WO2022255750A1 - 투명한 니켈 착화합물 잉크 조성물 및 이의 제조 방법 - Google Patents

투명한 니켈 착화합물 잉크 조성물 및 이의 제조 방법 Download PDF

Info

Publication number
WO2022255750A1
WO2022255750A1 PCT/KR2022/007650 KR2022007650W WO2022255750A1 WO 2022255750 A1 WO2022255750 A1 WO 2022255750A1 KR 2022007650 W KR2022007650 W KR 2022007650W WO 2022255750 A1 WO2022255750 A1 WO 2022255750A1
Authority
WO
WIPO (PCT)
Prior art keywords
branched
alkyl
straight
ink composition
nickel complex
Prior art date
Application number
PCT/KR2022/007650
Other languages
English (en)
French (fr)
Inventor
김석주
김명진
Original Assignee
솔브레인 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 솔브레인 주식회사 filed Critical 솔브레인 주식회사
Priority to JP2023573557A priority Critical patent/JP2024521247A/ja
Priority to CN202280038794.3A priority patent/CN117413031A/zh
Publication of WO2022255750A1 publication Critical patent/WO2022255750A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/03Printing inks characterised by features other than the chemical nature of the binder
    • C09D11/037Printing inks characterised by features other than the chemical nature of the binder characterised by the pigment
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/52Electrically conductive inks

Definitions

  • the present invention relates to a transparent nickel complex ink composition and a method for preparing the same, and more specifically, the nickel complex ink composition has a transparent particle-free form and has an absorbance (ABS) value of 1.0 or more in a wavelength range of 600 nm to 650 nm, wherein the The maximum diameter of nickel particles constituting the thin film formed by applying the composition to a substrate is 150 nm or less, and can be used for forming MLCC internal electrodes, electromagnetic wave shielding, solar cell electrodes, or display panel electrodes. have.
  • Nickel powder is used as a material for capacitors, which are electronic components constituting electronic circuits, in particular, as a material for thick film conductors constituting internal electrodes of multilayer ceramic components such as multilayer ceramic capacitors (MLCC) and multilayer ceramic substrates.
  • capacitors which are electronic components constituting electronic circuits, in particular, as a material for thick film conductors constituting internal electrodes of multilayer ceramic components such as multilayer ceramic capacitors (MLCC) and multilayer ceramic substrates.
  • an internal electrode paste obtained by kneading nickel powder, a binder resin such as ethyl cellulose, and an organic solvent such as terpineol is screen-printed on a dielectric green sheet.
  • the dielectric green sheets printed with the internal electrode paste are stacked and compressed so that the internal electrode paste and the dielectric green sheets are alternately overlapped, thereby obtaining a laminate.
  • the obtained laminate is cut into a predetermined size, heated to remove the binder resin (hereinafter referred to as "removing binder"), and then fired at a high temperature of about 1,300 ° C. to obtain a ceramic molded body.
  • removing binder the binder resin
  • a multilayer ceramic capacitor can be obtained by providing an external electrode on the obtained ceramic molded body.
  • the binder removal process of the laminate should be performed in an atmosphere having an extremely low oxygen concentration such as an inert atmosphere so that the non-metal is not oxidized.
  • a paste composition technology minimizing the particle size is proposed, such as using an internal electrode paste containing functional particles having a particle size close to 50 nm to minimize the thickness when forming such an electrode.
  • the particle content exceeds 50 parts by weight relative to 100 parts by weight of the total composition for stability of the composition, and as a result, there is a limit in that the thickness of the internal electrode cannot be reduced to 400 nm or less.
  • the present inventors completed the present invention by preparing a transparent particle-free conductive nickel complex ink composition for forming MLCC internal electrodes of the multilayer ceramic capacitor.
  • the transparent nickel complex ink composition is transparent and particle-free, and is competitive because it has the advantage of having a lower metal content than conventional pastes or inks, and thus has the advantage of having a low internal electrode thickness.
  • Japanese Patent Application Publication No. 2008-127657 discloses a coating liquid for forming a nickel film, a method for manufacturing a nickel film, and a nickel film.
  • the present invention has been made to solve the above problems, and one embodiment of the present invention provides a transparent nickel complex ink composition and a manufacturing method thereof.
  • a polar portion including nickel and a compound represented by Formula 1 coordinated with the nickel; menstruum;
  • a transparent nickel complex ink composition comprising; and other additives, wherein the nickel complex ink composition is transparent and particle-free, and has an absorbance (ABS) of 1.0 or more in a wavelength range of 600 nm to 650 nm. composition is provided.
  • R 1 to R 3 are each independently hydrogen, linear or branched C 5 -C 20 alkyl, linear or branched C 5 -C 20 alkenyl, C 5 -C 20 cycloalkyl, C 6 -C 20 aryl unsubstituted or substituted with straight or branched C 1 -C 5 alkyl or straight or branched C 8 -C 18 alkyl, straight or branched C 1 -C 5 alkyl or straight chain or C 6 -C 20 heteroaryl or C 5 -C 20 alkylcarbonyl unsubstituted or substituted with branched C 8 -C 18 alkyl, and at least one of R 1 to R 3 is straight-chain or branched-chain C 1 - C 6 -C 20 aryl unsubstituted or substituted with C 5 alkyl or straight or branched C 8 -C 18 alkyl, straight or branched C 1 -C 5 alkyl or straight or branched C
  • R 1 to R 3 are each independently hydrogen, straight-chain or branched-chain C 8 -C 18 alkyl, straight-chain or branched-chain C 8 -C 18 alkenyl, C 8 -C 18 cycloalkyl, or straight-chain or C 8 -C 18 aryl unsubstituted or substituted with branched C 1 -C 5 alkyl or straight or branched C 8 -C 18 alkyl, straight or branched C 1 -C 5 alkyl, straight chain or branched.
  • It may be C 8 -C 18 heteroaryl unsubstituted or substituted with chain C 8 -C 18 alkyl, straight-chain or branched C 8 -C 18 alkyl, or straight-chain or branched C 8 -C 18 alkenyl. .
  • R 1 and R 2 are hydrogen, and R 3 is straight or branched C 1 -C 5 alkyl, C 8 -C 18 aryl substituted with straight or branched C 8 -C 18 alkyl, or It may be heteroaryl, straight-chain or branched C 8 -C 18 alkyl, or straight-chain or branched C 8 -C 18 alkenyl.
  • the compound represented by Formula 1 is 2-amino-1-methyl-1-propanol, n-hexylamine, hexylamine, cyclohexyl Amine (cyclohexylamine), n-octylamine, octylamine, dodecylamine, oleylamine, benzylamine, 1-dimethylamino-2-propanol (1 -dimethylamino-2-propanol), 2-(diethylamino)ethanol (2-(diethylamino)ethanol), or diphenylamine.
  • the concentration of the polar part may be 8% to 72% by weight based on the total weight of the transparent nickel complex ink composition.
  • the solvent is terpineol, ⁇ -terpineol, dihydro-terpineol, terpinyl acetate, dihydro terpinyl acetate, Isobornyl acetate, isobornyl propionate, isobornyl isobutyrate, ethylene glycol, propylene glycol, butylene glycol glycol), diethylene glycol, dipropylene glycol, dipropylene glycol monomethyl ether, ethylene glycol phenyl ether, propylene glycol phenyl ether phenyl ether), ethylene glycol monobutyl ether acetate, dipropylene glycol methyl ether acetate, ethanol, propanol, isopropyl alcohol, butanol, isooctyl alcohol, di A group consisting of diacetone alcohol, 1,2-pentanediol, 1,5-pentanediol, 2-methyl-2,4-pentanedio
  • the other additives may include a material selected from the group consisting of a binder resin, a plasticizer, a stabilizer, a dispersing agent, a release agent, a reducing agent, a surfactant, a wetting agent, a thixotropic agent, a leveling agent, and combinations thereof.
  • the binder resin is polyvinyl butyral, ethyl cellulose, polyvinyl pyrrolidone, acryl, polyvinyl acetal, polyvinyl alcohol , polyolefin, polyurethane, polystyrene, and combinations thereof.
  • a maximum diameter of nickel particles in a thin film formed by applying the transparent nickel complex ink composition to a substrate may be 150 nm or less.
  • the transparent nickel complex ink composition may be characterized in that it is a transparent nickel complex ink composition for forming MLCC internal electrodes, for electromagnetic wave shielding, for forming solar cell electrodes, or for forming display panel electrodes.
  • Another aspect of the present invention is,
  • a method for producing a transparent nickel complex ink composition comprising heating the binder resin together in the heating step, wherein the transparent nickel complex ink composition is transparent and particle-free, and has an absorbance (ABS) in a wavelength range of 600 nm to 650 nm It provides a method for producing a transparent nickel complex ink composition having a value of 1.0 or more.
  • R 1 to R 3 are each independently hydrogen, straight-chain or branched-chain C 5 -C 20 alkyl, straight-chain or branched-chain C 5 -C 20 alkenyl, C 5 -C 20 cycloalkyl, or straight-chain or C 6 -C 20 aryl unsubstituted or substituted with branched C 1 -C 5 alkyl or straight or branched C 8 -C 18 alkyl, straight or branched C 1 -C 5 alkyl or straight or branched chain C 6 -C 20 heteroaryl or C 5 -C 20 alkylcarbonyl unsubstituted or substituted with C 8 -C 18 alkyl chain, and at least one of R 1 to R 3 is straight-chain or branched-chain C 1 -C C 6 -C 20 aryl unsubstituted or substituted with 5 alkyl or straight or branched C 8 -C 18 alkyl, straight or branched C 1 -C 20 al
  • the nickel complex ink composition may be transparent and particle-free, and may have an absorbance (ABS) of 1.0 or more in a wavelength range of 600 nm to 650 nm.
  • ABS absorbance
  • the heating may be performed at less than 115°C.
  • the transparent nickel complex compound ink composition is transparent and non-particle, it is possible to apply a thinner coating than a conventional paste composition, and thus, it may be possible to form a thin film.
  • the maximum diameter of the nickel particles constituting the thin film formed by applying the nickel complex ink composition to the substrate is very small, less than 150 nm, and the roughness of the nickel inner electrode is small, which means that the MLCC inner electrode and the dielectric green sheet are alternately overlapped. It may be that the performance is improved by increasing the number of thin films in the MLCC of the same volume, as it leads to the advantage of high adhesion when stacked and compressed in such a way.
  • FIG. 1 is a photograph showing a transparent nickel complex compound ink composition for forming an MLCC internal electrode prepared according to an embodiment and a comparative example of the present invention.
  • Figure 2 is a graph showing the absorbance of the transparent nickel complex compound ink composition prepared according to one embodiment and a comparative example of the present invention.
  • FIG. 3 is a photograph showing a thin film of a nickel internal electrode manufactured according to an embodiment of the present invention and a comparative example.
  • FIG. 4 is a SEM photograph showing a nickel inner electrode thin film manufactured according to an embodiment and a comparative example of the present invention, respectively.
  • the transparent nickel complex ink composition can be used for electrodes of various electronic devices and semiconductors containing nickel, or for electromagnetic wave shielding (EMI Shielding), for example, for forming MLCC internal electrodes, It may be a transparent nickel complex compound ink composition for electromagnetic wave shielding, solar cell electrode formation, or display panel electrode formation, preferably a nickel complex compound ink composition used for forming MLCC internal electrodes or electromagnetic wave shielding.
  • EMI Shielding electromagnetic wave shielding
  • Multilayer Ceramic Capacitors MLCCs
  • MLCC is the English abbreviation of Multilayer Ceramic Capacitor, and it is called multilayer ceramic capacitor.
  • MLCC is a capacitor with a fixed value in which a ceramic material acts as a dielectric, and is basically composed of two or more ceramic layers and a metal layer acting as an electrode.
  • the composition of the ceramic material determines the MLCC's electrical behavior and hence its range of applications.
  • next-generation MLCCs must have numerous stacked dielectric layers with a thickness of less than 1 ⁇ m. In particular, in the case of internal electrodes, numerous layers with a thickness of 400 nm or less are required.
  • the basic principle for MLCC to store electricity is through dielectric polarization. In the absence of an external electric field, the electrical dipoles inside the dielectric are randomly distributed, showing the characteristics of an insulator. are concentrated, respectively, to be able to store electricity.
  • MLCC is a key component of a passive element that has the function of temporarily charging the accumulated electricity, and has the characteristic of always discharging the current constantly by passing AC current and blocking DC current. Passive elements to be used in next-generation miniaturized and high-capacity electronic devices require MLCCs with higher capacitance.
  • MLCC is formed by stacking many dielectric layers and internal electrodes in parallel and alternating.
  • the inner electrode is connected to the outer end for surface mounting.
  • the capacity of MLCC is expressed by the following equation,
  • the thickness of the dielectric layer and the number of layers are important factors. That is, in order to increase the capacitance of the MLCC to realize high capacity, the surface area of the internal electrode should be maximized and the thickness of the dielectric thin film and the internal electrode should be minimized. However, since it is impossible to increase the area according to the demand for miniaturization of the device, it is necessary to minimize the thickness of the internal electrode and obtain high capacitance by stacking the internal electrode and the dielectric thin film in the same volume.
  • the first aspect of the present application is,
  • a polar portion including nickel and a compound represented by Formula 1 coordinated with the nickel; menstruum;
  • a transparent nickel complex ink composition comprising; and other additives, wherein the nickel complex ink composition is transparent and particle-free, and has an absorbance (ABS) of 1.0 or more in a wavelength range of 600 nm to 650 nm. composition is provided.
  • R 1 to R 3 are each independently hydrogen, linear or branched C 5 -C 20 alkyl, linear or branched C 5 -C 20 alkenyl, C 5 -C 20 cycloalkyl, C 6 -C 20 aryl unsubstituted or substituted with straight or branched C 1 -C 5 alkyl or straight or branched C 8 -C 18 alkyl, straight or branched C 1 -C 5 alkyl or straight chain or C 6 -C 20 heteroaryl or C 5 -C 20 alkylcarbonyl unsubstituted or substituted with branched C 8 -C 18 alkyl, and at least one of R 1 to R 3 is straight-chain or branched-chain C 1 - C 6 -C 20 aryl unsubstituted or substituted with C 5 alkyl or straight or branched C 8 -C 18 alkyl, straight or branched C 1 -C 5 alkyl or straight or branched C
  • the transparent nickel complex compound ink composition according to the first aspect of the present disclosure and a thin film formed by applying the nickel complex compound ink composition to a substrate will be described in detail.
  • the transparent nickel complex compound ink composition may be characterized in that it is transparent and particle-free. That is, in the case of the internal electrode paste, which can be referred to as a conventional nickel ink composition, functional nickel particles having a particle size close to 50 nm are included in an amount of 50 parts by weight or more relative to 100 parts by weight of the total composition for stability of the composition. Although there was a limitation that the thickness of the electrode could not be reduced to 400 nm or less, the transparent nickel complex ink composition according to the present invention is particle-free, so that the above problems do not occur, and thinning of the internal electrode can be achieved. have. Accordingly, since the internal electrodes manufactured using the transparent nickel complex ink composition can realize a larger number of internal electrode layers, miniaturization and higher capacity of the multilayer ceramic capacitor including the internal electrodes may be achieved.
  • R 1 to R 3 are each independently hydrogen, linear or branched C 8 -C 18 alkyl, linear or branched C 8 -C 18 alkenyl , C 8 -C 18 cycloalkyl, straight or branched C 1 -C 5 alkyl or straight or branched C 8 -C 18 alkyl substituted or unsubstituted C 8 -C 18 aryl, straight or branched chain C 1 -C 5 alkyl, C 8 -C 18 heteroaryl unsubstituted or substituted with straight or branched C 8 -C 18 alkyl, straight or branched C 8 -C 18 alkyl or straight or branched C 8 -C 18 heteroaryl 8 -C 18 alkenyl, more preferably R 1 and R 2 are hydrogen, R 3 is straight or branched C 1 -C 5 alkyl, straight or branched C 8 -C 18 alkyl substituted C 8 -C
  • the compound represented by Formula 1 is 2-amino-1-methyl-1-propanol (2-amino-1-methyl-1-propanol), normal hexylamine (n-hexylamine), Hexylamine, cyclohexylamine, n-octylamine, octylamine, dodecylamine, oleylamine, benzylamine, 1- It may be dimethylamino-2-propanol (1-dimethylamino-2-propanol), 2- (diethylamino) ethanol (2- (diethylamino) ethanol) or diphenylamine (diphenylamine). That is, a pair of unshared electrons of nitrogen included in Chemical Formula 1 may form a polar portion by forming a coordinate bond with nickel.
  • the concentration of the polar part may be 8% to 72% by weight, preferably 8% to 64% by weight, more preferably 8% to 64% by weight based on the total weight of the nickel complex compound ink composition. It may be 8% to 56% by weight.
  • concentration of the polar portion is less than 8% by weight relative to the total weight of the conductive nickel complex ink composition, the content of the solvent is relatively high, making it difficult to form a uniform thin film when forming a nickel internal electrode formed by applying the transparent nickel complex ink composition to a substrate. If it is more than 72% by weight, the content of the solvent is relatively small, and the polar part and the solvent may not be uniformly mixed.
  • the transparent nickel complex ink composition is a solvent, terpineol (terpineol), alpha terpineol ( ⁇ -terpineol), dihydro-terpineol (dihydro-terpineol), terpineyl acetate ( terpinyl acetate), dihydro terpinyl acetate, isobornyl acetate, isobornyl propionate, isobornyl isobutyrate, ethylene glycol glycol), propylene glycol, butylene glycol, diethylene glycol, dipropylene glycol, dipropylene glycol monomethyl ether, ethylene glycol phenyl Ether (ethylene glycol phenyl ether), propylene glycol phenyl ether, ethylene glycol monobutyl ether acetate, dipropylene glycol methyl ether acetate, ethanol, propanol, isopropyl alcohol , butanol,
  • the solvent is well mixed with the polar portion and has excellent wettability with respect to the surface of a substrate, particularly glass, when the transparent nickel complex compound ink composition containing the solvent is applied to a substrate, a thin thickness may be formed, and the coating Flatness can also be excellent.
  • solvents with low vapor pressure such as dipropylene glycol monomethyl ether
  • the number of vaporized molecules is smaller than that of general solvents, so even a small amount of heat is applied to quickly change the molecules in the liquid state to the gaseous state. can do.
  • solvents with low vapor pressure such as dipropylene glycol monomethyl ether
  • the coating flatness after the drying and sintering process may also be excellent because the solvent evaporates quickly while maintaining excellent wettability on the entire surface of the coating area. Therefore, when applied to the internal electrodes of a multilayer ceramic capacitor (MLCC), thinning of the internal electrodes may be achieved because wettability with dielectric green sheets serving as a base material of the internal electrodes is also excellent. Meanwhile, the amount of the solvent may be 12% to 86% by weight based on the total weight of the conductive nickel complex ink composition.
  • the other additives include a material selected from the group consisting of a binder resin, a plasticizer, a stabilizer, a dispersing agent, a release agent, a reducing agent, a surfactant, a wetting agent, a thixotropic agent, a leveling agent, and combinations thereof it could be
  • the binder resin is polyvinyl butyral, ethyl cellulose, polyvinyl pyrrolidone, acryl, polyvinyl acetal, polyvinyl alcohol , polyolefin, polyurethane, polystyrene, and combinations thereof.
  • the binder resin is polyvinyl butyral, ethyl cellulose, polyvinyl pyrrolidone, acryl, polyvinyl acetal, polyvinyl alcohol , polyolefin, polyurethane, polystyrene, and combinations thereof.
  • the humectant is 1,2-hexanediol, 1,6-hexanediol, glycerin, polyethylene glycol, polyol such as sorbitol or trehalose, amino acid, urea, lactate, or natural moisturizing agent such as PCA-Na.
  • a polymer moisturizer such as factor (NMF), hyaluronate, chondroitin sulfate, or hydrolyzed collagen may be used.
  • the leveling agent is an additive having a smoothing (leveling) action, and a compound containing nitrogen such as polyamine may be used.
  • the transparent nickel complex compound ink composition may have an absorbance (ABS) of 1.0 or more in a wavelength range of 600 nm to 650 nm.
  • ABS absorbance
  • the reason why the absorbance (ABS) peak in the 600 nm to 650 nm wavelength range of the nickel complex ink composition is high is because when the unshared electron pair of nitrogen included in Chemical Formula 1 forms a coordinate bond with nickel to form a polar portion, the d of nickel It is measured that an energy level difference occurs in the orbitals, and accordingly, d orbital electrons of a low energy level of nickel absorb light of a specific wavelength in the 600 nm to 650 nm wavelength band and move to a high energy level d orbital. It may be because it becomes Meanwhile, the absorbance (ABS) value may mean a value when the concentration of the polar portion is 8% to 72% by weight based on the total weight of the conductive nickel complex ink composition.
  • the second aspect of the present application is,
  • the substrate may be variously applied, but may be, for example, glass, and preferably may be a dielectric green sheet serving as a substrate for internal electrodes of a multilayer ceramic capacitor (MLCC).
  • MLCC multilayer ceramic capacitor
  • the MLCC internal electrode transparent nickel complex ink composition is well mixed with the polar part and contains a solvent with a low vapor pressure, it has excellent wettability with the substrate and the coating area in the drying and sintering process after coating. Coating flatness after the drying and sintering process may also be excellent because the solvent evaporates quickly throughout while maintaining excellent wettability on the front surface. Therefore, when it is applied to a substrate, it may form a thin thickness, and the coating flatness may also be excellent.
  • the maximum diameter of nickel particles of the thin film including the transparent nickel complex ink composition may be 150 nm or less.
  • the average diameter of the nickel particles is very small, the roughness of the nickel inner electrode may be reduced. This may be due to the fact that when the MLCC internal electrodes and the dielectric green sheets are alternately stacked and compressed, the adhesion is high, increasing the number of thin films in the MLCC of the same volume and improving performance.
  • preparing a nickel complex compound by mixing a nickel precursor and a compound represented by Formula 1; mixing the nickel complex compound with a solvent; and heating the nickel complex compound mixed with the solvent. It provides a method for producing a transparent nickel complex compound ink composition comprising the step of heating the binder resin together in the heating step.
  • R 1 to R 3 are each independently hydrogen, linear or branched C 5 -C 20 alkyl, linear or branched C 5 -C 20 alkenyl, C 5 -C 20 cycloalkyl, C 6 -C 20 aryl unsubstituted or substituted with straight or branched C 1 -C 5 alkyl or straight or branched C 8 -C 18 alkyl, straight or branched C 1 -C 5 alkyl or straight chain or C 6 -C 20 heteroaryl or C 5 -C 20 alkylcarbonyl unsubstituted or substituted with branched C 8 -C 18 alkyl, and at least one of R 1 to R 3 is straight-chain or branched-chain C 1 - C 6 -C 20 aryl unsubstituted or substituted with C 5 alkyl or straight or branched C 8 -C 18 alkyl, straight or branched C 1 -C 5 alkyl or straight or branched C
  • the method for preparing the transparent nickel complex compound ink composition includes preparing a nickel complex compound by mixing a nickel precursor and a compound represented by Formula 1 below.
  • the nickel precursor is nickel formate (C 2 H 2 NiO 4 ), nickel acetate (Ni(CH 3 CO 2 ) 2 ), nickel chloride (NiCl 2 ), nickel sulfate (NiSO 4 ) , nickel acetylacetonate (Ni(C 5 H 7 O 2 ) 2 ), nickel carbonate (NiCO 3 ), nickel cyclohexanebutyrate ([C 6 H 11 (CH 2 ) 3 CO 2 ] 2 Ni), nickel nitrate ( Ni(NO 3 ) 2 ), nickel oxalate (NiC 2 O 4 ), nickel stearate (Ni(H 3 C(CH 2 ) 16 CO 2 ) 2 , nickel octanoate ([CH 3 (CH 2 ) 6 It may include a material selected from the group consisting of CO 2 ] 2 Ni) and combinations thereof, wherein the carboxyl group included in the nickel precursor is removed by evaporation to CO 2 in a subsequent
  • R 1 to R 3 are each independently hydrogen, linear or branched C 8 -C 18 alkyl, linear or branched C 8 -C 18 alkenyl , C 8 -C 18 cycloalkyl, straight or branched C 1 -C 5 alkyl or straight or branched C 8 -C 18 alkyl substituted or unsubstituted C 8 -C 18 aryl, straight or branched chain C 1 -C 5 alkyl, C 8 -C 18 heteroaryl unsubstituted or substituted with straight or branched C 8 -C 18 alkyl, straight or branched C 8 -C 18 alkyl or straight or branched C 8 -C 18 heteroaryl 8 -C 18 alkenyl, more preferably R 1 and R 2 are hydrogen, R 3 is straight or branched C 1 -C 5 alkyl, straight or branched C 8 -C 18 alkyl substituted C 8 -C
  • the compound represented by Formula 1 is 2-amino-1-methyl-1-propanol (2-amino-1-methyl-1-propanol), normal hexylamine (n- hexylamine, hexylamine, cyclohexylamine, n-octylamine, octylamine, dodecylamine, oleylamine, benzylamine , 1-dimethylamino-2-propanol, 2-(diethylamino)ethanol, or diphenylamine. That is, a pair of unshared electrons of nitrogen included in Chemical Formula 1 may form a polar portion by forming a coordinate bond with nickel.
  • the number of moles of the compound represented by Formula 1 forming a coordination bond with the nickel precursor may be 2 to 6 times, preferably 4 times, the number of moles of the nickel precursor. That is, the nickel precursor and the compound represented by Chemical Formula 1 may form a polar portion by forming a coordination bond.
  • the polar part may not be formed, and when it is greater than 6 times, due to the compound represented by Formula 1 remaining without forming a complex compound. Thereafter, during the binder removal process, many air bubbles may be generated, which may cause voids to occur in the thin film of the internal electrode, resulting in a decrease in conductivity.
  • the method for preparing the transparent nickel complex compound ink composition includes mixing the nickel complex compound with a solvent.
  • the amount of the mixed solvent may be 12% to 86% by weight, preferably 20% to 82% by weight, based on the total weight of the conductive nickel complex ink composition.
  • the content of the solvent is less than 12% by weight, the dispersion stability of the prepared transparent nickel complex ink composition may deteriorate, and when it exceeds 86% by weight, the content of the solvent is too high compared to the nickel complex compound, so that the nickel internal electrode formed by applying to the substrate It may be difficult to form a uniform thin film.
  • the specific type of the solvent has been described in the first aspect of the present application, the description thereof will be omitted in the third aspect of the present application.
  • the method for preparing the transparent nickel complex compound ink composition for forming a thin film includes heating the nickel complex compound mixed with the solvent.
  • the heating may be performed at less than 115° C., and through this, hydrates included in the nickel precursor may be evaporated and removed.
  • the step of heating the nickel complex compound mixed with the solvent may include heating the binder resin together.
  • the transparent nickel complex compound ink composition may have an absorbance (ABS) of 1.0 or more in a wavelength range of 600 nm to 650 nm.
  • ABS absorbance
  • the reason why the absorbance (ABS) peak in the 600 nm to 650 nm wavelength range of the nickel complex ink composition is high is because when the unshared electron pair of nitrogen included in Chemical Formula 1 forms a coordinate bond with nickel to form a polar portion, the d of nickel It is measured that an energy level difference occurs in the orbitals, and accordingly, d orbital electrons of a low energy level of nickel absorb light of a specific wavelength in the 600 nm to 650 nm wavelength band and move to a high energy level d orbital. It may be because it becomes Meanwhile, the absorbance (ABS) value may mean a value when the concentration of the polar portion is 8% to 72% by weight based on the total weight of the conductive nickel complex ink composition.
  • Step 1 Preparation of a transparent nickel complex ink composition
  • Nickel acetate and benzylamine were mixed at a molar ratio of 1:4 to form a nickel polar part, and 73.6 wt% of diacetone alcohol was mixed with 21.4 wt% of the polar part as a solvent, ,
  • a transparent nickel complex ink composition was prepared by mixing 5 wt% of PVB as a binder in the transparent nickel complex ink and stirring at 100 ° C.
  • the transparent nickel complex compound ink composition prepared in step 1 was printed on glass with a doctor blade using a 30 ⁇ m applicator and dried at 600° C. to prepare a nickel internal electrode.
  • step 1 of Example 1 a nickel polar part was formed by mixing nickel acetate and cyclohexylamine in a molar ratio of 1:4, and diacetone alcohol was added to 20.6 wt% of the polar part A nickel internal electrode was prepared in the same manner as in Example 1, except that 74.4 wt% was mixed as a solvent.
  • step 1 of Example 1 a nickel polar part was formed by mixing nickel acetate and n-octylamine in a molar ratio of 1:4, and diacetone alcohol (23.5 wt% of the polar part) A nickel internal electrode was prepared in the same manner as in Example 1, except that 71.5 wt% of diacetone alcohol) was mixed as a solvent.
  • step 1 of Example 1 a nickel polar part was formed by mixing nickel acetate and n-octylamine in a molar ratio of 1:4, and diacetone alcohol (13.4 wt% of the polar part) A nickel internal electrode was prepared in the same manner as in Example 1, except that 81.6 wt% of diacetone alcohol) was mixed as a solvent.
  • Step 1 Preparation of a transparent nickel complex ink composition
  • Nickel acetate and ethylenediamine were mixed at a molar ratio of 1:2 to form a nickel polar part, and 82.0 wt% of diacetone alcohol was mixed with 13.0 wt% of the polar part as a solvent, ,
  • a transparent nickel complex ink composition was prepared by mixing 5 wt% of PVB as a binder in the transparent nickel complex ink and reacting at 100 ° C.
  • the transparent nickel complex compound ink composition prepared in step 1 was printed on glass with a doctor blade using a 30 ⁇ m applicator and dried at 600° C. to prepare a nickel internal electrode.
  • step 1 of Comparative Example 1 nickel acetate and n-octylamine were mixed in a molar ratio of 1:4 to form a nickel polar part, and diacetone alcohol (7.2 wt% of the polar part)
  • a nickel internal electrode was prepared in the same manner as in Comparative Example 1, except that 87.8 wt% of diacetone alcohol) was mixed as a solvent.
  • step 1 of Comparative Example 1 nickel acetate and n-octylamine were mixed in a molar ratio of 1:4 to form a nickel polar part, and diacetone alcohol (A nickel internal electrode was prepared in the same manner as in Comparative Example 1, except that 91.3 wt% of diacetone alcohol) was mixed as a solvent.
  • the transparent nickel complex ink composition prepared in step 1 of Examples 1 to 3 and the transparent nickel complex ink composition prepared in step 1 of Comparative Example 1 Photos are shown in Fig. 1a, respectively.
  • FIG. 1A in the case of the transparent nickel complex compound ink composition prepared in step 1 of Examples 1 to 3 of the present invention, it was confirmed that it was transparent, and no precipitate was formed, so that it was in a particle-free state that did not contain nickel particles. .
  • the transparent nickel complex ink composition prepared in step 1 of Example 3 shown in FIG. 1A, the transparent nickel complex ink composition prepared in step 1 of Example 4 shown in FIG. 1B, and the steps of Comparative Examples 2 to 3 shown in FIG. 1B As in the transparent nickel complex ink composition prepared in 1, it was confirmed that the concentration of the transparent nickel complex ink composition decreased as the content of the polar part decreased and the content of the solvent increased.
  • thermoscientific's spectrophotometer BioMate 160 was used, Using this, absorbance was measured in a wavelength range of 200 nm to 900 nm, and the results are shown in FIGS. 2a to 2c and FIG. 2d, respectively.
  • 2a to 2c are graphs showing the absorbance of the transparent nickel complex ink composition prepared in Step 1 of Examples 1 to 3
  • FIG. 2d is a graph showing the absorbance of the transparent nickel complex ink composition prepared in Step 1 of Comparative Example 1. to be.
  • the transparent nickel complex ink composition prepared in Step 1 of Examples 1 to 3 had absorbance for light in a wavelength range of about 600 nm to 750 nm. Specifically, it was confirmed that the absorbance (ABS) for light in the 650 nm wavelength band had a value of 1.5 or more.
  • the transparent nickel complex ink composition prepared in Step 1 of Comparative Example 1 shown in FIG. 2D unlike the transparent nickel complex ink composition prepared in Step 1 of Examples 1 to 3 shown in FIGS. It was confirmed that absorbance for light in the wavelength range of 650 nm to 650 nm was present.
  • the absorbance (ABS) for light in the 650 nm wavelength range was 2.3 or more, 1.5 or more, and 2.3 or more for the transparent nickel complex ink composition prepared in Step 1 of Examples 1 to 3, respectively, of Comparative Example 1. It was confirmed that the transparent nickel complex ink composition prepared in step 1 had a value of 1.0 or more.
  • the absorbance (ABS) value for light in the 650 nm wavelength band has a value of 1.0 or more. I was able to confirm.
  • thermoscientific's spectrophotometer BioMate 160 was used in order to measure the absorbance of the transparent nickel complex ink composition prepared in Step 1 of Examples 3 and 4 and the transparent nickel complex ink composition prepared in Step 1 of Comparative Examples 2 and 3. And, using this, the absorbance was measured in the 200 nm to 900 nm wavelength range, and the results are shown in FIGS. 2e, 2f, and 2g, respectively.
  • Figure 2c is a graph showing the absorbance of the transparent nickel complex compound ink composition prepared in step 1 of Example 3
  • Figure 2e is a graph showing the absorbance of the transparent nickel complex compound ink composition prepared in step 1 of Example 4
  • 2f and 2g are graphs showing the absorbance of the transparent nickel complex ink composition prepared in Step 1 of Comparative Examples 2 and 3, respectively.
  • the transparent nickel complex ink composition prepared in step 1 of Example 3 had absorbance for light in a wavelength range of about 600 nm to 750 nm. Specifically, it was confirmed that the absorbance (ABS) for light in the 650 nm wavelength range had a value of 2.3 or more.
  • FIG. 2c As in the transparent nickel complex ink composition prepared in step 1 of Example 3, it was confirmed that absorbance for light in a wavelength range of 600 nm to 750 nm was present.
  • the absorbance (ABS) for light in the 650 nm wavelength range was 1.4 or more for the transparent nickel complex ink composition prepared in Step 1 of Example 4, and the transparent nickel prepared in Step 1 of Comparative Examples 2 and 3. It was confirmed that the complex compound ink composition had a value of 0.7 or more and a value of 0.3 or more, respectively.
  • FIG. 3A Photographs of the nickel internal electrode prepared in Step 2 of Examples 1 to 3 and the nickel internal electrode prepared in Step 2 of Comparative Example 1 are shown in FIG. 3A.
  • SEM pictures were taken to observe the thin film shapes of the nickel inner electrode prepared in Step 2 of Examples 1 to 3 and the nickel inner electrode prepared in Step 2 of Comparative Example 1, and the results are shown in FIGS. 4A to 4D. shown in each.
  • the average diameter is very small, whereas in 4d It was confirmed that the maximum diameter of the nickel particles constituting the thin film of the nickel inner electrode prepared in step 2 of Comparative Example 1 using ethylenediamine, a bidentate ammonium ligand, was close to 150 nm. In addition, it was confirmed that the nickel internal electrode prepared in step 2 of Example 3 had less roughness than the nickel internal electrode prepared in step 2 of Comparative Example 1.
  • FIG. 3B Pictures of the nickel internal electrode prepared in step 2 of Example 4 and the nickel internal electrode prepared in step 2 of Comparative Examples 2 and 3 are shown in FIG. 3B.
  • SEM photographs were taken to observe the thin film shapes of the nickel internal electrode prepared in step 2 of Example 4 and the nickel internal electrode prepared in step 2 of Comparative Examples 2 and 3, and the results are shown in FIGS. 4e to 4g. shown in each.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Conductive Materials (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

본 발명은 투명한 니켈 착화합물 잉크 조성물 및 이의 제조 방법에 관한 것이다. 구체적으로 상기 투명한 니켈 착화합물 잉크 조성물은 니켈 및 상기 니켈에 배위결합된 화합물을 포함하는 극성부; 용매; 및 기타첨가제를 포함하고, 상기 니켈 착화합물 잉크 조성물은 투명하고 무입자이며, 600 nm 내지 650 nm 파장대에서의 흡광도(ABS)가 1.0 이상인 값을 가지는 것을 특징으로 한다.

Description

투명한 니켈 착화합물 잉크 조성물 및 이의 제조 방법
본 발명은 투명한 니켈 착화합물 잉크 조성물 및 이의 제조 방법에 관한 것으로서, 보다 구체적으로 상기 니켈 착화합물 잉크 조성물은 투명한 무입자 형태이고 600 nm 내지 650 nm 파장대에서의 흡광도(ABS)가 1.0 이상인 값을 가지며, 상기 조성물을 기재에 도포하여 형성된 박막을 구성하는 니켈 입자의 최대 직경은 150 nm이하인 것을 특징으로 하며, MLCC 내부전극 형성용, 전자파 차폐용, 태양전지 전극 형성용, 또는 디스플레이 패널 전극 형성용으로 사용될 수 있다.
니켈 분말은 전자 회로를 구성하는 전자 부품인 커패시터의 재료, 특히 적층형 세라믹 커패시터(MLCC)나 다층 세라믹 기판 등의 적층 세라믹 부품의 내부전극 등을 구성하는 후막 도체의 재료로서 이용되고 있다.
최근, 적층 세라믹 커패시터의 대용량화가 진행됨에 따라, 적층형 세라믹 커패시터의 내부전극을 구성하는 후막 도체의 형성에 이용되는 내부전극 페이스트의 사용량도 큰 폭으로 증가하고 있다. 따라서, 내부전극 페이스트용 금속 분말로서 고가의 귀금속을 대체하여 주로 니켈 등의 저가의 비금속이 사용되고 있다.
현재 상용화된 적층형 세라믹 커패시터의 제조는 간략하게 이하의 공정을 거치게 된다. 우선, 니켈 분말, 에틸셀룰로오스 등의 바인더 수지 및 테르피네올 등의 유기 용제를 혼련함으로써 얻어진 내부전극 페이스트를 유전체 그린시트상에 스크린 인쇄한다. 이어서, 상기 내부전극 페이스트가 인쇄된 유전체 그린시트를 내부전극 페이스트와 유전체 그린시트가 교대로 겹쳐지도록 적층해 압착함으로써 적층체를 얻는다. 그 후, 상기 얻어진 적층체를 소정의 크기로 커트하고 가열하여 바인더 수지를 제거(이하, 「탈바인더 처리」라고 한다)한 후, 1,300℃ 정도의 고온에서 소성함으로써, 세라믹 성형체를 얻을 수 있다. 마지막으로, 상기 얻어진 세라믹 성형체에 외부 전극을 설치함으로써, 적층형 세라믹 커패시터를 얻을 수 있다.
이때, 내부전극 페이스트 중의 금속 분말로서 니켈 등의 비금속이 사용되기 때문에 상기 적층체의 탈바인더 처리는 비금속이 산화하지 않도록 불활성 분위기 등의 산소 농도가 극히 낮은 분위기 하에서 수행되어야 한다.
한편, 적층형 세라믹 커패시터의 소형화 및 대용량화에 수반하여 최근 내부전극 및 유전체의 박막화가 함께 연구되고 있다. 특히, 내부전극 박막 두께를 400 ㎚이하로 구현하기 위해서 내부전극 페이스트에 사용되는 니켈 분말의 입자 지름 또한 미세화가 진행되고 있으며, 이에 따라 평균 입경 0.5 ㎛ 이하의 니켈 분말이 요구되어 주로 평균 입경 0.3 ㎛ 이하의 니켈 분말이 사용되고 있다.
이와 관련하여, 기존의 공개된 기술은 이러한 전극 형성시 두께를 최소화하기 위해 입경이 50 nm에 근접한 기능성 입자를 포함하는 내부전극 페이스트를 사용하는 등 입자 크기를 최소화한 페이스트 조성물 기술이 제안되고 있다. 그러나, 결국에는 조성물의 안정성을 위하여 입자 함량이 전체 조성물 100 중량부 대비 50 중량부를 넘어가는 문제가 발생하고, 이로 인해 내부전극의 두께를 400 nm 이하로 감소시킬 수 없는 한계가 존재하는 것이 현실이다.
이에, 본 발명자들은 상기 적층형 세라믹 커패시터의 MLCC 내부전극 형성용 투명한 무입자의 도전성 니켈 착화합물 잉크 조성물을 제조하여 본 발명을 완성하게 되었다. 상기 투명한 니켈 착화합물 잉크 조성물은 투명하고, 무입자로서 기존 페이스트나 잉크에 비해 금속 함량을 적게 가져갈 수 있는 이점이 있어 경쟁력이 있으며, 이로 인해 낮은 내부전극 두께를 가져갈 수 있다는 장점이 있다.
이와 관련하여, 일본 공개특허 제2008-127657호는 니켈막 형성용 도포액 및 니켈막 제조 방법 및 니켈막에 대하여 개시하고 있다.
이에, 본 발명은 전술한 문제를 해결하고자 안출된 것으로서, 본 발명의 일 실시예는 투명한 니켈 착화합물 잉크 조성물 및 이의 제조 방법을 제공한다.
그러나, 본 발명이 이루고자 하는 기술적 과제는 이상에서 언급한 기술적 과제로 한정되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
전술한 기술적 과제를 달성하기 위한 기술적 수단으로서, 본 발명의 일 측면은,
니켈 및 상기 니켈에 배위결합된 하기 화학식 1로 표시되는 화합물을 포함하는 극성부; 용매; 및 기타첨가제;를 포함하는 투명한 니켈 착화합물 잉크 조성물로서, 상기 니켈 착화합물 잉크 조성물은 투명하고 무입자이며, 600 nm 내지 650 nm 파장대에서의 흡광도(ABS)가 1.0 이상인 값을 가지는 것인 투명한 니켈 착화합물 잉크 조성물을 제공한다.
[화학식 1]
Figure PCTKR2022007650-appb-img-000001
(상기 화학식 1에서, R1 내지 R3은 각각 독립적으로 수소, 직쇄 또는 분지쇄의 C5-C20 알킬, 직쇄 또는 분지쇄의 C5-C20 알케닐, C5-C20 사이클로알킬, 직쇄 또는 분지쇄의 C1-C5 알킬 또는 직쇄 또는 분지쇄의 C8-C18 알킬로 치환 또는 비치환된 C6-C20 아릴, 직쇄 또는 분지쇄의 C1-C5 알킬 또는 직쇄 또는 분지쇄의 C8-C18 알킬로 치환 또는 비치환된 C6-C20 헤테로아릴 또는 C5-C20 알킬카보닐이고, R1 내지 R3 중 적어도 하나는 직쇄 또는 분지쇄의 C1-C5 알킬 또는 직쇄 또는 분지쇄의 C8-C18 알킬로 치환 또는 비치환된 C6-C20 아릴, 직쇄 또는 분지쇄의 C1-C5 알킬 또는 직쇄 또는 분지쇄의 C8-C18 알킬로 치환 또는 비치환된 C6-C20 헤테로아릴 및 직쇄 또는 분지쇄의 C5-C20 알킬 또는 C5-C20알케닐로 이루어진 군에서 선택된 어느 하나일 수 있다.)
상기 화학식 1에서, R1 내지 R3은 각각 독립적으로 수소, 직쇄 또는 분지쇄의 C8-C18 알킬, 직쇄 또는 분지쇄의 C8-C18 알케닐, C8-C18 사이클로알킬, 직쇄 또는 분지쇄의 C1-C5 알킬 또는 직쇄 또는 분지쇄의 C8-C18 알킬로 치환 또는 비치환된 C8-C18 아릴, 직쇄 또는 분지쇄의 C1-C5 알킬, 직쇄 또는 분지쇄의 C8-C18 알킬로 치환 또는 비치환된 C8-C18 헤테로아릴, 직쇄 또는 분지쇄의 C8-C18 알킬 또는 직쇄 또는 분지쇄의 C8-C18 알케닐인 것일 수 있다.
상기 화학식 1에서, R1 및 R2는 수소이고, R3은 직쇄 또는 분지쇄의 C1-C5 알킬, 직쇄 또는 분지쇄의 C8-C18 알킬로 치환된 C8-C18 아릴 또는 헤테로아릴, 직쇄 또는 분지쇄의 C8-C18 알킬 또는 직쇄 또는 분지쇄의 C8-C18 알케닐인 것일 수 있다.
상기 화학식 1로 표시되는 화합물은 2-아미노-1-메틸-1-프로판올(2-amino-1-methyl-1-propanol), 노르말헥실아민(n-hexylamine), 헥실아민(hexylamine), 시클로헥실아민(cyclohexylamine), 노르말옥틸아민(n-octylamine), 옥틸아민(octylamine), 도데실아민(dodecylamine), 올레일아민(oleylamine), 벤질아민(benzylamine), 1-디메틸아미노-2-프로판올(1-dimethylamino-2-propanol), 2-(디에틸아미노)에탄올(2-(diethylamino)ethanol) 또는 디페닐아민(diphenylamine)인 것일 수 있다.
상기 극성부의 농도는 상기 투명한 니켈 착화합물 잉크 조성물 전체 중량 대비 8 중량% 내지 72 중량%인 것일 수 있다.
상기 용매는 터피네올(terpineol), 알파터피네올(α-terpineol), 디하이드로터피네올(dihydro-terpineol), 터피닐아세테이트 (terpinyl acetate), 디하이드로터피닐아세테이트(dihydro terpinyl acetate), 이소보르닐아세테이트(isobornyl acetate), 이소보르닐프로피오네이트(isobornyl propionate), 이소보르닐이소부틸레이트(isobornyl isobutyrate), 에틸렌글리콜(ethylene glycol), 프로필렌글리콜(propylene glycol), 부틸렌글리콜(butylene glycol), 디에틸렌글리콜(diethylene glycol), 디프로필렌글리콜(dipropylene glycol), 디프로필렌글리콜모노메틸에테르(dipropylene glycol monomethyl ether), 에틸렌글리콜페닐에테르(ethylene glycol phenyl ether), 프로필렌글리콜페닐에테르(propylene glycol phenyl ether), 에틸렌글리콜모노부틸에테르아세테이트, 디프로필렌글리콜메틸에테르아세테이트, 에탄올(ethanol), 프로판올(propanol), 이소프로필알코올(isopropyl alcohol), 부탄올(butanol), 이소옥틸알코올(isooctyl alcohol), 디아세톤알코올(diacetone alcohol), 1,2-펜탄디올, 1,5-펜탄디올, 2-메틸-2,4-펜탄디올, 3-메틸-1,5-펜탄디올 및 이들의 조합들로 이루어진 군으로부터 선택되는 물질을 포함하는 것일 수 있다.
상기 기타 첨가제는 바인더 수지, 가소제, 안정제, 분산제, 이형제, 환원제, 계면활성제, 습윤제, 칙소제, 레벨링제 및 이들의 조합들로 이루어진 군으로부터 선택되는 물질을 포함하는 것일 수 있다.
상기 바인더 수지는 폴리비닐부티랄(polyvinyl butyral), 에틸셀룰로오스(ethyl cellulose), 폴리비닐피롤리돈(polyvinyl pyrrolidone), 아크릴(acryl), 폴리비닐아세탈(polyvinyl acetal), 폴리비닐알코올(polyvinyl alcohol), 폴리올레핀(polyolefin), 폴리우레탄(polyurethane), 폴리스티렌(polystyrene) 및 이들의 조합들로 이루어진 군으로부터 선택되는 물질을 포함하는 것일 수 있다.
상기 투명한 니켈 착화합물 잉크 조성물을 기재에 도포하여 형성된 박막에서의 니켈 입자 최대 직경이 150 nm 이하인 것일 수 있다.
상기 투명한 니켈 착화합물 잉크 조성물은 MLCC 내부전극 형성용, 전자파 차폐용, 태양전지 전극 형성용, 또는 디스플레이 패널 전극 형성용 투명한 니켈 착화합물 잉크 조성물인 것을 특징으로 하는 것일 수 있다.
본 발명의 또 다른 일 측면은,
니켈 전구체 및 하기 화학식 1로 표시되는 화합물을 혼합하여 니켈 착화합물을 제조하는 단계; 상기 니켈 착화합물을 용매와 혼합하는 단계; 및 상기 용매와 혼합된 니켈 착화합물을 가열하는 단계; 상기 가열 단계에서 바인더 수지를 함께 가열하는 단계;를 포함하는 투명한 니켈 착화합물 잉크 조성물의 제조방법으로서, 상기 투명한 니켈 착화합물 잉크 조성물은 투명하고 무입자이며, 600 nm 내지 650 nm 파장대에서의 흡광도(ABS)가 1.0 이상인 값을 가지는 투명한 니켈 착화합물 잉크 조성물의 제조방법을 제공한다.
[화학식 1]
Figure PCTKR2022007650-appb-img-000002
상기 화학식 1에서, R1 내지 R3은 각각 독립적으로 수소, 직쇄 또는 분지쇄의 C5-C20 알킬, 직쇄 또는 분지쇄의 C5-C20 알케닐, C5-C20 사이클로알킬, 직쇄 또는 분지쇄의 C1-C5 알킬 또는 직쇄 또는 분지쇄의 C8-C18 알킬로 치환 또는 비치환된 C6-C20 아릴, 직쇄 또는 분지쇄의 C1-C5 알킬 또는 직쇄 또는 분지쇄의 C8-C18 알킬로 치환 또는 비치환된 C6-C20 헤테로아릴 또는 C5-C20 알킬카보닐이고, R1 내지 R3 중 적어도 하나는 직쇄 또는 분지쇄의 C1-C5 알킬 또는 직쇄 또는 분지쇄의 C8-C18 알킬로 치환 또는 비치환된 C6-C20 아릴, 직쇄 또는 분지쇄의 C1-C5 알킬 또는 직쇄 또는 분지쇄의 C8-C18 알킬로 치환 또는 비치환된 C6-C20 헤테로아릴 및 직쇄 또는 분지쇄의 C5-C20 알킬 또는 C5-C20알케닐로 이루어진 군에서 선택된 어느 하나일 수 있다.
상기 니켈 착화합물 잉크 조성물은 투명하고 무입자이며, 600 nm 내지 650 nm 파장대에서의 흡광도(ABS)가 1.0 이상인 값을 가지는 것일 수 있다.
상기 가열은 115℃ 미만에서 수행되는 것일 수 있다.
본 발명의 일 측면에 의하면, 투명한 니켈 착화합물 잉크 조성물은 투명하고 무입자이기 때문에 종래 페이스트 조성물에 비해 보다 얇은 코팅이 가능하며, 이에 따라 박막 형성이 가능한 것일 수 있다.
또한, 상기 니켈 착화합물 잉크 조성물을 기재에 도포하여 형성된 박막을 구성하는 니켈 입자의 최대 직경은 150 nm 이하로 매우 작아, 니켈 내부전극의 거칠기가 적고, 이는 MLCC 내부전극과 유전체 그린시트가 교대로 겹쳐지도록 적층해 압착할 시 밀착도가 높은 장점으로 이어져 동일 체적의 MLCC내 박막의 수를 증가시켜 성능이 향상되는 것일 수 있다.
본 발명의 효과는 상기한 효과로 한정되는 것은 아니며, 본 발명의 상세한 설명 또는 특허청구범위에 기재된 발명의 구성으로부터 추론 가능한 모든 효과를 포함하는 것으로 이해되어야 한다.
도 1은 본 발명의 일 실시예 및 비교예에 따라 제조된 MLCC 내부전극 형성용 투명한 니켈 착화합물 잉크 조성물을 나타낸 사진이다.
도 2는 본 발명의 일 실시예 및 비교예에 따라 제조된 투명한 니켈 착화합물 잉크 조성물의 흡광도를 나타낸 그래프이다.
도 3은 본 발명의 일 실시예 및 비교예에 따라 제조된 니켈 내부전극의 박막을 나타낸 사진이다.
도 4는 각각 본 발명의 일 실시예 및 비교예에 따라 제조된 니켈 내부전극 박막을 나타낸 SEM 사진이다.
이하, 본 발명을 더욱 상세하게 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 의해 본 발명이 한정되지 않으며 본 발명은 후술할 청구범위의 의해 정의될 뿐이다.
덧붙여, 본 발명에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 발명의 명세서 전체에서 어떤 구성요소를 '포함'한다는 것은 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있다는 것을 의미한다.
우선 본원의 일 구현예에 따른 상기 투명한 니켈 착화합물 잉크 조성물은 니켈을 포함하는 다양한 전자 기기, 반도체의 전극에 사용되거나 전자파 차폐용(EMI Shielding)으로 사용될 수 있는 것이고, 예컨대, MLCC 내부전극 형성용, 전자파 차폐용, 태양전지 전극 형성용, 또는 디스플레이 패널 전극 형성용 투명한 니켈 착화합물 잉크 조성물인 것일 수 있으며, 바람직하게는 MLCC 내부전극 형성용 또는 전자파 차폐용으로 사용되는 니켈 착화합물 잉크 조성물일 수 있다.
MLCC(Multilayer Ceramic Capacitor)
MLCC는 Multilayer Ceramic Capacitor의 영문 약자를 나타내는 것으로, 적층 세라믹 커패시터라고 한다.
MLCC는 세라믹 재료가 유전체 역할을 하는 고정 값을 가진 커패시터로, 두 개 이상의 세라믹 층과 전극 역할을 하는 금속 층으로 구성되는 것이 기본이다. 세라믹 재료의 구성은 MLCC의 전기적 거동과 그에 따른 적용 분야 범위를 결정한다.
최근, 스마트폰, 휴대용 PC, 자동차 산업에서 MLCC에 대한 수요 증가로 인한 전세계적 MLCC의 부족은 주요한 이슈가 되었다. 우리가 매일 사용하는 스마트폰, 컴퓨터, LED TV와 같은 전자기기들은 1000개 이상의 MLCC를 포함한다. 전기 자동차에 있어서는, 전자 제어와 자동화 시스템 때문에 만개 이상의 MLCC가 필요하다. MLCC는 회로를 통해 흐르는 전류 양을 분배 및 조절하고, 노이즈 제거, 전자기기의 오작동을 방지하기 때문에 수많은 MLCC가 전자기기에 장착되어 있다. 더욱이 높은 성능, 다기능성, 고집적성을 가진 전자기기들은 고용량의 수많은 MLCC를 요구한다. 이러한 추세에서, 배터리와 집적회로로 인해 전자 기기 내부 공간이 제한되어 있기 때문에 고용량을 가진 MLCC의 소형화가 주요한 이슈이다.
높은 체적 효율과 고용량 MLCC의 개발을 위한 중요한 요인으로 1) 높은 유전율을 갖는 유전 물질의 사용, 2) 더 많은 수의 내부전극과 유전체층의 적층, 3) 중첩된 내부 전극 면적의 증가, 4) 내부전극과 유전체층 두께의 감소가 있다. 높은 용량과 체적효율을 위해서 차세대 MLCC는 1㎛ 미만 두께의 수많은 적층된 유전체층을 가져야 한다. 특히, 내부전극의 경우에는 400 nm이하의 두께의 수많은 적층을 요구한다.
MLCC의 기본 원리
MLCC가 전기를 저장하는 기본 원리는 유전체의 분극현상을 통해서이다. 외부 전기장이 없는 상태에서는 유전체 내부의 electrical dipole이 무질서하게 분포되어 절연체의 특징을 보이나 양단의 전극에 전압을 가하여 유전체 필름에 전기장이 발생하게 되면 Dipole들이 자기장의 방향으로 정렬이 되어 양전극에 양전하와 음전하가 각각 밀집하게 되어 전기를 저장할 수 있게 되는 것이다.
MLCC는 이렇게 축전된 전기를 일시적으로 충전하는 기능을 가진 수동소자의 핵심 부품으로 교류전류를 통과시키며 직류전류는 차단하여 전류를 항상 일정하게 방전하는 특성을 지닌다. 차세대 소형화 및 고용량의 전자기기에 사용되기 위한 수동소자는 더욱 높은 정전용량을 갖고 있는 MLCC가 요구된다.
MLCC는 많은 유전체층과 내부 전극이 평행하게 교차로 적층되어 이루어진다. 내부 전극은 표면 장착을 위해 외부 종단에 연결된다. MLCC의 용량은 다음식으로 표현되는데,
Figure PCTKR2022007650-appb-img-000003
Figure PCTKR2022007650-appb-img-000004
은 비유전율,
Figure PCTKR2022007650-appb-img-000005
은 진공 유전율, n은 적층된 내부 전극의 수, S는 내부 전극의 면적, T는 내부전극의 두께를 나타낸다. 높은 전기용량을 MLCC를 구현하기 위해서는 칩 사이즈를 결정할때, 유전체층의 두께와 적층수가 주요한 요소가 된다. 즉, 고용량 구현을 위해 MLCC의 정전용량을 높이기 위해서는 내부전극의 표면적이 최대화되어야 하고 유전체 박막과 내부전극의 두께는 최소화되어야 한다. 그러나 소자의 초소형화 요구에 따라 면적을 증가시키는 것은 불가능하므로 내부전극의 두께를 최소화 하여 동일 체적 내 내부전극과 유전체 박막을 적층시켜 높은 정전용량을 얻어야 한다.
이하, MLCC 내부 전극의 두께를 최소화하기 위한 박막 형성을 구현할 수 있는 본원의 각 측면에 대해 상세히 설명한다.
본원의 제 1 측면은,
니켈 및 상기 니켈에 배위결합된 하기 화학식 1로 표시되는 화합물을 포함하는 극성부; 용매; 및 기타첨가제;를 포함하는 투명한 니켈 착화합물 잉크 조성물로서, 상기 니켈 착화합물 잉크 조성물은 투명하고 무입자이며, 600 nm 내지 650 nm 파장대에서의 흡광도(ABS)가 1.0 이상인 값을 가지는 것인 투명한 니켈 착화합물 잉크 조성물을 제공한다.
[화학식 1]
Figure PCTKR2022007650-appb-img-000006
(상기 화학식 1에서, R1 내지 R3은 각각 독립적으로 수소, 직쇄 또는 분지쇄의 C5-C20 알킬, 직쇄 또는 분지쇄의 C5-C20 알케닐, C5-C20 사이클로알킬, 직쇄 또는 분지쇄의 C1-C5 알킬 또는 직쇄 또는 분지쇄의 C8-C18 알킬로 치환 또는 비치환된 C6-C20 아릴, 직쇄 또는 분지쇄의 C1-C5 알킬 또는 직쇄 또는 분지쇄의 C8-C18 알킬로 치환 또는 비치환된 C6-C20 헤테로아릴 또는 C5-C20 알킬카보닐이고, R1 내지 R3 중 적어도 하나는 직쇄 또는 분지쇄의 C1-C5 알킬 또는 직쇄 또는 분지쇄의 C8-C18 알킬로 치환 또는 비치환된 C6-C20 아릴, 직쇄 또는 분지쇄의 C1-C5 알킬 또는 직쇄 또는 분지쇄의 C8-C18 알킬로 치환 또는 비치환된 C6-C20 헤테로아릴 및 직쇄 또는 분지쇄의 C5-C20 알킬 또는 C5-C20알케닐로 이루어진 군에서 선택된 어느 하나일 수 있다.)
이하, 본원의 제1 측면에 따른 상기 투명한 니켈 착화합물 잉크 조성물 및 상기 니켈 착화합물 잉크 조성물을 기재에 도포하여 형성된 박막을 상세히 설명한다.
본원의 일 구현예에 있어서, 상기 투명한 니켈 착화합물 잉크 조성물은 투명하고, 무입자인 것을 특징으로 하는 것일 수 있다. 즉, 종래의 니켈 잉크 조성물이라 할 수 있는 내부전극 페이스트의 경우, 입경이 50 nm에 근접한 기능성 니켈 입자를 조성물의 안정성을 위하여 입자 함량이 전체 조성물 100 중량부 대비 50 중량부 이상으로 포함하기 때문에 내부전극의 두께를 400 nm 이하로 감소시킬 수 없는 한계가 존재하였으나, 본 발명에 따른 투명한 니켈 착화합물 잉크 조성물은 무입자인 것을 특징으로 상기와 같은 문제가 발생하지 않아 내부전극의 박막화가 달성 가능한 것일 수 있다. 이에 따라, 상기 투명한 니켈 착화합물 잉크 조성물을 사용하여 제조된 내부전극은 보다 많은 내부전극 적층 수를 구현할 수 있기 때문에, 이를 포함하는 적층 세라믹 커패시터의 소형화 및 대용량화가 달성 가능한 것일 수 있다.
본원의 일 구현예에 있어서, 바람직하게 상기 화학식 1에서, R1 내지 R3은 각각 독립적으로 수소, 직쇄 또는 분지쇄의 C8-C18 알킬, 직쇄 또는 분지쇄의 C8-C18 알케닐, C8-C18 사이클로알킬, 직쇄 또는 분지쇄의 C1-C5 알킬 또는 직쇄 또는 분지쇄의 C8-C18 알킬로 치환 또는 비치환된 C8-C18 아릴, 직쇄 또는 분지쇄의 C1-C5 알킬, 직쇄 또는 분지쇄의 C8-C18 알킬로 치환 또는 비치환된 C8-C18 헤테로아릴, 직쇄 또는 분지쇄의 C8-C18 알킬 또는 직쇄 또는 분지쇄의 C8-C18 알케닐인 것일 수 있고, 더욱 바람직하게는 R1 및 R2는 수소이고, R3은 직쇄 또는 분지쇄의 C1-C5 알킬, 직쇄 또는 분지쇄의 C8-C18 알킬로 치환된 C8-C18 아릴 또는 헤테로아릴, 직쇄 또는 분지쇄의 C8-C18 알킬 또는 직쇄 또는 분지쇄의 C8-C18 알케닐인 것일 수 있다.
본원의 일 구현예에 있어서, 상기 화학식 1로 표시되는 화합물은 2-아미노-1-메틸-1-프로판올(2-amino-1-methyl-1-propanol), 노르말헥실아민(n-hexylamine), 헥실아민(hexylamine), 시클로헥실아민(cyclohexylamine), 노르말옥틸아민(n-octylamine), 옥틸아민(octylamine), 도데실아민(dodecylamine), 올레일아민(oleylamine), 벤질아민(benzylamine), 1-디메틸아미노-2-프로판올(1-dimethylamino-2-propanol), 2-(디에틸아미노)에탄올(2-(diethylamino)ethanol) 또는 디페닐아민(diphenylamine) 인 것일 수 있다. 즉, 상기 화학식 1에 포함된 질소의 비공유 전자쌍이 니켈과 배위결합을 이루어 극성부를 형성하는 것일 수 있다.
본원의 일 구현예에 있어서, 상기 극성부의 농도는 상기 니켈 착화합물 잉크 조성물 전체 중량 대비 8 중량% 내지 72 중량%인 것일 수 있으며, 바람직하게 8 중량% 내지 64 중량%인 것일 수 있고, 더욱 바람직하게 8 중량% 내지 56 중량%인 것일 수 있다. 상기 극성부의 농도가 상기 도전성 니켈 착화합물 잉크 조성물 전체 중량 대비 8 중량% 미만일 경우 용매의 함량이 상대적으로 많아 상기 투명한 니켈 착화합물 잉크 조성물을 기재에 도포하여 형성된 니켈 내부전극 형성 시에 균일한 박막 형성이 어려운 것일 수 있으며, 72 중량% 초과일 경우 용매의 함량이 상대적으로 적어 상기 극성부 및 용매가 균일하게 혼합되지 않을 수 있다.
본원의 일 구현예에 있어서, 상기 투명한 니켈 착화합물 잉크 조성물은 용매로서, 터피네올(terpineol), 알파터피네올(α-terpineol), 디하이드로터피네올(dihydro-terpineol), 터피닐아세테이트 (terpinyl acetate), 디하이드로터피닐아세테이트(dihydro terpinyl acetate), 이소보르닐아세테이트(isobornyl acetate), 이소보르닐프로피오네이트(isobornyl propionate), 이소보르닐이소부틸레이트(isobornyl isobutyrate), 에틸렌글리콜(ethylene glycol), 프로필렌글리콜(propylene glycol), 부틸렌글리콜(butylene glycol), 디에틸렌글리콜(diethylene glycol), 디프로필렌글리콜(dipropylene glycol), 디프로필렌글리콜모노메틸에테르(dipropylene glycol monomethyl ether), 에틸렌글리콜페닐에테르(ethylene glycol phenyl ether), 프로필렌글리콜페닐에테르(propylene glycol phenyl ether), 에틸렌글리콜모노부틸에테르아세테이트, 디프로필렌글리콜메틸에테르아세테이트, 에탄올(ethanol), 프로판올(propanol), 이소프로필알코올(isopropyl alcohol), 부탄올(butanol), 이소옥틸알코올(isooctyl alcohol), 디아세톤알코올(diacetone alcohol), 1,2-펜탄디올, 1,5-펜탄디올, 2-메틸-2,4-펜탄디올, 3-메틸-1,5-펜탄디올 및 이들의 조합들로 이루어진 군으로부터 선택되는 물질을 포함하는 것일 수 있다. 즉, 상기 용매가 상기 극성부와 잘 혼합되며, 기재, 특히 글라스의 표면에 대하여 젖음성이 우수하기 때문에 이를 포함하는 상기 투명한 니켈 착화합물 잉크 조성물을 기재에 도포시 얇은 두께를 형성하는 것일 수 있고, 코팅 평탄도 또한 우수한 것일 수 있다. 더욱이, 디프로필렌글리콜모노메틸에테르(dipropylene glycol monomethyl ether)와 같이 증기압력이 낮은 용매의 경우, 일반적인 용매에 비해서 기화된 분자수가 적기 때문에 열을 소량만 가해도 액체 상태의 분자가 빠르게 기체상태로 변화할 수 있다. 이러한 용매를 극성도가 유사한 용매와 함께 사용할 경우, 액체 상태의 분자가 기화할 때 주변의 용매 분자와 함께 기체가 되는 것일 수 있다. 따라서, 코팅 이후 건조 및 소결 공정에서 코팅 면적 전면에서 우수한 젖음성을 유지한 채 용매가 전반적으로 빠르게 기화되기 때문에 건조 및 소결 공정 이후의 코팅 평탄도 또한 우수한 것일 수 있다. 따라서, 이를 적층형 세라믹 커패시터(MLCC)의 내부전극에 적용하게 되면, 내부전극의 기재가 되는 유전체 그린시트와의 젖음성 또한 우수하기 때문에 내부전극 박막화가 달성 가능한 것일 수 있다. 한편, 상기 용매의 함량은 상기 도전성 니켈 착화합물 잉크 조성물 전체 중량 대비 12중량% 내지 86 중량%인 것일 수 있다.
본원의 일 구현예에 있어서, 상기 기타 첨가제는 바인더 수지, 가소제, 안정제, 분산제, 이형제, 환원제, 계면활성제, 습윤제, 칙소제, 레벨링제 및 이들의 조합들로 이루어진 군으로부터 선택되는 물질을 포함하는 것일 수 있다.
상기 바인더 수지는 폴리비닐부티랄(polyvinyl butyral), 에틸셀룰로오스(ethyl cellulose), 폴리비닐피롤리돈(polyvinyl pyrrolidone), 아크릴(acryl), 폴리비닐아세탈(polyvinyl acetal), 폴리비닐알코올(polyvinyl alcohol), 폴리올레핀(polyolefin), 폴리우레탄(polyurethane), 폴리스티렌(polystyrene) 및 이들의 조합들로 이루어진 군으로부터 선택되는 물질을 포함하는 것일 수 있다. 본원의 일 구현예에 있어서,
상기 습윤제는 1,2-헥산디올(1,2-hexanediol), 1,6-헥산디올, 글리세린, 폴리에틸렌 글리콜, 소비톨 또는 트레할로스 등의 폴리올, 아미노산, 요소, 젖산염 또는 PCA-Na 등의 천연보습인자(NMF), 히아루론산염, 콘드로이친 황산염 또는 가수분해 콜라겐 등의 고분자 보습제 등이 사용될 수 있다.
본원의 일 구현예에 있어서, 상기 레벨링제는 평활(레벨링) 작용을 가진 첨가제로서, 폴리아민 등의 질소를 포함하는 화합물이 사용될 수 있다.
본원의 일 구현예에 있어서, 상기 투명한 니켈 착화합물 잉크 조성물은 600 nm 내지 650 nm 파장대에서의 흡광도(ABS)가 1.0 이상인 것일 수 있다. 상기 니켈 착화합물 잉크 조성물의 600 nm 내지 650 nm 파장대에서의 흡광도(ABS) 피크가 높게 관찰되는 이유는 상기 화학식 1에 포함된 질소의 비공유 전자쌍이 니켈과 배위결합을 이루어 극성부를 형성할 때에 니켈의 d 궤도함수들에게서 에너지 준위차가 발생하고, 이에 따라 니켈의 낮은 에너지 준위의 d 궤도함수 전자가 600 nm 내지 650 nm 파장대에서의 특정 파장의 빛을 흡수하여 높은 에너지 준위의 d 궤도함수로 이동하는 것이 측정되기 때문인 것일 수 있다. 한편, 상기 흡광도(ABS) 값은 상기 극성부의 농도가 상기 도전성 니켈 착화합물 잉크 조성물 전체 중량 대비 8 중량% 내지 72 중량%일 때의 값을 의미하는 것일 수 있다.
본원의 제2 측면은,
상기 투명한 니켈 착화합물 잉크 조성물을 기재에 도포하여 형성된 박막을 제공한다. 이때, 상기 기재의 종류는 다양하게 적용될 수 있으나, 예를 들어 글라스인 것일 수 있으며, 바람직하게는 적층형 세라믹 커패시터(MLCC)의 내부전극의 기재가 되는 유전체 그린시트인 것일 수 있다. 한편, 상기 MLCC 내부전극 투명한 니켈 착화합물 잉크 조성물은 상기 극성부와 잘 혼합되며, 증기압력이 낮은 용매를 포함하고 있기 때문에 상기와 같은 기재와의 젖음성이 우수하며, 코팅 이후 건조 및 소결 공정에서 코팅 면적 전면에서 우수한 젖음성을 유지한 채 용매가 전반적으로 빠르게 기화되기 때문에 건조 및 소결 공정 이후의 코팅 평탄도 또한 우수한 것일 수 있다. 따라서, 이를 기재에 도포시 얇은 두께를 형성하는 것일 수 있고, 코팅 평탄도 또한 우수한 것일 수 있다.
본원의 제1 측면과 중복되는 부분들에 대해서는 상세한 설명을 생략하였으나, 본원의 제1 측면에 대해 설명한 내용은 제2 측면에서 그 설명이 생략되었더라도 동일하게 적용될 수 있다.
본원의 일 구현예에 있어서, 상기 투명한 니켈 착화합물 잉크 조성물을 포함하는 박막의 니켈 입자 최대 직경은 150 nm 이하인 것일 수 있다. 이렇게 니켈 입자의 평균 직경이 매우 작아 니켈 내부전극의 거칠기가 적게 되는 효과를 가질 수 있다. 이는 MLCC 내부전극과 유전체 그린시트가 교대로 겹쳐지도록 적층해 압착할 시 밀착도가 높은 장점으로 이어져 동일 체적의 MLCC 내 박막의 수를 증가시켜 성능이 향상되는 것일 수도 있다.
본원의 제3 측면은,
니켈 전구체 및 하기 화학식 1로 표시되는 화합물을 혼합하여 니켈 착화합물을 제조하는 단계; 상기 니켈 착화합물을 용매와 혼합하는 단계; 및 상기 용매와 혼합된 니켈 착화합물을 가열하는 단계; 상기 가열 단계에서 바인더 수지를 함께 가열하는 단계;를 포함하는 투명한 니켈 착화합물 잉크 조성물의 제조방법을 제공한다.
[화학식 1]
Figure PCTKR2022007650-appb-img-000007
(상기 화학식 1에서, R1 내지 R3은 각각 독립적으로 수소, 직쇄 또는 분지쇄의 C5-C20 알킬, 직쇄 또는 분지쇄의 C5-C20 알케닐, C5-C20 사이클로알킬, 직쇄 또는 분지쇄의 C1-C5 알킬 또는 직쇄 또는 분지쇄의 C8-C18 알킬로 치환 또는 비치환된 C6-C20 아릴, 직쇄 또는 분지쇄의 C1-C5 알킬 또는 직쇄 또는 분지쇄의 C8-C18 알킬로 치환 또는 비치환된 C6-C20 헤테로아릴 또는 C5-C20 알킬카보닐이고, R1 내지 R3 중 적어도 하나는 직쇄 또는 분지쇄의 C1-C5 알킬 또는 직쇄 또는 분지쇄의 C8-C18 알킬로 치환 또는 비치환된 C6-C20 아릴, 직쇄 또는 분지쇄의 C1-C5 알킬 또는 직쇄 또는 분지쇄의 C8-C18 알킬로 치환 또는 비치환된 C6-C20 헤테로아릴 및 직쇄 또는 분지쇄의 C5-C20 알킬 또는 C5-C20알케닐로 이루어진 군에서 선택된 어느 하나일 수 있다.)
본원의 제1 측면과 중복되는 부분들에 대해서는 상세한 설명을 생략하였으나, 본원의 제1 측면에 대해 설명한 내용은 제3 측면에서 그 설명이 생략되었더라도 동일하게 적용될 수 있다.
이하, 본원의 제 3 측면에 따른 투명한 니켈 착화합물 잉크 조성물의 제조방법을 단계별로 상세히 설명한다.
우선, 본원의 일 구현예에 있어서, 상기 투명한 니켈 착화합물 잉크 조성물의 제조방법은 니켈 전구체 및 하기 화학식 1로 표시되는 화합물을 혼합하여 니켈 착화합물을 제조하는 단계;를 포함한다.
본원의 일 구현예에 있어서, 상기 니켈 전구체는 니켈 포메이트(C2H2NiO4), 니켈 아세테이트(Ni(CH3CO2)2), 염화니켈(NiCl2), 황산니켈(NiSO4), 니켈아세틸아세토네이트(Ni(C5H7O2)2), 탄산니켈(NiCO3), 니켈 시클로헥산부티레이트([C6H11(CH2)3CO2]2Ni), 질산니켈(Ni(NO3)2), 니켈 옥살레이트(NiC2O4), 니켈 스티어레이트(Ni(H3C(CH2)16CO2)2, 니켈 옥타노에이트([CH3(CH2)6CO2]2Ni) 및 이들의 수화물을 포함한 조합들로 이루어진 군으로부터 선택되는 물질을 포함하는 것일 수 있다. 이때, 상기 니켈 전구체에 포함된 카복실기는 추후 탈바인더 단계에서 CO2로 증발되어 제거되는 것일 수 있으며, 따라서 최종 제조된 조성물은 니켈 입자에 배위결합된 상기 화학식 1로 표시되는 화합물을 포함하는 극성부와 용매만을 포함하는 것일 수 있다.
본원의 일 구현예에 있어서, 바람직하게 상기 화학식 1에서, R1 내지 R3은 각각 독립적으로 수소, 직쇄 또는 분지쇄의 C8-C18 알킬, 직쇄 또는 분지쇄의 C8-C18 알케닐, C8-C18 사이클로알킬, 직쇄 또는 분지쇄의 C1-C5 알킬 또는 직쇄 또는 분지쇄의 C8-C18 알킬로 치환 또는 비치환된 C8-C18 아릴, 직쇄 또는 분지쇄의 C1-C5 알킬, 직쇄 또는 분지쇄의 C8-C18 알킬로 치환 또는 비치환된 C8-C18 헤테로아릴, 직쇄 또는 분지쇄의 C8-C18 알킬 또는 직쇄 또는 분지쇄의 C8-C18 알케닐인 것일 수 있고, 더욱 바람직하게는 R1 및 R2는 수소이고, R3은 직쇄 또는 분지쇄의 C1-C5 알킬, 직쇄 또는 분지쇄의 C8-C18 알킬로 치환된 C8-C18 아릴 또는 헤테로아릴, 직쇄 또는 분지쇄의 C8-C18 알킬 또는 직쇄 또는 분지쇄의 C8-C18 알케닐인 것일 수 있다.
가장 바람직하게 본원의 일 구현예에 있어서, 상기 화학식 1로 표시되는 화합물은 2-아미노-1-메틸-1-프로판올(2-amino-1-methyl-1-propanol), 노르말헥실아민(n-hexylamine), 헥실아민(hexylamine), 시클로헥실아민(cyclohexylamine), 노르말옥틸아민(n-octylamine), 옥틸아민(octylamine), 도데실아민(dodecylamine), 올레일아민(oleylamine), 벤질아민(benzylamine), 1-디메틸아미노-2-프로판올(1-dimethylamino-2-propanol), 2-(디에틸아미노)에탄올(2-(diethylamino)ethanol) 또는 디페닐아민(diphenylamine)인 것일 수 있다. 즉, 상기 화학식 1에 포함된 질소의 비공유 전자쌍이 니켈과 배위결합을 이루어 극성부를 형성하는 것일 수 있다.
본원의 일 구현예에 있어서, 상기 니켈 전구체와 배위결합을 이루는 상기 화학식 1 로 표시되는 화합물의 몰수는 상기 니켈 전구체 몰수 대비 2 배 내지 6 배일 수 있으며, 바람직하게 4 배인 것일 수 있다. 즉, 상기 니켈 전구체와 상기 화학식 1로 표시되는 화합물이 배위결합을 이룸으로써 극성부를 형성하는 것일 수 있다. 이때, 상기 화학식 1로 표시되는 화합물의 몰수가 상기 니켈 전구체 몰수 대비 2 배 미만일 경우 상기 극성부가 형성되지 않을 수 있으며, 6 배 초과일 경우 착화합물을 형성하지 못하고 잔여하는 화학식 1로 표시되는 화합물로 인하여 이후 탈바인더 처리 시 많은 기포가 발생할 수 있어 내부전극의 박막에 공극이 발생하여 도전성이 저하되는 문제가 발생할 수 있다.
다음으로, 본원의 일 구현예에 있어서, 상기 투명한 니켈 착화합물 잉크 조성물의 제조방법은 상기 니켈 착화합물을 용매와 혼합하는 단계;를 포함한다.
본원의 일 구현예에 있어서, 상기 혼합되는 용매의 함량은 상기 도전성 니켈 착화합물 잉크 조성물 전체 중량 대비 12중량% 내지 86 중량%인 것일 수 있으며, 바람직하게는 20 중량% 내지 82 중량%인 것일 수 있다. 상기 용매의 함량이 12중량% 미만일 경우 제조되는 투명한 니켈 착화합물 잉크 조성물의 분산 안정성이 저하될 수 있으며, 86 중량% 초과일 경우 니켈 착화합물 대비 용매의 함량이 너무 많아 기재에 도포하여 형성된 니켈 내부전극의 균일한 박막 형성이 어려운 것일 수 있다. 한편, 상기 용매의 구체적인 종류에 대하여는 상기 본원의 제1 측면에서 설명하였으므로 본원의 제3 측면에서는 그 설명을 생략하도록 한다.
다음으로, 본원의 일 구현예에 있어서, 상기 박막 형성용 투명한 니켈 착화합물 잉크 조성물의 제조방법은 상기 용매와 혼합된 니켈 착화합물을 가열하는 단계;를 포함한다.
본원의 일 구현예에 있어서, 상기 가열은 115℃ 미만에서 수행되는 것일 수 있으며, 이를 통하여 상기 니켈 전구체에 포함된 수화물이 증발되어 제거되는 것일 수 있다.
본원의 일 구현예에 있어서, 상기 용매와 혼합된 니켈 착화합물을 가열하는 단계에서 바인더 수지를 함께 가열하는 단계를 포함하는 것일 수 있다.
본원의 일 구현예에 있어서, 상기 투명한 니켈 착화합물 잉크 조성물은 600 nm 내지 650 nm 파장대에서의 흡광도(ABS)가 1.0 이상인 것일 수 있다. 상기 니켈 착화합물 잉크 조성물의 600 nm 내지 650 nm 파장대에서의 흡광도(ABS) 피크가 높게 관찰되는 이유는 상기 화학식 1에 포함된 질소의 비공유 전자쌍이 니켈과 배위결합을 이루어 극성부를 형성할 때에 니켈의 d 궤도함수들에게서 에너지 준위차가 발생하고, 이에 따라 니켈의 낮은 에너지 준위의 d 궤도함수 전자가 600 nm 내지 650 nm 파장대에서의 특정 파장의 빛을 흡수하여 높은 에너지 준위의 d 궤도함수로 이동하는 것이 측정되기 때문인 것일 수 있다. 한편, 상기 흡광도(ABS) 값은 상기 극성부의 농도가 상기 도전성 니켈 착화합물 잉크 조성물 전체 중량 대비 8 중량% 내지 72 중량%일 때의 값을 의미하는 것일 수 있다.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예에 대하여 상세히 설명한다. 그러나 본발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.
실시예 1: 니켈 내부전극의 제조
단계 1: 투명한 니켈 착화합물 잉크 조성물의 제조
니켈 아세테이트(nickel acetate), 벤질아민 (benzylamine)을 몰비율 1:4로 혼합하여 니켈 극성부를 구성하였으며, 상기 극성부 21.4 wt%에 디아세톤알코올 (diacetone alcohol)을 73.6 wt%로 용매로 혼합하고, 상기 투명한 니켈 착화합물 잉크에 바인더로 PVB 5 wt%를 혼합하여 100℃에서 교반하여 투명한 니켈 착화합물 잉크 조성물 제조하였다.
단계 2: 니켈 내부전극 제조
상기 단계 1에서 제조한 투명한 니켈 착화합물 잉크 조성물을 글라스에 30 ㎛ 어플리케이터 (applicator)로 닥터 블레이드 (doctor blade) 인쇄하여 600℃에서 건조하여 니켈 내부전극을 제조하였다.
실시예 2: 니켈 내부전극의 제조
상기 실시예 1의 단계 1에서 니켈 아세테이트(nickel acetate), 사이클로헥실아민(cyclohexylamine)을 몰비율 1:4로 혼합하여 니켈 극성부를 구성하였으며, 상기 극성부 20.6wt%에 디아세톤알코올 (diacetone alcohol)을 74.4 wt%로 용매로 혼합한 것을 제외하고는 실시예 1과 동일한 방법으로 니켈 내부전극을 제조하였다.
실시예 3: 니켈 내부전극의 제조
상기 실시예 1의 단계 1에서 니켈 아세테이트(nickel acetate), n-옥틸아민 (n-octylamine)을 몰비율 1:4로 혼합하여 니켈 극성부를 구성하였으며, 상기 극성부 23.5wt%에 디아세톤알코올 (diacetone alcohol)을 71.5 wt%로 용매로 혼합한 것을 제외하고는 실시예 1과 동일한 방법으로 니켈 내부전극을 제조하였다.
실시예 4: 니켈 내부전극의 제조
상기 실시예 1의 단계 1에서 니켈 아세테이트(nickel acetate), n-옥틸아민 (n-octylamine)을 몰비율 1:4로 혼합하여 니켈 극성부를 구성하였으며, 상기 극성부 13.4 wt%에 디아세톤알코올 (diacetone alcohol)을 81.6 wt%로 용매로 혼합한 것을 제외하고는 실시예 1과 동일한 방법으로 니켈 내부전극을 제조하였다.
비교예 1: 니켈 내부전극의 제조
단계 1: 투명한 니켈 착화합물 잉크 조성물의 제조
니켈 아세테이트 (nickel acetate), 에틸렌디아민 (ethylenediamine)을 몰비율 1:2로 혼합하여 니켈 극성부를 구성하였으며, 상기 극성부 13.0wt%에 디아세톤알코올 (diacetone alcohol)을 82.0 wt%로 용매로 혼합하고, 상기 투명한 니켈 착화합물 잉크에 바인더로 PVB 5 wt%를 혼합하여 100℃에서 반응시켜 투명한 니켈 착화합물 잉크 조성물을 제조하였다.
단계 2: 니켈 내부전극 제조
상기 단계 1에서 제조한 투명한 니켈 착화합물 잉크 조성물을 글라스에 30 ㎛ 어플리케이터 (applicator)로 닥터 블레이드 (doctor blade) 인쇄하여 600℃에서 건조하여 니켈 내부전극을 제조하였다.
비교예 2: 니켈 내부전극의 제조
상기 비교예 1의 단계 1에서 니켈 아세테이트 (nickel acetate), n-옥틸아민 (n-octylamine)을 몰비율 1:4로 혼합하여 니켈 극성부를 구성하고, 상기 극성부 7.2 wt%에 디아세톤알코올 (diacetone alcohol)을 87.8 wt%로 용매로 혼합한 것을 제외하고는 비교예 1과 동일한 방법으로 니켈 내부전극을 제조하였다.
비교예 3: 니켈 내부전극의 제조
상기 비교예 1의 단계 1에서 니켈 아세테이트 (nickel acetate), n-옥틸아민 (n-octylamine)을 몰비율 1:4로 혼합하여 니켈 극성부를 구성하고, 상기 극성부 3.7 wt%에 디아세톤알코올 (diacetone alcohol)을 91.3 wt%로 용매로 혼합한 것을 제외하고는 비교예 1과 동일한 방법으로 니켈 내부전극을 제조하였다.
실험예 1. MLCC 내부전극용 투명한 니켈 착화합물 잉크 조성물의 외관 비교
실험예 1-1. 암모늄 리간드 종류에 따른 외관 비교
암모늄 리간드 종류에 따른 투명한 니켈 착화합물 잉크 조성물의 외관을 비교하기 위해, 상기 실시예 1 내지 3의 단계 1에서 제조한 투명한 니켈 착화합물 잉크 조성물 및 비교예 1의 단계 1에서 제조한 투명한 니켈 착화합물 잉크 조성물의 사진을 도 1a에 각각 나타내었다. 우선 도 1a에 나타낸 바와 같이 본 발명의 실시예 1 내지 3의 단계 1에서 제조한 투명한 니켈 착화합물 잉크 조성물의 경우 투명하며, 침전물이 형성되지 않아 니켈 입자를 포함하지 않는 무입자 상태인 것을 확인할 수 있었다.
또한, 비교예 1의 단계 1에서 제조한 투명한 니켈 착화합물 잉크 조성물의 경우에도 투명하며, 침전물이 형성되지 않아 니켈 입자를 포함하지 않는 무입자 상태인 것을 확인할 수 있었다. 이를 통해 투명한 니켈 착화합물 잉크 조성물의 경우에 암모늄 리간드 종류에 따라 색상의 차이만 있을 뿐이며, 한자리 암모늄 리간드 혹은 두자리 이상의 암모늄 리간드에 상관없이 투명하며, 침전물이 형성되지 않아 니켈 입자를 포함하지 않는 무입자 상태가 될 수 있음을 알 수 있었다.
실험예 1-2. 극성부 농도에 따른 외관 비교
도 1a에 나타낸 실시예 3의 단계 1에서 제조한 투명한 니켈 착화합물 잉크 조성물과 도 1b에 나타낸 실시예 4의 단계 1에서 제조한 투명한 니켈 착화합물 잉크 조성물, 그리고 도 1b에 나타낸 비교예 2 내지 3의 단계 1에서 제조한 투명한 니켈 착화합물 잉크 조성물과 같이 극성부의 함량이 감소하고 용매의 함량이 증가함에 따라 투명한 니켈 착화합물 잉크 조성물의 농도가 옅어지는 것을 확인할 수 있었다.
실험예 2. 투명한 니켈 착화합물 잉크 조성물의 흡광도 측정
실험예 2-1. 암모늄 리간드 종류에 따른 흡광도 비교
실시예 1 내지 3의 단계 1에서 제조한 투명한 니켈 착화합물 잉크 조성물과 비교예 1의 단계 1에서 제조한 투명한 니켈 착화합물 잉크 조성물의 흡광도를 측정하기 위하여 thermoscientific 사(社)의 spectrophotometer BioMate 160을 사용하였으며, 이를 이용하여 200 nm 내지 900 nm 파장대에서의 흡광도를 측정하여 이의 결과를 도 2a 내지 2c 및 도 2d에 각각 나타내었다. 도 2a내지 2c는 실시예 1 내지 3의 단계 1에서 제조한 투명한 니켈 착화합물 잉크 조성물의 흡광도를 나타낸 그래프이며, 도 2d는 비교예 1의 단계 1에서 제조한 투명한 니켈 착화합물 잉크 조성물의 흡광도를 나타낸 그래프이다.
도 2a내지 2c에 나타낸 바와 같이, 실시예 1 내지 3의 단계 1에서 제조한 투명한 니켈 착화합물 잉크 조성물은 약 600 nm 내지 750 nm 파장대의 빛에 대한 흡광도가 존재함을 확인할 수 있었다. 구체적으로, 650 nm 파장대의 빛에 대한 흡광도(ABS)는 1.5 이상의 값을 가지고 있음을 확인할 수 있었다. 반면, 도2d에 나타낸 비교예 1의 단계 1에 제조한 투명한 니켈 착화합물 잉크 조성물의 경우에 상기 도 2a내지 2c에 나타낸 실시예 1 내지 3의 단계 1에서 제조한 투명한 니켈 착화합물 잉크 조성물과 달리 500 nm 내지 650 nm 파장대의 빛에 대한 흡광도가 존재함을 확인할 수 있었다. 구체적으로, 650 nm 파장대의 빛에 대한 흡광도(ABS)는 실시예 1 내지 3의 단계 1에서 제조한 투명한 니켈 착화합물 잉크 조성물은 각각 2.3이상의 값과 1.5이상의 값과 2.3 이상의 값을, 비교예 1의 단계 1에서 제조한 투명한 니켈 착화합물 잉크 조성물은 1.0이상의 값을 가지고 있음을 확인할 수 있었다.
즉, 상기 실험예 1-1에서 확인한 바와 같이 투명한 니켈 착화합물 잉크 조성물의 경우에 암모늄 리간드 종류 중 한자리 암모늄 리간드를 사용하면 650 nm 파장대의 빛에 대한 흡광도(ABS) 값이 1.0 이상의 값을 가지고 있음을 확인할 수 있었다.
실험예 2-2. 극성부 농도에 따른 흡광도 비교
실시예 3 및 4의 단계 1에서 제조한 투명한 니켈 착화합물 잉크 조성물과 비교예 2 및 3의 단계 1에서 제조한 투명한 니켈 착화합물 잉크 조성물의 흡광도를 측정하기 위하여 thermoscientific 사(社)의 spectrophotometer BioMate 160을 사용하였으며, 이를 이용하여 200 nm 내지 900 nm 파장대에서의 흡광도를 측정하여 이의 결과를 도 2e와 도 2f 및 2g에 각각 나타내었다. 도 2c는 실시예 3의 단계 1에서 제조한 투명한 니켈 착화합물 잉크 조성물의 흡광도를 나타낸 그래프이며, 도 2e는 실시예 4의 단계 1에서 제조한 투명한 니켈 착화합물 잉크 조성물의 흡광도를 나타낸 그래프이며, 그리고 도 2f 및 2g는 각각 비교예 2 및 3의 단계 1에서 제조한 투명한 니켈 착화합물 잉크 조성물의 흡광도를 나타낸 그래프이다.
도 2c에 나타낸 바와 같이, 실시예 3의 단계 1에서 제조한 투명한 니켈 착화합물 잉크 조성물은 약 600 nm 내지 750 nm 파장대의 빛에 대한 흡광도가 존재함을 확인할 수 있었다. 구체적으로, 650 nm 파장대의 빛에 대한 흡광도(ABS)는 2.3 이상의 값을 가지고 있음을 확인할 수 있었다. 또한, 도 2e에 나타낸 실시예 4의 단계 1에서 제조한 투명한 니켈 착화합물 잉크 조성물과 도2f 및 2g에 나타낸 비교예 2 및 3의 단계 1에 제조한 투명한 니켈 착화합물 잉크 조성물의 경우에 상기 도 2c에 나타낸 실시예 3의 단계 1에서 제조한 투명한 니켈 착화합물 잉크 조성물과 같이 600 nm 내지 750 nm 파장대의 빛에 대한 흡광도가 존재함을 확인할 수 있었다. 반면, 구체적으로, 650 nm 파장대의 빛에 대한 흡광도(ABS)는 실시예 4의 단계 1에서 제조한 투명한 니켈 착화합물 잉크 조성물은 1.4 이상의 값을, 비교예 2 내지 3의 단계 1에서 제조한 투명한 니켈 착화합물 잉크 조성물은 각각 0.7이상의 값과 0.3이상의 값을 가지고 있음을 확인할 수 있었다.
즉, 상기 실험예 1-2에서 확인한 바와 같이 극성부의 함량이 감소하고 용매의 함량이 증가함에 따라 투명한 니켈 착화합물 잉크 조성물의 농도가 옅어지는 것을 흡광도(ABS) 값을 통해 확인할 수 있었다.
실험예 3. 니켈 내부전극 관찰
실험예 3-1. 암모늄 리간드 종류에 따른 니켈 내부전극 비교
실시예 1 내지 3의 단계 2에서 제조한 니켈 내부전극 및 비교예 1의 단계 2에서 제조한 니켈 내부전극의 사진을 도 3a에 나타내었다. 또한, 상기 실시예 1 내지 3의 단계 2에서 제조한 니켈 내부전극 및 비교예 1의 단계 2에서 제조한 니켈 내부전극의 박막 형태를 관찰하기 위해 SEM 사진을 찍었으며, 이의 결과를 도 4a 내지 4d에 각각 나타내었다.
도 3a에 나타낸 바와 같이 실시예 1 내지 3의 단계 2에서 제조한 니켈 내부전극 및 비교예 1의 단계 2에서 제조한 니켈 내부전극의 경우에 한자리 암모늄 리간드 혹은 두자리 이상의 암모늄 리간드에 상관없이 육안상 차이가 없어 보이지만, 도 4a 내지 4d에 나타낸 바와 같이 한자리 암모늄 리간드를 사용한 실시예 1 내지 3의 단계 2에서 제조한 니켈 내부전극의 박막을 구성하는 니켈 입자의 최대 직경에 비해 두자리 암모늄 리간드를 사용한 비교예 1의 단계 2에서 제조한 니켈 내부전극의 박막을 구성하는 니켈 입자의 최대 직경이 큰 것을 확인할 수 있었다. 특히, 4c에 나타낸 한자리 암모늄 리간드인 노르말옥틸아민(n-octylamine)을 사용한 실시예 3의 단계 2에서 제조한 니켈 내부전극의 박막을 구성하는 니켈 입자의 경우 평균 직경이 매우 작은 반면에, 4d에 나타낸 두자리 암모늄 리간드인 에틸렌디아민(ethylenediamine)을 사용한 비교예 1의 단계 2에서 제조한 니켈 내부전극의 박막을 구성하는 니켈 입자의 최대 직경은 150 nm에 근접함을 확인할 수 있었다. 또한, 이로 인해 실시예 3의 단계 2에서 제조한 니켈 내부전극의 경우가 비교예 1의 단계 2에서 제조한 니켈 내부전극이 비해 거칠기가 적은 것을 확인할 수 있었다.
이는 MLCC 내부전극과 유전체 그린시트가 교대로 겹쳐지도록 적층해 압착할 시 밀착도가 높은 장점으로 이어져 동일 체적의 MLCC 내 박막의 수를 증가시켜 성능이 향상되는 것일 수도 있다.
실험예 3-2. 극성부 농도에 따른 니켈 내부전극 비교
상기 실시예 4의 단계 2에서 제조한 니켈 내부전극 및 비교예 2 및 3의 단계 2에서 제조한 니켈 내부전극의 사진을 도 3b에 나타내었다. 또한, 상기 실시예 4의 단계 2에서 제조한 니켈 내부전극 및 비교예 2 및 3의 단계 2에서 제조한 니켈 내부전극의 박막 형태를 관찰하기 위해 SEM 사진을 찍었으며, 이의 결과를 도 4e 내지 4g에 각각 나타내었다.
도 4e에 나타낸 바와 같이 실시예 4의 단계 2에서 제조한 니켈 내부전극의 경우와 달리, 비교예 2 내지 3의 단계 2에서 제조한 니켈 내부전극의 경우에는 균일한 박막이 형성되지 않아 뭉쳐있는 것을 확인 할 수 있었다. 이는 도 4e에 나타낸 바와 같이 실시예 4의 단계 2에서 제조한 니켈 내부전극의 경우에 균일한 박막이 형성되어 있는 것을 확인할 수 있는 반면에, 도 4f에 나타낸 비교예 2의 단계 2에서 제조한 니켈 내부전극의 박막이 끊어져 있음과 도 4g에 나타낸 비교예 3의 단계 2에서 제조한 니켈 내부전극의 박막이 관찰되지 않음을 통해 확인 할 수 있었다. 이는 극성부의 함량이 감소하고 용매의 함량이 증가함에 따라 균일한 박막 형성이 어려워질 수 있는 것일 수도 있다.

Claims (13)

  1. 니켈 및 상기 니켈에 배위결합된 하기 화학식 1로 표시되는 화합물을 포함하는 극성부;
    용매; 및
    기타첨가제;
    를 포함하는 투명한 니켈 착화합물 잉크 조성물로서,
    상기 니켈 착화합물 잉크 조성물은 투명하고 무입자이며, 600 nm 내지 650 nm 파장대에서의 흡광도(ABS)가 1.0 이상인 값을 가지는 것인 투명한 니켈 착화합물 잉크 조성물.
    [화학식 1]
    Figure PCTKR2022007650-appb-img-000008
    (상기 화학식 1에서,
    R1 내지 R3은 각각 독립적으로 수소, 직쇄 또는 분지쇄의 C5-C20 알킬, 직쇄 또는 분지쇄의 C5-C20 알케닐, C5-C20 사이클로알킬, 직쇄 또는 분지쇄의 C1-C5 알킬 또는 직쇄 또는 분지쇄의 C8-C18 알킬로 치환 또는 비치환된 C6-C20 아릴, 직쇄 또는 분지쇄의 C1-C5 알킬 또는 직쇄 또는 분지쇄의 C8-C18 알킬로 치환 또는 비치환된 C6-C20 헤테로아릴 또는 C5-C20 알킬카보닐이고,
    R1 내지 R3 중 적어도 하나는 직쇄 또는 분지쇄의 C1-C5 알킬 또는 직쇄 또는 분지쇄의 C8-C18 알킬로 치환 또는 비치환된 C6-C20 아릴, 직쇄 또는 분지쇄의 C1-C5 알킬 또는 직쇄 또는 분지쇄의 C8-C18 알킬로 치환 또는 비치환된 C6-C20 헤테로아릴 및 직쇄 또는 분지쇄의 C5-C20 알킬 또는 C5-C20알케닐로 이루어진 군에서 선택된 어느 하나이다.)
  2. 제1항에 있어서,
    상기 화학식 1에서, R1 내지 R3은 각각 독립적으로 수소, 직쇄 또는 분지쇄의 C8-C18 알킬, 직쇄 또는 분지쇄의 C8-C18 알케닐, C8-C18 사이클로알킬, 직쇄 또는 분지쇄의 C1-C5 알킬 또는 직쇄 또는 분지쇄의 C8-C18 알킬로 치환 또는 비치환된 C8-C18 아릴, 직쇄 또는 분지쇄의 C1-C5 알킬, 직쇄 또는 분지쇄의 C8-C18 알킬로 치환 또는 비치환된 C8-C18 헤테로아릴, 직쇄 또는 분지쇄의 C8-C18 알킬 또는 직쇄 또는 분지쇄의 C8-C18 알케닐인 것인 투명한 니켈 착화합물 잉크 조성물.
  3. 제1항에 있어서,
    상기 화학식 1에서, R1 및 R2는 수소이고, R3은 직쇄 또는 분지쇄의 C1-C5 알킬, 직쇄 또는 분지쇄의 C8-C18 알킬로 치환된 C8-C18 아릴 또는 헤테로아릴, 직쇄 또는 분지쇄의 C8-C18 알킬 또는 직쇄 또는 분지쇄의 C8-C18 알케닐인 것인 투명한 니켈 착화합물 잉크 조성물.
  4. 제1항에 있어서,
    상기 화학식 1로 표시되는 화합물은 2-아미노-1-메틸-1-프로판올(2-amino-1-methyl-1-propanol), 노르말헥실아민(n-hexylamine), 헥실아민(hexylamine), 시클로헥실아민(cyclohexylamine), 노르말옥틸아민(n-octylamine), 옥틸아민(octylamine), 도데실아민(dodecylamine), 올레일아민(oleylamine), 벤질아민(benzylamine), 1-디메틸아미노-2-프로판올(1-dimethylamino-2-propanol), 2-(디에틸아미노)에탄올(2-(diethylamino)ethanol) 또는 디페닐아민(diphenylamine)인 것인 투명한 니켈 착화합물 잉크 조성물.
  5. 제1항에 있어서,
    상기 극성부의 농도는 상기 투명한 니켈 착화합물 잉크 조성물 전체 중량 대비 8 중량% 내지 72 중량%인 것인 투명한 니켈 착화합물 잉크 조성물.
  6. 제1항에 있어서,
    상기 용매는 터피네올(terpineol), 알파터피네올(α-terpineol), 디하이드로터피네올(dihydro-terpineol), 터피닐아세테이트 (terpinyl acetate), 디하이드로터피닐아세테이트(dihydro terpinyl acetate), 이소보르닐아세테이트(isobornyl acetate), 이소보르닐프로피오네이트(isobornyl propionate), 이소보르닐이소부틸레이트(isobornyl isobutyrate), 에틸렌글리콜(ethylene glycol), 프로필렌글리콜(propylene glycol), 부틸렌글리콜(butylene glycol), 디에틸렌글리콜(diethylene glycol), 디프로필렌글리콜(dipropylene glycol), 디프로필렌글리콜모노메틸에테르(dipropylene glycol monomethyl ether), 에틸렌글리콜페닐에테르(ethylene glycol phenyl ether), 프로필렌글리콜페닐에테르(propylene glycol phenyl ether), 에틸렌글리콜모노부틸에테르아세테이트, 디프로필렌글리콜메틸에테르아세테이트, 에탄올(ethanol), 프로판올(propanol), 이소프로필알코올(isopropyl alcohol), 이소옥틸알코올(isooctyl alcohol), 부탄올(butanol), 디아세톤알코올(diacetone alcohol), 1,2-펜탄디올, 1,5-펜탄디올, 2-메틸-2,4-펜탄디올, 3-메틸-1,5-펜탄디올 및 이들의 조합들로 이루어진 군으로부터 선택되는 물질을 포함하는 것인 투명한 니켈 착화합물 잉크 조성물.
  7. 제1항에 있어서,
    상기 기타 첨가제는 바인더 수지, 가소제, 안정제, 분산제, 이형제, 환원제, 계면활성제, 습윤제, 칙소제, 레벨링제 및 이들의 조합들로 이루어진 군으로부터 선택되는 물질을 포함하는 것인 투명한 니켈 착화합물 잉크 조성물.
  8. 제7항에 있어서,
    상기 바인더 수지는 폴리비닐부티랄(polyvinyl butyral), 에틸셀룰로오스(ethyl cellulose), 폴리비닐피롤리돈(polyvinyl pyrrolidone), 아크릴(acryl), 폴리비닐아세탈(polyvinyl acetal), 폴리비닐알코올(polyvinyl alcohol), 폴리올레핀(polyolefin), 폴리우레탄(polyurethane), 폴리스티렌(polystyrene) 및 이들의 조합들로 이루어진 군으로부터 선택되는 물질을 포함하는 것인 투명한 니켈 착화합물 잉크 조성물.
  9. 제7항에 있어서,
    상기 바인더 수지는 폴리비닐부티랄(polyvinyl butyral), 에틸셀룰로오스(ethyl cellulose), 폴리비닐피롤리돈(polyvinyl pyrrolidone), 아크릴(acryl), 폴리비닐아세탈(polyvinyl acetal), 폴리비닐알코올(polyvinyl alcohol), 폴리올레핀(polyolefin), 폴리우레탄(polyurethane), 폴리스티렌(polystyrene) 및 이들의 조합들로 이루어진 군으로부터 선택되는 물질을 포함하는 것인 투명한 니켈 착화합물 잉크 조성물.
  10. 제1항에 있어서,
    상기 투명한 니켈 착화합물 잉크 조성물은 MLCC 내부전극 형성용, 전자파 차폐용, 태양전지 전극 형성용, 또는 디스플레이 패널 전극 형성용 투명한 니켈 착화합물 잉크 조성물인 것을 특징으로 하는, 투명한 니켈 착화합물 잉크 조성물.
  11. 니켈 전구체 및 하기 화학식 1로 표시되는 화합물을 혼합하여 니켈 착화합물을 제조하는 단계;
    상기 니켈 착화합물을 용매와 혼합하는 단계; 및
    상기 용매와 혼합된 니켈 착화합물을 가열하는 단계;
    상기 가열 단계에서 바인더 수지를 함께 가열하는 단계;를 포함하는 투명한 니켈 착화합물 잉크 조성물의 제조방법.
    [화학식 1]
    Figure PCTKR2022007650-appb-img-000009
    (상기 화학식 1에서,
    R1 내지 R3은 각각 독립적으로 수소, 직쇄 또는 분지쇄의 C5-C20 알킬, 직쇄 또는 분지쇄의 C5-C20 알케닐, C5-C20 사이클로알킬, 직쇄 또는 분지쇄의 C1-C5 알킬 또는 직쇄 또는 분지쇄의 C8-C18 알킬로 치환 또는 비치환된 C6-C20 아릴, 직쇄 또는 분지쇄의 C1-C5 알킬 또는 직쇄 또는 분지쇄의 C8-C18 알킬로 치환 또는 비치환된 C6-C20 헤테로아릴 또는 C5-C20 알킬카보닐이고,
    R1 내지 R3 중 적어도 하나는 직쇄 또는 분지쇄의 C1-C5 알킬 또는 직쇄 또는 분지쇄의 C8-C18 알킬로 치환 또는 비치환된 C6-C20 아릴, 직쇄 또는 분지쇄의 C1-C5 알킬 또는 직쇄 또는 분지쇄의 C8-C18 알킬로 치환 또는 비치환된 C6-C20 헤테로아릴 및 직쇄 또는 분지쇄의 C5-C20 알킬 또는 C5-C20알케닐로 이루어진 군에서 선택된 어느 하나이다.)
  12. 제11항에 있어서,
    상기 니켈 착화합물 잉크 조성물은 투명하고 무입자이며, 600 nm 내지 650 nm 파장대에서의 흡광도(ABS)가 1.0 이상인 값을 가지는 투명한 니켈 착화합물 잉크 조성물의 제조방법.
  13. 제11항에 있어서,
    상기 가열은 115℃ 미만에서 수행되는 것인 투명한 니켈 착화합물 잉크 조성물의 제조방법.
PCT/KR2022/007650 2021-05-31 2022-05-30 투명한 니켈 착화합물 잉크 조성물 및 이의 제조 방법 WO2022255750A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023573557A JP2024521247A (ja) 2021-05-31 2022-05-30 透明なニッケル錯化合物インキ組成物及びその製造方法
CN202280038794.3A CN117413031A (zh) 2021-05-31 2022-05-30 透明镍络合物油墨组合物及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0070171 2021-05-31
KR1020210070171A KR20220161883A (ko) 2021-05-31 2021-05-31 투명한 니켈 착화합물 잉크 조성물 및 이의 제조 방법

Publications (1)

Publication Number Publication Date
WO2022255750A1 true WO2022255750A1 (ko) 2022-12-08

Family

ID=84324394

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/007650 WO2022255750A1 (ko) 2021-05-31 2022-05-30 투명한 니켈 착화합물 잉크 조성물 및 이의 제조 방법

Country Status (5)

Country Link
JP (1) JP2024521247A (ko)
KR (1) KR20220161883A (ko)
CN (1) CN117413031A (ko)
TW (1) TW202307147A (ko)
WO (1) WO2022255750A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000204495A (ja) * 1999-01-08 2000-07-25 Okuno Chem Ind Co Ltd 電気ニッケルメッキ液
JP2008127657A (ja) * 2006-11-22 2008-06-05 Sumitomo Metal Mining Co Ltd ニッケル膜形成用塗布液及びニッケル膜の製造方法並びにニッケル膜
JP2012131894A (ja) * 2010-12-21 2012-07-12 Tosoh Corp 導電性インク組成物、及びそれを用いて製造された電気的導通部位
KR20150118424A (ko) * 2014-04-14 2015-10-22 주식회사 두산 저점도 금속 잉크 조성물, 이를 이용한 적층시트, 연성 금속박 적층판 및 인쇄회로기판
KR20200064350A (ko) * 2018-11-29 2020-06-08 솔브레인 주식회사 적층형 세라믹 커패시터의 내부전극용 도전성 잉크 조성물의 제조방법 및 이를 이용한 적층형 세라믹 커패시터의 내부전극 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000204495A (ja) * 1999-01-08 2000-07-25 Okuno Chem Ind Co Ltd 電気ニッケルメッキ液
JP2008127657A (ja) * 2006-11-22 2008-06-05 Sumitomo Metal Mining Co Ltd ニッケル膜形成用塗布液及びニッケル膜の製造方法並びにニッケル膜
JP2012131894A (ja) * 2010-12-21 2012-07-12 Tosoh Corp 導電性インク組成物、及びそれを用いて製造された電気的導通部位
KR20150118424A (ko) * 2014-04-14 2015-10-22 주식회사 두산 저점도 금속 잉크 조성물, 이를 이용한 적층시트, 연성 금속박 적층판 및 인쇄회로기판
KR20200064350A (ko) * 2018-11-29 2020-06-08 솔브레인 주식회사 적층형 세라믹 커패시터의 내부전극용 도전성 잉크 조성물의 제조방법 및 이를 이용한 적층형 세라믹 커패시터의 내부전극 제조방법

Also Published As

Publication number Publication date
CN117413031A (zh) 2024-01-16
TW202307147A (zh) 2023-02-16
KR20220161883A (ko) 2022-12-07
JP2024521247A (ja) 2024-05-29

Similar Documents

Publication Publication Date Title
KR101477301B1 (ko) 고속 소성용 도체 페이스트
WO2015178696A1 (ko) 전도성 조성물
TWI798292B (zh) 導電性漿料、電子零件及層積陶瓷電容器
WO2013147442A1 (ko) 인쇄용 구리 페이스트 조성물 및 이를 이용한 금속패턴의 형성방법
WO2020111634A1 (ko) 적층형 세라믹 커패시터의 내부전극용 도전성 잉크 조성물의 제조방법 및 이를 이용한 적층형 세라믹 커패시터의 내부전극 제조방법
WO2011142558A2 (ko) 전도성 금속 잉크 조성물 및 전도성 패턴의 형성 방법
JP7498896B2 (ja) 導電性ペースト、電子部品、及び積層セラミックコンデンサ
TWI814910B (zh) 導電性漿料、電子零件、及積層陶瓷電容器
TW201926365A (zh) 導電性漿料、電子零件、及層積陶瓷電容器
WO2019031706A1 (ko) 광 흡수 계수가 우수한 전도성 mod 잉크 조성물 및 이를 이용한 금속 박막 형성방법
WO2022154312A1 (ko) 무소결 액체금속 잉크의 제조방법
CN113227233B (zh) 导电性浆料、电子部件以及叠层陶瓷电容器
WO2022255750A1 (ko) 투명한 니켈 착화합물 잉크 조성물 및 이의 제조 방법
WO2019013442A1 (ko) 정전척
WO2015016490A1 (ko) 세라믹이 코팅된 흑연의 제조방법
EP3246115A1 (en) Silver powder
TWI810336B (zh) 導電性漿料、電子零件以及積層陶瓷電容器
TWI798301B (zh) 導電性漿料、電子零件、及層積陶瓷電容器
CN111386579B (zh) 导电性浆料、电子部件以及叠层陶瓷电容器
WO2019074336A1 (ko) 분산성이 개선된 은 분말의 제조방법
TW202141532A (zh) 導電性漿料、電子零件以及積層陶瓷電容器
WO2013032059A1 (ko) 전도성 조성물 및 이의 제조방법
WO2019088521A1 (ko) 태양전지 전극용 도전성 페이스트 및 이를 사용하여 제조된 태양전지
WO2010114301A2 (ko) 박막 캐패시터의 제조 방법
WO2018080096A1 (ko) 태양전지 전극용 도전성 페이스트 및 이를 사용하여 제조된 태양전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22816409

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280038794.3

Country of ref document: CN

Ref document number: 2023573557

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 18565932

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22816409

Country of ref document: EP

Kind code of ref document: A1