WO2022255783A1 - 콘크리트 펌프의 파이프 청소용 고무스폰지 - Google Patents

콘크리트 펌프의 파이프 청소용 고무스폰지 Download PDF

Info

Publication number
WO2022255783A1
WO2022255783A1 PCT/KR2022/007765 KR2022007765W WO2022255783A1 WO 2022255783 A1 WO2022255783 A1 WO 2022255783A1 KR 2022007765 W KR2022007765 W KR 2022007765W WO 2022255783 A1 WO2022255783 A1 WO 2022255783A1
Authority
WO
WIPO (PCT)
Prior art keywords
cleaning
pipe
rubber sponge
foam
concrete pump
Prior art date
Application number
PCT/KR2022/007765
Other languages
English (en)
French (fr)
Inventor
이성율
Original Assignee
이성율
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이성율 filed Critical 이성율
Publication of WO2022255783A1 publication Critical patent/WO2022255783A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B1/00Cleaning by methods involving the use of tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B9/00Cleaning hollow articles by methods or apparatus specially adapted thereto 
    • B08B9/02Cleaning pipes or tubes or systems of pipes or tubes
    • B08B9/027Cleaning the internal surfaces; Removal of blockages
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof

Definitions

  • the present invention relates to a rubber sponge for cleaning pipes of concrete pumps.
  • the concrete pump uses a rubber sponge to wipe off the concrete debris remaining inside the pipe after pumping.
  • a rubber sponge 10-20% thicker than the inner diameter of the pipe is pushed into the end of the pipe and vacuum is sucked out of the pump head, the rubber sponge is sucked in and the concrete debris in the pipe is wiped.
  • the rubber sponge used at this time is an open cell sponge made by foaming natural rubber under normal pressure. There are various shapes, but most round balls are used.
  • the reason why open-cell sponge is used is that when pressure is applied to the open-cell sponge, internal air escapes through the open-cell foam, so it is easy to reduce the diameter of the sponge ball and push it into the pipe with human grip and physical strength. No matter how low the hardness of closed cell sponge is, it is difficult to reduce the diameter of the sponge ball with grip and physical strength. , In this case, the airtightness between the sponge ball and the pipe is not high, so the cleaning efficiency inside the pipe is reduced.
  • natural rubber is foamed at atmospheric pressure to make it into a block shape, and then it is ground with a grinder to make a ball shape, so the loss of the material is 40 to 50%, which increases the cost and has a great adverse effect on the global environment.
  • the surface of the sponge ball has open cells exposed and the size is large, so the strength of each cell is weak because it has a network structure with a thin film of natural rubber. diameter is reduced by 1-2 mm. If the diameter of the ball is reduced by 5-6mm by repeating this 3-4 times, the airtightness between the ball and the inside of the pipe decreases, reducing the cleaning efficiency.
  • the present invention is to provide a rubber sponge for cleaning pipes of concrete pumps.
  • the present invention is a pipe-shaped body portion; A head portion formed on one side of the pipe shape and having a hemispherical or conical outer surface; And it is formed on the other side of the pipe shape, and provides a rubber sponge for cleaning the pipe of the concrete pump including a rear portion in which an opening communicating with the inside of the pipe shape is formed.
  • the main body part has an outer diameter that is 10 to 20% larger than the inner diameter of the pipe of the concrete pump, and may have a thickness of 5 to 30% compared to the outer diameter.
  • the head portion the inside of which is formed with a depression that communicates with the inside of the main body portion;
  • the inside may be filled with the rubber sponge.
  • the thickness of the rear portion may be formed thicker than the thickness of one side of the body portion.
  • the body portion may be formed thicker from one side to the other side.
  • a support portion may be formed on the rear portion in a radial shape, connected to the other end of the body portion, and preventing expansion of the rear portion.
  • the ratio of the length of the body part to the length of the head part may be 1:2 to 3:1.
  • the rubber sponge for cleaning the pipe of the concrete pump is a polymer containing an olefin block copolymer (OBC) having a DSC melting point of 100 ° C or higher and natural rubber or synthetic rubber; and a foam composition containing a liquid softener as an essential component.
  • OBC olefin block copolymer
  • the composition may contain 10 to 200 parts by weight of the natural rubber or the synthetic rubber based on 100 parts by weight of the olefin block copolymer.
  • the composition may contain 10 to 75 parts by weight of the liquid softener based on 100 parts by weight of the olefin block copolymer.
  • the composition further contains a crosslinking agent, a foaming agent, and one or more other additives selected from the group consisting of metal oxides, stearic acid, antioxidants, zinc stearates, titanium dioxide, crosslinking aids, pigments, and fillers it could be
  • the composition may further include organic or inorganic particles having a diameter of 0.3 to 2 mm.
  • the rubber sponge for cleaning the pipe of the concrete pump according to the present invention has a high cleaning efficiency when cleaning the pipe of the concrete pump as it is manufactured to increase the friction area with the pipe wall compared to the sponge for cleaning the pipe of the concrete pump manufactured in the standard spherical shape.
  • the rubber sponge for cleaning the pipe of the concrete pump of the present invention is made of a sponge having independent cells, it is easy to remove the concrete after cleaning the pipe of the concrete pump, and thus, it is possible to prevent the shrinkage of the sponge, thereby improving the durability of the concrete pump pipe cleaning A rubber sponge may be provided.
  • FIG. 1 shows a cross section of a rubber sponge according to an embodiment of the present invention.
  • Figure 2 shows a cross section of a rubber sponge according to an embodiment of the present invention.
  • Figure 3 shows a cross-section of a rubber sponge without depressions according to an embodiment of the present invention.
  • Figure 4 shows a cross-section of a rubber sponge with a thick lower body according to an embodiment of the present invention.
  • Figure 5 shows a cross-section of a rubber sponge with a thick lower body according to an embodiment of the present invention.
  • Figure 6 shows a cross section of a rubber sponge with a thick lower body according to an embodiment of the present invention.
  • FIG. 7 shows a cross section of a rubber sponge formed in a conical head part according to an embodiment of the present invention.
  • Figure 8 shows the lower surface of the rubber sponge according to an embodiment of the present invention.
  • 'and/or' includes a combination of a plurality of recited items or any one of a plurality of recited items.
  • 'A or B' may include 'A', 'B', or 'both A and B'.
  • the present invention body portion of the pipe shape A head portion formed on one side of the pipe shape and having a hemispherical or conical outer surface; And it is formed on the other side of the pipe shape, and relates to a rubber sponge for cleaning the pipe of a concrete pump including a rear portion in which an opening communicating with the inside of the pipe shape is formed.
  • the body part 100 is manufactured in a pipe shape, and the outer circumferential surface rubs against the inner circumferential surface of the pipe of the concrete pump to clean (see FIG. 1).
  • the pipe cleaning sponge of the existing concrete pump as it is manufactured in a spherical shape, only the circumferential portion rubs against the inner circumferential surface of the pipe.
  • the outer diameter of the spherical sponge is made 10 to 20% larger than the inner diameter of the pipe, but even in this case, the portion in contact with the inner circumferential surface of the pipe is only a part of the whole.
  • the main body part 100 is manufactured in a pipe shape, and since the outer circumferential surface of the main body part is in close contact with the inner circumferential surface of the pipe, it can have a wide frictional area and thus have high cleaning efficiency. have.
  • the body part 100 may have a certain thickness in order to clean the inner circumferential surface of the pipe.
  • the pipe of the concrete pump may have various inner diameters depending on the transported capacity, but in the case of a concrete pump truck (CPT), it is generally known to have an inner diameter of 90 to 200 mm.
  • CPT concrete pump truck
  • the rubber sponge for cleaning the pipe of the present invention it may have an outer diameter that is 10 to 20% larger than the inner diameter of the pipe so that it can be cleaned by rubbing well with the inner diameter of the pipe.
  • the outer diameter of the rubber sponge is larger than 10% of the inner diameter of the pipe, the amount of pressurization on the inner circumferential surface of the pipe may be reduced, making cleaning difficult, and if larger than 20%, it may be difficult to insert and move the rubber sponge. have.
  • the body portion 100 since it is manufactured in the shape of a pipe with an empty inside, it is preferable to have a constant thickness.
  • the body portion may have a thickness of 5 to 30% compared to the outer diameter of the body portion.
  • the main body may be ruptured during transportation for washing, and if the thickness exceeds 30%, the amount of pressurization inside the main body is reduced and the washing efficiency is reduced.
  • the rubber sponge when the water or pressurized fluid is injected, the rubber sponge may be moved by pressure.
  • the water or fluid for pressurization may be injected into the main body, and the inside of the main body may be pressed outward and in one direction. Pressing in one direction may cause movement of the rubber sponge, and pressing in the outward direction may expand the main body so that the outer circumferential surface of the main body is in close contact with the inner circumferential surface of the pipe.
  • the rubber sponge of the present invention can press the outer circumferential surface of the pipe more strongly than the conventional spherical sponge, thereby increasing the efficiency of washing.
  • a head portion 200 having a hemispherical or conical outer surface may be formed on one side of the main body portion 100 . Since the head part 200 is manufactured in a conical shape (see FIG. 7) or a hemispherical shape (see FIG. 1) as described above, it is possible to easily insert the rubber sponge into the inlet of the pipe. In addition, such a shape of the head can facilitate the advancement of the rubber sponge during washing.
  • the head portion may be manufactured in a hemispherical or conical shape.
  • the head portion may be manufactured in a shape that can be easily inserted into the pipe, and thus may have a hemispherical or conical shape.
  • the cross section in the longitudinal direction of the head portion may be semicircular, elliptical, triangular, or trapezoidal (in this case, the longitudinal direction means a direction from one end to the other end of the main body). In the case of having such a cross section, since the upper end is made smaller in diameter than the lower end, it can be easily inserted into the pipe.
  • the inside of the head part may be formed with a depression 210 communicating with the inside of the main body part, or the inside may be filled with the rubber sponge.
  • a recessed portion communicating with the inside of the body portion may be formed.
  • the head part 200 is manufactured to have the same thickness as the body part 100, and accordingly, the head part 100 has a shape in which one side of the body part is extended. It can be manufactured as (see Fig. 1).
  • the water or the pressurized fluid may be injected into the head part, that is, into the recessed part 210, and through this, the contact surface with the inside of the pipe may be maximized.
  • the thickness of the head part is made thin, it is vulnerable to breakage and the shape of the head part may be deformed when a foreign substance having a large size is present during washing, and thus the washing power may be reduced.
  • the inside of the head portion may be filled with a rubber sponge (see FIG. 3).
  • the head portion when the recessed portion 210 is formed inside the head portion 200, the head portion may be deformed. Therefore, when there are many foreign substances inside the pipe, the inside of the head portion may be filled with a rubber sponge.
  • the rubber sponge since it is a component constituting the main body and the head, the rear surface of the head can be made flat based on the part competing with the main body. That is, in the case of the inner space of the main body, only the portion where the main body and the head are coupled may be formed, and the inside of the head may be filled with the rubber sponge. Through this, deformation during movement of the head unit can be minimized.
  • the shape of the inside of the head part 200 can be selected and used according to the degree of contamination inside the pipe for transporting concrete to be cleaned, the amount of remaining concrete, and the degree of hardening of the remaining concrete. That is, when there are large-sized foreign substances inside the pipe or there is a lot of contamination, a rubber sponge having a head filled with the inside can be used, and when there is little contamination, a rubber sponge having a head portion with a recessed portion inside can be used. In addition, when cleaning using the rubber sponge, it is also possible to use a rubber sponge having a head portion filled with the inside first for primary washing, and then additionally using a rubber sponge having a recessed portion therein.
  • the thickness of the rear part 300 may be formed thicker than the thickness of one side of the body part (see FIGS. 4 to 6).
  • the main body In the case of the main body, it comes into contact with the inside of the pipe and cleans the inner circumferential surface of the pipe. At this time, most of the cleaning is performed on one side of the main body, that is, the front surface where the head is formed, but in the case of small-sized contaminants or contaminants strongly bonded to the inner surface of the pipe, they can be sequentially washed while moving to the rear surface of the main body.
  • the rear side of the main body that is, the other side
  • the rear side since contaminants that are smaller in size or not washed from the front side must be washed, it is preferable that the rear side has stronger cleaning power than the front side.
  • the pressing force on the rear side can be further increased by making the thickness of the rear side thicker than that of one side.
  • the thickness of the rear part 300 is made thicker than the thickness of the one side, the pressure caused by the water or the pressurized fluid is concentrated on the rear part, so the rear part will be in close contact with the inner circumferential surface of the pipe with a stronger pressure than one side can Through this, since one side of the main body, that is, the front part adheres with low pressure, large-sized contaminants can easily enter, and in the case of the rear part, since it adheres with high pressure, it can have strong cleaning power.
  • the rear part 300 may have a support part 310 formed in a radial shape, connected to the other end of the body part, and preventing expansion of the rear part. After the cleaning using the rubber sponge is completed, the rubber sponge is removed from the outside When released into the inside can still be pressurized by the water or fluid for pressurization. At this time, when the rubber sponge is discharged as it is, the rear part 300 may be pressed and ruptured. It is known that such rupture occurs most frequently in the rear part communicating with the outside, and in order to prevent this, in the present invention, it is preferable to install a support part 310 to prevent expansion of the rear part (see FIG. 8).
  • the support portion is formed on the rear portion, and is preferably radially formed to prevent expansion of the rear portion.
  • the support part 310 may be integrally formed using a rubber sponge in the same way as the main body part 100, but a separately formed support part may be bonded to the rear part and used, and metal, polymer resin, carbon fiber, and synthetic materials may be used. It is also possible to use a support part made of fiber or the like by bonding it to the rear part. In addition, in the case of such a support unit, even when the rubber sponge is inside the pipe, excessive expansion of the rubber sponge can be prevented, and through this, when excessive pressure is applied to the inside of the pipe, rupture of the rubber sponge can be prevented.
  • the ratio of the length of the body part 100 to the length of the head part 200 may be 1:2 to 3:1. As the length of the head part becomes longer, it may be easier to move within the pipe, but the length of the main body becomes relatively shorter, and thus the cleaning power may decrease. In addition, when the length of the main body is increased, the washing power may be increased, but friction may also be increased, so that a higher pressure may be required to move the rubber sponge. Therefore, it is preferable that the ratio of the length of the body part to the length of the head part is 1:2 to 3:1. When the length of the head part becomes longer as the ratio of the lengths is less than 1:2, the length of the main body part may decrease and the cleaning power may decrease, and when the ratio exceeds 3:1, it may be difficult to move within the pipe.
  • the rubber sponge may have a total length of 100 to 500 mm.
  • the total length of such a rubber sponge may vary depending on the diameter of a commonly used pipe.
  • the cleaning power inside the pipe may be reduced due to the short length, and when it exceeds 500 mm, handling is difficult due to the length of the rubber sponge and high pressure is required for movement, so it may be damaged during washing.
  • the angle (a in FIG. 2) formed by connecting the outer circumferential surfaces of both sides of the lower end around the top of the rubber sponge may be 20 to 90 ° (see FIG. 2).
  • the angle is less than 20 °, the length of the rubber sponge is excessively long, making it difficult to move inside the pipe, and when the angle exceeds 90 °, the length of the rubber sponge is shortened, resulting in poor cleaning efficiency.
  • the rubber sponge for cleaning the pipe of the concrete pump is a polymer containing an olefin block copolymer (OBC) having a DSC melting point of 100 ° C or higher and natural rubber or synthetic rubber; and a foam composition containing a liquid softener as an essential component.
  • OBC olefin block copolymer
  • the produced foam has the following characteristics.
  • low-hardness closed-cell foam in order to make low-hardness closed-cell foam, it can be made by cross-linking and foaming natural rubber or various synthetic rubbers, but the shrinkage rate is too large even at room temperature after foam production, making it practically impossible. It can be made by cross-linking and foaming, but this also has a high shrinkage rate under high temperatures in summer, which is difficult in practical use. It is ideal to make low-hardness foam with thermoplastic rubber (TPR) such as SBS, SEBS, SEPS, 1,2-polybutadiene, etc., because it has good elasticity and low shrinkage rate. It is virtually impossible to make.
  • TPR thermoplastic rubber
  • the inventors of the present invention intend to provide a foam composition for a concrete pump comprising an olefin block copolymer (OBC) having a DSC melting point of 100° C. or higher, natural rubber or synthetic rubber, and a liquid softener as essential components.
  • OBC olefin block copolymer
  • the olefin/ ⁇ -olefin copolymer used in the concrete pump cleaning foam is an olefin block copolymer (OBC).
  • OBC olefin block copolymer
  • the olefin block copolymer has the advantage of having excellent heat resistance when making a concrete pump foam by having a melting point temperature of at least 100 ° C., and when the melting point is less than the above range, the heat resistance of the foam is insufficient, resulting in high temperature during outdoor storage in summer Direct sunlight can cause the foam to shrink and lose its function as a concrete cleaning foam.
  • the olefin block copolymer is a multi-block copolymer. They are preferably polymers comprising two or more chemically distinct regions or segments (referred to as "blocks") joined in a linear fashion, i.e. end-to-end with respect to polymerized ethylenic or propylene-based functional groups rather than in a pendent or graft fashion. -A polymer containing chemically distinct units that are joined end-to-end.
  • the olefin block copolymer means an ethylene/ ⁇ -olefin multi-block copolymer or a propylene/ ⁇ -olefin multi-block copolymer.
  • the olefin block copolymer includes ethylene or propylene in the form of polymerization of one or more copolymerizable ⁇ -olefin comonomers, and a multi-block copolymer having a plurality of blocks or segments of two or more polymerized monomer units having different chemical or physical properties Characterized by a chain.
  • ⁇ -olefin comonomer examples include propylene, butene, 3-methyl-1-butene, 3,3-dimethyl-1-butene, pentene, pentene with one or more methyl, ethyl or propyl substituents, one or more methyl, Hexene with ethyl or propyl substituents, heptene with one or more methyl, ethyl or propyl substituents, octene with one or more methyl, ethyl or propyl substituents, nonene with one or more methyl, ethyl or propyl substituents, ethyl, methyl or dimethyl substituted decene, dodecene, styrene, and the like.
  • Particularly desired ⁇ -olefin comonomers are propylene, butene (eg 1-butene), hexene and octene (eg 1-octene or 2-octene).
  • the ethylene content of such copolymers may be from about 60 mole % to about 99.5 mole %, in some embodiments from about 80 mole % to about 99 mole %, and in some embodiments from about 85 mole % to about 98 mole %.
  • the ⁇ -olefin content may range from about 0.5 mole % to about 40 mole %, in some embodiments from about 1 mole % to about 20 mole %, and in some embodiments from about 2 mole % to about 15 mole %.
  • the distribution of ⁇ -olefin comonomers is typically random and uniform over the different molecular weight fractions forming ethylene copolymers.
  • the multi-block copolymer can be represented by the formula:
  • n is an integer greater than or equal to 1, preferably greater than 1, such as 2, 3, 4, 5, 10, 15, 20, 30, 40, 50, 60, 70, 80, 90, 100, or more ;
  • A represents a hard block or segment;
  • B represents a soft block or segment.
  • a and B are connected in a linear fashion rather than a branched or star fashion.
  • Hard segments refer to blocks of polymerized units in which the ethylene or propylene is present in an amount greater than or equal to 95 weight percent in some embodiments, and greater than or equal to 98 weight percent in other embodiments.
  • the comonomer content in the hard segments is in some embodiments no greater than 5 weight percent of the total weight of the hard segments, and in other embodiments no greater than 2 weight percent.
  • the hard segments consist all or substantially all of ethylene or propylene.
  • "soft" segments are polymerized units having a comonomer content of at least 5 weight percent of the total weight of the soft segment in some embodiments, and at least 8 weight percent, at least 10 weight percent, or at least 15 weight percent in various other embodiments. means block.
  • the comonomer content in the soft segment is 20% or more, 25% or more, 30% or more, 35% or more, 40% or more, 45% or more, 50% or more, in various other embodiments. or more, or 60% by weight or more.
  • the olefin block copolymer may have a density of 0.85 to 0.91 g/cc, or 0.86 to 0.88 g/cc.
  • the olefin block copolymer has a melt index (MI) of 0.01 to 30 g/10 min, or 0.01 to 20 g/10 min, or 0.1 as measured by ASTM D1238 (190° C., 2.16 kg). to 10 g/10 min, or 0.1 to 5.0 g/10 min, or 0.1 to 1.0 g/10 min, or 0.3 to 0.6 g/10 min.
  • MI melt index
  • the olefin block copolymer may have a polydispersity index (PDI) of 1.7 to 3.5, or 1.8 to 3, or 1.8 to 2.5, or 1.8 to 2.2 when produced in a continuous process.
  • PDI polydispersity index
  • the olefin block copolymer may have a PDI of 1.0 to 3.5, alternatively 1.3 to 3, alternatively 1.4 to 2.5, alternatively 1.4 to 2.
  • the olefin block copolymer may contain 5 to 30% by weight, or 10 to 25% by weight, or 11 to 20% by weight of hard segments.
  • the hard segments may contain from 0.0 to 0.9 mole % monomers derived from comonomers.
  • the olefin block copolymer may also contain 70 to 95 weight percent, or 75 to 90 weight percent, or 80 to 89 weight percent of soft segments.
  • the soft segments may contain less than 15 mol %, or 9 to 14.9 mol % units derived from comonomers.
  • the comonomer may be butene or octene.
  • the olefin block copolymer Since the olefin block copolymer has a chain structure in which blocks of hard segments and soft segments are alternately connected, it has characteristics of combining the rigidity of the hard segment and the flexibility of the soft segment. Therefore, it has higher heat resistance than ethylene random copolymers of similar hardness and can have elastic recovery properties equal to or better than those of styrene-based or vulcanized olefin-based thermoplastic elastomers. In addition, it does not cause dust problems and environmental problems, and is economical in terms of price compared to styrene-based elastomer mixtures.
  • Ethylene copolymers or polyolefin elastomers which can be additionally used as raw materials for the above polymers, are low-hardness resins themselves, and are therefore preferable because they facilitate the production of low-hardness products, which are the object of the present invention.
  • the ethylene copolymer comprises i) ethylene and ii) C3-C10 alpha monoolefins, C1-C12 alkylesters of unsaturated C3-C20 monocarboxylic acids, unsaturated C3-C20 mono- or dicarboxylic acids, anhydrides of unsaturated C4-C8 dicarboxylic acids and saturated It may be a copolymer of one or more ethylenically unsaturated monomers selected from the group consisting of vinyl esters of C2-C18 carboxylic acids.
  • ethylene vinyl acetate EVA
  • EBA ethylene butyl acrylate
  • EMA ethylene methyl acrylate
  • Ethylene Ethylacrylate Ethylene Ethylacrylate, EEA
  • EMMA Ethylene Methylmethacrylate
  • EB-Co Ethylene Butene Copolymer
  • EO-Co Ethylene Octene Copolymer
  • the polymer may be a polyolefin elastomer.
  • the polyolefin elastomer is prepared using one or more metallocene catalysts.
  • the polyolefin elastomer is an ethylene-based copolymer or a propylene-based copolymer.
  • elastomeric resins are also commercially available, and non-limiting examples of ethylene-based polyolefin elastomers include ENGAGE available from Dow Chemical Company, EXACT from Exxon, Mitsui Chemicals ) from the trade name TAFMER.
  • Non-limiting examples of propylene-based polyolefin elastomers include THERMORUNTM and ZELASTM from Mitsubishi Chemical Corporation, ADFLEXTM and SOFTELLTM from LyondellBasell, VERSIFYTM and ExxonMobil from Dow Chemical Company. and the trade name VISTAMAXXTM from Dow Chemical Company.
  • the polymer further includes natural rubber or synthetic rubber together with the olefin block copolymer. Since the elasticity of the foam is improved by adding natural rubber or synthetic rubber to the polymer component, there is an effect of improving the adhesion between the foam and the pipe, thereby improving the cleaning power.
  • the synthetic rubber is styrene butadiene rubber (SBR), butadiene rubber (BR), isoprene rubber (IR), nitrile rubber (NBR), chloroprene rubber (CR), chlorosulfonated polyethylene rubber (CSM), ethylene-propylene rubber (EPM) ), ethylene-propylene-diene rubber (EPDM), etc. may be used alone or in combination of two or more.
  • the synthetic rubber is a thermoplastic rubber (TPR) such as styrene butadiene styrene (SBS), styrene ethylene butylene styrene (SEBS), styrene ethylene propylene styrene (SEPS), 1,2-polybutadiene (1,2-polybutadiene) alone Or two or more may be used in combination.
  • TPR thermoplastic rubber
  • SBS styrene butadiene styrene
  • SEBS styrene ethylene butylene styrene
  • SEPS styrene ethylene propylene styrene
  • 1,2-polybutadiene 1,2-polybutadiene
  • the natural rubber or the synthetic rubber may be contained in an amount of 10 to 200 parts by weight, preferably 30 to 150 parts by weight, and more preferably 40 to 130 parts by weight, based on 100 parts by weight of the olefin block copolymer.
  • the natural rubber or the synthetic rubber is less than the above range, the effect is insignificant, and when the above range is exceeded, the shrinkage rate of the foam increases, shrinking during distribution and losing the value of the product, or decreasing during use and the cleaning effect gradually deteriorates, so the number of times of repeated use can be reduced
  • Foam for concrete pump cleaning includes a liquid softener in a polymer containing an olefin block copolymer and natural rubber or synthetic rubber.
  • the liquid softener serves to enable a function as a foam to clean the pump by reducing the hardness of the foam.
  • Examples of the liquid softener include process oil for rubber, liquid polybutene, and silicone oil.
  • the liquid softener may be contained in an amount of 10 to 75 parts by weight, preferably 20 to 70 parts by weight, and more preferably 40 to 60 parts by weight, based on 100 parts by weight of the olefin block copolymer.
  • the liquid softener is less than the above range, the hardness of the foam is high, so it may be impossible to put it into the pipe during cleaning.
  • the strength of the foam is so low that it can easily tear when cleaning.
  • the foam composition for cleaning a concrete pump according to an embodiment of the present invention includes at least one selected from the group consisting of a crosslinking agent, a foaming agent, and metal oxides, stearic acid, antioxidants, zinc stearate, titanium dioxide, crosslinking aids, pigments, and fillers. Other additives may be further included.
  • foaming agents also known as foaming agents or expanding agents
  • gaseous materials volatile liquids and chemical agents that decompose into gases and other by-products
  • foaming agent is added to prepare a foam, and an azo-based compound having a decomposition temperature of 150 to 210 ° C is used, and it is preferable to use 0.1 to 6 parts by weight based on 100 parts by weight of the polymer. If the amount used is less than 0.1 parts by weight, the specific gravity may be greatly increased and the hardness may be excessively high, and if the amount exceeds 6 parts by weight, the specific gravity may fall to less than 0.10, and the strength of the foam may be reduced. In addition, if the decomposition temperature is less than 150 ° C., premature foaming occurs during compound preparation, and if it exceeds 210 ° C., productivity may decrease because the molding time of the foam body is 15 minutes or more.
  • Blowing agents include chemical blowing agents and physical blowing agents, representative blowing agents being nitrogen, carbon dioxide, air, methyl chloride, ethyl chloride, pentane, isopentane, perfluoromethane, chlorotrifluoromethane, dichlorodifluoromethane, trichloro Fluoromethane, perfluoroethane, 1-chloro-1,1-difluoroethane, chloropentafluoroethane, dichlorotetrafluoroethane, trichlorotrifluoroethane, perfluoropropane, chloroheptafluoropropane , dichlorohexafluoropropane, perfluorobutane, chlorononafluorobutane, perfluorocyclobutane, azodicarbonamide (ADCA), azodiisobutyronitrile, benzenesulfonehydrazide, 4,4-oxybenzen
  • the crosslinking agent is 0.02 to 4 parts by weight of an organic peroxide crosslinking agent capable of sufficiently collecting the decomposition gas generated from the foaming agent and imparting high-temperature viscoelasticity to the resin, based on 100 parts by weight of the polymer, preferably 0.02 to 1.5 parts by weight, More preferably, it is preferable to use 0.05 to 1.0 parts by weight, and they have a half-life temperature of 130 to 180 ° C. for 1 minute.
  • the amount is less than 0.02 parts by weight, the high temperature viscoelasticity of the resin cannot be maintained during foam decomposition due to insufficient crosslinking, and if it exceeds 1.5 parts by weight, not only the hardness increases rapidly due to overcrosslinking, but also the phenomenon of foam bursting and cell walls of the foam This cracking and continuous bubble formation may occur.
  • a crosslinking agent include t-butylperoxyisopropyl carbonate, t-butylperoxyliurylate, t-butylperoxyacetate, and di-t-butylperoxyphthalate as organic peroxide crosslinking agents widely used in rubber compounding.
  • t-dibutylpooxymaleic acid cyclohexanone peroxide, t-butylcumyl peroxide, t-butylhydroperoxide, t-butylperoxybenzoate, dicumylperoxide, 1,3-bis(t-butylper Oxyisopropyl) benzene, methyl ethyl ketone peroxide, 2,5-dimethyl-2,5-di (benzoyloxy) hexane, 2,5-dimethyl-2,5-di (t-butylperoxy) hexane, di -t-butyl peroxide, 2,5-dimethyl-2,5-(t-butylperoxy)-3-hexane, n-butyl-4,4-bis(t-butylperoxy)valerate, a, a'-bis(t-butylperoxy)diisopropylbenzene and the like
  • the other additives include metal oxides, stearic acid, antioxidants, zinc stearates, titanium dioxide, and crosslinking aids commonly used in the manufacture of foams to improve processing characteristics and improve physical properties of the foam. It is also possible to use various pigments considering the color.
  • the additive may be added in an amount of 4 to 15 parts by weight based on 100 parts by weight of the polymer.
  • As the metal oxide zinc oxide, titanium oxide, cadmium oxide, magnesium oxide, mercury oxide, tin oxide, lead oxide, calcium oxide, etc.
  • TAC triaryl cyanurate
  • Stearic acid and zinc stearate form fine and uniform foam cells, facilitate demolding during foam molding, and may be used in an amount of 1 to 4 parts by weight based on 100 parts by weight of the polymer.
  • As antioxidants sonnoc, BHT (butylated hydroxy toluene), sonnox 1076 (sonnox 1076, octadecyl 3,5-di-tert-butylhydroxy hydrocinnamate), etc. are used, with respect to 100 parts by weight of the polymer Usually 0.25 to 2 parts by weight can be used. Titanium dioxide is used as a white pigment and has the same function as the metal oxide mentioned above, and can be used in an amount of 2 to 5 parts by weight.
  • Fillers that may be included in the composition serve to lower the cost of the composition.
  • Types of the filler include silica (SiO 2 ), MgCO 3 , CaCO 3 , talc, Al(OH) 3 , Mg(OH) 2 , and the like, and are generally 10 to 50 parts by weight based on 100 parts by weight of the polymer. can be used The filler may be used as an abrasive to increase the cleaning power of the foam.
  • a concrete pump cleaning foam includes a polymer foam formed by foaming an olefin block copolymer (OBC) having a DSC melting point of 100° C. or higher and a polymer containing natural rubber or synthetic rubber.
  • the polymer foam includes a plurality of foam cells. The volume occupied by closed cells out of the total volume of the foamed cells is 70% or more.
  • the polymer foam is a cross-linked (partially cross-linked or fully cross-linked) low-density polymer that can be compressed by an external force and has a property of recovering its original volume when the external force is removed. Therefore, when the concrete pump cleaning foam is pushed into one end of the pipe and vacuumed from the other side, the concrete pump cleaning foam is compressed, introduced, and expanded again, and the concrete residue remaining inside the pipe is removed by the expanded foam. As it is pushed out, the inside of the pipe is cleaned.
  • the expanded concrete pump cleaning foam has a rough surface and has the effect of wiping the inner surface of the pipe of the concrete pump like a scrubber.
  • the concrete pump cleaning foam according to one embodiment of the present invention is generally characterized by having the following characteristics.
  • the foam for washing the concrete pump is generally relatively low in density, and may be 0.30 g/cc or less.
  • the density of the concrete pump cleaning foam may be 0.05 to 0.30 g/cc, preferably 0.05 to 0.25 g/cc, and more preferably 0.05 to 0.20 g/cc. Even more preferably, it may be 0.10 to 0.2 g/cc.
  • the strength of the foam is weak and may be torn, and above the above range, the softness of the foam may not be sufficient to clean the pipe of a concrete pump as a closed-cell foam.
  • the foam for washing the concrete pump has a hardness of a certain level or more in order to produce an effect of washing power.
  • the appropriate hardness range of the foam for cleaning the concrete pump has a hardness of 10 to 40 Shore 00, preferably a hardness of 15 to 35. If the hardness is too low, the adhesion between the foam and the pipe may decrease and the cleaning power may decrease.
  • the resulting concrete pump cleaning foam generally has a relatively small average cell size, typically about 2 to 3 mm. Average cell size can be measured according to, for example, ASTM D3576-77.
  • the concrete pump cleaning foam generally has a cell size of about 1 to 4 mm. If the diameter is smaller than 1 mm, the scouring effect is reduced, and if the diameter is larger than 4 mm, the adhesion between the foam and the inner surface of the pipe is reduced, resulting in a reduced cleaning effect. It is best to preferably have an average cell size of 2 to 3 mm. It is preferable that 90% or more of the number of cells have a size distribution of 1-4 mm.
  • the resulting concrete pump cleaning foam may generally have a large amount of closed cells and a small amount of open cells.
  • the relative amount of closed cells can be measured according to, for example, ASTM D2856-A.
  • the foam cells of the concrete pump cleaning foam may be mostly composed of independent cells rather than open cells, and for example, the foam cells of the concrete pump cleaning foam (closed cells + open cells) ) may consist of closed cells at least about 70%, preferably at least about 80%, and more preferably at least about 85% of the volume of the cell.
  • the closed cells among the foamed cells may have a volume of 90% or less, 95% or less, 98% or less, 99% or less, 99.5% or less, or 100% or less, depending on the foaming process.
  • a concrete pump cleaning foam having mostly open-cell foam cells such as polyurethane foam, urea foam, or latex foam
  • the air inside the foam cells escapes as it is pressed. can go out Therefore, when the foam for cleaning the concrete pump is put into the pipe of the concrete pump, the cleaning effect may be reduced due to less tightness.
  • closed cells are exposed on the surface of the concrete pump cleaning foam.
  • a skin layer with a certain thickness may exist on the surface of the concrete pump cleaning foam manufactured by the same method as the foaming process in the mold. This skin layer weakens the friction force between the foam and the pipe, so the scrubber effect is weakened. It is desirable to remove As a result, closed cells are exposed on the surface of the concrete pump cleaning foam.
  • the surface exposed to the closed cells may occupy 70% or more, preferably 85% or more. In the above range or more, the cleaning foam may be smoothly transported in the pipe.
  • the concrete pump cleaning foam may be made by foaming a polymer.
  • Appropriate raw materials for producing concrete pump washing foam by foam processing may further include a crosslinking agent for foam processing, a foaming agent, and other additives such as fillers or pigments in addition to the basic polymer.
  • Raw materials for preparing the concrete pump cleaning foam are mixed in a kneader such as a kneader or a Banbury mixer, and sheeted or pelletized using a roll mill.
  • the mold is opened and foamed or injected in an injection foamer equipped with a mold.
  • a specimen in the form of a foam (foam) in a manner such as opening a mold and foaming.
  • Specimens of various shapes such as hexahedral, cylindrical, spherical and other shapes can be obtained through the shape of the mold and subsequent processing.
  • the polymer foam may have a shape that can adhere to the inner diameter of the pipe of the concrete pump.
  • the size of the foam for cleaning the concrete pump may have a size slightly larger than the inner diameter of the pipe for cleaning the pipe, and although it depends on the size of the pipe, it usually has a diameter of 50 to 300 mm, for example, 150 to 200 mm. and may have a spherical or cylindrical shape.
  • the rubber sponge for cleaning the pipe of the concrete pump may be manufactured by the following method. First, a polymer containing an olefin block copolymer (OBC) having a DSC melting point of 100° C. or higher and natural rubber or synthetic rubber; liquid emollients; a crosslinking agent, a foaming agent, and at least one other additive selected from the group consisting of metal oxides, stearic acid, antioxidants, zinc stearates, titanium dioxide, crosslinking aids, and pigments; and organic or inorganic fine particles having a diameter of 0.3 to 2 mm.
  • OBC olefin block copolymer
  • the organic or inorganic fine particles serve as nuclei to create bubbles.
  • Types of the organic or inorganic fine particles include those obtained by freezing and pulverizing plastics with liquid nitrogen, etc., sand, silica sand, etc. Among them, pulverized plastics are expensive and sand is weak in strength, so it is broken during the mixing process. Silica sand is preferred.
  • the size of the open cell may be determined according to the size of the organic or inorganic fine particles.
  • the mixture is put into a mold and pressurized at 150 to 200° C. for 10 to 15 minutes to form a polymer foam.
  • the density of the polymer foam formed by the above method may be 0.3 g/cc or less.
  • the average diameter of the closed cells may be 1 to 4 mm, and the volume of the closed cells may be 70% or more of the volume of the entire foam cell.
  • foaming After foaming, grind the foam surface with a grinder to expose closed cells to the surface. Immediately after foaming, a skin layer having a certain thickness may be formed on the surface of the cleaning foam. If there is a skin layer on the surface, the frictional force between the foam and the pipe is weakened and the effect of the scrubber is weakened, so it is preferable to remove the skin layer on the surface of the foam for cleaning through grinding.
  • the inside of the rubber sponge for cleaning the pipe of the concrete pump may be molded.
  • the pipe shape of the rubber sponge may be molded at the same time, but it may be manufactured without molding and then processed into a pipe shape by removing the inside.
  • the above-described closed-cell cleaning foam can be sufficiently reused by cleaning, brushing off the concrete adhered to the surface of the foam coming out through the pipe with a brush, and simply washing with water.
  • the rubber sponge according to the present invention can be reused until the cleaning power decreases due to the decrease in diameter due to abrasion, and since it can be reused more than 20 times, it is much cheaper in terms of cost than conventional open-cell foam.
  • OBC-1 Ethylene Octene Copolymer (density 0.866 g/cm 3 , MI 15, melting point: 118° C.)
  • OBC-2 Ethylene Octene Copolymer (density 0.857 g/cm 3 , MI 20, melting point: 95° C.)
  • Ethylene Copolymer-1 Ethylene Vinyl Acetate Copolymer (VA 33% by weight, MI 3.0)
  • Ethylene Copolymer-2 Ethylene Vinyl Acetate Copolymer (VA 28% by weight, MI 3.0)
  • Polyolefin Elastomer-1 Ethylene Octene Copolymer (density 0.865 g/cm3, MI 3.0, melting point 60°C)
  • Synthetic Rubber-1 Styrene Butadiene Rubber (SBR 1502)
  • Synthetic Rubber-2 Styrene Ethylene Butylene Styrene Rubber (Styrene 20% by weight)
  • Process Oil-1 Paraffinic process oil
  • the raw materials of 1 to 8 were mixed in the ratios of Tables 1 and 2 below, and then the physical properties and availability of the rubber sponge for cleaning were investigated through the following test methods using these materials (Tables 1 to 8 below). Numbers in 2 indicate parts by weight of each raw material).
  • Comparative Example 1 Comparative Example 2 Comparative Example 3 Comparative Example 4 Comparative Example 5 Comparative Example 6 Comparative Example 7 Comparative Example 8 Comparative Example 9 Comparative Example 10 commercially available urethane foam Commercially available natural rubber foam OBC-1 OBC-2 Ethylene Copolymer-1 100 Ethylene Copolymer-2 100 Polyolefin Elastomer-1 100 Synthetic Rubber-1 100 30 Synthetic Rubber-2 100 100 100 70 Process Oil-1 50 30 Stearic Acid 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 Zinc Oxide 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 Dicumyl Peroxide 0.8 0.8 2.0 0.8 0.8 0.8 0.8 0.8 0.8 0.8 Azodicarbonamide 4.0 4.5 4.0 40 7.5 4.0 4.0
  • the open cell ratio was measured according to the measurement test method of ASTM D2856-A.
  • the balls with a diameter of 170 mm made in the shrinkage rate section were pushed to the end of the pipe of the concrete pump with an inner diameter of 150 mm after concrete pumping, and after vacuuming once, the inside of the pipe was washed with water.
  • the commercially available urethane foam or commercially available natural rubber foam of Comparative Examples 1 and 2 has an open cell structure, so the concrete cleaning efficiency, the degree of foam tearing after cleaning, and the condition after 24 hours after cleaning are poor. do.
  • Comparative Examples 3 to 12 in the case of a foam prepared using OBC, ethylene copolymer, POE, or synthetic rubber alone, there is a disadvantage in that shrinkage or hardness is high.
  • foams prepared by omitting any one of OBC, rubber, and liquid softener as in Comparative Examples 13 to 15 it was found that the physical properties were poor.
  • a rubber sponge was manufactured as shown in FIG. At this time, the diameter of the rubber sponge is 170mm, the length of the head part is 100mm, the length of the body part is 200mm (at this time, the angle formed by the outer surface of the top and bottom parts is about 30 °), the thickness of the body part is 30mm, and the inside of the head part is recessed. By forming a portion, the thickness of the head portion was also manufactured to be the same as that of the body portion. A support with four arms was installed on the other side of the main body, that is, the rear part.
  • Example 4 the same procedure was performed except that the length of the head part was 30 mm and the length of the body part was 60 mm (at this time, the angle formed by the outer surface of the top and bottom parts was about 87 °).
  • Example 4 the same procedure was performed except that the length of the head part was 200 mm and the length of the body part was 400 mm (at this time, the angle formed by the outer surface of the top and bottom parts was about 21 °).
  • Example 4 the same procedure was performed except that the length of the head part was 200 mm and the length of the body part was 100 mm (at this time, the angle formed by the outer surface of the top and bottom parts was about 30 °).
  • Example 4 the same procedure was performed except that the length of the head part was 100 mm and the length of the main body part was 300 mm (at this time, the angle formed by the outer surface of the top and bottom parts was about 25 °).
  • Example 4 The same procedure as in Example 4 was performed except that the recessed portion inside the head portion was not formed.
  • Example 4 the inner diameter of one side of the main body was 110 mm (body thickness 30 mm) and the other inner diameter was 90 mm (body thickness 40 mm).
  • Example 4 the outer diameter of one side of the body part was 170 mm (inner diameter 110 mm) and the outer diameter of the other side of the body part was 190 mm (inner diameter 110 mm).
  • Example 1 The same procedure as in Example 1 was performed except that the support was not installed on the rear side.
  • each rubber sponge was passed 20 times, and durability was compared by recording the number of passages where rupture or damage was observed.
  • Example 4 Example 5 Example 6 Example 7 Example 8 Example 9 Example 10 Example 11 Example 12 Comparative Example 1 No residues detected (times) 5 11 3 10 4 6 4 3 6 15 Mobility (seconds) 2.2 2.0 4.8 2.1 3.7 2.4 2.3 2.4 2.1 2.0
  • Example 5 in the case of the embodiment of the present invention, it was found to have higher washing efficiency than the conventional spherical sponge. However, in Example 5, in which the angle formed by the uppermost and lower outer surfaces was adjusted to about 87 °, the washing effect was found to be reduced, and in Example 6, in which the angle formed by the uppermost and lower outer surfaces was adjusted to about 21 ° In the case of , it was confirmed that the passing time was delayed although the washing power was increased due to the long passing time. In addition, in the case of Example 6, as the applied pressure increased, the damaged area was observed.
  • Example 7 In the case of Example 7 in which the length of the head was made long, it was confirmed that the length of the main body was relatively reduced and the number of passages until the residue was not detected increased.
  • Example 8 in which the ratio of the main body was relatively increased, the time until discharge It was found that it was difficult to move because it took a lot.
  • Example 9 in which the depression was not formed in the head, showed similar results to Example 1, but it was confirmed that the shape of the head was better maintained after discharge when observed with the naked eye.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Cleaning In General (AREA)

Abstract

본 발명은 콘크리트 펌프의 파이프 청소용 고무스폰지에 관한 것이다. 본 발명은 파이프 형상의 본체부; 상기 파이프 형상의 일측에 형성되며, 외면이 반구형 또는 원추형으로 제작되는 헤드부; 및 상기 파이프 형상의 타측에 형성되며, 상기 파이프 형상의 내부와 연통되는 개구부가 형성되어 있는 후면부를 포함하는 콘크리트 펌프의 파이프 청소용 고무스폰지를 제공한다.

Description

콘크리트 펌프의 파이프 청소용 고무스폰지
본 발명은 콘크리트 펌프의 파이프 청소용 고무스폰지에 관한 것이다.
콘크리트 펌프는 펌핑작업이 끝나고 파이프 내부에 남아 있는 콘크리트 찌꺼기를 닦아내는 데 고무스폰지를 사용한다. 파이프의 내경보다 10-20% 두께가 두꺼운 고무스폰지를 파이프 끝에 밀어 넣고 펌프 헤드부분에서 진공으로 고무스폰지를 빨아 당기면 고무스폰지가 빨려 들어가면서 파이프내의 콘크리트 찌꺼기가 닦이는 것이다. 이때 쓰는 고무스폰지는 천연고무를 상압에서 발포하여 만든 연속기포스폰지(Open Cell Sponge)로서 모양은 여러 가지가 있으나 대부분 둥근 공모양이 사용되고 있다. 연속기포스폰지를 사용하는 이유는 연속기포 스폰지는 압력을 가하면 연속기포를 통하여 내부의 공기가 빠져 나감으로써 인간의 악력과 완력으로 스폰지공의 직경을 줄여서 파이프 속에 밀어 넣기가 쉽기 때문이다. 독립기포 스폰지(Closed Cell Sponge)는 경도가 아무리 낮아도 악력과 완력으로 스폰지공의 직경을 줄이기가 어렵기 때문에 스폰지공을 파이프에 집어 넣기 위해 스폰지공의 직경이 파이프 내경과 같거나 극히 약간 크게 만들어야 하는데, 이럴 경우는 스폰지공과 파이프간의 기밀도가 높지 않아 파이프 내부의 청소효율이 떨어진다.
그런데 이 연속기포 스폰지공은 몇 가지 문제점이 있다.
첫째, 천연고무를 상압 발포하여 블록상으로 만든 뒤 이를 그라인더로 갈아서 공모양을 만들므로 재료의 로스가 40~50%가 되어 원가가 비싸지고 지구환경에도 악영향이 크다.
둘째, 스폰지공은 청소가 이루어 지면 강한 진공압력에 의해 그 연속기포사이로 콘크리트가 파고 들어 가게 되는데, 청소 완료후 즉시 스폰지공을 물통에 넣어 Cell속으로 들어간 콘크리트 찌꺼기를 빼내야 되는데, 완전히 빠지지 않고 미량씩은 스폰지공의 내부에 남게 되므로, 3-4회 청소를 하면 콘크리트 찌꺼기가 누적되어 공이 뻣뻣해지고 청소효율이 떨어져 더 이상 쓸 수가 없게 된다.
셋째, 스폰지공의 표면은 Open Cell이 노출되어 있고 그 크기가 커서 천연고무가 얇은 막을 가진 망상구조로 되어 있기 때문에 각 Cell의 강도가 약하여 파이프 내부를 청소하면 Cell들이 떨어져 나가므로 한번 청소를 하면 공의 직경이 1-2mm 줄어들게 된다. 이를 3-4회 반복하여 공의 직경이 5-6mm 줄어들면 공과 파이프 내부와의 기밀도가 떨어져 청소효율이 줄어든다.
그리하여, 내구성이 좋고 청소효율이 우수한 콘크리트 펌프의 파이프 청소용 수단의 개발이 요청된다.
전술한 문제를 해결하기 위하여, 본 발명은 콘크리트 펌프의 파이프 청소용 고무스폰지를 제공하고자 한다.
상술한 문제를 해결하기 위해, 본 발명은 파이프 형상의 본체부; 상기 파이프 형상의 일측에 형성되며, 외면이 반구형 또는 원추형으로 제작되는 헤드부; 및 상기 파이프 형상의 타측에 형성되며, 상기 파이프 형상의 내부와 연통되는 개구부가 형성되어 있는 후면부를 포함하는 콘크리트 펌프의 파이프 청소용 고무스폰지를 제공한다.
일 실시예에 있어서, 상기 본체부는 상기 콘크리트 펌프의 파이프 내경 대비 10~20%가 큰 외경을 가지며, 상기 외경 대비 5~30%의 두께를 가질 수 있다.
일 실시예에 있어서, 상기 헤드부는, 내부가 상기 본체부의 내부와 연통되어 있는 함몰부가 형성된 것; 또는 내부가 상기 고무스폰지로 충진된 것일 수 있다.
일 실시예에 있어서, 상기 후면부의 두께는 상기 본체부 일측의 두께에 비하여 두껍게 형성될 수 있다.
일 실시예에 있어서, 상기 본체부는 일측에서 타측으로 갈수록 두께가 두껍게 형성될 수 있다.
일 실시예에 있어서, 상기 후면부에는 방사상으로 형성되어 상기 본체부의 타측단에 연결되며, 상기 후면부의 확장을 저지하는 지지부가 형성될 수 있다.
일 실시예에 있어서, 상기 본체부의 길이와 상기 헤드부의 길이의 비는 1:2~3:1일 수 있다.
일 실시예에 있어서, 상기 콘크리트 펌프의 파이프 청소용 고무스폰지는 DSC 융점(melting point)이 100℃ 이상의 올레핀 블록 공중합체(olefin block copolymer, OBC)와 천연고무 또는 합성고무를 함유하는 중합체; 및 액상 연화제를 필수 성분으로 하는 폼 조성물로 제조될 수 있다.
일 실시예에 있어서, 상기 조성물은 상기 올레핀 블록 공중합체 100 중량부에 대하여 상기 천연고무 또는 상기 합성고무가 10 내지 200 중량부가 함유된 것일 수 있다.
일 실시예에 있어서, 상기 조성물은 상기 올레핀 블록 공중합체 100 중량부에 대하여 상기 액상 연화제가 10 내지 75 중량부가 함유된 것일 수 있다.
일 실시예에 있어서, 상기 조성물은 가교제, 발포제, 그리고 금속산화물, 스테아린산, 산화방지제, 진크스테아레이트, 티타늄디옥사이드, 가교조제, 안료 및 충전제로 이루어진 군 중에서 선택되는 1종 이상의 기타 첨가제가 더 포함된 것일 수 있다.
일 실시예에 있어서, 상기 조성물은 0.3 내지 2 mm 직경의 유기 또는 무기 미립자가 더 포함된 것일 수 있다.
본 발명에 의한 콘크리트 펌프의 파이프 청소용 고무스폰지는 기준의 구형으로 제조되는 콘크리트 펌프의 파이프 청소용 스폰지에 비하여 파이프 벽면과의 마찰면적이 늘어나도록 제조됨에 따라 상기 콘크리트 펌프의 파이프 청소시 높은 세척 효율을 가질 수 있다.
또한 본 발명의 콘크리트 펌프의 파이프 청소용 고무스폰지는 독립기포를 가지는 스폰지로 제조되므로 콘크리트 펌프의 파이프 청소이후 콘크리트 제거가 용이하며, 이에 따라 스폰지의 수축을 방지할 수 있어 내구성이 향상된 콘크리트 펌프의 파이프 청소용 고무스폰지를 제공할 수 있다.
도 1은 본 발명의 일 실시예에 의한 고무스폰지의 단면을 나타낸 것이다.
도 2는 본 발명의 일 실시예에 의한 고무스폰지의 단면을 나타낸 것이다.
도 3은 본 발명의 일 실시예에 의한 함몰부가 없는 고무스폰지의 단면을 나타낸 것이다.
도 4는 본 발명의 일 실시예에 의한 본체 하단부가 두꺼운 고무스폰지의 단면을 나타낸 것이다.
도 5는 본 발명의 일 실시예에 의한 본체 하단부가 두꺼운 고무스폰지의 단면을 나타낸 것이다.
도 6은 본 발명의 일 실시예에 의한 본체 하단부가 두꺼운 고무스폰지의 단면을 나타낸 것이다.
도 7은 본 발명의 일 실시예에 의한 헤드부아 원추형으로 형성된 고무스폰지의 단면을 나타낸 것이다.
도 8은 본 발명의 일 실시예에 의한 고무스폰지의 하면을 나타낸 것이다.
이하에서는 본 발명의 바람직한 실시예를 상세하게 설명한다. 본 발명을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 흐리게 할 수 있다고 판단되는 경우 그 상세한 설명을 생략하기로 한다. 명세서 전체에서, 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한 복수의 표현을 포함하는 것으로 이해되어야 하고, “포함하다” 또는 “가지다”등의 용어는 기술되는 특징, 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다. 또, 방법 또는 제조 방법을 수행함에 있어서, 상기 방법을 이루는 각 과정들은 문맥상 명백하게 특정 순서를 기재하지 않은 이상 명기된 순서와 다르게 일어날 수 있다. 즉, 각 과정들은 명기된 순서와 동일하게 일어날 수도 있고 실질적으로 동시에 수행될 수도 있으며 반대의 순서대로 수행될 수도 있다.
본 명세서에 개시된 기술은 여기서 설명되는 구현예들에 한정되지 않고 다른 형태로 구체화될 수도 있다. 단지, 여기서 소개되는 구현예들은 개시된 내용이 철저하고 완전해질 수 있도록 그리고 당업자에게 본 기술의 기술적 사상이 충분히 전달될 수 있도록 하기 위해 제공되는 것이다. 도면에서 각 장치의 구성요소를 명확하게 표현하기 위하여 상기 구성요소의 폭이나 두께 등의 크기를 다소 확대하여 나타내었다. 전체적으로 도면 설명시 관찰자 시점에서 설명하였고, 일 요소가 다른 요소 위에 위치하는 것으로 언급되는 경우, 이는 상기 일 요소가 다른 요소 위에 바로 위치하거나 또는 그들 요소들 사이에 추가적인 요소가 개재될 수 있다는 의미를 모두 포함한다. 또한, 해당 분야에서 통상의 지식을 가진 자라면 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 본 발명의 사상을 다양한 다른 형태로 구현할 수 있을 것이다. 그리고 복수의 도면들 상에서 동일 부호는 실질적으로 서로 동일한 요소를 지칭한다.
본 명세서에서, '및/또는' 이라는 용어는 복수의 기재된 항목들의 조합 또는 복수의 기재된 항목들 중의 어느 항목을 포함한다. 본 명세서에서, 'A 또는 B'는, 'A', 'B', 또는 'A와 B 모두'를 포함할 수 있다.
본 발명은 파이프 형상의 본체부; 상기 파이프 형상의 일측에 형성되며, 외면이 반구형 또는 원추형으로 제작되는 헤드부; 및 상기 파이프 형상의 타측에 형성되며, 상기 파이프 형상의 내부와 연통되는 개구부가 형성되어 있는 후면부를 포함하는 콘크리트 펌프의 파이프 청소용 고무스폰지에 관한 것이다.
상기 본체부(100)는 파이프 형상으로 제작되어 외주면이 콘크리트 펌프의 파이프 내주면을 마찰하여 세척하는 부분이다(도 1 참조). 기존의 콘크리트 펌프의 파이프 청소용 스폰지의 경우 구형으로 제작됨에 따라 원주부분만 상기 파이프의 내주면과 마찰되고 있다. 하지만 이 경우 상기 구형의 스폰지 표면적의 대부분은 상기 파이프의 내주면과 접해지지 않으므로, 세척효율이 떨어질 수 있다. 이를 개선하기 위하여 상기 구형의 스폰지 외경은 상기 파이프의 내경에 비하여 10~20%가 크게 제작되고 있지만, 이 경우에도 상기 파이프의 내주면과 접촉되는 부분은 전체의 일부일 뿐이다.
하지만 본 발명의 경우 상기 본체부(100)를 파이프 형상으로 제작하고 있으며, 상기 본체부의 외주면에 상기 파이프의 내주면에 밀착되도록 하고 있으므로, 넓은 마찰면적을 가질 수 있고, 이에 따라 높은 세척효율을 가질 수 있다.
상기 본체부(100)는 상기 파이프의 내주면을 세척하기 위하여 일정한 두께를 가질 수 있다. 이때 상기 콘크리트 펌프의 파이프는 이송되는 용량에 따라 다양한 내경을 가질 수 있지만, 콘크리트 펌프트럭(Concrete Pump Truck, CPT)의 경우 일반적으로 90~200mm의 내경을 가지는 것으로 알려져 있다. 이때 본 발명의 파이프 청소용 고무스폰지의 경우 상기 파이프의 내경과 잘 마찰되어 세척할 수 있도록 상기 파이프 내경 대비 10~20%가 큰 외경을 가질 수 있다. 이를 통하여 상기 파이프 내부에 삽입되는 경우 적절한 압력으로 상기 파이프의 내주면을 마찰시킬 수 있으며, 또한 이러한 마찰로 인하여 파이프 내부의 콘크리트 잔유물을 용이하게 세척할 수 있다. 이때 상기 고무스폰지의 외경이 상기 파이프 내경대비 10%미만으로 큰 경우 상기 파이프 내주면의 가압량이 줄어들어 세척이 용이하지 않을 수 있으며, 20%를 초과하여 큰 경우에는 상기 고무스폰지의 삽입 및 이동이 어려울 수 있다.
또한 상기 본체부(100)의 경우 상기 내부가 비어있는 파이프 형상으로 제작되므로 일정한 두께를 가지도록 제작되는 것이 바람직하다. 이때 상기 본체부는 상기 본체부의 외경대비 5~30%의 두께를 가질 수 있다. 이때 상기 본체부의 두께가 상기 본체부의 외경대비 5%미만인 경우 세척을 위한 이송시 상기 본체부가 파열될 수 있으며, 30%를 초과하는 두께를 가지는 경우 상기 본체부 내부에서의 가압량이 줄어들어 세척효율이 떨어질 수 있다.
또한 상기 파이프의 세척시 상기 파이프 세척용 고무스폰지를 삽입한 다음, 후방에서 물 또는 세척용 유체를 고압으로 공급하여 상기 고무스폰지를 이동시킴과 동시에 파이프 내주면을 세척할 수 있다. 이때 기존의 구형의 스폰지의 경우 단순히 가압에 의하여 전면으로 이동되기만 하였지만, 본 발명의 경우 상기 본체부를 파이프 형으로 제작함과 더불어 타측이 개방된 형상으로 제작하는 것으로 상기 물 또는 가압용 유체의 압력에 의하여 상기 본체부가 상기 파이프의 내주면을 더욱 강하게 압박할 수 있다.
이를 상세히 살펴보면, 상기 물 또는 가압용 유체를 주입하는 경우 상기 고무스폰지가 압력에 의하여 이동될 수 있다. 이때 본 발명의 고무스폰지의 경우 본체부가 파이프형상을 가짐에 따라 상기 본체부의 내부에도 상기 물 또는 가압용 유체가 주입될 수 있으며, 또한 상기 본체부의 내부를 외측과 일측방향으로 가압할 수 있다. 상기 일측방향으로의 가압은 상기 고무스폰지의 이동을 가져올 수 있으며, 상기 외측방향으로의 가압은 상기 본체부를 확장시켜 상기 파이프의 내주면에 상기 본체부의 외주면이 밀착되도록 할 수 있다.
이를 통하여 본 발명의 고무스폰지는 기존의 구형의 스폰지에 비하여 상기 파이프의 외주면을 더욱 강하게 가압할 수 있으며, 이를 통하여 세척의 효율을 높일 수 있다.
또한 상기 본체부(100)의 일측에는 외면이 반구형 또는 원추형으로 제작되는 헤드부(200)가 형성될 수 있다. 이러한 헤드부(200)는 상기와 같이 원추형(도 7 참조) 또는 반구형(도 1 참조)으로 제작됨에 따라 상기 고무스폰지를 상기 파이프의 입구에 삽입이 용이하게 할 수 있다. 또한 이러한 헤드부의 형상은 세척시 상기 고무스폰지의 전진을 용이하게 할 수 있다.
상기 헤드부는 반구형 또는 원추형으로 제작될 수 있다. 상기 헤드부는 상기 파이프에 용이하게 삽입될 수 있는 형상으로 제작될 수 있으며 이에 따라 반구형 또는 원추형을 가질 수 있다. 구체적으로 상기 헤드부의 길이방향 단면은 반원형, 타원형, 삼각형 또는 사다리꼴일 수 있다(이때 상기 길이방향이 의미하는 것은 상기 본체부의 일단에서 타단방향을 의미한다). 이러한 단면을 가지는 경우 상단부가 하단부에 비하여 직경이 작게 제작되므로 상기 파이프에 용이하게 삽입될 수 있다.
이때 상기 헤드부의 내부는 상기 본체부의 내부와 연통되어 있는 함몰부(210)가 형성되거나 내부가 상기 고무스폰지로 충진될 수 있다.
이를 상세히 살펴보면 첫 번째로 상기 본체부의 내부와 연통되어 있는 함몰부가 형성될 수 있다. 상기와 같이 헤드부가 제조되는 경우 상기 헤드부(200)는 상기 본체부(100)와 동일한 두께를 가지도록 제작되는 것이 바람직하며, 이에 따라 상기 헤드부(100)는 상기 본체부의 일측이 연장된 형태로 제작될 수 있다(도 1 참조). 이 경우 상기와 같은 세척시 상기 물 또는 가압용 유체는 상기 헤드부의 내부 즉 상기 함몰부(210)까지 주입될 수 있으며, 이를 통하여 상기 파이프 내부와의 접촉면을 최대화 할 수 있다. 하지만 상기 헤드부의 두께가 얇게 제작되므로, 파손에 취약하고 세척시 크기가 큰 이물질이 존재하는 경우 헤드부의 형상이 변형될 수 있어 세척력이 떨어질 수 있다.
상기와는 달리 상기 헤드부의 내부는 고무스폰지로 충진될 수 있다(도 3참조). 위에 나타난 바와 같이 상기 헤드부(200)의 내부에 함몰부(210)를 형성하는 경우 상기 헤드부가 변형될 수 있다. 따라서 상기 파이프 내부에 이물질이 많은 경우 상기 헤드부 내부를 고무스폰지로 충진하여 사용할 수도 있다. 이때 상기 고무스폰지의 경우 상기 본체부 및 헤드부를 구성하는 성분이므로, 상기 헤드부는 상기 본체부와 경합되는 부분을 기준으로 후면이 평평하게 제작될 수 있다. 즉 상기 본체부 내부공간의 경우 상기 본체부와 헤드부가 결합되는 부분까지만 형성되어 있으며, 상기 헤드부의 내부는 상기 고무스폰지로 채워져 있도록 제작될 수 있다. 이를 통하여 상기 헤드부의 이동시 변형을 최소화할 수 있다.
이러한 헤드부(200) 내부의 형상은 세척되는 콘크리트 이송용 파이프 내부의 오염정도, 잔여 콘크리트의 양, 잔여 콘크리트의 경화정도에 따라 선택되어 사용될 수 있다. 즉 상기 파이프 내부이 큰 크기의 이물질이 존재하거나 많은 오염이 있는 경우 내부가 채워진 헤드를 가지는 고무스폰지를 사용할 수 있으며, 오염이 적은 경우에는 내부에 함몰부가 형성된 헤드부를 가지는 고무스폰지를 사용할 수 있다. 아울러 상기 고무스폰지를 이용한 세척시 상기 내부가 채워진 헤드부를 가지는 고무스폰지를 먼저 사용하여 1차 세척한 다음, 내부에 함몰부를 가지는 고무스폰지를 추가적으로 사용하는 것도 가능하다.
상기 후면부(300)의 두께는 상기 본체부 일측의 두께에 비하여 두껍게 형성될 수 있다(도 4~6참조). 상기 본체부의 경우 상기 파이프의 내부와 접촉하며 상기 파이프의 내주면을 세척하게 된다. 이때 상기 본체부의 일측 즉 상기 헤드부가 형성되어 있는 전면에서 대부분의 세척이 이루어지지만 크기가 작은 오염물 또는 파이프의 내면과 강하게 결합된 오염물의 경우 상기 본체의 후면으로 이동하며 순차적으로 세척될 수 있다. 이때 상기 본체부의 후면 즉 타측의 경우 크기가 더 작거나 전면에서 세척되지 못한 오염물을 세척해야 하므로, 전면보다 후면의 세척력이 강한 것이 바람직하다. 이를 위하여 본 발명의 경우 상기 후변부의 두께를 일측의 두께에 비하여 두껍게 하는 것으로 상기 후면부쪽의 가압력을 더욱 높일 수 있다.
이를 상세히 살펴보면 상기 후면부(300)의 두께가 상기 일측의 두께보다 두껍게 제작되는 경우 상기 물 또는 가압용 유체에 의한 압력은 후면부 쪽에 집중되므로 일측 보다는 후면부 쪽이 상기 파이프의 내주면에 더욱 강한 압력으로 밀착될 수 있다. 이를 통하여 상기 본체부의 일측 즉 전면부는 낮은 압력으로 밀착되므로 크기가 큰 오염물이 용이하게 진입될 수 있으며, 후면부의 경우 높은 압력으로 밀착되므로 강한 세척력을 가질 수 있다.
이때 상기 후면부의 경우 본체 후면부의 내측만 두께를 두껍게 제작하는 것도 가능(도 6)하지만, 상기 본체의 일측에서 타측으로 갈수록 두께를 두껍게 제작하는 것도 가능(도 4)하다. 또한 상기 본체의 내주면의 직경은 일정하게 유지하면서 외주면의 직경만 타측으로 갈수록 확대되도록 제작하여 상기 본체의 외주면에 사선을 이루도록 제작하는 것도 가능하다(도 5).
상기 후면부(300)에는 방사상으로 형성되어 상기 본체부의 타측단에 연결되며, 상기 후면부의 확장을 저지하는 지지부(310)가 형성될 수 있다.상기 고무스폰지를 이용한 세척이 완료된 이후 상기 고무스폰지가 외부로 방출될 때 내부에는 아직 상기 물 또는 가압용 유체에 의한 가압이 이루어질 수 있다. 이때 상기 고무스폰지를 그대로 배출하는 경우 후면부(300)가 가압되어 파열될 수 있다. 이러한 파열은 외부와 연통된 후면부에서 가장 빈번하게 나타나는 것으로 알려져 있으며, 이를 방지하기 위하여 본 발명의 경우 후면부의 확장을 저지하는 지지부(310)를 설치하는 것이 바람직하다(도 8 참조). 상기 지지부는 후면부에 형성되어 있으며, 후면부의 확장을 저지할 수 있도록 방사상으로 형성되는 것이 바람직하다. 상기 지지부는 상기 후면부를 안정적으로 지지하기 위하여 2~10개의 팔이 상기 본체의 타단에 연결되는 것이 바람직하다. 또한 상기 지지부(310)는 상기 본체부(100)와 동일하게 고무스폰지를 사용하여 일체형으로 형성될 수도 있지만, 별도로 형성된 지지부가 상기 후면부에 접합되어 사용될 수도 있으며, 금속, 고분자 수지, 탄소섬유, 합성섬유 등으로 제작되는 지지부를 상기 후면부에 접합하여 사용하는 것도 가능하다. 아울러 이러한 지지부의 경우 상기 고무스폰지가 상기 파이프 내부에 있는 경우에도 상기 고무스폰지의 과도한 확장을 막을 수 있으며, 이를 통하여 상기 파이프 내부에 과도한 압력이 인가되는 경우 상기 고무스폰지의 파열을 막을 수 있다.
상기 본체부(100)의 길이와 상기 헤드부(200)의 길이의 비는 1:2~3:1일 수 있다. 상기 헤드부의 길이가 길어질수록 상기 파이프 내에서 이동이 쉬워질 수 있지만, 상대적으로 본체의 길이가 짧아지게 되어 세척력이 떨어질 수 있다. 또한 상기 본체의 길이가 길어지는 경우 세척력을 올라갈 수 있지만, 마찰 역시 증가되어 상기 고무스폰지를 이동하는 것에 더욱 높은 압력을 필요로 할 수 있다. 따라서 상기 본체부의 길이와 상기 헤드부의 길이의 비는 1:2~3:1인 것이 바람직하다. 상기 길이의 비가 1:2 미만으로 되어 헤드부의 길이가 더욱 길어지는 경우 본체부의 길이가 줄어들어 세척력이 떨어질 수 있으며, 3:1을 초과하는 비율을 가지는 경우 상기 파이프 내에서 이동이 어려울 수 있다.
아울러 상기 고무스폰지는 전체의 길이가 100~500mm일 수 있다. 이러한 고무스폰지의 전체길이는 일반적으로 사용되는 파이프의 직경에 따라 달라질 수 있다. 상기 고무스폰지의 길이가 100mm미만인 경우 짧은 길이로 인하여 파이프 내부의 세척력이 떨어질 수 있으며, 500mm를 초과하는 경우 길 길이로 인하여 취급이 어렵고 이동에 높은 압력이 필요하므로 세척시 파손될 수 있다.
이를 상세히 살펴보면 상기 고무스폰지의 최상단을 중심으로 하단부의 양측외주면을 연결한 점이 이루를 각도(도 2의 a)가 20~90°일 수 있다(도 2 참조). 상기 각도가 20°미만인 경우 상기 고무스폰지의 길이가 과도하게 길어져 상기 파이프 내부에서 이동이 어려울 수 있으며, 상기 각도가 90°를 초과하는 경우 상기 고무스폰지의 길이가 짧아져 청소효율이 떨어질 수 있다.
상기 콘크리트 펌프의 파이프 청소용 고무스폰지는 DSC 융점(melting point)이 100℃ 이상의 올레핀 블록 공중합체(olefin block copolymer, OBC)와 천연고무 또는 합성고무를 함유하는 중합체; 및 액상 연화제를 필수 성분으로 하는 폼 조성물로 제조될 수 있다.
콘크리트 파이프 세척기능이 양호한 독립기포 폼을 제조하기 위한 방법은 여러 가지가 있을 수 있는데 만들어진 폼이 하기의 특성을 갖는 것이 바람직하다. 첫째, 콘크리트 파이프의 입구에 투입이 용이하도록 저경도를 갖는 제품인 것이 좋다. 둘째, 여름의 고온에서 일광을 직접 받아 세척용 폼의 사용 도중 수축이 일어나면 안되므로 내열성을 가지는 것이 좋다. 셋째, 파이프 내에서 우수한 세척력을 가지 위해서는 폼이 파이프에 강하게 밀착되는 것이 바람직하므로 폼의 반발력, 즉 반발탄성이 큰 것이 좋다.
한편 저경도의 독립기포 폼을 만들기 위해서 천연 고무 또는 각종 합성고무를 가교 발포함으로써 만들 수 있으나 폼 제조 후 상온 상태에서도 수축율이 너무 커서 실용상 불가능하고, EVA, EBA, EMA 등의 에틸렌 공중합체 등을 가교 발포함으로써 만들 수 있으나 이 또한 여름의 고온 하에서는 수축율이 커서 실용상 어려움이 있다. SBS, SEBS, SEPS, 1,2-polybutadiene 등의 열가소성 고무(TPR)로 저경도 폼을 만들면 탄성이 좋고 수축율이 적어 이상적이나, 고분자 자체의 경도가 너무 높아 콘크리트 펌프용 폼으로 사용가능하도록 저경도로 만드는 것은 사실상 불가능하다.
그리하여 본 발명자는 DSC 융점(melting point)이 100℃ 이상의 올레핀 블록 공중합체(olefin block copolymer, OBC)와 천연고무 또는 합성고무와, 액상 연화제를 필수 성분으로 하는 콘크리트 펌프용 폼 조성물을 제공하고자 한다.
일 구현예에서, 상기 콘크리트 펌프 세척용 폼에 사용되는 올레핀/α-올레핀 공중합체는 올레핀 블록 공중합체(OBC)이다. 상기 올레핀 블록 공중합체는 적어도 100℃ 이상의 융점온도를 가짐으로써 콘크리트 펌프용 폼을 만들었을 때 우수한 내열성을 가지는 장점이 있으며, 융점이 상기 범위 미만에서는 폼의 내열성이 부족하여 하절기에 옥외 보관시 고온의 직사광선에 의해 폼이 수축되어 콘크리트 청소용 폼으로서의 기능을 상실할 수 있다.
상기 올레핀 블록 공중합체(olefin block copolymer, OBC)는 다블록 공중합체이다. 이들은 바람직하게는 선형 방식으로 결합된 둘 이상의 화학적으로 별개인 구역 또는 세그먼트("블록"으로서 칭함)를 포함하는 중합체, 즉 펜던트 또는 그래프트 방식보다는 중합된 에틸렌계 관능기 또는 프로필렌계 관능기에 대해 말단-대-말단 결합되는 화학적으로 구분된 단위들을 포함하는 중합체이다.
상기 올레핀 블록 공중합체(OBC)는 에틸렌/α-올레핀 다블록 공중합체 또는 프로필렌/α-올레핀 다블록 공중합체를 의미한다. 상기 올레핀 블록 공중합체는 에틸렌 또는 프로필렌에 하나 이상의 공중합성 α-올레핀 공단량체가 중합된 형태로 포함하며, 화학적 또는 물리적 특성이 상이한 둘 이상의 중합된 단량체 단위들의 복수의 블록 또는 세그먼트들을 갖는 다블록 공중합체인 것을 특징으로 한다.
상기 α-올레핀 공단량체의 구체적인 예는 프로필렌, 부텐, 3-메틸-1-부텐, 3,3-디메틸-1-부텐, 펜텐, 하나 이상의 메틸, 에틸 또는 프로필 치환체를 갖는 펜텐, 하나 이상의 메틸, 에틸 또는 프로필 치환체를 갖는 헥센, 하나 이상의 메틸, 에틸 또는 프로필 치환체를 갖는 헵텐, 하나 이상의 메틸, 에틸 또는 프로필 치환체를 갖는 옥텐, 하나 이상의 메틸, 에틸 또는 프로필 치환체를 갖는 노넨, 에틸, 메틸 또는 디메틸 치환 데센, 도데센, 스티렌 등을 포함한다. 특히 요망되는 α-올레핀 공단량체는 프로필렌, 부텐(예를 들어, 1-부텐), 헥센 및 옥텐(예를 들어, 1-옥텐 또는 2-옥텐)이다. 이러한 공중합체의 에틸렌 함량은 약 60 몰% 내지 약 99.5 몰%, 일부 실시양태에서는 약 80 몰% 내지 약 99 몰%, 일부 실시양태에서는 약 85 몰% 내지 약 98 몰%일 수 있다. 마찬가지로, α-올레핀 함량은 약 0.5 몰% 내지 약 40 몰%, 일부 실시양태에서는 약 1 몰% 내지 약 20 몰%, 일부 실시양태에서는 약 2 몰% 내지 약 15 몰%의 범위일 수 있다. α-올레핀 공단량체의 분포는 대표적으로 랜덤하고, 에틸렌 공중합체를 형성하는 상이한 분자량 분율에 걸쳐서 균일하다.
몇몇 구현예에서, 상기 다블록 공중합체는 다음 화학식으로 나타낼 수 있다.
(AB)n
화학식에서, n은 1 이상, 바람직하게는 1 초과, 예컨대 2, 3, 4, 5, 10, 15, 20, 30, 40, 50, 60, 70, 80, 90, 100, 또는 그 이상의 정수이고; "A"는 경질 블록 또는 세그먼트를 나타내고; "B"는 연질 블록 또는 세그먼트를 나타낸다. 바람직하게는, A와 B는 분지형 또는 별형 방식이 아닌 선형 방식으로 연결된다. "경질" 세그먼트는 에틸렌 또는 프로필렌이 몇몇 구현예에서는 95 중량% 이상, 다른 구현예에서는 98 중량% 이상의 양으로 존재하는 중합된 단위의 블록을 의미한다. 즉, 경질 세그먼트 내 공단량체 함량은 몇몇 구현예에서는 경질 세그먼트의 총 중량의 5 중량% 이하, 다른 구현예에서는 2 중량% 이하이다. 몇몇 구현예에서, 경질 세그먼트는 모두 또는 실질적으로 모두 에틸렌 또는 프로필렌으로 구성된다. 반면, "연질" 세그먼트는 공단량체 함량이 몇몇 구현예에서는 연질 세그먼트의 총 중량의 5 중량% 이상, 다양한 다른 구현예에서는 8 중량% 이상, 10 중량% 이상, 또는 15 중량% 이상인 중합된 단위의 블록을 의미한다. 몇몇 구현예에서, 연질 세그먼트 내 공단량체 함량은 다양한 다른 구현예에서 20 중량% 이상, 25 중량% 이상, 30 중량% 이상, 35 중량% 이상, 40 중량% 이상, 45 중량% 이상, 50 중량% 이상, 또는 60 중량% 이상일 수 있다.
일 구현예에 있어서, 상기 올레핀 블록 공중합체는 0.85 내지 0.91 g/cc, 또는 0.86 내지 0.88 g/cc의 밀도를 가질 수 있다.
일 구현예에 있어서, 상기 올레핀 블록 공중합체는 ASTM D1238(190℃, 2.16 kg)에 의해 측정한 용융지수(MI)가 0.01 내지 30 g/10분, 또는 0.01 내지 20 g/10분, 또는 0.1 내지 10 g/10분, 또는 0.1 내지 5.0 g/10분, 또는 0.1 내지 1.0 g/10분, 또는 0.3 내지 0.6 g/10분일 수 있다.
일 구현예에 있어서, 상기 올레핀 블록 공중합체는 연속공정으로 제조시 1.7 내지 3.5, 또는 1.8 내지 3, 또는 1.8 내지 2.5, 또는 1.8 내지 2.2의 다분산지수(PDI)를 가질 수 있다. 배치 또는 세미-배치 공정으로 제조시에는 상기 올레핀 블록 공중합체는 1.0 내지 3.5, 또는 1.3 내지 3, 또는 1.4 내지 2.5, 또는 1.4 내지 2의 PDI를 가질 수 있다.
일 구현예에 있어서, 상기 올레핀 블록 공중합체는 5 내지 30 중량%, 또는 10 내지 25 중량%, 또는 11 내지 20중량%의 경질 세그먼트를 함유할 수 있다. 상기 경질 세그먼트는 공단량체로부터 유도되는 0.0 내지 0.9 몰% 단위체를 함유할 수 있다. 상기 올레핀 블록 공중합체는 또한 70 내지 95 중량%, 또는 75 내지 90 중량%, 또는 80 내지 89 중량%의 연질 세그먼트를 함유할 수 있다. 상기 연질 세그먼트는 공단량체로부터 유도되는 15 몰% 미만, 또는 9 내지 14.9 몰% 단위체를 함유할 수 있다. 일 구현예에 있어서, 상기 공단량체는 부텐 또는 옥텐일 수 있다.
상기 올레핀 블록 공중합체는 하드 세그먼트와 소프트 세그먼트의 블록이 교대로 이어지는 사슬구조를 지니고 있으므로 하드 세그먼트의 강성과 소프트 세그먼트의 유연성을 겸비한 특성을 지니고 있다. 그리하여 유사한 경도의 에틸렌 랜덤 공중합체에 비하여 높은 내열성을 가지며 탄성회복 특성이 스티렌계 또는 가황된 올레핀계 열가소성 탄성체와 동등 이상의 성능을 가질 수 있다. 또한 분진문제와 환경문제를 일으키지 않고 스티렌계 탄성체 혼합물에 비해 가격 면에서 경제성이 있다.
본 발명의 일 구현예에 따른 콘크리트 펌프 세척용 폼에는 상기의 필수 성분 외에 낮은 수축율 및 경도를 유지하면서 콘크리트 펌프 세척 용도의 요구사항을 벗어나지 않는 범위에서 발포 가능한 에틸렌 공중합체나 폴리올레핀 엘라스토머와 같은 타 고분자가 추가로 사용될 수 있다.
상기 중합체의 원료로서 부가적으로 사용될 수 있는 에틸렌 공중합체나 폴리올레핀 엘라스토머는 그 자체가 저경도 수지이기 때문에 본 발명의 목표인 저경도 제품을 만들기가 용이하기 때문에 바람직하다.
상기 에틸렌 공중합체는 i) 에틸렌과 ii) C3-C10 알파 모노올레핀, 불포화 C3-C20 모노카르복시산의 C1-C12 알킬에스테르, 불포화 C3-C20 모노 또는 디카르복시산, 불포화 C4-C8 디카르복시산의 무수물 및 포화 C2-C18 카르복시산의 비닐 에스테르로 이루어진 군으로부터 선택되는 1종 이상의 에틸렌성 불포화 단량체의 공중합체일 수 있다.
상기 에틸렌 공중합체의 구체적인 예로서, 에틸렌 비닐아세테이트 (Ethylene Vinylacetate, EVA), 에틸렌 부틸 아크릴레이트(Ethylene Butylacrylate, EBA), 에틸렌 메틸아크릴레이트(Ethylene Methylacrylate, EMA), 에틸렌 에틸아크릴레이트(Ethylene Ethylacrylate, EEA), 에틸렌 메틸메타크릴레이트(Ethylene Methylmethacrylate, EMMA), 에틸렌 부텐 공중합체(Ethylene Butene Copolymer, EB-Co), 에틸렌 옥텐 공중합체(Ethylene Octene Coplymer, EO-Co)로 이루어진 군으로부터 선택되는 1종 이상일 수 있다.
일 구현예에서 상기 중합체는 폴리올레핀 엘라스토머일 수 있다. 상기 폴리올레핀 엘라스토머는 하나 이상의 메탈로센 촉매를 사용하여 제조된다. 상기 폴리올레핀 엘라스토머는 에틸렌계 공중합체 또는 프로필렌계 공중합체이다.
이들 엘라스토머 수지는 또한 상업적으로 입수가능하며, 에틸렌계 폴리올레핀 엘라스토머들의 비제한적인 예들에는 다우 케미칼 컴퍼니(Dow Chemical Company)로부터 입수가능한 상품명 ENGAGE, 엑손(Exxon)으로부터의 상품명 EXACT, 미쓰이 케미칼스(Mitsui Chemicals)로부터의 상품명 TAFMER 등이 있다.
프로필렌계 폴리올레핀 엘라스토머들의 비제한적인 예들에는 미쯔비시 케미칼 코포레이션(Mitsubishi Chemical Corporation)으로부터의 상품명 THERMORUNTM 및 ZELASTM, 라이온델바젤로부터의 상품명 ADFLEXTM 및 SOFTELLTM, 다우 케미칼 컴퍼니(Dow Chemical Company)로부터의 상품명 VERSIFYTM 및 엑손모빌로부터의 상품명 VISTAMAXXTM 등이 있다.
일 구현예에서, 상기 중합체는 상기 올레핀 블록 공중합체와 함께 천연고무 또는 합성고무를 더 포함한다. 상기 중합체 성분에 천연고무 또는 합성고무가 부가됨으로써 폼의 탄성이 좋아지므로 폼과 파이프와의 밀착력이 좋아져 세척력이 좋아지는 효과가 있다. 상기 합성고무는 스티렌 부타디엔 고무(SBR), 부타디엔 고무(BR), 이소프렌 고무(IR), 니트릴 고무(NBR), 클로로프렌 고무(CR), 클로로술폰화 폴리에틸렌 고무(CSM), 에틸렌-프로필렌 고무(EPM), 에틸렌-프로필렌-디엔 고무(EPDM) 등이 단독 또는 2 이상 조합되어 사용될 수 있다.
상기 합성고무는 스티렌 부타디엔 스티렌(SBS), 스티렌 에틸렌 부틸렌 스티렌(SEBS), 스티렌 에틸렌 프로필렌 스티렌(SEPS), 1,2-폴리부타디엔(1,2-polybutadiene) 등의 열가소성 고무(TPR)가 단독 또는 2 이상 조합되어 사용될 수 있다.
상기 천연고무 또는 상기 합성고무는 상기 올레핀 블록 공중합체 100 중량부에 대하여 10 내지 200 중량부, 바람직하게는 30 내지 150 중량부, 더욱 바람직하게는 40 내지 130 중량부가 함유될 수 있다. 상기 천연고무 또는 상기 합성고무가 상기 범위 미만에서는 효과가 미미하며, 상기 범위 초과에서는 폼의 수축율이 커져 유통중에 수축이 되어 상품의 가치를 잃어버리거나, 사용 중 줄어들어 청소 효과가 점점 나빠지므로 반복 사용횟수가 줄어들 수 있다.
본 발명의 일 구현예에 따른 콘크리트 펌프 세척용 폼에는 올레핀 블록 공중합체 및 천연고무 또는 합성고무가 함유된 중합체에 액상 연화제가 포함된다. 상기 액상 연화제는 폼의 경도를 떨어뜨려 펌프를 청소하는 폼으로서의 기능을 가능하게 하는 역할을 한다. 상기 액상 연화제의 예로 고무용 프로세스 오일, 액상 폴리부텐, 실리콘 오일 등을 들 수 있다.
상기 액상 연화제는 상기 올레핀 블록 공중합체 100 중량부에 대하여 10 내지 75 중량부, 바람직하게는 20 내지 70 중량부, 더욱 바람직하게는 40 내지 60 중량부가 함유될 수 있다. 상기 액상 연화제가 상기 범위 미만에서는 폼의 경도가 높아 청소시 파이프에 투입이 불가능 할 수 있으며, 상기 범위 초과에서는 경도가 너무 낮아 청소의 효과가 떨어질 수 있고, 폼 조성물을 가교시키기 어려워 폼의 제조가 어려워지는 한편 폼의 강도가 매우 낮아져 청소 시 쉽게 찢어질 수 있다.
본 발명의 일 구현예에 따른 콘크리트 펌프 세척용 폼 조성물에는 가교제, 발포제, 그리고 금속산화물, 스테아린산, 산화방지제, 진크스테아레이트, 티타늄디옥사이드, 가교조제, 안료 및 충전제로 이루어진 군 중에서 선택되는 1종 이상의 기타 첨가제가 더 포함될 수 있다.
상기 콘크리트 펌프 세척용 폼을 만들기 위한 원료 조성물에는 가스 및 다른 부산물로 분해되는 가스 재료, 휘발성 액체 및 화학작용제를 포함하는 임의의 공지된 대부분의 발포제(기포발생제 또는 팽창제로서 또한 공지됨)가 사용될 수 있다. 상기 발포제는 발포체를 제조하기 위해서 첨가하는 것으로 분해온도가 150 ~ 210℃ 인 아조계 화합물을 사용하며, 중합체 100 중량부에 대하여 0.1 ~ 6 중량부 사용하는 것이 좋다. 만일, 그 사용량이 0.1 중량부 미만이면 비중이 많이 높아질 수 있고, 경도가 지나치게 높아질 수 있으며, 6 중량부를 초과하면 비중이 0.10 미만으로 떨어져 폼의 강도가 떨어질 수 있다. 그리고, 분해 온도가 150℃ 미만이면 컴파운드 제조중에 조기발포가 발생하고, 210℃를 초과하면 발포체의 성형시간이 15분 이상 소요되기 때문에 생산성이 저하될 수 있다.
발포제는 화학적 발포제 및 물리적 발포제를 포함하며, 대표적인 발포제는 질소, 이산화탄소, 공기, 메틸 클로라이드, 에틸 클로라이드, 펜탄, 이소펜탄, 퍼플루오로메탄, 클로로트리플루오로메탄, 디클로로디플루오로메탄, 트리클로로플루오로메탄, 퍼플루오로에탄, 1-클로로-1,1-디플루오로에탄, 클로로펜타플루오로에탄, 디클로로테트라플루오로에탄, 트리클로로트리플루오로에탄, 퍼플루오로프로판, 클로로헵타플루오로프로판, 디클로로헥사플루오로프로판, 퍼플루오로부탄, 클로로노나플루오로부탄, 퍼플루오로시클로부탄, 아조디카르본아미드(ADCA), 아조디이소부티로니트릴, 벤젠술폰히드라지드, 4,4-옥시벤젠 술포닐-세미카르바지드, p-톨루엔 술포닐 세미카르바지드, 바륨 아조디카르복실레이트, N,N'디메틸-N,N'-디니트로소테레프탈아미드, 및 트리히드라지노 트리아진을 포함하지만, 이에 제한되지 않는다. 일반적으로 ADCA가 바람직한 발포제이다.
상기 가교제는 발포제에서 발생한 분해가스를 충분히 포집하고 수지에 고온점탄성을 부여할 수 있는 유기과산화물 가교제를 중합체 100 중량부에 대하여 0.02 ~ 4 중량부 사용하고, 바람직하기로는 0.02 ~ 1.5 중량부 사용하고, 더욱 바람직하기로는 0.05 ~ 1.0 중량부 사용하는 것이 바람직하며, 이들은 1분 반감기 온도가 130 ~ 180℃ 인 것이다. 그 사용량에 있어서 0.02 중량부 미만이면 가교가 부족하여 발포체 분해시 수지의 고온 점탄성이 유지되지 못하고, 1.5 중량부를 초과하면 과가교로 인하여 경도가 급격히 높아질 뿐만 아니라 발포체가 터지는 현상과 발포체의 기포의 벽이 깨져 연속기포화 하는 현상이 나타날 수 있다. 이러한 가교제의 예로는 고무 배합에 많이 사용되고 있는 유기과산화물 가교제로서 t-부틸퍼옥시이소프로필카르보네이트, t-부틸퍼옥시리우릴레이트, t-부틸퍼옥시아세테이트, 디-t-부틸퍼옥시프탈레이트, t-디부틸포옥시말레인산, 시클로헥사논퍼옥사이드, t-부틸큐밀퍼옥사이드, t-부킬히드로퍼옥사이드, t-부틸퍼옥시벤조에이트, 디큐밀퍼옥사이드, 1,3-비스(t-부틸퍼옥시이소프로필)벤젠, 메틸에틸케톤퍼옥사이드, 2,5-디메틸-2,5-디(벤조일옥시)헥산, 2,5-디메틸-2,5-디(t-부틸퍼옥시)헥산, 디-t-부틸퍼옥사이드, 2,5-디메틸-2,5-(t-부틸퍼옥시)-3-헥산, n-부틸-4,4-비스(t-부틸퍼옥시)발러레이트, a,a'-비스(t-부틸퍼옥시)디이소프로필벤젠 등을 사용할 수 있다.
상기 기타 첨가제는 가공특성을 돕고 발포체의 물성 향상을 위해 발포체의 제조시 일반적으로 사용되는 금속산화물, 스테아린산, 산화방지제, 진크스테아레이트, 티타늄디옥사이드, 가교조제 등 발포체 제조시 사용되는 통상의 첨가제를 사용하며, 색상을 고려하여 다양한 안료를 사용하는 것도 가능하다. 상기 첨가제는 상기 중합체 100 중량부에 대하여 4 ~ 15 중량부 첨가할 수 있다. 상기 금속산화물로는 산화아연, 산화티타늄, 산화카드뮴, 산화마그네슘, 산화수은, 산화주석, 산화납, 산화칼슘 등을 발포체의 물성 향상을 위해 사용할 수 있으며 상기 중합체 100 중량부에 대하여 1 ~ 4 중량부 사용할 수 있다. 또한, 프레스가 150 ~ 170℃일 때 성형시간을 5 ~ 10분으로 조절하고자 가교조제인 트리아릴시안우레이트(TAC)을 중합체 100 중량부에 대하여 0.05 ~ 0.5 중량부 사용하는 것이 바람직하다. 만일 그 사용량이 0.05 중량부 미만이면 가교조제의 효과가 거의 없었으며, 가교조제가 0.5 중량부를 초과하면 가교제 사용량이 1.5 중량부를 초과할 때와 비슷하게 과가교로 인하여 경도가 급격히 높아질 뿐만 아니라 발포체가 터지는 현상과 발포체의 기포의 벽이 깨져 연속기포화 하는 현상이 나타날 수 있다.
스테아린산과 진크스테아레이트는 발포 셀을 미세하고 균일하게 형성하고 발포체 성형시 탈형을 용이하게 하며 상기 중합체 100 중량부에 대하여 일반적으로 1 ~ 4 중량부 사용할 수 있다. 산화방지제로는 선녹(sonnoc), 비에이치티이(BHT,butylated hydroxy toluene), 송녹스 1076(songnox 1076, octadecyl 3,5-di-tert-butylhydroxy hydrocinnamate) 등을 사용하며, 상기 중합체 100 중량부에 대하여 통상 0.25 ~ 2 중량부 사용할 수 있다. 티타늄디옥사이드는 백색용 안료로 사용되며 앞에서 언급한 금속산화물과 같은 기능을 하며 통상 2 ~ 5 중량부 사용할 수 있다.
상기 조성물에 포함될 수 있는 충전제는 조성물의 원가를 낮추는 역할을 한다. 상기 충전제의 종류로 실리카 (SiO2), MgCO3, CaCO3, 탈크(Talc), Al(OH)3, Mg(OH)2 등이 있으며 상기 중합체 100 중량부에 대해 일반적으로 10 내지 50 중량부 사용될 수 있다. 상기 충전제는 폼의 세척력 증대를 위한 연마제로 사용될 수도 있다.
본 발명의 다른 측면에 따르면, 콘크리트 펌프 세척용 폼이 제공된다. 상기 콘크리트 펌프 세척용 폼은 DSC 융점(melting point)이 100℃ 이상의 올레핀 블록 공중합체(olefin block copolymer, OBC)와 천연고무 또는 합성고무를 함유하는 중합체를 발포하여 형성한 고분자 폼을 포함한다. 여기서 상기 고분자 폼은 다수의 발포 셀들을 구비한다. 상기 발포 셀들의 총 부피 중 독립 기포들(closed cells)이 차지하는 부피가 70% 이상이다.
상기 고분자 폼은 가교(부분가교 또는 완전가교)된 저밀도의 고분자로서 외력에 의해 압축될 수 있고 외력을 제거하면 다시 원래의 부피를 회복하는 성질을 가진다. 따라서 상기 콘크리트 펌프 세척용 폼을 파이프의 한편 끝에 밀어 넣고 반대편에서 진공으로 흡입하면 상기 콘크리트 펌프 세척용 폼이 압축되어 도입되고 다시 팽창하게 되고, 파이프 내부에 남아있는 콘크리트 잔류물이 팽창된 폼에 의해 밀려나오면서 파이프 내부가 청소된다. 팽창된 콘크리트 펌프 세척용 폼은 그 표면이 거칠어 콘크리트 펌프의 파이프 내부 표면을 수세미처럼 닦아내는 효과가 있다.
본 발명의 일 구현예에 따른 콘크리트 펌프 세척용 폼은 일반적으로 하기의 특성을 갖는 것을 특징으로 한다. 상기 콘크리트 펌프 세척용 폼은 일반적으로 비교적 저밀도이며, 0.30 g/cc 이하일 수 있다. 예를 들어, 상기 콘크리트 펌프 세척용 폼의 밀도는 0.05 내지 0.30 g/cc, 바람직하게는 0.05 내지 0.25 g/cc, 더욱 바람직하게는 0.05 내지 0.20 g/cc일 수 있다. 더더욱 바람직하게는 0.10 내지 0.2 g/cc일 수 있다. 상기 범위 미만에서는 폼의 강도가 약하여 찢어질 수 있으며, 상기 범위 초과에서는 독립 기포 폼으로서 콘크리트 펌프의 파이프를 청소하는 데 사용하기에 폼의 부드러움이 충분하지 않을 수 있다.
한편, 상기 콘크리트 펌프 세척용 폼이 세척력의 효과를 내기 위해 일정 이상의 경도를 갖는 것이 좋다. 다만 너무 높은 경도를 가질 경우 폼을 파이프에 투입하기가 용이하지 않을 수 있다. 일반적으로 상기 콘크리트 펌프 세척용 폼의 적절한 경도 범위는 Shore 00 10 내지 40의 경도, 바람직하게는 15 내지 35의 경도를 갖는 것이 좋다. 경도가 너무 낮으면 폼과 파이프와의 밀착도가 떨어져 세척력의 감소할 수 있다.
생성된 콘크리트 펌프 세척용 폼은 일반적으로 비교적 작은 평균 기포(셀) 크기, 전형적으로 약 2~3 mm 정도의 기포크기를 갖는다. 평균 기포크기는 예컨대, ASTM D3576-77에 따라 측정될 수 있다. 하나의 구현예에 있어서, 콘크리트 펌프 세척용 폼은 일반적으로 약 1 내지 4 mm의 기포크기를 갖는다. 직경이 1 mm보다 작을 경우 수세미 효과가 떨어지고, 4 mm보다 크면 폼과 파이프 내면과의 밀착도가 감소하여 결과적으로 세척 효과가 떨어질 수 있다. 바람직하게는 2 내지 3 mm의 평균 기포 크기를 갖는 것이 가장 좋다. 상기 기포들의 개수 중 90% 이상이 1-4 mm의 크기 분포를 가지는 것이 바람직하다.
생성된 콘크리트 펌프 세척용 폼은 일반적으로 다량의 독립 기포(closed cell) 및 소량의 연속 기포(open cell)를 가질 수 있다. 독립 기포의 상대량은 예를 들어, ASTM D2856-A에 따라 측정될 수 있다. 하나의 구현예에 있어서, 상기 콘크리트 펌프 세척용 폼의 발포 셀들은 연속 기포들보다는 대부분 독립 기포들로 이루어질 수 있으며 예를 들어, 상기 콘크리트 펌프 세척용 폼의 발포 셀들(독립 기포들 + 연속 기포들)의 부피 중 약 70% 이상, 바람직하게는 약 80% 이상, 더욱 바람직하게는 약 85% 이상이 독립 기포들로 이루어질 수 있다. 상기 콘크리트 펌프 세척용 폼 내의 발포 셀들 중 독립 기포들이 70% 이상일 경우 세척에 적합한 압축력을 가질 뿐 아니라, 파이프 청소 후 폼의 표면에 묻은 콘크리트의 세척이 용이해 폼의 재사용성이 우수해진다. 상기 발포 셀들 중 독립 기포들은 발포 공정에 따라 차이가 있지만 최대 90% 이하, 95% 이하, 98% 이하, 99% 이하, 99.5% 이하, 또는 100% 이하의 부피를 가질 수 있다.
콘크리트 펌프 세척용 폼을 제조하는 공정 중에 몰드 개방시 가교도가 높을 경우는 발포 셀의 팽창 중에 발포 셀 간의 벽이 파괴되어 일부분 연속 기포가 형성되기도 하는데, 그 정도가 심하여 30%가 넘는 연속 기포들이 존재하면 상술한 연속 기포 구조를 갖는 천연고무 폼의 결점이 나타나므로 바람직하지 못하다.
만일 콘크리트 펌프 세척용 폼으로서 본 발명의 재질 대신 폴리우레탄 폼, 우레아 폼, 라텍스 폼과 같이 대부분 연속 기포 구조의 발포 셀들을 가지는 콘크리트 펌프 세척용 폼을 이용할 경우 눌림에 따라 발포 셀 내부의 공기가 빠져나갈 수 있다. 따라서, 이러한 콘크리트 펌프 세척용 폼을 콘크리트 펌프의 파이프 내에 투입시 빡빡함이 적어 세척효과가 떨어질 수 있다.
바람직하게는 상기 콘크리트 펌프 세척용 폼의 표면에 독립 기포가 노출된 것이 좋다. 금형 내 발포 공정과 같은 방법으로 제조되는 콘크리트 펌프 세척용 폼의 표면에는 일정 두께의 스킨 층이 존재할 수 있는데, 이러한 스킨 층은 폼과 파이프와의 마찰력이 약해져 수세미 효과가 약해지므로 그라인더 등으로 스킨 층을 제거하는 것이 바람직하다. 그 결과 상기 콘크리트 펌프 세척용 폼의 표면에는 독립 기포가 노출되어 있다. 예를 들어 상기 폼의 전체 표면적 중 독립 기포가 노출된 표면이 70% 이상, 바람직하게는 85% 이상의 면적을 차지할 수 있다. 상기 범위 이상에서 세척용 폼의 파이프 내 이송이 원활할 수 있다.
본 발명의 또 다른 측면에 따르면, 콘크리트 펌프 세척용 폼의 제조방법이 제공된다. 예를 들어 상기 콘크리트 펌프 세척용 폼은 중합체의 발포 가공에 의해 만들어질 수 있다. 발포 가공에 의해 콘크리트 펌프 세척용 폼을 제조하기 위한 적절한 원료에는 기본적인 중합체 외에 발포체 가공을 위한 가교제, 발포제, 및 충전제나 안료를 비롯한 기타 첨가제 등이 더 포함될 수 있다. 상기 콘크리트 펌프 세척용 폼을 제조하기 위한 원료를 니더나 밴버리 믹서 등과 같은 혼련기에서 혼합하고 롤밀을 이용하여 쉬팅하거나 펠릿형태로 제조한다. 이후 일정 온도 및 압력 (예를 들어 150 ~ 250℃의 온도 및 100 ~ 300 kg/㎠의 압력)에서 가압 프레스의 금형 내에서 가교한 후 금형을 열어 발포시키거나 금형이 장착된 사출발포기에서 사출하여 가교한 다음 금형을 열어 발포시키는 등의 방식으로 발포체(폼, foam) 형태의 시편을 얻을 수 있다. 금형의 형태 및 후속 가공 등을 통해 육면체, 원통형, 구형 및 기타 다양한 형상의 시편이 얻어질 수 있다. 상기 고분자 폼이 콘크리트 펌프의 파이프 내경에 밀착될 수 있는 형상을 가질 수 있다. 바람직하게는 콘크리트 펌프 세척용 폼의 크기는 파이프 내 세척을 위해 파이프 내경보다 약간 더 큰 크기를 가질 수 있으며, 파이프의 규격에 따라 다르지만 통상 50 내지 300 mm, 예를 들어 150 내지 200 mm의 직경을 가지며, 구형 또는 원통형의 형상을 가질 수 있다.
본 발명의 일 구현예에 따른 콘크리트 펌프의 파이프 청소용 고무스폰지는 이하의 방법으로 제조될 수도 있다. 먼저 DSC 융점 (melting point)이 100℃ 이상의 올레핀 블록 공중합체(olefin block copolymer, OBC)와 천연고무 또는 합성고무를 함유하는 중합체; 액상 연화제; 가교제, 발포제, 그리고 금속산화물, 스테아린산, 산화방지제, 진크스테아레이트, 티타늄디옥사이드, 가교조제 및 안료로 이루어진 군 중에서 선택되는 1종 이상의 기타 첨가제; 및 0.3 내지 2 mm 직경의 유기 또는 무기 미립자를 섞은 혼합물을 제공한다.
상기 유기 또는 무기 미립자는 기포를 만드는 핵의 역할을 한다. 상기 유기 또는 무기 미립자의 종류로는 플라스틱을 액체 질소 등으로 동결시켜 분쇄한 것, 모래, 규사 등이 있으며, 이중 플라스틱 분쇄품은 가격이 비싸고 모래는 강도가 약해 혼합과정에서 부숴져 버리는 결점이 있기 때문에 규사가 바람직하다.
상기 유기 또는 무기 미립자의 크기에 따라 연속 기포의 크기가 정해질 수 있다. 다음 상기 혼합물을 금형에 넣고 150~200℃ 및 10~15분 조건에서 가압하여 발포함으로써 고분자 폼을 형성한다.
상술한 방법으로 형성된 고분자 폼의 밀도는 0.3 g/cc 이하일 수 있다. 또한, 상기 독립 기포의 평균 직경이 1 내지 4 mm이며, 전체 발포 셀의 부피 중 상기 독립 기포의 부피가 70% 이상일 수 있다.
발포 후 그라인더로 폼 표면을 갈아서 독립 기포를 표면으로 노출시킨다. 발포를 마친 직후 세척용 폼 표면에는 일정 두께의 스킨 층이 형성될 수 있다. 표면의 스킨 층이 있을 경우 폼과 파이프와의 마찰력이 약해져 수세미 효과가 약해지므로 그라인딩을 통해 세척용 폼 표면의 스킨 층을 제거하는 것이 바람직하다.
상기와 같이 그라인더 작업이 완료된 이후 콘크리트 펌프의 파이프 청소용 고무스폰지의 내부를 성형할 수 있다. 상기 발포과정에서 상기 고무스폰지의 파이프형상을 동시에 성형할 수도 있지만, 이를 성형하지 않고 제조한 다음, 내부를 삭제하여 파이프 형상으로 가공할 수도 있다.
상술한 독립 기포 구조의 세척용 폼은 청소 후 파이프를 통해 나온 폼의 표면에 묻은 콘크리트를 브러쉬로 털어 내고 물로 간단히 세척하는 것으로 충분히 재사용 가능하다. 본 발명에 의한 고무스폰지는 마모에 의한 직경 감소에 따른 세척력이 떨어질 때까지 재사용이 가능한데 대체적으로 20회 이상이 재사용이 가능하므로 종래 연속기포 폼에 비해 원가 면에서 훨씬 저렴하다.
이하, 본 발명의 바람직한 실시예를 첨부한 도면을 참조하여 당해 분야의 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 설명하기로 한다. 또한, 본 발명을 설명함에 있어 관련된 공지의 기능 또는 공지의 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략하기로 한다. 그리고 도면에 제시된 어떤 특징들은 설명의 용이함을 위해 확대 또는 축소 또는 단순화된 것이고, 도면 및 그 구성요소들이 반드시 적절한 비율로 도시되어 있지는 않다. 그러나 당업자라면 이러한 상세 사항들을 쉽게 이해할 것이다.
실시예 : 폼 적합성 실험
1. OBC-1: 에틸렌 옥텐 공중합체(Ethylene Octene Copolymer, 밀도 0.866 g/㎤, MI 15, 융점: 118℃)
2. OBC-2: 에틸렌 옥텐 공중합체(Ethylene Octene Copolymer, 밀도 0.857 g/㎤, MI 20, 융점: 95℃)
3. Ethylene Copolymer-1: 에틸렌 비닐 아세테이트 공중합체(Ethylene Vinyl Acetate Copolymer, VA 33 중량%, MI 3.0)
4. Ethylene Copolymer-2: 에틸렌 비닐 아세테이트 공중합체(Ethylene Vinyl Acetate Copolymer, VA 28 중량%, MI 3.0)
5. Polyolefin Elastomer-1: 에틸렌 옥텐 공중합체(Ethylene Octene Copolymer, 밀도 0.865 g/㎤, MI 3.0, 융점 60℃)
6. Synthetic Rubber-1: 스티렌 부타디엔 고무(Styrene Butadiene Rubber, SBR 1502)
7. Synthetic Rubber-2: 스티렌 에틸렌 부틸렌 스티렌 고무(Styrene Ethylene Butylene Styrene Rubber, Styrene 20 중량%)
8. Process Oil-1: 파라핀계 프로세스 오일
상기 1~8의 원료를 하기의 표 1 및 표 2의 비율로 혼합한 다음, 이를 이용하여 하기의 시험방법을 통하여 물성 및 세척용 고무스폰지로의 사용 가능 여부를 조사하였다(하기의 표1~2에서 숫자는 각 원료의 중량부를 나타냄).
비교예 1 비교예 2 비교예 3 비교예 4 비교예 5 비교예 6 비교예 7 비교예 8 비교예 9 비교예 10
시판 우레탄 폼 시판 천연고무 폼
OBC-1
OBC-2
Ethylene
Copolymer-1
100
Ethylene
Copolymer-2
100
Polyolefin
Elastomer-1
100
Synthetic
Rubber-1
100 30
Synthetic
Rubber-2
100 100 100 70
Process Oil-1 50 30
Stearic Acid 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Znic Oxide 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0
Dicumyl Peroxide 0.8 0.8 2.0 0.8 0.8 0.8 0.8 0.8
Azodicarbonamide 4.0 4.0 4.5 4.0 40 7.5 4.0 4.0
비교예 11 비교예 12 비교예 13 비교예 14 비교예 15 실시예 1 실시예 2 실시예 3 비교예 16 비교예 17
OBC-1 100 70 75 60 50 50 35 50 25
OBC-2 100
Ethylene
Copolymer-1
Ethylene
Copolymer-2
Polyolefin
Elastomer-1
Synthetic
Rubber-1
30 30 20 45 20 55
Synthetic
Rubber-2
Process Oil-1 0 25 40 20 30 20 30 20
Stearic Acid 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Znic Oxide 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0
Dicumyl Peroxide 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 2.0 0.8
Azodicarbonamide 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0
실험예 1
하기의 실험방법을 이용하여 상기 실시예 1~3 및 비교예 1~17의 물성을 비교하여 콘크리트 펌프 파이프 청소용으로 사용이 적합한지를 확인하였다.
(시험방법)
1. 연속기포비율 측정시험
ASTM D2856-A의 측정시험법에 의거하여 연속기포비율을 측정하였다.
2. 수축율
각각의 배합비율로 폼을 만든 뒤 직경 170 mm의 공모양으로 그라인딩(Grinding)하고 오븐에 넣어 35℃에서 30일 동안 보관한 뒤 수축된 비율을 측정하였다. 수축율이 1% 미만이면 '양호', 1% 이상이면 '불량'으로 표시하였다.
3. 콘크리트 청소효율
상기 수축율 항목에서 만든 직경 170 mm의 공들을 콘크리트 펌핑 작업이 끝난 내경 150 mm의 콘크리트 펌프의 파이프 끝에 밀어 넣고 진공으로 1회 흡입해낸 후 파이프 내면을 물로 세척하였을 때 물에 의하여 씻겨져 나오는 시멘트의 양을 육안으로 관찰하여 시판 중인 천연고무 연속기포 폼의 경우보다 같거나 적으면 '양호', 많으면 '불량'으로 표시하였다.
4. 청소 후 폼(Foam)의 찢김 정도
내경 150 mm의 콘크리트 펌프에 펌핑작업이 끝난 후 직경 170 mm의 볼(Ball) 형태의 각종 폼으로 청소를 한 후 폼을 물로 세척한 뒤 표면의 기포(Cell)들이 찢어져 있는 상태를 관찰하여 시판 중인 천연고무 연속기포 폼의 경우보다 같거나 양호하면 '양호', 불량하면 '불량'이라 표시하였다.
5. 청소 후 24시간 후의 상태
내경 150 mm의 콘크리트 펌프에 펌핑작업이 끝난 후 직경 170 mm의 볼(Ball) 형태의 각종 폼으로 청소를 한 후 폼 표면에 묻어 있는 콘크리트를 브러쉬로 털어내고 물에 가볍게 흔들어 씻어서 상온에 보관하여 건조시킨 뒤 표면의 굳어 있는 상태를 지촉으로 검사하여 '양호' 또는 '불량'을 표시하였다.
6. 재사용 가능횟수
내경 150 mm의 콘크리트 펌프에 펌핑작업이 끝난 후 직경 170 mm의 볼 형태의 각종 폼으로 청소를 한 후 폼 표면에 묻어 있는 콘크리트를 브러쉬로 털어내고 물에 가볍게 흔들어 씻어서 상온에 보관하여 건조시킨 뒤 재사용 하기를 반복하여 폼의 직경이 165 mm로 줄어들 때까지의 횟수를 표시하였다. 그리고 연속기포가 30% 이상인 폼은 물속에 24시간 보관하였다가 건조시켜 재사용 가능한 횟수를 표시하였다.
비교예 1 비교예 2 비교예 3 비교예 4 비교예 5 비교예 6 비교예 7 비교예 8 비교예 9 비교예 10
사출작업성 양호 양호 양호 불량 양호 양호 양호 불량
경도(Shore 00) 20 25 37 55 35 19 70 35 35 35
밀도(g/㎤) 0.20 0.25 0.16 0.15 0.16 0.17 0.15 0.12 0.15 0.15
연속기포비율(%) 100 95 12 12 35 14 13 20 14 14
수축률 양호 양호 불량 불량 불량 극히 불량 양호 불량 불량 불량
콘크리트 청소효율 불량 양호 양호 양호 양호 양호 양호 양호 양호 양호
청소 후 Form찢김정도 불량 양호 양호 양호 양호 양호 양호 불량 양호 양호
청소 후 24시간 휴의 상태 불량 불량 양호 양호 불량 양호 양호 양호 양호 양호
재사용 가능 회수 1 3 20 25 4 15 25 7 20 4
콘크리트 펌프 파이프 청소용 적합성 부적합 부적합 부적합 부적합 부적합 부적합 부적합 부적합 부적합 부적합
비교예 11 비교예 12 비교예 13 비교예 14 비교예 15 실시예 1 실시예 2 실시예 3 비교예 16 비교예 17
사출작업성 양호 양호 불량 양호 불량 양호 양호 양호 양호 불량
경도(Shore 00) 55 35 45 45 39 35 25 20 23 18
밀도(g/㎤) 0.16 0.12 0.16 0.15 0.14 0.15 0.15 0.16 0.16 0.17
연속기포비율(%) 12 12 13 11 11 13 13 14 35 14
수축률 양호 불량 양호 양호 양호 양호 양호 양호 양호 불량
콘크리트 청소효율 양호 양호 양호 양호 불량 양호 양호 양호 양호 양호
청소 후 Form찢김정도 양호 양호 불량 양호 불량 양호 양호 양호 양호 양호
청소 후 24시간 휴의 상태 양호 양호 양호 양호 양호 양호 양호 양호 불량 양호
재사용 가능 회수 20 15 20 20 5 25 20 20 5 7
콘크리트 펌프 파이프 청소용 적합성 부적합 부적합 부적합 부적합 부적합 적합 적합 적합 부적합 부적합
상기 표 3~4를 참조하면, 비교예 1, 2의 시판 우레탄폼이나 시판 천연고무폼의 경우 연속 기포 구조를 가지므로 콘크리트 청소효율, 청소 후 폼 찢김 정도, 청소 후 24시간 후의 상태 등이 불량하다. 또한 비교예 3 내지 12와 같이 OBC, 에틸렌 공중합체, POE 또는 합성 고무 등을 단독으로 사용하여 제조한 한 폼의 경우 수축율이나 경도가 높게 나타나는 단점이 있다. 또한 비교예 13 내지 15와 같이 OBC, 고무, 액상 연화제 중 어느 하나를 생략하여 제조한 폼의 경우에도 물성이 저조함을 알 수 있었다. 비교예 16의 경우 과산화물(peroxide)의 양이 많아 과가류가 되어, 발포시 기포(cell) 벽이 찢어져 연속 기포(open cell)가 다수 생긴다. 그 결과 독립 기포의 부피가 70% 미만으로 인해 청소 후 24시간 후의 폼의 상태가 불량하며, 비교예 17과 같이 고무 함량이 너무 많은 경우 수축율이 불량하며 재사용 가능성이 떨어짐을 알 수 있다.
반면 실시예 1 내지 3과 같이 OBC, 합성 고무 및 액상 연화제를 동시에 사용하여 제조한 폼의 경우 세척용 폼으로서 기본적인 물성을 모두 충족시킨다.
실시예 4
상기 실시예 1에서 제조된 폼을 이용하여 도 1에 나타난 와 같이 고무스폰지를 제작하였다. 이때 상기 고무스폰지의 직경은 170mm, 헤드부 길이는 100mm, 본체부의 길이는 200mm(이때 최상단과 하단부 외부면이 이루는 각도는 약 30°), 본체부 두께는 30mm로 제작하였으며, 헤드부 내부에 함몰부를 형성하여 헤드부의 두께도 상기 본체부와 동일하게 제작하였다. 본체부의 타측 즉 후면부에는 4개의 팔을 가지는 지지부를 설치하였다
실시예5
상기 실시예 4에서 헤드부의 길이를 30mm, 본체부의 길이를 60mm로 제작한 것을 제외하고 동일하게 실시하였다(이때 최상단과 하단부 외부면이 이루는 각도는 약 87°).
실시예 6
상기 실시예 4에서 헤드부의 길이를 200mm, 본체부의 길이를 400mm로 제작한 것을 제외하고 동일하게 실시하였다(이때 최상단과 하단부 외부면이 이루는 각도는 약 21°).
실시예 7
상기 실시예 4에서 헤드부의 길이를 200mm 본체부의 길이를 100mm로 제작한 것을 제외하고 동일하게 실시하였다(이때 최상단과 하단부 외부면이 이루는 각도는 약 30°).
실시예 8
상기 실시예 4에서 헤드부의 길이를 100mm 본체부의 길이를 300mm로 제작한 것을 제외하고 동일하게 실시하였다(이때 최상단과 하단부 외부면이 이루는 각도는 약 25°).
실시예 9
상기 실시예 4에서 헤드부 내부의 함몰부를 형성하지 않은 것을 제외하고 동일하게 실시하였다.
실시예 10
상기 실시예 4에서 본체부의 일측의 내경은 110mm(본체부 두께 30mm), 타측의 내경은 90mm(본체부 두께 40mm)로 제작한 것을 제외하고 동일하게 실시하였다(도 4 참조).
실시예 11
상기 실시예 4에서 본체부 일측의 외경은 170mm(내경 110mm) 본체부 타측의 외경은 190mm(내경 110mm)로 제작한 것을 제외하고 동일하게 실시하였다(도 5 참조).
실시예 12
상기 실시예 1에서 후면부에 지지부를 설치하지 않은 것을 제외하고 동일하게 실시하였다.
비교예 18
기존에 사용한 것과 같이 직경 170mm의 구형으로 제작하였다.
실험예 2
상기 실시예 4~12, 비교예 1을 이용하여 콘크리트 펌프 세척력 및 내구성을 실험하였다. 1톤의 콘크리트를 이송한 이후 상기 각 고무스폰지를 통과시키되, 더 이상의 잔여 콘크리트가 나오지 않을 때 까지의 통과 회수를 비교하여 세척력을 비교하였다(잔여물 미검출 회수).
또한 각 세척시 통과시간을 비교하여 각 고무스폰지의 이동용이성을 측정하였다.
마지막으로 각 고무스폰지를 20회 통과시키되, 파열이나 파손부위가 관찰되는 통과 회수를 기록하여 내구성을 비교하였다.
실시예 4 실시예 5 실시예 6 실시예 7 실시예 8 실시예 9 실시예 10 실시예 11 실시예 12 비교예 1
전여물 미검출(회) 5 11 3 10 4 6 4 3 6 15
이동용이성(초) 2.2 2.0 4.8 2.1 3.7 2.4 2.3 2.4 2.1 2.0
표 5에 나타난 바와 같이 본 발명의 실시예의 경우 기존의 구형 스폰지에 비하여 높은 세척효율을 가지는 것으로 나타났다. 하지만 최상단과 하단부 외부면이 이루는 각도가 약 87°로 조절된 실시예 5의 경우 그 세척효과가 감소되는 것으로 나타났으며, 최상단과 하단부 외부면이 이루는 각도가 약 21°도로 조절된 실시예 6의 경우 통과시간이 오래걸려 세척력은 높아졌지만 통과시간이 지체되는 것을 확인하였다. 또한 실시예 6의 경우 가해지는 압력이 높아짐에 따라 파손부위가 관찰되었다.
헤드부의 길이를 길게 제작한 실시예 7의 경우 상대적으로 본체부의 길이가 줄어들어 세척력이 잔여물 미검출까지의 통과회수가 늘어나는 것을 확인하였으며, 상대적으로 본체부의 비율을 높인 실시예 8의 경우 배출까지 시간이 많이 걸리게되어 이동이 용이하지 못한 것으로 나타났다. 헤드부에 함몰부를 형성하지 않은 실시예 9의 경우 실시예 1과 유사한 결과를 나타내었으며, 다만 육안으로 관찰시 배출이후 헤드부의 형상이 더욱 잘 유지되는 것을 확인할 수 있었다.
본체부의 하단두께를 두껍게 제작한 실시예 10 및 11의 경우 세척효율이 향상되는 것을 확인할 수 있었으며, 지지부를 설치하지 않은 실시예 12의 경우 14회 통과시점에서 후단부가 파손되는 것을 확인하였다.
기존의 구형으로 제작된 비교예 1의 경우 15회를 통과시킨 시점에서 잔여물이 나타나지 않아 본 발명의 실시예에 비하여 세척력이 떨어지는 것으로 확인되었다.
이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적 기술은 단지 바람직한 실시 양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.

Claims (12)

  1. 파이프 형상의 본체부;
    상기 파이프 형상의 일측에 형성되며, 외면이 반구형 또는 원추형으로 제작되는 헤드부; 및
    상기 파이프 형상의 타측에 형성되며, 상기 파이프 형상의 내부와 연통되는 개구부가 형성되어 있는 후면부;
    를 포함하는 콘크리트 펌프의 파이프 청소용 고무스폰지.
  2. 제1항에 있어서,
    상기 본체부는 상기 콘크리트 펌프의 파이프 내경 대비 10~20%가 큰 외경을 가지며, 상기 외경 대비 5~30%의 두께를 가지는 콘크리트 펌프의 파이프 청소용 고무스폰지.
  3. 제1항에 있어서,
    상기 헤드부는,
    내부가 상기 본체부의 내부와 연통되어 있는 함몰부가 형성된 것; 또는
    내부가 상기 고무스폰지로 충진된 것;
    인 콘크리트 펌프의 파이프 청소용 고무스폰지.
  4. 제1항에 있어서,
    상기 후면부의 두께는 상기 본체부 일측의 두께에 비하여 두껍게 형성된 콘크리트 펌프의 파이프 청소용 고무스폰지.
  5. 제4항에 있어서,
    상기 본체부는 일측에서 타측으로 갈수록 두께가 두껍게 형성된 콘크리트 펌프의 파이프 청소용 고무스폰지.
  6. 제1항에 있어서,
    상기 후면부에는 방사상으로 형성되어 상기 본체부의 타측단에 연결되며, 상기 후면부의 확장을 저지하는 지지부가 형성되어 있는 콘크리트 펌프의 파이프 청소용 고무스폰지.
  7. 제1항에 있어서,
    상기 본체부의 길이와 상기 헤드부의 길이의 비는 1:2~3:1인 콘크리트 펌프의 파이프 청소용 고무스폰지.
  8. 제1항에 있어서,
    상기 콘크리트 펌프의 파이프 청소용 고무스폰지는 DSC 융점(melting point)이 100℃ 이상의 올레핀 블록 공중합체(olefin block copolymer, OBC)와 천연고무 또는 합성고무를 함유하는 중합체; 및 액상 연화제를 필수 성분으로 하는 폼 조성물로 제조된 콘크리트 펌프의 파이프 청소용 고무스폰지.
  9. 제8항에 있어서,
    상기 조성물은 상기 올레핀 블록 공중합체 100 중량부에 대하여 상기 천연고무 또는 상기 합성고무가 10 내지 200 중량부가 함유된 것인 콘크리트 펌프의 파이프 청소용 고무스폰지.
  10. 제8항에 있어서,
    상기 조성물은 상기 올레핀 블록 공중합체 100 중량부에 대하여 상기 액상 연화제가 10 내지 75 중량부가 함유된 것인 콘크리트 펌프의 파이프 청소용 고무스폰지.
  11. 제8항에 있어서,
    상기 조성물은 가교제, 발포제, 그리고 금속산화물, 스테아린산, 산화방지제, 진크스테아레이트, 티타늄디옥사이드, 가교조제, 안료 및 충전제로 이루어진 군 중에서 선택되는 1종 이상의 기타 첨가제가 더 포함된 것인 콘크리트 펌프의 파이프 청소용 고무스폰지.
  12. 제11항에 있어서,
    상기 조성물은 0.3 내지 2 mm 직경의 유기 또는 무기 미립자가 더 포함된 것인 콘크리트 펌프의 파이프 청소용 고무스폰지.
PCT/KR2022/007765 2021-06-01 2022-05-31 콘크리트 펌프의 파이프 청소용 고무스폰지 WO2022255783A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20210071096 2021-06-01
KR10-2021-0071096 2021-06-01

Publications (1)

Publication Number Publication Date
WO2022255783A1 true WO2022255783A1 (ko) 2022-12-08

Family

ID=84324355

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/007765 WO2022255783A1 (ko) 2021-06-01 2022-05-31 콘크리트 펌프의 파이프 청소용 고무스폰지

Country Status (1)

Country Link
WO (1) WO2022255783A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60115590U (ja) * 1984-01-12 1985-08-05 日石三菱株式会社 配管内挾液走行用具
JPS6214355B2 (ko) * 1977-12-08 1987-04-01 Mitsubishi Mining & Cement Co
KR20030030237A (ko) * 2001-10-09 2003-04-18 주식회사 아세아프로텍 피그 및 그 제조장치
KR101030055B1 (ko) * 2010-05-19 2011-04-21 최재현 상하수도관 내부의 수분 및 퇴적물 준설장치 및 공법
KR101466388B1 (ko) * 2014-07-16 2014-11-28 화인케미칼 주식회사 콘크리트 펌프 세척용 폼

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6214355B2 (ko) * 1977-12-08 1987-04-01 Mitsubishi Mining & Cement Co
JPS60115590U (ja) * 1984-01-12 1985-08-05 日石三菱株式会社 配管内挾液走行用具
KR20030030237A (ko) * 2001-10-09 2003-04-18 주식회사 아세아프로텍 피그 및 그 제조장치
KR101030055B1 (ko) * 2010-05-19 2011-04-21 최재현 상하수도관 내부의 수분 및 퇴적물 준설장치 및 공법
KR101466388B1 (ko) * 2014-07-16 2014-11-28 화인케미칼 주식회사 콘크리트 펌프 세척용 폼

Similar Documents

Publication Publication Date Title
WO2016010247A1 (ko) 콘크리트 펌프 세척용 폼
CN101255257B (zh) 三元乙丙橡胶发泡体
KR101632878B1 (ko) 폴리올레핀계 수지 발포 시트, 그 제조 방법 및 그 용도
US5939464A (en) High elasticity foams
KR100706088B1 (ko) 올레핀계 발포 적층체 및 용도
TWI230174B (en) Olefinic thermoplastic elastomer foam and olefinic thermoplastic elastomer composition for preparing the same
WO2022255783A1 (ko) 콘크리트 펌프의 파이프 청소용 고무스폰지
KR101839434B1 (ko) 신발 중창의 제조방법
JP2007021765A (ja) 成形機洗浄用樹脂組成物および洗浄方法
WO2019050365A1 (ko) 다공성 폴리우레탄 연마패드 및 이의 제조방법
WO2014021544A1 (ko) 생분해성 수지를 포함한 발포용 수지 조성물 및 그것으로부터 제조된 발포체
KR20230166351A (ko) 콘크리트 펌프의 파이프 청소용 고무스폰지
WO2019135489A1 (ko) 충격흡수용 탄성 복합체
KR20090086336A (ko) 폴리올레핀계 수지 압출 발포체
WO2017018690A1 (ko) 몰드 클리닝 컴파운드 및 반도체 패키징 금형의 클리닝 방법
WO2023033547A1 (ko) 발포용 조성물, 생분해성 발포체 및 이의 제조방법
JP3945248B2 (ja) オレフィン系発泡積層体および用途
JP3460854B2 (ja) 熱可塑性エラストマー組成物
WO2014081144A1 (ko) 고분자 가공용 퍼징제
JPH069835A (ja) ポリプロピレン樹脂組成物
JP2003113284A (ja) 低弾性率高分子組成物
JP2004223753A (ja) 熱可塑性エラストマー組成物の押出成形方法、架橋発泡体及び自動車用ウェザストリップ
CN110549713B (zh) 聚烯烃类树脂层叠发泡片及由该层叠发泡片构成的玻璃板用衬纸
KR20180115913A (ko) 성형 폼의 제조방법
WO2019143200A1 (ko) 분말 슬러쉬 몰딩용 열가소성 폴리우레탄 조성물과 이의 제조방법, 및 이를 이용하여 제조된 자동차 내장재용 표피재

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22816442

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22816442

Country of ref document: EP

Kind code of ref document: A1