WO2022253246A1 - 激光投影设备及其控制方法 - Google Patents

激光投影设备及其控制方法 Download PDF

Info

Publication number
WO2022253246A1
WO2022253246A1 PCT/CN2022/096487 CN2022096487W WO2022253246A1 WO 2022253246 A1 WO2022253246 A1 WO 2022253246A1 CN 2022096487 W CN2022096487 W CN 2022096487W WO 2022253246 A1 WO2022253246 A1 WO 2022253246A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
fan
temperature
light source
color
Prior art date
Application number
PCT/CN2022/096487
Other languages
English (en)
French (fr)
Inventor
崔雷
邢哲
Original Assignee
青岛海信激光显示股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海信激光显示股份有限公司 filed Critical 青岛海信激光显示股份有限公司
Priority to CN202280037927.5A priority Critical patent/CN117377907A/zh
Publication of WO2022253246A1 publication Critical patent/WO2022253246A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/16Cooling; Preventing overheating
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2013Plural light sources
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/206Control of light source other than position or intensity

Definitions

  • the present disclosure relates to the technical field of laser projection, in particular to a laser projection device and a control method thereof.
  • the laser projection system includes a projection screen and laser projection equipment.
  • the laser projection equipment can project pictures on the projection screen to realize functions such as video playback.
  • the current laser projection equipment includes: a light source assembly, an optical machine and a lens.
  • the light source assembly is used to provide a high-intensity laser illumination beam to the optical machine; the optical machine is used to modulate the image signal of the laser illumination beam to form a projection beam.
  • the projection light beam formed after the optical machine modulation enters the lens; the lens is used to project the projection light beam onto the projection screen.
  • a laser projection device including: a light source assembly, a first temperature sensor and a controller; the light source assembly includes a laser array of at least two colors, and is configured to provide an illumination beam; the first temperature sensor is It is configured to detect the ambient temperature of the laser projection device; the controller is coupled to the light source assembly and the first temperature sensor, and is configured to: if the ambient temperature is higher than the first threshold temperature, based on the ambient temperature and at least one color The reduction of the working current of the laser array is positively correlated, and the working current of the laser array of at least one color is lowered; if the ambient temperature is lower than the second threshold temperature, based on the ambient temperature and the working of the laser array of at least one color The increase amount of the current is negatively correlated, and the working current of the laser array of at least one color is increased; the second threshold temperature is lower than the first threshold temperature.
  • Some embodiments of the present disclosure provide a method for controlling a laser projection device, including: acquiring the ambient temperature of the laser projection device; if the ambient temperature is higher than a first threshold temperature, based on the ambient temperature and the operation of the laser array of at least one color The lowering of the current is positively correlated, and the working current of the laser array of at least one color is lowered; if the ambient temperature is lower than the second threshold temperature, the working current of the laser array based on the ambient temperature and at least one color is increased. The amount is negatively correlated, and the working current of the laser array of at least one color is increased; the second threshold temperature is lower than the first threshold temperature.
  • a laser projection device including: a light source assembly, including a laser array of at least two colors, and configured to provide an illumination beam; a first temperature sensor, configured to detect whether the laser projection device is located The ambient temperature; the controller is configured to: if the ambient temperature is higher than the first threshold temperature, reduce the operating current of the laser array of at least one color by the first value; if the ambient temperature is lower than the second threshold temperature , increasing the operating current of the laser array of the at least one color by a second value; the second threshold temperature is lower than the first threshold temperature.
  • a laser projection device including: a casing having a first air inlet; a light source assembly including a laser array of at least two colors and configured to provide an illumination beam; a first temperature sensor located at the The first air inlet of the casing, and configured to detect the ambient temperature of the laser projection device; the controller, coupled with the light source assembly and the first temperature sensor, and configured to Based on the ambient temperature, the operating current of the laser array of at least one color is adjusted.
  • FIG. 1 is a structural diagram of a laser projection device according to some embodiments of the present disclosure
  • FIG. 2 is a schematic diagram of a light source assembly, an optical engine and a lens in a laser projection device according to some embodiments of the present disclosure
  • FIG. 3 is a structural diagram of an optical path in a laser projection device according to some embodiments of the present disclosure
  • FIG. 4 is a schematic diagram of the optical path principle of a light source assembly in a laser projection device according to some embodiments of the present disclosure
  • FIG. 5 is an arrangement structure diagram of tiny mirror mirrors in a digital micromirror device according to some embodiments of the present disclosure
  • Fig. 6 is a schematic diagram of the operation of a tiny mirror according to some embodiments of the present disclosure.
  • Fig. 7 is a schematic diagram of the position of a tiny mirror swing in the digital micromirror device shown in Fig. 5;
  • Fig. 8 is a structural block diagram of a laser projection device according to some embodiments of the present disclosure.
  • Fig. 9 is a structural diagram of a laser projection device according to some embodiments of the present disclosure.
  • FIG. 10 is a structural block diagram of another laser projection device according to some embodiments of the present disclosure.
  • Fig. 11 is a structural diagram of a first radiator according to some embodiments of the present disclosure.
  • Fig. 12 is a structural diagram of a second heat sink according to some embodiments of the present disclosure.
  • Fig. 13 is a structural diagram of a laser projection system according to some embodiments of the present disclosure.
  • Fig. 14 is a flowchart of a control method of a laser projection device according to some embodiments of the present disclosure.
  • first and second are used for descriptive purposes only, and cannot be understood as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features. Thus, a feature defined as “first” and “second” may explicitly or implicitly include one or more of these features. In the description of the embodiments of the present disclosure, unless otherwise specified, "plurality” means two or more.
  • the expressions “coupled” and “connected” and their derivatives may be used.
  • the term “connected” may be used in describing some embodiments to indicate that two or more elements are in direct physical or electrical contact with each other.
  • the term “coupled” may be used when describing some embodiments to indicate that two or more elements are in direct physical or electrical contact.
  • the terms “coupled” or “communicatively coupled” may also mean that two or more elements are not in direct contact with each other, but yet still co-operate or interact with each other.
  • the embodiments disclosed here are not necessarily limited by the content herein.
  • At least one of A, B and C has the same meaning as “at least one of A, B or C” and both include the following combinations of A, B and C: A only, B only, C only, A and B A combination of A and C, a combination of B and C, and a combination of A, B and C.
  • a and/or B includes the following three combinations: A only, B only, and a combination of A and B.
  • the term “if” is optionally interpreted to mean “when” or “at” or “in response to determining” or “in response to detecting,” depending on the context.
  • the phrases “if it is determined that " or “if [the stated condition or event] is detected” are optionally construed to mean “when determining ! or “in response to determining ! depending on the context Or “upon detection of [stated condition or event]” or “in response to detection of [stated condition or event]”.
  • Some embodiments of the present disclosure provide a laser projection device.
  • the light source assembly 100 is configured to provide an illumination beam (laser beam).
  • the optical machine 200 is configured to use an image signal to modulate the illumination beam provided by the light source assembly 100 to obtain a projection beam.
  • the lens 300 is configured to project the projection light beam on a screen or a wall to form an image.
  • the light source assembly 100 , the light engine 200 and the lens 300 are sequentially connected along the beam propagation direction, and each is wrapped by a corresponding housing.
  • the housings of the light source assembly 100 , the optical engine 200 and the lens 300 support the optical components and make the optical components meet certain sealing or airtight requirements.
  • the light source assembly 100 is airtightly sealed through its corresponding housing, which can better improve the problem of light decay of the light source assembly 100 .
  • One end of the light engine 200 is connected to the lens 300 and arranged along the first direction X of the whole machine, for example, the first direction X may be the width direction of the whole machine.
  • the light source assembly 100 is connected to the other end of the optical machine 200 .
  • the light source assembly 100, the optical machine 200, and the lens 300 are connected in an "L" shape.
  • this connection structure can adapt to the optical path characteristics of the reflective light valve in the optical machine 200.
  • the length of the optical path in this direction will be very long, which is not conducive to the whole machine. structure arrangement.
  • the light source assembly 100 may include three laser arrays.
  • the three laser arrays can be red laser array 130, green laser array 120 and blue laser array 110 respectively, that is, the light source assembly 100 is a three-color laser light source; but not limited thereto, the three laser arrays can also be The blue laser array 110 , or two laser arrays are the blue laser array 110 and one laser array is the red laser array 130 .
  • the light source assembly 100 may also include two laser arrays.
  • the two laser arrays can be a blue laser array 110 and a red laser array 130, that is, the light source assembly 100 is a two-color laser light source; they can also be both blue laser arrays 110, that is, the light source assembly 100 is a monochromatic laser light source.
  • the light source assembly 100 can also include a laser array, that is, the light source assembly 100 is a monochromatic laser light source. In this monochromatic laser light source, referring to FIG. 4, the laser array can be a blue laser array 110 .
  • the light source assembly 100 only includes the blue laser array 110, or only includes the blue laser array 110 and the red laser array 130, as shown in FIG.
  • the blue laser 110 emits blue light
  • a part of the blue light is irradiated on the fluorescent wheel 140 to generate red fluorescent light (when the light source assembly 100 includes a red laser array 130, then there is no need to generate red fluorescent light) and green fluorescent light; after that, the The blue laser light, red fluorescent light (or red laser light) and green fluorescent light pass sequentially through the light combining mirror 160 and then pass through the color filter wheel 150 for color filtering, and output the three primary colors sequentially.
  • the human eye According to the phenomenon of persistence of vision of the human eye, the human eye cannot distinguish the color of light at a certain moment, and what it perceives is still mixed white light.
  • the optical machine 200 may include: a light guide 210 , a lens assembly 220 , a mirror 230 , a digital micromirror device (Digital Micromirror Device, DMD) 240 and a prism assembly 250 .
  • the light pipe 210 can receive the illumination beam provided by the light source assembly 100 and homogenize the illumination beam.
  • the lens assembly 220 can amplify the illumination light beam first, then converge it and output it to the reflector 230 .
  • the mirror 230 can reflect the illumination beam to the prism assembly 250 .
  • the prism assembly 250 reflects the illumination beam to the DMD 240, and the DMD 240 modulates the illumination beam, and reflects the modulated projection beam to the lens 300.
  • the DMD 240 is the core component, and its function is to use the image signal to modulate the illumination beam provided by the light source assembly 100, that is, to control the illumination beam to display different colors and brightness for different pixels of the image to be displayed, so as to finally form Optical image, therefore, DMD 240 is also known as light modulation device or light valve. According to whether the light modulation device (or light valve) transmits or reflects the illumination beam, the light modulation device (or light valve) can be divided into a transmissive light modulation device (or light valve) or a reflective light modulation device (or light valve). ). For example, the digital micromirror device 240 shown in FIG. 2 and FIG.
  • the optomechanics can be divided into single-chip systems, two-chip systems or three-chip systems.
  • the optical machine 200 can be called a single-chip system.
  • the optical machine 200 can be called a three-chip system.
  • the digital micromirror device 240 is applied in a digital light processing (Digital Light Processing, DLP) projection architecture, and the optical machine 200 shown in FIG. 2 and FIG. 3 uses the DLP projection architecture.
  • the digital micromirror device 240 includes thousands of tiny mirror mirrors 2401 that can be individually driven to rotate. These tiny mirror mirrors 2401 are arranged in an array, and each tiny mirror mirror 2401 corresponds to of a pixel.
  • each tiny mirror 2401 is equivalent to a digital switch, which can swing within the range of plus or minus 12 degrees or plus or minus 17 degrees under the action of an external electric field, as shown in FIG. 7 .
  • the light reflected by the tiny mirror 2401 at a negative deflection angle is called OFF light, and the OFF light is invalid light, which usually hits the housing 101 of the complete machine, the housing of the optical machine 200 or absorbed by the light absorbing unit.
  • the light reflected by the tiny reflective lens 2401 at a positive deflection angle is called ON light.
  • the ON light is the effective light beam that the tiny reflective lens 2401 on the surface of the DMD 240 receives the illumination beam and enters the lens 300 through a positive deflection angle. For projection imaging.
  • the open state of the micro-reflector 2401 is the state where the micro-reflector 2401 is and can be maintained when the illumination beam emitted by the light source assembly 100 is reflected by the micro-reflector 2401 and can enter the lens 300, that is, the micro-reflector 2401 is at a positive deflection angle status.
  • the closed state of the tiny reflective mirror 2401 is the state where the tiny reflective mirror 2401 is and can be maintained when the illuminating light beam emitted by the light source assembly 100 is reflected by the tiny reflective mirror 2401 and does not enter the lens 300, that is, the tiny reflective mirror 2401 is in a negative deflection angle status.
  • the state at +12° is the on state
  • the state at -12° is the off state
  • the deflection between -12° and +12° Angle the actual working state of the tiny mirror 2401 is only the on state and the off state.
  • the state at +17° is the on state
  • the state at -17° is the off state.
  • part or all of the tiny mirrors 2401 will be switched once between the on state and the off state, so as to realize the display in one frame of image according to the duration time of the tiny mirrors 2401 respectively in the on state and the off state.
  • the gray scale of each pixel of For example, when a pixel has 256 gray scales from 0 to 255, the tiny mirrors corresponding to gray scale 0 are in the off state during the entire display period of one frame of image, and the tiny mirrors corresponding to gray scale 255 are in the off state during one frame.
  • the whole display period of the image is in the on state, and the tiny reflective mirror corresponding to the gray scale 127 is in the on state for half of the time in the display period of a frame of image, and the other half of the time is in the off state. Therefore, the state and the maintenance time of each state in the display period of a frame image are controlled by the image signal of each tiny reflective mirror in the DMD 240, and the brightness (gray scale) of the corresponding pixel of the tiny reflective mirror 2401 can be controlled to realize the control of the image.
  • the purpose of modulation of the illumination beam projected to the DMD 240 is controlled by the image signal of each tiny reflective mirror in the DMD 240, and the brightness (gray scale) of the corresponding pixel of the tiny reflective mirror 2401 can be controlled to realize the control of the image.
  • the light pipe 210 at the front end of the DMD 240, the lens assembly 220 and the reflector 230 form an illumination light path, and the illumination light beam emitted by the light source assembly 100 forms a beam size and an incident angle that meet the requirements of the digital micromirror device 240 after passing through the illumination light path.
  • the lens 300 includes a combination of multiple lenses, which are generally divided into groups, such as three-stage front group, middle group and rear group, or two-stage front group and rear group.
  • the front group is the lens group near the light output side of the projection device (left side shown in FIG. 2 )
  • the rear group is the lens group near the light output side of the light engine 200 (right side shown in FIG. 2 ).
  • the lens 300 may also be a zoom lens, or a fixed focus adjustable focus lens, or a fixed focus lens.
  • the laser projection device is an ultra-short-throw projection device
  • the lens 300 is an ultra-short-throw projection lens
  • the throw ratio of the lens 300 is usually less than 0.3, such as 0.24.
  • the light source assembly 100 When the laser projection device 10 is working, the light source assembly 100 will generate a lot of heat. When the ambient temperature of the environment where the laser projection device 10 is located is too high, the heat dissipation capability of the heat dissipation component in the laser projection device 10 decreases. In this case, in order to transfer the heat generated by the light source assembly 100 to the external environment through the heat dissipation , it is necessary to increase the rotational speed of the fan in the heat dissipation component, so as to improve the heat dissipation capability of the heat dissipation component. Therefore, the heat dissipation component may emit relatively loud noises, and further cause the laser projection device 10 to work with relatively loud noises.
  • the effect of transferring the heat generated by the light source assembly 100 to the external environment cannot be achieved only by increasing the speed of the fan in the heat dissipation assembly, thereby affecting the light efficiency of the light source assembly 100, reliability and longevity.
  • some embodiments of the present disclosure provide a laser projection device.
  • the first temperature sensor 400 detects the ambient temperature of the laser projection device 10, and the controller 500 adjusts at least one color in the light source assembly 100 according to the ambient temperature.
  • the working current of the laser array Therefore, when the ambient temperature of the laser projection device 10 is high, the operating current of the laser array of at least one color in the light source assembly 100 can be reduced, so that the heat generated by the laser array is reduced. Therefore, the operating temperature of the light source assembly 100 can be reduced without increasing the speed of the cooling fan in the laser projection device 10, thereby reducing the operating noise of the laser projection device 10, and the optical efficiency and reliability of the laser array in the light source assembly 100 can be improved. and longevity.
  • the laser projection device 10 includes: a light source assembly 100 , a first temperature sensor 400 , and a controller 500 . Both the light source assembly 100 and the first temperature sensor 400 are coupled to the controller 500 .
  • the light source assembly 100 includes at least two color laser arrays and is configured to provide illumination light beams.
  • the light source assembly 100 includes laser arrays of at least two colors among the red laser array 130 , the green laser array 120 and the blue laser array 110 .
  • the first temperature sensor 400 is configured to detect the ambient temperature of the laser projection device.
  • the embodiment of the present disclosure does not limit the position of the first temperature sensor 400 in the laser projection device 10 , as long as it can detect the ambient temperature of the laser projection device.
  • the laser projection device 10 further includes a casing 101 having a first air inlet, and the first temperature sensor 400 is located at the first air inlet of the casing 101 . Both the light source assembly 100 and the controller 500 are located in the casing 101 .
  • the first temperature sensor 400 can detect the temperature of the airflow entering the laser projection device 10, because the airflow entering the laser projection device 10 is the airflow in the environment where the laser projection device 10 is located, therefore, the first temperature sensor 400 can detect the temperature of the airflow in the environment where the laser projection device 10 is located. That is, the first temperature sensor 400 can detect the ambient temperature where the laser projection device 10 is located. Moreover, the first temperature sensor 400 can also send the detected ambient temperature to the controller 500 in the laser projection device 10 .
  • the controller 500 is configured to: reduce the working current of the laser array of at least one color if the ambient temperature is higher than the first threshold temperature. If the ambient temperature is lower than the second threshold temperature, the working current of the laser array of at least one color is increased; the second threshold temperature is lower than the first threshold temperature.
  • the embodiments of the present disclosure do not limit the value of the first threshold temperature and the value of the second threshold temperature. The following embodiments take the first threshold temperature of 35 degrees Celsius and the second threshold temperature of 25 degrees Celsius as an example for illustration.
  • higher includes greater than or equal to, and lower includes less than or equal to.
  • the controller 500 reduces the working current of the laser array of at least one color in the light source assembly 100 . Therefore, by reducing the working current of the laser array of at least one color in the light source assembly 100 , the heat generated by the laser array can be reduced, and the working temperature of the light source assembly 100 can be reduced. Therefore, when the ambient temperature of the laser projection device 10 is high, the operating temperature of the light source assembly 100 can be reduced without increasing the speed of the cooling fan in the laser projection device 10, thereby reducing the operating noise of the laser projection device 10 and improving the performance of the light source assembly 100. The optical efficiency, reliability and lifetime of laser arrays in China.
  • the controller 500 increases the working current of the laser array of at least one color in the light source assembly 100 . Therefore, by increasing the operating current of the laser array of at least one color in the light source assembly 100, it can be ensured that the operating temperature of the laser array of the light source assembly 100 in the laser projection device 10 is stable within a certain operating temperature range (for example, the working The temperature range is 25 degrees Celsius to 45 degrees Celsius), ensuring the display effect of laser projection equipment.
  • the brightness of red light varies more with temperature than green light and yellow light.
  • the light source assembly includes a red laser array
  • the luminous efficiency of the red light increases, that is, the brightness of the red light is high.
  • the ambient temperature of the laser projection device rises, the luminous efficiency of the red light decreases, that is, the brightness of the red light is low. Therefore, when the ambient temperature is too high or too low, the light balance of the laser projection device will be destroyed, so that the display effect of the picture projected by the laser projection device is poor.
  • some embodiments of the present disclosure ensure that the operating temperature of the laser array can be stabilized within a certain operating temperature range by adjusting the operating current of the laser array, thereby maintaining light balance and making the display effect better.
  • the laser projection device 10 detects the ambient temperature of the laser projection device 10 by setting the first temperature sensor 400 in the laser projection device 10. If the ambient temperature is high, the controller 500 lowers the laser projection The operating current of the laser array of at least one color in the light source assembly 100 in the device 10, thereby reducing the operating temperature of the light source assembly 100, ensuring that the operating temperature of the light source assembly 100 is stable within a certain operating temperature range, so there is no need to increase the laser projection The rotating speed of the cooling fan in the device 10 can reduce the working temperature of the light source assembly 100 , thereby reducing the working noise of the laser projection device 10 .
  • the controller 500 increases the operating current of the laser array of at least one color in the light source assembly 100 in the laser projection device 10 to ensure that the operating temperature of the laser array can be stabilized within a certain operating temperature range In this way, the light balance of the laser projection device can be maintained, and the display effect of the picture projected by the laser projection device can be improved.
  • the operating current of the laser array of at least one color in the light source assembly 100 is reduced, so as to ensure that the operating temperature of the laser array is stable within a certain operating temperature range
  • the controller 500 is configured to: if the ambient temperature detected by the first temperature sensor 400 is higher than the first threshold temperature, set the operating current of the laser array of at least one color in the light source assembly 100 to Turn down the first value.
  • the first numerical value may be a fixed value, and the embodiments of the present disclosure make no limitation on the size of the first numerical value. Therefore, when the ambient temperature of the laser projection device 10 is high, the working current of the laser array of at least one color in the light source assembly 100 can be lowered by the first value, thereby ensuring that the working temperature of the laser array can be stable. over a certain operating temperature range.
  • the controller 500 is configured to: if the ambient temperature detected by the first temperature sensor 400 is higher than the first threshold temperature, based on the ambient temperature detected by the first temperature sensor 400 and at least one color
  • the lowering amount of the working current of the laser array is positively correlated, and the working current of the laser array of at least one color in the light source assembly 100 is lowered. That is, the higher the ambient temperature, the greater the amount of reduction in the working current of the laser array of at least one color in the light source assembly 100 .
  • the first threshold temperature as 35 degrees Celsius as an example
  • the corresponding reduction amount is ⁇ t1
  • the ambient temperature is 39 degrees Celsius
  • the corresponding reduction amount is ⁇ t2
  • the value of the reduction amount ⁇ t2 is greater than the reduction Therefore, when the ambient temperature is 39 degrees Celsius, the calorific value of the laser array can be quickly reduced, thereby rapidly reducing the operating temperature of the light source assembly 100 .
  • first corresponding relationship between the working current of the laser array of at least one color in the light source assembly 100 and the calorific value of the laser array of at least one color in the light source assembly 100, and in the light source assembly 100
  • second corresponding relationship between the calorific value of the laser array of at least one color and the ambient temperature.
  • the first corresponding relationship and the second corresponding relationship may be determined in advance through experiments, and the first corresponding relationship and the second corresponding relationship may be stored in a specified storage address in the controller 500 .
  • the controller 500 can determine the calorific value to be reduced by the laser array of at least one color in the light source assembly 100 according to the stored second corresponding relationship, and then according to the stored The first corresponding relationship is to determine the reduction amount of the working current of the laser array of at least one color in the light source assembly 100 .
  • the controller 500 is configured to: if the ambient temperature detected by the first temperature sensor 400 is higher than the first threshold temperature, reduce the working current of the laser array of each color in the light source assembly 100 based on the ambient temperature.
  • the proportion of the reduction of the working current of the laser array of each color to the total reduction of the current corresponds to the proportion of the light emitted by the laser array in the light emitted by the light source assembly 100 as a whole, and the total reduction of the current is The sum of the current reduction amounts of the laser arrays of each color in the laser arrays of at least two colors. Therefore, it can be ensured that after reducing the working current of the laser array of each color, not only the temperature of the light source assembly 100 can be reduced, but also the white balance of the picture projected by the laser projection device 10 to the projection screen can not be damaged.
  • the ratio of the reduction of the operating current of each color laser array to the total current reduction can be equal to the ratio of the light emitted by the laser array to the light emitted by the light source assembly 100 as a whole. .
  • the operating current of the laser array of at least one color in the light source assembly 100 is increased to ensure that the operating temperature of the light source assembly 100 is stable at a certain working temperature.
  • the controller 500 is configured to: if the ambient temperature detected by the first temperature sensor 400 is lower than the second threshold temperature, set the working current of the laser array of at least one color in the light source assembly 100 to Increase the second value.
  • the second value can be a fixed value. Therefore, when the ambient temperature of the laser projection device 10 is low, the operating current of the laser array of at least one color in the light source assembly 100 can be increased by a second value to ensure that the operating temperature of the light source assembly 100 is stable at within a certain operating temperature range.
  • the controller 500 is configured to: if the ambient temperature detected by the first temperature sensor 400 is lower than the second threshold temperature, adjust the operating current of the laser array based on the ambient temperature and at least one color If the amount is low, there is a positive correlation, and the working current of the laser array of at least one color in the light source assembly 100 is increased. That is, the lower the ambient temperature is, the greater the adjustment amount of the working current of the laser array of at least one color in the light source assembly 100 is. The higher the ambient temperature, the smaller the adjustment amount of the working current of the laser array of at least one color in the light source assembly 100 .
  • the second threshold temperature as 25 degrees Celsius as an example
  • the corresponding increase amount is ⁇ t3
  • the ambient temperature is 15 degrees Celsius
  • the corresponding increase amount is ⁇ t4
  • the value of the increased value ⁇ t4 is greater than the increase Therefore, when the ambient temperature is 15 degrees Celsius, the operating temperature of the light source assembly 100 can be rapidly increased, so that the operating temperature of the light source assembly 100 can be stabilized within a certain operating temperature range.
  • the controller 500 is configured to: if the ambient temperature detected by the first temperature sensor 400 is lower than the second threshold temperature, increase the working current of the laser array of each color in the light source assembly 100 based on the ambient temperature.
  • the proportion of the working current increase of each color laser array to the total current increase is corresponding to the proportion of the light emitted by the laser array in the light emitted by the light source assembly 100 as a whole.
  • the total current increase is The sum of the current increase amounts of the laser arrays of each color in the laser arrays of at least two colors.
  • the proportion of the working current increase of each color laser array in the light source assembly 100 to the total current increase can be equal to the proportion of the light emitted by the laser array in the light emitted by the light source assembly 100 as a whole. .
  • the adjustment amount (for example, the adjustment amount or adjustment amount) of the working current of at least one color laser array in the light source assembly 100 is generally small. But when the ambient temperature is high, the lowering amount of the operating current of the laser array of at least one color in the light source assembly 100 can be increased accordingly; when the ambient temperature is low, the laser array of at least one color in the light source assembly 100 The adjustment amount of the working current of the laser can be increased correspondingly, so as to protect the laser projection device 10 .
  • the adjusted working current of the laser array of each color in order to ensure that the laser array in the light source assembly 100 is in a normal working state, when adjusting the working current of the laser array, the adjusted working current of the laser array of each color must not be lower than the minimum working current of the laser array , and must not be higher than the maximum operating current of the laser array.
  • the controller 500 is further configured to: if the ambient temperature detected by the first temperature sensor 400 is higher than a third threshold temperature, turn off the laser arrays of at least two colors in the light source assembly 100 .
  • the third threshold temperature may be higher than the first threshold temperature, and some embodiments of the present disclosure do not limit the value of the third threshold temperature.
  • the third threshold temperature may be 40 degrees Celsius. Therefore, damage to the light source assembly 100 due to excessive temperature can be prevented, and the laser array in the laser projection device 10 can be prevented from operating in a high-temperature environment that is not conducive to heat dissipation for a long time, thereby protecting the laser array and further improving the light efficiency and reliability of the light source assembly 100 and longevity.
  • the laser projection device 10 may further include: a first fan 600 and a second temperature sensor 800 .
  • the first fan 600 is located at the first air inlet, and the second temperature sensor 800 is located between the casing 101 and the light source assembly 100 . Both the first fan 600 and the second temperature sensor 800 are coupled to the controller 500 .
  • the air outlet surface of the first fan 600 may face the light source assembly 100 .
  • the casing 101 also has a first air outlet.
  • the second temperature sensor 800 is configured to detect the working temperature of the light source assembly 100 .
  • the controller 500 is further configured to: if the operating temperature of the light source assembly 100 detected by the second temperature sensor 800 is higher than the third threshold temperature and lower than the fourth threshold temperature, control the first fan 600 to blow air to the first air inlet, so that Wind enters the casing from the first air inlet.
  • the embodiments of the present disclosure do not limit the value of the third threshold temperature and the value of the fourth threshold temperature.
  • the following embodiments take the fourth threshold temperature of 50 degrees Celsius and the third threshold temperature of 45 degrees Celsius as examples for illustration.
  • the The laser projection device 10 can control the first fan 600 to blow air through the controller 500.
  • the wind blown by the first fan 600 can enter the casing 101 from the first air inlet of the casing 101, and flow out from the first outlet of the casing 101. Vent discharge. Therefore, the operating temperature of the light source assembly 100 can be lowered, thereby making the operating temperature of the light source assembly 100 lower.
  • the light efficiency, reliability and lifespan of the light source assembly 100 can be effectively improved, so that the display effect of the picture projected by the laser projection device 10 is better.
  • the first fan 600 may include: a fan body and a fan motor (covered and invisible in FIG. 9 ).
  • the fan motor in the first fan 600 has a drive shaft, the drive shaft in the fan motor can be connected with the fan body in the first fan 600, and the fan motor in the first fan 600 can be connected with the control system in the laser projection device 10 device 500 is coupled.
  • the controller 500 in the laser projection device 10 can control the drive shaft of the fan motor in the first fan 600 to rotate to drive The fan body in the first fan 600 rotates, so that the rotating fan body can blow toward the first air inlet of the housing 101, and the wind blown by the first fan 600 can enter the housing 101 from the first air inlet of the housing 101 and exhausted from the first air outlet of the casing 101 to reduce the working temperature of the light source assembly 100 .
  • the laser projection device 10 may further include a first heat sink 700 which is in contact with the light source assembly 100 and located at the first air outlet of the housing 101 .
  • the first heat sink 700 includes: a first heat conduction block 701 , a heat conduction pipe 702 and a first heat dissipation fin 703 .
  • the first heat conduction block 701 is in contact with one side of the light source assembly 100 , one end of the heat conduction pipe 702 is connected to the first heat conduction block 701 , and the other end is connected to the first heat dissipation fin 703 .
  • the heat generated by the light source assembly 100 can be transferred to the heat pipe 702 through the first heat conduction block 701 , and quickly transferred to the laser projection device through the first air outlet in the casing 101 through the heat pipe 702 and the first heat dissipation fin 703 10 , the heat transfer efficiency of the first radiator 700 can be improved, and the temperature of the light source assembly 100 can be reduced.
  • the laser projection device 10 may further include: a second fan 1000 located on the side of the first radiator 700 close to the first air outlet of the casing 101, the second The fan 1000 is coupled to the controller 500 , and the air outlet surface of the second fan 1000 faces the first air outlet of the casing 101 .
  • the controller 500 is further configured to: if the operating temperature of the light source assembly 100 is higher than the third threshold temperature and lower than the fourth threshold temperature, control the second fan 1000 to blow air to the first air outlet of the casing 101 . Therefore, if the operating temperature of the light source assembly 100 detected by the second temperature sensor 800 is higher than the third threshold temperature and lower than the fourth threshold temperature, the laser projection device 10 can control the second fan 1000 to blow air through the controller 500 to blow the light source assembly The heat generated by 100 is quickly transferred to the external environment to reduce the temperature of the light source assembly 100 .
  • the second fan 1000 may include: a fan body and a fan motor (covered and invisible in FIG. 9 ).
  • the fan body in the second fan 1000 can be connected with the first cooling fins 703 in the first radiator 700 .
  • the fan motor in the second fan 1000 has a drive shaft, the drive shaft in the fan motor can be connected with the fan body in the second fan 1000, and the fan motor in the second fan 1000 can be connected with the laser projection device 10 A controller 500 is coupled.
  • the controller 500 in the laser projection device 10 can control the drive shaft of the fan motor in the second fan 1000 to rotate to drive
  • the fan body in the second fan 1000 rotates, so that the rotating fan body can blow air toward the first air outlet of the housing 101, so that the heat transferred from the light source assembly 100 to the first heat dissipation fin 703 quickly passes through the air outlet in the housing 101.
  • the first air outlet transmits to the external environment, so as to improve the heat dissipation efficiency of the first radiator 700 .
  • the embodiment of the present disclosure does not limit the number of the second fans.
  • the controller 500 is further configured to adjust the speed of the first fan 600 and the second fan 1000 based on the positive correlation between the operating temperature of the light source assembly 100 and the speed of the first fan and the speed of the second fan. Speed to quickly reduce the operating temperature of the light source components. That is, the higher the operating temperature of the light source assembly 100, the higher the rotating speed of the first fan 600 and the higher the rotating speed of the second fan 1000; Low.
  • the controller 500 can increase the speed of the first fan 600 and the speed of the second fan 1000 to increase the air flow into the first air inlet of the casing 101.
  • the air volume and the heat dissipation efficiency of the first heat sink 700 enable the working temperature of the light source assembly 100 to quickly drop below the third threshold temperature.
  • the controller 500 can reduce the speed of the first fan 600 and the speed of the second fan 1000 to reduce the air volume entering the first air inlet of the housing 101 and the first radiator. 700, thereby reducing the noise emitted by the first fan 600 and the second fan 1000, thereby reducing the working noise of the laser projection device 10.
  • the corresponding relationship between the rotational speeds of the first fan 600 and the second fan 1000 and the operating temperature of the light source assembly 100 can be predetermined, so that after the controller 500 determines the operating temperature of the light source assembly 100, it can be based on According to the corresponding relationship, the first fan 600 and the second fan 1000 are controlled to rotate at corresponding speeds, so that the first fan 600 and the second fan 1000 can reduce the operating temperature of the light source assembly 100 to below the third threshold temperature more quickly. .
  • the controller 500 is further configured to: if the operating temperature of the light source assembly 100 detected by the second temperature sensor 800 is higher than the fourth threshold temperature, turn off the at least two color laser arrays of the light source assembly 100 . Therefore, it is possible to avoid the situation that the operating temperature of the laser array in the laser projection device 10 is high for a long time, thereby protecting the laser array, and further improving the optical efficiency, reliability, and service life of the laser array.
  • the DMD 240 When the laser projection device 10 is working, the DMD 240 will generate a certain amount of heat. As shown in FIGS. 9 and 10 , the casing 101 has a second air outlet (located on the right side in FIG. 9 ) opposite to the first air outlet (located on the left side in FIG. 9 ).
  • the laser projection device 10 may also include: a second heat sink 900 for dissipating heat from the DMD 240, and a third fan 1100 located on the side of the second heat sink 900 close to the second air inlet of the casing 101.
  • the air outlet surface of the third fan 1100 faces the DMD 240, and the third fan 1100 is coupled with the controller 500.
  • the controller 500 is also configured to: if the operating temperature of the light source assembly 100 detected by the second temperature sensor 800 is higher than the third threshold temperature and lower than the fourth threshold temperature, control the third fan 1100 to blow air to the DMD 240. Therefore, if the second temperature sensor 800 detects that the operating temperature of the light source assembly 100 is higher than the third threshold temperature and lower than the fourth threshold temperature, the laser projection device 10 can control the third fan 1100 to blow air through the controller 500, and the third fan 1100 can blow a part of the wind entering the housing 101 from the second air inlet of the housing 101 to the DMD 240 and discharge it from the second air outlet of the housing 101.
  • the heat generated by the DMD 240 can be transferred to the external environment through the second radiator 900 and the third fan 1100, which effectively reduces the working temperature of the DMD 240 located inside the casing 101, thereby making the working temperature of the DMD 240 lower , can effectively improve the reliability and life of the DMD 240, so that the display effect of the picture projected by the laser projection device 10 is better.
  • the second heat sink 900 may include: a second heat conduction block 901 and a second heat dissipation fin 902 .
  • One side of the second heat conduction block 901 is in contact with one side of the DMD 240, and the other side of the second heat conduction block 901 is connected with two heat dissipation fins 902. Therefore, the heat generated by the DMD 240 can be transferred to the second heat dissipation fins 902 through the second heat conduction block 901, which improves the heat transfer efficiency of the second heat sink 900.
  • the third fan 1100 may include: a fan body and a fan motor (covered and invisible in FIG. 9 ).
  • the fan body of the third fan 1100 can be connected with the second cooling fins 902 of the second radiator 900 .
  • the fan motor in the third fan 1100 has a drive shaft, the drive shaft in the fan motor can be connected with the fan body in the third fan 1100, and the fan motor in the third fan 1100 can be connected with the laser projection device 10 A controller 500 is coupled.
  • the controller 500 in the laser projection device 10 can control the drive shaft of the fan motor in the third fan 1100 to rotate to drive The fan body in the third fan 1100 rotates, so that the rotating fan body can blow air from the DMD 240, thereby transferring the heat from the DMD 240 to the second cooling fin 902, and quickly passing it to the external environment through the second air port in the housing 101 , so as to improve the heat dissipation efficiency of the second heat sink 900 .
  • the controller 500 in the laser projection device 10 is further configured to adjust the rotation speed of the third fan 1100 based on the positive correlation between the working temperature of the light source assembly 100 and the rotation speed of the third fan 1100, so as to The operating temperature of DMD 240 is reduced below the third threshold temperature. That is, the higher the operating temperature of the light source assembly 100, the higher the rotation speed of the third fan 1100; the lower the operating temperature of the light source assembly 100, the lower the rotation speed of the third fan 1100.
  • the controller 500 can increase the speed of the third fan 1100 to improve the heat dissipation efficiency of the second heat sink 900, so that the working temperature of the DMD 240 can be rapidly increased. decreases below the third threshold temperature. If the operating temperature of the light source assembly 100 is low, the controller 500 can lower the speed of the third fan 1100 to reduce the heat dissipation efficiency of the second heat sink 900, thereby reducing the noise emitted by the third fan 1100, thereby reducing the noise of the laser projection device. 10 working noise.
  • the corresponding relationship between the rotational speed of the third fan 1100 and the operating temperature of the light source assembly 100 can be predetermined, so that after the controller 500 determines the operating temperature of the light source assembly 100, it can control the second fan 1100 based on the corresponding relationship.
  • the three fans 1100 rotate at corresponding speeds, so that the third fan 1100 can adjust the working temperature of the DMD 240 to be below the third threshold temperature more quickly.
  • the laser projection device 10 may further include: an electronic board 1200 .
  • the controller 500 may be integrated in the electronic board 1200 .
  • the electronic board 1200 is arranged parallel to the bottom of the casing, which is beneficial to the heat dissipation of the electronic board 1200.
  • the laser projection device 10 may further include: a fourth fan 1300 located at the second air outlet of the casing 101 .
  • the air outlet surface of the fourth fan 1300 faces the second air outlet of the casing 101 , and the fourth fan 1300 is coupled to the controller 500 .
  • the controller 500 is further configured to: if the operating temperature of the light source assembly 100 detected by the second temperature sensor 800 is higher than the third threshold temperature and lower than the fourth threshold temperature, control the fourth fan 1300 to blow air. Therefore, if the operating temperature of the light source assembly 100 detected by the second temperature sensor 800 is higher than the third threshold temperature and lower than the fourth threshold temperature, the laser projection device 10 can control the fourth fan 1300 to blow air through the controller 500, and the DMD 240 The generated heat is quickly transferred to the external environment, which improves the heat dissipation efficiency of the second heat sink 900 .
  • the fourth fan 1300 may include: a fan body and a fan motor (covered and invisible in FIG. 9 ).
  • the fan motor in the fourth fan 1300 has a drive shaft, the drive shaft in the fan motor can be connected with the fan body in the fourth fan 1300, and the fan motor in the fourth fan 1300 can be connected with the laser projection device 10 A controller 500 is coupled.
  • the controller 500 in the laser projector 10 can control the drive shaft of the fan motor in the fourth fan 1300 to rotate to drive the fourth
  • the fan body in the three-fan 1100 rotates, so that the rotating fan body can blow air through the second air outlet of the housing 101, so that the heat generated by the DMD 240 is quickly transferred to the external environment through the second air outlet in the housing 101, In order to improve the heat dissipation efficiency of the second heat sink 900 .
  • the controller 500 in the laser projection device 10 is further configured to adjust the rotation speed of the fourth fan 1300 based on the positive correlation between the operating temperature of the light source assembly 100 and the rotation speed of the fourth fan 1300, so as to The operating temperature of DMD 240 is reduced below the third threshold temperature. That is, the higher the operating temperature of the light source assembly 100, the higher the rotation speed of the fourth fan 1300; the lower the operating temperature of the light source assembly 100, the lower the rotation speed of the fourth fan 1300.
  • the controller 500 can increase the speed of the fourth fan 1300 to increase the heat dissipation efficiency of the second radiator 900, so that the operating temperature of the DMD 240 It can quickly drop below the third threshold temperature. If the operating temperature of the light source assembly 100 is low, the controller 500 can lower the speed of the fourth fan 1300 to reduce the heat dissipation efficiency of the second heat sink 900, thereby reducing the noise emitted by the fourth fan 1300, thereby reducing the noise of the laser projection device. 10 working noise.
  • the corresponding relationship between the rotation speed of the fourth fan 1300 and the operating temperature of the light source assembly 100 can be predetermined, so that after the controller 500 determines the operating temperature of the light source assembly 100, it can control the fourth fan 1300 based on the corresponding relationship.
  • the four fans 1300 rotate at corresponding speeds, so that the fourth fan 1300 can adjust the working temperature of the DMD 240 to be below the third threshold temperature faster.
  • the present disclosure does not limit the number of the fourth fans, and the number of the fourth fans 1300 may be two, or, in other implementation manners, the number of the fourth fans 1300 may be more than one.
  • the laser projection device 10 may further include: a lens 300 located in the casing 101 , and a heat shield 1400 located between the lens 300 and the light source assembly 100 . Therefore, the heat shield 1400 can prevent the heat generated by the light source assembly 100 from being transmitted to the lens 300, thereby reducing the probability of deformation of the optical lens in the lens 300 due to heat, so that the display effect of the picture projected by the laser projection device 10 is better. .
  • the laser projection system may be an ultra-short-focus laser projection system.
  • the laser projection system may include: a projection screen 20 and a laser projection device 10 .
  • the laser projection device 10 may be the laser projection device in the above embodiments.
  • the laser projection device 10 When the laser projection device 10 is working, the laser projection device 10 can emit light obliquely upwards, so that the laser projection device 10 can project a picture to the projection screen 20 .
  • Some embodiments of the present disclosure also provide a method for controlling a laser projection device, and the laser projection device may be any laser projection device 10 in the foregoing embodiments. As shown in FIG. 14 , the control method includes steps 140 - 142 .
  • Step 140 acquiring the ambient temperature where the laser projection device is located.
  • the ambient temperature of the laser projection device 10 can be detected by the first temperature sensor 400 in the laser projection device 10 , and the controller 500 receives the ambient temperature from the first temperature sensor 400 .
  • Step 141 if the ambient temperature is lower than the second threshold temperature, based on the negative correlation between the ambient temperature and the increase of the operating current of the laser array of at least one color, increase the laser array of at least one color in the laser projection device working current.
  • the operating current of each color laser array in the at least two color laser arrays can be increased based on the ambient temperature.
  • the ratio of the working current increase amount of the laser array of each color to the total current increase amount corresponds to the ratio of the light emitted by the laser array to the light emitted by the laser arrays of at least two colors as a whole; the total current The increase amount is the sum of the current increase amounts of the laser arrays of each color in the laser arrays of at least two colors.
  • Step 142 If the ambient temperature is higher than the first threshold temperature, based on the positive correlation between the ambient temperature and the reduction of the operating current of the laser array of at least one color, reduce the current of the laser array of at least one color in the laser projection device. Working current.
  • the working current of the laser array of at least one color when the working current of the laser array of at least one color is lowered, the working current of the laser array of each color in the laser arrays of at least two colors can be lowered based on the ambient temperature.
  • the proportion of the reduction of the operating current of the laser array of each color to the total reduction of the current corresponds to the proportion of the light emitted by the laser array in the light emitted by the laser arrays of at least two colors as a whole; the total current
  • the turn-down amount is the sum of the current turn-down amounts of the laser arrays of each color in the laser arrays of at least two colors.
  • Some embodiments of the present disclosure provide a control method for a laser projection device, by obtaining the ambient temperature of the laser projection device, and if the ambient temperature is higher than the first threshold temperature or lower than the second threshold temperature, adjust the laser arrays of at least two colors The operating current of the laser array of at least one color. Therefore, when the ambient temperature is high, the heat generated by the laser array can be reduced by reducing the working current of the laser array. Therefore, the operating temperature of the light source assembly 100 can be reduced without increasing the speed of the cooling fan in the laser projection device 10, thereby reducing the operating noise of the laser projection device 10, and the optical efficiency and reliability of the laser array in the light source assembly 100 can be improved. and longevity.
  • Some embodiments of the present disclosure provide a computer-readable storage medium (for example, a non-transitory computer-readable storage medium), in which computer program instructions are stored, and the computer program instructions run on a laser projection device , the laser projection device is made to execute the method for controlling the laser projection device as described in any one of the above embodiments.
  • a computer-readable storage medium for example, a non-transitory computer-readable storage medium
  • the above-mentioned computer-readable storage medium may include, but is not limited to: magnetic storage devices (such as hard disks, floppy disks, or magnetic tapes, etc.), optical disks (such as compact disks (Compact Disk, CD), digital versatile disks ( Digital Versatile Disk, DVD), etc.), smart cards and flash memory devices (for example, Erasable Programmable Read-Only Memory (EPROM), card, stick or key drive, etc.).
  • Various computer-readable storage media described in this disclosure can represent one or more devices and/or other machine-readable storage media for storing information.
  • the term "machine-readable storage medium" may include, but is not limited to, wireless channels and various other media capable of storing, containing and/or carrying instructions and/or data.
  • Some embodiments of the present disclosure also provide a computer program product, for example, the computer program product is stored on a non-transitory computer-readable storage medium.
  • the computer program product includes computer program instructions.
  • the computer program instructions When the computer program instructions are executed on the laser projection device, the computer program instructions cause the laser projection device to execute the method for controlling the laser projection device as described in the above-mentioned embodiments.
  • Some embodiments of the present disclosure also provide a computer program.
  • the computer program When the computer program is executed on the computer, the computer program causes the computer to execute the method for controlling the laser projection device as described in the above embodiments.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Projection Apparatus (AREA)

Abstract

一种激光投影设备(10),包括:光源组件(100)、第一温度传感器(400)、控制器(500)。光源组件(100)包括至少两种颜色的激光器阵列(110、120、130),且被配置为提供照明光束。第一温度传感器(400)被配置为检测激光投影设备(10)所处的环境温度。控制器(500)被配置为:若环境温度高于第一阈值温度,基于环境温度与至少一种颜色的激光器阵列(110、120、130)的工作电流的调低量呈正相关的关系,调低至少一种颜色的激光器阵列(110、120、130)的工作电流;若环境温度低于第二阈值温度,基于环境温度与至少一种颜色的激光器阵列(110、120、130)的工作电流的调高量呈负相关的关系,调高至少一种颜色的激光器阵列(110、120、130)的工作电流;第二阈值温度小于第一阈值温度。

Description

激光投影设备及其控制方法
本申请要求于2021年5月31日提交的、申请号为202110602333.1的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及激光投影技术领域,特别涉及一种激光投影设备及其控制方法。
背景技术
激光投影系统包括投影屏幕和激光投影设备,激光投影设备能够在投影屏幕上投射画面,以实现视频播放等功能。
目前的激光投影设备包括有:光源组件、光机和镜头,该光源组件用于向光机提供高强度的激光照明光束;该光机用于对激光照明光束进行图像信号调制形成投影光束,经光机调制后形成的投影光束进入镜头;该镜头用于将投影光束投射至投影屏幕上。
发明内容
本公开一些实施例提供一种激光投影设备,包括:光源组件,第一温度传感器和控制器;光源组件包括至少两种颜色的激光器阵列,且被配置为提供照明光束;第一温度传感器,被配置为检测激光投影设备所处的环境温度;控制器,耦接至光源组件和第一温度传感器,且被配置为:若环境温度高于第一阈值温度,基于环境温度与至少一种颜色的激光器阵列的工作电流的调低量呈正相关的关系,调低至少一种颜色的激光器阵列的工作电流;若环境温度低于第二阈值温度,基于环境温度与至少一种颜色的激光器阵列的工作电流的调高量呈负相关的关系,调高至少一种颜色的激光器阵列的工作电流;第二阈值温度小于第一阈值温度。
本公开一些实施例提供一种激光投影设备的控制方法,包括:获取激光投影设备所处的环境温度;若环境温度高于第一阈值温度,基于环境温度与至少一种颜色的激光器阵列的工作电流的调低量呈正相关的关系,调低至少一种颜色的激光器阵列的工作电流;若环境温度低于第二阈值温度,基于环境温度与至少一种颜色的激光器阵列的工作电流的调高量呈负相关的关系,调高至少一种颜色的激光器阵列的工作电流;第二阈值温度小于第一阈值温度。
本公开一些实施例提供一种激光投影设备,包括:光源组件,包括至少两种颜色的激光器阵列,且被配置为提供照明光束;第一温度传感器,被配置为检测所述激光投影设备所处的环境温度;控制器被配置为:若所述环境温度高于第一阈值温度,将至少一种颜色的激光器阵列的工作电流调低第一数值;若所述环境温度低于第二阈值温度,将所述至少一种颜色的激光器阵列的工作电流调高第二数值;所述第二阈值温度小于所述第一阈值温度。
本公开一些实施例提供一种激光投影设备,包括:壳体,具有第一进风口;光源组件,包括至少两种颜色的激光器阵列,且被配置为提供照明光束;第一温度传感器,位于所述壳体的所述第一进风口处,且被配置为检测所述激光投影设备所处的环境温度;控制器,与所述光源组件和所述第一温度传感器耦接,且被配置为基于所述环境温度,调整至少一种颜色的激光器阵列的工作电流。
附图说明
为了更清楚地说明本公开中的技术方案,下面将对本公开一些实施例中所需要 使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例的附图,对于本领域普通技术人员来讲,还可以根据这些附图获得其他的附图。此外,以下描述中的附图可以视作示意图,并非对本公开实施例所涉及的产品的实际尺寸、方法的实际流程、信号的实际时序等的限制。
图1为根据本公开一些实施例的一种激光投影设备的结构图;
图2为根据本公开一些实施例的激光投影设备中光源组件、光机和镜头的示意图;
图3为根据本公开一些实施例的激光投影设备中的光路架构图;
图4为根据本公开一些实施例的激光投影设备中光源组件的光路原理示意图;
图5为根据本公开一些实施例的数字微镜器件中的微小反射镜片的排列结构图;
图6为根据本公开一些实施例的微小反射镜片的工作示意图;
图7是图5所示数字微镜器件中一个微小反射镜片摆动的位置示意图;
图8是根据本公开一些实施例的一种激光投影设备的结构框图;
图9是根据本公开一些实施例的一种激光投影设备的结构图;
图10是根据本公开一些实施例的另一种激光投影设备的结构框图;
图11是根据本公开一些实施例的一种第一散热器的结构图;
图12是根据本公开一些实施例的一种第二散热器的结构图;
图13是根据本公开一些实施例的一种激光投影系统的结构图;
图14是根据本公开一些实施例的一种激光投影设备的控制方法的流程图。
具体实施方式
下面将结合附图,对本公开一些实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开所提供的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本公开保护的范围。
除非上下文另有要求,否则,在整个说明书和权利要求书中,术语“包括(comprise)”及其其他形式例如第三人称单数形式“包括(comprises)”和现在分词形式“包括(comprising)”被解释为开放、包含的意思,即为“包含,但不限于”。在说明书的描述中,术语“一个实施例(one embodiment)”、“一些实施例(some embodiments)”、“示例性实施例(exemplary embodiments)”、“示例(example)”、“特定示例(specific example)”或“一些示例(some examples)”等旨在表明与该实施例或示例相关的特定特征、结构、材料或特性包括在本公开的至少一个实施例或示例中。上述术语的示意性表示不一定是指同一实施例或示例。此外,所述的特定特征、结构、材料或特点可以以任何适当方式包括在任何一个或多个实施例或示例中。
以下,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本公开实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在描述一些实施例时,可能使用了“耦接”和“连接”及其衍伸的表达。例如,描述一些实施例时可能使用了术语“连接”以表明两个或两个以上部件彼此间有直接物理接触或电接触。又如,描述一些实施例时可能使用了术语“耦接”以表明两个或两个以上部件有直接物理接触或电接触。然而,术语“耦接”或“通信耦合(communicatively coupled)”也可能指两个或两个以上部件彼此间并无直接接触,但仍彼此协作或相互作用。这里所公 开的实施例并不必然限制于本文内容。
“A、B和C中的至少一个”与“A、B或C中的至少一个”具有相同含义,均包括以下A、B和C的组合:仅A,仅B,仅C,A和B的组合,A和C的组合,B和C的组合,及A、B和C的组合。
“A和/或B”,包括以下三种组合:仅A,仅B,及A和B的组合。
如本文中所使用,根据上下文,术语“如果”任选地被解释为意思是“当……时”或“在……时”或“响应于确定”或“响应于检测到”。类似地,根据上下文,短语“如果确定……”或“如果检测到[所陈述的条件或事件]”任选地被解释为是指“在确定……时”或“响应于确定……”或“在检测到[所陈述的条件或事件]时”或“响应于检测到[所陈述的条件或事件]”。
本文中“适用于”或“被配置为”的使用意味着开放和包容性的语言,其不排除适用于或被配置为执行额外任务或步骤的设备。
另外,“基于”的使用意味着开放和包容性,因为“基于”一个或多个所述条件或值的过程、步骤、计算或其他动作在实践中可以基于额外条件或超出所述的值。
本公开一些实施例提供一种激光投影设备,如图1所示,激光投影设备10包括整机壳体101(图中仅示出部分壳体),装配于整机壳体101中的光源组件100、光机200,以及镜头300。该光源组件100被配置为提供照明光束(激光束)。该光机200被配置为利用图像信号对光源组件100提供的照明光束进行调制以获得投影光束。该镜头300被配置为将投影光束投射在屏幕或墙壁上成像。光源组件100、光机200和镜头300沿着光束传播方向依次连接,各自由对应的壳体进行包裹。光源组件100、光机200和镜头300各自的壳体对各光学部件进行支撑并使得各光学部件达到一定的密封或气密要求。比如,光源组件100通过其对应的外壳实现气密性密封,可以较好地改善光源组件100的光衰问题。
光机200的一端和镜头300连接且沿着整机第一方向X设置,比如第一方向X可以为整机的宽度方向。在光机200的另一端连接有光源组件100。在本示例中,光源组件100,光机200,镜头300三者连接呈“L”型,这种连接结构一方面可以适应光机200中反射式光阀的光路特点,另一方面,还有利于缩短一个维度方向上光路的长度,利于整机的结构排布。例如,当将光源组件100、光机200和镜头300设置在一个维度方向(例如,与第一方向X垂直的方向)上时,该方向上光路的长度就会很长,从而不利于整机的结构排布。
在一些实施例中,参考图2,光源组件100可以包括三个激光器阵列。该三个激光器阵列可分别为红色激光器阵列130、绿色激光器阵列120和蓝色激光器阵列110,即光源组件100为三色激光光源;但并不局限于此,该三个激光器阵列也可以均为蓝色激光器阵列110,或者两个激光器阵列为蓝色激光器阵列110、一个激光器阵列为红色激光器阵列130。
在一些实施例中,光源组件100还可以包括两个激光器阵列。该两个激光器阵列可以为蓝色激光器阵列110和红色激光器阵列130,即光源组件100为双色激光光源;也可以均为蓝色激光器阵列110,即光源组件100为单色激光光源。在另一些实施例中,光源组件100还可以包括一个激光器阵列,即光源组件100为单色激光光源,在该单色激光光源中,参见图4,该一个激光器阵列可以为蓝色激光器阵列110。
当光源组件100仅包括蓝色激光器阵列110,或者仅包括蓝色激光器阵列110和红色激光器阵列130时,如图4所示,该光源组件100还可以包括:荧光轮140和滤色轮150。 该蓝色激光器110发射蓝光后,一部分蓝光照射到荧光轮140上以产生红光荧光(当光源组件100包括红色激光器阵列130时,则不需要再产生红色荧光)和绿光荧光;之后,该蓝光激光、红光荧光(或红色激光)以及绿光荧光依次通过合光镜160后再通过滤色轮150进行滤色,并时序性地输出三基色光。根据人眼的视觉暂留现象,人眼分辨不出某一时刻光的颜色,感知到的仍然是混合的白光。
光源组件100发出的照明光束进入光机200。参考图2和图3,光机200可以包括:光导管210,透镜组件220,反射镜230,数字微镜器件(Digital Micromirror Device,DMD)240以及棱镜组件250。该光导管210可以接收光源组件100提供的照明光束,并对该照明光束进行匀化。透镜组件220可以对照明光束先进行放大后进行会聚并出射至反射镜230。反射镜230可以将照明光束反射至棱镜组件250。棱镜组件250将照明光束反射至DMD 240,DMD 240对照明光束进行调制,并将调制后得到的投影光束反射至镜头300中。
光机200中,DMD 240是核心部件,其作用是利用图像信号对光源组件100提供的照明光束进行调制,即:控制照明光束针对待显示图像的不同像素显示不同的颜色和亮度,以最终形成光学图像,因此,DMD 240也被称为光调制器件或光阀。根据光调制器件(或光阀)对照明光束进行透射还是进行反射,可以将光调制器件(或光阀)分为透射式光调制器件(或光阀)或反射式光调制器件(或光阀)。例如,图2和图3所示的数字微镜器件240对照明光束进行反射,即为一种反射式光调制器件。而液晶光阀对照明光束进行透射,因此,液晶光阀是一种透射式光调制器件。此外,根据光机中使用的光调制器件(或光阀)的数量,可以将光机分为单片系统、双片系统或三片系统。例如,图2和图3所示的光机200中仅使用了一片数字微镜器件240,因此光机200可被称为单片系统。当使用三片数字微镜器件时,则光机200可以被称为三片系统。
数字微镜器件240应用于数字光处理(Digital Light Processing,DLP)投影架构中,图2和图3所示的光机200使用了DLP投影架构。如图5所示,数字微镜器件240包含成千上万个可被单独驱动以旋转的微小反射镜片2401,这些微小反射镜片2401呈阵列排布,每个微小反射镜片2401对应待显示图像中的一个像素。在DLP投影架构中,每个微小反射镜片2401相当于一个数字开关,在外加电场作用下可以在正负12度或者正负17度的范围内摆动,如图7所示。
如图6所示,微小反射镜片2401在负的偏转角度反射出的光,称之为OFF光,OFF光为无效光,通常打到整机壳体101上、光机200的壳体上或者光吸收单元上吸收掉。微小反射镜片2401在正的偏转角度反射出的光,称之为ON光,ON光是DMD 240表面的微小反射镜片2401接收照明光束照射,并通过正的偏转角度射入镜头300的有效光束,用于投影成像。微小反射镜片2401的开状态为光源组件100发出的照明光束经微小反射镜片2401反射后可以进入镜头300时,微小反射镜片2401所处且可以保持的状态,即微小反射镜片2401处于正的偏转角度的状态。微小反射镜片2401的关状态为光源组件100发出的照明光束经微小反射镜片2401反射后未进入镜头300时,微小反射镜片2401所处且可以保持的状态,即微小反射镜片2401处于负的偏转角度的状态。
例如,对于偏转角度为±12°的微小反射镜片2401,位于+12°的状态即为开状态,位于-12°的状态即为关状态,而对于-12°和+12°之间的偏转角度,微小反射镜片2401的实际工作状态仅开状态和关状态。而对于偏转角度为±17°的微小反射镜片2401,位于 +17°的状态即为开状态,位于-17°的状态即为关状态。图像信号通过处理后被转换成0、1这样的数字代码,这些数字代码可以驱动所述微小反射镜片2401摆动。
在一帧图像的显示周期内,部分或全部微小反射镜片2401会在开状态和关状态之间切换一次,从而根据微小反射镜片2401在开状态和关状态分别持续的时间来实现一帧图像中的各个像素的灰阶。例如,当像素具有0~255这256个灰阶时,与灰阶0对应的微小反射镜片在一帧图像的整个显示周期内均处于关状态,与灰阶255对应的微小反射镜片在一帧图像的整个显示周期内均处于开状态,而与灰阶127对应的微小反射镜片在一帧图像的显示周期内一半时间处于开状态、另一半时间处于关状态。因此通过图像信号控制DMD 240中每个微小反射镜片在一帧图像的显示周期内所处的状态以及各状态的维持时间,可以控制该微小反射镜片2401对应像素的亮度(灰阶),实现对投射至DMD 240的照明光束进行调制的目的。
DMD 240前端的光导管210,透镜组件220和反射镜230形成照明光路,光源组件100发出的照明光束经过照明光路后形成符合数字微镜器件240所要求的光束尺寸和入射角度。
如图2所示,镜头300包括多片透镜组合,通常按照群组进行划分,分为前群、中群和后群三段式,或者前群和后群两段式。前群是靠近投影设备出光侧(图2所示的左侧)的镜片群组,后群是靠近光机200出光侧(图2所示的右侧)的镜片群组。根据上述多种镜片组组合,镜头300也可以是变焦镜头,或者为定焦可调焦镜头,或者为定焦镜头。在一些实施例中,激光投影设备为超短焦投影设备,镜头300为超短焦投影镜头,镜头300的投射比通常小于0.3,比如0.24。
激光投影设备10在工作过程中,光源组件100会产生大量的热量。当激光投影设备10所处环境的环境温度过高时,激光投影设备10中的散热组件的散热能力下降,在这种情况下,为了将光源组件100产生的热量通过散热组件传递至外界环境中,需提高散热组件中的风扇的转速,以提高散热组件的散热能力。因此,可能会导致散热组件发出较大的噪声,进而导致激光投影设备10的工作噪声较大。并且,若激光投影设备所处的环境温度升高,仅通过提高散热组件中的风扇的转速无法达到将光源组件100产生的热量传递至外界环境中的效果,进而影响光源组件100的光效率、可靠性以及寿命。
为此,本公开的一些实施例提供一种激光投影设备,通过第一温度传感器400检测激光投影设备10所处的环境温度,控制器500根据该环境温度,调整光源组件100中至少一种颜色的激光器阵列的工作电流。因此,能够在激光投影设备10所处的环境温度较高时,调低光源组件100中至少一种颜色的激光器阵列的工作电流,从而激光器阵列产生的热量减小。因此无需提高激光投影设备10中的散热风扇的转速,便能够降低光源组件100的工作温度,从而减小激光投影设备10的工作噪声,并且可以提高光源组件100中激光器阵列的光效率、可靠性以及寿命。
本公开一些实施例提供一种激光投影设备10,如图8所示,该激光投影设备10包括:光源组件100、第一温度传感器400,以及控制器500。光源组件100和第一温度传感器400均与控制器500耦接。
光源组件100,包括至少两种颜色的激光器阵列,且被配置为提供照明光束。例如,光源组件100包括红色激光器阵列130、绿色激光器阵列120和蓝色激光器阵列110中至少两种颜色的激光器阵列。
第一温度传感器400,被配置为检测激光投影设备所处的环境温度。本公开实施例对于第一温度传感器400在激光投影设备10中的位置并不限定,只要能检测到激光投影设备所处的环境温度即可。
在一些实施例中,如图9所示,激光投影设备10还包括壳体101,壳体101具有第一进风口,第一温度传感器400位于壳体101的第一进风口处。光源组件100和控制器500均位于壳体101内。
在一些实施例中,由于第一温度传感器400位于壳体101的第一进风口处,该第一温度传感器400可以检测到进入激光投影设备10的气流的温度,由于进入激光投影设备10的气流为激光投影设备10所处环境中的气流,因此,该第一温度传感器400可以检测到激光投影设备10所处环境中的气流温度。即,该第一温度传感器400可以对激光投影设备10所处的环境温度进行检测。并且,该第一温度传感器400还可以将其检测到的环境温度发送给激光投影设备10中的控制器500。
在一些实施例中,控制器500被配置为:若环境温度高于第一阈值温度,调低至少一种颜色的激光器阵列的工作电流。若环境温度低于第二阈值温度,调高至少一种颜色的激光器阵列的工作电流;第二阈值温度小于第一阈值温度。本公开实施例对于第一阈值温度的数值和第二阈值温度的数值并不限定,下述实施例以第一阈值温度为35摄氏度,第二阈值温度为25摄氏度为例进行示例性说明。
本公开实施例中的高于包括大于或等于,低于包括小于或等于。
在一些实施例中,以第一阈值温度为35摄氏度,第二阈值温度为25摄氏度为例。若第一温度传感器400检测的环境温度高于第一阈值温度,控制器500调低光源组件100中的至少一种颜色的激光器阵列的工作电流。因此,通过降低光源组件100中至少一种颜色的激光器阵列的工作电流,能够减小激光器阵列产生的热量,降低光源组件100的工作温度。因此激光投影设备10在环境温度较高时,无需提高激光投影设备10中的散热风扇的转速,也能够降低光源组件100的工作温度,从而减小激光投影设备10的工作噪声,提高光源组件100中激光器阵列的光效率、可靠性以及寿命。
在一些实施例中,若第一温度传感器400检测的环境温度低于第二阈值温度,控制器500调高光源组件100中的至少一种颜色的激光器阵列的工作电流。因此,通过调高光源组件100中至少一种颜色的激光器阵列的工作电流,能够保证激光投影设备10中的光源组件100的激光器阵列的工作温度稳定在某个工作温度范围内(例如,该工作温度范围为25摄氏度至45摄氏度),确保激光投影设备的显示效果。
由于红光相对于绿光和蓝光的光敏性强,使得红光的亮度随温度变化的程度大于绿光和黄光随温度变化的程度。当光源组件包括红色激光器阵列时,若激光投影设备所处的环境温度降低,则红光的发光效率升高,即红光亮度高。若激光投影设备所处的环境温度升高,则红光的发光效率降低,即红光亮度低。因此当环境温度过高或过低时,会破坏激光投影设备的光平衡,使得该激光投影设备所投射的画面的显示效果较差。而本公开一些实施例通过调整激光器阵列的工作电流,确保激光器阵列的工作温度可以稳定在某个工作温度范围内,从而能够保持光平衡,使得显示效果较好。
本公开一些实施例提供的激光投影设备10,通过在激光投影设备10中设置第一温度传感器400检测激光投影设备10所处的环境温度,若环境温度较高,通过控制器500调低激光投影设备10中的光源组件100中的至少一种颜色的激光器阵列的工作电流,进而 降低光源组件100的工作温度,确保光源组件100的工作温度稳定在某个工作温度范围内,因此无需提高激光投影设备10中的散热风扇的转速,便能够降低光源组件100的工作温度,从而减小激光投影设备10的工作噪声。而且,若环境温度较低,控制器500调高激光投影设备10中的光源组件100中的至少一种颜色的激光器阵列的工作电流,能够确保激光器阵列的工作温度可以稳定在某个工作温度范围内,从而能够保持激光投影设备的光平衡,改善该激光投影设备所投射的画面的显示效果。
在本公开一些实施例中,若环境温度高于第一阈值温度,调低光源组件100中的至少一种颜色的激光器阵列的工作电流,从而确保激光器阵列的工作温度稳定在某个工作温度范围内有多种可能的实现方式,本公开一些实施例以以下两种可能的实现方式为例进行示意性说明。
在第一种可能的实现方式中,控制器500被配置为:若第一温度传感器400检测的环境温度高于第一阈值温度,将光源组件100中的至少一种颜色的激光器阵列的工作电流调低第一数值。该第一数值可以为固定值,本公开实施例对于第一数值的大小不作限定。因此,当激光投影设备10所处的环境温度较高时,可以通过将光源组件100中的至少一种颜色的激光器阵列的工作电流调低第一数值,从而能够确保激光器阵列的工作温度可以稳定在某个工作温度范围内。
在第二种可能的实现方式中,控制器500被配置为:若第一温度传感器400检测的环境温度高于第一阈值温度,基于第一温度传感器400检测到的环境温度与至少一种颜色的激光器阵列的工作电流的调低量呈正相关的关系,调低光源组件100中的至少一种颜色的激光器阵列的工作电流。即,环境温度越高,光源组件100中的至少一种颜色的激光器阵列的工作电流的调低量越大。环境温度越低,光源组件100中的至少一种颜色的激光器阵列的工作电流的调低量越小。
例如,以第一阈值温度为35摄氏度为例,若环境温度为37摄氏度对应的调低量为Δt1,环境温度为39摄氏度对应的调低量为Δt2,那么调低量Δt2的数值大于调低量Δt1的数值,从而能够在环境温度为39摄氏度时,快速减小激光器阵列的发热量,进而快速降低光源组件100的工作温度。
在一些实施例中,光源组件100中的至少一种颜色的激光器阵列的工作电流与光源组件100中的至少一种颜色的激光器阵列的发热量之间存在第一对应关系,以及光源组件100中的至少一种颜色的激光器阵列的发热量与环境温度之间存在第二对应关系。该第一对应关系和第二对应关系可以预先通过实验确定出,该第一对应关系和第二对应关系可以存储在控制器500中的指定存储地址中。因此,控制器500可以基于第一温度传感器400检测的环境温度,根据其存储的第二对应关系,确定光源组件100中的至少一种颜色的激光器阵列需减小的发热量,再根据其存储的第一对应关系,确定光源组件100中的至少一种颜色的激光器阵列的工作电流的调低量。
在一些实施例中,控制器500被配置为:若第一温度传感器400检测的环境温度高于第一阈值温度,基于环境温度,调低光源组件100中每种颜色的激光器阵列的工作电流。每种颜色的激光器阵列的工作电流的调低量在电流总调低量的占比,与该激光器阵列发出的光线在光源组件100整体发出的光线中的占比对应,电流总调低量为至少两种颜色的激光器阵列中的各种颜色的激光器阵列的电流调低量之和。因此,可以保证在将每种颜色的激光器阵列的工作电流调低后,不仅能够降低光源组件100的温度,而且能够确保激光投 影设备10向投影屏幕投射的画面的白平衡不被破坏。
例如,光源组件100中每种颜色的激光器阵列的工作电流的调低量在电流总调低量的占比,与该激光器阵列发出的光线在光源组件100整体发出的光线中的占比可以相等。
在本公开一些实施例中,若环境温度低于第二阈值温度,将光源组件100中的至少一种颜色的激光器阵列的工作电流调高,从而确保光源组件100的工作温度稳定在某个工作温度范围内有多种可能的实现方式,本公开实施例以以下两种可能的实现方式为例进行示意性说明:
在第一种可能的实现方式中,控制器500被配置为:若第一温度传感器400检测的环境温度低于第二阈值温度,将光源组件100中的至少一种颜色的激光器阵列的工作电流调高第二数值。该第二数值可以为固定值。因此,当激光投影设备10所处的环境温度较低时,可以通过将光源组件100中的至少一种颜色的激光器阵列的工作电流调高第二数值,从而确保光源组件100的工作温度稳定在某个工作温度范围内。
在第二种可能的实现方式中,控制器500被配置为:若第一温度传感器400检测的环境温度低于第二阈值温度,基于环境温度与至少一种颜色的激光器阵列的工作电流的调低量呈正相关的关系,调高光源组件100中的至少一种颜色的激光器阵列的工作电流。即,环境温度越低,光源组件100中的至少一种颜色的激光器阵列的工作电流的调高量越大。环境温度越高,光源组件100中的至少一种颜色的激光器阵列的工作电流的调高量越小。
例如,以第二阈值温度为25摄氏度为例,若环境温度为20摄氏度对应的调高量为Δt3,环境温度为15摄氏度对应的调高量为Δt4,那么调高量Δt4的数值大于调高量Δt3的数值,从而能够在环境温度为15摄氏度时,快速升高光源组件100的工作温度,使得光源组件100的工作温度稳定在某个工作温度范围内。
在一些实施例中,控制器500被配置为:若第一温度传感器400检测的环境温度低于第二阈值温度,基于环境温度,调高光源组件100中每种颜色的激光器阵列的工作电流。每种颜色的激光器阵列的工作电流的调高量在电流总调高量的占比,与该激光器阵列发出的光线在光源组件100整体发出的光线中的占比对应,电流总调高量为至少两种颜色的激光器阵列中的各种颜色的激光器阵列的电流调高量之和。因此,可以保证在调高至少两种颜色的激光器阵列的工作电流后,不仅能够确保光源组件100的工作温度稳定在某个工作温度范围内,而且能够确保激光投影设备10向投影屏幕投射的画面的白平衡不被破坏。
例如,光源组件100中每种颜色的激光器阵列的工作电流的调高量在电流总调高量的占比,与该激光器阵列发出的光线在光源组件100整体发出的光线中的占比可以相等。
为保证激光投影设备10的显示效果,光源组件100中的至少一种颜色的激光器阵列的工作电流的调整量(例如,调低量或调高量)一般较小。但当环境温度较高时,光源组件100中的至少一种颜色的激光器阵列的工作电流的调低量可以相应提高;当环境温度较低时,光源组件100中的至少一种颜色的激光器阵列的工作电流的调高量可以相应提高,以保护激光投影设备10。
在一些实施例中,为了保证光源组件100中的激光器阵列处于正常工作状态,在调整激光器阵列的工作电流时,每种颜色的激光器阵列调整后的工作电流不得低于该激光器阵列的最小工作电流,也不得高于该激光器阵列的最大工作电流。
在一些实施例中,控制器500还被配置为:若第一温度传感器400检测的环境温度高于第三阈值温度,关闭光源组件100中的至少两种颜色的激光器阵列。
在一些实施例中,第三阈值温度可以高于第一阈值温度,本公开一些实施例对于第三阈值温度的数值并不限定。例如,该第三阈值温度可以为40摄氏度。因此,可以防止温度过高对光源组件100造成损坏,避免激光投影设备10中的激光器阵列长期在不利于散热的高温环境中运行,从而保护激光器阵列,进一步提高光源组件100的光效率、可靠性以及寿命。
本公开一些实施例还提供一种激光投影设备10,如图10所示,该激光投影设备10还可以包括:第一风扇600和第二温度传感器800。
如图9所示,第一风扇600位于第一进风口处,第二温度传感器800位于壳体101和光源组件100之间。第一风扇600和第二温度传感器800均与控制器500耦接。该第一风扇600的出风面可以朝向光源组件100。壳体101还具有第一出风口。
第二温度传感器800,被配置为检测光源组件100的工作温度。
控制器500还被配置为:若第二温度传感器800检测的光源组件100的工作温度高于第三阈值温度且低于第四阈值温度,控制第一风扇600向第一进风口吹风,以使风从第一进风口进入壳体。本公开实施例对于第三阈值温度的数值和第四阈值温度的数值并不限定,下述实施例以第四阈值温度为50摄氏度,第三阈值温度为45摄氏度为例进行示例性说明。
例如,以第四阈值温度为50摄氏度,第三阈值温度为45摄氏度为例,若第二温度传感器800检测的光源组件100的工作温度高于第三阈值温度且低于第四阈值温度,该激光投影设备10可以通过控制器500控制第一风扇600吹风,该第一风扇600所吹的风可以从壳体101的第一进风口进入壳体101内,并从壳体101的第一出风口排出。因此,能够降低光源组件100的工作温度,进而使得该光源组件100的工作温度较低。并且,可以有效的提高光源组件100的光效率、可靠性以及寿命,使得该激光投影设备10所投射的画面的显示效果较好。
在一些实施例中,第一风扇600可以包括:风扇本体和风扇电机(在图9中被遮挡,不可见)。该第一风扇600中的风扇电机具有驱动轴,该风扇电机中的驱动轴可以与第一风扇600中的风扇本体连接,且第一风扇600中的风扇电机可以与激光投影设备10中的控制器500耦接。因此,若光源组件100的工作温度高于第三阈值温度且低于第四阈值温度,该激光投影设备10中的控制器500可以控制第一风扇600中的风扇电机的驱动轴转动,以带动第一风扇600中的风扇本体转动,使得转动的风扇本体可以朝向壳体101的第一进风口吹风,该第一风扇600所吹的风可以从壳体101的第一进风口进入壳体101内,并从壳体101的第一出风口排出,以降低光源组件100的工作温度。
在一些实施例中,如图9和图10所示,激光投影设备10还可以包括第一散热器700,该第一散热器700与光源组件100接触且位于壳体101的第一出风口处。
在一些实施例中,如图11所示,第一散热器700包括:第一导热块701、导热管702以及第一散热翅片703。该第一导热块701与光源组件100的一侧接触,该导热管702的一端与第一导热块701连接,另一端与第一散热翅片703连接。因此,该光源组件100产生的热量可以通过第一导热块701传递至导热管702,并通过导热管702和第一散热翅片703快速通过壳体101中的第一出风口传递至激光投影设备10的外部环境中,能够提高第一散热器700的传热效率,降低光源组件100的温度。
在一些实施例中,如图9和图10所示,该激光投影设备10还可以包括:位于第一散 热器700靠近壳体101的第一出风口一侧的第二风扇1000,该第二风扇1000与控制器500耦接,且该第二风扇1000的出风面朝向壳体101的第一出风口。
控制器500还被配置为:若光源组件100的工作温度高于第三阈值温度且低于第四阈值温度,控制第二风扇1000向壳体101的第一出风口吹风。因此,若第二温度传感器800检测的光源组件100的工作温度高于第三阈值温度且低于第四阈值温度,该激光投影设备10可以通过控制器500控制第二风扇1000吹风,将光源组件100产生的热量快速传递至外界环境中,以降低光源组件100的温度。
在一些实施例中,该第二风扇1000可以包括:风扇本体和风扇电机(在图9中被遮挡,不可见)。该第二风扇1000中的风扇本体可以与第一散热器700中的第一散热翅片703连接。该第二风扇1000中的风扇电机具有驱动轴,该风扇电机中的驱动轴可以与第二风扇1000中的风扇本体连接,且该第二风扇1000中的风扇电机可以与激光投影设备10中的控制器500耦接。因此,若光源组件100的工作温度高于第三阈值温度且低于第四阈值温度,该激光投影设备10中的控制器500可以控制第二风扇1000中的风扇电机的驱动轴转动,以带动第二风扇1000中的风扇本体转动,使得转动的风扇本体可以朝向壳体101的第一出风口吹风,从而将光源组件100传递至第一散热翅片703的热量,快速通过壳体101中的第一出风口传递至外界环境中,以提高第一散热器700的散热效率。
本公开实施例对于第二风扇的数量并不限定。
在一些实施例中,控制器500还被配置为:基于光源组件100的工作温度与第一风扇的转速和第二风扇的转速均呈正相关的关系,调整第一风扇600和第二风扇1000的转速,以快速降低光源组件的工作温度。即,光源组件100的工作温度越高,第一风扇600的转速和第二风扇1000的转速越高;光源组件100的工作温度越低,第一风扇600的转速和第二风扇1000的转速越低。
在一些实施例中,若光源组件100的工作温度较高,控制器500可以将第一风扇600的转速和第二风扇1000的转速调高,以增大进入壳体101的第一进风口的风量和第一散热器700的散热效率,使得该光源组件100的工作温度能够快速的降低至第三阈值温度以下。若光源组件100的工作温度较低,控制器500可以将第一风扇600的转速和第二风扇1000的转速调低,以调低进入壳体101的第一进风口的风量和第一散热器700的散热效率,从而降低第一风扇600和第二风扇1000发出的噪声,进而降低激光投影设备10的工作噪声。
在一些实施例中,可以预先确定第一风扇600和第二风扇1000的转速与光源组件100的工作温度之间的对应关系,以便在控制器500在确定光源组件100的工作温度后,可以基于该对应关系,控制第一风扇600和第二风扇1000以相应的转速进行转动,使得该第一风扇600和第二风扇1000能够更快地将光源组件100的工作温度降低至第三阈值温度以下。
在一些实施例中,控制器500还被配置为:若第二温度传感器800检测的光源组件100的工作温度高于第四阈值温度,关闭光源组件100的至少两种颜色的激光器阵列。因此,可以避免激光投影设备10中的激光器阵列的工作温度长时间处于较高的情况,从而保护激光器阵列,进一步提高激光器阵列的光效率、可靠性以及寿命。
当激光投影设备10工作时,DMD 240会产生一定的热量。如图9和图10所示,壳体101具有与第一出风口(位于图9中的左侧)相对设置的第二出风口(位于图9中的右侧)。 该激光投影设备10还可以包括:用于为DMD 240散热的第二散热器900,以及位于第二散热器900靠近壳体101的第二进风口一侧的第三风扇1100。该第三风扇1100的出风面朝向DMD 240,且该第三风扇1100与控制器500耦接。
控制器500还被配置为:若第二温度传感器800检测的光源组件100的工作温度高于第三阈值温度且低于第四阈值温度,控制第三风扇1100向DMD 240吹风。因此,若第二温度传感器800检测光源组件100的工作温度高于第三阈值温度且低于第四阈值温度,该激光投影设备10可以通过控制器500控制第三风扇1100吹风,该第三风扇1100可以将从壳体101的第二进风口进入壳体101内的风中的一部分,吹向DMD 240,并从壳体101的第二出风口排出。该DMD 240产生的热量可以通过第二散热器900和第三风扇1100传递至外界环境中,有效的降低了位于壳体101内部的DMD 240的工作温度,进而使得该DMD 240的工作温度较低,可以有效的提高DMD 240可靠性和寿命,使得该激光投影设备10所投射的画面的显示效果较好。
在一些实施例中,如图12所示,第二散热器900可以包括:第二导热块901和第二散热翅片902。该第二导热块901的一面与DMD 240的一侧接触,该第二导热块901的另一面与二散热翅片902连接。因此,该DMD 240产生的热量可以通过第二导热块901传递至第二散热翅片902,提高了第二散热器900的传热效率。
在一些实施例中,该第三风扇1100可以包括:风扇本体和风扇电机(在图9中被遮挡,不可见)。该第三风扇1100中的风扇本体可以与第二散热器900中的第二散热翅片902连接。该第三风扇1100中的风扇电机具有驱动轴,该风扇电机中的驱动轴可以与第三风扇1100中的风扇本体连接,且该第三风扇1100中的风扇电机可以与激光投影设备10中的控制器500耦接。因此,若光源组件100的工作温度高于第三阈值温度且低于第四阈值温度,该激光投影设备10中的控制器500可以控制第三风扇1100中的风扇电机的驱动轴转动,以带动第三风扇1100中的风扇本体转动,使得转动的风扇本体可以DMD 240吹风,从而将DMD 240传递至第二散热翅片902的热量,快速通过壳体101中的第二风口传递至外界环境中,以提高第二散热器900的散热效率。
在一些实施例中,该激光投影设备10中的控制器500还被配置为:基于光源组件100的工作温度与第三风扇1100的转速呈正相关的关系,调整第三风扇1100的转速,以将DMD 240的工作温度降低至第三阈值温度以下。即,光源组件100的工作温度越高,第三风扇1100的转速越高;光源组件100的工作温度越低,第三风扇1100的转速越低。
在一些实施例中,若光源组件100的工作温度较高,控制器500可以将第三风扇1100的转速调高,以提高第二散热器900的散热效率,使得该DMD 240的工作温度能够快速的降低至第三阈值温度以下。若光源组件100的工作温度较低,控制器500可以将第三风扇1100的转速调低,以降低第二散热器900的散热效率,从而降低第三风扇1100发出的噪声,进而降低激光投影设备10的工作噪声。
在一些实施例中,可以预先确定第三风扇1100的转速与光源组件100的工作温度之间的对应关系,以便在控制器500确定光源组件100的工作温度后,可以基于该对应关系,控制第三风扇1100以相应的转速进行转动,使得该第三风扇1100能够更快地将DMD 240的工作温度调整至第三阈值温度以下。
在一些实施例中,如图9所示,该激光投影设备10还可以包括:电子板卡1200。控制器500可以集成在电子板卡1200中。在一种可能的实施方式中,电子板卡1200平行于 壳体的底部设置,有利于电子板卡1200的散热。
在一些实施例中,如图9和图10所示,该激光投影设备10还可以包括:位于壳体101的第二出风口处的第四风扇1300。该第四风扇1300的出风面朝向壳体101的第二出风口,且该第四风扇1300与控制器500耦接。
控制器500还被配置为:若第二温度传感器800检测的光源组件100的工作温度高于第三阈值温度且低于第四阈值温度,控制第四风扇1300吹风。因此,若第二温度传感器800检测的光源组件100的工作温度高于第三阈值温度且低于第四阈值温度,该激光投影设备10可以通过控制器500控制第四风扇1300吹风,将DMD 240产生的热量快速传递至外界环境中,提高了第二散热器900的散热效率。
在一些实施例中,该第四风扇1300可以包括:风扇本体和风扇电机(在图9中被遮挡,不可见)。该第四风扇1300中的风扇电机具有驱动轴,该风扇电机中的驱动轴可以与第四风扇1300中的风扇本体连接,且该第四风扇1300中的风扇电机可以与激光投影设备10中的控制器500耦接。因此,若光源组件100的工作温度高于第三阈值温度且低于第四阈值温度,该激光投影10中的控制器500可以控制第四风扇1300中的风扇电机的驱动轴转动,以带动第三风扇1100中的风扇本体转动,使得转动的风扇本体可以壳体101的第二出风口吹风,从而将DMD 240产生的热量,快速通过壳体101中的第二出风口传递至外界环境中,以提高第二散热器900的散热效率。
在一些实施例中,该激光投影设备10中的控制器500还被配置为:基于光源组件100的工作温度与第四风扇1300的转速呈正相关的关系,调整第四风扇1300的转速,以将DMD 240的工作温度降低至第三阈值温度以下。即,光源组件100的工作温度越高,第四风扇1300的转速越高;光源组件100的工作温度越低,第四风扇1300的转速越低。
在一些实施例中,若光源组件100的工作温度较高,控制器500可以将第四风扇1300的转速调高,以增大进入第二散热器900的散热效率,使得该DMD 240的工作温度能够快速的降低至第三阈值温度以下。若光源组件100的工作温度较低,控制器500可以将第四风扇1300的转速调低,以降低第二散热器900的散热效率,从而降低第四风扇1300发出的噪声,进而降低激光投影设备10的工作噪声。
在一些实施例中,可以预先确定第四风扇1300的转速与光源组件100的工作温度之间的对应关系,以便在控制器500确定光源组件100的工作温度后,可以基于该对应关系,控制第四风扇1300以相应的转速进行转动,使得该第四风扇1300能够更快的将DMD 240的工作温度调整至第三阈值温度以下。
本公开对于第四风扇的数量并不限定,该第四风扇1300的数量可以为两个,或者,在其他实现方式中,该第四风扇1300的数量还可以为多个。
在一些实施例中,如图9所示,该激光投影设备10还可以包括:位于壳体101内的镜头300,以及位于镜头300和光源组件100之间的隔热板1400。因此,该隔热板1400可以避免光源组件100产生的热量传递至镜头300,从而降低镜头300中的光学镜片因受热产生变形的概率,使得该激光投影设备10所投射的画面的显示效果较好。
本公开一些实施例还提供一种激光投影系统,该激光投影系统可以为超短焦激光投影系统。在一些实施例中,如图13所示,该激光投影系统可以包括:投影屏幕20和激光投影设备10。该激光投影设备10可以为上述实施例中的激光投影设备。
在激光投影设备10工作时,该激光投影设备10可以斜向上的发射光线,使得激光投 影设备10可以向投影屏幕20投射画面。
本公开一些实施例还提供一种激光投影设备的控制方法,该激光投影设备可以为上述实施例中的任一激光投影设备10。如图14所示,该控制方法包括步骤140-步骤142。
步骤140、获取激光投影设备所处的环境温度。
在一些实施例中,可以通过激光投影设备10中的第一温度传感器400检测激光投影设备10所处的环境温度,控制器500接收来自第一温度传感器400的环境温度。
步骤141、若环境温度低于第二阈值温度,基于环境温度与至少一种颜色的激光器阵列的工作电流的调高量呈负相关的关系,调高激光投影设备中至少一种颜色的激光器阵列的工作电流。
在一些实施例中,在将至少一种颜色的激光器阵列的工作电流调高时,可以基于环境温度,将至少两种颜色的激光器阵列中每种颜色的激光器阵列的工作电流调高。该每种颜色的激光器阵列的工作电流的调高量在电流总调高量的占比,与激光器阵列发出的光线在至少两种颜色的激光器阵列整体发出的光线中的占比对应;电流总调高量为至少两种颜色的激光器阵列中的各种颜色的激光器阵列的电流调高量之和。
步骤142、若环境温度高于第一阈值温度,基于环境温度与至少一种颜色的激光器阵列的工作电流的调低量呈正相关的关系,调低激光投影设备中至少一种颜色的激光器阵列的工作电流。
在一些实施例中,在将至少一种颜色的激光器阵列的工作电流调低时,可以基于环境温度,将至少两种颜色的激光器阵列中每种颜色的激光器阵列的工作电流调低。该每种颜色的激光器阵列的工作电流的调低量在电流总调低量的占比,与激光器阵列发出的光线在至少两种颜色的激光器阵列整体发出的光线中的占比对应;电流总调低量为至少两种颜色的激光器阵列中的各种颜色的激光器阵列的电流调低量之和。
本公开一些实施例提供的激光投影设备的控制方法,通过获取激光投影设备所处的环境温度,若环境温度高于第一阈值温度或低于第二阈值温度,调整至少两种颜色的激光器阵列中至少一种颜色的激光器阵列的工作电流。因此,能够在环境温度较高时,通过降低激光器阵列的工作电流,使得激光器阵列产生的热量减小。因此无需提高激光投影设备10中的散热风扇的转速,便能够降低光源组件100的工作温度,从而减小激光投影设备10的工作噪声,并且可以提高光源组件100中激光器阵列的光效率、可靠性以及寿命。
本公开的一些实施例提供了一种计算机可读存储介质(例如,非暂态计算机可读存储介质),该计算机可读存储介质中存储有计算机程序指令,计算机程序指令在激光投影设备上运行时,使得激光投影设备执行如上述实施例中任一实施例所述的激光投影设备的控制方法。
在一些实施例中,上述计算机可读存储介质可以包括,但不限于:磁存储器件(例如,硬盘、软盘或磁带等),光盘(例如,压缩盘(Compact Disk,CD)、数字通用盘(Digital Versatile Disk,DVD)等),智能卡和闪存器件(例如,可擦写可编程只读存储器(Erasable Programmable Read-Only Memory,EPROM)、卡、棒或钥匙驱动器等)。本公开描述的各种计算机可读存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读存储介质。术语“机器可读存储介质”可包括但不限于,无线信道和能够存储、包含和/或承载指令和/或数据的各种其它介质。
本公开的一些实施例还提供了一种计算机程序产品,例如该计算机程序产品存储在非 瞬时性的计算机可读存储介质上。该计算机程序产品包括计算机程序指令,在激光投影设备上执行该计算机程序指令时,该计算机程序指令使激光投影设备执行如上述实施例所述的激光投影设备的控制方法。
本公开的一些实施例还提供了一种计算机程序。当该计算机程序在计算机上执行时,该计算机程序使计算机执行如上述实施例所述的激光投影设备的控制方法。
上述计算机可读存储介质、计算机程序产品及计算机程序的有益效果和上述一些实施例所述的激光投影设备的控制方法的有益效果相同,此处不再赘述。以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (20)

  1. 一种激光投影设备,包括:
    光源组件,包括至少两种颜色的激光器阵列,且被配置为提供照明光束;
    第一温度传感器,被配置为检测所述激光投影设备所处的环境温度;
    控制器被配置为:
    若所述环境温度高于第一阈值温度,基于所述环境温度与至少一种颜色的激光器阵列的工作电流的调低量呈正相关的关系,调低所述至少一种颜色的激光器阵列的工作电流;
    若所述环境温度低于第二阈值温度,基于所述环境温度与所述至少一种颜色的激光器阵列的工作电流的调高量呈负相关的关系,调高所述至少一种颜色的激光器阵列的工作电流;所述第二阈值温度小于所述第一阈值温度。
  2. 根据权利要求1所述的激光投影设备,其中,
    所述控制器被配置为:基于所述环境温度,将所述至少两种颜色的激光器阵列中每种颜色的激光器阵列的工作电流调低;所述每种颜色的激光器阵列的工作电流的调低量在电流总调低量的占比,与所述激光器阵列发出的光线在所述至少两种颜色的激光器阵列整体发出的光线中的占比对应;所述电流总调低量为所述至少两种颜色的激光器阵列中的各种颜色的激光器阵列的电流调低量之和。
  3. 根据权利要求1所述的激光投影设备,其中,
    所述控制器被配置为:基于所述环境温度,将所述至少两种颜色的激光器阵列中每种颜色的激光器阵列的工作电流调高;其中,所述每种颜色的激光器阵列的工作电流的调高量在电流总调高量的占比,与所述激光器阵列发出的光线在所述至少两种颜色的激光器阵列整体发出的光线中的占比对应;所述电流总调高量为所述至少两种颜色的激光器阵列中的各种颜色的激光器阵列的电流调高量之和。
  4. 根据权利要求1至3中任一项所述的激光投影设备,还包括:具有第一进风口的壳体,所述第一温度传感器位于所述壳体的所述第一进风口处。
  5. 根据权利要求4所述的激光投影设备,还包括:位于所述第一进风口处的第一风扇,以及位于所述壳体和所述光源组件之间的第二温度传感器,所述第一风扇与所述第二温度传感器均与所述控制器耦接;
    所述第二温度传感器,被配置为检测所述光源组件的工作温度;
    所述控制器,还被配置为:若所述第二温度传感器检测的所述光源组件的工作温度高于第三阈值温度且低于所述第四阈值温度,控制所述第一风扇向所述第一进风口吹风,以使风从所述第一进风口进入壳体;所述第三阈值温度小于所述第四阈值温度。
  6. 根据权利要求5所述的激光投影设备,所述壳体还具有第一出风口,所述激光投影设备还包括:与所述光源组件接触且位于所述第一出风口处的第一散热器,以及位于所述第一散热器靠近所述第一出风口一侧的第二风扇,所述第二风扇与所述控制器耦接,且所述第二风扇的出风面朝向所述第一出风口;
    所述控制器还被配置为:若所述光源组件的工作温度高于所述第三阈值温度且低于所述第四阈值温度,控制所述第二风扇向所述第一出风口吹风,以使风从所述第一出风口吹出。
  7. 根据权利要求6所述的激光投影设备,其中,
    所述控制器还被配置为:基于所述光源组件的工作温度与所述第一风扇的转速和所述第二风扇的转速均呈正相关的关系,调整所述第一风扇和所述第二风扇的转速。
  8. 根据权利要求7所述的激光投影设备,其中,所述壳体还具有与所述第一出风口相对设置的第二出风口,所述激光投影设备还包括:
    数字微镜器件,被配置为对所述照明光束进行调制;
    第二散热器,与所述数字微镜器件接触;
    第三风扇,位于所述第二散热器靠近所述壳体的所述第二进风口一侧;
    所述控制器,与所述第三风扇耦接,且还被配置为:若所述第二温度传感器检测的所述光源组件的工作温度高于所述第三阈值温度且低于所述第四阈值温度,控制所述第三风扇向所述数字微镜器件吹风。
  9. 根据权利要求8所述的激光投影设备,还包括:
    第四风扇,位于所述壳体的所述第二出风口处,且所述第四风扇的出风面朝向所述第二出风口;
    所述控制器,与所述第四风扇耦接,且还被配置为:若所述第二温度传感器检测的所述光源组件的工作温度高于所述第三阈值温度且低于所述第四阈值温度,控制所述第四风扇吹风。
  10. 根据权利要求9所述的激光投影设备,还包括:
    镜头,位于所述壳体内;
    隔热板,位于所述镜头和所述光源组件之间。
  11. 一种激光投影设备的控制方法,包括:
    获取所述激光投影设备所处的环境温度;
    若所述环境温度高于第一阈值温度,基于所述环境温度与至少一种颜色的激光器阵列的工作电流的调低量呈正相关的关系,调低所述至少一种颜色的激光器阵列的工作电流;
    若所述环境温度低于第二阈值温度,基于所述环境温度与所述至少一种颜色的激光器阵列的工作电流的调高量呈负相关的关系,调高所述至少一种颜色的激光器阵列的工作电流;所述第二阈值温度小于所述第一阈值温度。
  12. 根据权利要求11所述的方法,其中,所述若所述环境温度高于第一阈值温度,基于所述环境温度与至少一种颜色的激光器阵列的工作电流的调低量呈正相关的关系,调低所述至少一种颜色的激光器阵列的工作电流,包括:
    基于所述环境温度,将所述至少两种颜色的激光器阵列中每种颜色的激光器阵列的工作电流调低;所述每种颜色的激光器阵列的工作电流的调低量在电流总调低量的占比,与所述激光器阵列发出的光线在所述至少两种颜色的激光器阵列整体发出的光线中的占比对应;所述电流总调低量为所述至少两种颜色的激光器阵列中的各种颜色的激光器阵列的电流调低量之和。
  13. 根据权利要求11所述的方法,其中,所述若所述环境温度高于第一阈值温度,基于所述环境温度与至少一种颜色的激光器阵列的工作电流的调低量呈正相关的关系,调低所述至少一种颜色的激光器阵列的工作电流,包括:
    基于所述环境温度,将所述至少两种颜色的激光器阵列中每种颜色的激光器阵列的工作电流调高;其中,所述每种颜色的激光器阵列的工作电流的调高量在电流总调高量的占比,与所述激光器阵列发出的光线在所述至少两种颜色的激光器阵列整体发出的光线中的占比对应;所述电流总调高量为所述至少两种颜色的激光器阵列中的各种颜色的激光器阵列的电流调高量之和。
  14. 一种激光投影设备,包括:
    光源组件,包括至少两种颜色的激光器阵列,且被配置为提供照明光束;
    第一温度传感器,被配置为检测所述激光投影设备所处的环境温度;
    控制器被配置为:
    若所述环境温度高于第一阈值温度,将至少一种颜色的激光器阵列的工作电流调低第一数值;
    若所述环境温度低于第二阈值温度,将所述至少一种颜色的激光器阵列的工作电流调高第二数值;所述第二阈值温度小于所述第一阈值温度。
  15. 一种激光投影设备,包括:
    壳体,具有第一进风口;
    光源组件,包括至少两种颜色的激光器阵列,且被配置为提供照明光束;
    第一温度传感器,位于所述壳体的所述第一进风口处,且被配置为检测所述激光投影设备所处的环境温度;
    控制器,与所述光源组件和所述第一温度传感器耦接,且被配置为基于所述环境温度,调整至少一种颜色的激光器阵列的工作电流。
  16. 根据权利要求15所述的激光投影设备,还包括:
    第一风扇,位于所述第一进风口;
    第二温度传感器,位于所述壳体和所述光源组件之间,且被配置为检测所述光源组件的工作温度;
    所述控制器,与所述第一风扇和所述第二温度传感器耦接,且还被配置为:根据所述光源组件的工作温度,控制所述第一风扇向所述第一进风口吹风,以使风从所述第一进风口进入壳体。
  17. 根据权利要求16所述的激光投影设备,其中,所述壳体还具有第一出风口,所述激光投影设备还包括:
    第一散热器,与所述光源组件接触且位于所述第一出风口处;
    第二风扇,位于所述第一散热器靠近所述第一出风口一侧,且所述第二风扇的出风面朝向所述第一出风口;
    所述控制器,与所述第二风扇耦接,且还被配置为:根据所述光源组件的工作温度,控制所述第二风扇向所述第一出风口吹风,以使风从所述第一出风口吹出。
  18. 根据权利要求17所述的激光投影设备,其中,所述壳体还具有与所述第一出风口相对设置的第二出风口,所述激光投影设备还包括:
    数字微镜器件,被配置为对所述照明光束进行调制;
    第二散热器,与所述数字微镜器件接触;
    第三风扇,位于所述第二散热器靠近所述壳体的所述第二进风口一侧;
    所述控制器,与所述第三风扇耦接,且还被配置为:根据所述光源组件的工作温度,控制所述第三风扇向所述数字微镜器件吹风。
  19. 根据权利要求18所述的激光投影设备,还包括:
    第四风扇,位于所述壳体的所述第二出风口处,且所述第四风扇的出风面朝向所述第二出风口;
    所述控制器,与所述第四风扇耦接,且还被配置为:根据所述光源组件的工作温度, 控制所述第四风扇吹风。
  20. 根据权利要求19所述的激光投影设备,还包括:
    镜头,位于所述壳体内;
    隔热板,位于所述镜头和所述光源组件之间。
PCT/CN2022/096487 2021-05-31 2022-05-31 激光投影设备及其控制方法 WO2022253246A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280037927.5A CN117377907A (zh) 2021-05-31 2022-05-31 激光投影设备及其控制方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110602333.1 2021-05-31
CN202110602333.1A CN113253559A (zh) 2021-05-31 2021-05-31 激光投影设备及激光投影系统

Publications (1)

Publication Number Publication Date
WO2022253246A1 true WO2022253246A1 (zh) 2022-12-08

Family

ID=77185496

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/096487 WO2022253246A1 (zh) 2021-05-31 2022-05-31 激光投影设备及其控制方法

Country Status (2)

Country Link
CN (2) CN113253559A (zh)
WO (1) WO2022253246A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113253559A (zh) * 2021-05-31 2021-08-13 青岛海信激光显示股份有限公司 激光投影设备及激光投影系统
CN115657324A (zh) * 2022-12-09 2023-01-31 广东科视光学技术股份有限公司 合光机构及光学镜头

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03288187A (ja) * 1990-04-04 1991-12-18 Mitsubishi Electric Corp 投写型表示装置
CN2927113Y (zh) * 2004-03-29 2007-07-25 因佛卡斯公司 投影系统和设备
CN101071259A (zh) * 2006-05-12 2007-11-14 三洋电机株式会社 光源控制装置及图像显示装置
US20080042578A1 (en) * 2006-05-12 2008-02-21 Sanyo Electric Co., Ltd. Light source controller and image display device
CN101957543A (zh) * 2009-07-14 2011-01-26 台达电子工业股份有限公司 投影装置及用于调整该投影装置的驱动电压的方法
CN113253559A (zh) * 2021-05-31 2021-08-13 青岛海信激光显示股份有限公司 激光投影设备及激光投影系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03288187A (ja) * 1990-04-04 1991-12-18 Mitsubishi Electric Corp 投写型表示装置
CN2927113Y (zh) * 2004-03-29 2007-07-25 因佛卡斯公司 投影系统和设备
CN101071259A (zh) * 2006-05-12 2007-11-14 三洋电机株式会社 光源控制装置及图像显示装置
US20080042578A1 (en) * 2006-05-12 2008-02-21 Sanyo Electric Co., Ltd. Light source controller and image display device
CN101957543A (zh) * 2009-07-14 2011-01-26 台达电子工业股份有限公司 投影装置及用于调整该投影装置的驱动电压的方法
CN113253559A (zh) * 2021-05-31 2021-08-13 青岛海信激光显示股份有限公司 激光投影设备及激光投影系统

Also Published As

Publication number Publication date
CN113253559A (zh) 2021-08-13
CN117377907A (zh) 2024-01-09

Similar Documents

Publication Publication Date Title
WO2022253246A1 (zh) 激光投影设备及其控制方法
KR101173351B1 (ko) 발광장치 및 광원장치와 이 광원장치를 이용한 프로젝터
US8616710B2 (en) Projector with luminescent wheel and control unit for equalizing illumination
KR101102400B1 (ko) 프로젝터의 제어방법
JP2010032944A (ja) 投写型表示装置
US10284833B2 (en) Image projection apparatus and associated cooling system and method
JP2003337380A (ja) 投射型表示装置
WO2014155571A1 (ja) 投写型表示装置および投写型表示装置の制御方法
JPWO2008032632A1 (ja) 投写型画像表示装置
US10921702B2 (en) Abnormality detection unit, projector, abnormality detection method, and recording medium
JP2005121890A (ja) 画像表示装置および光源の温度制御方法
JP2011145681A (ja) 発光装置及び光源装置並びにこの光源装置を用いたプロジェクタ
US9298073B2 (en) Projector and method for controlling projector
JP3453775B2 (ja) 投写型表示装置
TWI396867B (zh) 投影系統
JP6680166B2 (ja) 液晶プロジェクタ装置
JP2008058661A (ja) 光学系ユニット及びプロジェクタ
JP6683085B2 (ja) 液晶プロジェクタ装置
US9417510B2 (en) Image projection device and method of controlling image projection device
JP2000241883A (ja) プロジェクタ装置
JP2020024327A (ja) 投射型表示装置
CN220526172U (zh) 光学系统和投影设备
JP2006146109A (ja) プロジェクタ
JP2010197657A (ja) 投写型表示装置
JP2007206604A (ja) プロジェクタ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22815290

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280037927.5

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22815290

Country of ref document: EP

Kind code of ref document: A1