WO2022254703A1 - Component pickup device, component mounting device - Google Patents

Component pickup device, component mounting device Download PDF

Info

Publication number
WO2022254703A1
WO2022254703A1 PCT/JP2021/021405 JP2021021405W WO2022254703A1 WO 2022254703 A1 WO2022254703 A1 WO 2022254703A1 JP 2021021405 W JP2021021405 W JP 2021021405W WO 2022254703 A1 WO2022254703 A1 WO 2022254703A1
Authority
WO
WIPO (PCT)
Prior art keywords
ejector
component
support ring
control unit
pallet
Prior art date
Application number
PCT/JP2021/021405
Other languages
French (fr)
Japanese (ja)
Inventor
大介 春日
Original Assignee
ヤマハ発動機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤマハ発動機株式会社 filed Critical ヤマハ発動機株式会社
Priority to JP2023525321A priority Critical patent/JPWO2022254703A1/ja
Priority to PCT/JP2021/021405 priority patent/WO2022254703A1/en
Priority to DE112021007233.1T priority patent/DE112021007233T5/en
Priority to KR1020237035021A priority patent/KR20230156402A/en
Priority to CN202180098046.XA priority patent/CN117581344A/en
Priority to TW110144365A priority patent/TWI793882B/en
Publication of WO2022254703A1 publication Critical patent/WO2022254703A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67132Apparatus for placing on an insulating substrate, e.g. tape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/68Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment
    • H01L21/681Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment using optical controlling means
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/04Mounting of components, e.g. of leadless components
    • H05K13/0404Pick-and-place heads or apparatus, e.g. with jaws
    • H05K13/0408Incorporating a pick-up tool
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L21/6836Wafer tapes, e.g. grinding or dicing support tapes

Definitions

  • the present invention relates to a component pickup device and a component mounting device.
  • Patent Document 1 discloses a device (die supply device) that picks up dies divided from a semiconductor wafer and supplies them to a component mounter.
  • the wafer pallet 22 is provided with an information recording section 35 in which wafer information relating to the wafer size and/or the pick-up operation range is described.
  • the movable range of the push-up pot 51 is adjusted so that the push-up pot 51 does not interfere (contact) with the circular opening edge of the wafer pallet 22. Can be set automatically. This eliminates the need for the operator to input the movable range, improving productivity.
  • the chips (components) obtained by dividing the wafer are placed on a dicing sheet (component mounting sheet) stretched over the circular opening of the wafer pallet (the through hole of the support ring).
  • the ejector (push-up pot) moves inside the through-hole and pushes up the part to be picked up from below.
  • the dimensions of the ejector may vary depending on the size of the part to be picked up.
  • Patent Document 1 Although wafer information is obtained from the wafer pallet, the dimensions of the ejector actually used are not obtained. Therefore, if the ejector changes, it may come into contact with the support ring as it moves inside the through hole.
  • the components are not limited to chips obtained by dividing a wafer, and other small components also have similar problems.
  • the present invention was made to solve such problems. Techniques are disclosed herein to limit the movement of the ejector to avoid contact of the ejector with the support ring based on the size of the ejector and the size of the through hole.
  • a component pick-up device disclosed in this specification positions a support ring having a through hole penetrating vertically, and picks up a component from a component mounting sheet stretched on the upper surface side of the support ring so as to cover the through hole. It is a parts pick-up device that Such a component pickup device includes an ejector that moves within the through hole of the support ring and pushes the component from below the component mounting sheet, and the component pushed up by the ejector is sucked and picked up. a suction head, an acquisition unit that acquires information or an image of the ejector, and a control unit.
  • the control unit acquires the dimensions of the ejector based on the information or image of the ejector acquired by the acquisition unit, and based on the acquired dimensions of the ejector and the dimensions of the through hole, Movement of the ejector within the through hole is restricted to avoid contact of the ejector.
  • movement of the ejector can be restricted to avoid contact of the ejector with the support ring based on the dimensions of the ejector actually used and the dimensions of the through hole.
  • FIG. 4 is a schematic diagram showing a state when picking up a chip from a component mounting sheet in the configuration of Embodiment 1; Block diagram showing the control system of the component mounter Schematic diagram showing the positional relationship of the support ring, ejector, and tip FIG. 4 is a diagram showing ejector information stored in a storage unit; Flowchart showing the operation of the component mounter A diagram showing the relationship between the tip to be picked up and the support ring.
  • FIG. 9 is a schematic diagram showing a state when picking up a chip from a component mounting sheet in the configuration of Embodiment 2; Diagram showing information recorded in an RFID tag Top view of ejector with identifier on top A diagram showing the identifier, and the type and outer diameter R2 of the ejector corresponding to the identifier. Plan view showing the case where the entire ejector is within the field of view of the camera Plan view showing the case where the entire ejector is not within the field of view of the camera
  • Embodiment 1 of the present invention will be described in detail below with reference to FIGS. 1 to 8.
  • FIG. The component pick-up device 13 according to the present invention can be applied to various devices such as a die bonder, a taping device that stores diced chips on a tape, or a component mounting device that mounts components on a substrate.
  • Embodiment 1 is an example in which the component pick-up device 13 is applied to the component mounting device 10 .
  • FIG. 1 is a plan view showing the overall configuration of the component mounting apparatus 10.
  • FIG. FIG. 2 is an exploded perspective view mainly showing the mechanical portion of the component pick-up device 13 in the component mounting apparatus 10.
  • the component mounting apparatus 10 is an apparatus that picks up a chip (an example of a “component”) C from a diced wafer W and mounts it on an object M to be mounted.
  • the chip C is used as an example of the component, but the component may be other than the chip, such as a passive component such as a ceramic capacitor, or a molded lead frame.
  • the component mounting apparatus 10 includes a base 11, a conveyor 12, a pallet storage section 70, and a component pick-up device 13.
  • the conveyor 12 carries in the mounting object M to a predetermined mounting work position, and carries out the mounting object M from the mounting work position after the mounting work.
  • the conveyor 12 includes a conveyor body extending in the X direction that conveys the mounting target M, and a positioning mechanism (not shown) that lifts and positions the mounting target M on the conveyor body.
  • the conveyor 12 conveys the mounting object M in a substantially horizontal posture from the right side to the left side in FIG. 1, and positions and fixes it at a predetermined mounting work position.
  • the pallet storage unit 70 is a tool for storing a plurality of pallets 20, and is arranged in the central portion on the front side of the component mounting apparatus 10 in FIG.
  • the pallet storage unit 70 includes a rack (not shown) that stores the pallets 20 in a plurality of vertical stages, and a drive means (not shown) that drives the rack up and down.
  • the pallet storage unit 70 arranges a desired pallet 20 at a height position that allows it to be taken in and out of the pallet holding table 30 by raising and lowering the rack. After that, the pallet 20 arranged at a height that allows it to be taken in and out of the pallet holding table 30 is mounted on the pallet holding table 30.
  • FIG. 1 The basic structure of the pallet 20 will be described with reference to FIGS. 2 and 3.
  • FIG. 1 The pallet 20 has a rectangular plate-like pallet body 26 , a support ring 23 and an expand ring 24 .
  • the pallet main body 26 has a through hole penetrating vertically. An example in which the through holes of the pallet body 26 are circular will be described. However, the shape of the through hole of the pallet main body 26 is arbitrary and set appropriately.
  • the support ring 23 is an annular member with a through hole 22 in the center.
  • This disclosure describes an example in which the support ring 23 has an annular shape.
  • the shape of the support ring 23 is not limited to an annular shape.
  • the support ring 23 may be an annular member in which a through hole 22 is opened in a plate-like member, or may be an annular member in which a through hole 22 is opened in a cylindrical body having a predetermined thickness. good.
  • the size and shape of the through holes 22 are appropriately set according to the through holes of the pallet body 26 .
  • the through hole 22 has substantially the same size and shape as the through hole of the pallet body 26 .
  • the support ring 23 is assembled so as to be vertically movable with respect to the pallet body 26 with the through holes 22 overlapping the through holes of the pallet body 26 .
  • the component pickup device 13 has a mechanism for vertically moving the support ring 23 with respect to the pallet body 26 .
  • the inside (inside) of the through-hole 22 is a movement area in which the ejector 41 moves as described later.
  • the four locking portions 21 are provided on the upper surface of the pallet body 26 .
  • the four locking portions 21 are arranged at regular intervals so as to surround the support ring 23 .
  • the locking portion 21 is foldable with respect to the upper surface of the pallet body 26 , and locks the edge of the expand ring 24 from above to fix the expand ring 24 near the upper surface of the pallet body 26 .
  • a component mounting sheet S (hereinafter simply referred to as “sheet S”) is attached to the expand ring 24 .
  • the sheet S is a flexible sheet made of translucent resin, for example.
  • a wafer W divided into a plurality of chips C is attached to a portion of the upper surface of the sheet S that is located inside the support ring 23 in plan view. When the sheet S is stretched, the intervals between the chips C are expanded (expanding process).
  • the pallet 20 is stored in the pallet storage unit 70 with the gaps between the chips C attached to the sheet S expanded. Further, the pallets 20 stored in the pallet storage unit 70 may include a plurality of types of pallets 20 having different dimensions (inner diameters of the support rings 23) R1 of the through holes 22 depending on the size of the wafer W and the like. In order to identify these multiple types of pallets 20, the plate surface of the pallet body 26 is provided with an identifier 25 corresponding to each type of pallet 20. As shown in FIG.
  • the components constituting the component mounting apparatus 10 has a component pick-up device 13 .
  • the component pick-up device 13 includes a pallet holding table 30 that holds the pallet 20 , a push-up portion 40 (see FIG. 2), a suction portion 50 and a control portion 80 .
  • the pallet holding table 30 holds the pallet 20 pulled out from the pallet storage section 70 at the central position. Thereby, the support ring 23 constituting the pallet 20 is positioned with respect to the pallet holding table 30 .
  • the pallet holding table 30 is provided with an opening at a position overlapping the through hole 22 of the supported support ring 23 in plan view.
  • the pallet 20 stored in the pallet storage section 70 is mounted on the pallet holding table 30 by a pallet mounting mechanism (not shown).
  • the pallet mounting mechanism is an element that constitutes the component mounting apparatus 10 , and pulls out the pallet 20 from the pallet storage section 70 and mounts it on the pallet holding table 30 .
  • the component mounting apparatus 10 may also include a return mechanism (not shown) that returns the pallet 20 held by the pallet holding table 30 to the pallet storage section 70 .
  • These mounting mechanism and return mechanism may be configured separately and independently, or may be configured integrally.
  • the pallet holding table 30 can be moved in the Y direction on the base 11 by a table driving motor 33 between a component picking position and a pallet receiving position. Specifically, the pallet holding table 30 is movably supported on the base 11 with respect to a pair of fixed rails 31 extending in the Y direction, and is moved along the fixed rails 31 by a predetermined driving means.
  • the driving means for moving the pallet holding table 30 includes a ball screw shaft 32 extending parallel to the fixed rail 31 and screwed into the nut portion of the pallet holding table 30, and a table for rotating the ball screw shaft 32. and a drive motor 33 .
  • the pallet holding table 30 can pass below the conveyor 12 .
  • Such a pallet holding table 30 is movable between a predetermined component picking position (the position of the pallet holding table 30 in FIG. 1) and a pallet receiving position near the pallet storage section 70 .
  • the pallet holding table 30 is movable in the Y direction along fixed rails 31 .
  • the push-up part 40 pushes up the chip C to be picked up from the bottom to the top together with the sheet S among the plurality of chips C stuck on the sheet S at the component picking work position.
  • the pushed-up chip C is peeled off from the sheet S and lifted.
  • the push-up portion 40 includes an ejector 41, a Z-axis moving portion 42, an X-axis moving portion 43, a fixed rail 44, and a push-up portion drive motor 45 (see FIG. 4). include.
  • the ejector 41 has a cylindrical shape with an outer diameter R2 whose axis is in the vertical direction, and the lower surface is connected to the Z-axis moving part 42 .
  • the outer diameter R2 is an example of the "ejector dimension.”
  • the ejector 41 incorporates a plurality of pins 41a that can protrude upward.
  • the ejector 41 lifts the chip C of the sheet S with a plurality of pins 41a.
  • the ejector 41 protrudes the pin 41a that overlaps with the chip C to be picked up in a plan view, while keeping the other pin 41a housed in the ejector 41. Of the chips C, only the chip C to be picked up is pushed upward.
  • the ejector 41 arbitrarily changes the protruding pin 41a according to the size of the chip C to be picked up.
  • the ejector 41 is attachable to and detachable from the Z-axis moving part 42 .
  • the Z-axis moving part 42 is arranged between the X-axis moving part 43 and the ejector 41 , and its lower end is fixed to the X-axis moving part 43 .
  • the Z-axis moving part 42 is movable in the Z direction (vertical direction), and moves the ejector 41 attached to its upper end in the Z direction.
  • the ejector 41 can approach the sheet S stretched on the upper surface of the support ring 23 from below.
  • the ejector 41 is lowered in advance so that the support ring 23 and the ejector 41 do not come into contact with each other. can be made
  • the fixed rail 44 is a rail extending in the X direction and fixed on the base 11 . As shown in FIG. 2, the fixed rail 44 supports the X-axis moving portion 43 so as to be movable in the X direction.
  • An ejector 41 is mounted on the X-axis moving part 43 . Therefore, the ejector 41 can move in the X direction via the X-axis moving part 43 .
  • the pallet holding table 30 is movable along the fixed rail 31 in the Y direction. Therefore, the ejector 41 is movable in the XY directions (horizontal direction) with respect to the pallet 20 held on the pallet holding table 30 . As a result, the ejector 41 can move to directly below an arbitrary chip C and push up the chip C. As shown in FIG.
  • the movement of the ejector 41 and the operation of projecting the pin 41 a are performed by the control section 80 controlling the table driving motor 33 and the push-up section driving motor 45 .
  • the adsorption section 50 has a head unit 50A and a head unit driving mechanism 50B.
  • the head unit 50A is a device that picks up the chip C attached to the sheet S and mounts it on the mounting surface M1.
  • the head unit 50A is driven by a head unit driving mechanism 50B provided on the base 11, and moves in the XY directions (horizontal directions) within the movable area on the base 11.
  • the head unit drive mechanism 50B includes a pair of fixed rails 57, a unit support member 55, a pair of Y-axis ball screws 58, and a pair of Y-axis motors 59.
  • a pair of fixed rails 57 are fixed on the base 11 and extend parallel to the Y direction with a predetermined interval in the X direction.
  • the unit support member 55 has a shape elongated in the X direction, and supports the head unit 50A so as to be slidable in the X direction.
  • the unit support member 55 is movably supported by a pair of fixed rails 57 and is slidable in the Y direction.
  • the Y-axis ball screw 58 has a shaft shape that is long in the Y direction and is arranged side by side with the fixed rail 57 .
  • a Y-axis motor 59 is coupled to the Y-axis ball screw 58 via a coupling. , the Y-axis ball screw 58 is rotated by the driving force of the Y-axis motor 59 .
  • the Y-axis ball screw 58 constitutes a ball screw mechanism that converts the rotational force of the Y-axis motor 59 into a propulsion force in the Y direction.
  • the Y-axis ball screw 58 applies a driving force in the Y direction to the unit support member 55 and the head unit 50A. As a result, the unit support member 55 and the head unit 50A move in the Y direction (Y-axis servo mechanism).
  • the head unit drive mechanism 50B also includes an X-axis ball screw and an X-axis motor 56 that rotates the X-axis ball screw.
  • the X-axis ball screw is built in the unit support member 55 .
  • the X-axis ball screw constitutes a ball screw mechanism that converts the rotational force of the X-axis motor 56 into X-direction propulsion, and the head unit 50A receives the X-direction propulsion from the X-axis ball screw. moves in the X direction (X-axis servo mechanism).
  • the head unit 50A moves in the Y direction by driving the Y-axis servo mechanism, and moves in the X direction by driving the X-axis servo mechanism.
  • the head unit 50A includes a head unit body 61, a suction head 51, a Z-axis motor 52, and a camera 53.
  • the suction head 51 is connected to the motor shaft of the Z-axis motor 52 .
  • the Z-axis motor 52 is fixed to the head unit body 61 .
  • the suction head 51 can be moved vertically with respect to the head unit body 61 by driving the Z-axis motor 52 .
  • the suction head 51 has a shape elongated in the vertical direction, and an air supply path is provided in the central part in the vertical direction. A negative pressure is applied to the tip (lower end) of the suction head 51 by supplying negative pressure to the air supply path via a vacuum pump (not shown).
  • a suction force is generated at the lower end of the suction head 51 by applying negative pressure.
  • the suction head 51 holds the chip C.
  • the applied pressure can be switched to positive pressure.
  • the suction head 51 releases the holding of the chip C by applying the positive pressure.
  • the camera 53 is fixed to the head unit main body 61 along with the Z-axis motor 52 .
  • the camera 53 has its imaging surface facing downward, and can image the chip C attached to the upper surface of the sheet S. As shown in FIG.
  • the control unit 80 can recognize the presence of the chip C to be picked up. Further, the control unit 80 can detect the position of the chip C within the support ring 23 based on the position of the camera 53 when the chip C is imaged and the position of the pallet 20 at that time.
  • the camera 53 images the ejector 41 and the pallet 20 . As shown in FIG. 2, the ejector 41 is positioned below the camera 53 . The camera 53 images the ejector 41 when the pallet 20 moves to the pallet receiving position together with the pallet holding table 30 .
  • the pallet holding table 30 loads the pallet 20 and moves to the component extraction work position. Since the pallet 20 is positioned below the camera 53 at this time, the camera 53 takes an image of the pallet 20 .
  • the intention of imaging the ejector 41 and the pallet 20 is to perform image recognition of the ejector 41 and the pallet 20 to determine the types of the ejector 41 and the pallet 20, as will be described later.
  • FIG. 4 is a block diagram showing the control system of the component mounting apparatus 10. As shown in FIG.
  • the control unit 80 is a controller that centrally controls the component mounting apparatus 10 .
  • control unit 80 In the control unit 80, the table drive motor 33, the push-up unit drive motor 45, the X-axis motor 56, the Y-axis motor 59, the camera 53, the input unit 81, and the output unit (an example of the "display unit") 82 are electrically connected. properly connected. An operator of the component mounting apparatus 10 inputs various information and commands to the control section 80 via the input section 81 .
  • the controller 80 receives an output signal from a position detection means such as an encoder (not shown) built in each drive motor. Further, when an abnormality such as a stop of the component mounting apparatus 10 due to the approach or contact between the ejector 41 and the support ring 23 occurs, the control unit 80 displays information such as the occurrence of the abnormality and its type on the output unit 82. to notify the operator of the state of the component mounting apparatus 10 .
  • a position detection means such as an encoder (not shown) built in each drive motor.
  • the control unit 80 includes an axis control unit 83 , an image processing unit 84 , a storage unit 85 and a calculation unit 86 .
  • the axis control unit 83 is a driver that drives each drive motor, and operates each drive motor according to instructions from the calculation unit 86 .
  • the image processing unit 84 performs image processing on image data input from the camera 53 .
  • the storage unit 85 stores various programs such as implementation programs and various data. Further, the storage unit 85 stores the inner diameter R1 of the support ring 23, which differs according to the type of the pallet 20, and the registered image of the ejector 41, which differs according to the type of the ejector 41, and the outer diameter R2 corresponding to the registered image on a one-to-one basis. is doing.
  • the control unit 80 operates the conveyor 12, the pallet holding table 30, the push-up unit 40, and the suction unit 50 by controlling each drive motor and the like based on a predetermined program. Thereby, the suction position of the chip C by the suction unit 50 is adjusted. Further, the control unit 80 controls a series of operations such as loading/unloading the pallet 20 into/from the pallet storage unit 70, picking up the chip C from the sheet S, mounting the chip C by the suction head 51, and the like.
  • FIG. 5 is a plan view showing the positional relationship between the support ring 23 and the ejector 41.
  • R1 is the inner diameter of the support ring 23 and “R2” is the outer diameter of the ejector 41 .
  • A1 is the center of the support ring 23 and the through hole 22 and “A2” is the center of the ejector 41 .
  • A3 is the center of chip C to be picked up.
  • the ejector 41 is positioned directly below the chip C, and the center A2 of the ejector 41 overlaps the center A3 of the chip C.
  • the ejector 41 moves inside the support ring 23 . Therefore, the center A2 is displaced with respect to the support ring 23 as the ejector 41 moves.
  • (R1-R2)/2 is a value obtained by converting the difference (R1-R2) between the inner diameter R1 of the support ring 23 and the outer diameter R2 of the ejector 41 into a radius.
  • This (R1 ⁇ R2) is a judgment value (threshold value) used when judging whether the ejector 41 is in contact with the support ring 23 .
  • control unit 80 sets the movement of the ejector 41 with the center A1 of the support ring 23 as a reference point within a range that satisfies D ⁇ (R1-R2)/2. This prevents the ejector 41 from contacting the support ring 23 .
  • the type of the ejector 41 is determined, and the outer diameter R2 of the ejector 41 is acquired for each type.
  • control unit 80 restricts the movement of the ejector 41 on the condition that D ⁇ (R1-R2)/2 is satisfied based on the acquired outer diameter R2. Further, the control unit 80 may set the movable range of the ejector 41 so as to satisfy D ⁇ (R1 ⁇ R2)/2. Thereby, contact of the ejector 41 with the support ring 23 can be avoided regardless of the type of ejector 41 used.
  • FIG. 6 shows an example of stored information.
  • information of "registered image”, "ejector type”, and “outer diameter R2" is stored in the storage unit 85 for three types of ejectors (TYPE_001, 002, 003).
  • the calculation unit 86 acquires image data GD2 of the ejector 41 imaged by the camera 53 . Then, the calculation unit 86 compares the registered image stored in the storage unit 85 with the image data GD2. After that, the calculation unit 86 identifies the ejector 41 corresponding to the registered image that matches the image data GD2, and reads the type and outer diameter R2 of the ejector 41 from the storage unit 85. FIG. Thereby, the calculation unit 86 can acquire the "type” and the "outer diameter R2" of the ejector 41 used for production.
  • the calculation unit 86 determines the type of the support ring 23 and acquires the inner diameter R1 of the support ring 23. Then, the movement of the ejector 41 is restricted based on the acquired inner diameter R1. Thereby, contact of the ejector 41 with the support ring 23 can be avoided regardless of the type of the support ring 23 used.
  • the inner diameter R1 of the support ring 23 can be obtained by taking an image of the identifier 25 attached to the upper surface of the pallet body 26 with the camera 53 and determining the type of the pallet 20 .
  • the description of the ejector 41 may be used to determine the type of the pallet 20 and the method of obtaining the inner diameter R1 of the support ring 23 .
  • the input unit 81 gives an instruction to start production to the control unit 80 based on a signal input from the outside.
  • the control unit 80 determines whether or not the outside diameter R2 of the ejector 41 attached to the component mounting apparatus 10 has already been acquired (S10). If the outer diameter R2 has been obtained (S10: YES), skip S20 and S30 and proceed to S40 (details will be described later).
  • the camera 53 takes an image of the upper surface of the ejector 41 and transmits image data GD2 to the control section 80.
  • FIG. The control unit 80 acquires the image data GD2 transmitted from the camera 53 (S20).
  • the control unit 80 compares the image data GD2 with a plurality of registered images (see FIG. 6) stored in the storage unit 85, and identifies the type of the ejector 41 from the registered image that matches the image data GD2. Next, the control unit 80 reads and acquires the outer diameter R2 corresponding to the identified type of the ejector 41 from the storage unit 85 (S30).
  • control unit 80 moves the pallet holding table 30 holding the pallet 20 to the component picking work position (S40). At this time, the pallet 20 is positioned below the camera 53 .
  • the camera 53 captures an image of the identifier 25 formed on the plate surface of the pallet body 26 and transmits image data GD1 to the control section 80 .
  • the control unit 80 reads the identifier 25 appearing in the image data GD1, and reads and acquires the inner diameter R1 corresponding to the identifier 25 from the storage unit 85 (S50).
  • FIG. 8 is a plan view for explaining the relationship between the sheet S with the wafer W adhered to its surface and the support ring 23.
  • FIG. The white straight lines shown in FIG. 8 are dicing lines.
  • the dicing lines are lattice-shaped and divide the wafer W into a plurality of chips C (rectangular).
  • chips C are picked up in rectangular areas 1 to 5 in the vicinity of the support ring 23 among the rectangular areas of the sheet S in order from the rectangular area 1 will be described.
  • the chip C exists in the rectangular areas 1, 2 and 5
  • the chip C does not exist in the rectangular areas 3 and 4.
  • the control unit 80 moves the head unit 50A above the sheet S, and images the rectangular area 1 with the camera 53 . Then, the control unit 80 determines whether the chip C can be recognized in the rectangular area 1 from the image of the camera 53 (S60).
  • the control unit 80 calculates the position of the center A3 of the chip C in the rectangular area 1, and calculates the distance D based on the position of the center A3 (S70). .
  • the distance D is the distance from the center A1 of the support ring 23 to the center A2 of the ejector 41 when it is assumed that the ejector 41 moves below the rectangular area 1 to push up the chip C (see FIG. 5). ).
  • control unit 80 determines whether or not the distance D is smaller than (R1-R2)/2 (S80).
  • the above “R1” and “R2” use the data acquired in S30 and S50.
  • control unit 80 determines that even if the ejector 41 is moved below the rectangular area 1, it does not come into contact with the support ring 23.
  • control unit 80 determines that the ejector 41 does not contact the support ring 23 (S80: NO), it moves the ejector 41 below the rectangular area 1 . Specifically, the control unit 80 moves the ejector 41 below the rectangular area 1 so that the center A2 of the ejector 41 and the center A3 of the chip C overlap in plan view (see FIG. 5).
  • the ejector 41 protrudes the pin 41a to push up the chip C in the rectangular area 1 from below. Then, the chip C is picked up from the sheet S by sucking the pushed-up chip C with the suction head 51 (S90).
  • the suction head 51 mounts the picked up chip C at a predetermined position on the mounting surface M1.
  • control unit 80 After mounting the chip C, the control unit 80 refers to the mounting program and determines whether or not there is another chip C to be picked up on the sheet S.
  • control unit 80 When there is a chip C to be picked up (S100: YES), the control unit 80 counts up to rectangular area 2, which is the next suction position (S110).
  • control unit 80 moves the head unit 50A and images the rectangular area 2 with the camera 53.
  • the control unit 80 determines whether the chip C can be recognized in the rectangular area 2 based on the image of the camera 53 (S60).
  • the control unit 80 determines that the chip C can be recognized (S60: YES).
  • the controller 80 calculates the distance D based on the position of the center A3 of the chip C in the rectangular area 2 (S70). Then, it is determined whether or not the distance D is smaller than (R1-R2)/2 (S80). In the following, the case of D ⁇ (R1-R2)/2 and the case of D>(R1-R2)/2 will be described.
  • the suction head 51 picks up the pushed-up chip C and mounts it at a predetermined position on the mounting surface M1. After mounting, the control unit 80 counts up to rectangular area 3, which is the next suction position (S90 to S110).
  • the process proceeds to S60, and the control unit 80 determines whether or not the chip C can be recognized from the image of the camera 53 in the rectangular area 3 (S60).
  • control unit 80 since chip C does not exist in rectangular area 3 and is not recognized, it is determined as NO in S60.
  • the control unit 80 does not execute the process of shifting to S70 for rectangular area 3, but shifts to S110 and counts up to rectangular area 4, which is the next suction position.
  • control unit 80 shifts to S110 without executing the processing of S90 to S100, and counts up to rectangular area 3, which is the next suction position.
  • the controller 80 determines that even if the chip C exists in the rectangular area 2 , if the ejector 41 moves below the rectangular area 2 , it will come into contact with the support ring 23 , the ejector 41 will move below the rectangular area 2 . (Naturally, chip C is not picked up either), and counts up to the next suction position (rectangular area 3).
  • the control unit 80 moves the camera 53 above the replaced ejector 41 and images the ejector 41 with the camera 53 . Accordingly, based on the image data GD2 captured by the camera 53, the type of the replaced ejector 41 can be specified. Therefore, the data of the outer diameter R2 of the ejector 41 can be updated to the data after replacement (S20, S30). From the above, even if the ejector 41 is replaced and the value of the outer diameter R2 changes before and after the replacement, the ejector 41 can be prevented from contacting the support ring 23 by using the data of the outer diameter R2 after the replacement. Additionally, the movement of the ejector 41 can be restricted.
  • the storage unit 85 of the control unit 80 preliminarily stores registered images and outer diameters R2 corresponding to the types of the ejector 41 on a one-to-one basis. Then, the control unit 80 identifies the type of the ejector 41 by comparing the image data GD2 and the registered image, and acquires the outer diameter R2 corresponding to the type of the ejector 41 . As a result, the outer diameter R2 can be acquired without directly measuring the outer diameter R2 during execution of the flow, and the tact time of the component pick-up device 13 can be improved.
  • the component pick-up device 13 has a camera 53 .
  • the camera 53 is used not only to identify the types of the pallet 20 and the ejector 41, but also to confirm the position of the chip C to be picked up (S60, S70). By using one camera 53 for a plurality of purposes, an increase in cost can be suppressed.
  • Embodiment 2 The configuration of the component pick-up device 113 of Embodiment 2 will be described with reference to FIGS. 9 and 10.
  • FIG. The configuration of Embodiment 2 differs from that of Embodiment 1 in that the ejector 141 has an RFID tag (an example of an "information recording section") 47, and the head unit 150A has an RFID reader (an example of an "information reading section") 60. They are different in that respect. Note that the same reference numerals as those of the first embodiment are used, and detailed descriptions thereof are omitted.
  • the RFID tag 47 is a small piece of resin-molded IC chip in which identification information unique to the ejector 141 is recorded.
  • the RFID tag 47 is attached to the side surface of the ejector 141 as shown in FIG.
  • the RFID reader 60 transmits radio waves in the RF band toward the RFID tag 47 and receives radio waves transmitted by the RFID tag 47 in response. At this time, the RFID reader 60 can read the identification information recorded on the RFID tag 47 without contact.
  • the identification information of the ejector 141 recorded in the RFID tag 47 is the ejector type and outer diameter R2.
  • FIG. 10 shows an example of the correspondence relationship between the signals A to C transmitted by the RFID tag 47 attached to the ejector 141, the type of ejector, and the outer diameter of the ejector.
  • the RFID reader 60 receives the C signal
  • the RFID reader 60 reads the ejector type "TYPE_003" and the outer diameter R2 value "25 mm" as identification information.
  • the RFID reader 60 transmits the read identification information to the control unit 80, and the control unit 80 acquires the ejector type (TYPE_003) and outer diameter R2 (25 mm).
  • the RFID reader 60 can read the identification information of the ejector 141 without contact. Also, even if the ejector 141 and the RFID tag 47 are located at a position that cannot be imaged by the camera 53, the control unit 80 can acquire the identification information of the ejector 141.
  • FIG. 9 For example, as shown in FIG. 9, when there is a sheet S or a chip C between the ejector 141 and the RFID reader 60, the camera 53 cannot image the ejector 141.
  • FIG. by using the RFID reader 60 , it is possible to acquire the identification information of the ejector 141 from the RFID tag 47 and transmit it to the control section 80 .
  • the type of the ejector 41 is specified by comparing the image data GD2 of the ejector 41 and the registered image.
  • means for identifying the type of ejector 41 from the image data GD2 is not limited to this.
  • the ejector 41 may have an identifier 46 at a position that does not overlap the pin 41a.
  • FIG. 12 shows the correspondence between the type and outer diameter R2 of the ejector 41 stored in the storage unit 85 and the identifier 46. As shown in FIG.
  • the type of the ejector 41 is recorded in the identifier 46. Although a two-dimensional code is used as the identifier 46 in the example of FIG.
  • the calculation unit 86 identifies the type of the ejector 41 from the identifier 46 reflected in the image data GD2, and acquires the outer diameter R2 corresponding to the type of the ejector 41 from the storage unit 85. FIG.
  • the information to be pre-stored in the storage unit 85 is, as shown in FIG. Images (image information) are not required. Character information generally has a smaller amount of information than image information. Therefore, even if the storage capacity of the storage unit 85 is small, the information of the ejector 41 can be stored as character information.
  • the information recorded in the identifier 46 may be the outer diameter R2 in addition to the type of the ejector 41 or instead of the type of the ejector 41.
  • the calculation unit 86 acquires the outer diameter R2 by reading the identifier 46 .
  • the storage unit 85 may not store the type of the ejector 41 and the value of the outer diameter R2.
  • the outer diameter R2 may be directly calculated from the image data GD2.
  • FIG. 13 schematically shows a case where the upper surface of the ejector 41 is entirely within the field of view 53a of the camera 53.
  • the outer diameter R2 can be calculated by recognizing the outer edge 41b of the ejector 41 with the image processing unit 84 in the image data GD2 showing the inside of the visual field range 53a.
  • the upper surface of the ejector 41 may not fit inside the visual field range 53a.
  • points B1 and B2 on the outer edge 41b are recognized from the respective image data GD2 at the 0° position and the 180° position on the circular outer edge 41b, and the distance between the two points is obtained.
  • a diameter R2 can be calculated.
  • the outer diameter R2 of the ejector 41 can be obtained without comparing the image data GD2 with the registered image or reading the identifier 46. As a result, even if there is no registered image corresponding to the ejector 41 on a one-to-one basis in the storage unit 85, or if the reading of the identifier 46 fails, the outer diameter R2 can be obtained based on the image data GD2.
  • the component mounting apparatus 10 may have a mounting head for mounting the chip C on the mounting surface M1 in addition to the suction head 51 .
  • the suction head 51 picks up the chip C from the pallet 20 and then transfers the chip C to the mounting head.
  • the calculation unit 86 acquires the inner diameter R1 based on the identifier 25 of the pallet 20 captured by the camera 53 .
  • the inner diameter R1 may be obtained by other means as well.
  • the pallet 20 may have an RFID tag, and by reading the RFID tag with an RFID reader, the computing unit 86 may acquire the inner diameter R1.
  • the image data GD1 of the identifier 25 and the image data GD2 of the ejector 41 are obtained using the camera 53, respectively.
  • the camera that images the identifier 25 and the camera that images the ejector 41 may be different cameras.
  • the RFID tag 47 is attached to the side surface of the ejector 41 , but it may be attached to the upper surface or the lower surface of the ejector 41 . Alternatively, it may be embedded inside the ejector 41 .
  • the identification information recorded in the RFID tag 47 may be only the "ejector type" of the ejector 141.
  • the storage unit 85 stores the "ejector type” and "outer diameter R2" shown in FIG. , is read from the storage unit 85 and acquired.
  • the control unit 80 identifies the type of the palette 20 by performing image recognition on the image data GD1 of the identifier 25 .
  • the process of recognizing the image data GD1 may be omitted.
  • the dimension of the inner diameter R1 of the support ring 23 may be stored in advance in the storage unit 85, and the moving range of the ejector 41 may be restricted using the data.
  • an acquisition unit such as the camera 53 is used to acquire identification information or an image of the pallet 20, and the acquired identification information
  • the size of the inner diameter R1 of the support ring 23 may be obtained by determining the type from the image. Then, the movement range of the ejector 41 may be restricted using the acquired inner diameter R1.
  • the component pick-up devices 13 and 113 hold the pallet 20 on which the sheet S is stretched, and pick up the chips C from the sheet S.
  • the pallet 20 has a structure in which a support ring 23 is attached to a pallet body 26. - ⁇
  • the component pick-up device in the present disclosure is not limited to holding the pallet 20.
  • the component pick-up device may have a structure that directly holds the support ring 23 on which the sheet S is stretched and picks up the chip C from the sheet S.
  • the pallet 20 (pallet body 26) may be eliminated and the support ring 23 may be directly assembled to the component pick-up device.
  • a component pick-up device of this type has a mechanism for directly holding the support ring 23 .
  • the mechanism for directly holding the support ring 23 a known mechanism can be used.
  • the support ring 23 may be assembled to the pallet body 26 via connecting members.
  • the pallet 20 has a configuration in which the pallet body 26, the connecting member, and the support ring 23 are connected in order from bottom to top.
  • a locking portion 21 may be provided on this connecting member.
  • a plurality of locking portions 21 are provided so as to surround the support ring 23 , and the expand ring 24 is fixed to the plurality of locking portions 21 , similarly to the contents of ⁇ Description of the Pallet> of the first embodiment.
  • the expand ring 24 is fixed near the upper surface of the pallet body 26 by the connecting member (locking portion 21). The distance between the chips C attached to the sheet S is increased through the connecting member (locking portion 21).
  • the support ring 23 described so far is one of the constituent elements of the pallet 20 .
  • the support ring 23 may also be a component of the component pick-up device.
  • the component pickup device includes, for example, a transport mechanism that transports the expand ring 24 toward the support ring 23, a holding mechanism that holds the expand ring 24 transported by the transport mechanism, and the expand ring 24 held by the holding mechanism. and a stretching mechanism for stretching the sheet S by. From another point of view, it can be said that the component pick-up device may have an auto-expanding mechanism.
  • the camera 53 and the RFID reader 60 are exemplified as the acquisition unit.
  • the acquisition unit for example, a laser displacement gauge that acquires the shape and dimensions of an object (ejector 41, pallet 20, etc.) using laser light may be used.
  • the outer diameter R2 (the diameter of the ejector 41 when viewed from above) is used as the information about the ejector 41 stored in the storage unit 85 .
  • the information of the ejector 41 may be data including the dimension in the height direction (Z direction) in addition to the outer diameter R2.
  • the support ring 23 is attached to the pallet body 26 so as to be vertically movable.
  • the support ring 23 may be fixed relative to the pallet body 26 .
  • the support ring 23 may be fixed to the pallet body 26 by screwing or fitting.
  • the support ring 23 is fixed by any method so as to protrude upward from the upper surface of the pallet body.
  • the component pickup device 13 may have a mechanism for vertically moving the expand ring 24 with respect to the pallet body 26 .
  • the expansion process is performed as follows. First, the expand ring 24 to which the sheet S is attached is placed above the support ring 23 and lowered toward the pallet body 26 . After the sheet S contacts the opening on the upper surface of the support ring 23, the expand ring 24 is further lowered to approach the pallet body 26 and is locked by the retractable locking portion 21. - ⁇ At this time, the sheet S is stretched by being pulled obliquely downward from the opening edge of the upper surface of the support ring 23, and the expansion process is performed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Supply And Installment Of Electrical Components (AREA)

Abstract

This component pickup device 13 is configured to position a support ring 23 having a through-hole 22 passing therethrough in the vertical direction and to pick up a component C from a component attachment sheet S that is stretched over an upper surface side of the support ring 23 so as to cover the through-hole 22. The component pickup device 13 includes an ejector 41 that moves inside the through-hole 22 of the support ring 23 and pushes the component C up from below the component attachment sheet S, a chuck head 51 that chucks and picks up the component C that has been pushed up by the ejector 41, an acquisition unit 53 that acquires information on or an image of the ejector 41, and a control unit 80. The control unit 80 acquires dimensions of the ejector 41 on the basis of the information on or the image of the ejector 41 acquired by the acquisition unit 53, and, on the basis of the acquired dimensions of the ejector 41 and the dimensions of the through-hole 22, controls the movement of the ejector 41 inside the through-hole 22 so as to avoid contact of the ejector 41 with the support ring 23.

Description

部品ピックアップ装置、部品実装装置Component pick-up device, component mounting device
 本発明は、部品ピックアップ装置、及び部品実装装置に関する。 The present invention relates to a component pickup device and a component mounting device.
 特許文献1には、半導体ウェハから分割されたダイをピックアップして部品実装機に供給する装置(ダイ供給装置)が開示されている。特許文献1のダイ供給装置では、ウェハパレット22に、ウェハのサイズ及び/又はピックアップ動作範囲に関するウェハ情報を記述した情報記録部35が設けられている。 Patent Document 1 discloses a device (die supply device) that picks up dies divided from a semiconductor wafer and supplies them to a component mounter. In the die supply device of Patent Document 1, the wafer pallet 22 is provided with an information recording section 35 in which wafer information relating to the wafer size and/or the pick-up operation range is described.
 情報記録部35に記述された情報を情報読取部で読み取ることで、突上げポット51が、ウェハパレット22の円形開口縁部と干渉(接触)しないように、突上げポット51の移動可能範囲を自動設定できる。これにより、作業者が移動可能範囲を入力する作業が不要になり、生産性が向上するとのことである。 By reading the information written in the information recording unit 35 by the information reading unit, the movable range of the push-up pot 51 is adjusted so that the push-up pot 51 does not interfere (contact) with the circular opening edge of the wafer pallet 22. Can be set automatically. This eliminates the need for the operator to input the movable range, improving productivity.
特開2012-099680号公報JP 2012-099680 A
 ウェハを分割したチップ(部品)は、ウェハパレットの円形開口部(支持リングが有する貫通孔)に張られたダイシングシート(部品装着シート)上に位置している。エジェクタ(突上げポット)は、貫通孔の内側を移動して、ピックアップ対象となる部品を下方から突上げる。エジェクタの寸法は、ピックアップ対象となる部品の大きさに応じて異なる場合がある。 The chips (components) obtained by dividing the wafer are placed on a dicing sheet (component mounting sheet) stretched over the circular opening of the wafer pallet (the through hole of the support ring). The ejector (push-up pot) moves inside the through-hole and pushes up the part to be picked up from below. The dimensions of the ejector may vary depending on the size of the part to be picked up.
 特許文献1の構成では、ウェハパレットからウェハ情報を取得するものの、実際に使用するエジェクタの寸法を取得していない。そのため、エジェクタが変わると、エジェクタが貫通孔の内側を移動したときに、支持リングと接触する可能性がある。なお、部品はウェハを分割したチップに限らず、他の小型部品でも同様の課題がある。 In the configuration of Patent Document 1, although wafer information is obtained from the wafer pallet, the dimensions of the ejector actually used are not obtained. Therefore, if the ejector changes, it may come into contact with the support ring as it moves inside the through hole. The components are not limited to chips obtained by dividing a wafer, and other small components also have similar problems.
 本発明はこのような課題を解決するためにされたものである。本明細書では、エジェクタの寸法と、貫通孔の寸法とに基づいて、支持リングに対するエジェクタの接触を回避するように、エジェクタの移動を制限する技術を開示する。 The present invention was made to solve such problems. Techniques are disclosed herein to limit the movement of the ejector to avoid contact of the ejector with the support ring based on the size of the ejector and the size of the through hole.
 本明細書において開示される部品ピックアップ装置は、上下に貫通する貫通孔を有する支持リングを位置決めし、前記貫通孔を覆うように前記支持リングの上面側に張られた部品装着シートから部品をピックアップする部品ピックアップ装置である。このような部品ピックアップ装置は、前記支持リングの前記貫通孔内を移動して、前記部品装着シートの下方から前記部品を突上げるエジェクタと、前記エジェクタにより突上げられた前記部品を吸着してピックアップする吸着ヘッドと、前記エジェクタの情報又は画像を取得する取得部と、制御部と、を含む。 A component pick-up device disclosed in this specification positions a support ring having a through hole penetrating vertically, and picks up a component from a component mounting sheet stretched on the upper surface side of the support ring so as to cover the through hole. It is a parts pick-up device that Such a component pickup device includes an ejector that moves within the through hole of the support ring and pushes the component from below the component mounting sheet, and the component pushed up by the ejector is sucked and picked up. a suction head, an acquisition unit that acquires information or an image of the ejector, and a control unit.
 前記制御部は、前記取得部の取得する前記エジェクタの情報又は画像に基づいて前記エジェクタの寸法を取得し、取得した前記エジェクタの寸法と、前記貫通孔の寸法とに基づいて、前記支持リングに対する前記エジェクタの接触を回避するように、前記貫通孔内における前記エジェクタの移動を制限する。 The control unit acquires the dimensions of the ejector based on the information or image of the ejector acquired by the acquisition unit, and based on the acquired dimensions of the ejector and the dimensions of the through hole, Movement of the ejector within the through hole is restricted to avoid contact of the ejector.
 本発明によれば、実際に使用されるエジェクタの寸法と、貫通孔の寸法とに基づいて、エジェクタの移動を制限して、支持リングに対するエジェクタの接触を回避することができる。 According to the present invention, movement of the ejector can be restricted to avoid contact of the ejector with the support ring based on the dimensions of the ejector actually used and the dimensions of the through hole.
部品ピックアップ装置を適用した部品実装装置の平面図Plan view of a component mounting device to which a component pick-up device is applied 部品ピックアップ装置の機構部分を示す分解斜視図An exploded perspective view showing a mechanical portion of the component pick-up device. 実施形態1の構成において、部品装着シートからチップをピックアップするときの状態を示す模式図FIG. 4 is a schematic diagram showing a state when picking up a chip from a component mounting sheet in the configuration of Embodiment 1; 部品実装装置の制御系を示すブロック図Block diagram showing the control system of the component mounter 支持リング、エジェクタ、チップの位置関係を示す模式図Schematic diagram showing the positional relationship of the support ring, ejector, and tip 記憶部に記憶されているエジェクタの情報を示す図FIG. 4 is a diagram showing ejector information stored in a storage unit; 部品実装装置の動作を示すフローチャートFlowchart showing the operation of the component mounter ピックアップ対象のチップと支持リングとの関係を示す図A diagram showing the relationship between the tip to be picked up and the support ring. 実施形態2の構成において、部品装着シートからチップをピックアップするときの状態を示す模式図FIG. 9 is a schematic diagram showing a state when picking up a chip from a component mounting sheet in the configuration of Embodiment 2; RFIDタグに記録されている情報を示す図Diagram showing information recorded in an RFID tag 上面に識別子を有するエジェクタの平面図Top view of ejector with identifier on top 識別子と、識別子に対応するエジェクタの種類及び外径R2を示す図A diagram showing the identifier, and the type and outer diameter R2 of the ejector corresponding to the identifier. カメラの視野範囲内にエジェクタ全体が入る場合を示す平面図Plan view showing the case where the entire ejector is within the field of view of the camera カメラの視野範囲内にエジェクタ全体が入らない場合を示す平面図Plan view showing the case where the entire ejector is not within the field of view of the camera
<実施形態1>
<部品実装装置の概要>
 以下、本発明の実施形態1を、図1~図8に基づいて詳細に説明する。本発明に係る部品ピックアップ装置13は、例えばダイボンダ、ダイシングされたチップをテープに収容するテーピング装置、或いは部品を基板に実装する部品実装装置等の各種装置に適用することができる。実施形態1は、部品ピックアップ装置13を、部品実装装置10に適用した例である。
<Embodiment 1>
<Overview of component mounter>
Embodiment 1 of the present invention will be described in detail below with reference to FIGS. 1 to 8. FIG. The component pick-up device 13 according to the present invention can be applied to various devices such as a die bonder, a taping device that stores diced chips on a tape, or a component mounting device that mounts components on a substrate. Embodiment 1 is an example in which the component pick-up device 13 is applied to the component mounting device 10 .
 図1は、部品実装装置10の全体構成を示す平面図である。図2は、部品実装装置10における、部品ピックアップ装置13の機構部分を主に示す分解斜視図である。部品実装装置10は、ダイシングされたウェハWからチップ(「部品」の一例)Cをピックアップして実装対象物Mに実装する装置である。本明細書では、部品の一例として、チップCを挙げているが、部品はチップ以外であってもよく、例えばセラミックコンデンサ等の受動部品や、モールドされたリードフレーム等であってもよい。 FIG. 1 is a plan view showing the overall configuration of the component mounting apparatus 10. FIG. FIG. 2 is an exploded perspective view mainly showing the mechanical portion of the component pick-up device 13 in the component mounting apparatus 10. As shown in FIG. The component mounting apparatus 10 is an apparatus that picks up a chip (an example of a “component”) C from a diced wafer W and mounts it on an object M to be mounted. In this specification, the chip C is used as an example of the component, but the component may be other than the chip, such as a passive component such as a ceramic capacitor, or a molded lead frame.
 部品実装装置10は、基台11、コンベア12、パレット収納部70、及び部品ピックアップ装置13を含む。 The component mounting apparatus 10 includes a base 11, a conveyor 12, a pallet storage section 70, and a component pick-up device 13.
 コンベア12は、所定の実装作業位置に実装対象物Mを搬入し、実装作業後に実装対象物Mを実装作業位置から搬出する。コンベア12は、実装対象物Mを搬送するX方向に延びるコンベア本体と、このコンベア本体上で実装対象物Mを持ち上げて位置決めする図示しない位置決め機構とを含む。コンベア12は、図1中の右側から左側に向かって実装対象物Mを略水平姿勢で搬送し、所定の実装作業位置に位置決め固定する。 The conveyor 12 carries in the mounting object M to a predetermined mounting work position, and carries out the mounting object M from the mounting work position after the mounting work. The conveyor 12 includes a conveyor body extending in the X direction that conveys the mounting target M, and a positioning mechanism (not shown) that lifts and positions the mounting target M on the conveyor body. The conveyor 12 conveys the mounting object M in a substantially horizontal posture from the right side to the left side in FIG. 1, and positions and fixes it at a predetermined mounting work position.
 パレット収納部70は、パレット20を複数枚収容する器具で、図1における部品実装装置10の手前側の中央部に配置されている。パレット収納部70は、パレット20を上下複数段に収容するラック(図示せず)と、ラックを昇降駆動する駆動手段(図示せず)とを含む。パレット収納部70は、ラックの昇降によって、所望のパレット20をパレット保持テーブル30に対して出し入れ可能な高さ位置に配置させる。その後、パレット保持テーブル30に対して出し入れ可能な高さに配置されたパレット20は、パレット保持テーブル30に搭載される。 The pallet storage unit 70 is a tool for storing a plurality of pallets 20, and is arranged in the central portion on the front side of the component mounting apparatus 10 in FIG. The pallet storage unit 70 includes a rack (not shown) that stores the pallets 20 in a plurality of vertical stages, and a drive means (not shown) that drives the rack up and down. The pallet storage unit 70 arranges a desired pallet 20 at a height position that allows it to be taken in and out of the pallet holding table 30 by raising and lowering the rack. After that, the pallet 20 arranged at a height that allows it to be taken in and out of the pallet holding table 30 is mounted on the pallet holding table 30. - 特許庁
<パレットの説明>
 図2及び図3を参照して、パレット20の基本的な構造について説明する。パレット20は、矩形板状のパレット本体26と、支持リング23と、エキスパンドリング24と、を有している。パレット本体26には、上下に貫通する貫通穴が開いている。パレット本体26の貫通穴が円形状を呈している例について説明する。しかしながら、パレット本体26の貫通穴の形状は、任意であり、適宜設定される。
<Description of palette>
The basic structure of the pallet 20 will be described with reference to FIGS. 2 and 3. FIG. The pallet 20 has a rectangular plate-like pallet body 26 , a support ring 23 and an expand ring 24 . The pallet main body 26 has a through hole penetrating vertically. An example in which the through holes of the pallet body 26 are circular will be described. However, the shape of the through hole of the pallet main body 26 is arbitrary and set appropriately.
 支持リング23は、中央に貫通孔22が開けられた環状部材である。本開示では、支持リング23が円環状を呈している例について説明する。しかしながら、支持リング23の形状は円環状に限定されず、例えば外周側面が円形状を呈しつつ矩形の貫通孔22が開けられた環状部材であってもよい。更には、支持リング23は、板状部材に貫通孔22が開けられた環状部材であってもよいし、所定の厚さを有する円柱体に貫通孔22が開けられた環状部材であってもよい。なお、貫通孔22は、その大きさ及び形状がパレット本体26の貫通穴に応じて適宜設定される。貫通孔22は、その大きさ及び形状がパレット本体26の貫通穴と概略同一である。 The support ring 23 is an annular member with a through hole 22 in the center. This disclosure describes an example in which the support ring 23 has an annular shape. However, the shape of the support ring 23 is not limited to an annular shape. Furthermore, the support ring 23 may be an annular member in which a through hole 22 is opened in a plate-like member, or may be an annular member in which a through hole 22 is opened in a cylindrical body having a predetermined thickness. good. The size and shape of the through holes 22 are appropriately set according to the through holes of the pallet body 26 . The through hole 22 has substantially the same size and shape as the through hole of the pallet body 26 .
 支持リング23は、貫通孔22がパレット本体26の貫通穴に重ねられた状態で、パレット本体26に対して上下方向に移動可能に組み付けられている。部品ピックアップ装置13は、パレット本体26に対して支持リング23を上下方向に移動させる機構を有している。貫通孔22の内側(内部)は、後述するようにエジェクタ41が移動する移動領域である。 The support ring 23 is assembled so as to be vertically movable with respect to the pallet body 26 with the through holes 22 overlapping the through holes of the pallet body 26 . The component pickup device 13 has a mechanism for vertically moving the support ring 23 with respect to the pallet body 26 . The inside (inside) of the through-hole 22 is a movement area in which the ejector 41 moves as described later.
 パレット本体26の上面には、4つの係止部21が設けられている。4つの係止部21は、支持リング23を取り囲むように、等間隔で配置されている。係止部21は、パレット本体26の上面に対して可倒式であり、エキスパンドリング24の端縁を上方から係止して、パレット本体26の上面の近傍にエキスパンドリング24を固定する。エキスパンドリング24には、部品装着シートS(以下、単に「シートS」と呼ぶ。)が取り付けられている。 Four locking portions 21 are provided on the upper surface of the pallet body 26 . The four locking portions 21 are arranged at regular intervals so as to surround the support ring 23 . The locking portion 21 is foldable with respect to the upper surface of the pallet body 26 , and locks the edge of the expand ring 24 from above to fix the expand ring 24 near the upper surface of the pallet body 26 . A component mounting sheet S (hereinafter simply referred to as “sheet S”) is attached to the expand ring 24 .
 図3に示すように、パレット本体26にエキスパンドリング24を係止すると、支持リング23の上面の開口を覆うようにシートSが張られる。支持リング23をパレット本体26に対して上昇させると、シートSは、支持リング23の上面の開口縁から、斜め下向きに引っ張られる。このとき、エキスパンドリング24はパレット本体26に係止されているため、支持リング23が上方に移動することによって、シートS全体が引き伸ばされる。 As shown in FIG. 3, when the expand ring 24 is locked to the pallet body 26, the sheet S is stretched so as to cover the opening on the upper surface of the support ring 23. When the support ring 23 is raised with respect to the pallet body 26 , the sheet S is pulled obliquely downward from the opening edge of the upper surface of the support ring 23 . At this time, since the expand ring 24 is engaged with the pallet body 26, the support ring 23 moves upward, thereby expanding the entire sheet S. As shown in FIG.
 シートSは、例えば透光性樹脂からなる可撓性のシートである。シートSの上面のうち、平面視にて支持リング23の内側に位置する部分には、複数のチップCに分割されたウェハWが貼り付けられている。シートSが引き伸ばされると、チップC同士の間隔が拡張される(エキスパンド処理)。 The sheet S is a flexible sheet made of translucent resin, for example. A wafer W divided into a plurality of chips C is attached to a portion of the upper surface of the sheet S that is located inside the support ring 23 in plan view. When the sheet S is stretched, the intervals between the chips C are expanded (expanding process).
 パレット20は、シートSに貼り付けられたチップC同士の間隔が拡張された状態で、パレット収納部70に収納されている。また、パレット収納部70に収納されるパレット20には、ウェハWのサイズ等により貫通孔22の寸法(支持リング23の内径)R1が異なる複数種類のパレット20が含まれる場合がある。これら複数種類のパレット20を識別するために、パレット本体26の板面には、パレット20の各種類に応じた識別子25が設けられている。 The pallet 20 is stored in the pallet storage unit 70 with the gaps between the chips C attached to the sheet S expanded. Further, the pallets 20 stored in the pallet storage unit 70 may include a plurality of types of pallets 20 having different dimensions (inner diameters of the support rings 23) R1 of the through holes 22 depending on the size of the wafer W and the like. In order to identify these multiple types of pallets 20, the plate surface of the pallet body 26 is provided with an identifier 25 corresponding to each type of pallet 20. As shown in FIG.
 図1を参照して、再び部品実装装置10を構成する要素について説明する。繰り返しになるが、部品実装装置10は部品ピックアップ装置13を有している。部品ピックアップ装置13は、パレット20を保持するパレット保持テーブル30、突上げ部40(図2参照)、吸着部50、及び制御部80を含む。 The elements constituting the component mounting apparatus 10 will be described again with reference to FIG. Again, the component mounting apparatus 10 has a component pick-up device 13 . The component pick-up device 13 includes a pallet holding table 30 that holds the pallet 20 , a push-up portion 40 (see FIG. 2), a suction portion 50 and a control portion 80 .
 パレット保持テーブル30は、パレット収納部70から引き出されたパレット20を中央位置で保持する。これにより、パレット保持テーブル30に対して、パレット20を構成する支持リング23が位置決めされる。パレット保持テーブル30には、平面視において、保持された支持リング23の貫通孔22と重なる位置に開口部が貫設されている。パレット収納部70に収容されたパレット20は、パレット搭載機構(図示せず)によりパレット保持テーブル30に搭載される。 The pallet holding table 30 holds the pallet 20 pulled out from the pallet storage section 70 at the central position. Thereby, the support ring 23 constituting the pallet 20 is positioned with respect to the pallet holding table 30 . The pallet holding table 30 is provided with an opening at a position overlapping the through hole 22 of the supported support ring 23 in plan view. The pallet 20 stored in the pallet storage section 70 is mounted on the pallet holding table 30 by a pallet mounting mechanism (not shown).
 パレット搭載機構は、部品実装装置10を構成する要素であり、パレット20をパレット収納部70から引き出してパレット保持テーブル30に搭載する。なお、部品実装装置10は、パレット保持テーブル30が保持するパレット20をパレット収納部70に戻す戻し機構(図示せず)も備えていてもよい。これら搭載機構及び戻し機構は、それぞれが別々に離れ独立して構成されていてもよいし、それぞれが一体的に構成されていてもよい。 The pallet mounting mechanism is an element that constitutes the component mounting apparatus 10 , and pulls out the pallet 20 from the pallet storage section 70 and mounts it on the pallet holding table 30 . Note that the component mounting apparatus 10 may also include a return mechanism (not shown) that returns the pallet 20 held by the pallet holding table 30 to the pallet storage section 70 . These mounting mechanism and return mechanism may be configured separately and independently, or may be configured integrally.
 パレット保持テーブル30は、テーブル駆動モータ33により、部品取出作業位置とパレット受取位置との間で、基台11上をY方向に移動可能である。具体的には、パレット保持テーブル30は、基台11上においてY方向に延びる一対の固定レール31に対して移動可能に支持されており、所定の駆動手段によって固定レール31に沿って移動する。 The pallet holding table 30 can be moved in the Y direction on the base 11 by a table driving motor 33 between a component picking position and a pallet receiving position. Specifically, the pallet holding table 30 is movably supported on the base 11 with respect to a pair of fixed rails 31 extending in the Y direction, and is moved along the fixed rails 31 by a predetermined driving means.
 パレット保持テーブル30を移動させる駆動手段は、固定レール31と平行に延び、かつパレット保持テーブル30のナット部分に螺合挿入されるボールねじ軸32と、ボールねじ軸32を回転駆動するためのテーブル駆動モータ33とを含んでいる。 The driving means for moving the pallet holding table 30 includes a ball screw shaft 32 extending parallel to the fixed rail 31 and screwed into the nut portion of the pallet holding table 30, and a table for rotating the ball screw shaft 32. and a drive motor 33 .
 パレット保持テーブル30は、コンベア12の下方位置を通ることが可能である。このようなパレット保持テーブル30は、所定の部品取出作業位置(図1におけるパレット保持テーブル30の位置)と、パレット収納部70近傍のパレット受取位置との間を移動自在である。パレット保持テーブル30は、固定レール31に沿ってY方向に移動可能である。 The pallet holding table 30 can pass below the conveyor 12 . Such a pallet holding table 30 is movable between a predetermined component picking position (the position of the pallet holding table 30 in FIG. 1) and a pallet receiving position near the pallet storage section 70 . The pallet holding table 30 is movable in the Y direction along fixed rails 31 .
<突上げ部の説明>
 突上げ部40は、部品取出作業位置において、シートS上に貼り付けられた複数のチップCのうち、ピックアップ対象のチップCをシートSごと下から上に向けて突上げる。突上げられたチップCは、シートSから剥がれつつ持ち上げられる。図2に示すように、突上げ部40は、エジェクタ41と、Z軸移動部42と、X軸移動部43と、固定レール44と、突上げ部駆動モータ45(図4参照)と、を含む。
<Explanation of thrusting part>
The push-up part 40 pushes up the chip C to be picked up from the bottom to the top together with the sheet S among the plurality of chips C stuck on the sheet S at the component picking work position. The pushed-up chip C is peeled off from the sheet S and lifted. As shown in FIG. 2, the push-up portion 40 includes an ejector 41, a Z-axis moving portion 42, an X-axis moving portion 43, a fixed rail 44, and a push-up portion drive motor 45 (see FIG. 4). include.
 図3に示すように、エジェクタ41は、上下方向を軸とする外径R2の円柱状であり、下面はZ軸移動部42に接続されている。外径R2は、「エジェクタの寸法」の一例である。エジェクタ41は、上方に突出することができる複数のピン41aを内蔵している。エジェクタ41は、複数のピン41aによりシートSのチップCを持ち上げる。具体的には、エジェクタ41は、平面視にてピックアップ対象のチップCと重畳する位置にあるピン41aを突出させつつ、他のピン41aをエジェクタ41内に収納したままにすることで、複数のチップCのうち、ピックアップ対象のチップCのみを上方に突上げる。エジェクタ41は、ピックアップ対象のチップCの大きさに応じて、突出するピン41aを任意に変更する。 As shown in FIG. 3, the ejector 41 has a cylindrical shape with an outer diameter R2 whose axis is in the vertical direction, and the lower surface is connected to the Z-axis moving part 42 . The outer diameter R2 is an example of the "ejector dimension." The ejector 41 incorporates a plurality of pins 41a that can protrude upward. The ejector 41 lifts the chip C of the sheet S with a plurality of pins 41a. Specifically, the ejector 41 protrudes the pin 41a that overlaps with the chip C to be picked up in a plan view, while keeping the other pin 41a housed in the ejector 41. Of the chips C, only the chip C to be picked up is pushed upward. The ejector 41 arbitrarily changes the protruding pin 41a according to the size of the chip C to be picked up.
 エジェクタ41は、Z軸移動部42に対して着脱可能である。エジェクタ41には、大きさの異なる複数の種類があり、ピックアップ対象であるチップCの大きさに応じて、適切な大きさのエジェクタ41が使い分けられる。例えば、ピックアップ対象のチップCが小さい場合は、外径R2の小さなエジェクタ41が、Z軸移動部42に取り付けられる。一方、ピックアップ対象のチップCが大きい場合は、外径R2の大きなエジェクタ41が、Z軸移動部42に取り付けられる。 The ejector 41 is attachable to and detachable from the Z-axis moving part 42 . There are a plurality of types of ejectors 41 with different sizes, and an appropriate size ejector 41 is used depending on the size of the chip C to be picked up. For example, when the chip C to be picked up is small, the ejector 41 with the small outer diameter R2 is attached to the Z-axis moving part 42 . On the other hand, when the chip C to be picked up is large, an ejector 41 having a large outer diameter R2 is attached to the Z-axis moving portion 42 .
 Z軸移動部42は、X軸移動部43とエジェクタ41の間に配されており、その下端がX軸移動部43に固定されている。Z軸移動部42は、Z方向(上下方向)に移動可能であり、その上端に取り付けられたエジェクタ41をZ方向に移動させる。エジェクタ41を上昇させると、支持リング23の上面に張られたシートSに対し、下方からエジェクタ41を接近させることができる。また、パレット保持テーブル30を、部品取出作業位置とパレット受取位置の間で移動させるときには、予めエジェクタ41を下降させておくことで、支持リング23とエジェクタ41とが接触しないようにエジェクタ41を退避させることができる。 The Z-axis moving part 42 is arranged between the X-axis moving part 43 and the ejector 41 , and its lower end is fixed to the X-axis moving part 43 . The Z-axis moving part 42 is movable in the Z direction (vertical direction), and moves the ejector 41 attached to its upper end in the Z direction. When the ejector 41 is raised, the ejector 41 can approach the sheet S stretched on the upper surface of the support ring 23 from below. Further, when the pallet holding table 30 is moved between the component picking work position and the pallet receiving position, the ejector 41 is lowered in advance so that the support ring 23 and the ejector 41 do not come into contact with each other. can be made
 固定レール44は、X方向に延びるレールであり、基台11上に固定されている。図2に示すように、固定レール44は、X軸移動部43をX方向に移動可能に支持している。 The fixed rail 44 is a rail extending in the X direction and fixed on the base 11 . As shown in FIG. 2, the fixed rail 44 supports the X-axis moving portion 43 so as to be movable in the X direction.
 X軸移動部43にはエジェクタ41が搭載されている。このため、エジェクタ41は、X軸移動部43を介してX方向に移動可能である。ここで、パレット保持テーブル30は、固定レール31に沿ってY方向に移動可能である。したがって、エジェクタ41は、パレット保持テーブル30上に保持されているパレット20に対し、XY方向(水平方向)に移動自在である。これにより、エジェクタ41は任意のチップCの直下まで移動して、チップCを突上げることができる。エジェクタ41の移動及びピン41aの突出しの動作は、制御部80がテーブル駆動モータ33及び突上げ部駆動モータ45を制御することにより行われる。 An ejector 41 is mounted on the X-axis moving part 43 . Therefore, the ejector 41 can move in the X direction via the X-axis moving part 43 . Here, the pallet holding table 30 is movable along the fixed rail 31 in the Y direction. Therefore, the ejector 41 is movable in the XY directions (horizontal direction) with respect to the pallet 20 held on the pallet holding table 30 . As a result, the ejector 41 can move to directly below an arbitrary chip C and push up the chip C. As shown in FIG. The movement of the ejector 41 and the operation of projecting the pin 41 a are performed by the control section 80 controlling the table driving motor 33 and the push-up section driving motor 45 .
<吸着部の説明>
 図1に示すように、吸着部50は、ヘッドユニット50Aと、ヘッドユニット駆動機構50Bを有する。
<Description of the adsorption part>
As shown in FIG. 1, the adsorption section 50 has a head unit 50A and a head unit driving mechanism 50B.
 ヘッドユニット50Aは、シートSに貼られたチップCをピックアップし、被実装面M1に実装する装置である。ヘッドユニット50Aは、基台11に設けられたヘッドユニット駆動機構50Bによって駆動され、基台11上の可動領域内でXY方向(水平方向)に移動する。 The head unit 50A is a device that picks up the chip C attached to the sheet S and mounts it on the mounting surface M1. The head unit 50A is driven by a head unit driving mechanism 50B provided on the base 11, and moves in the XY directions (horizontal directions) within the movable area on the base 11. FIG.
 具体的に説明すると、ヘッドユニット駆動機構50Bは、一対の固定レール57と、ユニット支持部材55と、一対のY軸ボールねじ58と、一対のY軸モータ59と、を備える。 Specifically, the head unit drive mechanism 50B includes a pair of fixed rails 57, a unit support member 55, a pair of Y-axis ball screws 58, and a pair of Y-axis motors 59.
 一対の固定レール57は、基台11上に固定され、X方向に所定間隔を隔てて、Y方向に平行に延びている。ユニット支持部材55は、X方向に長い形状であり、ヘッドユニット50AをX方向にスライド可能に支持する。 A pair of fixed rails 57 are fixed on the base 11 and extend parallel to the Y direction with a predetermined interval in the X direction. The unit support member 55 has a shape elongated in the X direction, and supports the head unit 50A so as to be slidable in the X direction.
 ユニット支持部材55は、一対の固定レール57に移動自在に支持されており、Y方向にスライド可能である。 The unit support member 55 is movably supported by a pair of fixed rails 57 and is slidable in the Y direction.
 Y軸ボールねじ58は、Y方向に長い軸状であり、固定レール57と並んで配置されている。Y軸ボールねじ58には、カップリングを介してY軸モータ59が結合されている。、Y軸ボールねじ58は、Y軸モータ59の駆動力により回転する。 The Y-axis ball screw 58 has a shaft shape that is long in the Y direction and is arranged side by side with the fixed rail 57 . A Y-axis motor 59 is coupled to the Y-axis ball screw 58 via a coupling. , the Y-axis ball screw 58 is rotated by the driving force of the Y-axis motor 59 .
 Y軸ボールねじ58は、Y軸モータ59の回転力をY方向の推進力に変換するボールねじ機構を構成している。Y軸ボールねじ58は、ユニット支持部材55及びヘッドユニット50Aに対してY方向に向かう推進力を与える。これにより、ユニット支持部材55及びヘッドユニット50AがY方向に移動する(Y軸サーボ機構)。 The Y-axis ball screw 58 constitutes a ball screw mechanism that converts the rotational force of the Y-axis motor 59 into a propulsion force in the Y direction. The Y-axis ball screw 58 applies a driving force in the Y direction to the unit support member 55 and the head unit 50A. As a result, the unit support member 55 and the head unit 50A move in the Y direction (Y-axis servo mechanism).
 また、ヘッドユニット駆動機構50Bは、X軸ボールねじと、X軸ボールねじを回転させるX軸モータ56を備えている。X軸ボールねじは、ユニット支持部材55に内蔵されている。 The head unit drive mechanism 50B also includes an X-axis ball screw and an X-axis motor 56 that rotates the X-axis ball screw. The X-axis ball screw is built in the unit support member 55 .
 X軸ボールねじは、X軸モータ56の回転力をX方向の推進力に変換するボールねじ機構を構成しており、ヘッドユニット50Aは、X軸ボールねじからX方向への推進力を受けることにより、X方向に移動する(X軸サーボ機構)。 The X-axis ball screw constitutes a ball screw mechanism that converts the rotational force of the X-axis motor 56 into X-direction propulsion, and the head unit 50A receives the X-direction propulsion from the X-axis ball screw. moves in the X direction (X-axis servo mechanism).
 上記の通り、ヘッドユニット50Aは、Y軸サーボ機構の駆動によりY方向に移動し、X軸サーボ機構の駆動によりX方向に移動する。 As described above, the head unit 50A moves in the Y direction by driving the Y-axis servo mechanism, and moves in the X direction by driving the X-axis servo mechanism.
 図2に示すように、ヘッドユニット50Aは、ヘッドユニット本体61と、吸着ヘッド51と、Z軸モータ52と、カメラ53とを備える。吸着ヘッド51は、Z軸モータ52のモータ軸と連結されている。Z軸モータ52は、ヘッドユニット本体61に固定されている。吸着ヘッド51は、Z軸モータ52の駆動により、ヘッドユニット本体61に対して上下方向に移動可能である。 As shown in FIG. 2, the head unit 50A includes a head unit body 61, a suction head 51, a Z-axis motor 52, and a camera 53. The suction head 51 is connected to the motor shaft of the Z-axis motor 52 . The Z-axis motor 52 is fixed to the head unit body 61 . The suction head 51 can be moved vertically with respect to the head unit body 61 by driving the Z-axis motor 52 .
 吸着ヘッド51は、上下方向に長い形状であり、中心部にはエア供給経路が上下方向に設けられている。真空ポンプ(図示せず)を介してエア供給経路に負圧を供給することによって、吸着ヘッド51の先端(下端)に負圧が印加される。 The suction head 51 has a shape elongated in the vertical direction, and an air supply path is provided in the central part in the vertical direction. A negative pressure is applied to the tip (lower end) of the suction head 51 by supplying negative pressure to the air supply path via a vacuum pump (not shown).
 負圧の印加により、吸着ヘッド51の下端に吸引力が発生する。これにより、吸着ヘッド51がチップCを保持する。また、印加する圧力を正圧に切り替えることができる。正圧の印加により、吸着ヘッド51がチップCの保持を解除する。 A suction force is generated at the lower end of the suction head 51 by applying negative pressure. Thereby, the suction head 51 holds the chip C. As shown in FIG. Also, the applied pressure can be switched to positive pressure. The suction head 51 releases the holding of the chip C by applying the positive pressure.
<カメラの説明>
 カメラ53は、Z軸モータ52と並んで、ヘッドユニット本体61に固定されている。カメラ53は、撮像面を下方に向けており、シートSの上面に貼られたチップCを撮像することができる。撮像した画像を制御部80へ送信し、画像処理部84で処理することにより、制御部80はピックアップ対象となるチップCの存在を認識できる。また、制御部80は、チップC撮像時のカメラ53の位置と、そのときのパレット20の位置に基づき、支持リング23内におけるチップCの位置を検出できる。
<Explanation of camera>
The camera 53 is fixed to the head unit main body 61 along with the Z-axis motor 52 . The camera 53 has its imaging surface facing downward, and can image the chip C attached to the upper surface of the sheet S. As shown in FIG. By transmitting the captured image to the control unit 80 and processing it in the image processing unit 84, the control unit 80 can recognize the presence of the chip C to be picked up. Further, the control unit 80 can detect the position of the chip C within the support ring 23 based on the position of the camera 53 when the chip C is imaged and the position of the pallet 20 at that time.
 さらに、カメラ53は、エジェクタ41及びパレット20を撮像する。図2に示すように、エジェクタ41はカメラ53の下方に位置する。パレット20が、パレット保持テーブル30と共に、パレット受取位置に移動したときに、カメラ53は、エジェクタ41を撮像する。 Furthermore, the camera 53 images the ejector 41 and the pallet 20 . As shown in FIG. 2, the ejector 41 is positioned below the camera 53 . The camera 53 images the ejector 41 when the pallet 20 moves to the pallet receiving position together with the pallet holding table 30 .
 また、パレット保持テーブル30は、パレット受取位置においてパレット20を受け取った後、パレット20を搭載して部品取出作業位置に移動する。このとき、パレット20はカメラ53の下方に位置するため、カメラ53は、パレット20を撮像する。 Also, after receiving the pallet 20 at the pallet receiving position, the pallet holding table 30 loads the pallet 20 and moves to the component extraction work position. Since the pallet 20 is positioned below the camera 53 at this time, the camera 53 takes an image of the pallet 20 .
 エジェクタ41とパレット20を撮像する意図は、後述するように、エジェクタ41とパレット20とを画像認識して、エジェクタ41及びパレット20の種類を判別することである。 The intention of imaging the ejector 41 and the pallet 20 is to perform image recognition of the ejector 41 and the pallet 20 to determine the types of the ejector 41 and the pallet 20, as will be described later.
<制御部の説明>
 図4は、部品実装装置10の制御系を示すブロック図である。制御部80は、部品実装装置10を統括的に制御するコントローラである。
<Description of control part>
FIG. 4 is a block diagram showing the control system of the component mounting apparatus 10. As shown in FIG. The control unit 80 is a controller that centrally controls the component mounting apparatus 10 .
 制御部80には、テーブル駆動モータ33、突上げ部駆動モータ45、X軸モータ56、Y軸モータ59、カメラ53、入力部81、及び出力部(「表示部」の一例)82がそれぞれ電気的に接続されている。部品実装装置10のオペレータは、入力部81を介して制御部80に各種情報や命令の入力を行う。 In the control unit 80, the table drive motor 33, the push-up unit drive motor 45, the X-axis motor 56, the Y-axis motor 59, the camera 53, the input unit 81, and the output unit (an example of the "display unit") 82 are electrically connected. properly connected. An operator of the component mounting apparatus 10 inputs various information and commands to the control section 80 via the input section 81 .
 さらに、制御部80には、各駆動モータに内蔵されるエンコーダ(図示せず)等の位置検出手段から出力信号が入力される。また、エジェクタ41と支持リング23との接近や接触による部品実装装置10の停止など、異常が発生したときに、制御部80は、異常の発生及びその種類等の情報を出力部82に表示して、部品実装装置10の状態をオペレータに報知する。 Further, the controller 80 receives an output signal from a position detection means such as an encoder (not shown) built in each drive motor. Further, when an abnormality such as a stop of the component mounting apparatus 10 due to the approach or contact between the ejector 41 and the support ring 23 occurs, the control unit 80 displays information such as the occurrence of the abnormality and its type on the output unit 82. to notify the operator of the state of the component mounting apparatus 10 .
 制御部80は、軸制御部83、画像処理部84、記憶部85及び演算部86を備える。軸制御部83は、各駆動モータを駆動するドライバであり、演算部86からの指示に従って各駆動モータを動作させる。画像処理部84は、カメラ53から入力される画像データに対し画像処理を施す。 The control unit 80 includes an axis control unit 83 , an image processing unit 84 , a storage unit 85 and a calculation unit 86 . The axis control unit 83 is a driver that drives each drive motor, and operates each drive motor according to instructions from the calculation unit 86 . The image processing unit 84 performs image processing on image data input from the camera 53 .
 記憶部85は、実装プログラム等の各種プログラムや各種データを記憶する。さらに、記憶部85は、パレット20の種類ごとに異なる支持リング23の内径R1、及び、エジェクタ41の種類ごとに異なるエジェクタ41の登録画像及び登録画像に1対1で対応する外径R2を記憶している。 The storage unit 85 stores various programs such as implementation programs and various data. Further, the storage unit 85 stores the inner diameter R1 of the support ring 23, which differs according to the type of the pallet 20, and the registered image of the ejector 41, which differs according to the type of the ejector 41, and the outer diameter R2 corresponding to the registered image on a one-to-one basis. is doing.
 制御部80は、予め定められたプログラムに基づいて各駆動モータ等を制御することにより、コンベア12、パレット保持テーブル30、突上げ部40、吸着部50を動作させる。これにより、吸着部50によるチップCの吸着位置が調整される。また、パレット収納部70に対するパレット20の出し入れ、シートSからのチップCのピックアップ、及び、吸着ヘッド51によるチップCの実装等の一連の動作の制御が、制御部80によって行われる。 The control unit 80 operates the conveyor 12, the pallet holding table 30, the push-up unit 40, and the suction unit 50 by controlling each drive motor and the like based on a predetermined program. Thereby, the suction position of the chip C by the suction unit 50 is adjusted. Further, the control unit 80 controls a series of operations such as loading/unloading the pallet 20 into/from the pallet storage unit 70, picking up the chip C from the sheet S, mounting the chip C by the suction head 51, and the like.
<エジェクタとパレットの接触回避>
 図5は、支持リング23とエジェクタ41との位置関係を示す平面図である。「R1」は支持リング23の内径であり、「R2」はエジェクタ41の外径である。「A1」は支持リング23及び貫通孔22の中心であり、「A2」はエジェクタ41の中心である。また、「A3」はピックアップ対象であるチップCの中心である。図5では、エジェクタ41はチップCの直下に位置し、エジェクタ41の中心A2がチップCの中心A3と重なっている。エジェクタ41は支持リング23の内部を移動する。このため、中心A2は、エジェクタ41の移動により、支持リング23に対して変位する。
<Avoid contact between ejector and pallet>
FIG. 5 is a plan view showing the positional relationship between the support ring 23 and the ejector 41. As shown in FIG. “R1” is the inner diameter of the support ring 23 and “R2” is the outer diameter of the ejector 41 . “A1” is the center of the support ring 23 and the through hole 22 and “A2” is the center of the ejector 41 . Also, "A3" is the center of chip C to be picked up. In FIG. 5, the ejector 41 is positioned directly below the chip C, and the center A2 of the ejector 41 overlaps the center A3 of the chip C. In FIG. The ejector 41 moves inside the support ring 23 . Therefore, the center A2 is displaced with respect to the support ring 23 as the ejector 41 moves.
 ここで、支持リング23の中心A1からエジェクタ41の中心A2までを距離Dと定義した場合、D>(R1-R2)/2となる際に、エジェクタ41は、支持リング23の内壁23aに接触する。一方、D<(R1-R2)/2となる際に、エジェクタ41は、支持リング23の内壁23aに対する接触が回避される。 Here, when the distance from the center A1 of the support ring 23 to the center A2 of the ejector 41 is defined as D, the ejector 41 contacts the inner wall 23a of the support ring 23 when D>(R1−R2)/2. do. On the other hand, when D<(R1-R2)/2, the ejector 41 is prevented from contacting the inner wall 23a of the support ring 23. FIG.
 (R1-R2)/2は、支持リング23の内径R1とエジェクタ41の外径R2の差(R1―R2)を半径に換算した値である。この(R1-R2)は、支持リング23に対するエジェクタ41の接触を判断する際に用いる判断値(閾値)となる。 (R1-R2)/2 is a value obtained by converting the difference (R1-R2) between the inner diameter R1 of the support ring 23 and the outer diameter R2 of the ejector 41 into a radius. This (R1−R2) is a judgment value (threshold value) used when judging whether the ejector 41 is in contact with the support ring 23 .
 この実施形態では、制御部80は、支持リング23の中心A1を基準点としたエジェクタ41の移動を、D<(R1-R2)/2を満たす範囲内とする。これにより、支持リング23に対するエジェクタ41の接触が回避される。 In this embodiment, the control unit 80 sets the movement of the ejector 41 with the center A1 of the support ring 23 as a reference point within a range that satisfies D<(R1-R2)/2. This prevents the ejector 41 from contacting the support ring 23 .
 エジェクタ41には、大きさが異なる複数の種類がある。本実施形態では、エジェクタ41の種類を判別して、その種類ごとにエジェクタ41の外径R2を取得する。 There are multiple types of ejectors 41 with different sizes. In this embodiment, the type of the ejector 41 is determined, and the outer diameter R2 of the ejector 41 is acquired for each type.
 そして、制御部80は、取得した外径R2に基づいて、D<(R1-R2)/2を満たすことを条件としてエジェクタ41の移動を制限する。また、制御部80は、D<(R1-R2)/2を満たすように、エジェクタ41の移動可能範囲を設定してもよい。これにより、使用されるエジェクタ41の種類によらず、支持リング23に対するエジェクタ41の接触を回避することができる。 Then, the control unit 80 restricts the movement of the ejector 41 on the condition that D<(R1-R2)/2 is satisfied based on the acquired outer diameter R2. Further, the control unit 80 may set the movable range of the ejector 41 so as to satisfy D<(R1−R2)/2. Thereby, contact of the ejector 41 with the support ring 23 can be avoided regardless of the type of ejector 41 used.
<外径R2の取得例>
 制御部80の記憶部85には、エジェクタ41に対応する情報が予め記憶されている。図6に、記憶されている情報の一例を示す。
<Example of obtaining outer diameter R2>
Information corresponding to the ejector 41 is stored in advance in the storage unit 85 of the control unit 80 . FIG. 6 shows an example of stored information.
 この実施形態では、3種類のエジェクタ(TYPE_001、002、003)について、「登録画像」「エジェクタ種類」「外径R2」の情報が、記憶部85に記憶されている。 In this embodiment, information of "registered image", "ejector type", and "outer diameter R2" is stored in the storage unit 85 for three types of ejectors (TYPE_001, 002, 003).
 演算部86は、カメラ53により撮像したエジェクタ41の画像データGD2を取得する。そして、演算部86は、記憶部85に記憶された登録画像と画像データGD2とを比較する。その後、演算部86は、画像データGD2と一致する登録画像に対応するエジェクタ41を特定し、そのエジェクタ41の種類及び外径R2を、記憶部85から読み取る。これにより、演算部86は、生産に使用されるエジェクタ41の「種類」と「外径R2」を取得することができる。 The calculation unit 86 acquires image data GD2 of the ejector 41 imaged by the camera 53 . Then, the calculation unit 86 compares the registered image stored in the storage unit 85 with the image data GD2. After that, the calculation unit 86 identifies the ejector 41 corresponding to the registered image that matches the image data GD2, and reads the type and outer diameter R2 of the ejector 41 from the storage unit 85. FIG. Thereby, the calculation unit 86 can acquire the "type" and the "outer diameter R2" of the ejector 41 used for production.
 この実施形態では、演算部86は、支持リング23の種類を判別すると共に、その支持リング23の内径R1を取得する。そして、取得した内径R1に基づいて、エジェクタ41の移動を制限する。これにより、使用される支持リング23の種類によらず、支持リング23に対するエジェクタ41の接触を回避することができる。支持リング23の内径R1は、パレット本体26の上面に付された識別子25をカメラ53で撮像して、パレット20の種類を判別することにより、取得することができる。 In this embodiment, the calculation unit 86 determines the type of the support ring 23 and acquires the inner diameter R1 of the support ring 23. Then, the movement of the ejector 41 is restricted based on the acquired inner diameter R1. Thereby, contact of the ejector 41 with the support ring 23 can be avoided regardless of the type of the support ring 23 used. The inner diameter R1 of the support ring 23 can be obtained by taking an image of the identifier 25 attached to the upper surface of the pallet body 26 with the camera 53 and determining the type of the pallet 20 .
 また、パレット20の種類の判別、及び、支持リング23の内径R1の取得方法については、エジェクタ41での説明を援用してもよい。 Also, the description of the ejector 41 may be used to determine the type of the pallet 20 and the method of obtaining the inner diameter R1 of the support ring 23 .
<動作フローの説明>
 次に、図7のフローチャートを参照しつつ、部品実装装置10がシートSからチップCをピックアップする動作を説明する。スタートの時点において、パレット20を保持したパレット保持テーブル30は、パレット受取位置にあるとする。
<Description of operation flow>
Next, the operation of the component mounting apparatus 10 picking up the chip C from the sheet S will be described with reference to the flowchart of FIG. Assume that the pallet holding table 30 holding the pallet 20 is at the pallet receiving position at the start.
 入力部81は、外部から入力された信号に基づいて制御部80に対して生産開始の指示を与える。制御部80に対して生産開始の指示が与えられると、制御部80は、部品実装装置10に取り付けられているエジェクタ41の外径R2が既に取得されているか否か判断する(S10)。外径R2が取得されている場合(S10:YES)、S20及びS30を省略し、S40(詳細は後述する)に移行する。外径R2が取得されていない場合、カメラ53は、エジェクタ41の上面を撮像して画像データGD2を制御部80に送信する。制御部80は、カメラ53から送信された画像データGD2を取得する(S20)。 The input unit 81 gives an instruction to start production to the control unit 80 based on a signal input from the outside. When an instruction to start production is given to the control unit 80, the control unit 80 determines whether or not the outside diameter R2 of the ejector 41 attached to the component mounting apparatus 10 has already been acquired (S10). If the outer diameter R2 has been obtained (S10: YES), skip S20 and S30 and proceed to S40 (details will be described later). When the outer diameter R2 is not acquired, the camera 53 takes an image of the upper surface of the ejector 41 and transmits image data GD2 to the control section 80. FIG. The control unit 80 acquires the image data GD2 transmitted from the camera 53 (S20).
 制御部80は、画像データGD2と、記憶部85に記憶されている複数の登録画像(図6参照)とを比較して、画像データGD2と一致する登録画像からエジェクタ41の種類を特定する。次いで、制御部80は、特定したエジェクタ41の種類に対応する外径R2を記憶部85から読み出して取得する(S30)。 The control unit 80 compares the image data GD2 with a plurality of registered images (see FIG. 6) stored in the storage unit 85, and identifies the type of the ejector 41 from the registered image that matches the image data GD2. Next, the control unit 80 reads and acquires the outer diameter R2 corresponding to the identified type of the ejector 41 from the storage unit 85 (S30).
 次に、制御部80は、パレット20を保持したパレット保持テーブル30を、部品取出作業位置に移動させる(S40)。このとき、パレット20はカメラ53の下方に位置する。カメラ53はパレット本体26の板面上に形成されている識別子25を撮像して、画像データGD1を制御部80に送信する。制御部80は、画像データGD1に映り込む識別子25を読み取り、識別子25に対応する内径R1を、記憶部85から読み出して取得する(S50)。 Next, the control unit 80 moves the pallet holding table 30 holding the pallet 20 to the component picking work position (S40). At this time, the pallet 20 is positioned below the camera 53 . The camera 53 captures an image of the identifier 25 formed on the plate surface of the pallet body 26 and transmits image data GD1 to the control section 80 . The control unit 80 reads the identifier 25 appearing in the image data GD1, and reads and acquires the inner diameter R1 corresponding to the identifier 25 from the storage unit 85 (S50).
 以下、図8を参照しつつ、S60以降の処理(チップCのピックアップ処理)を説明する。なお、図8は、ウェハWを表面に貼着したシートSと支持リング23との関係を説明するための平面図である。図8に示す白抜きの直線はダイシングラインである。ダイシングラインは格子状を呈しており、ウェハWを複数のチップC(矩形状)に分割している。以下の例では、シートSの矩形領域のうち、支持リング23近傍の矩形領域1~5について、矩形領域1から順にチップCのピックアップ処理を行う場合を説明する。矩形領域1~5のうち、矩形領域1、2、5にはチップCが存在しており、矩形領域3、4にはチップCが存在していない。 The processing after S60 (chip C pickup processing) will be described below with reference to FIG. 8 is a plan view for explaining the relationship between the sheet S with the wafer W adhered to its surface and the support ring 23. FIG. The white straight lines shown in FIG. 8 are dicing lines. The dicing lines are lattice-shaped and divide the wafer W into a plurality of chips C (rectangular). In the following example, a case where chips C are picked up in rectangular areas 1 to 5 in the vicinity of the support ring 23 among the rectangular areas of the sheet S in order from the rectangular area 1 will be described. Among the rectangular areas 1 to 5, the chip C exists in the rectangular areas 1, 2 and 5, and the chip C does not exist in the rectangular areas 3 and 4. FIG.
 制御部80は、ヘッドユニット50AをシートSの上方に移動させ、矩形領域1をカメラ53で撮像する。そして、制御部80は、カメラ53の画像から、矩形領域1において、チップCが認識可能か判断する(S60)。 The control unit 80 moves the head unit 50A above the sheet S, and images the rectangular area 1 with the camera 53 . Then, the control unit 80 determines whether the chip C can be recognized in the rectangular area 1 from the image of the camera 53 (S60).
 チップCが認識可能な場合(S60:YES)、制御部80は、矩形領域1にあるチップCの中心A3の位置を算出し、中心A3の位置に基づいて、距離Dを算出する(S70)。距離Dは、チップCを突上げるために、矩形領域1の下方にエジェクタ41が移動したと仮定したときの、支持リング23の中心A1からエジェクタ41の中心A2までの距離である(図5参照)。 If the chip C is recognizable (S60: YES), the control unit 80 calculates the position of the center A3 of the chip C in the rectangular area 1, and calculates the distance D based on the position of the center A3 (S70). . The distance D is the distance from the center A1 of the support ring 23 to the center A2 of the ejector 41 when it is assumed that the ejector 41 moves below the rectangular area 1 to push up the chip C (see FIG. 5). ).
 次に、制御部80は、距離Dが(R1-R2)/2よりも小さいか否かを判断する(S80)。上記「R1」及び「R2」は、S30及びS50で取得したデータを用いる。 Next, the control unit 80 determines whether or not the distance D is smaller than (R1-R2)/2 (S80). The above "R1" and "R2" use the data acquired in S30 and S50.
 制御部80は、距離Dが(R1-R2)/2より小さい場合、エジェクタ41を矩形領域1の下方に移動しても、支持リング23に対して接触しないと判断する。 When the distance D is smaller than (R1-R2)/2, the control unit 80 determines that even if the ejector 41 is moved below the rectangular area 1, it does not come into contact with the support ring 23.
 制御部80は、エジェクタ41が支持リング23に対して接触しないと判断した場合(S80:NO)、エジェクタ41を矩形領域1の下方に移動させる。具体的には、制御部80は、平面視においてエジェクタ41の中心A2とチップCの中心A3とが重なるように、エジェクタ41を矩形領域1の下方に移動させる(図5参照)。 When the control unit 80 determines that the ejector 41 does not contact the support ring 23 (S80: NO), it moves the ejector 41 below the rectangular area 1 . Specifically, the control unit 80 moves the ejector 41 below the rectangular area 1 so that the center A2 of the ejector 41 and the center A3 of the chip C overlap in plan view (see FIG. 5).
 エジェクタ41は、矩形領域1の下方に移動した後、ピン41aを突出させて、矩形領域1のチップCを下方から突上げる。そして、突上げられたチップCを吸着ヘッド51で吸着することによって、シートSからチップCをピックアップする(S90)。 After moving below the rectangular area 1, the ejector 41 protrudes the pin 41a to push up the chip C in the rectangular area 1 from below. Then, the chip C is picked up from the sheet S by sucking the pushed-up chip C with the suction head 51 (S90).
 その後、吸着ヘッド51は、ピックアップされたチップCを、被実装面M1の所定の位置に実装する。 After that, the suction head 51 mounts the picked up chip C at a predetermined position on the mounting surface M1.
 チップCの実装後、制御部80は、実装プログラムを参照し、他にピックアップすべきチップCがシートS上に存在するか否かを判断する。 After mounting the chip C, the control unit 80 refers to the mounting program and determines whether or not there is another chip C to be picked up on the sheet S.
 ピックアップするべきチップCが存在する場合(S100:YES)、制御部80は次の吸着位置である矩形領域2にカウントアップする(S110)。 When there is a chip C to be picked up (S100: YES), the control unit 80 counts up to rectangular area 2, which is the next suction position (S110).
 そして、制御部80は、ヘッドユニット50Aを移動させ、矩形領域2をカメラ53で撮像する。制御部80は、カメラ53の画像に基づき、矩形領域2において、チップCが認識可能か判断する(S60)。 Then, the control unit 80 moves the head unit 50A and images the rectangular area 2 with the camera 53. The control unit 80 determines whether the chip C can be recognized in the rectangular area 2 based on the image of the camera 53 (S60).
 この例では、矩形領域2にチップCは存在するため、制御部80は、チップCを認識可能と判断する(S60:YES)。制御部80は、矩形領域2にあるチップCの中心A3の位置に基づいて、距離Dを算出する(S70)。そして、距離Dが(R1-R2)/2よりも小さいか否かを判断する(S80)。以下、D<(R1-R2)/2となる場合、及び、D>(R1-R2)/2となる場合について説明する。 In this example, since the chip C exists in the rectangular area 2, the control unit 80 determines that the chip C can be recognized (S60: YES). The controller 80 calculates the distance D based on the position of the center A3 of the chip C in the rectangular area 2 (S70). Then, it is determined whether or not the distance D is smaller than (R1-R2)/2 (S80). In the following, the case of D<(R1-R2)/2 and the case of D>(R1-R2)/2 will be described.
[D<(R1-R2)/2となる場合]
 制御部80は、距離Dが(R1-R2)/2より小さい場合、エジェクタ41を矩形領域2の下方に移動し、矩形領域2のチップCをエジェクタ41により下方から突上げる。
[When D < (R1-R2) / 2]
When the distance D is smaller than (R1-R2)/2, the controller 80 moves the ejector 41 below the rectangular area 2 and pushes up the chip C in the rectangular area 2 from below.
 そして、吸着ヘッド51は、突上げたチップCをピックアップして、被実装面M1の所定の位置に実装する。実装後、制御部80は、次の吸着位置である矩形領域3へカウントアップする(S90~S110)。 Then, the suction head 51 picks up the pushed-up chip C and mounts it at a predetermined position on the mounting surface M1. After mounting, the control unit 80 counts up to rectangular area 3, which is the next suction position (S90 to S110).
 その後、S60に移行し、制御部80は、矩形領域3においてカメラ53の画像からチップCが認識できるか否かを判断する(S60)。 After that, the process proceeds to S60, and the control unit 80 determines whether or not the chip C can be recognized from the image of the camera 53 in the rectangular area 3 (S60).
 この例では、図8に示すように、矩形領域3にチップCは存在せず、認識されないため、S60ではNOと判断される。制御部80は、矩形領域3について、S70へ移行する処理を実行せず、S110に移行して、次の吸着位置である矩形領域4へカウントアップする。 In this example, as shown in FIG. 8, since chip C does not exist in rectangular area 3 and is not recognized, it is determined as NO in S60. The control unit 80 does not execute the process of shifting to S70 for rectangular area 3, but shifts to S110 and counts up to rectangular area 4, which is the next suction position.
 このように、カメラ53の画像からチップCの認識が可能な矩形領域についてのみS70~S100の処理を実行し、ピックアップすべきチップCが無くなれば(S100:NO)フローを終了する。 In this way, the processing of S70 to S100 is executed only for the rectangular area where the chip C can be recognized from the image of the camera 53, and the flow ends when there is no more chip C to be picked up (S100: NO).
[D>(R1-R2)/2となる場合]
 距離Dが(R1-R2)/2よりも大きい場合、制御部80は、矩形領域2の下方にエジェクタ41を移動させると、エジェクタ41が支持リング23に接触すると判断する(S80:YES)。
[When D>(R1-R2)/2]
If the distance D is greater than (R1-R2)/2, the controller 80 determines that the ejector 41 will come into contact with the support ring 23 when moved below the rectangular area 2 (S80: YES).
 この場合、制御部80は、S90~S100の処理を実行することなく、S110に移行して、次の吸着位置である矩形領域3へカウントアップする。 In this case, the control unit 80 shifts to S110 without executing the processing of S90 to S100, and counts up to rectangular area 3, which is the next suction position.
 つまり、制御部80は、矩形領域2にチップCが存在していても、エジェクタ41が矩形領域2の下方に移動すれば支持リング23に接触すると判断した場合、矩形領域2の下方にエジェクタ41を移動させず(当然にチップCもピックアップしない)、次の吸着位置(矩形領域3)へカウントアップする。 In other words, if the controller 80 determines that even if the chip C exists in the rectangular area 2 , if the ejector 41 moves below the rectangular area 2 , it will come into contact with the support ring 23 , the ejector 41 will move below the rectangular area 2 . (Naturally, chip C is not picked up either), and counts up to the next suction position (rectangular area 3).
 このように、制御部80は、エジェクタ41が支持リング23に接触しないと判断した場合にのみ、エジェクタ41をチップCが存在する矩形領域の下方に移動させるため、接触を回避してエジェクタ41の破損を抑制することができる。 In this manner, only when the controller 80 determines that the ejector 41 does not contact the support ring 23 , the ejector 41 moves below the rectangular area where the chip C exists. Damage can be suppressed.
 なお、エジェクタ41が支持リング23に接触すると判断した場合、制御部80は、チップCがある矩形領域へのエジェクタ41の移動を中止して、エジェクタ41を停止させてもよい。また、制御部80は、エジェクタ41が停止中である旨や、チップCのピックアップの可否を出力部82に表示させて、オペレータに報知してもよい。更に、D=(R1-R2)/2となる場合、エジェクタ41が支持リング23に接触すると判断してもよい。この場合の説明は、D>(R1-R2)/2となる場合を援用できる。 When determining that the ejector 41 contacts the support ring 23, the control unit 80 may stop moving the ejector 41 to the rectangular area where the chip C is located and stop the ejector 41. Further, the control unit 80 may notify the operator by displaying on the output unit 82 that the ejector 41 is stopped and whether or not the chip C can be picked up. Further, it may be determined that the ejector 41 contacts the support ring 23 when D=(R1−R2)/2. The description of this case can refer to the case where D>(R1-R2)/2.
<効果説明>
 この構成では、実際に使用している支持リング23の内径R1と、実際に使用しているエジェクタ41の外径R2とに基づいて、エジェクタ41の移動を制限するため、エジェクタ41と支持リング23との接触を回避できる。また、エジェクタ41が支持リング23に接触しない範囲であれば、エジェクタ41によるチップCの突上げが可能になる。このため、シートSからピックアップされるチップ数が必要以上に少なくなることを抑制できる。
<Explanation of effect>
In this configuration, the movement of the ejector 41 is restricted based on the inner diameter R1 of the support ring 23 actually used and the outer diameter R2 of the ejector 41 actually used. can avoid contact with In addition, the chip C can be pushed up by the ejector 41 as long as the ejector 41 does not contact the support ring 23 . Therefore, it is possible to prevent the number of chips picked up from the sheet S from becoming smaller than necessary.
 また、エジェクタ41が交換された場合、制御部80は、交換後のエジェクタ41の上方にカメラ53を移動させて、カメラ53でエジェクタ41を撮像する。これにより、カメラ53で撮像した画像データGD2に基づいて、交換後のエジェクタ41の種類を特定することができる。そのため、エジェクタ41の外径R2のデータを、交換後のデータに更新できる(S20、S30)。以上のことから、エジェクタ41が交換されて外径R2の値が交換の前後で変化しても、交換後の外径R2のデータを用いて、支持リング23に対するエジェクタ41の接触を回避するように、エジェクタ41の移動を制限することができる。 Also, when the ejector 41 is replaced, the control unit 80 moves the camera 53 above the replaced ejector 41 and images the ejector 41 with the camera 53 . Accordingly, based on the image data GD2 captured by the camera 53, the type of the replaced ejector 41 can be specified. Therefore, the data of the outer diameter R2 of the ejector 41 can be updated to the data after replacement (S20, S30). From the above, even if the ejector 41 is replaced and the value of the outer diameter R2 changes before and after the replacement, the ejector 41 can be prevented from contacting the support ring 23 by using the data of the outer diameter R2 after the replacement. Additionally, the movement of the ejector 41 can be restricted.
 この構成では、制御部80の記憶部85は、エジェクタ41の種類に1対1で対応する登録画像及び外径R2を予め記憶している。そして、制御部80は、画像データGD2と登録画像とを比較することによりエジェクタ41の種類を特定して、エジェクタ41の種類に対応した外径R2を取得する。これにより、フローの実行中に外径R2を直接測定しなくても、外径R2を取得することができ、部品ピックアップ装置13のタクトタイムを改善できる。 In this configuration, the storage unit 85 of the control unit 80 preliminarily stores registered images and outer diameters R2 corresponding to the types of the ejector 41 on a one-to-one basis. Then, the control unit 80 identifies the type of the ejector 41 by comparing the image data GD2 and the registered image, and acquires the outer diameter R2 corresponding to the type of the ejector 41 . As a result, the outer diameter R2 can be acquired without directly measuring the outer diameter R2 during execution of the flow, and the tact time of the component pick-up device 13 can be improved.
 また、この構成では、部品ピックアップ装置13はカメラ53を有している。カメラ53は、パレット20及びエジェクタ41の種類を識別するだけでなく、ピックアップ対象となるチップCの位置を確認することにも用いられる(S60、S70)。1つのカメラ53を複数の用途に用いることで、コストの上昇を抑制できる。 Also, in this configuration, the component pick-up device 13 has a camera 53 . The camera 53 is used not only to identify the types of the pallet 20 and the ejector 41, but also to confirm the position of the chip C to be picked up (S60, S70). By using one camera 53 for a plurality of purposes, an increase in cost can be suppressed.
<実施形態2>
 実施形態2の部品ピックアップ装置113の構成を、図9、図10を参照して説明する。実施形態2の構成は、実施形態1とは、エジェクタ141がRFIDタグ(「情報記録部」の一例)47を有し、ヘッドユニット150AがRFIDリーダ(「情報読取部」の一例)60を有する点で相違する。なお、実施形態1と共通する部分については符号を流用すると共に、詳細な説明を省略する。
<Embodiment 2>
The configuration of the component pick-up device 113 of Embodiment 2 will be described with reference to FIGS. 9 and 10. FIG. The configuration of Embodiment 2 differs from that of Embodiment 1 in that the ejector 141 has an RFID tag (an example of an "information recording section") 47, and the head unit 150A has an RFID reader (an example of an "information reading section") 60. They are different in that respect. Note that the same reference numerals as those of the first embodiment are used, and detailed descriptions thereof are omitted.
 RFIDタグ47は、エジェクタ141に固有の識別情報が記録されているICチップを樹脂モールドした小片である。RFIDタグ47は、図9に示すように、エジェクタ141の側面に取り付けられている。RFIDリーダ60は、RF帯の電波をRFIDタグ47に向けて発信し、これに応答してRFIDタグ47が発信する電波を受信する。このとき、RFIDリーダ60は、RFIDタグ47に記録されている識別情報を非接触で読み取ることができる。 The RFID tag 47 is a small piece of resin-molded IC chip in which identification information unique to the ejector 141 is recorded. The RFID tag 47 is attached to the side surface of the ejector 141 as shown in FIG. The RFID reader 60 transmits radio waves in the RF band toward the RFID tag 47 and receives radio waves transmitted by the RFID tag 47 in response. At this time, the RFID reader 60 can read the identification information recorded on the RFID tag 47 without contact.
 RFIDタグ47に記録されているエジェクタ141の識別情報は、エジェクタ種類及び外径R2である。エジェクタ141に取り付けられたRFIDタグ47が発信するA信号~C信号と、エジェクタ種類及びエジェクタ外径との対応関係の例を図10に示す。例えば、RFIDリーダ60がC信号を受信すると、RFIDリーダ60は、識別情報として、エジェクタ種類「TYPE_003」及び外径R2の値「25mm」を読み取る。RFIDリーダ60は、読み取った識別情報を制御部80に送信し、制御部80はエジェクタ種類(TYPE_003)及び外径R2(25mm)を取得する。 The identification information of the ejector 141 recorded in the RFID tag 47 is the ejector type and outer diameter R2. FIG. 10 shows an example of the correspondence relationship between the signals A to C transmitted by the RFID tag 47 attached to the ejector 141, the type of ejector, and the outer diameter of the ejector. For example, when the RFID reader 60 receives the C signal, the RFID reader 60 reads the ejector type "TYPE_003" and the outer diameter R2 value "25 mm" as identification information. The RFID reader 60 transmits the read identification information to the control unit 80, and the control unit 80 acquires the ejector type (TYPE_003) and outer diameter R2 (25 mm).
 この構成では、RFIDリーダ60は、非接触でエジェクタ141の識別情報を読み取ることができる。また、カメラ53では撮像できない位置に、エジェクタ141やRFIDタグ47がある場合でも、制御部80はエジェクタ141の識別情報を取得することができる。例えば、図9のように、エジェクタ141とRFIDリーダ60との間にシートSやチップCがある場合、カメラ53はエジェクタ141を撮像することができない。しかし、RFIDリーダ60を用いると、RFIDタグ47からエジェクタ141の識別情報を取得して、制御部80に送信することができる。 With this configuration, the RFID reader 60 can read the identification information of the ejector 141 without contact. Also, even if the ejector 141 and the RFID tag 47 are located at a position that cannot be imaged by the camera 53, the control unit 80 can acquire the identification information of the ejector 141. FIG. For example, as shown in FIG. 9, when there is a sheet S or a chip C between the ejector 141 and the RFID reader 60, the camera 53 cannot image the ejector 141. FIG. However, by using the RFID reader 60 , it is possible to acquire the identification information of the ejector 141 from the RFID tag 47 and transmit it to the control section 80 .
<他の実施形態>
 (1)上述した実施形態1では、エジェクタ41の画像データGD2と、登録画像とを比較して、エジェクタ41の種類を特定した。しかし、画像データGD2からエジェクタ41の種類を特定する手段はこれに限られない。例えば、図11に示すように、エジェクタ41は、ピン41aと重畳しない位置に、識別子46を有していてもよい。なお、図12は、記憶部85に記憶されているエジェクタ41の種類及び外径R2と、識別子46との対応関係である。
<Other embodiments>
(1) In the first embodiment described above, the type of the ejector 41 is specified by comparing the image data GD2 of the ejector 41 and the registered image. However, means for identifying the type of ejector 41 from the image data GD2 is not limited to this. For example, as shown in FIG. 11, the ejector 41 may have an identifier 46 at a position that does not overlap the pin 41a. FIG. 12 shows the correspondence between the type and outer diameter R2 of the ejector 41 stored in the storage unit 85 and the identifier 46. As shown in FIG.
 識別子46にはエジェクタ41の種類が記録されている。図11の例では、識別子46として二次元コードを用いているが、識別子46は、バーコードや所定の記号等、カメラ53を介して情報の読み取りが可能な様々な識別子を適用できる。演算部86は、画像データGD2に写り込んだ識別子46からエジェクタ41の種類を特定し、記憶部85からエジェクタ41の種類に対応する外径R2を取得する。 The type of the ejector 41 is recorded in the identifier 46. Although a two-dimensional code is used as the identifier 46 in the example of FIG. The calculation unit 86 identifies the type of the ejector 41 from the identifier 46 reflected in the image data GD2, and acquires the outer diameter R2 corresponding to the type of the ejector 41 from the storage unit 85. FIG.
 この場合、記憶部85に予め記憶させる情報は、図12に示すように、エジェクタ41の種類と外径R2の値(どちらも文字情報)であり、実施形態1のような、エジェクタ41の登録画像(画像情報)は不要である。文字情報は、一般的に、画像情報と比べて情報量が小さい。そのため、記憶部85の記憶容量が小さくても、エジェクタ41の情報を文字情報として記憶させることができる。 In this case, the information to be pre-stored in the storage unit 85 is, as shown in FIG. Images (image information) are not required. Character information generally has a smaller amount of information than image information. Therefore, even if the storage capacity of the storage unit 85 is small, the information of the ejector 41 can be stored as character information.
 (2)識別子46に記録されている情報は、エジェクタ41の種類に加え、又はエジェクタ41の種類に代えて、外径R2であってもよい。演算部86は、識別子46を読み取ることで、外径R2を取得する。この場合、記憶部85は、エジェクタ41の種類や外径R2の値を記憶していなくてもよい。 (2) The information recorded in the identifier 46 may be the outer diameter R2 in addition to the type of the ejector 41 or instead of the type of the ejector 41. The calculation unit 86 acquires the outer diameter R2 by reading the identifier 46 . In this case, the storage unit 85 may not store the type of the ejector 41 and the value of the outer diameter R2.
 (3)画像データGD2から、外径R2を直接算出してもよい。図13は、エジェクタ41の上面が、全てカメラ53の視野範囲53a内に含まれる場合を模式的に表している。この場合、視野範囲53aの内側を写した画像データGD2において、エジェクタ41の外縁41bを画像処理部84で認識することで、外径R2を算出できる。 (3) The outer diameter R2 may be directly calculated from the image data GD2. FIG. 13 schematically shows a case where the upper surface of the ejector 41 is entirely within the field of view 53a of the camera 53. As shown in FIG. In this case, the outer diameter R2 can be calculated by recognizing the outer edge 41b of the ejector 41 with the image processing unit 84 in the image data GD2 showing the inside of the visual field range 53a.
 また、図14のように、外径R2が大きいエジェクタ41では、エジェクタ41の上面が視野範囲53aの内側に入りきらない場合がある。この場合、円形の外縁41b上における0°の位置と、180°の位置のそれぞれの画像データGD2から、外縁41b上の点B1、B2を認識し、2点間の距離を求めることで、外径R2を算出できる。 Also, as shown in FIG. 14, in the ejector 41 having a large outer diameter R2, the upper surface of the ejector 41 may not fit inside the visual field range 53a. In this case, points B1 and B2 on the outer edge 41b are recognized from the respective image data GD2 at the 0° position and the 180° position on the circular outer edge 41b, and the distance between the two points is obtained. A diameter R2 can be calculated.
 画像データGD2から外径R2を直接算出する場合、画像データGD2と登録画像との比較や、識別子46の読み取りを行わずに、エジェクタ41の外径R2を取得することができる。これにより、エジェクタ41に1対1で対応する登録画像が記憶部85にない場合や、識別子46の読み取りに失敗した場合でも、画像データGD2に基づいて外径R2を取得することができる。 When the outer diameter R2 is directly calculated from the image data GD2, the outer diameter R2 of the ejector 41 can be obtained without comparing the image data GD2 with the registered image or reading the identifier 46. As a result, even if there is no registered image corresponding to the ejector 41 on a one-to-one basis in the storage unit 85, or if the reading of the identifier 46 fails, the outer diameter R2 can be obtained based on the image data GD2.
 (4)部品実装装置10は、吸着ヘッド51とは別に、チップCを被実装面M1に実装する実装ヘッドを有していてもよい。この場合、吸着ヘッド51はパレット20からチップCをピックアップした後、実装ヘッドにチップCを受け渡す。 (4) The component mounting apparatus 10 may have a mounting head for mounting the chip C on the mounting surface M1 in addition to the suction head 51 . In this case, the suction head 51 picks up the chip C from the pallet 20 and then transfers the chip C to the mounting head.
 (5)上述した実施形態1では、演算部86は、カメラ53で撮像したパレット20の識別子25に基づいて、内径R1を取得した。これに限らず、他の手段により内径R1を取得しても構わない。例えば、パレット20がRFIDタグを有しており、そのRFIDタグをRFIDリーダで読み取ることで、演算部86が内径R1を取得する構成であってもよい。 (5) In the first embodiment described above, the calculation unit 86 acquires the inner diameter R1 based on the identifier 25 of the pallet 20 captured by the camera 53 . The inner diameter R1 may be obtained by other means as well. For example, the pallet 20 may have an RFID tag, and by reading the RFID tag with an RFID reader, the computing unit 86 may acquire the inner diameter R1.
 (6)上述した実施形態1では、カメラ53を用いて、識別子25の画像データGD1と、エジェクタ41の画像データGD2をそれぞれ取得した。しかし、識別子25を撮像するカメラとエジェクタ41を撮像するカメラが異なるカメラであってもよい。 (6) In the first embodiment described above, the image data GD1 of the identifier 25 and the image data GD2 of the ejector 41 are obtained using the camera 53, respectively. However, the camera that images the identifier 25 and the camera that images the ejector 41 may be different cameras.
 (7)上述した実施形態2において、RFIDタグ47が、エジェクタ41の側面に取り付けられている場合を例示したが、エジェクタ41の上面や下面に取り付けられていてもよい。また、エジェクタ41の内部に埋め込まれていてもよい。 (7) In the second embodiment described above, the case where the RFID tag 47 is attached to the side surface of the ejector 41 is illustrated, but it may be attached to the upper surface or the lower surface of the ejector 41 . Alternatively, it may be embedded inside the ejector 41 .
 (8)上述した実施形態2において、RFIDタグ47に記録されている識別情報は、エジェクタ141の「エジェクタ種類」のみであってもよい。この場合、記憶部85には図10に示す「エジェクタ種類」及び「外径R2」が記憶されていて、演算部86は、エジェクタ141の種類に1対1で対応する外径R2の値を、記憶部85から読み出して取得する。 (8) In the second embodiment described above, the identification information recorded in the RFID tag 47 may be only the "ejector type" of the ejector 141. In this case, the storage unit 85 stores the "ejector type" and "outer diameter R2" shown in FIG. , is read from the storage unit 85 and acquired.
 (9)上述した実施形態1、2では、制御部80が、識別子25の画像データGD1を画像認識してパレット20の種類を識別した。パレット20が1種類の場合、画像データGD1を画像認識する処理は省いてもよい。この場合、記憶部85に対して支持リング23の内径R1の寸法を予め記憶しておき、そのデータを用いて、エジェクタ41の移動範囲を制限するとよい。 (9) In the first and second embodiments described above, the control unit 80 identifies the type of the palette 20 by performing image recognition on the image data GD1 of the identifier 25 . When there is one type of palette 20, the process of recognizing the image data GD1 may be omitted. In this case, the dimension of the inner diameter R1 of the support ring 23 may be stored in advance in the storage unit 85, and the moving range of the ejector 41 may be restricted using the data.
 また、使用されるパレット20が複数種類である場合、実施形態1、2で説明したように、カメラ53等の取得部を用いて、パレット20の識別情報又は画像を取得し、取得した識別情報又は画像から種類を判別して、支持リング23の内径R1の寸法を取得するとよい。そして、取得した内径R1を用いて、エジェクタ41の移動範囲を制限するとよい。 In addition, when a plurality of types of pallets 20 are used, as described in Embodiments 1 and 2, an acquisition unit such as the camera 53 is used to acquire identification information or an image of the pallet 20, and the acquired identification information Alternatively, the size of the inner diameter R1 of the support ring 23 may be obtained by determining the type from the image. Then, the movement range of the ejector 41 may be restricted using the acquired inner diameter R1.
 (10)上述した実施形態1、2において、部品ピックアップ装置13、113が、シートSが張られたパレット20を保持し、シートSからチップCをピックアップする態様について説明した。パレット20は、パレット本体26に対して支持リング23が組み付けられた構造をしている。 (10) In the first and second embodiments described above, the component pick-up devices 13 and 113 hold the pallet 20 on which the sheet S is stretched, and pick up the chips C from the sheet S. The pallet 20 has a structure in which a support ring 23 is attached to a pallet body 26. - 特許庁
 本開示における部品ピックアップ装置は、パレット20を保持する態様に限定されない。例えば、部品ピックアップ装置は、シートSが張られた支持リング23を直接保持し、そのシートSからチップCをピックアップする構造をしていてもよい。言い換えると、パレット20(パレット本体26)を廃し、支持リング23を直接部品ピックアップ装置に組み付けてもよい。このような態様の部品ピックアップ装置は、支持リング23を直接保持する機構を有する。支持リング23を直接保持する機構については、既に公知の機構を援用できる。 The component pick-up device in the present disclosure is not limited to holding the pallet 20. For example, the component pick-up device may have a structure that directly holds the support ring 23 on which the sheet S is stretched and picks up the chip C from the sheet S. In other words, the pallet 20 (pallet body 26) may be eliminated and the support ring 23 may be directly assembled to the component pick-up device. A component pick-up device of this type has a mechanism for directly holding the support ring 23 . As for the mechanism for directly holding the support ring 23, a known mechanism can be used.
 更に、上述したパレット20においては、パレット本体26に対して支持リング23が組み付けられた構造をしている例について説明した。しかしながら、支持リング23は、連結部材を介してパレット本体26に組み付けられてもよい。この場合、パレット20は、下から上に向かって、パレット本体26、連結部材及び支持リング23が順に連結された構成になる。 Furthermore, in the pallet 20 described above, an example in which the support ring 23 is attached to the pallet body 26 has been described. However, the support ring 23 may be assembled to the pallet body 26 via connecting members. In this case, the pallet 20 has a configuration in which the pallet body 26, the connecting member, and the support ring 23 are connected in order from bottom to top.
 この連結部材には、係止部21が設けられていてもよい。そして、実施形態1の<パレットの説明>の内容と同じく、支持リング23を取り囲むように複数の係止部21が設けられ、それら複数の係止部21にエキスパンドリング24が固定される。これにより、エキスパンドリング24は、連結部材(係止部21)によりパレット本体26の上面の近傍に固定されることになる。そして、シートSに貼り付いたチップCは、連結部材(係止部21)を介して、それぞれ間隔が拡張される。 A locking portion 21 may be provided on this connecting member. A plurality of locking portions 21 are provided so as to surround the support ring 23 , and the expand ring 24 is fixed to the plurality of locking portions 21 , similarly to the contents of <Description of the Pallet> of the first embodiment. As a result, the expand ring 24 is fixed near the upper surface of the pallet body 26 by the connecting member (locking portion 21). The distance between the chips C attached to the sheet S is increased through the connecting member (locking portion 21).
 また、これまで説明してきた支持リング23は、パレット20の構成要素の1つであった。しかしながら、支持リング23は、部品ピックアップ装置の構成要素であってもよい。この場合、部品ピックアップ装置は、例えば支持リング23に向かってエキスパンドリング24を搬送する搬送機構と、搬送機構に搬送されたエキスパンドリング24を保持する保持機構と、保持機構に保持されたエキスパンドリング24によりシートSを引き伸ばす引き伸ばし機構と、を有していてもよい。別の観点では、部品ピックアップ装置はオートエキスパンド機構を有していてもよい、と言うことができる。 Also, the support ring 23 described so far is one of the constituent elements of the pallet 20 . However, the support ring 23 may also be a component of the component pick-up device. In this case, the component pickup device includes, for example, a transport mechanism that transports the expand ring 24 toward the support ring 23, a holding mechanism that holds the expand ring 24 transported by the transport mechanism, and the expand ring 24 held by the holding mechanism. and a stretching mechanism for stretching the sheet S by. From another point of view, it can be said that the component pick-up device may have an auto-expanding mechanism.
 (11)上述した実施形態では、取得部としてカメラ53やRFIDリーダ60を例示した。取得部として、例えばレーザ光を用いて対象物(エジェクタ41、パレット20等)の形状や寸法を取得するレーザ変位計を用いてもよい。 (11) In the above-described embodiments, the camera 53 and the RFID reader 60 are exemplified as the acquisition unit. As the acquisition unit, for example, a laser displacement gauge that acquires the shape and dimensions of an object (ejector 41, pallet 20, etc.) using laser light may be used.
 (12)上述した実施形態では、記憶部85に記憶されているエジェクタ41の情報として、外径R2(平面視した場合のエジェクタ41の直径)を用いた。エジェクタ41の情報としては、外径R2に加えて、高さ方向(Z方向)の寸法を含むデータであってもよい。 (12) In the above-described embodiment, the outer diameter R2 (the diameter of the ejector 41 when viewed from above) is used as the information about the ejector 41 stored in the storage unit 85 . The information of the ejector 41 may be data including the dimension in the height direction (Z direction) in addition to the outer diameter R2.
 (13)上述した実施形態では、支持リング23は、パレット本体26に対して上下方向に移動可能に組み付けられていた。支持リング23は、パレット本体26に対して固定されていてもよい。例えば、支持リング23は、螺子止めや嵌合によって、パレット本体26に対して固定されていてもよい。支持リング23は、任意の方法によって、パレット本体の上面から上方に突出した状態で固定される。 (13) In the above-described embodiment, the support ring 23 is attached to the pallet body 26 so as to be vertically movable. The support ring 23 may be fixed relative to the pallet body 26 . For example, the support ring 23 may be fixed to the pallet body 26 by screwing or fitting. The support ring 23 is fixed by any method so as to protrude upward from the upper surface of the pallet body.
 部品ピックアップ装置13は、エキスパンドリング24をパレット本体26に対して上下方向に移動させる機構を有していてもよい。この場合、エキスパンド処理は以下のように行われる。まず、シートSが取り付けられたエキスパンドリング24を、支持リング23の上方に配し、パレット本体26に向けて下降させる。シートSが支持リング23の上面の開口に接触した後もさらにエキスパンドリング24を下降させてパレット本体26に近付け、可倒式の係止部21で係止する。このとき、シートSは支持リング23の上面の開口縁から斜め下向きに引っ張られて引き伸ばされ、エキスパンド処理が行われる。 The component pickup device 13 may have a mechanism for vertically moving the expand ring 24 with respect to the pallet body 26 . In this case, the expansion process is performed as follows. First, the expand ring 24 to which the sheet S is attached is placed above the support ring 23 and lowered toward the pallet body 26 . After the sheet S contacts the opening on the upper surface of the support ring 23, the expand ring 24 is further lowered to approach the pallet body 26 and is locked by the retractable locking portion 21. - 特許庁At this time, the sheet S is stretched by being pulled obliquely downward from the opening edge of the upper surface of the support ring 23, and the expansion process is performed.
10:部品実装装置
13、113:部品ピックアップ装置
22:貫通孔
23:支持リング
41、141:エジェクタ
51:吸着ヘッド
53:カメラ(「取得部」の一例)
80:制御部
C:チップ(「部品」の一例)
S:シート(部品装着シート)
R1:内径(「貫通孔の寸法」の一例)
R2:外径(「エジェクタの寸法」の一例)
10: Component mounting device 13, 113: Component pick-up device 22: Through hole 23: Support ring 41, 141: Ejector 51: Suction head 53: Camera (an example of “acquisition unit”)
80: Control unit C: Chip (an example of "component")
S: Seat (component mounting seat)
R1: inner diameter (an example of "dimension of through-hole")
R2: Outer diameter (an example of "ejector dimensions")

Claims (10)

  1.  上下に貫通する貫通孔を有する支持リングを位置決めし、前記貫通孔を覆うように前記支持リングの上面側に張られた部品装着シートから部品をピックアップする部品ピックアップ装置であって、
     前記支持リングの前記貫通孔内を移動して、前記部品装着シートの下方から前記部品を突上げるエジェクタと、
     前記エジェクタにより突上げられた前記部品を吸着してピックアップする吸着ヘッドと、
     前記エジェクタの情報又は画像を取得する取得部と、
     制御部と、
    を含み、
     前記制御部は、前記取得部の取得する前記エジェクタの情報又は画像に基づいて前記エジェクタの寸法を取得し、
     取得した前記エジェクタの寸法と、前記貫通孔の寸法とに基づいて、前記支持リングに対する前記エジェクタの接触を回避するように、前記貫通孔内における前記エジェクタの移動を制限する、部品ピックアップ装置。
    A component pick-up device for positioning a support ring having a through hole penetrating vertically and picking up a component from a component mounting sheet stretched on the upper surface side of the support ring so as to cover the through hole,
    an ejector that moves within the through hole of the support ring and pushes the component from below the component mounting sheet;
    a suction head that sucks and picks up the component pushed up by the ejector;
    an acquisition unit that acquires information or an image of the ejector;
    a control unit;
    including
    The control unit acquires dimensions of the ejector based on information or an image of the ejector acquired by the acquisition unit,
    A component pick-up device for limiting movement of the ejector within the through-hole so as to avoid contact of the ejector with the support ring based on the obtained dimensions of the ejector and the through-hole.
  2.  請求項1に記載の部品ピックアップ装置であって、
     前記取得部は、カメラであり、
     前記制御部は、前記カメラが撮像した前記エジェクタの画像から前記エジェクタの種類を特定し、特定した種類に基づいて、前記エジェクタの寸法を取得する、部品ピックアップ装置。
    The component pick-up device according to claim 1,
    The acquisition unit is a camera,
    The component pick-up device, wherein the control unit specifies the type of the ejector from the image of the ejector captured by the camera, and acquires the dimensions of the ejector based on the specified type.
  3.  請求項1に記載の部品ピックアップ装置であって、
     前記取得部は、前記エジェクタに設けられた情報記録部から前記エジェクタの識別情報を読み取る情報読取部であり、
     前記制御部は、前記情報読取部により読み取った識別情報に基づいて、前記エジェクタの寸法を取得する、部品ピックアップ装置。
    The component pick-up device according to claim 1,
    The acquisition unit is an information reading unit that reads identification information of the ejector from an information recording unit provided in the ejector,
    The component pick-up device, wherein the control unit acquires the dimensions of the ejector based on the identification information read by the information reading unit.
  4.  請求項1から請求項3のいずれか一項に記載の部品ピックアップ装置であって、
     前記制御部は、前記エジェクタの種類又は識別情報に対応する前記エジェクタの寸法のデータを予め記憶しており、前記種類又は前記識別情報を、記憶したデータに参照して前記エジェクタの寸法を取得する、部品ピックアップ装置。
    The component pick-up device according to any one of claims 1 to 3,
    The control unit pre-stores data on the size of the ejector corresponding to the type or identification information of the ejector, and obtains the size of the ejector by referring to the stored data for the type or the identification information. , parts pick-up device.
  5.  請求項1に記載の部品ピックアップ装置であって、
     前記取得部は、前記エジェクタを撮像するカメラであり、
     前記制御部は、前記カメラにより撮像した前記エジェクタの画像から前記エジェクタの寸法を直接算出する、部品ピックアップ装置。
    The component pick-up device according to claim 1,
    The acquisition unit is a camera that captures an image of the ejector,
    The component pick-up device, wherein the control unit directly calculates the dimensions of the ejector from the image of the ejector captured by the camera.
  6.  請求項1から請求項5のいずれか一項に記載の部品ピックアップ装置であって、
     前記制御部は、前記支持リングの寸法と、前記エジェクタの寸法とに基づいて、前記エジェクタの移動可能範囲を設定する、部品ピックアップ装置。
    The component pick-up device according to any one of claims 1 to 5,
    The component pick-up device, wherein the control section sets the movable range of the ejector based on the dimensions of the support ring and the dimensions of the ejector.
  7.  請求項1から請求項6のいずれか一項に記載の部品ピックアップ装置であって、
     前記支持リングの前記貫通孔及び前記エジェクタは、ともに平面視にて円形であり、
     前記制御部は、
     前記貫通孔の中心から前記エジェクタの中心までの距離が、前記貫通孔の内径の半分から前記エジェクタの外径の半分を減じた寸法より小さい場合、前記支持リングに対して前記エジェクタは接触しないと判断し、
     前記貫通孔の中心から前記エジェクタの中心までの距離が、前記貫通孔の内径の半分から前記エジェクタの外径の半分を減じた寸法より大きい場合、前記支持リングに対して前記エジェクタは接触すると判断する、部品ピックアップ装置。
    The component pick-up device according to any one of claims 1 to 6,
    both the through hole of the support ring and the ejector are circular in plan view,
    The control unit
    When the distance from the center of the through-hole to the center of the ejector is smaller than half the inner diameter of the through-hole minus half the outer diameter of the ejector, the ejector does not come into contact with the support ring. judge,
    If the distance from the center of the through-hole to the center of the ejector is larger than half the inner diameter of the through-hole minus half the outer diameter of the ejector, it is determined that the ejector is in contact with the support ring. , parts pick-up device.
  8.  請求項1から請求項7のいずれか一項に記載の部品ピックアップ装置であって、
     前記制御部は、前記支持リングと前記エジェクタが接触すると判断したときは、前記エジェクタの移動を停止する、部品ピックアップ装置。
    The component pick-up device according to any one of claims 1 to 7,
    The component pick-up device, wherein the control unit stops movement of the ejector when it is determined that the support ring and the ejector come into contact with each other.
  9.  請求項8に記載の部品ピックアップ装置であって、
     前記制御部は表示部を有し、
     前記表示部は、前記エジェクタが停止中であるか否か、及び、前記部品のピックアップの可否に関する情報を表示する、部品ピックアップ装置。
    The component pick-up device according to claim 8,
    The control unit has a display unit,
    The component pick-up device, wherein the display unit displays whether or not the ejector is stopped and information regarding whether or not the component can be picked up.
  10.  請求項1から請求項9のいずれか一項に記載の部品ピックアップ装置を含む、部品実装装置。 A component mounting apparatus including the component pick-up device according to any one of claims 1 to 9.
PCT/JP2021/021405 2021-06-04 2021-06-04 Component pickup device, component mounting device WO2022254703A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2023525321A JPWO2022254703A1 (en) 2021-06-04 2021-06-04
PCT/JP2021/021405 WO2022254703A1 (en) 2021-06-04 2021-06-04 Component pickup device, component mounting device
DE112021007233.1T DE112021007233T5 (en) 2021-06-04 2021-06-04 Component holding device, placement machine
KR1020237035021A KR20230156402A (en) 2021-06-04 2021-06-04 Component pick-up device, component placement device
CN202180098046.XA CN117581344A (en) 2021-06-04 2021-06-04 Component pickup device and component mounting device
TW110144365A TWI793882B (en) 2021-06-04 2021-11-29 Parts picking device, parts mounting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/021405 WO2022254703A1 (en) 2021-06-04 2021-06-04 Component pickup device, component mounting device

Publications (1)

Publication Number Publication Date
WO2022254703A1 true WO2022254703A1 (en) 2022-12-08

Family

ID=84322990

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/021405 WO2022254703A1 (en) 2021-06-04 2021-06-04 Component pickup device, component mounting device

Country Status (6)

Country Link
JP (1) JPWO2022254703A1 (en)
KR (1) KR20230156402A (en)
CN (1) CN117581344A (en)
DE (1) DE112021007233T5 (en)
TW (1) TWI793882B (en)
WO (1) WO2022254703A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001230301A (en) * 2000-02-17 2001-08-24 Matsushita Electric Ind Co Ltd Apparatus for picking up semiconductor chip
JP2012222054A (en) * 2011-04-05 2012-11-12 Fuji Mach Mfg Co Ltd Die position determination system
WO2015059749A1 (en) * 2013-10-21 2015-04-30 富士機械製造株式会社 Pickup device and push-up pot

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005251986A (en) * 2004-03-04 2005-09-15 Disco Abrasive Syst Ltd Wafer separation detecting method and apparatus thereof
JP5730537B2 (en) 2010-11-03 2015-06-10 富士機械製造株式会社 Die supply system
JP5936847B2 (en) * 2011-11-18 2016-06-22 富士機械製造株式会社 Wafer-related data management method and wafer-related data creation apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001230301A (en) * 2000-02-17 2001-08-24 Matsushita Electric Ind Co Ltd Apparatus for picking up semiconductor chip
JP2012222054A (en) * 2011-04-05 2012-11-12 Fuji Mach Mfg Co Ltd Die position determination system
WO2015059749A1 (en) * 2013-10-21 2015-04-30 富士機械製造株式会社 Pickup device and push-up pot

Also Published As

Publication number Publication date
KR20230156402A (en) 2023-11-14
TW202249586A (en) 2022-12-16
DE112021007233T5 (en) 2024-01-11
TWI793882B (en) 2023-02-21
JPWO2022254703A1 (en) 2022-12-08
CN117581344A (en) 2024-02-20

Similar Documents

Publication Publication Date Title
US8561664B2 (en) Die bonder, pickup method, and pickup device
KR101332982B1 (en) Pickup method for die bonder and die bonder
TWI702660B (en) Die bonding device and manufacturing method of semiconductor device
US7306695B2 (en) Apparatus and method for picking up semiconductor chip
JP6653273B2 (en) Semiconductor manufacturing apparatus and semiconductor device manufacturing method
JP5892669B1 (en) Classification device
US20120210554A1 (en) Apparatus and method for picking up and mounting bare dies
JP2014060249A (en) Die bonder and die position recognition method
WO2017130361A1 (en) Die pickup device
WO2019163108A1 (en) Die pickup method and device
CN110729210A (en) Semiconductor manufacturing apparatus and method for manufacturing semiconductor device
JP7102305B2 (en) Manufacturing method of die bonding equipment and semiconductor equipment
KR20190042445A (en) Manufacturing apparatus of semiconductor and manufacturing method of semiconductor device
JP5984193B2 (en) Expanding ring inner diameter measuring system and push-up motion interference avoidance system of die feeding device
JP3993114B2 (en) Die bonding method and apparatus
WO2022254703A1 (en) Component pickup device, component mounting device
JP3205044U (en) Pickup device
KR20190042419A (en) Semiconductor manufacturing device and manufacturing method of semiconductor device
US4913335A (en) Method and apparatus for die bonding
JP2018063967A (en) Pickup method of chip
CN111739818B (en) Semiconductor manufacturing apparatus and method for manufacturing semiconductor device
US20230120615A1 (en) Semiconductor Manufacturing Apparatus and Manufacturing Method for Semiconductor Device
WO2023209950A1 (en) Component push-up device and component mounting device
JP2001230301A (en) Apparatus for picking up semiconductor chip
JP2022125244A (en) Die bonding apparatus and method for manufacturing semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21944198

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023525321

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20237035021

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237035021

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 112021007233

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 202180098046.X

Country of ref document: CN

122 Ep: pct application non-entry in european phase

Ref document number: 21944198

Country of ref document: EP

Kind code of ref document: A1