WO2022255140A1 - 自動分析装置および検体分析方法 - Google Patents

自動分析装置および検体分析方法 Download PDF

Info

Publication number
WO2022255140A1
WO2022255140A1 PCT/JP2022/021074 JP2022021074W WO2022255140A1 WO 2022255140 A1 WO2022255140 A1 WO 2022255140A1 JP 2022021074 W JP2022021074 W JP 2022021074W WO 2022255140 A1 WO2022255140 A1 WO 2022255140A1
Authority
WO
WIPO (PCT)
Prior art keywords
light intensity
intensity value
light
reagent
quantitative analysis
Prior art date
Application number
PCT/JP2022/021074
Other languages
English (en)
French (fr)
Inventor
興子 山本
千枝 藪谷
作一郎 足立
昌彦 飯島
Original Assignee
株式会社日立ハイテク
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ハイテク filed Critical 株式会社日立ハイテク
Priority to CN202280034680.1A priority Critical patent/CN117295955A/zh
Publication of WO2022255140A1 publication Critical patent/WO2022255140A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/59Transmissivity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor

Definitions

  • the present invention relates to an automatic analyzer and sample analysis method for clinical testing.
  • Automatic analyzers for clinical tests detect the concentration of target components contained in biological samples such as blood and urine (hereinafter referred to as specimens) based on optical measurements. Specifically, first, a change in turbidity that occurs when a reaction solution obtained by mixing a specimen and a reagent corresponding to an inspection item is irradiated with light is measured. Next, among the measured turbidity changes, extract the measured value or the amount of change in the measured value for a certain period of time, compare it with the calibration curve prepared in advance for each inspection item, and compare the concentration of the target component in the sample to quantify.
  • quantification range measurable and quantifiable range
  • retest change the sample amount and retest (hereinafter referred to as “remeasurement”).
  • retest change the sample amount and retest (hereinafter referred to as “remeasurement”).
  • Patent Document 2 discloses a method for shortening the time required to obtain quantitative results, even though retesting for weight reduction and weight increase is performed.
  • the measured value during the measurement of the reaction solution in which the sample and the reagent are mixed is compared with a preset threshold value, and when the threshold value is exceeded, the sample amount is changed without waiting for the result of the initial measurement.
  • An apparatus is disclosed for initiating the
  • the light scattering detection method is specialized for highly sensitive measurement and the quantitative range is not wide. For this reason, in the case of a high-concentration specimen that is out of the quantitative range due to the high concentration of the component to be measured, conventionally, the amount of the specimen is reduced and reanalysis or the like is performed. For this reason, it takes time for two tests, the first test and the retest, to obtain quantitative results.
  • the concentration range of reagents suitable for each detection method differs. Needed.
  • An automatic analyzer includes a reaction disk in which cells containing a reaction solution of a sample and a reagent are arranged on the circumference, and a sample separator for dispensing the sample into the cells on the reaction disk.
  • an injection mechanism a reagent dispensing mechanism that dispenses a reagent into cells on the reaction disk, and an absorptiometry that measures the light emitted from the first light source and transmitted through the reaction liquid contained in the cells on the reaction disk.
  • a scattering photometer that measures the light emitted from the second light source and scattered by the reaction liquid contained in the cell on the reaction disk; and a control that drives the reaction disk, sample dispensing mechanism, and reagent dispensing mechanism.
  • the data processing unit acquires a first light intensity value from the absorption photometer and a second light intensity value from the scattering photometer for the reaction liquid between the sample dispensed by the specimen dispensing mechanism and the reagent dispensed by the reagent dispensing mechanism.
  • a reagent is additionally dispensed into the reaction liquid by the dosing mechanism, and quantitative analysis is performed based on the first light intensity value at the photometry point after the additional dispensing.
  • FIG. 4 is an example of the flow of analysis operation in Example 1;
  • FIG. 2 is a schematic diagram comparing the reaction process and the time required to obtain a result between the conventional method and Example 1.
  • FIG. 1 is an overall schematic configuration diagram of an automatic analyzer;
  • FIG. 4 is an example of an application parameter setting screen according to the first embodiment;
  • FIG. 5 is a diagram showing an example of the relationship between photometry points and light amounts; It is an example of a calibration curve for scattered light measurement. It is an example of a calibration curve for absorbance measurement.
  • FIG. 11 is an example of the flow of analysis operation in Example 2;
  • FIG. It is an example of the reaction process and required time until the result acquisition of Example 2.
  • FIG. 11 is an example of an application parameter setting screen according to the second embodiment;
  • FIG. 5 is a diagram showing an example of the relationship between photometry points and light amounts;
  • Example 1 regarding the items to be measured by the light scattering detection method, the measured light intensity value is compared with a preset threshold light intensity during measurement, and if it corresponds to the range over determination, the latex test solution is added to the reaction solution. Continue the measurement spectrophotometrically by adding
  • the sample, first reagent (buffer solution), and second reagent (latex test solution) are mixed by adding each once.
  • the order of addition is, for example, the order of the specimen, the buffer solution, and the latex test solution.
  • the change in turbidity of the reaction solution after the addition of the latex test solution is optically measured to quantify the concentration of the component to be measured in the specimen.
  • a specimen outside the upper limit of the quantification range is retested with a reduced amount of specimen added.
  • concentration is quantified by one-time measurement without retesting when the upper limit of the quantification range is exceeded.
  • Fig. 1 shows an example of the analysis operation flow of the first embodiment.
  • scattered light measurement of a reaction solution in which a specimen, a buffer solution, and a latex test solution are dispensed once each is started (S101).
  • the sample, buffer solution, and latex test solution that make up the reaction solution may be dispensed in any order as long as the buffer solution is not dispensed last, for example, the sample, buffer solution, and latex test solution.
  • the measured light amount is compared with a preset threshold light amount during measurement, and range over determination is performed (S102). If it is determined that the range is over, the latex test solution is added to the reaction solution, the detector is switched from the scattering photometer to the absorption photometer, and the measurement is continued (S106).
  • the quantified concentration is output (S108).
  • the measurement is continued without switching the detector and without adding to the reaction solution (S103).
  • the concentration quantified based on the measurement result of the scattering photometer is output (S105).
  • the measurement may be switched to only with the absorptiometer, or the measurement with the scattering photometer may be continued together with the measurement with the absorptiometer.
  • the start of measurement not only measurement by the scattering photometer but also measurement by the absorption photometer may be performed in parallel.
  • the result of the scattering photometer is preferentially output in the operation of step S104, and the result of the absorption photometer is preferentially output in the operation of step S108.
  • FIG. 2 is a schematic diagram comparing the reaction process and the time required to obtain results between the conventional method and Example 1.
  • the horizontal axis of the reaction process indicates the photometric point (elapsed time), and the vertical axis indicates the amount of light.
  • Reaction processes 201 and 203 are reaction processes in which the amount of light exceeds the measurement range during measurement after the addition of the latex test solution due to the high concentration of the component to be measured. For this reason, in conventional methods 1 and 2, retesting with a reduced amount of sample is performed, which is shown as reaction steps 202 and 204, respectively.
  • a retest (reaction process 202) with a reduced sample amount is started.
  • the concentration of the component to be measured is calculated from the amount of light during the measurement after the addition of the latex test solution in the first test (reaction process 203), and compared with a preset threshold value.
  • Step 204) is initiated.
  • the measurement time per measurement is 10 minutes, and if retesting is started at 7 minutes after the first test, it takes a total of 17 minutes to obtain the final quantitative result.
  • Example 1 the light amount value during the measurement after adding the latex test solution is compared with the preset threshold light amount, and when it corresponds to the range over determination.
  • Add the latex test solution to the reaction solution in switch the detector from the scattering photometer to the absorption photometer, and continue measurement to quantify the concentration.
  • a reaction process 205 is an example of the reaction process of Example 1, and is an example of the reaction process when it is determined that the range is over and the detector is switched to continue the measurement.
  • the data of the reaction process up to the addition of the second latex sample solution is measured with a scattered light clock ( ⁇ ), and the data of the reaction process after the addition of the second latex sample solution is measured with an absorptiometer ( ⁇ ).
  • the concentration of the reagent is suitable for the absorptiometric method, and by switching to the measurement with the absorptiometer, which has a wider quantitative range than the measurement with the scattering photometer, the concentration can be measured in a single measurement without retesting. can be quantified.
  • the time required to obtain quantitative results can be greatly shortened compared to the conventional method.
  • FIG. 3 shows the overall schematic configuration of the automatic analyzer 100, and the basic operation of the device will be described. In addition, it is an illustration and is not limited to the following examples.
  • the automatic analyzer 100 has three types of discs: a sample disc 103, a reagent disc 106, and a reaction disc 109; drive unit 117 for driving the disk and dispensing mechanism, control circuit 118 for controlling the drive unit, absorbance measurement circuit 119 for measuring the absorbance of the reaction liquid, and scattered light measurement circuit for measuring the scattered light from the reaction liquid. 120, a data processing unit 121 that processes data measured by each measurement circuit, an operation unit 122 that is an interface with the data processing unit 121, a printer 123 that prints and outputs information, and is connected to a network or the like. and a communication interface 124 .
  • a plurality of sample cups 102 which are containers for holding the specimen 101 , are arranged on the circumference of the specimen disk 103 .
  • the specimen 101 is blood, urine, cerebrospinal fluid, standard fluid, or the like.
  • a plurality of reagent bottles 105 which are containers for storing the reagent 104 , are arranged on the circumference of the reagent disk 106 .
  • the reagents include a first reagent (buffer solution) and a second reagent (latex test solution).
  • a plurality of cells 108 are arranged on the circumference of the reaction disk 109 as containers for holding a reaction liquid 107 in which the sample 101 and the reagent 104 are mixed. Each disk is rotated by a motor contained in drive section 117 , which is controlled by control circuit 118 .
  • the sample pipetting mechanism 110 is a mechanism used to move a certain amount of the sample 101 from the sample cup 102 arranged on the sample disk 103 that rotates clockwise and counterclockwise to the cell 108 .
  • the specimen dispensing mechanism 110 is composed of, for example, a nozzle for discharging or aspirating the specimen 101, a robot for moving the nozzle to a predetermined position, and a pump for discharging or aspirating the specimen 101 from the nozzle to the nozzle. This robot and pump correspond to the drive unit 117 .
  • the reagent dispensing mechanism 111 is a mechanism used to move a certain amount of the reagent 104 from the reagent bottle 105 arranged on the reagent disk 106 that rotates clockwise and counterclockwise to the cell 108 .
  • the reagent dispensing mechanism 111 includes, for example, a nozzle that ejects or aspirates the reagent 104, a robot that moves the nozzle to a predetermined position, and a pump that ejects or aspirates the reagent 104 from the nozzle to the nozzle. This robot and pump correspond to the drive unit 117 .
  • the cell 108 is immersed in a constant temperature fluid 112 in a constant temperature bath whose temperature and flow rate are controlled in the reaction disk 109 . Therefore, the temperature of the cell 108 and the reaction liquid 107 therein is kept constant even during movement accompanying the rotation of the reaction disk 109 .
  • water is used as constant temperature fluid 112 and its temperature is adjusted to 37 ⁇ 0.1° C. by control circuit 118 .
  • the medium and temperature used as constant temperature fluid 112 are examples.
  • the stirring mechanism 113 is a mechanism for stirring and mixing the specimen 101 and the reagent 104 within the cell 108 .
  • the stirring mechanism 113 is composed of, for example, a stirring rod for stirring the mixture of the specimen 101 and the reagent 104, a robot for moving the stirring rod to a predetermined position, and a motor for rotating the stirring rod. This robot and motor correspond to the driving unit 117 .
  • the cleaning mechanism 114 is a mechanism that sucks the reaction liquid 107 from the cell 108 that has finished the analysis process and cleans the empty cell 108 .
  • the washing mechanism 114 includes, for example, a nozzle for sucking the reaction liquid 107 after analysis, a nozzle for discharging washing water into the cell 108 after the reaction liquid 107 has been sucked, a nozzle for sucking the washing water, and a nozzle. It consists of a moving mechanism. This mechanism is included in drive unit 117 . After washing, the next sample 101 is again dispensed from the sample dispensing mechanism 110 into the cell 108, and a new reagent 104 is dispensed from the reagent dispensing mechanism 111 to be used for new analysis processing.
  • An absorbance measurement unit 115 and a scattered light measurement unit 116 are arranged on a part of the circumference of the reaction disk 109 .
  • the absorbance measuring unit 115 has a light source and a transmitted light receiver, and the light source and the transmitted light receiver are arranged so as to sandwich the cell 108 on the reaction disk 109 .
  • the light source is a halogen lamp
  • the cell 108 is irradiated with light emitted from the light source
  • the light transmitted through the reaction liquid 107 contained in the cell 108 is dispersed by a diffraction grating
  • the light is received by a photodiode array.
  • the wavelengths received by the photodiode array are 340 nm, 405 nm, 450 nm, 480 nm, 505 nm, 546 nm, 570 nm, 600 nm, 660 nm, 700 nm, 750 nm and 800 nm.
  • Light reception signals from these light receivers are transmitted to the storage section 121 a of the data processing section 121 through the absorbance measuring circuit 119 .
  • the absorbance measurement circuit 119 acquires the light reception signal of each wavelength range at regular time intervals, and outputs the acquired light quantity value to the data processing unit 121 .
  • the absorbance measuring unit 115 and the absorbance measuring circuit 119 are collectively called an absorbance photometer.
  • the scattered light measuring unit 116 has a light source, a transmitted light receiver, and a scattered light receiver, and the light source, the transmitted light receiver, and the scattered light receiver are arranged so as to sandwich the cell 108 on the reaction disk 109.
  • the light source is an LED
  • the cell 108 is irradiated with light emitted from the light source.
  • Light is received by the light receiver.
  • 700 nm is used as the wavelength of the irradiation light.
  • a laser light source, a xenon lamp, a halogen lamp, or the like may be used as the light source other than the LED.
  • a photodiode for example, is used as the light receiver. Signals received by the transmitted light and scattered light receivers are transmitted to the storage unit 121 a of the data processing unit 121 through the scattered light measurement circuit 120 .
  • the scattered light measurement circuit 120 also acquires a light reception signal at regular time intervals and outputs the acquired light intensity value to the data processing unit 121 .
  • the scattered light receiver is arranged, for example, in a plane substantially perpendicular to the movement direction of the cell 108 due to the rotation of the reaction disk 109 .
  • a line sensor may be used as a light receiver to receive scattered light at a plurality of angles at once.
  • a line sensor By using a line sensor, it is possible to expand the options for the light receiving angle.
  • an optical system such as a fiber or a lens may be arranged to guide the light to a scattered light receiver arranged at another position.
  • the scattered light measurement unit 116 and the scattered light measurement circuit 120 are collectively called a scattered light meter.
  • the amount of rotation of the reaction disk 109 that is driven to rotate in one cycle is a constant amount. Since the absorbance photometer and the scattering photometer measure the cell 108 passing through the absorbance measurement unit 115 and the scattered light measurement unit 116, respectively, the time between the photometry points at which the reaction liquid 107 in the cell 108 is measured by the absorption photometer The interval, the time interval between photometry points at which the scattering photometer measures the reaction liquid in the cell 108, is the time for one rotation of the reaction disk 109, which is a fixed time.
  • the data processing unit 121 includes a storage unit 121a and an analysis unit 121b.
  • the storage unit 121a stores control programs, measurement programs, data analysis programs, calibration curve data, measurement data, analysis results, and the like.
  • the measurement program is, for example, a calibration curve generation data measurement program or a specimen measurement program.
  • the specimen measurement program includes a program that compares the amount of light during measurement with a threshold amount of light as shown in FIG. 1 and determines the next operation.
  • the measurement data output to the data processing unit 121 via the absorbance measurement circuit 119 and scattered light measurement circuit 120 are stored in the storage unit 121a and read out to the analysis unit 121b together with the data analysis program.
  • the data analysis program is, for example, a calibration curve generation program, a program for quantifying the specimen concentration using the calibration curve, a program for determining errors in the calibration curve or specimen measurement results, and the like. Analysis results and the like analyzed according to the data analysis program are returned to and held in the storage unit 121a.
  • the analysis results and error information stored in the storage unit 121a are displayed on the display unit 122a of the operation unit 122, and printed out by the printer 123 if necessary.
  • the data processing unit 121 is implemented by, for example, a processor such as a CPU.
  • the operation unit 122 includes a display unit 122a, and a keyboard 122b and a mouse 122c as input units. Input may be made by touching the screen of the display unit 122a instead of using the keyboard 122b, or by selecting items displayed on the screen of the display unit 122a with the mouse 122c.
  • the communication interface 124 is, for example, connected to a hospital network and communicates with HIS (Hospital Information System) and LIS (Laboratory Information System).
  • HIS Hospital Information System
  • LIS Laboratory Information System
  • FIG. 4 shows an example of an application parameter setting screen according to the first embodiment.
  • the analysis item setting screen 501 the item to be quantified, the sample amount, the analysis request method, whether or not to add R3 under analysis, and the output unit are input.
  • the analysis item setting screen 501 since items mainly related to light scattering analysis are targeted, an example in which "light scattering analysis” is selected as the "method for requesting analysis” is shown.
  • “Implementation of addition of R3 during analysis” it is possible to select measurement by Example 1 or measurement by the conventional method by selecting whether or not reagent R3 is to be added.
  • “do" is selected for "perform R3 addition during analysis”.
  • a parameter screen 502 for the measurement of the scattering photometer includes the analysis method, the photometry point used for calculation, the reagent dispensing amount, the light receiving angle, and the quantification range, as well as the photometry point to be checked and the threshold light amount.
  • the check execution photometry point and the threshold light intensity may be displayed on the application parameter setting screen as shown in FIG. 4 and treated as parameters that can be set by the user.
  • a specified value may be stored in a measurement program or the like.
  • a parameter screen 503 in the measurement of the absorptiometer includes the analysis method, the photometric point used for calculation, the wavelength, the amount of R3 to be dispensed, and the quantification range.
  • reagents are expressed as R1, R2, and R3, and are dispensed in ascending order of numbers.
  • R1 indicates the dispensing of the buffer solution
  • R2 and R3 indicate the dispensing of the latex test solution.
  • the numerical values of R1 and R2 in the measurement parameters of the absorption photometer are the same as the numerical values of R1 and R2 in the measurement parameters of the scattering photometer. This is because in the measurement method of Example 1, the reagent dispensed during measurement is used as it is for the light scattering analysis (see reaction process 205 shown in FIG. 2).
  • Analysis methods include, for example, the 1-point analysis method, the 2-point rate analysis method, and the 2-point end analysis method.
  • FIG. 4 shows an example of choosing a two-point end-of-life analysis method.
  • the change in light intensity between two photometric points is used to quantify the concentration.
  • the two photometry points are specified in the photometry point input field shown in FIG.
  • the numerical values in the quantification range are the concentration values of the components to be measured, and indicate the lower and upper limits of the quantification range.
  • the check execution photometry point and the threshold light amount are information used in the range over determination (S102) in FIG.
  • the check execution photometry point and the threshold light intensity may be set by the user, may be automatically calculated within the device using the measured value of the standard solution, or may be provided by the reagent manufacturer. Alternatively, the measured value (light intensity) of the highest concentration standard solution in scattered light measurement may be used as the threshold light intensity.
  • the check-executing photometry points are greater than or equal to the point after R2 dispensing and less than or equal to the point before R3 dispensing.
  • FIG. 5 shows an example of the relationship between the photometric point and the amount of light when dispensing up to R3 is performed.
  • FIG. 5 shows an example in which R2 is dispensed between photometry points 5 and 6 and R3 is dispensed between photometry points 16 and 17.
  • the amount of light before dispensing R3 is the scattered light intensity ( ⁇ ) measured with a scattered light clock
  • the amount of light after dispensing R3 means the absorbance ( ⁇ ) measured with an absorptiometer.
  • the “checking photometry point” is set between photometry points 6-16.
  • a standard solution with a known concentration of specimen is measured to obtain a calibration curve showing the relationship between the concentration of the component to be measured and the amount of light.
  • two calibration curves are prepared.
  • One is a calibration curve obtained by measuring a reaction solution obtained by mixing a sample, R1 and R2 with a scattering photometer, and is used when measurement by the light scattering detection method is completed (step S105 in FIG. 1).
  • This calibration curve is used as a calibration curve for scattered light measurement, and an example is shown in FIG.
  • the other is a calibration curve when measuring a reaction solution in which a specimen, R1, R2, and R3 are mixed with an absorptiometer, and is used when measurement is completed after switching from the light scattering detection method to the absorptiometry method. (Step S108 in FIG. 1).
  • This calibration curve is used as a calibration curve for absorption measurement, and an example is shown in FIG.
  • the horizontal axis in Figures 6 and 7 is the concentration of the component to be measured, and the vertical axis is the amount of light calculated according to the analysis method and photometry point set in the application parameters.
  • the analysis method of the scattering photometer is the two-point end analysis method, and the photometric points are 7 and 22. Therefore, the amount of change in light at photometric points 7 and 22 ( scattered light intensity variation). Since the analysis method of the absorptiometer is the 2-point end analysis method and the photometric points are 19 and 34, the amount of light change (absorbance change) at the photometric points 19 and 34 is measured by the absorptiometer. In the calibration curve for scattered light measurement (FIG.
  • the calibration curve in the concentration range of 500 ng / mL or less is the effective range
  • the calibration curve for absorption measurement for example, the concentration is 400 to 1000 ng / mL
  • the calibration curve in the range of is the valid range.
  • a specimen of unknown concentration After calibration, measure a specimen of unknown concentration.
  • the operation flow during measurement is as shown in FIG. Specifically, for example, a specimen of unknown concentration, a buffer solution (R1), and a latex test solution (R2) are dispensed into the cell 108, and scattered light measurement is started (S101).
  • the amounts of the sample, R1, and R2 to be dispensed at this time are the amounts set as the parameters of the scattering photometer among the application parameters.
  • the light quantity at the "check-executing photometry point" is acquired, the light quantity at the check-execution photometry point is compared with the "threshold light quantity" during measurement, and range over determination is performed (S102).
  • the specified values or the values set from the application parameter setting screen are stored in the measurement program or the like. If it is determined to be within the range, scattered light measurement is continued (S103). After the measurement is completed (S104), the amount of light is calculated from the acquired reaction process according to the "analysis method” and "photometry point” set as the parameters of the scattering photometer among the application parameters. This amount of light is compared with the amount of light of the calibration curve for scattered light measurement, and the concentration is quantified and output (S105). For example, when following the application parameters of the scattering photometer in FIG. 4, the analysis method is the two-point end analysis method and the photometry points are 7 and 22. The concentration is quantified by comparing with the scattered light variation of the calibration curve for measurement (FIG. 6).
  • the latex test solution is added (R3 dispensing), the detector is switched from the scattering photometer to the absorption photometer, and the measurement is continued ( S106).
  • the dispensing amount of R3 at this time is an amount set as a parameter of the absorptiometer among the application parameters.
  • the amount of light is calculated from the acquired reaction process according to the "analysis method” and "photometry point” set as the parameters of the absorption photometer among the application parameters. This light amount is compared with the light amount of the calibration curve for absorption measurement (FIG. 7) to quantify and output the concentration (S108).
  • the amount of light during measurement is compared with a threshold amount of light set in advance to determine whether the range is over.
  • the amount of light after a certain period of time may be estimated from the amount of light at an arbitrary photometry point, and the estimated amount of light may be compared with a separately set threshold amount of light.
  • the analyte concentration may be estimated from the amount of light at an arbitrary photometric point or the estimated amount of light after a certain period of time has elapsed, and compared with a separately set threshold concentration.
  • the slope of the reaction process between arbitrary photometric points after the addition of R2 may be compared with a separately set threshold slope to determine the range over.
  • Example 2 regarding the items to be measured by the light scattering detection method, the measured light amount value is compared with a preset threshold light amount during measurement, and if it corresponds to the range over determination, it is suitable for the absorptiometric method.
  • the liquid volume ratio of the reagent is changed so that the concentration of the reagent is the same as above, and remeasurement is started by the spectrophotometric method before the measurement of the first test is completed.
  • FIG. 8 shows an example of the analysis operation flow of the second embodiment.
  • scattered light measurement of a reaction solution in which a specimen, a buffer solution, and a latex test solution are dispensed once each is started (S301).
  • the sample, buffer solution, and latex test solution that make up the reaction solution may be dispensed in any order as long as the buffer solution is not dispensed last, for example, the sample, buffer solution, and latex test solution.
  • the measured amount of light is compared with a preset threshold amount of light during measurement, and over-range determination is performed (S302).
  • the liquid volume ratio between the buffer solution and the latex test solution is changed, and absorbance measurement is started at a reagent concentration suitable for the spectrophotometry before the end of the initial measurement (S306). After the measurement is completed (S307), the concentration quantified based on the measurement result of the absorption photometer is output (S308). On the other hand, if it is determined to be within the range in the range over determination (S302), the measurement of the scattering photometer is continued (S303). After the measurement is finished (S304), the concentration quantified based on the measurement result of the scattering photometer is output (S305).
  • the dispensing timing of the buffer solution and the latex test solution at the start of measurement is R1 for the buffer solution and R2 for the latex test solution among the R1, R2, and R3 dispensing timings described in Example 1.
  • R1 for the buffer solution and R3 for the latex test solution there are two possible timings: R1 for the buffer solution and R3 for the latex test solution.
  • FIG. 9 is a schematic diagram of the reaction process and the required time until the results are obtained in Example 2.
  • the horizontal axis of the reaction process indicates the photometric point (elapsed time), and the vertical axis indicates the amount of light.
  • a reaction process 401 is a reaction process of scattered light measurement in which the amount of light exceeds the measurement range during the measurement after the addition of the latex test solution because the concentration of the component to be measured is high.
  • the reaction process 402 shows an example in which the amount of sample is the same as the initial test, the liquid volume ratio of the buffer solution and the latex test solution is changed from the initial test, and absorbance measurement is performed with a reagent concentration suitable for the absorption photometry method.
  • the measurement time per measurement is 10 minutes, and if retesting is started at 7 minutes after the first test, it takes a total of 17 minutes to obtain the final quantitative result.
  • the time required to obtain quantitative results is the same as in conventional method 2 of Example 1 (see FIG. 2). Since it is used, it is highly possible that the quantification range can be expanded more than retesting by simply changing the sample amount.
  • FIG. 10 shows an example of an application parameter setting screen according to the second embodiment.
  • the analysis item setting screen 601 the item to be quantified, the method of requesting analysis, whether or not the photometer can be changed at the time of retesting, whether or not to perform retesting during measurement, and the output unit are entered.
  • the method of requesting analysis since items mainly related to light scattering analysis are targeted, an example in which "light scattering analysis” is selected as the "method for requesting analysis” is shown.
  • FIG. 10 shows an example in which "possible” is selected for "change of photometer at retest” and “yes” is selected for "implementation of retest during measurement” (measurement according to the second embodiment is selected).
  • a parameter screen 602 for the measurement of the scattering photometer includes the analysis method, the photometry point used for calculation, the amount of specimen, the amount of reagent dispensed, the light receiving angle, the quantification range, as well as the photometry point to be checked and the threshold light amount. .
  • the check execution photometry point and the threshold light intensity may be displayed on the application parameter setting screen as shown in FIG. 10 and treated as parameters that can be set by the user.
  • a specified value may be stored in a measurement program or the like.
  • a parameter screen 603 for measurement by the absorptiometer includes the analysis method, photometry points used for calculation, wavelength, specimen amount, reagent dispensing amount, and quantification range.
  • reagents are expressed as R1, R2, and R3, and are dispensed in ascending order of numbers.
  • R1 indicates the dispensing of the buffer solution
  • R2 and R3 indicate the dispensing of the latex test solution.
  • R2 being zero means that nothing is dispensed at the R2 dispensing timing.
  • R3 may be set to zero and R2 may be set to the amount of the latex reagent to be dispensed.
  • the values of R1 and R2 or R3 in the measurement parameters of the absorption photometer are different from those of the scattering photometer.
  • the suitable concentration of the latex test solution in the reaction solution differs between the absorption photometer and the scattering photometer, and a higher concentration is desirable for the absorption photometer.
  • the amount of R1 (buffer solution) in the measurement parameters of the absorptiometer is made smaller than the R1 of the measurement parameters of the scattering photometer
  • the amount of R2 or R3 (latex test solution) in the measurement parameters of the absorptiometer is the scattering light intensity It is desirable to make it larger than R2 or R3 of the measurement parameter of the meter.
  • R1 and R2 or R3 it is desirable to set the total amount of R1 and R2 or R3 to be the same for each photometer. It doesn't matter because The amount of analyte can be the same or different in each photometer. Even if the sample amount is different, it is not a problem because each photometer is calibrated according to the measurement conditions.
  • the check execution photometry point and the threshold light amount are information used in the range over determination (S302) in FIG.
  • the check execution photometry point and the threshold light intensity may be set by the user, may be automatically calculated within the device using the measured value of the standard solution, or may be provided by the reagent manufacturer. Alternatively, the measured value (light intensity) of the highest concentration standard solution in scattered light measurement may be used as the threshold light intensity.
  • the check execution photometry point is the point after R2 or R3 is dispensed or above.
  • FIG. 11 shows an example of the relationship between the photometry point and the amount of light (scattered light intensity) when R1 and R3 are dispensed in scattered light measurement.
  • FIG. 11 shows an example in which R3 is dispensed between photometry points 16 and 17.
  • the "check execution photometry point" is set to a numerical value equal to or greater than 17 and equal to or less than the measurement end photometry point (34 in FIG. 11). In this example, the closer the check-executing photometry point is to 17, the sooner the over-range determination can be made, and the earlier the re-examination start timing becomes.
  • Example 2 After setting the parameters necessary for analysis, perform calibration. In calibration, a standard solution with a known concentration of specimen is measured to obtain a calibration curve showing the relationship between the concentration of the component to be measured and the amount of light. Also in Example 2, two calibration curves are prepared. One is a scattered light measurement calibration curve for measurement with a scattering photometer, and the other is an absorption measurement calibration curve for measurement with an absorptiometer. The amount of light on the vertical axis of the calibration curve is the amount of light calculated according to the analysis method and photometry points set in the application parameters. It can be obtained by independently performing the measurement of the scattering photometer and the measurement of the absorption photometer according to the application parameters set for each photometer.
  • a specimen of unknown concentration After calibration, measure a specimen of unknown concentration.
  • the operation flow during measurement is as shown in FIG. Specifically, for example, a specimen of unknown concentration, a buffer solution (R1), and a latex test solution (R3) are dispensed into the cell 108, and scattered light measurement is started (S301).
  • the amounts of the sample, R1, and R3 to be dispensed at this time are the amounts set as the parameters of the scattering photometer among the application parameters.
  • the amount of light at the "checking photometry point" is acquired, the amount of light at the "checking photometry point" is compared with the "threshold light amount" during measurement, and over-range determination is performed (S302).
  • the specified values or the values set from the application parameter setting screen are stored in the measurement program or the like. If it is determined to be within the range, scattered light measurement is continued (S303). After the measurement is finished (S304), the amount of light is calculated from the acquired reaction process according to the "analysis method” and "photometry point” set as the parameters of the scattering photometer among the application parameters. This amount of light is compared with the amount of light of the calibration curve for scattered light measurement, and the concentration is quantified and output (S305). For example, when following the application parameters of the scattering photometer in FIG. 10, the analysis method is the two-point end analysis method and the photometry points are 20 and 32. The concentration is quantified by comparing with the scattered light variation of the calibration curve for measurement.
  • the range over determination determines that the range is over
  • a new sample with an unknown concentration a buffer solution (R1), and a latex test solution (R3) are dispensed into a new cell 108 to absorb light.
  • Re-measurement is started with the photometer (S306).
  • the amounts of the sample, R1, and R3 to be dispensed at this time are the amounts set as the parameters of the absorptiometer among the application parameters. This measurement is started before the scattered light measurement ends.
  • the amount of light is calculated from the obtained reaction process according to the "analysis method” and "photometry point" set as the parameters of the absorption photometer among the application parameters. This light quantity is compared with the light quantity of the calibration curve for absorption measurement, the concentration is quantified and output (S308).
  • This embodiment is characterized by starting absorbance measurement with a reagent concentration suitable for the spectrophotometry method before the end of the first test. It is effective to expand the range of quantitation by using the instrument.
  • the amount of light during measurement is compared with a threshold amount of light set in advance to determine whether the range is over.
  • the amount of light after a certain period of time may be estimated from the amount of light at an arbitrary photometry point, and the estimated amount of light may be compared with a separately set threshold amount of light.
  • the analyte concentration may be estimated from the amount of light at an arbitrary photometric point or the estimated amount of light after a certain period of time has elapsed, and compared with a separately set threshold concentration.
  • the slope of the reaction process between arbitrary photometric points after addition of R2 or R3 may be compared with a separately set threshold slope to determine overrange.
  • a latex immunoturbidimetric test is used as an example.
  • a latex test solution sensitized with an antibody or antigen is mixed with a standard solution or sample containing the component to be measured (antigen or antibody).
  • the reaction was measured by a scattering photometer or an absorption photometer, it is not limited to the latex immunoturbidimetry item.
  • an insoluble carrier silicon particles, magnetic particles, metal colloids, etc.
  • sensitized with an antibody or antigen is mixed with a standard solution or sample containing the component to be measured (antigen or antibody), and the agglutination reaction of the particles caused by the antigen-antibody reaction occurs. may be measured using a scattering photometer or an absorption photometer.
  • the target component to be quantified is not the concentration but the activity value.
  • 100 automatic analyzer, 101: specimen, 102: sample cup, 103: specimen disk, 104: reagent, 105: reagent bottle, 106: reagent disk, 107: reaction liquid, 108: cell, 109: reaction disk, 110: Specimen dispensing mechanism, 111: reagent dispensing mechanism, 112: constant temperature fluid, 113: stirring mechanism, 114: washing mechanism, 115: absorbance measuring unit, 116: scattered light measuring unit, 117: driving unit, 118: control circuit, 119: absorbance measurement circuit, 120: scattered light measurement circuit, 121: data processing unit, 121a: storage unit, 121b: analysis unit, 122: operation unit, 122a: display unit, 122b: keyboard, 122c: mouse, 123: printer , 124: communication interface, 201, 202, 203, 204, 205, 401, 402: reaction process, 501, 601: analysis item setting screen, 502, 503, 602, 603: parameter screen.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

従来、光散乱検出法において定量範囲を外れた高濃度検体には再検が必要となり、長い計測時間を要していた。このため、検体と試薬との反応液について、吸光光度計から第1光量値及び散乱光度計から第2光量値を取得し、あらかじめ定めた第1測光ポイントでの第2光量値に基づき、第2光量値に基づく定量分析の可否を判定し、第2光量値に基づく定量分析を否と判定する場合には、反応液に試薬を追加で分注し、追加分注後の測光ポイントでの第1光量値に基づく定量分析を行う。

Description

自動分析装置および検体分析方法
 本発明は、臨床検査用の自動分析装置および検体分析方法に関する。
 臨床検査用の自動分析装置では、血液や尿などの生体試料(以下、検体と呼ぶ)に含まれる測定対象成分の濃度を光学的な測定に基づいて検出している。具体的には、まず検体と検査項目に対応する試薬とを混合した反応液に光を照射した際に生じる濁度変化を計測する。次に、計測した濁度変化のうち、一定時間における計測値あるいは計測値の変化量を抽出し、検査項目ごとに予め用意しておいた検量線と比較して検体中の測定対象成分の濃度を定量する。このとき、計測および定量可能な範囲(以降、「定量範囲」と記載する場合がある)を外れた検体は、検体量を変更して再検査(以降、「再検」や「再計測」と記載する場合がある)をしている。例えば、定量範囲を下回った場合は検体量を増やした増量再検を実施し、定量範囲を上回った場合は検体量を減らした減量再検を実施している。
 測定対象成分の測定方法としては、反応液の透過光量を測定する吸光光度法を用いるものが多い中、近年、吸光光度法よりも高感度に計測可能な光散乱検出法を用いる方法が報告されている。これら2つの検出法は特性に違いがあり、例えば、定量範囲が異なるといった違いがある。そこで、これら2つの光度計の定量範囲の違いを利用し、2種類の光度計を1台の装置に搭載して計測のダイナミックレンジを拡大した自動分析装置が開発されている(特許文献1)。広いダイナミックレンジの実現は、定量範囲を逸脱する検体数を低減することに繋がり、結果的に検体量を変更した再検率の低減に繋がる。
 また、減量再検や増量再検を実施するものの、定量結果を得るまでの時間を短縮する方法が特許文献2に開示されている。特許文献2では、検体と試薬とを混合した反応液の計測途中の計測値を予め設定された閾値と比較し、閾値を超えた場合に初回計測の結果を待たずに検体量を変更した再検を開始する装置が開示されている。
特開2014-6160号公報 特開平4-249744号公報
 光散乱検出法は高感度な計測に特化しており定量範囲は広くない。このため、測定対象成分の濃度が高いことにより定量範囲を外れた高濃度検体は、従来、検体量を減らした減量再検などを実施する。このため、定量結果を得るまでに初検と再検の2回分の時間を要する。また、高濃度検体の計測に適している吸光光度法との併用により定量範囲を拡大することも可能ではあるものの、各検出法に適した試薬の濃度範囲は異なるため、検出法ごとに試薬が必要とされる。
 また、近年では、試薬の高感度等により、1回の計測に用いる検体量が少量化されている。この場合、元々少量の検体に対して、さらに検体量を減らした減量再検を行うとすれば、わずかな分注精度のばらつきが検査結果に与える影響も大きくなり、定量結果の精度を低下させるおそれもある。
 本発明の一実施の形態である自動分析装置は、検体と試薬との反応液を収容するセルが円周上に配置される反応ディスクと、反応ディスク上のセルに検体を分注する検体分注機構と、反応ディスク上のセルに試薬を分注する試薬分注機構と、第1の光源から照射され、前記反応ディスク上のセルに収容された反応液を透過した光を測光する吸光光度計と、第2の光源から照射され、反応ディスク上のセルに収容された反応液を散乱した光を測光する散乱光度計と、反応ディスク、検体分注機構及び試薬分注機構を駆動させる制御回路と、検体計測プログラムを実行し、検体計測プログラムにしたがって制御回路を制御するデータ処理部と、を有し、
 データ処理部は、検体分注機構により分注した検体と試薬分注機構により分注した試薬との反応液について、吸光光度計から第1光量値及び散乱光度計から第2光量値を取得し、あらかじめ定めた第1測光ポイントでの第2光量値に基づき、第2光量値に基づく定量分析の可否を判定し、第2光量値に基づく定量分析を否と判定する場合には、試薬分注機構により反応液に試薬を追加で分注し、追加分注後の測光ポイントでの第1光量値に基づく定量分析を行う。
 高濃度検体であった場合でも、結果取得までの時間を短縮できる。上記以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
実施例1の分析動作のフローの例である。 結果取得までの反応過程と所要時間を従来法と実施例1とで比較した概略図である。 自動分析装置の全体概略構成図である。 実施例1のアプリケーションパラメータの設定画面の一例である。 測光ポイントと光量の関係の一例を示す図である。 散乱光計測用検量線の例である。 吸光計測用検量線の例である。 実施例2の分析動作のフローの例である。 実施例2の結果取得までの反応過程と所要時間の例である。 実施例2のアプリケーションパラメータの設定画面の一例である。 測光ポイントと光量の関係の一例を示す図である。
 以下、図面を参照して本発明の実施の形態を説明する。
 実施例1では、光散乱検出法で計測する項目に関して、計測された光量値を予め設定しておいた閾値光量と計測中に比較し、レンジオーバー判定に該当した場合には反応液にラテックス試液を追加することにより吸光光度法で計測を継続する。
 従来、ラテックス免疫比濁法では、検体と第一試薬(緩衝液)と第二試薬(ラテックス試液)をそれぞれ一回ずつの添加により混合する。添加する順は、例えば、検体、緩衝液、ラテックス試液の順である。ラテックス試液添加後に生じる反応液の濁度変化を光計測し、検体中の測定対象成分の濃度を定量する。このとき、例えば定量範囲の上限を外れた検体は、検体の添加量を減らして再検を実施していた。実施例1では、光散乱検出法を主とする項目において、定量範囲の上限を外れた場合に再検することなく一回の計測により濃度を定量する。
 図1に実施例1の分析動作のフローの例を示す。まず、検体と緩衝液とラテックス試液をそれぞれ一回ずつ分注した反応液の散乱光計測を開始する(S101)。反応液を構成する検体、緩衝液、ラテックス試液の分注順は、緩衝液が最後に分注されなければよく、例えば、検体、緩衝液、ラテックス試液の順である。計測された光量を予め設定しておいた閾値光量と計測中に比較し、レンジオーバー判定を実施する(S102)。レンジオーバーと判定された場合、反応液にラテックス試液を追加し、検出器を散乱光度計から吸光光度計に切り替えて計測を継続し(S106)、計測終了後(S107)、吸光光度計の計測結果に基づき定量された濃度を出力する(S108)。一方、レンジオーバー判定(S102)において、レンジ内と判定された場合は、検出器を切り替えることなく、かつ、反応液への追加もなく、計測を継続する(S103)。計測終了後(S104)、散乱光度計の計測結果に基づき定量された濃度を出力する(S105)。
 ステップS106の動作では、吸光光度計だけの計測に切り替えてもよいし、吸光光度計の計測と併せて散乱光度計の計測も継続しておいてもよい。また、計測開始(S101)の時点で、散乱光度計の計測だけでなく吸光光度計の計測も並行して実施しておいてもよい。この場合、ステップS104の動作では散乱光度計の結果を優先出力し、ステップS108の動作では吸光光度計の結果を優先出力すればよい。
 図2は、結果取得までの反応過程及び所要時間を従来法と実施例1とで比較した概略図である。反応過程の横軸は測光ポイント(経過時間)、縦軸は光量を意味している。反応過程201、203は、測定対象成分の濃度が濃いために、ラテックス試液添加後の計測途中で計測範囲を超えて光量が頭打ちになった反応過程である。このため、従来法1、2ではそれぞれ、反応過程202、204として示される、検体量を減らした再検を実施する。
 従来法1では、初検(反応過程201)の計測終了後に、検体量を減らした再検(反応過程202)を開始する。この場合、例えば一回あたりの計測時間が10分であるとすると、最終的な定量結果を得るまでに合計20分を要することになる。従来法2では、初検(反応過程203)のラテックス試液添加後の計測途中の光量から測定対象成分の濃度を算出し、予め設定された閾値と比較して閾値を超えた場合に再検(反応過程204)を開始する。この場合、例えば一回あたりの計測時間が10分であり、初検の7分目の時点で再検を開始したとすると、最終的な定量結果を得るまでに合計17分を要する。従来法1と比較すると、定量結果の取得までに3分の短縮を図れることとなる。
 これに対して、実施例1では、図1に示したように、ラテックス試液を添加した後の計測途中における光量値を予め設定しておいた閾値光量と比較し、レンジオーバー判定に該当した場合に反応液にラテックス試液を追加し、検出器を散乱光度計から吸光光度計に切り替えて計測を継続して濃度を定量する。反応過程205は実施例1の反応過程の例であり、レンジオーバーと判定され、検出器を切り替えて計測が継続される場合の反応過程の例である。2回目のラテックス試液の添加までの反応過程が散乱光時計で計測されたデータ(●)であり、2回目のラテックス試液の添加後の反応過程が吸光光度計で計測されたデータ(▲)である。2回目のラテックス試液の追加により吸光光度法に適した試薬濃度にし、散乱光度計の計測よりも定量範囲が広い吸光光度計での計測に切り替えることで、再検することなく一度の計測時間で濃度を定量することが可能となる。このように、実施例1では、従来法と比べて定量結果の取得までの時間を大きく短縮できる。
 (自動分析装置)
 自動分析装置100の全体概略構成を図3に示し、基本的な装置動作について説明する。なお、例示であり、以下の例に限定されるものではない。
 自動分析装置100は、検体ディスク103、試薬ディスク106、反応ディスク109の3種類のディスクと、これらのディスク間で検体や試薬を移動させる検体分注機構110、試薬分注機構111と、3種類のディスクや分注機構を駆動させる駆動部117と、駆動部を制御する制御回路118と、反応液の吸光度を計測する吸光度計測回路119と、反応液からの散乱光を計測する散乱光計測回路120と、各計測回路で計測されたデータを処理するデータ処理部121と、データ処理部121とのインターフェースである操作部122と、情報を印刷して出力するプリンター123と、ネットワーク等と接続する通信インターフェース124とを有して概略構成される。
 検体ディスク103の円周上には、検体101の収容容器であるサンプルカップ102が複数配置される。検体101は血液、尿、髄液、標準液などである。試薬ディスク106の円周上には、試薬104の収容容器である試薬ボトル105が複数配置される。試薬には第一試薬(緩衝液)と第二試薬(ラテックス試液)を含む。反応ディスク109の円周上には、検体101と試薬104を混合させた反応液107の収容容器であるセル108が複数配置される。各ディスクは駆動部117に含まれるモーターによって回転させられ、このモーターは制御回路118で制御される。
 検体分注機構110は、時計回り及び反時計回りに回転する検体ディスク103上に配置されたサンプルカップ102からセル108に検体101を一定量移動させる際に使用する機構である。検体分注機構110は、例えば検体101を吐出または吸引するノズルと、ノズルを所定の位置に移動させるロボットと、検体101をノズルから吐出またはノズルに吸引するポンプで構成される。このロボットやポンプは、駆動部117に相当する。
 試薬分注機構111は、時計回り及び反時計回りに回転する試薬ディスク106上に配置された試薬ボトル105からセル108に試薬104を一定量移動させる際に使用する機構である。試薬分注機構111は、例えば試薬104を吐出または吸引するノズルと、ノズルを所定の位置に移動させるロボットと、試薬104をノズルから吐出またはノズルに吸引するポンプで構成される。このロボットやポンプは、駆動部117に相当する。
 セル108は、反応ディスク109において、温度及び流量が制御された恒温槽内の恒温流体112に浸漬されている。このため、セル108及びその中の反応液107は、反応ディスク109の回転に伴う移動中も、その温度は一定温度に保たれる。本実施例の場合、恒温流体112として水を使用し、その温度は制御回路118により37±0.1℃に温度調整される。勿論、恒温流体112として使用する媒体や温度は一例である。
 攪拌機構113は、セル108内で、検体101と試薬104とを攪拌して混合させる機構である。攪拌機構113は、例えば検体101と試薬104との混合液を攪拌する攪拌棒と、攪拌棒を所定の位置に移動させるロボットと、攪拌棒を回転させるモーターで構成される。このロボットやモーターは、駆動部117に相当する。
 洗浄機構114は、分析処理が終了したセル108から反応液107を吸引し、空になったセル108を洗浄する機構である。洗浄機構114は、例えば、分析終了後の反応液107を吸引するノズルと、反応液107が吸引された後のセル108に洗浄水を吐出するノズルと、洗浄水を吸引するノズルと、ノズルを動かす機構で構成される。この機構は駆動部117に含まれる。洗浄終了後のセル108には、再び、検体分注機構110から次の検体101が分注され、試薬分注機構111から新しい試薬104が分注され、新たな分析処理に使用される。
 反応ディスク109の円周上の一部には、吸光度計測部115と散乱光計測部116が配置される。
 吸光度計測部115は、光源と透過光受光器を有し、光源と透過光受光器とは反応ディスク109上のセル108を挟むように配置されている。例えば、光源がハロゲンランプであり、光源から射出された光をセル108に照射し、セル108に収容された反応液107を透過した光を回折格子で分光し、フォトダイオードアレイで受光する構造である。フォトダイオードアレイで受光する波長は、340nm,405nm,450nm,480nm,505nm,546nm,570nm,600nm,660nm,700nm,750nm,800nmである。これら受光器による受光信号は、吸光度計測回路119を通じ、データ処理部121の記憶部121aに送信される。ここで、吸光度計測回路119は、一定時間毎に各波長域の受光信号を取得し、取得された光量値をデータ処理部121に出力する。吸光度計測部115と吸光度計測回路119を吸光光度計と総称する。
 散乱光計測部116は、光源と透過光受光器と散乱光受光器とを有し、光源と透過光受光器及び散乱光受光器とは反応ディスク109上のセル108を挟むように配置されている。例えば、光源がLEDであり、光源から射出された光をセル108に照射し、セル108に収容された反応液107を透過した光は透過光受光器で、反応液107で散乱した光は散乱光受光器で受光される。照射光の波長には、例えば700nmを使用する。散乱光計測では、検体に含まれる夾雑物(乳ビ、溶血、黄疸)の影響をより受けにくく、可視光である600nm~800nmの波長の照射光を使用するのが好ましい。光源は、LED以外に、レーザ光源、キセノンランプ、ハロゲンランプ等を用いてもよい。受光器には例えばフォトダイオードが使用される。透過光及び散乱光受光器による受光信号は、散乱光計測回路120を通じ、データ処理部121の記憶部121aに送信される。散乱光計測回路120も、一定時間毎に受光信号を取得し、取得された光量値をデータ処理部121に出力する。散乱光受光器は、例えば、反応ディスク109の回転によるセル108の移動方向に対して概ね垂直となる面内に配置される。このとき、受光器としてラインセンサを使用し、複数角度の散乱光を一度に受光する構成であってもよい。ラインセンサを用いることにより、受光角度の選択肢を広げることができる。また、受光器を直接配置するのではなく、ファイバやレンズなどの光学系を配置し、別位置に配置された散乱光受光器に光を導くようにしてもよい。散乱光計測部116と散乱光計測回路120を散乱光度計と総称する。
 反応ディスク109は1サイクルで回転駆動される回転量は一定量とされている。吸光光度計、散乱光度計はそれぞれ、吸光度計測部115、散乱光計測部116を通過するセル108について計測を行うため、吸光光度計がセル108内の反応液107を測光する測光ポイント間の時間間隔、散乱光度計がセル108内の反応液を測光する測光ポイント間の時間間隔は、反応ディスク109が1回転する時間となり、一定時間となる。
 データ処理部121は、記憶部121aと解析部121bを備えている。記憶部121aには制御プログラム、計測プログラム、データ解析プログラム、検量線データ、計測データ、解析結果等が格納される。計測プログラムは、例えば、検量線生成用データの計測プログラムや検体計測プログラムである。検体計測プログラムには、図1に示したような計測途中の光量を閾値光量と比較して次の動作を決定するプログラムが含まれる。操作部122あるいは通信インターフェース124を介して分析の依頼がデータ処理部121に入力されると、該当する計測プログラムが実行され、制御プログラムが働く。制御プログラムは制御回路を動かし、制御回路が駆動部を動かすことで、各機構に働きかけ分析が実施される。吸光度計測回路119及び散乱光計測回路120を介してデータ処理部121に出力された計測データは、記憶部121aに格納され、データ解析プログラムと一緒に解析部121bに読み出される。データ解析プログラムは、例えば、検量線生成プログラム、検量線を用いて検体濃度を定量するプログラム、検量線や検体計測結果に対してエラーを判断するプログラムなどである。データ解析プログラムに従って解析された解析結果などは、記憶部121aに戻されて保持される。記憶部121aに格納された解析結果やエラー情報は操作部122の表示部122aに表示され、必要であればプリンター123で印刷出力される。データ処理部121は、例えば、CPU等のプロセッサにより実現される。
 操作部122は、表示部122aと、入力部としてのキーボード122bとマウス122cを備える。入力は、キーボード122bによる他に、表示部122aの画面をタッチして入力してもよいし、表示部122aの画面に表示されているものをマウス122cで選択することで入力してもよい。
 通信インターフェース124は、例えば、病院内のネットワークと接続され、HIS(Hospital Information System)やLIS(Laboratory Information System)と通信される。
 (分析動作)
 はじめに、分析に必要なパラメータを設定する。図4に実施例1のアプリケーションパラメータの設定画面の一例を示す。まず、分析項目設定画面501から、定量したい項目、検体量、分析依頼方法、分析中R3追加の実施有無、出力単位を入力する。本実施例では、光散乱分析を主とする項目を対象としているため、「分析依頼方法」に「光散乱分析」を選択した例を示している。「分析中R3追加の実施」では、試薬R3追加実施の有無を選択することにより、実施例1による計測か、従来法による計測かを選択できる。ここでは、「分析中R3追加の実施」を「する」と選択した例を示している。
 次に、散乱光度計と吸光光度計での計測に必要なパラメータを入力する。散乱光度計の計測におけるパラメータ画面502には、分析法、演算に使用する測光ポイント、試薬分注量、受光角度、定量範囲に加え、チェック実施測光ポイントと閾値光量が含まれている。チェック実施測光ポイントと閾値光量は、図4のようにアプリケーションパラメータの設定画面に表示されて、ユーザーにより設定可能なパラメータとして扱われてもよいし、設定画面に表示されることなく、項目ごとに規定値が計測プログラムなどに格納されていてもよい。吸光光度計の計測におけるパラメータ画面503には、分析法、演算に使用する測光ポイント、波長、R3の分注量、定量範囲が含まれている。
 ここでは、試薬をR1、R2、R3と表現し、数字が小さい順に分注されるものとする。R1が緩衝液、R2とR3がラテックス試液の分注を示す。吸光光度計の計測パラメータにおけるR1とR2の数値は、散乱光度計の計測パラメータにおけるR1とR2の数値と同じになる。実施例1の計測法では、光散乱分析として計測中に分注された試薬がそのまま使用されるためである(図2に示す反応過程205を参照)。
 分析法としては、例えば、1ポイント分析法、2ポイントレート分析法、2ポイントエンド分析法などがある。図4では、2ポイントエンド分析法を選択した例を示した。2ポイントエンド分析法では2点の測光ポイント間の変化光量が濃度の定量に使用される。2点の測光ポイントは、図4に示す測光ポイントの入力欄にて指定される。定量範囲の数値は測定対象成分の濃度値であり、定量範囲の下限値と上限値を示すものである。
 散乱光度計の計測におけるパラメータのうち、チェック実施測光ポイントと閾値光量は、図1のレンジオーバー判定(S102)で使用される情報である。チェック実施測光ポイントと閾値光量は、ユーザーによって設定されてもよいし、標準液の計測値を用いて装置内で自動計算されてもよいし、試薬メーカから提供されてもよい。また、散乱光計測における最高濃度の標準液の計測値(光量)をそのまま閾値光量としてもよい。ユーザーによる設定の場合は、アプリケーションパラメータの設定画面に入力欄を設けておくとよい。それ以外の場合は、アプリケーションパラメータの設定画面に入力欄を必ずしも表示する必要はない。チェック実施測光ポイントは、R2分注後のポイント以上、R3分注前のポイント以下となる。
 ここで、R3分注まで実施したときの測光ポイントと光量の関係の一例を図5に示す。図5は、測光ポイント5と6の間でR2を分注し、測光ポイント16と17の間でR3を分注した例である。R3分注までの光量は散乱光時計で計測された散乱光強度(●)であり、R3分注後の光量は吸光光度計で計測された吸光度(▲)を意味する。図5の例の場合、「チェック実施測光ポイント」は測光ポイント6~16の間に設定されることとなる。
 分析に必要なパラメータを設定した後は、校正(キャリブレーション)を実施する。キャリブレーションでは、検体濃度が既知である標準液を計測し、測定対象成分の濃度と光量の関係を示す検量線を取得する。本実施例の場合、検量線は2つ用意する。1つは、検体とR1とR2を混合した反応液を散乱光度計で計測した場合の検量線であり、光散乱検出法により計測が終了した場合に使用する(図1のステップS105)。この検量線を散乱光計測用検量線とし、図6に一例を示す。もう1つは、検体とR1とR2とR3を混合した反応液を吸光光度計で計測した場合の検量線であり、光散乱検出法から吸光光度法に切り替えて計測が終了した場合に使用する(図1のステップS108)。この検量線を吸光計測用検量線とし、図7に一例を示す。
 図6、図7の横軸は測定対象成分の濃度であり、縦軸はアプリケーションパラメータでそれぞれ設定した分析法と測光ポイントに従って算出した光量である。例えば、図4のアプリケーションパラメータに従う場合、散乱光度計の分析法は2ポイントエンド分析法、測光ポイントは7と22であることから、散乱光度計の計測では測光ポイント7と22の光変化量(散乱光強度変化量)となる。吸光光度計の分析法は2ポイントエンド分析法、測光ポイントは19と34であることから、吸光光度計の計測では測光ポイント19と34の光変化量(吸光度変化量)となる。散乱光計測用検量線(図6)では例えば、濃度が500 ng/mL以下の範囲の検量線を有効範囲とし、吸光計測用検量線(図7)では例えば、濃度が400から1000 ng/mLの範囲の検量線を有効範囲とする。有効範囲が重複する濃度領域(本例では400から500 ng/mLの範囲)が存在するものの、どちらの検量線を使用するかは図1のフローチャートに従い、使用した光度計に由来する検量線を用いるものとする。
 キャリブレーション後、未知濃度の検体を計測する。計測時の動作フローは図1のとおりである。具体的には、例えば、未知濃度の検体と緩衝液(R1)とラテックス試液(R2)をセル108に分注して散乱光計測を開始する(S101)。このときの検体、R1、R2の分注量は、アプリケーションパラメータのうち、散乱光度計のパラメータとして設定された量である。「チェック実施測光ポイント」の光量が取得された時点で、チェック実施測光ポイントの光量を「閾値光量」と計測中に比較して、レンジオーバー判定を実施する(S102)。チェック実施測光ポイントと閾値光量は、規定値またはアプリケーションパラメータの設定画面から設定された値が計測プログラムなどに格納されている。レンジ内と判定された場合は、散乱光計測を継続する(S103)。計測終了後(S104)、取得された反応過程から、アプリケーションパラメータのうち散乱光度計のパラメータとして設定した「分析法」と「測光ポイント」に従って光量を算出する。この光量を散乱光計測用検量線の光量と比較して濃度を定量し、出力する(S105)。例えば、図4の散乱光度計のアプリケーションパラメータに従う場合、分析法は2ポイントエンド分析法、測光ポイントは7と22であることから、これらの測光ポイント間の散乱光変化量を算出し、散乱光計測用検量線(図6)の散乱光変化量と比較して濃度を定量する。
 これに対して、レンジオーバー判定(S102)においてレンジオーバーと判定された場合は、ラテックス試液を追加(R3分注)して検出器を散乱光度計から吸光光度計に切り替えて計測を継続する(S106)。このときのR3の分注量は、アプリケーションパラメータのうち、吸光光度計のパラメータとして設定された量である。計測終了後(S107)、取得された反応過程から、アプリケーションパラメータのうち吸光光度計のパラメータとして設定した「分析法」と「測光ポイント」に従って光量を算出する。この光量を吸光計測用検量線(図7)の光量と比較して濃度を定量し、出力する(S108)。
 実施例1では、計測途中の光量を予め設定した閾値光量と比較してレンジオーバー判定を実施する例を示したが、光量を用いた判定以外でもよい。例えば、任意の測光ポイントにおける光量から一定時間経過後の光量を推定し、推定光量を別途設定した閾値光量と比較してもよい。また、任意の測光ポイントにおける光量あるいは一定時間経過後の推定光量から検体濃度を推定し、別途設定した閾値濃度と比較してもよい。また、R2添加後の任意の測光ポイント間の反応過程の傾きを、別途設定した閾値傾きと比較してレンジオーバー判定してもよい。
 実施例2では、光散乱検出法で計測する項目に関して、計測された光量値を予め設定しておいた閾値光量と計測中に比較し、レンジオーバー判定に該当した場合には吸光光度法に適した試薬濃度になるように試薬の液量比を変更し、初検の計測が終了する前に吸光光度法で再計測を開始する。
 図8に実施例2の分析動作のフローの例を示す。まず、検体と緩衝液とラテックス試液をそれぞれ一回ずつ分注した反応液の散乱光計測を開始する(S301)。反応液を構成する検体、緩衝液、ラテックス試液の分注順は、緩衝液が最後に分注されなければよく、例えば、検体、緩衝液、ラテックス試液の順である。計測された光量を予め設定しておいた閾値光量と計測中に比較し、レンジオーバー判定を実施する(S302)。レンジオーバーと判定された場合、緩衝液とラテックス試液の液量比を変更し、初検の計測が終了する前に吸光光度法に適した試薬濃度で吸光計測を開始する(S306)。計測終了後(S307)、吸光光度計の計測結果に基づき定量された濃度を出力する(S308)。一方、レンジオーバー判定(S302)において、レンジ内と判定された場合は、散乱光度計の計測を継続する(S303)。計測終了後(S304)、散乱光度計の計測結果に基づき定量された濃度を出力する(S305)。
 計測開始(S301)の時点における緩衝液とラテックス試液の分注タイミングは、実施例1で説明したR1、R2、R3の分注タイミングのうち、緩衝液がR1、ラテックス試液がR2のタイミングとする場合、緩衝液がR1、ラテックス試液がR3のタイミングとする場合の2通りが考えられる。
 図9は、実施例2の結果取得までの反応過程及び所要時間の概略図である。反応過程の横軸は測光ポイント(経過時間)、縦軸は光量を意味している。反応過程401は、測定対象成分の濃度が濃いために、ラテックス試液添加後の計測途中で計測範囲を超えて光量が頭打ちになった散乱光計測の反応過程である。反応過程402は、検体量は初検と同じで、緩衝液とラテックス試液の液量比を初検から変更し、吸光光度法に適した試薬濃度で吸光計測を行う例を示している。この場合、例えば一回あたりの計測時間が10分であり、初検の7分目の時点で再検を開始したとすると、最終的な定量結果を得るまでに合計17分を要する。定量結果を得るまでの時間は、実施例1の従来法2(図2を参照)と同等であるが、実施例2の手法の場合、試薬濃度を変更して定量範囲に応じた検出器を使用するため、検体量の変更だけによる再検よりも定量範囲を拡張できる可能性が高い。
 実施例2を実現する自動分析装置の構成は実施例1(図3)と同様であるため、ここでは説明の重複を避ける。
 (分析動作)
 はじめに、分析に必要なパラメータを設定する。図10に実施例2のアプリケーションパラメータの設定画面の一例を示す。まず、分析項目設定画面601から、定量したい項目、分析依頼方法、再検時光度計変更の可否、計測途中の再検の実施の有無、出力単位を入力する。本実施例では、光散乱分析を主とする項目を対象としているため、「分析依頼方法」に「光散乱分析」を選択した例を示している。「再検時光度計変更」の可否と「計測途中再検の実施」の有無を選択することにより、実施例2による計測か、従来法による計測かを選択できる。図10では、「再検時光度計変更」を「可」、「計測途中再検の実施」を「有」と選択した例(実施例2による計測を選択)である。
 次に、散乱光度計と吸光光度計での計測に必要なパラメータを入力する。散乱光度計の計測におけるパラメータ画面602には、分析法、演算に使用する測光ポイント、検体量、試薬分注量、受光角度、定量範囲に加え、チェック実施測光ポイントと閾値光量が含まれている。チェック実施測光ポイントと閾値光量は、図10のようにアプリケーションパラメータの設定画面に表示されて、ユーザーにより設定可能なパラメータとして扱われてもよいし、設定画面に表示されることなく、項目ごとに規定値が計測プログラムなどに格納されていてもよい。吸光光度計の計測におけるパラメータ画面603には、分析法、演算に使用する測光ポイント、波長、検体量、試薬分注量、定量範囲が含まれている。
 ここでは、試薬をR1、R2、R3と表現し、数字が小さい順に分注されるものとする。R1が緩衝液、R2とR3がラテックス試液の分注を示す。ここでは、緩衝液をR1のタイミングで、ラテックス試液をR3のタイミングで分注する例を示している。R2がゼロであるのは、R2の分注タイミングでは何も分注されないことを意味している。R3をゼロとしてR2にラテックス試液の分注量を設定することもありうる。
 吸光光度計の計測パラメータにおけるR1とR2あるいはR3の数値は、散乱光度計の数値と異なる。吸光光度計と散乱光度計とでは反応液中のラテックス試液の好適な濃度が異なり、吸光光度計では濃い方が望ましい。このため、吸光光度計の計測パラメータにおけるR1(緩衝液)の量は散乱光度計の計測パラメータのR1よりも小さくし、吸光光度計の計測パラメータにおけるR2あるいはR3(ラテックス試液)の量は散乱光度計の計測パラメータのR2あるいはR3よりも大きくすることが望ましい。また、このとき、R1とR2あるいはR3の合計量は、各光度計間で等しくなるように設定することが望ましいが、各光度計で合計量が異なった場合でも各光度計でキャリブレーションを実施するため問題ではない。検体量は、各光度計で同じ量であってもよいし、異なってもよい。検体量が異なる場合もまた、各光度計で計測条件に応じたキャリブレーションを実施するため問題ではない。
 分析法、測光ポイント、定量範囲の説明は実施例1と同じであるため、ここでは説明の重複を避ける。
 散乱光度計の計測におけるパラメータのうち、チェック実施測光ポイントと閾値光量は、図8のレンジオーバー判定(S302)で使用される情報である。チェック実施測光ポイントと閾値光量は、ユーザーによって設定されてもよいし、標準液の計測値を用いて装置内で自動計算されてもよいし、試薬メーカから提供されてもよい。また、散乱光計測における最高濃度の標準液の計測値(光量)をそのまま閾値光量としてもよい。ユーザーによる設定の場合は、アプリケーションパラメータの設定画面に入力欄を設けておくとよい。それ以外の場合は、アプリケーションパラメータの設定画面に入力欄を必ずしも表示する必要はない。チェック実施測光ポイントは、R2あるいはR3分注後のポイント以上となる。
 ここで、散乱光計測においてR1とR3の分注が実施されたときの測光ポイントと光量(散乱光強度)の関係の一例を図11に示す。図11は、測光ポイント16と17の間でR3を分注した例である。この場合、「チェック実施測光ポイント」は17以上かつ計測終了測光ポイント(図11では34)以下の数値で設定されることとなる。この例の場合、チェック実施測光ポイントが17に近い数値であるほど、レンジオーバー判定を早く実施することができ、再検スタートのタイミングが早くなる。
 分析に必要なパラメータを設定した後は、キャリブレーションを実施する。キャリブレーションでは、検体濃度が既知である標準液を計測し、測定対象成分の濃度と光量の関係を示す検量線を取得する。実施例2でも検量線は2つ用意する。1つは、散乱光度計で計測した場合の散乱光計測検量線であり、もう1つは吸光光度計で計測した場合の吸光計測用検量線である。検量線の縦軸の光量は、アプリケーションパラメータで設定した分析法と測光ポイントに従って算出された光量である。各光度計に設定されたアプリケーションパラメータに従って散乱光度計の計測と吸光光度計の計測を独立で実施することによって取得できる。
 キャリブレーション後、未知濃度の検体を計測する。計測時の動作フローは図8のとおりである。具体的には、例えば、未知濃度の検体と緩衝液(R1)とラテックス試液(R3)をセル108に分注して散乱光計測を開始する(S301)。このときの検体、R1、R3の分注量は、アプリケーションパラメータのうち、散乱光度計のパラメータとして設定された量である。「チェック実施測光ポイント」の光量が取得された時点で、チェック実施測光ポイントの光量を「閾値光量」と計測中に比較して、レンジオーバー判定を実施する(S302)。チェック実施測光ポイントと閾値光量は、規定値またはアプリケーションパラメータの設定画面から設定された値が計測プログラムなどに格納されている。レンジ内と判定された場合は、散乱光計測を継続する(S303)。計測終了後(S304)、取得された反応過程から、アプリケーションパラメータのうち散乱光度計のパラメータとして設定した「分析法」と「測光ポイント」に従って光量を算出する。この光量を散乱光計測用検量線の光量と比較して濃度を定量し、出力する(S305)。例えば、図10の散乱光度計のアプリケーションパラメータに従う場合、分析法は2ポイントエンド分析法、測光ポイントは20と32であることから、これらの測光ポイント間の散乱光変化量を算出し、散乱光計測用検量線の散乱光変化量と比較して濃度を定量する。
 これに対して、レンジオーバー判定(S302)においてレンジオーバーと判定された場合は、新たに未知濃度の検体と緩衝液(R1)とラテックス試液(R3)を新たなセル108に分注して吸光光度計で再計測を開始する(S306)。このときの検体、R1、R3の分注量は、アプリケーションパラメータのうち、吸光光度計のパラメータとして設定された量である。この計測は、散乱光計測が終了する前に開始される。計測終了後(S307)、取得された反応過程から、アプリケーションパラメータのうち吸光光度計のパラメータとして設定した「分析法」と「測光ポイント」に従って光量を算出する。この光量を吸光計測用検量線の光量と比較して濃度を定量し、出力する(S308)。
 本実施例では、初検が終了する前に、吸光光度法に適した試薬濃度で吸光計測を開始する点が特徴であり、定量結果を得るまでの時間短縮の他、定量範囲に応じた検出器の使用による定量範囲の拡張が効果となる。
 実施例2では、計測途中の光量を予め設定した閾値光量と比較してレンジオーバー判定を実施する例を示したが、光量を用いた判定以外でもよい。例えば、任意の測光ポイントにおける光量から一定時間経過後の光量を推定し、推定光量を別途設定した閾値光量と比較してもよい。また、任意の測光ポイントにおける光量あるいは一定時間経過後の推定光量から検体濃度を推定し、別途設定した閾値濃度と比較してもよい。また、R2あるいはR3添加後の任意の測光ポイント間の反応過程の傾きを、別途設定した閾値傾きと比較してレンジオーバー判定してもよい。
 本発明は、以上説明した実施例1、2に限定されるものではなく、様々な変形例が含まれる。本実施例ではラテックス免疫比濁項目を例にして、抗体または抗原が感作されたラテックス試液と測定対象成分(抗原または抗体)を含む標準液や検体を混合し、抗原抗体反応によって生じるラテックス凝集反応を、散乱光度計あるいは吸光光度計によって計測する場合を説明したが、ラテックス免疫比濁項目に限定されるものではない。例えば、抗体または抗原を感作した不溶性担体(シリカ粒子、磁性粒子、金属コロイド等)と測定対象成分(抗原または抗体)を含む標準液や検体を混合し、抗原抗体反応によって生じる粒子の凝集反応を散乱光度計あるいは吸光光度計で計測する系でもよい。また、定量する測定対象成分は濃度ではなく活性値である場合もある。
 上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、同一の構成または他の構成を追加・削除・置換することが可能である。
100:自動分析装置、101:検体、102:サンプルカップ、103:検体ディスク、104:試薬、105:試薬ボトル、106:試薬ディスク、107:反応液、108:セル、109:反応ディスク、110:検体分注機構、111:試薬分注機構、112:恒温流体、113:攪拌機構、114:洗浄機構、115:吸光度計測部、116:散乱光計測部、117:駆動部、118:制御回路、119:吸光度計測回路、120:散乱光計測回路、121:データ処理部、121a:記憶部、121b:解析部、122:操作部、122a:表示部、122b:キーボード、122c:マウス、123:プリンター、124:通信インターフェース、201,202,203,204,205,401,402:反応過程、501,601:分析項目設定画面、502,503,602,603:パラメータ画面。

Claims (15)

  1.  検体と試薬との反応液を収容するセルが円周上に配置される反応ディスクと、
     前記反応ディスク上のセルに検体を分注する検体分注機構と、
     前記反応ディスク上のセルに試薬を分注する試薬分注機構と、
     第1の光源から照射され、前記反応ディスク上のセルに収容された反応液を透過した光を測光する吸光光度計と、
     第2の光源から照射され、前記反応ディスク上のセルに収容された反応液を散乱した光を測光する散乱光度計と、
     前記反応ディスク、前記検体分注機構及び前記試薬分注機構を駆動させる制御回路と、 検体計測プログラムを実行し、前記検体計測プログラムにしたがって前記制御回路を制御するデータ処理部と、を有し、
     前記データ処理部は、前記検体分注機構により分注した検体と前記試薬分注機構により分注した試薬との反応液について、前記吸光光度計から第1光量値及び前記散乱光度計から第2光量値を取得し、あらかじめ定めた第1測光ポイントでの前記第2光量値に基づき、前記第2光量値に基づく定量分析の可否を判定し、前記第2光量値に基づく定量分析を否と判定する場合には、前記試薬分注機構により前記反応液に前記試薬を追加で分注し、追加分注後の測光ポイントでの前記第1光量値に基づく定量分析を行う自動分析装置。
  2.  請求項1において、
     前記データ処理部は、前記第2光量値に基づく定量分析を可と判定する場合には、前記第1測光ポイント前後の測光ポイントでの前記第2光量値に基づく定量分析を行う自動分析装置。
  3.  請求項2において、
     前記データ処理部は前記第1光量値に基づく定量分析のための第1の検量線と前記第2光量値に基づく定量分析のための第2の検量線を保持しており、
     前記第1の検量線は、濃度の異なる標準液について、前記検体計測プログラムにおける前記第2光量値に基づく定量分析を否と判断されるときの計測条件にしたがって取得される前記第1光量値に基づいて作成された検量線であり、
     前記第2の検量線は、濃度の異なる標準液について、前記検体計測プログラムにおける前記第2光量値に基づく定量分析を可と判断されるときの計測条件にしたがって取得される前記第2光量値に基づいて作成された検量線である自動分析装置。
  4.  請求項1において、
     前記データ処理部は、前記第1測光ポイントでの前記第2光量値があらかじめ設定された閾値光量を上回った場合に、前記第2光量値に基づく定量分析を否と判定する自動分析装置。
  5.  請求項4において、
     前記データ処理部は、前記閾値光量を、標準液について前記検体計測プログラムにおける前記第2光量値に基づく定量分析を可と判断されるときの計測条件にしたがって取得される前記第2光量値に基づいて設定する自動分析装置。
  6.  請求項1において、
     前記吸光光度計において、前記第1の光源と透過光受光器が前記反応ディスク上のセルを挟むように配置され、
     前記散乱光度計において、前記第2の光源と散乱光受光器が前記反応ディスク上のセルを挟むように配置され、
     前記吸光光度計が前記反応液を透過した光を測光する測光ポイント間の時間間隔、または前記散乱光度計が前記反応液を散乱した光を測光する測光ポイント間の時間間隔は、回転駆動される前記反応ディスクが1回転する時間である自動分析装置。
  7.  請求項1において、
     前記検体計測プログラムにおける測定条件を設定するためのパラメータ設定画面を表示する表示部を有し、
     前記パラメータ設定画面は、前記反応液に前記試薬の追加分注を行うかどうか選択する選択部を有する自動分析装置。
  8.  検体と試薬との反応液を収容するセルが円周上に配置される反応ディスクと、前記反応ディスク上のセルに検体を分注する検体分注機構と、前記反応ディスク上のセルに試薬を分注する試薬分注機構と、第1の光源から照射され、前記反応ディスク上のセルに収容された反応液を透過した光を測光する吸光光度計と、第2の光源から照射され、前記反応ディスク上のセルに収容された反応液を散乱した光を測光する散乱光度計と、前記反応ディスク、前記検体分注機構及び前記試薬分注機構を駆動させる制御回路と、検体計測プログラムを実行し、前記検体計測プログラムにしたがって前記制御回路を制御するデータ処理部と、を備える自動分析装置を用いた検体分析方法であって、
     前記検体分注機構は、前記反応ディスク上のセルに検体を分注し、
     前記試薬分注機構は、前記セルに試薬を分注し、
     前記データ処理部は、前記検体と前記試薬との反応液について、少なくとも前記散乱光度計から第2光量値を取得し、
     前記データ処理部は、あらかじめ定めた第1測光ポイントでの前記第2光量値に基づき、前記第2光量値に基づく定量分析の可否を判定し、
     前記データ処理部が前記第2光量値に基づく定量分析を否と判定する場合には、前記試薬分注機構は、前記セルに前記試薬を追加で分注し、
     前記データ処理部は、前記試薬が追加された前記反応液について、少なくとも前記吸光光度計から第1光量値を取得し、追加分注後の測光ポイントでの前記第1光量値に基づく定量分析を行う検体分析方法。
  9.  請求項8において、
     前記データ処理部は、前記第2光量値に基づく定量分析を可と判定する場合には、前記第1測光ポイント前後の測光ポイントでの前記第2光量値に基づく定量分析を行う検体分析方法。
  10.  請求項8において、
     前記データ処理部は前記第1光量値に基づく定量分析のための第1の検量線と前記第2光量値に基づく定量分析のための第2の検量線を保持しており、
     前記第1の検量線は、濃度の異なる標準液について、前記検体計測プログラムにおける前記第2光量値に基づく定量分析を否と判断されるときの計測条件にしたがって取得される前記第1光量値に基づいて作成された検量線であり、
     前記第2の検量線は、濃度の異なる標準液について、前記検体計測プログラムにおける前記第2光量値に基づく定量分析を可と判断されるときの計測条件にしたがって取得される前記第2光量値に基づいて作成された検量線である検体分析方法。
  11.  検体と試薬との反応液を収容するセルが円周上に配置される反応ディスクと、
     前記反応ディスク上のセルに検体を分注する検体分注機構と、
     前記反応ディスク上のセルに試薬を分注する試薬分注機構と、
     第1の光源から照射され、前記反応ディスク上のセルに収容された反応液を透過した光を測光する吸光光度計と、
     第2の光源から照射され、前記反応ディスク上のセルに収容された反応液を散乱した光を測光する散乱光度計と、
     前記反応ディスク、前記検体分注機構及び前記試薬分注機構を駆動させる制御回路と、 検体計測プログラムを実行し、前記検体計測プログラムにしたがって前記制御回路を制御するデータ処理部と、を有し、
     前記データ処理部は、前記検体分注機構により分注した検体と前記試薬分注機構により分注した第1試薬及び第2試薬との第1の反応液について、前記散乱光度計から第2光量値を取得し、あらかじめ定めた第1測光ポイントでの前記第2光量値に基づき、前記第2光量値に基づく定量分析の可否を判定し、前記第2光量値に基づく定量分析を否と判定する場合には、前記検体分注機構により分注した前記検体と前記試薬分注機構により分注した前記第1試薬及び前記第2試薬との第2の反応液について、前記吸光光度計から第1光量値を取得し、前記第1光量値に基づく定量分析を行い、
     前記第1の反応液における前記第1試薬と前記第2試薬との液量比は、前記第2の反応液における前記第1試薬と前記第2試薬との液量比と異なる自動分析装置。
  12.  請求項11において、
     前記データ処理部は、前記第2光量値に基づく定量分析を可と判定する場合には、前記第1の反応液についての前記第2光量値に基づく定量分析を行う自動分析装置。
  13.  請求項12において、
     前記データ処理部は前記第1光量値に基づく定量分析のための第1の検量線と前記第2光量値に基づく定量分析のための第2の検量線を保持しており、
     前記第1の検量線は、濃度の異なる標準液について、前記検体計測プログラムにおける前記第2光量値に基づく定量分析を否と判断されるときの計測条件にしたがって取得される前記第1光量値に基づいて作成された検量線であり、
     前記第2の検量線は、濃度の異なる標準液について、前記検体計測プログラムにおける前記第2光量値に基づく定量分析を可と判断されるときの計測条件にしたがって取得される前記第2光量値に基づいて作成された検量線である自動分析装置。
  14.  請求項11において、
     前記第1試薬は緩衝液であり、前記第2試薬はラテックス試液であり、
     前記第2の反応液におけるラテックス試液の濃度は、前記第1の反応液におけるラテックス試液の濃度よりも高い自動分析装置。
  15.  請求項11において、
     前記検体計測プログラムにおける測定条件を設定するためのパラメータ設定画面を表示する表示部を有し、
     前記パラメータ設定画面は、前記第2の反応液による前記第1光量値に基づく定量分析を行うかどうか選択する選択部を有する自動分析装置。
PCT/JP2022/021074 2021-05-31 2022-05-23 自動分析装置および検体分析方法 WO2022255140A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280034680.1A CN117295955A (zh) 2021-05-31 2022-05-23 自动分析装置以及检体分析方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021091360A JP2022183857A (ja) 2021-05-31 2021-05-31 自動分析装置および検体分析方法
JP2021-091360 2021-05-31

Publications (1)

Publication Number Publication Date
WO2022255140A1 true WO2022255140A1 (ja) 2022-12-08

Family

ID=84323273

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/021074 WO2022255140A1 (ja) 2021-05-31 2022-05-23 自動分析装置および検体分析方法

Country Status (3)

Country Link
JP (1) JP2022183857A (ja)
CN (1) CN117295955A (ja)
WO (1) WO2022255140A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60111944A (ja) * 1983-11-22 1985-06-18 Toshiba Corp 濁度計
JPH04249744A (ja) * 1990-12-29 1992-09-04 Shimadzu Corp 生化学自動分析装置
WO2014002677A1 (ja) * 2012-06-25 2014-01-03 株式会社日立ハイテクノロジーズ 自動分析装置及び試料測定方法
WO2014013820A1 (ja) * 2012-07-20 2014-01-23 株式会社日立ハイテクノロジーズ 自動分析装置
WO2018016252A1 (ja) * 2016-07-19 2018-01-25 株式会社日立ハイテクノロジーズ 自動分析装置及び自動分析方法
WO2019130668A1 (ja) * 2017-12-26 2019-07-04 株式会社日立ハイテクノロジーズ 自動分析装置および自動分析方法
CN111323393A (zh) * 2020-04-07 2020-06-23 宁波普瑞柏生物技术股份有限公司 一种联合散射比浊法和透射比浊法的测量方法
WO2021199178A1 (ja) * 2020-03-30 2021-10-07 デンカ生研株式会社 ラテックス凝集法による目的物質の測定方法、およびその試薬
WO2022102398A1 (ja) * 2020-11-13 2022-05-19 株式会社堀場アドバンスドテクノ 濁度測定装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60111944A (ja) * 1983-11-22 1985-06-18 Toshiba Corp 濁度計
JPH04249744A (ja) * 1990-12-29 1992-09-04 Shimadzu Corp 生化学自動分析装置
WO2014002677A1 (ja) * 2012-06-25 2014-01-03 株式会社日立ハイテクノロジーズ 自動分析装置及び試料測定方法
WO2014013820A1 (ja) * 2012-07-20 2014-01-23 株式会社日立ハイテクノロジーズ 自動分析装置
WO2018016252A1 (ja) * 2016-07-19 2018-01-25 株式会社日立ハイテクノロジーズ 自動分析装置及び自動分析方法
WO2019130668A1 (ja) * 2017-12-26 2019-07-04 株式会社日立ハイテクノロジーズ 自動分析装置および自動分析方法
WO2021199178A1 (ja) * 2020-03-30 2021-10-07 デンカ生研株式会社 ラテックス凝集法による目的物質の測定方法、およびその試薬
CN111323393A (zh) * 2020-04-07 2020-06-23 宁波普瑞柏生物技术股份有限公司 一种联合散射比浊法和透射比浊法的测量方法
WO2022102398A1 (ja) * 2020-11-13 2022-05-19 株式会社堀場アドバンスドテクノ 濁度測定装置

Also Published As

Publication number Publication date
CN117295955A (zh) 2023-12-26
JP2022183857A (ja) 2022-12-13

Similar Documents

Publication Publication Date Title
JP6013796B2 (ja) 自動分析装置及び試料測定方法
US5478750A (en) Methods for photometric analysis
JP5740264B2 (ja) 自動分析装置及び分析方法
US20230266352A1 (en) Automatic analysis device and automatic analysis method
JP5984290B2 (ja) 自動分析装置
US9506942B2 (en) Automatic analyzer and method for detecting measurement value abnormalities
EP2878952B1 (en) Automatic analysis device
US9557264B2 (en) Automatic analysis device, and automatic analysis method
JP5296015B2 (ja) 自動分析装置
JP2013213831A (ja) 自動分析装置
EP2988111B1 (en) Analyzer and automatic analyzer
EP2667182B1 (en) Automatic analysis device taking into account thermal drift
JP5216051B2 (ja) 自動分析装置および自動分析方法
JP6134210B2 (ja) 自動分析装置及び自動分析方法
WO2022255140A1 (ja) 自動分析装置および検体分析方法
JP6031552B2 (ja) 自動分析装置及び分析方法
JP6313960B2 (ja) 自動分析装置
JPH0554067B2 (ja)
JP6657016B2 (ja) 自動分析装置
JP7420976B2 (ja) 自動分析装置および分析方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22815890

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280034680.1

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22815890

Country of ref document: EP

Kind code of ref document: A1