WO2018080096A1 - 태양전지 전극용 도전성 페이스트 및 이를 사용하여 제조된 태양전지 - Google Patents

태양전지 전극용 도전성 페이스트 및 이를 사용하여 제조된 태양전지 Download PDF

Info

Publication number
WO2018080096A1
WO2018080096A1 PCT/KR2017/011512 KR2017011512W WO2018080096A1 WO 2018080096 A1 WO2018080096 A1 WO 2018080096A1 KR 2017011512 W KR2017011512 W KR 2017011512W WO 2018080096 A1 WO2018080096 A1 WO 2018080096A1
Authority
WO
WIPO (PCT)
Prior art keywords
dispersant
conductive paste
solar cell
electrode
koh
Prior art date
Application number
PCT/KR2017/011512
Other languages
English (en)
French (fr)
Inventor
노화영
고민수
김인철
전태현
장문석
김충호
Original Assignee
엘에스니꼬동제련 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘에스니꼬동제련 주식회사 filed Critical 엘에스니꼬동제련 주식회사
Priority to CN201780077302.0A priority Critical patent/CN110337726B/zh
Publication of WO2018080096A1 publication Critical patent/WO2018080096A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • C08K5/098Metal salts of carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a conductive paste used for forming an electrode of a solar cell and a solar cell manufactured using the same.
  • a solar cell is a semiconductor device that converts solar energy into electrical energy and generally has a p-n junction.
  • the basic structure is the same as that of a diode.
  • 1 is a structure of a general solar cell device, and the solar cell device is generally configured using a p-type silicon semiconductor substrate 10 having a thickness of 180 to 250 ⁇ m.
  • an n-type impurity layer 20 having a thickness of 0.3 to 0.6 ⁇ m, an antireflection film 30 and a front electrode 100 are formed thereon.
  • the back electrode 50 is formed on the back side of the p-type silicon semiconductor substrate.
  • the front electrode 100 is coated with a conductive paste mixed with silver powder, glass frit, organic vehicle, and additives containing silver as a main component on the anti-reflection film 30.
  • the electrode is baked to form an electrode
  • the back electrode 50 is coated with an aluminum paste composition composed of aluminum powder, glass frit, organic vehicle, and additives by screen printing and dried, and then dried at 660 ° C. (melting point of aluminum). It is formed by baking at the above temperature.
  • aluminum diffuses into the p-type silicon semiconductor substrate, whereby an Al-Si alloy layer is formed between the back electrode and the p-type silicon semiconductor substrate, and the p + layer 40 is formed as an impurity layer by diffusion of aluminum atoms. ) Is formed.
  • the presence of such a p + layer results in a back surface field (BSF) effect that prevents electron recombination and improves the collection efficiency of product carriers.
  • the rear silver electrode 60 may be further positioned below the rear aluminum electrode 50.
  • Dispersants are essentially used for the dispersion of the conductive paste. Since the metal powder included in the conductive paste contains nano-sized metal particles, agglomeration may occur between the nanoparticles in the paste, and thus it is inevitable to use the metal powder for uniform dispersion of the metal powder.
  • dispersants used include 5,000 to 30,000 g / mol of polymer within the range of 0.1 to 1%, and are divided into aqueous, non-aqueous, anionic, cation, polar, non-polar, amine, and acid systems to stabilize the conductive paste. To secure.
  • An object of the present invention is to shorten the dispersing process and time by using a low molecular weight dispersant in the composition of the conductive paste for solar cell electrodes, and to improve the stability of the paste by maximizing the dispersing effect by using a dispersant having an acid value and an amine number. It is done.
  • the present invention includes a metal powder, a glass frit, an organic vehicle, and a dispersant, and the dispersant provides a conductive paste for a solar cell electrode, which is a low molecular dispersant having a molecular weight of 100 to 1000 g / mol.
  • the dispersant is characterized in that it comprises 0.1 to 5% by weight based on the total weight of the conductive paste.
  • the dispersant is characterized in that the dispersant having an acid value and an amine number.
  • the dispersant has an acid value and an amine value in the range of 20 mg KOH / g to 80 mg KOH / g, characterized in that the difference between the acid value and the amine value is 10 mg KOH / g or less.
  • the dispersant is characterized in that the solid content (Solid contents) is 30 to 70% of the dispersant.
  • the conductive paste is characterized in that the viscosity has a viscosity of 40 to 60 Pa ⁇ s at 25 °C conditions.
  • a solar cell including a front electrode on an upper substrate and a back electrode on a lower substrate, wherein the front electrode is manufactured by coating and firing the conductive paste for solar cell electrodes.
  • a battery Provide a battery.
  • a dispersant included in the conductive paste it is possible to shorten the dispersing process and time by using a low molecular dispersant of 100 to 1000 g / mol, exhibit a low viscosity, easily control the content, and maximize the dispersing effect.
  • the stability of the paste can be secured.
  • the solar cell including the electrode formed by using the conductive paste according to the present invention exhibits excellent conversion efficiency, and provides an effect of improving the solar cell power generation efficiency by securing a certain level of resistance even when the content of the low molecular weight dispersant is increased. .
  • FIG. 1 is a schematic cross-sectional view of a general solar cell device.
  • FIG. 2 is a graph showing the viscosity measurement results of the conductive paste according to an embodiment of the present invention.
  • 3 to 7 show electroluminescence measurement images of electrodes formed using conductive pastes according to Examples and Comparative Examples of the present invention.
  • the paste according to one embodiment of the present invention is a paste suitable for forming a solar cell electrode, and provides a conductive paste including a low molecular weight dispersant. More specifically, the conductive paste according to the present invention comprises a metal powder, a glass frit organic vehicle, and a low molecular weight dispersant.
  • Silver powder, copper powder, nickel powder, aluminum powder, etc. may be used as the metal powder.
  • silver powder is mainly used, and for the back electrode, aluminum powder is mainly used.
  • silver powder will be described as an example. The following description is equally applicable to other metal powders.
  • the content of the metal powder is preferably 40 to 95% by weight based on the total weight of the conductive paste composition in consideration of the electrode thickness formed during printing and the wire resistance of the electrode.
  • the silver powder is preferably a pure silver powder.
  • a silver-coated composite powder having at least a surface of a silver layer, an alloy containing silver as a main component, and the like can be used.
  • other metal powders may be mixed and used. For example, aluminum, gold, palladium, copper, nickel, etc. are mentioned.
  • the average particle diameter of the silver powder may be 0.1 to 10 ⁇ m, and 0.5 to 5 ⁇ m is preferable in consideration of the ease of pasting and the density at the time of baking, and the shape may be at least one of spherical, needle, plate and amorphous. have.
  • Silver powder may mix and use 2 or more types of powder from which an average particle diameter, particle size distribution, shape, etc. differ.
  • the composition, particle diameter, and shape of the said glass frit there is no restriction
  • Lead-free glass frits can be used as well as leaded glass frits.
  • PbO is 5 to 29 mol%
  • TeO 2 is 20 to 34 mol%
  • Bi 2 O 3 is 3 to 20 mol%
  • SiO 2 is 20 mol% or less
  • alkali metals (Li, Na, K, etc.) and alkaline earth metals (Ca, Mg, etc.) may contain 10 to 20 mol%.
  • the average particle diameter of the glass frit is not limited, but may have a particle diameter within the range of 0.5 to 10 ⁇ m, and may be used by mixing multi-sheet particles having different average particle diameters.
  • at least 1 type of glass frit uses that whose average particle diameter (D50) is 2 micrometers or more and 10 micrometers or less. This makes it possible to improve reactivity during firing, to minimize damage of n layers, especially at high temperatures, to improve adhesion, and to improve open voltage (Voc). It is also possible to reduce the increase in the line width of the electrode during firing.
  • the content of the glass frit is preferably 1 to 10% by weight based on the total weight of the conductive paste composition. If the content is less than 1% by weight, incomplete firing may occur to increase the electrical resistivity. There are too many components, and there exists a possibility that an electrical resistivity may also become high.
  • the organic vehicle is not limited, but an organic binder and a solvent may be included. Sometimes the solvent can be omitted.
  • the organic vehicle is not limited but is preferably 1 to 30% by weight based on the total weight of the conductive paste composition.
  • the organic vehicle is required to maintain a uniformly mixed state of the metal powder and the glass frit.
  • the conductive paste is made homogeneous and the print pattern is blurred. And properties for suppressing flow and improving the dischargeability and plate separation property of the conductive paste from the screen plate.
  • the organic binder included in the organic vehicle is not limited, but examples of the cellulose ester-based compound include cellulose acetate, cellulose acetate butylate, and the like, and cellulose ether compounds include ethyl cellulose, methyl cellulose, hydroxy flophyll cellulose, and hydroxy ethyl. Cellulose, hydroxy propyl methyl cellulose, hydroxy ethyl methyl cellulose, and the like.
  • the acryl-based compound include poly acrylamide, poly methacrylate, poly methyl methacrylate, and poly ethyl methacrylate.
  • Examples of the vinyl type include polyvinyl butyral, polyvinyl acetate, and polyvinyl alcohol. At least one organic binder may be selected and used.
  • Solvents used for dilution of the composition include alpha-terpineol, texanol, dioctyl phthalate, dibutyl phthalate, cyclohexane, hexane, toluene, benzyl alcohol, dioxane, diethylene glycol, ethylene glycol mono butyl ether, ethylene At least one compound selected from the group consisting of glycol mono butyl ether acetate, diethylene glycol mono butyl ether, diethylene glycol mono butyl ether acetate and the like is preferably used.
  • a low molecular weight dispersant of 100 to 1000 g / mol is used.
  • R1-R2-COO-. + PO (OH) m -R2-R1 having a molecular weight of 100 to 1000 g / mol is used.
  • the dispersant may be a single component dispersant or a dispersant containing a plurality of components.
  • the dispersant is included in 0.1 to 5% by weight based on the total weight of the conductive paste composition. When included in less than 0.1% by weight, there is a problem that the dispersibility is lowered due to insufficient dispersion effect, when included in excess of 5% by weight, the viscosity is lowered due to overdispersion, and stability problems due to paste phase separation during long-term storage Can cause. More preferably included in 0.1 to 3% by weight.
  • the dispersant has an acid value and an amine number.
  • the dispersing agent has an acid value, which is advantageous in improving dispersibility and controlling electrical charge, thereby lowering the resistance characteristics of the electrode.
  • the dispersing agent has an amine value, which improves dispersibility and delays the increase in the density of the electrode and delays aggregation and sedimentation. Improve paste stability.
  • dispersants having similar acid and amine numbers are used.
  • the similarity between the acid value and the amine value means that the difference between the acid value and the amine value is 10 mg KOH / g or less.
  • the dispersant may use a similar acid value and amine value in the range of 20 mg KOH / g to 80 mg KOH / g, more preferably a dispersant having the same acid value and amine value. If the acid value and amine value is less than 20mg KOH / g, there is a problem in aggregation or sedimentation due to the dispersibility decrease, and if it exceeds 80mg KOH / g, there is a problem in reagglomeration during the dispersion process. More preferably, the difference between the acid value and the amine value within the range of 40 mg KOH / g to 70 mg KOH / g is 5 mg KOH / g or less.
  • the dispersant uses a dispersant having a solid content of 30 to 70%.
  • Solid content content means the value which converted the percentage of the weight of the solid substance which remains by evaporating moisture with respect to the total weight of a dispersing agent. If the solid content is less than 30% long-term storage stability, in particular sedimentation occurs, if more than 70% there is a problem in forming a low molecular dispersant. More preferably, it is 40 to 60%.
  • the conductive paste composition according to the present invention may further include additives commonly known as necessary, for example, a plasticizer, a viscosity modifier, a surfactant, an oxidizing agent, a metal oxide, a metal organic compound, and the like.
  • the viscosity of the conductive paste composition according to the present invention has a low viscosity of 40 to 60 Pa ⁇ s at 25 ° C. to easily adjust the content of the composition, and provides an excellent stability effect.
  • the present invention also provides a method for forming an electrode of a solar cell and a solar cell electrode produced by the method, wherein the conductive paste is coated on a substrate, dried and baked. Except for using the conductive paste containing the silver powder of the above characteristics in the method of forming a solar cell electrode of the present invention, the substrate, printing, drying and firing can be used as the method commonly used in the manufacture of solar cells as well to be.
  • the substrate may be a silicon wafer.
  • the glass frit, the organic vehicle, and the dispersant were added in a composition as shown in Table 1 below, and dispersed using a sambon mill. Then, silver powder (spherical shape, average particle diameter of 1 ⁇ m) was mixed and further dispersed using a sambon mill. After that, degassed under reduced pressure to prepare a conductive paste.
  • the properties of the dispersant are shown in Table 2 below.
  • Dispersants 1 Dispersants 2
  • Dispersant 3 Dispersant 4
  • Dispersants 5 ingredient Fatty acid & amine mixture
  • Dispersant 5 ingredient Fatty acid & amine mixture
  • Dispersant 5 ingredient
  • Fatty acid & amine mixture Fatty acid & amine mixture
  • Acrylic block copolymer Alkylol ammonium salt
  • Carboxylic acid salts Molecular Weight 500g / mol 600g / mol 12,000g / mol 8,000 g / mol 5,000 g / mol Acid 50 60 19 94 51 Amine number 50 60 - 94 53 Solid content (%) 50 60 50 81 48
  • the RV1 rheometer (HAAKE) was used to measure the viscosity of the prepared conductive paste at P35 Ti L spindle, 30 RPM, and 25 ° C.
  • the conductive paste according to the embodiment of the present invention has a viscosity of 47.959 Pa.s, 57.101Pa.s, respectively. have.
  • the obtained conductive paste was pattern printed on the front surface of the wafer by a 40 ⁇ m mesh screen printing technique, and dried at 200 to 350 ° C. for 20 to 30 seconds using a belt type drying furnace. After printing the Al paste on the back of the wafer and dried in the same way.
  • the cell formed by the above process was calcined for 20 seconds to 30 seconds between 500 to 900 ° C. using a belt type kiln to manufacture solar cells.
  • the manufactured cell is analyzed by the conversion efficiency (Eff), short circuit current (Isc), open circuit voltage (Voc), curve factor (FF) using a solar cell efficiency measurement equipment (Halm, cetisPV-Celltest 3) Table 3 shows.
  • Example 1 9.4217 0.6385 19.810 78.755
  • Example 2 9.4367 0.6388 19.840 78.711
  • Comparative Example 1 9.4273 0.6381 19.541 77.692
  • Comparative Example 2 9.3922 0.6392 17.946 71.492
  • Comparative Example 3 9.3914 0.6377 19.699 78.671
  • a solar cell divides efficiency into 0.2% units, and considering that the 0.2% efficiency increase is a value having a very large meaning, an electrode made of a conductive paste containing a low molecular weight dispersant according to the present invention as shown in Table 3 above.
  • Table 3 an electrode made of a conductive paste containing a low molecular weight dispersant according to the present invention as shown in Table 3 above.
  • FIG. 3 to 7 show images of electroluminescence (EL) of the prepared cells using McScience K3300 ELX equipment.
  • Figure 3 is Example 1
  • Figure 4 is Example 2
  • Figure 5 is Comparative Example 1
  • Figure 6 is Comparative Example 2
  • Figure 7 is an electroluminescent image of a cell prepared using the conductive paste of Comparative Example 3, respectively.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Electromagnetism (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Conductive Materials (AREA)
  • Photovoltaic Devices (AREA)

Abstract

본 발명은 태양전지 전극용 도전성 페이스트로서, 금속 분말, 유리 프릿, 유기 비히클 및 분산제를 포함하며, 상기 분산제는 100 내지 1000g/mol 의 분자량을 갖는 저분자 분산제인 것을 특징으로 하는 태양전지 전극용 도전성 페이스트에 관한 것으로, 분산 공정 및 시간을 단축할 수 있고, 낮은 점도를 나타내어 함량 조절이 용이하며, 분산 효과를 극대화하여 제조되는 도전성 페이스트의 안정성을 확보할 수 있다.

Description

태양전지 전극용 도전성 페이스트 및 이를 사용하여 제조된 태양전지
본 발명은 태양전지의 전극 형성에 사용되는 도전성 페이스트 및 이를 이용하여 제조된 태양전지에 관한 것이다.
태양 전지(solar cell)는 태양에너지를 전기에너지로 변환시켜 주는 반도체 소자로서 일반적으로 p-n 접합 형태를 가지며 그 기본 구조는 다이오드와 동일하다. 도 1은 일반적인 태양전지 소자의 구조로서, 태양 전지 소자는 일반적으로 두께가 180~250㎛인 p형 실리콘 반도체 기판(10)을 이용하여 구성된다. 실리콘 반도체 기판의 수광면측에는, 두께가 0.3~0.6㎛인 n형 불순물층(20)과, 그 위에 반사 방지막(30)과 전면 전극(100)이 형성되어 있다. 또한, p형 실리콘 반도체 기판의 이면측에는 배면 전극(50)이 형성되어 있다. 전면 전극(100)은 은을 주성분으로 하는 도전성 입자(silver powder), 유리 프릿(glass frit), 유기 비히클(organic vehicle) 및 첨가제 등을 혼합한 도전성 페이스트를 반사 방지막(30) 상에 도포한 후 소성하여 전극을 형성하고 있으며, 배면 전극(50)은 알루미늄 분말, 유리 프릿, 유기 비히클(organic vehicle) 및 첨가제로 이루어지는 알루미늄 페이스트 조성물을 스크린 인쇄 등에 의해 도포하고 건조한 후, 660℃(알루미늄의 융점) 이상의 온도에서 소성함으로써 형성되어 있다. 이 소성시에 알루미늄이 p형 실리콘 반도체 기판의 내부로 확산됨으로써, 배면 전극과 p형 실리콘 반도체 기판 사이에 Al-Si 합금층이 형성됨과 동시에, 알루미늄 원자의 확산에 의한 불순물층으로서 p+층(40)이 형성된다. 이러한 p+층의 존재에 의해 전자의 재결합을 방지하고, 생성 캐리어의 수집 효율을 향상시키는 BSF(Back Surface Field) 효과가 얻어진다. 배면 알루미늄 전극(50) 하부에는 배면 실버 전극(60)이 더 위치될 수 있다.
분산제는 도전성 페이스트의 분산을 위해 필수적으로 사용된다. 도전성 페이스트에 포함되는 금속분말은 나노 사이즈의 금속 입자를 포함하기 때문에 페이스트 내 나노 입자 간에 응집 현상이 발생할 수 있기 때문에 금속 분말의 균일한 분산을 위해서 사용이 불가피한 상황이다.
일반적으로 적용되는 분산제들은 5,000 내지 30,000g/mol 의 고분자를 0.1 내지 1 % 범위 내로 사용하고, 수계, 비수계, 음이온, 양이온, 극성, 비극성, 아민계, 산계 등으로 나누어서 사용하여 도전성 페이스트의 안정성을 확보한다.
그러나 고분자를 사용함으로써 페이스트의 점도가 상승하는 문제가 있기 때문에 사용량에 한계가 있고, 고분자 분산제의 함량을 증가시킬수록 finger 단선이 증가하고 저항이 증가되는 문제점이 있다.
본 발명은 태양전지 전극용 도전성 페이스트의 조성 중 분산제를 저분자 분산제를 사용하여 분산 공정 및 시간을 단축하고, 또한 산가 및 아민가를 갖는 분산제를 사용함으로써 분산 효과를 극대화하여 페이스트의 안정성을 향상시키는 것을 목적으로 한다.
그러나 본 발명의 목적들은 상기에 언급된 목적으로 제한되지 않으며, 언급되지 않은 또 다른 목적들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
본 발명은 금속 분말, 유리 프릿, 유기 비히클 및 분산제를 포함하며, 상기 분산제는 100 내지 1000g/mol 의 분자량을 갖는 저분자 분산제인 것을 특징으로 하는 태양전지 전극용 도전성 페이스트를 제공한다.
또한 상기 분산제는 상기 도전성 페이스트 총 중량에 대하여 0.1 내지 5 중량% 포함되는 것을 특징으로 한다.
또한 상기 분산제는 R1-COONa, R1-CH(SO3Na)COOCH3, R1-(C6H4)SO3Na, R1-OSO3Na, R1-O(CH2CH2O)nSO3Na, R1-OSO3-.+NH(CH2CH2OH)3, R1-R2-COO-.+PO(OH)m-R2-R1 (R1=alkyl group, R2=ether group)로 구성되는 군에서 선택되는 어느 1종 이상을 포함하는 것을 특징으로 한다.
또한 상기 분산제는 산가 및 아민가를 갖는 분산제인 것을 특징으로 한다.
또한 상기 분산제는 20mg KOH/g 내지 80mg KOH/g 범위의 산가 및 아민가를 가지며, 상기 산가 및 아민가의 차이가 10mg KOH/g 이하인 것을 특징으로 한다.
또한 상기 분산제는 고형분 함유량(Solid contents)이 30 내지 70% 인 분산제인 것을 특징으로 한다.
또한 상기 도전성 페이스트는 점도는 25℃ 조건에서 40 내지 60Pa·s 의 점도를 갖는 것을 특징으로 한다.
또한 본 발명은 기재 상부에 전면 전극을 구비하고, 기재 하부에 배면 전극을 구비한 태양전지에 있어서, 상기 전면 전극은, 상기 태양전지 전극용 도전성 페이스트을 도포한 후 소성시켜 제조된 것을 특징으로 하는 태양전지를 제공한다.
본 발명에 따라 도전성 페이스트에 포함되는 분산제로서 100 내지 1000g/mol의 저분자 분산제를 사용하여 분산 공정 및 시간을 단축할 수 있고, 낮은 점도를 나타내어 함량 조절이 용이하며, 분산 효과를 극대화하여 제조되는 도전성 페이스트의 안정성을 확보할 수 있다.
본 발명에 따른 도전성 페이스트를 이용하여 형성되는 전극을 포함하는 태양전지는 우수한 변환 효율을 나타내고, 상기 저분자 분산제의 함량이 증가하더라도 일정 수준의 저항을 확보하여 태양전지 발전 효율을 향상시키는 효과를 제공한다.
도 1은 일반적인 태양전지 소자의 개략 단면도를 나타낸 것이다.
도 2는 본 발명의 일실시예에 따른 도전성 페이스트의 점도 측정 결과를 나타낸 그래프이다.
도 3 내지 도 7은 본 발명의 실시예 및 비교예에 따른 도전성 페이스트를 사용하여 형성된 전극의 전계발광 측정 이미지를 나타낸 것이다.
이하에 본 발명을 상세하게 설명하기에 앞서, 본 명세서에 사용된 용어는 특정의 실시예를 기술하기 위한 것일 뿐 첨부하는 특허청구의 범위에 의해서만 한정되는 본 발명의 범위를 한정하려는 것은 아님을 이해하여야 한다. 본 명세서에 사용되는 모든 기술용어 및 과학용어는 다른 언급이 없는 한은 기술적으로 통상의 기술을 가진 자에게 일반적으로 이해되는 것과 동일한 의미를 가진다.
본 명세서 및 청구범위의 전반에 걸쳐, 다른 언급이 없는 한 포함(comprise, comprises, comprising)이라는 용어는 언급된 물건, 단계 또는 일군의 물건, 및 단계를 포함하는 것을 의미하고, 임의의 어떤 다른 물건, 단계 또는 일군의 물건 또는 일군의 단계를 배제하는 의미로 사용된 것은 아니다.
한편, 본 발명의 여러 가지 실시예들은 명확한 반대의 지적이 없는 한 그 외의 어떤 다른 실시예들과 결합될 수 있다. 특히 바람직하거나 유리하다고 지시하는 어떤 특징도 바람직하거나 유리하다고 지시한 그 외의 어떤 특징 및 특징들과 결합될 수 있다. 이하, 첨부된 도면을 참조하여 본 발명의 실시예 및 이에 따른 효과를 설명하기로 한다.
본 발명의 일실시예에 따른 페이스트는 태양전지 전극 형성에 사용되기 적합한 페이스트로서, 저분자 분산제를 포함하는 도전성 페이스트를 제공한다. 더욱 구체적으로 본 발명에 따른 도전성 페이스트는 금속 분말, 유리 프릿 유기 비히클 및 저분자 분산제를 포함하여 이루어진다.
상기 금속 분말로는 은 분말, 구리 분말, 니켈 분말, 알루미늄 분말 등이 사용될 수 있는데, 전면 전극용의 경우 은 분말이 주로 사용되며, 배면 전극용은 주로 알루미늄 분말이 사용된다. 이하에서는 편의상 은 분말을 예로 들어 금속 분말에 대해 설명한다. 하기의 설명은 다른 금속 분말에도 동일하게 적용될 수 있다.
금속 분말의 함량은 인쇄 시 형성되는 전극 두께 및 전극의 선저항을 고려할 때 도전성 페이스트 조성물 총 중량을 기준으로 40 내지 95 중량%가 바람직하다.
은 분말은 순은 분말이 바람직하며, 이외에, 적어도 표면이 은층으로 이루어지는 은 피복 복합 분말이나, 은을 주성분으로 하는 합금 등을 사용할 수 있다. 또한, 다른 금속 분말을 혼합하여 사용할 수도 있다. 예를 들면 알루미늄, 금, 팔라듐, 동, 니켈 등을 들 수 있다.
은 분말의 평균입경은 0.1 내지 10㎛ 일 수 있으며, 페이스트화 용이성 및 소성시 치밀도를 고려할 때 0.5 내지 5㎛가 바람직하며, 그 형상이 구상, 침상, 판상 그리고 무정상 중 적어도 1종 이상일 수 있다. 은 분말은 평균 입자지름이나 입도 분포, 형상 등이 다른 2종 이상의 분말을 혼합하여 이용해도 좋다.
상기 유리 프릿의 조성이나 입경, 형상에 있어서 특별히 제한을 두지 않는다. 유연 유리 프릿뿐만 아니라 무연 유리 프릿도 사용 가능하다. 바람직하기로는 유리 프릿의 성분 및 함량으로서, 산화물 환산 기준으로 PbO는 5 ~ 29 mol%, TeO2는 20 ~ 34 mol%, Bi2O3는 3 ~ 20 mol%, SiO2 20 mol% 이하, B2O3 10 mol% 이하, 알칼리 금속(Li, Na, K 등) 및 알칼리 토금속(Ca, Mg 등)은 10 ~ 20 mol%를 함유하는 것이 좋다. 상기 각 성분의 유기적 함량 조합에 의해 전극 선폭 증가를 막고 고면저항에서 접촉저항을 우수하게 할 수 있으며, 단략전류 특성을 우수하게 할 수 있다.
유리 프릿의 평균 입경은 제한되지 않으나 0.5 내지 10㎛ 범위 내의 입경을 가질 수 있으며, 평균 입경이 다른 다종이 입자를 혼합하여 사용할 수도 있다. 바람직하기로는 적어도 1종의 유리 프릿은 평균 입경(D50)이 2㎛ 이상 10 ㎛ 이하인 것을 사용하는 것이 좋다. 이를 통해 소 성시 반응성이 우수해지고, 특히 고온에서 n층의 데미지를 최소화할 수 있으며 부착력이 개선되고 개방전압(Voc)을 우수하게 할 수 있다. 또한, 소성시 전극의 선폭이 증가하는 것을 감소시킬 수 있다.
유리 프릿의 함량은 도전성 페이스트 조성물 총중량을 기준으로 1 내지 10 중량%가 바람직한데, 1 중량% 미만이면 불완전 소성이 이루어져 전기 비저항이 높아질 우려가 있고, 10 중량% 초과하면 은 분말의 소성체 내에 유리 성분이 너무 많아져 전기 비저항이 역시 높아질 우려가 있다.
상기 유기 비히클로는 제한되지 않으나 유기 바인더와 용제 등이 포함될 수 있다. 때로는 용제가 생략될 수 있다. 유기 비히클은 제한되지 않으나 도전성 페이스트 조성물 총 중량을 기준으로 1 내지 30 중량%가 바람직하다.
유기 비히클은 금속 분말과 유리 프릿 등이 균일하게 혼합된 상태를 유지하는 특성이 요구되며, 예를 들면 스크린 인쇄에 의해 도전성 페이스트가 기재에 도포될 때에, 도전성 페이스트를 균질하게 하여, 인쇄 패턴의 흐려짐 및 흐름을 억제하고, 또한 스크린판으로부터의 도전성 페이스트의 토출성 및 판분리성을 향상시키는 특성이 요구된다.
유기 비히클에 포함되는 유기 바인더는 제한되지 않으나 셀룰로오스 에스테르계 화합물로 셀룰로오스 아세테이트, 셀룰로오스 아세테이트 부틸레이트 등을 예로 들 수 있으며, 셀룰로오스 에테르 화합물로는 에틸 셀룰로오스, 메틸 셀룰로오스, 하이드록시 플로필 셀룰로오스, 하이드록시 에틸 셀룰로오스, 하이드록시 프로필 메틸 셀룰로오스, 하이드록시 에틸 메틸 셀룰로오스 등을 예로 들 수 있으며, 아크릴계 화합물로는 폴리 아크릴아미드, 폴리 메타 아크릴레이트, 폴리 메틸 메타 아크릴레이트, 폴리 에틸 메타 아크릴레이트 등을 예로 들 수 있으며, 비닐계로는 폴리비닐 부티랄, 폴리비닐 아세테이트 그리고 폴리비닐 알코올 등을 예로 들 수 있다. 상기 유기 바인더들은 적어도 1종 이상 선택되어 사용될 수 있다.
조성물의 희석을 위해 사용되는 용제로서는 알파-터피네올, 텍사놀, 디옥틸 프탈레이트, 디부틸 프탈레이트, 시클로헥산, 헥산, 톨루엔, 벤질알코올, 디옥산, 디에틸렌글리콜, 에틸렌 글리콜 모노 부틸 에테르, 에틸렌 글리콜 모노 부틸 에테르 아세테이트, 디에틸렌 글리콜 모노 부틸 에테르, 디에틸렌 글리콜 모노 부틸 에테르 아세테이트 등으로 이루어진 화합물 중에서 적어도 1종 이상 선택되어 사용되는 것이 좋다.
상기 분산제로는 100 내지 1000g/mol의 저분자 분산제를 사용한다. 저분자 분산제는 R1-COONa, R1-CH(SO3Na)COOCH3, R1-(C6H4)SO3Na, R1-OSO3Na, R1-O(CH2CH2O)nSO3Na, R1-OSO3-.+NH(CH2CH2OH)3, R1-R2-COO-.+PO(OH)n-R2-R1 (R1=alkyl group, R2=ether group)로 구성되는 군에서 선택되는 어느 1종 이상을 사용할 수 있다. 바람직하게는 100 내지 1000g/mol의 분자량을 갖는 R1-R2-COO-.+PO(OH)m-R2-R1 를 사용하는 것이 좋다. 상기 분산제는 단일 성분의 분산제를 사용하거나 복수의 성분이 포함되는 분산제를 사용할 수 있다.
상기 분산제는 도전성 페이스트 조성물 총중량을 기준으로 0.1 내지 5 중량%로 포함된다. 0.1 중량% 미만으로 포함되는 경우 분산효과가 미비하여 분산성이 저하가 되는 문제가 있고, 5 중량%를 초과하여 포함하는 경우 과분산으로 점도가 낮아지고, 장기보관 시 페이스트 상분리로 인한 안정성 문제를 야기시킬 수 있다. 더욱 바람직하게는 0.1 내지 3 중량%로 포함되는 것이 좋다.
상기 분산제는 산가 및 아민가를 가진다. 분산제는 산가를 가짐으로써 분산성 향상 및 전하(Electrical charge)의 조절이 용이하여 전극의 저항 특성을 낮추는데 유리하며, 아민가를 가짐으로써 분산성을 향상시켜 전극의 치밀도 증가 및 응집과 침강을 지연하여 페이스트의 안정성을 높혀준다.
더욱 바람직하게는 산가와 아민가가 비슷한 분산제를 사용한다. 여기서 산가와 아민가가 비슷하다 함은 산가 및 아민가의 차이가 10mg KOH/g 이하인 것을 의미한다. 상기 분산제는 20mg KOH/g 내지 80mg KOH/g 범위 내에서 산가와 아민가가 비슷한 것을 사용하고, 더욱 바람직하게는 산가와 아민가가 동일한 분산제를 사용하는 것이 좋다. 산가 및 아민가가 20mg KOH/g 미만인 경우 분산성 저하로 인한 응집이나 침강에 있어서 문제점이 있으며, 80mg KOH/g 초과하는 경우 분산공정 진행 시 재응집에 있어서 문제점이 있다. 더욱 바람직하게는 40 mg KOH/g 내지 70 mg KOH/g 범위 내에서 산가 및 아민가의 차이가 5mg KOH/g 이하인 것이 좋다.
상기 분산제는 고형분 함유량(Solid contents)이 30 내지 70% 인 분산제를 사용한다. 고형분 함유량은 분산제 총 중량에 있어서, 수분을 증발시켜 남게 되는 고형물질의 중량을 백분율로 환산한 값을 의미한다. 고형분 함유량이 30% 미만인 경우 장기보관 안정성, 특히 침강이 발생하며, 70% 초과인 경우 저분자 분산제 형성에 있어서 문제점이 있다. 더욱 바람직하게는 40 내지 60%인 것이 좋다.
본 발명에 의한 도전성 페이스트 조성물은 필요에 따라 통상적으로 알려져 있는 첨가제, 예를 들면, 가소제, 점도 조정제, 계면활성제, 산화제, 금속 산화물, 금속 유기 화합물 등을 더 포함할 수 있다.
본 발명에 따른 도전성 페이스트 조성물의 점도는 25℃ 조건에서 40 내지 60Pa·s 의 낮은 점도를 가져 조성물의 함량을 조절하기 용이하고, 안정성이 우수한 효과를 제공한다.
본 발명은 또한 상기 도전성 페이스트를 기재 위에 도포하고, 건조 및 소성하는 것을 특징으로 하는 태양전지의 전극 형성 방법 및 상기 방법에 의하여 제조된 태양전지 전극을 제공한다. 본 발명의 태양전지 전극 형성방법에서 상기 특성의 은 분말을 포함하는 도전성 페이스트를 사용하는 것을 제외하고, 기재, 인쇄, 건조 및 소성은 통상적으로 태양전지의 제조에 사용되는 방법들이 사용될 수 있음은 물론이다. 일예로 상기 기재는 실리콘 웨이퍼일 수 있다.
실시예 및 비교예
하기 표 1에 나타낸 바와 같은 조성으로 유리 프릿, 유기 비히클 및 분산제를 넣고 삼본밀을 사용하여 분산한 후, 실버 파우더(구상, 평균 입경 1㎛)를 혼합하고 또한 삼본밀을 사용하여 분산하였다. 그 뒤 감압 탈포하고 도전성 페이스트를 제조하였다. 분산제의 특성은 하기 표 2에 나타내었다.
구분 실시예1 실시예2 비교예 1 비교예 2 비교예 3
Ethyl Cellulose 0.4 0.4 0.4 0.4 0.4
Texanol 2.3 2.3 2.3 2.3 2.3
DBA 2.0 2.0 2.0 2.0 2.0
DB 1.8 1.8 1.8 1.8 1.8
Amide Wax 0.3 0.3 0.3 0.3 0.3
DPGDB 0.2 0.2 0.2 0.2 0.2
실버 파우더 89.5 89.5 89.5 89.5 89.5
유리프릿 2.0 2.0 2.0 2.0 2.0
분산제1 1.5
분산제2 1.5
분산제3 1.5
분산제4 1.5
분산제5 1.5
구분 분산제 1 분산제 2 분산제3 분산제4 분산제 5
성분 Fatty acid & amine mixture Fatty acid & amine mixture Acrylic block copolymer Alkylol ammonium salt Carboxylic acid salts
분자량 500g/mol 600g/mol 12,000g/mol 8,000g/mol 5,000g/mol
산가 50 60 19 94 51
아민가 50 60 - 94 53
고형분 함량(%) 50 60 50 81 48
실험예
(1) 점도(Viscosity) 측정
RV1 rheometer(HAAKE)를 이용하여, P35 Ti L spindle, 30 RPM, 25℃ 조건에서 상기 제조된 도전성 페이스트의 점도를 측정한 결과를 도 2에 나타내었다. 도 2에 나타나는 것과 같이 본 발명의 실시예에 따른 도전성 페이스트의 점도는 각각 47.959Pa·s, 57.101Pa·s로서 분산제를 비교예와 동일한 함량으로 포함하더라도 점도가 낮아 함량을 조절하기 용이함을 알 수 있다.
(2) 변환효율 분석
상기 얻어진 도전성 페이스트를 wafer의 전면에 40㎛ 메쉬의 스크린 프린팅 기법으로 패턴 인쇄하고, 벨트형 건조로를 사용하여 200~350 ℃에서 20초에서 30초 동안 건조시켰다. 이후 Wafer의 후면에 Al paste를 인쇄한 후 동일한 방법으로 건조하였다. 상기 과정으로 형성된 Cell을 벨트형 소성로를 사용하여 500 내지 900 ℃사이로 20초에서 30초간 소성을 행하여 태양전지 Cell을 제작하였다.
상기 제조된 Cell은 태양전지 효율측정장비(Halm社, cetisPV-Celltest 3)를 사용하여, 변환효율(Eff), 단락전류(Isc), 개방전압(Voc), 곡선인자(FF)를 분석하여 하기 표 3에 나타내었다.
Isc(A) Voc(V) Eff(%) FF(%)
실시예1 9.4217 0.6385 19.810 78.755
실시예2 9.4367 0.6388 19.840 78.711
비교예1 9.4273 0.6381 19.541 77.692
비교예2 9.3922 0.6392 17.946 71.492
비교예3 9.3914 0.6377 19.699 78.671
통상적으로 태양전지는 효율을 0.2% 단위로 나누며, 0.2% 효율 증가는 매우 큰 의미를 갖는 수치인 것을 감안할 때, 상기 표 3에 나타나는 것과 같이 본원발명의 저분자 분산제를 포함하는 도전성 페이스트로 제조된 전극을 포함하는 태양전지의 경우 비교예와 비교하여 변환 효율이 높아 태양전지의 발전 효율이 개선된 것을 알 수 있다.
(3) 전계발광(Electroluminesence) 측정
상기 제조된 Cell 에 대하여 전계발광(Electroluminesence, EL)를 맥사이언스 사의 K3300 ELX 장비를 이용하여 측정한 이미지를 도 3 내지 7에 나타내었다. 도 3은 실시예 1, 도 4는 실시예 2, 도 5는 비교예 1, 도 6은 비교예 2 및 도 7은 비교예 3의 도전성 페이스트를 각각 이용하여 제조된 Cell의 전계발광 이미지이다.
전계발광 이미지는 같은 전압 또는 전류를 인가하였을 때, 태양전지의 셀 특성 부분에서 셀 적 특성이 좋을수록 더 밝은 빛을 내며, 선 단락이 된 부분은 검은색으로 나타나게 된다. 실시예의 경우 비교예에 비해 더 밝은 전계발광을 나타냈으며, 이는 접촉저항(contact resistance) 등 전기적 특성에서 우수하여 더욱 높은 전지 효율을 가질 수 있음을 확인할 수 있었다.
전술한 각 실시예에서 예시된 특징, 구조, 효과 등은 실시예들이 속하는 분야의 통상의 지식을 가지는 자에 의하여 다른 실시예들에 대해서도 조합 또는 변형되어 실시 가능하다. 따라서 이러한 조합과 변형에 관계된 내용들은 본 발명의 범위에 포함되는 것으로 해석되어야 할 것이다.

Claims (8)

  1. 금속 분말, 유리 프릿, 유기 비히클 및 분산제를 포함하며,
    상기 분산제는 100 내지 1000g/mol 의 분자량을 갖는 저분자 분산제인 것을 특징으로 하는 태양전지 전극용 도전성 페이스트.
  2. 제1항에 있어서,
    상기 분산제는 상기 도전성 페이스트 총 중량에 대하여 0.1 내지 5 중량% 포함되는 것을 특징으로 하는 태양전지 전극용 도전성 페이스트.
  3. 제1항에 있어서,
    상기 분산제는 R1-COONa, R1-CH(SO3Na)COOCH3, R1-(C6H4)SO3Na, R1-OSO3Na, R1-O(CH2CH2O)nSO3Na, R1-OSO3-.+NH(CH2CH2OH)3, R1-R2-COO-.+PO(OH)m-R2-R1 (R1=alkyl group, R2=ether group)로 구성되는 군에서 선택되는 어느 1종 이상을 포함하는 것을 특징으로 하는 태양전지 전극용 도전성 페이스트.
  4. 제1항에 있어서,
    상기 분산제는 산가 및 아민가를 갖는 분산제인 것을 특징으로 하는 태양전지 전극용 도전성 페이스트.
  5. 제4항에 있어서,
    상기 분산제는 20mg KOH/g 내지 80mg KOH/g 범위의 산가 및 아민가를 가지며,
    상기 산가 및 아민가의 차이가 10mg KOH/g 이하인 것을 특징으로 하는 태양전지 전극용 도전성 페이스트.
  6. 제1항에 있어서,
    상기 분산제는 고형분 함유량(Solid contents)이 30 내지 70% 인 분산제인 것을 특징으로 하는 태양전지 전극용 도전성 페이스트.
  7. 제1항에 있어서,
    상기 도전성 페이스트는 점도는 25℃ 조건에서 40 내지 60Pa·s 의 점도를 갖는 것을 특징으로 하는 태양전지 전극용 도전성 페이스트.
  8. 기재 상부에 전면 전극을 구비하고, 기재 하부에 배면 전극을 구비한 태양전지에 있어서,
    상기 전면 전극은, 제1항 내지 제7항 중 어느 한 항의 태양전지 전극용 도전성 페이스트을 도포한 후 소성시켜 제조된 것을 특징으로 하는 태양전지.
PCT/KR2017/011512 2016-10-31 2017-10-18 태양전지 전극용 도전성 페이스트 및 이를 사용하여 제조된 태양전지 WO2018080096A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201780077302.0A CN110337726B (zh) 2016-10-31 2017-10-18 太阳能电池电极用导电性浆料以及使用上述浆料制造的太阳能电池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160143688A KR101930286B1 (ko) 2016-10-31 2016-10-31 태양전지 전극용 도전성 페이스트 및 이를 사용하여 제조된 태양전지
KR10-2016-0143688 2016-10-31

Publications (1)

Publication Number Publication Date
WO2018080096A1 true WO2018080096A1 (ko) 2018-05-03

Family

ID=62025173

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/011512 WO2018080096A1 (ko) 2016-10-31 2017-10-18 태양전지 전극용 도전성 페이스트 및 이를 사용하여 제조된 태양전지

Country Status (3)

Country Link
KR (1) KR101930286B1 (ko)
CN (1) CN110337726B (ko)
WO (1) WO2018080096A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102454264B1 (ko) * 2020-03-25 2022-10-14 엘에스니꼬동제련 주식회사 점도 안정성이 향상된 전도성 페이스트용 은 분말 및 이의 제조방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014027256A (ja) * 2012-06-22 2014-02-06 Nippon Paint Co Ltd 導電性アルミニウム分散ペースト、太陽電池の製造方法および太陽電池
KR101387139B1 (ko) * 2013-02-01 2014-04-25 한화케미칼 주식회사 태양전지의 전면전극용 전도성 잉크 조성물 및 이를 이용한 태양전지
KR20150016123A (ko) * 2013-08-01 2015-02-11 주식회사 엘지화학 분산제, 이의 제조 방법 및 이를 포함하는 탄소계 소재의 분산 조성물
KR20150071632A (ko) * 2013-12-17 2015-06-26 삼성에스디아이 주식회사 태양전지 전극 형성용 조성물 및 이로부터 제조된 전극
JP2016127212A (ja) * 2015-01-07 2016-07-11 株式会社ノリタケカンパニーリミテド 導電性組成物

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101352786B1 (ko) * 2007-05-09 2014-01-15 주식회사 동진쎄미켐 태양전지 전극 형성용 페이스트
KR101053913B1 (ko) * 2008-10-22 2011-08-04 에스에스씨피 주식회사 도전성 페이스트 조성물 및 이를 이용한 태양 전지용 전극 제조방법
US9623472B2 (en) 2011-01-26 2017-04-18 Vicon Machinery Llc Apparatus for closing pittsburgh seams associated with duct assemblies and other box-shaped members
KR20130038539A (ko) 2011-10-10 2013-04-18 삼성전기주식회사 유체 동압 베어링용 윤활유 조성물 및 이를 이용한 hdd용 모터
JP5872440B2 (ja) * 2012-02-13 2016-03-01 Dowaエレクトロニクス株式会社 球状銀粉およびその製造方法
KR20140099571A (ko) * 2013-02-01 2014-08-13 한화케미칼 주식회사 태양전지 전극의 제조방법 및 이를 이용한 태양전지
KR101396444B1 (ko) * 2013-05-06 2014-05-22 한화케미칼 주식회사 태양전지의 전극의 제조방법 및 이를 이용한 태양전지
CN104751935A (zh) * 2013-12-26 2015-07-01 湖南利德电子浆料有限公司 一种高方阻高效太阳能电池正面银浆及制备方法
CN105880626A (zh) * 2016-05-13 2016-08-24 浙江光达电子科技有限公司 一种太阳能电池正面银浆用类球形超细银粉的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014027256A (ja) * 2012-06-22 2014-02-06 Nippon Paint Co Ltd 導電性アルミニウム分散ペースト、太陽電池の製造方法および太陽電池
KR101387139B1 (ko) * 2013-02-01 2014-04-25 한화케미칼 주식회사 태양전지의 전면전극용 전도성 잉크 조성물 및 이를 이용한 태양전지
KR20150016123A (ko) * 2013-08-01 2015-02-11 주식회사 엘지화학 분산제, 이의 제조 방법 및 이를 포함하는 탄소계 소재의 분산 조성물
KR20150071632A (ko) * 2013-12-17 2015-06-26 삼성에스디아이 주식회사 태양전지 전극 형성용 조성물 및 이로부터 제조된 전극
JP2016127212A (ja) * 2015-01-07 2016-07-11 株式会社ノリタケカンパニーリミテド 導電性組成物

Also Published As

Publication number Publication date
CN110337726A (zh) 2019-10-15
CN110337726B (zh) 2023-08-22
KR101930286B1 (ko) 2019-03-12
KR20180049354A (ko) 2018-05-11

Similar Documents

Publication Publication Date Title
WO2011046365A2 (ko) 은 페이스트 조성물 및 이를 이용한 태양전지
WO2018080094A1 (ko) 태양전지 전극용 도전성 페이스트 및 이를 사용하여 제조된 태양전지
WO2016137059A1 (en) Silver paste composition, front electrode for solar cell formed using it, and solar cell employing it
WO2019088526A1 (ko) 태양전지 전극용 도전성 페이스트 및 이를 사용하여 제조된 태양전지
WO2019088525A1 (ko) 태양전지 전극용 도전성 페이스트 및 이를 사용하여 제조된 태양전지
WO2020111900A1 (ko) 태양전지 전극용 도전성 페이스트 및 이를 사용하여 제조된 태양전지
WO2018084464A1 (ko) 태양전지 전극용 도전성 페이스트 및 이를 사용하여 제조된 태양전지
WO2018080096A1 (ko) 태양전지 전극용 도전성 페이스트 및 이를 사용하여 제조된 태양전지
WO2020111901A1 (ko) 태양전지 전극용 도전성 페이스트 및 이를 사용하여 제조된 태양전지
WO2019088520A2 (ko) 태양전지 전극용 도전성 페이스트 및 이에 포함되는 유리 프릿, 그리고 태양 전지
WO2017074150A1 (ko) 태양전지용 전극 페이스트 및 이를 사용하여 제조된 태양전지
WO2017074151A1 (ko) 태양전지용 전극 페이스트 조성물 및 이를 사용하여 제조된 태양전지
WO2018070818A1 (ko) 태양전지 전극용 은 분말 및 이를 포함하는 도전성 페이스트
WO2018080095A1 (ko) 태양전지 전극용 도전성 페이스트 및 이를 사용하여 제조된 태양전지
WO2018080093A1 (ko) 태양전지용 기판 및 이를 구비한 태양전지
WO2019088521A1 (ko) 태양전지 전극용 도전성 페이스트 및 이를 사용하여 제조된 태양전지
WO2018097479A1 (ko) 태양전지 전극용 도전성 페이스트 조성물 및 이를 사용하여 제조된 전극을 포함하는 태양전지
WO2017074149A1 (ko) 태양전지용 전극 페이스트 및 이를 사용하여 제조된 태양전지
WO2018056543A1 (en) Method of forming electrode pattern for solar cell, electrode manufactured using the same and solar cell
WO2022097839A1 (ko) 태양전지 전극용 도전성 페이스트 및 이를 사용하여 제조된 태양전지
WO2017222181A1 (en) Composition for p-type solar cell electrode, electrode prepared therefrom and p-type solar cell prepared using the same
WO2021194060A1 (ko) 태양전지 전극용 도전성 페이스트 및 이를 이용하여 제조된 태양 전지
KR102007860B1 (ko) 태양전지 전극용 도전성 페이스트 및 이를 사용하여 제조된 태양전지
WO2020111906A1 (ko) 태양전지 전극용 도전성 페이스트 및 이를 사용하여 제조된 태양전지
WO2021137570A1 (ko) 태양전지 전극용 도전성 페이스트 조성물 및 이를 사용하여 제조된 전극을 포함하는 태양전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17863844

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17863844

Country of ref document: EP

Kind code of ref document: A1