unloading operation.
  • the present invention provides a wafer teaching jig capable of estimating an elevation position for loading/unloading a wafer through the position of the robot arm, and measuring and correcting the horizontality of the robot arm by comparing it with the actual elevation position of the wafer. It has its purpose to provide.
  • a wafer teaching jig for achieving the above object has a plurality of slots so that a plurality of wafers can be stacked in a stack manner while achieving a set interval, and at least one of the two sides of the slot
  • a wafer cassette having an opening formed on one side thereof to allow loading or unloading of the wafer through the opening;
  • a robot arm for loading or unloading the wafer into the slot of the wafer cassette;
  • a sensor unit that is detachably disposed in a slot at a lower end of the slots of the wafer cassette and measures the height or position of the wafer and the robot arm positioned above;
  • a control unit that calculates the height level of the wafer and the level of the robot arm based on the measured value by the sensor unit, and provides the calculated data in a digital manner.
  • the sensor unit may include a plate-shaped sensor base fitted into a slot of the wafer cassette; A plurality of wafer detection sensors formed along the periphery of the sensor base to sense a distance from the wafer positioned above the sensor base and apply to the control unit; And installed on the sensor base to detect the distance to the wafer together with the wafer detection sensor and apply it to the horizontality calculation unit, and are disposed at a position corresponding to the opening of the wafer cassette to load and unload the wafer. It may include a robot arm detection sensor applied to the control unit while sensing the distance to the robot arm.
  • the robot arm is formed in a fork shape so that detection by the wafer detection sensor and the robot arm detection sensor is prevented while being put into the lower portion of the wafer by the operation of the robot, and the wafer is removed by the robot.
  • a fork portion having a locking protrusion formed at a tip portion thereof so as to pull the wafer in a lifted state;
  • a sensor sensing part formed in the same body at the rear end of the fork part to form a connection part with the robot, and formed in a plate shape to be sensed by the robot arm sensing sensor.
  • control unit may include a zero point calculator configured to calculate a zero point while calculating a height level of the wafer by measuring a distance to the wafer based on the detection signal of the wafer detection sensor and the robot arm detection sensor;
  • a robot arm position detection unit configured to calculate a height level of the robot arm by measuring a distance to the robot arm moving to the lower portion of the wafer through a detection signal from the robot arm detection sensor;
  • a horizontality calculator for estimating and detecting the raised position of the wafer and calculating the horizontal degree of the robot arm based on the estimated data and detection data.
  • the horizontal degree calculation unit may include a position estimation unit that estimates and calculates a rising position of the wafer based on data of the zero point calculation unit and the robot arm position detection unit; When the robot arm raises the wafer, a position measuring unit for measuring the raised position of the wafer and the robot arm through the wafer detection sensor and the robot arm detection sensor; And a comparison unit for calculating a horizontal degree of the robot arm by comparing data of the position estimating unit and the position measuring unit.
  • control unit may further include a correction unit for correcting the horizontality of the robot arm based on data of the horizontality calculation unit.
  • the wafer teaching jig can measure the horizontal state of the wafer transfer robot arm and the wafer, and the loading/unloading unit loads/unloads by measuring the gap between the upper and lower facing wafers. There is an effect of preventing the phenomenon of colliding with the wafer in advance.
  • the wafer teaching jig according to the present invention can calculate the horizontality of the robot arm with the sensor unit disposed on the wafer cassette, it can be conveniently applied to existing equipment and used.
  • the wafer teaching jig specifically, the present invention estimates an elevation position for loading/unloading a wafer through the position of the robot arm, and compares the elevation position of the actual wafer with the horizontal position of the robot arm. Since the degree is measured, the horizontality of the robot arm can be calculated more accurately.
  • FIG. 1 is a perspective view showing a wafer teaching jig according to an embodiment of the present invention.
  • FIG. 2 is a perspective view showing a state of use of a wafer teaching jig according to an embodiment of the present invention.
  • FIG 3 is a front view showing a wafer teaching jig according to an embodiment of the present invention.
  • FIG. 4 is a block diagram showing a control unit of the present invention.
  • FIG. 1 is a perspective view showing a wafer teaching jig according to an embodiment of the present invention
  • Figure 2 is a perspective view showing a state of use of the wafer teaching jig according to an embodiment of the present invention
  • Figure 3 is an embodiment of the present invention It is a front view showing the wafer teaching jig according to.
  • Figure 4 is a block diagram showing a control unit of the present invention.
  • the wafer teaching apparatus 10 measures and corrects the horizontality of the robot arm 200 for transferring the wafer 1 when transferring the wafer 1 in the semiconductor manufacturing process. It is a device for preventing damage to the wafer 1 by 200.
  • the wafer teaching apparatus 10 may be configured to include a wafer cassette 100, a robot arm 200, a sensor unit 300, and a control unit 400, as shown in FIG. 1. have.
  • the wafer cassette 100 is a component that allows a plurality of wafers 1 to be stacked in a stack manner while achieving a set interval.
  • a plurality of slots 110 into which the wafers 1 are inserted are formed in a vertical direction while forming a predetermined interval, so that a plurality of wafers 1 are loaded into each slot 110, Can be stacked at intervals of.
  • the wafer cassette 100 may have an opening formed on one side of the slot 110, so that the wafer 1 may be loaded into the slot 110 or unloaded from the slot 110 through the opening.
  • a plurality of wafers 1 may be stacked while the wafer 1 transferred by the robot arm 200, which will be described later, is inserted into the slot 110 through the opening.
  • the robot arm 200 is a component that transfers and loads the wafer 1 into the slot 110 of the wafer cassette 100 or unloads the wafer 1 from the wafer cassette 100.
  • the robot arm 200 may be connected to a robot (not shown) to transfer the wafer 1 while horizontally moving and vertically moving by the operation of the robot.
  • the robot arm 200 may include a fork portion 210 and a sensor sensing portion 220 as shown in FIGS. 1 and 2.
  • the fork portion 210 is a component that moves to the lower portion of the wafer 1 through the operation of a robot (not shown) and lifts the wafer 1 while pulling.
  • This fork part 210 is moved by a robot while supporting the bottom of the wafer 1, inserting the wafer 1 into the slot 110, and then descending to load the wafer 1 into the slot 110. It is possible to unload the wafer 1 from the slot 110 while moving between the wafers 1 and moving by the robot while lifting the bottom of the wafer 1.
  • the fork part 210 moves to the lower part of the wafer 1, it is possible to prevent detection by the wafer detection sensor 320 and the robot arm detection sensor 330 constituting the sensor unit 300 to be described later. It may be formed in the form of a fork divided into a plurality.
  • the fork portion 210 faces the robot arm detection sensor 330 through the divided space as shown in FIG. 1 and enters the opening, thereby preventing the wafer 1 from being detected by the robot arm detection sensor 330. You can move to the bottom of ).
  • the fork portion 210 has a locking protrusion 211 formed at the front end thereof, and the locking protrusion 211 is caught by the wafer 1 in a state in which the wafer 1 is lifted. Can tow.
  • the sensor detection unit 220 is a component detected by the robot arm detection sensor 330 to be described later.
  • the sensor sensing unit 220 is formed in the same body at the rear end of the fork unit 210 to form a connection portion with a robot, not shown, and is formed in a plate shape to be detected by the robot arm sensing sensor 330 described later. Can be.
  • the robot arm 200 enters through the opening of the wafer cassette 100, it is not detected by the robot arm detection sensor 330 by the fork part 210, and after the entry is completed, the sensor detection unit 220 ) Can be detected by the robot arm detection sensor 330 by facing the robot arm detection sensor 330.
  • the sensor unit 300 is a component for measuring the position or height of the wafer 1 and the robot arm 200 disposed on the wafer cassette 100.
  • the sensor unit 300 is detachably disposed in the slot 110 at the lower end of the slots 110 of the wafer cassette 100 as shown in FIGS.
  • the robot arm 200 can be detected.
  • the sensor unit 300 may include a sensor base 310, a wafer detection sensor 320, and a robot arm detection sensor 330 as shown in FIG. 1.
  • the sensor base 310 may be formed in a plate shape so as to be inserted into the slot 110 of the wafer cassette 100 and may be inserted into the slot 110 at the lower end of the slots 110.
  • the wafer detection sensor 320 may sense a distance to the wafer 1 positioned above the sensor base 310 and apply it to the controller 400 to be described later.
  • the wafer detection sensor 320 may be disposed along the circumference of the sensor base 310 while forming a plurality.
  • the wafer detection sensor 320 detects the wafer 1 while irradiating an infrared ray, ultrasonic wave, or laser upward, and senses a distance to the wafer 1 to provide a height level of the wafer 1.
  • the robot arm detection sensor 330 is installed on the sensor base 310 to detect the distance to the wafer 1 together with the wafer detection sensor 320, or loading and unloading the wafer 1 by the robot arm 200 It is a component that senses the distance to the robot arm 200 and provides it to the controller 400 to be described later.
  • the robot arm detection sensor 330 is disposed at a position corresponding to the opening of the wafer cassette 100 to detect the distance from the sensor detection unit 220 of the robot arm 200 to detect the height level of the robot arm 200. May be provided to the control unit 400.
  • the control unit 400 calculates the height level of the wafer 1 and the horizontality level of the robot arm 1 based on the measured value by the sensor unit 300 described above, and provides the calculated data in a digital manner. It is a component for.
  • the control unit 400 may be mounted on a microprocessor installed in the sensor base 310, and may be mounted on a separate server to receive data from the sensor unit 300.
  • control unit 400 may include a zero point calculation unit 410, a robot arm position calculation unit 420, and a horizontal degree calculation unit 430.
  • the zero point calculation unit 410 is a wafer (1) disposed in the slot 110 located above the sensor base 310 based on the detection signals of the wafer detection sensor 320 and the robot arm detection sensor 330 described above. ) Can be set to zero by calculating the height level.
  • the robot arm position detection unit 420 measures the distance to the robot arm 200 moving to the lower portion of the wafer 1 through a detection signal of the robot arm detection sensor 330 to measure the height of the robot arm 200. Level can be calculated.
  • the robot arm position detecting unit 420 may calculate the height level of the robot arm 200 through the position of the sensor detecting unit 220 by the robot arm detecting sensor 330 of the robot arm 200.
  • the horizontal degree calculation unit 430 is a component for calculating the horizontal degree of the robot arm 200.
  • the horizontal degree calculation unit 430 estimates and detects the rising position of the wafer 1 and calculates the estimated data and detection data. Based on this, the horizontal degree of the robot arm 200 may be calculated.
  • the wafer 1 remains horizontal when seated in the slot 110, but when the wafer 1 is raised by the robot arm 200 that is not horizontally maintained, the horizontal degree is distorted by the robot arm 200. Can be.
  • the horizontality calculating unit 430 may calculate the horizontality of the robot arm 200 through the raised position of the wafer 1 with the zero point set.
  • the horizontality calculating unit 430 may include a position estimating unit 431, a position measuring unit 432, and a comparison unit 433 as shown in FIG. 4.
  • the position estimation unit 431 is based on the height level of the wafer 1 calculated by the zero point calculation unit 410 and the height level of the robot arm 200 calculated by the robot arm position detection unit 420 described above. It can be calculated by estimating the rising position of the wafer 1 by the robot arm 200.
  • the position estimating unit 431 may calculate the rising position of the wafer 1 by calculating the rising distance of the robot arm 200 at the height level of the wafer 1 set to zero.
  • the position measurement unit 432 is configured to detect the wafer 1 and the robot arm 200 through the wafer detection sensor 320 and the robot arm detection sensor 330. Actual ascent position can be measured.
  • the comparison unit 433 may calculate a horizontal degree of the robot arm 200 by comparing the data calculated by the position estimation unit 431 and the position measurement unit 432 described above.
  • the comparison unit 433 compares the rising position of the wafer 1 estimated by the position estimating unit 431 with the rising position of the wafer 1 actually measured by the position measuring unit 432, so that the robot arm 200 The horizontal degree of can be calculated.
  • the rising position of the wafer 1 estimated by the position estimation unit 431 and the rising position of the wafer 1 actually measured by the position measuring unit 432 can be compared equally, and if the robot arm 200 has an uneven horizontality, the rising position of the wafer 1 estimated by the position estimating unit 431 and the actual measured by the position measuring unit 432 The rising positions of the wafer 1 can be compared to be unequal.
  • the control unit 400 may provide the data calculated by the horizontality calculation unit 430 as digital data on the display of the manager, and the horizontality of the robot arm 200 is adjusted based on the calculated configuration of the correction unit 440 It can be corrected through
  • the wafer teaching apparatus 10 can calculate the horizontal degree of the robot arm 200 in a state in which the sensor unit 300 is disposed on the wafer cassette 100. It can be applied and used.
  • the elevation position for loading/unloading of the wafer 1 is estimated through the position of the robot arm 200, and the horizontal position of the robot arm 200 is compared with the actual raised position of the wafer 1. Since the degree is measured, damage to the wafer 1 by the robot arm 200 can be prevented by more accurately calculating and correcting the horizontal degree of the robot arm 200.
  • wafer teaching jig 100 wafer cassette
  • sensor detection unit 300 sensor unit
  • sensor base 320 wafer detection sensor
  • robot arm detection sensor 400 control unit
  • correction unit 1 wafer

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Robotics (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Manipulator (AREA)

Abstract

The present invention relates to a wafer teaching jig by which a horizontal state of a wafer-transferring robot arm and a wafer can be measured, the wafer teaching jig comprising: a wafer cassette which has a plurality of slots to allow a plurality of wafers to be laminated in a stack type at set intervals, and has an opening formed through at least one of both opposite sides of each of the slots to allow each of the wafers to be loaded or unloaded through the opening; a robot arm which loads or unloads the wafers to or from the slots of the wafer cassette; a sensor unit which is separably disposed at a lower end slot among the slots of the wafer cassette, and measures the heights or positions of the robot arm and each of the wafers positioned at an upper side; and a control unit which calculates a height level of each of the wafers and a horizontality level of the robot arm on the basis of a value measured by the sensor unit, and provides calculated data in a digital type.

Description

웨이퍼 티칭 지그Wafer Teaching Jig
본 발명은 웨이퍼 티칭 지그에 관한 것으로, 더욱 상세하게는 웨이퍼 이송용 로보트 암과 웨이퍼의 수평상태를 측정할 수 있는 웨이퍼 티칭 지그에 관한 것이다.The present invention relates to a wafer teaching jig, and more particularly, to a wafer teaching jig capable of measuring a horizontal state of a wafer transfer robot arm and a wafer.
일반적으로 반도체 제조 공정에서 포토리소그라피 공정은 웨이퍼 기판에 레지스트 용액을 도포하고 포토 마스크를 이용하여 노광 및 현상함으로써 원하는 레지스트 패턴을 형성한다.In general, in a semiconductor manufacturing process, a photolithography process forms a desired resist pattern by applying a resist solution to a wafer substrate and exposing and developing it using a photo mask.
이러한 포토리소그라피 공정을 처리하는 반도체 제조 설비는 복수 개의 웨이퍼 이송 로봇과, 복수 개의 처리 유닛(또는 공정 챔버)들이 일렬 및/또는 적층 구조로 배치되고, 웨이퍼 이송 로봇을 이용하여 레지스트 용액 도포, 노광 및 현상을 처리하는 각각의 처리 유닛으로 웨이퍼를 로딩 및 언로딩하고 있다.In a semiconductor manufacturing facility that processes such a photolithography process, a plurality of wafer transfer robots and a plurality of processing units (or process chambers) are arranged in a line and/or stacked structure, and a resist solution is applied, exposed and exposed using a wafer transfer robot. Wafers are loaded and unloaded into each processing unit that processes development.
따라서 반도체 제조 설비는 각각의 처리 유닛으로 정확하게 웨이퍼를 공급하기 위해서 웨이퍼 이송 로봇의 위치를 설정할 필요가 있다.Therefore, semiconductor manufacturing facilities need to set the position of the wafer transfer robot in order to accurately supply wafers to each processing unit.
구체적으로, 웨이퍼는 이송용 로보트의 아암(Arm)에 지지된 상태로 이송이 이루어지며, 이때, 정확한 웨이퍼의 이송을 위하여 로보트 아암의 설비 상태, 즉 이송 스트로크 및 작업면에 대한 수직상태는 매우 중요한 요소로 작용하게 된다.Specifically, the wafer is transferred while being supported by the arm of the robot for transfer. At this time, the equipment state of the robot arm, that is, the transfer stroke and the vertical state to the working surface, are very important for accurate wafer transfer. It acts as an element.
여기서, 로보트 아암의 설치높이는 아암의 작동거리에 관련되며, 설치높이가 최초 설정높이와 상이할 경우 웨이퍼에 충격이 가해지게 된다.Here, the mounting height of the robot arm is related to the working distance of the arm, and when the mounting height is different from the initial set height, an impact is applied to the wafer.
즉, 일정 거리의 상하이송을 실시하는 로보트 아암의 이송 스트로크(작업면과 아암간의 높이)가 설정치 보다 클 경우 웨이퍼를 지지한 상태에서 로보트 아암이 작업면을 향하여 이송하는 과정에서 웨이퍼가 작업면에 접촉되어 웨이퍼의 로딩시 웨이퍼 표면의 흠집(Scratch) 또는 파손이 발생될 수 있다.In other words, if the robot arm's transfer stroke (height between the working surface and the arm) is larger than the set value, the wafer is transferred to the working surface while the robot arm is supporting the wafer. When the wafer is in contact and the wafer is loaded, scratches or breaks on the wafer surface may occur.
또한, 웨이퍼의 언로딩시에는 로보트 아암이 작업면에 안착된 웨이퍼에 이송력을 유지한 상태로 접촉되어 상술한 웨이퍼 손상이 우려되는 문제점이 있다.In addition, when the wafer is unloaded, there is a problem that the robot arm contacts the wafer mounted on the working surface while maintaining the transfer force, thereby causing the aforementioned damage to the wafer.
따라서, 상기와 같은 선행기술의 문제점을 극복할 수 있는 새로운 기술이 요구되고 있다.Therefore, there is a need for a new technology capable of overcoming the problems of the prior art.
본 발명이 속하는 기술분야의 선행기술문헌으로는 대한민국 등록특허공보 제10-0931857호 등이 있다.As prior art documents in the technical field to which the present invention belongs, there are Korean Patent Publication No. 10-0931857 and the like.
본 발명은 상기와 같은 종래기술의 문제점을 개선하기 위하여 창출된 것으로, 웨이퍼 이송용 로봇암과 웨이퍼의 수평상태를 측정할 수 있고, 상,하 마주하는 웨이퍼 간의 갭을 측정함으로써 로봇암이 로딩 및 언로딩 작업 시 웨이퍼와 충돌하는 현상을 미연에 방지할 수 있는 웨이퍼 티칭 지그를 제공하는데 그 목적이 있다.The present invention was created to improve the problems of the prior art as described above, it is possible to measure the horizontal state of the wafer transfer robot arm and the wafer, and by measuring the gap between the upper and lower facing wafers, the robot arm is loaded and The purpose of this is to provide a wafer teaching jig that can prevent collisions with the wafer during the unloading operation.
구체적으로, 본 발명은 로봇암의 위치를 통해 웨이퍼의 로딩/언로딩을 위한 상승위치를 추정하고, 실제 웨이퍼의 상승위치와 비교하여 로봇암의 수평도를 측정하고 보정할 수 있는 웨이퍼 티칭 지그를 제공하는데 그 목적이 있다.Specifically, the present invention provides a wafer teaching jig capable of estimating an elevation position for loading/unloading a wafer through the position of the robot arm, and measuring and correcting the horizontality of the robot arm by comparing it with the actual elevation position of the wafer. It has its purpose to provide.
상기와 같은 목적을 달성하기 위한 본 발명의 하나의 실시예에 따른 웨이퍼 티칭 지그는, 복수의 웨이퍼가 설정된 간격을 이루면서 스텍방식으로 적층될 수 있도록 복수의 슬롯을 갖지며, 상기 슬롯의 양측 중 적어도 일측에 개구부가 형성되어 상기 개구부를 통해 상기 웨이퍼의 로딩 또는 언로딩을 허용하는 웨이퍼카세트; 상기 웨이퍼카세트의 슬롯으로 상기 웨이퍼를 로딩하거나 언로딩하는 로봇암; 상기 웨이퍼카세트의 슬롯 중 하단부의 슬롯에 분리가능하게 배치되고, 상부에 위치하는 상기 웨이퍼 및 상기 로봇암의 높이 또는 위치를 측정하는 센서부; 및 상기 센서부에 의한 측정값을 기반으로 상기 웨이퍼의 높낮이 레벨 및 상기 로봇암의 수평도 레벨을 산출하고, 산출된 데이터를 디지털 방식으로 제공하는 제어부를 포함할 수 있다.A wafer teaching jig according to an embodiment of the present invention for achieving the above object has a plurality of slots so that a plurality of wafers can be stacked in a stack manner while achieving a set interval, and at least one of the two sides of the slot A wafer cassette having an opening formed on one side thereof to allow loading or unloading of the wafer through the opening; A robot arm for loading or unloading the wafer into the slot of the wafer cassette; A sensor unit that is detachably disposed in a slot at a lower end of the slots of the wafer cassette and measures the height or position of the wafer and the robot arm positioned above; And a control unit that calculates the height level of the wafer and the level of the robot arm based on the measured value by the sensor unit, and provides the calculated data in a digital manner.
또한, 상기 센서부는, 상기 웨이퍼카세트의 슬롯에 끼워지는 판상의 센서베이스; 복수를 이루면서 상기 센서베이스의 둘레를 따라 설치되어 상기 센서베이스의 상부에 위치하는 상기 웨이퍼와의 거리를 감지하여 상기 제어부에 인가하는 복수의 웨이퍼감지센서; 및 상기 센서베이스에 설치되어 상기 웨이퍼감지센서와 함께 상기 웨이퍼와의 거리를 감지하여 상기 수평도 산출부에 인가하되, 상기 웨이퍼카세트의 개구부에 대응하는 위치에 배치되어 상기 웨이퍼의 로딩 및 언로딩 시 상기 로봇암과의 거리를 감지하면서 상기 제어부에 인가하는 로봇암감지센서를 포함할 수 있다.In addition, the sensor unit may include a plate-shaped sensor base fitted into a slot of the wafer cassette; A plurality of wafer detection sensors formed along the periphery of the sensor base to sense a distance from the wafer positioned above the sensor base and apply to the control unit; And installed on the sensor base to detect the distance to the wafer together with the wafer detection sensor and apply it to the horizontality calculation unit, and are disposed at a position corresponding to the opening of the wafer cassette to load and unload the wafer. It may include a robot arm detection sensor applied to the control unit while sensing the distance to the robot arm.
또한, 상기 로봇암은, 로봇의 작동에 의해 상기 웨이퍼의 하부로 투입되면서 상기 웨이퍼감지센서 및 상기 로봇암감지센서에 의한 감지가 방지될 수 있도록 포크형태로 형성되며, 상기 로봇에 의해 상기 웨이퍼를 들어올린 상태로 상기 웨이퍼를 견인할 수 있도록 선단부에 걸림턱이 형성되는 포크부; 및 상기 포크부의 후단에 동일체로 형성되어 상기 로봇과의 연결부위를 이루고, 판상으로 형성되어 상기 로봇암감지센서에 의해 감지되는 센서감지부를 포함할 수 있다.In addition, the robot arm is formed in a fork shape so that detection by the wafer detection sensor and the robot arm detection sensor is prevented while being put into the lower portion of the wafer by the operation of the robot, and the wafer is removed by the robot. A fork portion having a locking protrusion formed at a tip portion thereof so as to pull the wafer in a lifted state; And a sensor sensing part formed in the same body at the rear end of the fork part to form a connection part with the robot, and formed in a plate shape to be sensed by the robot arm sensing sensor.
또한, 상기 제어부는, 상기 웨이퍼감지센서 및 상기 로봇암감지센서의 감지신호를 기반으로 통해 상기 웨이퍼와의 거리를 측정하여 상기 웨이퍼의 높낮이 레벨을 산출하면서 영점을 산출하는 영점 산출부; 상기 로봇암감지센서의 감지신호를 통해 상기 웨이퍼의 하부로 이동하는 상기 로봇암과의 거리를 측정하여 상기 로봇암의 높낮이 레벨을 산출하는 로봇암위치감지부; 및 상기 웨이퍼의 언로딩을 위하여 상기 로봇암이 상기 웨이퍼를 상승시킬 경우, 상기 웨이퍼의 상승위치를 추정 및 감지하고 추정데이터 및 감지데이터를 기반으로 상기 로봇암의 수평도를 산출하는 수평도 산출부를 포함할 수 있다.In addition, the control unit may include a zero point calculator configured to calculate a zero point while calculating a height level of the wafer by measuring a distance to the wafer based on the detection signal of the wafer detection sensor and the robot arm detection sensor; A robot arm position detection unit configured to calculate a height level of the robot arm by measuring a distance to the robot arm moving to the lower portion of the wafer through a detection signal from the robot arm detection sensor; And when the robot arm raises the wafer for unloading of the wafer, a horizontality calculator for estimating and detecting the raised position of the wafer and calculating the horizontal degree of the robot arm based on the estimated data and detection data. Can include.
또한, 상기 수평도산출부는, 상기 영점 산출부 및 상기 로봇암위치감지부의 데이터를 기반으로 상기 웨이퍼의 상승위치를 추정하여 산출하는 위치추정부; 상기 로봇암이 상기 웨이퍼를 상승시킨 경우, 상기 웨이퍼감지센서 및 상기 로봇암감지센서를 통해 상기 웨이퍼 및 상기 로봇암의 상승위치를 측정하는 위치측정부; 및 상기 위치추정부와 상기 위치측정부의 데이터를 비교하여 상기 로봇암의 수평도를 산출하는 비교부를 포함할 수 있다.In addition, the horizontal degree calculation unit may include a position estimation unit that estimates and calculates a rising position of the wafer based on data of the zero point calculation unit and the robot arm position detection unit; When the robot arm raises the wafer, a position measuring unit for measuring the raised position of the wafer and the robot arm through the wafer detection sensor and the robot arm detection sensor; And a comparison unit for calculating a horizontal degree of the robot arm by comparing data of the position estimating unit and the position measuring unit.
또한, 상기 제어부는, 상기 수평도 산출부의 데이터를 기반으로 상기 로봇암의 수평도를 보정하는 보정부를 더 포함할 수 있다.In addition, the control unit may further include a correction unit for correcting the horizontality of the robot arm based on data of the horizontality calculation unit.
본 발명의 일 실시예에 따른 웨이퍼 티칭 지그는, 웨이퍼 이송용 로봇암과 웨이퍼의 수평상태를 측정할 수 있고, 상,하 마주하는 웨이퍼 간의 갭을 측정하여 로딩/언로딩부가 로딩/언로딩 작업 시 웨이퍼와 충돌하는 현상을 미연에 방지할 수 있는 효과가 있다.The wafer teaching jig according to an embodiment of the present invention can measure the horizontal state of the wafer transfer robot arm and the wafer, and the loading/unloading unit loads/unloads by measuring the gap between the upper and lower facing wafers. There is an effect of preventing the phenomenon of colliding with the wafer in advance.
특히, 본 발명에 따른 웨이퍼 티칭 지그는, 센서부가 웨이퍼카세트에 배치된 상태로 로봇암의 수평도를 산출할 수 있으므로 기존 장비에 간편하게 적용하여 사용할 수 있다.In particular, since the wafer teaching jig according to the present invention can calculate the horizontality of the robot arm with the sensor unit disposed on the wafer cassette, it can be conveniently applied to existing equipment and used.
구체적으로, 본 발명에 따른 웨이퍼 티칭 지그는, 구체적으로, 본 발명은 로봇암의 위치를 통해 웨이퍼의 로딩/언로딩을 위한 상승위치를 추정하고, 실제 웨이퍼의 상승위치와 비교하여 로봇암의 수평도를 측정하므로 로봇암의 수평도를 좀 더 정확하게 산출할 수 있다.Specifically, the wafer teaching jig according to the present invention, specifically, the present invention estimates an elevation position for loading/unloading a wafer through the position of the robot arm, and compares the elevation position of the actual wafer with the horizontal position of the robot arm. Since the degree is measured, the horizontality of the robot arm can be calculated more accurately.
개시되는 실시예들에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 개시되는 실시예들이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.The effects that can be obtained in the disclosed embodiments are not limited to the above-mentioned effects, and other effects not mentioned are obvious to those of ordinary skill in the art to which the embodiments disclosed from the following description belong. Can be understood.
도 1은 본 발명의 일 실시예에 따른 웨이퍼 티칭 지그를 나타내는 사시도이다.1 is a perspective view showing a wafer teaching jig according to an embodiment of the present invention.
도 2는 본 발명의 일 실시예에 따른 웨이퍼 티칭 지그의 사용상태를 나타내는 사시도이다.2 is a perspective view showing a state of use of a wafer teaching jig according to an embodiment of the present invention.
도 3은 본 발명의 일 실시예에 따른 웨이퍼 티칭 지그를 나타내는 정면도이다.3 is a front view showing a wafer teaching jig according to an embodiment of the present invention.
도 4는 본 발명의 제어부를 나타내는 블록도이다.4 is a block diagram showing a control unit of the present invention.
이하에서 첨부 도면을 참고하여 본 발명의 실시예에 대해서 더욱 상세하게 설명한다. 본 발명을 설명함에 있어서 관련된 공지의 범용적인 기능 또는 구성에 대한 상세한 설명은 생략한다.Hereinafter, exemplary embodiments of the present invention will be described in more detail with reference to the accompanying drawings. In describing the present invention, detailed descriptions of related known general functions or configurations will be omitted.
본 발명의 개념에 따른 실시 예는 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있으므로 특정 실시 예들을 도면에 예시하고 본 명세서 또는 출원에 상세하게 설명하고자 한다. 그러나, 이는 본 발명의 개념에 따른 실시 예를 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.Since the embodiments according to the concept of the present invention can be modified in various ways and have various forms, specific embodiments will be illustrated in the drawings and described in detail in the present specification or application. However, this is not intended to limit the embodiments according to the concept of the present invention to a specific form of disclosure, and it should be understood that all changes, equivalents, and substitutes included in the spirit and scope of the present invention are included.
어떤 구성요소가 다른 구성요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떤 구성요소가 다른 구성요소에 "직접 연결되어" 있다거나 "직접 접속되어" 있다고 언급된 때에는, 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다. 구성요소들 간의 관계를 설명하는 다른 표현들, 즉 "~사이에"와 "바로 ~사이에" 또는 "~에 이웃하는"과 "~에 직접 이웃하는" 등도 마찬가지로 해석되어야 한다.When a component is referred to as being "connected" or "connected" to another component, it is understood that it may be directly connected or connected to the other component, but other components may exist in the middle. Should be. On the other hand, when a component is referred to as being "directly connected" or "directly connected" to another component, it should be understood that there is no other component in the middle. Other expressions describing the relationship between components, such as "between" and "just between" or "adjacent to" and "directly adjacent to" should be interpreted as well.
본 명세서에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다" 또는 "가지다" 등의 용어는 설시된 특징, 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.The terms used in the present specification are only used to describe specific embodiments, and are not intended to limit the present invention. Singular expressions include plural expressions unless the context clearly indicates otherwise. In the present specification, terms such as "comprise" or "have" are intended to designate the presence of a set feature, number, step, action, component, part, or combination thereof, but one or more other features or numbers It is to be understood that the possibility of addition or presence of, steps, actions, components, parts, or combinations thereof is not preliminarily excluded.
도 1은 본 발명의 일 실시예에 따른 웨이퍼 티칭 지그를 나타내는 사시도이고, 도 2는 본 발명의 일 실시예에 따른 웨이퍼 티칭 지그의 사용상태를 나타내는 사시도이며, 도 3은 본 발명의 일 실시예에 따른 웨이퍼 티칭 지그를 나타내는 정면도이다. 또한, 도 4는 본 발명의 제어부를 나타내는 블록도이다.1 is a perspective view showing a wafer teaching jig according to an embodiment of the present invention, Figure 2 is a perspective view showing a state of use of the wafer teaching jig according to an embodiment of the present invention, Figure 3 is an embodiment of the present invention It is a front view showing the wafer teaching jig according to. In addition, Figure 4 is a block diagram showing a control unit of the present invention.
본 발명의 일 실시예에 따른 웨이퍼 티칭 장치(10)는 반도체의 제조공정에서 웨이퍼(1)를 이송함에 있어서 웨이퍼(1)를 이송하는 로봇암(200)의 수평도를 측정하여 보정함으로써 로봇암(200)에 의한 웨이퍼(1)의 손상을 방지하기 위한 장치이다.The wafer teaching apparatus 10 according to an embodiment of the present invention measures and corrects the horizontality of the robot arm 200 for transferring the wafer 1 when transferring the wafer 1 in the semiconductor manufacturing process. It is a device for preventing damage to the wafer 1 by 200.
구체적으로, 일 실시예에 따른 웨이퍼 티칭 장치(10)는 도 1에 도시된 바와 같이 웨이퍼카세트(100), 로봇암(200), 센서부(300) 및 제어부(400)를 포함하여 구성될 수 있다.Specifically, the wafer teaching apparatus 10 according to an embodiment may be configured to include a wafer cassette 100, a robot arm 200, a sensor unit 300, and a control unit 400, as shown in FIG. 1. have.
상기 웨이퍼카세트(100)는 복수의 웨이퍼(1)가 설정된 간격을 이루면서 스텍방식으로 적층될 수 있도록 하는 구성요소이다.The wafer cassette 100 is a component that allows a plurality of wafers 1 to be stacked in a stack manner while achieving a set interval.
구체적으로, 웨이퍼카세트(100)는 웨이퍼(1)가 삽입되는 복수의 슬롯(110)들이 소정의 간격을 이루면서 수직방향으로 형성됨으로써 복수의 웨이퍼(1)가 각각의 슬롯(110)에 로딩되면서 소정의 간격으로 적층될 수 있다.Specifically, in the wafer cassette 100, a plurality of slots 110 into which the wafers 1 are inserted are formed in a vertical direction while forming a predetermined interval, so that a plurality of wafers 1 are loaded into each slot 110, Can be stacked at intervals of.
이러한 웨이퍼카세트(100)는 슬롯(110)의 일측에 개구부가 형성됨으로써 웨이퍼(1)가 개구부를 통해 슬롯(110)으로 로딩되거나 슬롯(110)에서 언로딩될 수 있다.The wafer cassette 100 may have an opening formed on one side of the slot 110, so that the wafer 1 may be loaded into the slot 110 or unloaded from the slot 110 through the opening.
즉, 웨이퍼카세트(100)는 후술되는 로봇암(200)에 의해 이송되는 웨이퍼(1)가 개구부를 통해 슬롯(110)에 끼워지면서 복수의 웨이퍼(1)를 적층할 수 있다.That is, in the wafer cassette 100, a plurality of wafers 1 may be stacked while the wafer 1 transferred by the robot arm 200, which will be described later, is inserted into the slot 110 through the opening.
상기 로봇암(200)은 웨이퍼(1)를 웨이퍼카세트(100)의 슬롯(110)으로 이송하여 로딩하거나 웨이퍼(1)를 웨이퍼카세트(100)에서 언로딩하는 구성요소이다.The robot arm 200 is a component that transfers and loads the wafer 1 into the slot 110 of the wafer cassette 100 or unloads the wafer 1 from the wafer cassette 100.
이러한 로보암(200)은 미도시된 로봇에 연결되어 로봇의 작동에 의해 수평이동 및 수직이동하면서 웨이퍼(1)를 이송할 수 있다.The robot arm 200 may be connected to a robot (not shown) to transfer the wafer 1 while horizontally moving and vertically moving by the operation of the robot.
구체적으로, 로봇암(200)은 도 1 및 도 2에 도시된 바와 같이 포크부(210) 및 센서감지부(220)를 포함하여 구성될 수 있다.Specifically, the robot arm 200 may include a fork portion 210 and a sensor sensing portion 220 as shown in FIGS. 1 and 2.
상기 포크부(210)는 미도시된 로봇의 작동을 통해 웨이퍼(1)의 하부로 이동하여 웨이퍼(1)를 들어올리면서 견인하는 구성요소이다.The fork portion 210 is a component that moves to the lower portion of the wafer 1 through the operation of a robot (not shown) and lifts the wafer 1 while pulling.
이러한 포크부(210)는 웨이퍼(1)의 저면을 지지한 상태로 로봇에 의해 이동하면서 웨이퍼(1)를 슬롯(110)에 삽입한 후 하강함으로써 웨이퍼(1)를 슬롯(110)에 로딩할 수 있으며, 웨이퍼(1)들의 사이로 이동하여 웨이퍼(1)의 저면을 들어올린 상태로 로봇에 의해 이동하면서 웨이퍼(1)를 슬롯(110)에서 언로딩할 수 있다.This fork part 210 is moved by a robot while supporting the bottom of the wafer 1, inserting the wafer 1 into the slot 110, and then descending to load the wafer 1 into the slot 110. It is possible to unload the wafer 1 from the slot 110 while moving between the wafers 1 and moving by the robot while lifting the bottom of the wafer 1.
여기서, 포크부(210)는 웨이퍼(1)의 하부로 이동할 경우, 후술되는 센서부(300)를 구성하는 웨이퍼감지센서(320) 및 로봇암감지센서(330)에 의한 감지가 방지될 수 있도록 복수로 분할된 포크형태로 형성될 수 있다.Here, when the fork part 210 moves to the lower part of the wafer 1, it is possible to prevent detection by the wafer detection sensor 320 and the robot arm detection sensor 330 constituting the sensor unit 300 to be described later. It may be formed in the form of a fork divided into a plurality.
즉, 포크부(210)는 도 1에 도시된 바와 같이 분할된 공간을 통해 로봇암감지센서(330)와 대면하면서 개구부로 진입함으로써 로봇암감지센서(330)에 의해 감지됨이 없이 웨이퍼(1)의 하부로 이동할 수 있다.That is, the fork portion 210 faces the robot arm detection sensor 330 through the divided space as shown in FIG. 1 and enters the opening, thereby preventing the wafer 1 from being detected by the robot arm detection sensor 330. You can move to the bottom of ).
이러한 포크부(210)는 도 2에 도시된 바와 같이 선단부에 걸림턱(211)이 형성되어 웨이퍼(1)를 들어올린 상태로 걸림턱(211)이 웨이퍼(1)에 걸림으로써 웨이퍼(1)를 견인할 수 있다.As shown in FIG. 2, the fork portion 210 has a locking protrusion 211 formed at the front end thereof, and the locking protrusion 211 is caught by the wafer 1 in a state in which the wafer 1 is lifted. Can tow.
상기 센서감지부(220)는 후술되는 로봇암감지센서(330)에 의해 감지되는 구성요소이다.The sensor detection unit 220 is a component detected by the robot arm detection sensor 330 to be described later.
구체적으로, 센서감지부(220)는 포크부(210)의 후단부에 동일체로 형성되어 미도시된 로봇과의 연결부위를 이루며, 판상으로 형성됨으로써 후술되는 로봇암감지센서(330)에 의해 감지될 수 있다.Specifically, the sensor sensing unit 220 is formed in the same body at the rear end of the fork unit 210 to form a connection portion with a robot, not shown, and is formed in a plate shape to be detected by the robot arm sensing sensor 330 described later. Can be.
즉, 로봇암(200)은 웨이퍼카세트(100)의 개구부를 통해 진입할 경우, 포크부(210)에 의해 로봇암감지센서(330)에 감지되지 않으며, 진입이 완료된 후에는 센서감지부(220)가 로봇암감지센서(330)와 대면함으로써 로봇암감지센서(330)에 의해 감지될 수 있다.That is, when the robot arm 200 enters through the opening of the wafer cassette 100, it is not detected by the robot arm detection sensor 330 by the fork part 210, and after the entry is completed, the sensor detection unit 220 ) Can be detected by the robot arm detection sensor 330 by facing the robot arm detection sensor 330.
상기 센서부(300)는 웨이퍼카세트(100)에 배치된 웨이퍼(1) 및 로봇암(200)의 위치 또는 높이를 측정하기 위한 구성요소이다.The sensor unit 300 is a component for measuring the position or height of the wafer 1 and the robot arm 200 disposed on the wafer cassette 100.
이러한 센서부(300)는 도 2 및 도 3에 도시된 바와 같이 웨이퍼카세트(100)의 슬롯(110)들 중 하단부의 슬롯(110)에 분리가능하게 배치되어 상부에 위치하는 웨이퍼(1)나 로봇암(200)을 감지할 수 있다.The sensor unit 300 is detachably disposed in the slot 110 at the lower end of the slots 110 of the wafer cassette 100 as shown in FIGS. The robot arm 200 can be detected.
구체적으로, 센서부(300)는 도 1에 도시된 바와 같이 센서베이스(310), 웨이퍼감지센서(320) 및 로봇암감지센서(330)를 포함하여 구성될 수 있다.Specifically, the sensor unit 300 may include a sensor base 310, a wafer detection sensor 320, and a robot arm detection sensor 330 as shown in FIG. 1.
상기 센서베이스(310)는 웨이퍼카세트(100)의 슬롯(110)에 끼워질 수 있도록 판상으로 형성되어 슬롯(110)들 중 하단의 슬롯(110)에 끼워져 배치될 수 있다.The sensor base 310 may be formed in a plate shape so as to be inserted into the slot 110 of the wafer cassette 100 and may be inserted into the slot 110 at the lower end of the slots 110.
상기 웨이퍼감지센서(320)는 센서베이스(310)의 상부에 위치하는 웨이퍼(1)와의 거리를 감지하여 후술되는 제어부(400)에 인가할 수 있다.The wafer detection sensor 320 may sense a distance to the wafer 1 positioned above the sensor base 310 and apply it to the controller 400 to be described later.
구체적으로, 웨이퍼감지센서(320)는 복수를 이루면서 센서베이스(310)의 둘레를 따라 배치될 수 있다.Specifically, the wafer detection sensor 320 may be disposed along the circumference of the sensor base 310 while forming a plurality.
이러한 웨이퍼감지센서(320)는 적외선이나 초음파 또는 레이저를 상부로 조사하면서 웨이퍼(1)를 감지하고, 웨이퍼(1)와의 거리를 감지함으로써 웨이퍼(1)의 높낮이 레벨을 제공할 수 있다.The wafer detection sensor 320 detects the wafer 1 while irradiating an infrared ray, ultrasonic wave, or laser upward, and senses a distance to the wafer 1 to provide a height level of the wafer 1.
상기 로봇암감지센서(330)는 센서베이스(310)에 설치되어 웨이퍼감지센서(320)와 함께 웨이퍼(1)와의 거리를 감지하거나 로봇암(200)에 의한 웨이퍼(1)의 로딩 및 언로딩 시 로봇암(200)과의 거리를 감지하여 후술되는 제어부(400)로 제공하는 구성요소이다.The robot arm detection sensor 330 is installed on the sensor base 310 to detect the distance to the wafer 1 together with the wafer detection sensor 320, or loading and unloading the wafer 1 by the robot arm 200 It is a component that senses the distance to the robot arm 200 and provides it to the controller 400 to be described later.
이러한 로봇암감지센서(330)는 웨이퍼카세트(100)의 개구부에 대응하는 위치에 배치됨으로써 전술한 로봇암(200)의 센서감지부(220)와의 거리를 감지하여 로봇암(200)의 높낮이 레벨을 제어부(400)로 제공할 수 있다.The robot arm detection sensor 330 is disposed at a position corresponding to the opening of the wafer cassette 100 to detect the distance from the sensor detection unit 220 of the robot arm 200 to detect the height level of the robot arm 200. May be provided to the control unit 400.
상기 제어부(400)는 전술한 센서부(300)에 의한 측정값을 기반으로 웨이퍼(1)의 높낮이 레벨 및 로봇암(1)의 수평도 레벨을 산출하고, 산출된 데이터를 디지털 방식으로 제공하기 위한 구성요소이다.The control unit 400 calculates the height level of the wafer 1 and the horizontality level of the robot arm 1 based on the measured value by the sensor unit 300 described above, and provides the calculated data in a digital manner. It is a component for.
이러한 제어부(400)는 센서베이스(310)에 설치되는 마이크로프로세서에 탑재될 수 있으며, 별도의 서버에 탑재되어 센서부(300)의 데이터를 인가받을 수 있다.The control unit 400 may be mounted on a microprocessor installed in the sensor base 310, and may be mounted on a separate server to receive data from the sensor unit 300.
구체적으로, 제어부(400)는 도 4에 도시된 바와 같이 영점산출부(410), 로봇암위치산출부(420) 및 수평도산출부(430)를 포함하여 구성될 수 있다.Specifically, as shown in FIG. 4, the control unit 400 may include a zero point calculation unit 410, a robot arm position calculation unit 420, and a horizontal degree calculation unit 430.
상기 영점산출부(410)는 전술한 웨이퍼감지센서(320) 및 로봇암감지센서(330)의 감지신호를 기반으로 센서베이스(310)의 상부에 위치하는 슬롯(110)에 배치된 웨이퍼(1)의 높낮이 레벨을 산출하여 영점으로 설정할 수 있다.The zero point calculation unit 410 is a wafer (1) disposed in the slot 110 located above the sensor base 310 based on the detection signals of the wafer detection sensor 320 and the robot arm detection sensor 330 described above. ) Can be set to zero by calculating the height level.
상기 로봇암위치감지부(420)는 로봇암감지센서(330)의 감지신호를 통해 상기 웨이퍼(1)의 하부로 이동하는 로봇암(200)과의 거리를 측정하여 로봇암(200)의 높낮이 레벨을 산출할 수 있다.The robot arm position detection unit 420 measures the distance to the robot arm 200 moving to the lower portion of the wafer 1 through a detection signal of the robot arm detection sensor 330 to measure the height of the robot arm 200. Level can be calculated.
이때, 로봇암위치감지부(420)는 로봇암(200)의 로봇암감지센서(330)에 의한 센서감지부(220)의 위치를 통해 로봇암(200)의 높낮이 레벨을 산출할 수 있다.In this case, the robot arm position detecting unit 420 may calculate the height level of the robot arm 200 through the position of the sensor detecting unit 220 by the robot arm detecting sensor 330 of the robot arm 200.
상기 수평도산출부(430)는 로봇암(200)의 수평도를 산출하기 위한 구성요소이다.The horizontal degree calculation unit 430 is a component for calculating the horizontal degree of the robot arm 200.
구체적으로, 수평도산출부(430)는 웨이퍼(1)의 언로딩을 위하여 로봇암(200)이 웨이퍼를 상승시킬 경우, 웨이퍼(1)의 상승위치를 추정 및 감지하고 추정데이터 및 감지데이터를 기반으로 로봇암(200)의 수평도를 산출할 수 있다.Specifically, when the robot arm 200 raises the wafer for unloading of the wafer 1, the horizontal degree calculation unit 430 estimates and detects the rising position of the wafer 1 and calculates the estimated data and detection data. Based on this, the horizontal degree of the robot arm 200 may be calculated.
즉, 웨이퍼(1)는 슬롯(110)에 안착된 상태에서는 수평을 유지하게 되나, 수평이 유지되지 않은 로봇암(200)에 의해 상승할 경우에는 로봇암(200)에 의해 수평도가 틀어지게 될 수 있다.That is, the wafer 1 remains horizontal when seated in the slot 110, but when the wafer 1 is raised by the robot arm 200 that is not horizontally maintained, the horizontal degree is distorted by the robot arm 200. Can be.
수평도 산출부(430)는 영점이 설정된 웨이퍼(1)의 상승위치를 통해 로봇암(200)의 수평도를 산출할 수 있다.The horizontality calculating unit 430 may calculate the horizontality of the robot arm 200 through the raised position of the wafer 1 with the zero point set.
구체적으로, 수평도 산출부(430)는 도 4에 도시된 바와 같이 위치추정부(431), 위치측정부(432) 및 비교부(433)를 포함하여 구성될 수 있다.Specifically, the horizontality calculating unit 430 may include a position estimating unit 431, a position measuring unit 432, and a comparison unit 433 as shown in FIG. 4.
상기 위치추정부(431)는 전술한 영점 산출부(410)에서 산출된 웨이퍼(1)의 높낮이 레벨과 전술한 로봇암위치감지부(420)에서 산출된 로봇암(200)의 높낮이 레벨을 기반으로 로봇암(200)에 의한 웨이퍼(1)의 상승위치를 추정하여 산출할 수 있다.The position estimation unit 431 is based on the height level of the wafer 1 calculated by the zero point calculation unit 410 and the height level of the robot arm 200 calculated by the robot arm position detection unit 420 described above. It can be calculated by estimating the rising position of the wafer 1 by the robot arm 200.
구체적으로, 위치추정부(431)는 영점 설정된 웨이퍼(1)의 높낮이 레벨에 로봇암(200)의 상승거리를 연산함으로써 웨이퍼(1)의 상승위치를 추정하여 산출할 수 있다.Specifically, the position estimating unit 431 may calculate the rising position of the wafer 1 by calculating the rising distance of the robot arm 200 at the height level of the wafer 1 set to zero.
상기 위치측정부(432)는 로봇암(200)이 웨이퍼(1)를 상승시킨 경우, 웨이퍼감지센서(320) 및 로봇암감지센서(330)를 통해 웨이퍼(1) 및 로봇암(200)의 실제 상승위치를 측정할 수 있다.When the robot arm 200 raises the wafer 1, the position measurement unit 432 is configured to detect the wafer 1 and the robot arm 200 through the wafer detection sensor 320 and the robot arm detection sensor 330. Actual ascent position can be measured.
상기 비교부(433)는 전술한 위치추정부(431)와 위치측정부(432)에서 각각 산출된 데이터를 비교하여 로봇암(200)의 수평도를 산출할 수 있다.The comparison unit 433 may calculate a horizontal degree of the robot arm 200 by comparing the data calculated by the position estimation unit 431 and the position measurement unit 432 described above.
즉, 비교부(433)는 위치추정부(431)에서 추정된 웨이퍼(1)의 상승위치와 위치측정부(432)에서 실제 측정된 웨이퍼(1)의 상승위치를 비교함으로써 로봇암(200)의 수평도를 산출할 수 있다.That is, the comparison unit 433 compares the rising position of the wafer 1 estimated by the position estimating unit 431 with the rising position of the wafer 1 actually measured by the position measuring unit 432, so that the robot arm 200 The horizontal degree of can be calculated.
예컨대, 로봇암(200)이 균일한 수평도를 가질 경우에는 위치추정부(431)에서 추정된 웨이퍼(1)의 상승위치와 위치측정부(432)에서 실제 측정된 웨이퍼(1)의 상승위치가 동일하게 비교될 수 있으며, 로봇암(200)이 균일하지 않은 수평도를 가질 경우에는 위치추정부(431)에서 추정된 웨이퍼(1)의 상승위치와 위치측정부(432)에서 실제 측정된 웨이퍼(1)의 상승위치가 동일하지 않게 비교될 수 있다.For example, when the robot arm 200 has a uniform horizontality, the rising position of the wafer 1 estimated by the position estimation unit 431 and the rising position of the wafer 1 actually measured by the position measuring unit 432 Can be compared equally, and if the robot arm 200 has an uneven horizontality, the rising position of the wafer 1 estimated by the position estimating unit 431 and the actual measured by the position measuring unit 432 The rising positions of the wafer 1 can be compared to be unequal.
상기 제어부(400)는 수평도 산출부(430)에서 산출된 데이터를 관리자의 디스플레이에 디지털 데이터로 제공할 수 있으며, 산출된 기반으로 로봇암(200)의 수평도를 보정부(440)의 구성을 통해 보정할 수 있다.The control unit 400 may provide the data calculated by the horizontality calculation unit 430 as digital data on the display of the manager, and the horizontality of the robot arm 200 is adjusted based on the calculated configuration of the correction unit 440 It can be corrected through
이상에서 살펴 본 바와 같이 본 발명에 따른 웨이퍼 티칭 장치(10)는 센서부(300)가 웨이퍼카세트(100)에 배치된 상태로 로봇암(200)의 수평도를 산출할 수 있으므로 기존 장비에 간편하게 적용하여 사용할 수 있으며, 특히 로봇암(200)의 위치를 통해 웨이퍼(1)의 로딩/언로딩을 위한 상승위치를 추정하고 실제 웨이퍼(1)의 상승위치와 비교하여 로봇암(200)의 수평도를 측정하므로 로봇암(200)의 수평도를 좀 더 정확하게 산출하고 보정함으로써 로봇암(200)에 의한 웨이퍼(1)의 손상을 방지할 수 있다.As described above, the wafer teaching apparatus 10 according to the present invention can calculate the horizontal degree of the robot arm 200 in a state in which the sensor unit 300 is disposed on the wafer cassette 100. It can be applied and used. In particular, the elevation position for loading/unloading of the wafer 1 is estimated through the position of the robot arm 200, and the horizontal position of the robot arm 200 is compared with the actual raised position of the wafer 1. Since the degree is measured, damage to the wafer 1 by the robot arm 200 can be prevented by more accurately calculating and correcting the horizontal degree of the robot arm 200.
상술된 실시예들은 예시를 위한 것이며, 상술된 실시예들이 속하는 기술분야의 통상의 지식을 가진 자는 상술된 실시예들이 갖는 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 상술된 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 예를 들어, 단일형으로 설명되어 있는 각 구성 요소는 분산되어 실시될 수도 있으며, 마찬가지로 분산된 것으로 설명되어 있는 구성 요소들도 결합된 형태로 실시될 수 있다.The above-described embodiments are for illustrative purposes only, and those of ordinary skill in the art to which the above-described embodiments belong can easily transform into other specific forms without changing the technical idea or essential features of the above-described embodiments. You can understand. Therefore, it should be understood that the above-described embodiments are illustrative and non-limiting in all respects. For example, each component described as a single type may be implemented in a distributed manner, and similarly, components described as being distributed may also be implemented in a combined form.
본 명세서를 통해 보호 받고자 하는 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태를 포함하는 것으로 해석되어야 한다.The scope to be protected through the present specification is indicated by the claims to be described later rather than the detailed description, and should be interpreted as including all changes or modified forms derived from the meaning and scope of the claims and the concept of equivalents thereof. .
* 부호의 설명 ** Explanation of the sign *
10 : 웨이퍼 티칭지그 100 : 웨이퍼카세트10: wafer teaching jig 100: wafer cassette
110 : 슬롯 200 : 로봇암110: slot 200: robot arm
210 : 포크부 211 : 걸림턱210: fork portion 211: locking jaw
220 : 센서감지부 300 : 센서부220: sensor detection unit 300: sensor unit
310 : 센서베이스 320 : 웨이퍼감지센서310: sensor base 320: wafer detection sensor
330 : 로봇암감지센서 400 : 제어부330: robot arm detection sensor 400: control unit
410 : 영점산출부 420 : 로봇암위치감지부410: zero point calculation unit 420: robot arm position detection unit
430 : 수평도 산출부 431 : 위치추정부430: horizontality calculation unit 431: location estimation
432 : 위치측정부 433 : 비교부432: position measurement unit 433: comparison unit
440 : 보정부 1 : 웨이퍼440: correction unit 1: wafer

Claims (6)

  1. 복수의 웨이퍼가 설정된 간격을 이루면서 스텍방식으로 적층될 수 있도록 복수의 슬롯을 갖지며, 상기 슬롯의 양측 중 적어도 일측에 개구부가 형성되어 상기 개구부를 통해 상기 웨이퍼의 로딩 또는 언로딩을 허용하는 웨이퍼카세트;A wafer cassette that has a plurality of slots so that a plurality of wafers can be stacked in a stack manner at a set interval, and an opening is formed on at least one side of both sides of the slot to allow loading or unloading of the wafer through the opening ;
    상기 웨이퍼카세트의 슬롯으로 상기 웨이퍼를 로딩하거나 언로딩하는 로봇암;A robot arm for loading or unloading the wafer into the slot of the wafer cassette;
    상기 웨이퍼카세트의 슬롯 중 하단부의 슬롯에 분리가능하게 배치되고, 상부에 위치하는 상기 웨이퍼 및 상기 로봇암의 높이 또는 위치를 측정하는 센서부; 및A sensor unit that is detachably disposed in a slot at a lower end of the slots of the wafer cassette and measures the height or position of the wafer and the robot arm positioned above; And
    상기 센서부에 의한 측정값을 기반으로 상기 웨이퍼의 높낮이 레벨 및 상기 로봇암의 수평도 레벨을 산출하고, 산출된 데이터를 디지털 방식으로 제공하는 제어부를 포함하는 웨이퍼 티칭지그.A wafer teaching jig comprising a control unit that calculates a height level of the wafer and a level of the robot arm based on a measured value by the sensor unit, and provides the calculated data in a digital manner.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 센서부는,The sensor unit,
    상기 웨이퍼카세트의 슬롯에 끼워지는 판상의 센서베이스;A plate-shaped sensor base fitted into the slot of the wafer cassette;
    복수를 이루면서 상기 센서베이스의 둘레를 따라 설치되어 상기 센서베이스의 상부에 위치하는 상기 웨이퍼와의 거리를 감지하여 상기 제어부에 인가하는 복수의 웨이퍼감지센서; 및A plurality of wafer detection sensors formed along the periphery of the sensor base to sense a distance from the wafer positioned above the sensor base and apply to the control unit; And
    상기 센서베이스에 설치되어 상기 웨이퍼감지센서와 함께 상기 웨이퍼와의 거리를 감지하여 상기 수평도 산출부에 인가하되, 상기 웨이퍼카세트의 개구부에 대응하는 위치에 배치되어 상기 웨이퍼의 로딩 및 언로딩 시 상기 로봇암과의 거리를 감지하면서 상기 제어부에 인가하는 로봇암감지센서를 포함하는 웨이퍼 티칭지그.It is installed on the sensor base and applied to the horizontality calculating unit by sensing the distance to the wafer together with the wafer detection sensor, and being disposed at a position corresponding to the opening of the wafer cassette, when loading and unloading the wafer, the A wafer teaching jig including a robot arm detection sensor applied to the control unit while sensing a distance to the robot arm.
  3. 제 2 항에 있어서,The method of claim 2,
    상기 로봇암은,The robot arm,
    로봇의 작동에 의해 상기 웨이퍼의 하부로 투입되면서 상기 웨이퍼감지센서 및 상기 로봇암감지센서에 의한 감지가 방지될 수 있도록 포크형태로 형성되며, 상기 로봇에 의해 상기 웨이퍼를 들어올린 상태로 상기 웨이퍼를 견인할 수 있도록 선단부에 걸림턱이 형성되는 포크부; 및It is formed in a fork shape so that detection by the wafer detection sensor and the robot arm detection sensor is prevented while being put into the lower portion of the wafer by the operation of the robot, and the wafer is lifted by the robot while the wafer is lifted. A fork portion having a locking jaw formed at the tip portion so as to be traction; And
    상기 포크부의 후단에 동일체로 형성되어 상기 로봇과의 연결부위를 이루고, 판상으로 형성되어 상기 로봇암감지센서에 의해 감지되는 센서감지부를 포함하는 웨이퍼 티칭지그.Wafer teaching jig including a sensor sensing unit formed in the same body at the rear end of the fork to form a connection portion with the robot, and formed in a plate shape and sensed by the robot arm sensing sensor.
  4. 제 2 항에 있어서,The method of claim 2,
    상기 제어부는,The control unit,
    상기 웨이퍼감지센서 및 상기 로봇암감지센서의 감지신호를 기반으로 통해 상기 웨이퍼와의 거리를 측정하여 상기 웨이퍼의 높낮이 레벨을 산출하면서 영점을 산출하는 영점 산출부;A zero point calculator configured to calculate a zero point while calculating a height level of the wafer by measuring a distance to the wafer based on the detection signal of the wafer detection sensor and the robot arm detection sensor;
    상기 로봇암감지센서의 감지신호를 통해 상기 웨이퍼의 하부로 이동하는 상기 로봇암과의 거리를 측정하여 상기 로봇암의 높낮이 레벨을 산출하는 로봇암위치감지부; 및A robot arm position detection unit configured to calculate a height level of the robot arm by measuring a distance to the robot arm moving to the lower portion of the wafer through a detection signal from the robot arm detection sensor; And
    상기 웨이퍼의 언로딩을 위하여 상기 로봇암이 상기 웨이퍼를 상승시킬 경우, 상기 웨이퍼의 상승위치를 추정 및 감지하고 추정데이터 및 감지데이터를 기반으로 상기 로봇암의 수평도를 산출하는 수평도 산출부를 포함하는 웨이퍼 티칭지그.When the robot arm raises the wafer for unloading of the wafer, it includes a horizontality calculator that estimates and detects the raised position of the wafer and calculates the horizontality of the robot arm based on the estimated data and detection data. Wafer teaching jig.
  5. 제 4 항에 있어서,The method of claim 4,
    상기 수평도 산출부는,The horizontality calculation unit,
    상기 영점 산출부 및 상기 로봇암위치감지부의 데이터를 기반으로 상기 웨이퍼의 상승위치를 추정하여 산출하는 위치추정부;A position estimating unit that estimates and calculates a rising position of the wafer based on data of the zero point calculation unit and the robot arm position detection unit;
    상기 로봇암이 상기 웨이퍼를 상승시킨 경우, 상기 웨이퍼감지센서 및 상기 로봇암감지센서를 통해 상기 웨이퍼 및 상기 로봇암의 상승위치를 측정하는 위치측정부; 및When the robot arm raises the wafer, a position measuring unit for measuring the raised position of the wafer and the robot arm through the wafer detection sensor and the robot arm detection sensor; And
    상기 위치추정부와 상기 위치측정부의 데이터를 비교하여 상기 로봇암의 수평도를 산출하는 비교부를 포함하는 웨이퍼 티칭지그.A wafer teaching jig including a comparison unit for comparing data of the position estimating unit and the position measuring unit to calculate a horizontal degree of the robot arm.
  6. 제 4 항에 있어서,The method of claim 4,
    상기 제어부는,The control unit,
    상기 수평도 산출부의 데이터를 기반으로 상기 로봇암의 수평도를 보정하는 보정부를 더 포함하는 웨이퍼 티칭지그.Wafer teaching jig further comprising a correction unit for correcting the horizontality of the robot arm based on the data of the horizontality calculation unit.
PCT/KR2019/011814 2019-03-04 2019-09-11 Wafer teaching jig WO2020179980A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201980093601.2A CN113519042B (en) 2019-03-04 2019-09-11 Wafer teaching clamp

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20190024868 2019-03-04
KR10-2019-0024868 2019-03-04
KR1020190108829A KR102063654B1 (en) 2019-03-04 2019-09-03 Wafer teaching jig
KR10-2019-0108829 2019-09-03

Publications (1)

Publication Number Publication Date
WO2020179980A1 true WO2020179980A1 (en) 2020-09-10

Family

ID=69154883

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/011814 WO2020179980A1 (en) 2019-03-04 2019-09-11 Wafer teaching jig

Country Status (3)

Country Link
KR (1) KR102063654B1 (en)
CN (1) CN113519042B (en)
WO (1) WO2020179980A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116613094A (en) * 2023-07-20 2023-08-18 合肥晶合集成电路股份有限公司 Wafer carrying control system and control method thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102584512B1 (en) * 2020-12-31 2023-10-05 세메스 주식회사 Buffer unit and method for storaging substrate type senseor for measuring of horizontal of a substrate support member provided on the atmosphere in which temperature changes are accompanied by
KR102394037B1 (en) * 2021-04-01 2022-05-06 주식회사 써치앤델브 Method for determining the location of the process wafer entering the wafer cassette using the testing wafer

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004241730A (en) * 2003-02-07 2004-08-26 Yaskawa Electric Corp Automatic teaching device and method for robot
US20050034288A1 (en) * 2001-09-07 2005-02-17 Masaru Adachi Wafer position teaching method and teaching jig
JP2008084938A (en) * 2006-09-26 2008-04-10 Nec Electronics Corp Method for teaching various setting values to substrate processing apparatus, teachingapparatus, and calibration jig thereof
KR20130128846A (en) * 2012-05-18 2013-11-27 현대중공업 주식회사 Performance test apparatus and method for hand of substrate transfer robot
EP2304769B1 (en) * 2009-04-09 2013-11-27 Aes Motomation GmbH Method for automatic measurement and for teaching-in of location positions of objects within a substrate processing system by means of sensor carriers and associated sensor carrier

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4285204B2 (en) * 2003-11-04 2009-06-24 株式会社安川電機 Wafer position teaching method and wafer transfer robot
KR20090064650A (en) * 2007-12-17 2009-06-22 주식회사 동부하이텍 Jig for teaching of wafer transfer robot
JP2015168012A (en) * 2014-03-04 2015-09-28 株式会社安川電機 Teaching jig, teaching system, and teaching method
KR101467551B1 (en) * 2014-08-20 2014-12-02 정병철 Teaching Jig for Swmiconductor Wafer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050034288A1 (en) * 2001-09-07 2005-02-17 Masaru Adachi Wafer position teaching method and teaching jig
JP2004241730A (en) * 2003-02-07 2004-08-26 Yaskawa Electric Corp Automatic teaching device and method for robot
JP2008084938A (en) * 2006-09-26 2008-04-10 Nec Electronics Corp Method for teaching various setting values to substrate processing apparatus, teachingapparatus, and calibration jig thereof
EP2304769B1 (en) * 2009-04-09 2013-11-27 Aes Motomation GmbH Method for automatic measurement and for teaching-in of location positions of objects within a substrate processing system by means of sensor carriers and associated sensor carrier
KR20130128846A (en) * 2012-05-18 2013-11-27 현대중공업 주식회사 Performance test apparatus and method for hand of substrate transfer robot

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116613094A (en) * 2023-07-20 2023-08-18 合肥晶合集成电路股份有限公司 Wafer carrying control system and control method thereof
CN116613094B (en) * 2023-07-20 2023-10-13 合肥晶合集成电路股份有限公司 Wafer carrying control system and control method thereof

Also Published As

Publication number Publication date
CN113519042B (en) 2024-03-15
CN113519042A (en) 2021-10-19
KR102063654B1 (en) 2020-01-09

Similar Documents

Publication Publication Date Title
WO2020179980A1 (en) Wafer teaching jig
WO2016080629A1 (en) Wafer loading apparatus of wafer polishing equipment and method for adjusting wafer loading position
WO2018105831A1 (en) Wafer carrier thickness measurement device
US7558645B2 (en) Overhead travelling carriage system
WO2018143506A1 (en) Transfer location-measuring test dummy used in semiconductor or display system field and precise transfer measuring method using transfer location-measuring test dummy used in semiconductor or display system field
WO2014081074A1 (en) Apparatus for measuring scale thickness of steel plate
WO2016018049A1 (en) Defect measuring device for wafers
WO2019054543A1 (en) Weighing device having position-adjustable load cell
JP4243937B2 (en) Method for detecting support position of substrate support pin, method for detecting tilt thereof, teaching apparatus therefor, and teaching jig
US20220130703A1 (en) Substrate treating apparatus and substrate treating method
WO2016085206A1 (en) Test handler
WO2020171350A1 (en) End effector measurement module and end effector monitoring device using same
WO2010140814A2 (en) Wafer probe station capable of actively controlling tilt of chuck and controlling method thereof
KR20170037031A (en) Method for dectecting the center of substrate, method for transporting a substrate, Transporting unit and apparatus for treating a substrate including the unit
JP4880200B2 (en) Semiconductor load port alignment equipment
WO2016173030A1 (en) Detecting installation device for liquid crystal display panel
KR20220116603A (en) Substrate transfer device and substrate transfer method
KR20230032035A (en) Transportion system for a cassette and method of auto teaching a position of the cassete
WO2022255802A1 (en) Auto teaching method and auto teaching system for transfer robot
JP2535667B2 (en) Handling mechanism
WO2012043995A2 (en) Wafer alignment-rear surface test device
KR101362673B1 (en) Electro static force measuring apparatus and electro static force measuring method
KR20230103841A (en) Arrangement jig for a side track buffer, side track buffer system havng the same and method of arranging the side track buffer using the same
WO2016117777A1 (en) Wafer transfer device
WO2021201478A1 (en) Apparatus for processing wafer and method for processing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19917618

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19917618

Country of ref document: EP

Kind code of ref document: A1