WO2022252767A1 - 一种无人艇牵引的远程布放智能海床基 - Google Patents
一种无人艇牵引的远程布放智能海床基 Download PDFInfo
- Publication number
- WO2022252767A1 WO2022252767A1 PCT/CN2022/082153 CN2022082153W WO2022252767A1 WO 2022252767 A1 WO2022252767 A1 WO 2022252767A1 CN 2022082153 W CN2022082153 W CN 2022082153W WO 2022252767 A1 WO2022252767 A1 WO 2022252767A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- counterweight
- seabed
- deployment
- unmanned boat
- remote
- Prior art date
Links
- 238000004891 communication Methods 0.000 claims abstract description 30
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 29
- 238000007789 sealing Methods 0.000 claims description 46
- 238000000034 method Methods 0.000 claims description 17
- 239000013535 sea water Substances 0.000 claims description 15
- 238000007667 floating Methods 0.000 claims description 14
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 13
- 230000007797 corrosion Effects 0.000 claims description 13
- 238000005260 corrosion Methods 0.000 claims description 13
- 230000005294 ferromagnetic effect Effects 0.000 claims description 13
- 229910000831 Steel Inorganic materials 0.000 claims description 12
- 239000010959 steel Substances 0.000 claims description 12
- 239000013049 sediment Substances 0.000 claims description 11
- 238000009434 installation Methods 0.000 claims description 8
- 239000011150 reinforced concrete Substances 0.000 claims description 7
- 229910052742 iron Inorganic materials 0.000 claims description 6
- 238000013016 damping Methods 0.000 claims description 4
- 238000013461 design Methods 0.000 claims description 4
- 230000007613 environmental effect Effects 0.000 claims description 3
- 239000003302 ferromagnetic material Substances 0.000 claims description 3
- 230000005484 gravity Effects 0.000 claims description 3
- 230000009471 action Effects 0.000 claims description 2
- 230000035939 shock Effects 0.000 claims description 2
- 125000006850 spacer group Chemical group 0.000 claims 2
- 230000008569 process Effects 0.000 description 11
- 239000004568 cement Substances 0.000 description 9
- 238000010586 diagram Methods 0.000 description 7
- 229910001220 stainless steel Inorganic materials 0.000 description 7
- 239000010935 stainless steel Substances 0.000 description 7
- 230000000694 effects Effects 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- 239000011888 foil Substances 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 238000004090 dissolution Methods 0.000 description 2
- 230000001939 inductive effect Effects 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 238000007634 remodeling Methods 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 239000002023 wood Substances 0.000 description 2
- 241000282414 Homo sapiens Species 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 239000011152 fibreglass Substances 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000037072 sun protection Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 239000002966 varnish Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63C—LAUNCHING, HAULING-OUT, OR DRY-DOCKING OF VESSELS; LIFE-SAVING IN WATER; EQUIPMENT FOR DWELLING OR WORKING UNDER WATER; MEANS FOR SALVAGING OR SEARCHING FOR UNDERWATER OBJECTS
- B63C11/00—Equipment for dwelling or working underwater; Means for searching for underwater objects
- B63C11/52—Tools specially adapted for working underwater, not otherwise provided for
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63B—SHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING
- B63B43/00—Improving safety of vessels, e.g. damage control, not otherwise provided for
- B63B43/02—Improving safety of vessels, e.g. damage control, not otherwise provided for reducing risk of capsizing or sinking
- B63B43/04—Improving safety of vessels, e.g. damage control, not otherwise provided for reducing risk of capsizing or sinking by improving stability
- B63B43/08—Improving safety of vessels, e.g. damage control, not otherwise provided for reducing risk of capsizing or sinking by improving stability by transfer of solid ballast
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C13/00—Surveying specially adapted to open water, e.g. sea, lake, river or canal
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63B—SHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING
- B63B2211/00—Applications
- B63B2211/02—Oceanography
Definitions
- the invention relates to the technical field of ocean observation, in particular to a remote deployment intelligent seabed base towed by an unmanned boat.
- the seabed base can realize the long-term continuous measurement of marine elements at the deployment point of the seabed base, and is one of the important equipment for fixed-point continuous observation of marine elements.
- the core equipment of the seabed-based acoustic Doppler current profiler uses an acoustic transducer as a sensor. The transducer emits an acoustic pulse. After receiving the signal, the flow velocity is calculated by measuring the Doppler frequency shift.
- the Acoustic Doppler Velocity Profiler can directly measure the velocity profile of the section, does not disturb the flow field, has the characteristics of short test duration and large velocity measurement range. At present, it is widely used in the investigation of flow field structure, flow velocity and discharge measurement in oceans and estuaries.
- Patent document CN105539785B discloses a new type of fully automatic seabed foundation including a disc base, a floating body, a releaser and a control system, which has a simple structure, convenient operation, good anti-silting effect, high degree of automation, high recovery rate of instruments, and is convenient and fast.
- Patent document CN111422328A discloses a self-balancing descending seabed foundation. The deflectors are distributed on the base body at annular intervals, and the deflectors are connected and fixed on the base body through reinforcing ribs. Bio-attachment and self-balancing vertical descent landing functions simplify the deployment steps and increase the success rate of observation, and can be used for ocean element observation in bays, estuaries, continental shelves, and continental slopes.
- the research object of physical oceanography decides where there is wind and waves to observe.
- the seabed base to face the typhoon to observe the impact of the typhoon on the water body, which may cause safety accidents of equipment or personnel, which is very dangerous.
- the deployment could not be completed, and the mother ship had to return to the port to avoid the wind and waves.
- Cement ship is a ship mainly made of cement and steel wire and stainless steel bars. Including wire mesh cement ship and stainless steel reinforced concrete ship.
- the steel wire mesh cement ship is a ship made of stainless steel bars and steel wire mesh to form a skeleton, and cement is applied inside and outside.
- Stainless steel reinforced concrete ship that is, a ship using stainless steel reinforced concrete as the hull structure material.
- Cement boats are corrosion resistant and durable.
- Steel mesh cement boats are cheap to build, easy to obtain materials, simple to build equipment and construction techniques, low maintenance costs, and can save wood and steel.
- the main disadvantage is that it is heavy and has poor impact resistance, so it can only be used within a certain range.
- Steel mesh cement boats can be used as agricultural boats, fishing boats and transport ships.
- Stainless steel reinforced concrete ships can be used as engineering ships and barges with low requirements on dead weight, fixed berths or less mobile.
- the purpose of the present invention is to provide a remote deployment intelligent seabed base towed by an unmanned boat, so as to solve the problems in the prior art mentioned above.
- the present invention provides a remote deployment intelligent seabed base towed by an unmanned boat, including a seabed base box and its equipped instruments, an acoustic releaser, connecting cables and accessories heavy, the acoustic releaser is connected to the connecting ring at the bottom middle position of the counterweight through the connecting cable, and it is characterized in that: the counterweight is a flat-bottomed hull made of reinforced concrete; the bottom of the counterweight is set The water inlet device; the release device, the tow bar and the tow ring are used to form a releasable connection between the counterweight and the unmanned boat; the controller uses a signal cable to connect the satellite communication device, the release device and the Water inlet device; the remote deployer sends control instructions to the controller through the satellite communication device, and remotely controls the release device and the water inlet device to complete the deployment of the intelligent seabed base.
- the release device includes long bolts, discs, triangular stops, small springs, connecting rods, large springs, straight pins, suction cup electromagnets, short bolts, racks, sealed shock pads and triangular pads
- the controller uses the signal cable to connect the power relay of the suction cup electromagnet
- the boats are connected together, and the suction cup electromagnet is connected to the frame by the short bolt; one end of the connecting rod is welded to the triangular block, and the small spring is sleeved on the connecting rod, so that The other end of the connecting rod passes through the frame and is threadedly connected with the disk, the disk is made of ferromagnetic material, and the disk is facing the suction surface of the sucker type electromagnet;
- the large The spring is sleeved on the cylindrical pin, and the cylindrical pin penetrates into the connecting hole of the frame and the connecting hole at the end of the drawbar, and the large spring is located above the connecting hole of the frame,
- the triangular block is located
- the water inlet device includes a sealing plate, a rubber sealing pad, a left electromagnetic releaser and a right electromagnetic releaser, the rubber sealing pad is arranged between the sealing plate and the bottom of the counterweight, and the sealing The plate is pressed tightly on the rubber sealing pad, and the two ends of the sealing plate are respectively clamped under the left electromagnetic releaser and the right electromagnetic releaser; the counterweight is provided with a lower diversion hole, and the sealing plate
- the upper diversion holes are arranged on the board, the lower diversion holes and the upper diversion holes are arranged alternately, and the controller uses the signal cable to connect the satellite communication device and the left electromagnetic release and the power relay of the electromagnet in the right electromagnetic releaser; the controller receives the deployment instruction sent by the seabed-based remote deployment person through the satellite communication device, and generates and sends out the control according to the deployment instruction.
- a signal is sent to the power relay of the electromagnet to control the sealing plate to separate from the counterweight.
- the left electromagnetic release device and the right electromagnetic release device have the same structure, and both include gaskets, thick bolts, wedge pads, thin bolts, electromagnets, brackets, ferromagnetic discs, corrosion-resistant springs, connecting rods , the stopper and the signal cable, the thick bolt connects the counterweight, the wedge pad, the gasket and the bracket as a whole, and the thin bolt fixes the electromagnet on the On the bracket, one end of the connecting rod is welded together with the stopper, and the other end of the connecting rod passes through the corrosion-resistant spring, the mounting hole on the bracket and is threadedly connected with the ferromagnetic disk.
- the ferromagnetic disk is facing the electromagnet, and the controller uses the signal cable to connect the power relay of the electromagnet to control it to be turned on or off.
- the seabed-based box body includes a box cover and a main box body, and the main box body is provided with side diversion holes and diversion surfaces for guiding the sea current.
- At least three side tether cables are arranged between the sealing plate and the counterweight.
- the rubber gasket is embedded with steel wires, and the steel wires are used to strengthen the strength and rigidity of the rubber gasket.
- a hatch cover is provided on the top of the counterweight, a rubber pad is provided between the counterweight and the counterweight, an elastic rubber rope is bound on the hatch cover and the counterweight, and the elastic rubber The pull-off force of the rope is less than the net buoyancy of the seabed base box.
- a deployment method for remotely deploying an intelligent seabed base towed by an unmanned boat the specific steps are as follows:
- the acoustic releaser is connected to the connecting ring through a connecting cable; a rubber gasket is laid on the bottom of the counterweight, and the sealing plate is stuck under the left electromagnetic releaser and the right electromagnetic releaser, and the signal cable is connected to the controller, the left electromagnetic releaser
- the device and the right electromagnetic releaser, the seabed base box is installed in the filling in the counterweight;
- the remote deployer uses the smart terminal to establish a TCP/IP connection with the autopilot of the unmanned boat, sets the latitude and longitude coordinates of the base deployment point on the seabed in the autopilot of the unmanned boat, and the unmanned boat tows the counterweight After arriving at the deployment area, or after the remote deployer controls the unmanned boat to tow the counterweight to the deployment area online, the remote deployer returns the actual measured deployment environment information based on the side-scan sonar installed on the unmanned boat When it is determined that the seabed foundation is suitable for deployment, the remote deployer establishes a TCP/IP connection with the controller and issues a deployment command. The controller receives the deployment command through the satellite communication device and sends a control signal through the signal cable according to the deployment command. The power relay of the sucker electromagnet transmitted to the release device, the power is turned on to release the drawbar;
- the controller sends a control signal according to the deployment command to power on the power relay of the water inlet device.
- the counterweight pours into the seawater and sinks.
- the rubber rope, the hatch cover and the counterweight are separated, and the side mooring cables are deployed to keep the posture of the seabed foundation box stable.
- the seabed foundation box sinks under the gravity traction of the counterweight, and finally the Rest on the hard sediment layer to complete the deployment.
- the present invention has the following beneficial effects:
- the counterweight is used as a container to accommodate the seabed foundation to achieve remote deployment. After deployment, it is used as a counterweight to anchor the seabed foundation at a fixed position to obtain observation data under extreme sea conditions and expand Human beings' accurate understanding of extreme ocean conditions has avoided risking life-threatening marine observations in high sea conditions that may cause equipment and personnel safety accidents.
- the diversion surface, diversion holes and side tethering cables ensure the stability of the seabed foundation during the deployment process, avoid the seabed foundation from turning over and overturning during the deployment process, the deployment quality is more guaranteed, and the loss probability of the intelligent seabed foundation is reduced.
- the present invention can avoid assembling the seabed foundation on board when the sea weather is hot and the wind and waves are strong, so as to avoid affecting the assembly quality and causing the seabed foundation to be lost.
- Figure 1 is a schematic diagram of the seabed foundation before remote deployment
- Figure 2 is a schematic diagram of the seabed foundation after remote deployment
- Fig. 3 is a structural schematic diagram of the releasing device
- Fig. 4 is a structural schematic diagram of the water inlet device
- Fig. 5 is a schematic diagram of a sealing plate
- FIG. 6 is a schematic diagram of the seabed foundation where the water inlet device is an array of solenoid valves
- Fig. 7 is the structural representation of seabed-based main box
- Fig. 8 is a top view of the structural schematic diagram of the seabed-based main box.
- Gasket 400 thick bolt 401, wedge-shaped pad 402, thin bolt 403, electromagnet 404, bracket 405, ferromagnetic disk 406, corrosion-resistant spring 407, connecting rod 408, stopper 409;
- a remote deployment intelligent seabed base towed by an unmanned boat includes a seabed base box 121 and its equipped instruments, an acoustic release device 130, a connecting cable 129, and a counterweight 135.
- the device 130 is connected to the connecting ring 128 arranged at the middle position of the bottom of the counterweight 135 through the connecting cable 129; The axes of symmetry coincide.
- the acoustic release device 130 receives a release command from the deck unit of the mother ship, opens the lock, the connecting cable 129 is separated from the connecting ring 128, the seabed base box 121 is separated from the counterweight 135, and the net buoyancy of its own Float to the surface of the sea under the action.
- the seabed foundation box body 121 is constructed by the box cover 112, the main box body 103 and the sealing plate 124.
- the box cover 112 is connected to the main box body 103 using short hexagon socket bolts 105
- the sealing plate 124 is connected to the main box body 103 using long hexagon socket bolts 123 Connected to the main box 103.
- the instruments carried on the seabed-based box 121 include a temperature, salinity and depth meter 106, a single-point current meter 107, an acoustic Doppler current velocity profiler 108, a dissolved oxygen recorder 109, and a satellite communication device 110, and several instruments can be added or subtracted according to the purpose of observation , the instrument carried is fixed on the case cover 112 using a swing bracket, which is not shown in the figure of the swing bracket.
- the satellite communication device 110 can also be used as a beacon machine to send the longitude and latitude coordinates of the seabed base to the sea surface to the mother ship.
- the satellite communication device 110 Before the remote deployment, the satellite communication device 110 is always on and working; after the remote deployment is completed, the controller 104 controls the satellite communication device 110 to shut down according to the pressure data collected by the temperature, salt and depth instrument 106; The pressure data collected by the instrument 106 controls the satellite communication device 110 to start up.
- the counterweight 135 is a flat-bottomed hull made of reinforced concrete, and the steel bars preferably use seawater corrosion-resistant stainless steel bars; the bottom of the counterweight 135 is provided with a water inlet device.
- the weight 135 enters the water, and the intelligent seabed foundation sinks to complete the deployment; during the transportation process, the counterweight 135 contains the seabed foundation box 121 and the instruments it carries, and fixes the seabed foundation box 121 after deployment; the counterweight 135
- the shape of the hull is less resistance when being towed by the unmanned boat 119, the flat bottom of the counterweight 135 is convenient for it to sit on the hard sediment layer 203 stably, and the barb 131 prevents the counterweight 135 from moving horizontally.
- a release device 116, a tow bar 115 and a tow ring 114 are used to form a releasable connection; 116, the release device 116 is rigidly connected to the unmanned boat 119; one end of the counterweight 135 is provided with a traction ring 114, and the other end is provided with a rear traction ring 120, so as to achieve the technical effect of force symmetry during the sinking of the counterweight 135.
- What the direction indicator line 118 indicates is the direction in which the unmanned boat 119 is advancing.
- the releasable connection can also be that the release device 116 is rigidly connected on the counterweight 135, the tow ring 114 is arranged on the unmanned boat 119, and the release device 116 and the tow ring 114 are connected by the tow rod 115, so that the connection does not need to be used for the unmanned boat. Installing the release device 116 additionally does not need to be equipped with a dedicated unmanned boat, it can be rented, which is not shown in Fig.
- the controller 104 uses the signal cable 111 to electrically connect the satellite communication device 110, the acoustic release device 130, the release device 116, the water inlet device and the equipped instruments, and the remote deployer remotely controls the release device 116 and the water inlet device to complete the deployment.
- Controller 104 is arranged in the main box body 103, and controller 104 comprises central processing unit, internal memory, external storage, interface circuit and power supply contained in the water-tight casing, and PCB circuit board connects central processing unit, internal storage, external storage and interface
- the circuit, the central processing unit, the memory, the external memory, and the interface circuit are respectively connected to the power supply, and the interface circuit is connected to the temperature, salinity and depth instrument 106, the single-point current meter 107, the acoustic Doppler current velocity profiler 108, the dissolution
- connection between the signal cable 111 and each instrument and relay that needs to be disconnected is connected by an inductive coupler, or a protection circuit is set in the controller interface circuit to avoid short circuit damage to the circuit after the connector is disconnected.
- the suction cup electromagnet 308, the electromagnet 404 and the normally closed solenoid valve 601 are connected to the power supply through the relay, and the signal cable 111 transmits a control signal to control the closing or opening of the relay, and turn on or off their power supply.
- release device 116 comprises long bolt 301, disc 302, triangular block 303, small spring 304, connecting rod 305, large spring 306, cylindrical pin 307, sucker type electromagnet 308, short bolt 309, machine Frame 310, sealing damping pad 311 and triangular pad 312, long bolt 301 connects frame 310, triangular pad 312, sealing damping pad 311 and unmanned boat 119 together, sucker type electromagnet 308 uses short
- the bolt 309 is connected on the frame 310; one end of the connecting rod 305 is welded with a triangular stopper 303, and the small spring 304 is sleeved on the connecting rod 305, and the connecting rod 305 passes through the frame 310 and is threadedly connected with the disc 302, and the disc 302 is ferromagnetic.
- the disk 302 is facing the suction surface of the suction cup electromagnet 308;
- the cylindrical pin 307 is covered with a large spring 306 and penetrates into the connecting hole of the frame 310 and the connecting hole at the end of the drawbar 115, and the triangular stop 303 blocks the back of cylindrical pin 307.
- the connecting hole of the drawbar 115 is sleeved on the straight pin 307, and the straight pin 307 transmits the pulling force of the drawbar 115 to the frame 310, and then to the unmanned boat 119.
- the sucker type electromagnet 308 is energized to generate suction, and the attracting disc 302 pulls the connecting rod 305 and the triangular stopper 303, and the triangular stopper 303 leaves the back side of the cylindrical pin 307, and the cylindrical pin 307 is separated from the end of the drawbar 115 under the elastic force of the large spring 306
- the counterweight 135 is separated from the unmanned boat 119; during installation, the suction cup electromagnet 308 is powered off and does not generate suction, and the cylindrical pin 307 is covered with a large spring 306 to penetrate the connection hole of the frame 310 and the end of the drawbar 115 In the connecting hole of the upper part, the triangular stopper 303 blocks the cylindrical pin 307 under the elastic force of the small spring 304 .
- the parts exposed in the seawater in this application are all made of corrosion-resistant and anti-adhesion materials.
- the controller 104 uses the signal cable 111 to connect the satellite communication device 110 and the power relay of the suction cup electromagnet 308, and receives the deployment command issued by the seabed-based remote deployer through the satellite communication device 110, and generates the deployment command according to the deployment command controller 104. And send the control signal to the power relay of the sucker type electromagnet 308 to control it to switch on or off the power supply.
- the water inlet device includes a sealing plate 124, a rubber gasket 127, a left electromagnetic release device 122 and a right electromagnetic release device 134, and a rubber sealing gasket is arranged between the sealing plate 124 and the bottom of the counterweight 135 127, the sealing plate 124 is pressed on the rubber gasket 127, and its two ends are stuck under the left electromagnetic release device 122 and the right electromagnetic release device 134; the rubber gasket 127 is embedded with a steel wire to strengthen the strength and rigidity of the rubber gasket 127 to avoid continuous
- the sealing pressure extrudes the rubber from the upper diversion hole 125 or the lower diversion hole 126, reducing the sealing effect;
- the counterweight 135 is provided with an array of lower diversion holes 126, and the sealing plate 124 is provided with an array of upper diversion holes 125 , the positioning holes 502 on the sealing plate 124 cooperate with the positioning pins arranged at the bottom of the counterweight 135, and the positioning pins are not shown in the figure, so as
- controller 104 uses signal cable 111 electrical signals to connect the power relay of the electromagnet 404 of satellite communication device 110, left electromagnetic releaser 122 and right electromagnetic releaser 134;
- the device 110 receives the deploying command issued by the seabed-based remote deployer, and according to the deploying command, the controller 104 generates and sends control signals to the power relays of the electromagnets 404 of the left electromagnetic releaser 122 and the right electromagnetic releaser 134 to control them.
- the electromagnet 404 is energized to generate suction, which attracts the ferromagnetic disk 406, pulls the connecting rod 408 and the stopper 409, and the sealing plate 124 is separated from the counterweight 135 under the elastic force of the rubber gasket 127; the sea water is guided from the bottom Hole 126 pours into counterweight 135, which sinks.
- the left electromagnetic release device 122 and the right electromagnetic release device 134 have the same structure, and both include a gasket 400, a thick bolt 401, a wedge-shaped pad 402, a thin bolt 403, an electromagnet 404, a bracket 405, a ferromagnetic disk 406, corrosion-resistant spring 407, connecting rod 408, block 409 and signal cable 111, thick bolt 401 connects counterweight 135, wedge-shaped pad 402, gasket 400 and bracket 405 as one, thin bolt 403 fixes electromagnet 404 On the bracket 405, the connecting rod 408 and the block 409 are welded together, the connecting rod 408 passes through the mounting hole on the corrosion-resistant spring 407 and the bracket 405, and is screwed to the ferromagnetic disk 406, and the ferromagnetic disk 406 faces the electromagnet 404, The controller 104 uses the signal cable 111 to connect the power relay of the electromagnet 404 to control it to be turned on or off.
- the controller 104 sends a control signal to the power relay of the electromagnet 404, the electromagnet 404 is energized to generate suction, attracts the ferromagnetic disk 406, pulls the connecting rod 408 and the stopper 409, and the sealing plate 124 is disengaged from the fitting under the elastic force of the rubber gasket 127.
- Weight 135 during installation, the electromagnet 404 is in a power-off state, the inclined surface at the end of the sealing plate 124 compresses the inclined surface at the end of the stopper 409, and the stopper 409 compresses the corrosion-resistant spring 407, and the upper surface of the sealing plate 124 contacts the stopper 409, and the stopper Block 409 blocks seal plate 124 .
- the water inlet device can also be an array of normally closed solenoid valves 601 arranged at each lower diversion hole 126, and the controller 104 uses a signal cable 111 to electrically connect the satellite communication device 110 and the counterweight 135
- the power relay of the normally closed solenoid valve 601 array, the controller 104 receives the deployment command issued by the seabed base remote deployer through the satellite communication device 110, and sends a control signal to the normally closed solenoid valve according to the deployment command.
- the relays of the 601 array are powered on, and the normally closed electromagnetic valve 601 array opens the seawater 137 to inject the counterweight 135 .
- the array of normally closed solenoid valves 601 is opened at the same time and kept until the bottom of the intelligent seabed base or the power supply of the array of normally closed solenoid valves 601 is exhausted.
- the symmetrically arranged multi-inlet holes are used to maintain the posture during the descent of the seabed base stable prerequisites.
- the array of normally closed electromagnetic valves 601 replaces the water inlet device constructed by the sealing plate 124, the rubber gasket 127, the left electromagnetic release 122 and the right electromagnetic release 134 in the first embodiment.
- side guide holes 102 and guide surfaces 113 are provided on the main box body 103 .
- the upper part of the main box 103 is a regular prism or a circular truss, preferably a regular octagonal truss, and the lower part of the corresponding seabed base box 121 is a regular prism or a cylinder, preferably a regular octagonal prism, and the side diversion holes 102 are arranged symmetrically on the eight sides of the regular prism
- the center of the guide surface 113 protrudes downwards, preferably a smooth spherical or ellipsoidal surface.
- the geometric symmetry axis of the seabed base refers to the connection line between the centers of the regular polygons of the multiple cross-sections of the positive prism and the regular prism; during the laying of the seabed base, the seawater passes through the lower diversion hole 126 and the upper diversion hole 125, the diversion surface 113 is equally divided into eight streams, which flow out of the main box 103 from the side diversion holes 102 respectively, and the eight streams generate resistance to the main box 103 at the same time.
- the resistance of the ocean current to the sinking seabed foundation is symmetrical, and the resultant force of the resistance is located on the geometric axis of symmetry of the seabed foundation. It is easier for the main box 103 to maintain a stable posture during the descent.
- the resultant force of the net buoyancy force of the seabed foundation box 121 and its carried instruments and floating balls is located on the geometric symmetry axis of the seabed foundation, as shown by the dotted line in Figure 1 Shown;
- the power that the counterweight 135 that connecting cable 129 provides to pull the seabed base box 121 to move downward is also located on this dotted line, in other words, the seabed base box 121 is subjected to the resultant force of seawater resistance during the descent process, and the seabed base box
- the resultant force of the body 121 and its carried instruments and the net buoyancy of the floating ball is located on the geometric symmetry axis of the seabed foundation, and the traction force of the counterweight 135 acts on this dotted line, thereby reducing the overturning moment and reducing the weight of the seabed foundation. Overturning probability, keep the posture stability of the seabed foundation box body 121 during the descent process.
- the diversion surface 113 separates
- At least three side tethering cables 201 are arranged between the sealing plate 124 and the counterweight 135, and when the bottom surface of the seabed base box 121 is parallel to the top surface of the counterweight 135, all the side tethering cables 201 are loose state, that is, the length of the side mooring cable 201 is 1% to 2% longer than the length shown in FIG. Due to the existence of processing tolerances and installation errors and the uneven disturbance of the ocean current during the descent, there may be a very small overturning moment. Only one or several of them are subjected to tension, and the moment produced by it balances the reverse moment, further maintaining the attitude stability of the seabed foundation box body 121 in the process of descending.
- Each side mooring cable 201 contains at least a section of filament made of a material that can be corroded by seawater, such as a galvanized iron wire that has been polished off the galvanized layer with sandpaper, and placed in seawater.
- the galvanized iron wire is corroded by seawater.
- Galvanized iron wire can no longer bear the tension. That is to cut a plastic rope, and connect a section of galvanized iron wire with a diameter of one millimeter in diameter at the fracture to make the side tie cable 201. This is because the plastic rope has better flexibility and can remove the galvanized iron wire. It is easily corroded by seawater, and achieves the technical effect of delaying disconnection of the side mooring cable 201.
- the side mooring cables 201 can also be ropes made of corrosion-resistant materials. At this time, the total breaking force of all side mooring cables 201 is less than the net buoyancy of the seabed foundation. Preferably, the total breaking force is equal to 0.2 to 0.3 times the seabed The net buoyancy of the foundation ensures that when the seabed foundation is recovered, the net buoyancy of the seabed foundation pulls off all side mooring cables 201.
- the top of the counterweight 135 is provided with a hatch cover 101, a rubber pad 136 is set between the counterweight 135 and the counterweight 101, and an elastic rubber cord 132 is bound on the hatch cover 101 and the counterweight 135, and the pull-off force of the elastic rubber cord 132 Less than the net buoyancy of the seabed base box 121.
- the hatch cover 101 is made of fiberglass, its surface is pasted with reflective aluminum foil to reflect solar radiation, and the surface of the reflective aluminum foil is sprayed with transparent varnish to prevent seawater 137 from corroding the aluminum foil.
- the hatch cover 101 plays the role of sun protection and heat insulation to prevent the high temperature aging of the instrument, especially the battery installed inside the instrument, the long time high temperature shortens the battery life.
- the aluminum foil shields the satellite communication signal to a certain extent, and the external antenna 117 increases the strength of the received signal, reduces the power of the satellite communication device 110, and improves the transmission code rate and reliability; the satellite communication device 110 uses an inductive coupler and a signal cable 111 to connect the external The antenna 117 ensures that after the external antenna 117 is detached, the satellite communication device 110 continues to work normally using the internal antenna.
- a deployment method for remotely deploying an intelligent seabed base towed by an unmanned boat the steps of which are as follows:
- the acoustic releaser 130 is connected to the connecting ring 128 of the counterweight 135 through the connecting cable 129; the rubber gasket 127 is laid on the bottom of the counterweight 135, and the sealing plate 124 is stuck between the left electromagnetic releaser 122 and the right electromagnetic releaser 134
- the remote deployer uses the smart terminal to establish a TCP/IP connection with the autopilot of the unmanned boat 119, and sets the latitude and longitude coordinates of the base deployment point on the seabed in the autopilot of the unmanned boat 119, and the unmanned boat 119
- the remote deployer After the traction counterweight 135 arrives at the deployment area, or after the remote deployer controls the unmanned boat 119 online to tow the counterweight 135 to the deployment area, the remote deployer returns the information according to the side-scan sonar installed on the unmanned boat 119
- the remote deployer establishes a TCP/IP connection with the controller 104 through the satellite communication device 110, issues a deployment command, and sends a control signal via the signal according to the deployment command.
- the cable 111 is transmitted to the power relay of the suction cup electromagnet 308 of the release device 116, and the relay is connected to release the drawbar 115;
- the controller 104 sends a control signal according to the deployment command to power on the power relay of the water inlet device, the counterweight 135 pours into the seawater 137 and sinks, and the seabed base box 121 lifts up the cabin under its own net buoyancy Cover 101, pull the elastic rubber rope 132, the hatch cover 101 is separated from the counterweight 135, the side mooring cable 201 is unfolded to keep the posture of the seabed base box 121 stable, and as the counterweight 135 continues to sink, the seabed base box 121 sinks continuously under the gravity traction of counterweight 135, and finally counterweight 135 comes to rest, and barb 131 inserts in the sediment at the junction of soft sediment layer 202 and hard sediment layer 203; sits on hard sediment layer 203, Complete deployment.
- a remote monitoring system can be installed on the unmanned boat 119 to monitor the deployment process.
- the components used in the present invention must comply with the requirements of marine instrument design specifications, and fully consider the requirements of corrosion resistance, anti-adhesion and water pressure resistance of the components.
- the release device 116 and the water inlet device can also be implemented in other structures, such as the release device 116 can be realized by a motor-driven lock, and the water inlet device can be controlled by a water pump controlled by the controller 104 Realize water ingress, limited space is not exhaustive one by one embodiment, but should explain, although those skilled in the art can carry out various changes and remodeling, unless such changes and remodeling deviate from the scope of the present invention, otherwise all should included in the protection scope of the present invention.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Ocean & Marine Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Earth Drilling (AREA)
Abstract
一种无人艇牵引的远程布放智能海床基,包括海床基箱体(121)、配重(135)、船舱盖(101)、无人艇(119)。配重(135)与无人艇(119)之间通过牵引杆(115)、牵引环(114)和释放装置(116)连接。海床基箱体(121)设置在配重(135)中,船舱盖(101)罩在配重(135)上,配重(135)和船舱盖(101)用橡胶绳(132)捆绑在一起。海床基箱体(121)与配重(135)底部相连接。配重(135)底部设有进水装置。海床基箱体(121)设有卫星通信装置(110)和控制器(104),卫星通信装置(110)接收远程指令,控制器(104)控制无人艇(119)的行驶、配重(135)与无人艇(119)之间连接断开、配重(135)的进水。该海床基可实现无人远程布放,安全可靠,节省时间和费用。
Description
本发明涉及海洋观测技术领域,特别是涉及一种无人艇牵引的远程布放智能海床基。
海床基可实现海床基布放点处海洋要素的长期连续测量,是进行海洋要素定点连续观测的重要设备之一。海床基的核心设备声学多普勒流速剖面仪是用声波换能器作传感器,换能器发射声脉冲,声脉冲通过水体中不均匀分布的泥沙颗粒和浮游生物反射,由换能器接收信号,经测定多普勒频移而测算出流速。声学多普勒流速剖面仪能直接测出断面的流速剖面、不扰动流场、测验历时短和测速范围大等特点。目前被广泛用于海洋、河口的流场结构调查、流速和流量测验等。
专利文献CN105539785B公开了一种新型全自动海床基包括盘座体、浮体、释放器以及控制系统,结构简单,操作方便,防淤积效果好,自动化程度高,仪器回收率高,方便快捷。专利文献CN111422328A公开了一种自平衡下降式海床基,导流板环形间隔分布在基座本体上,导流板通过加强筋连接固定在基座本体上,具有防脱网、防淤积、防生物附着和自平衡垂直下降着陆功能,简化了布放步骤,增大了观测成功率,可用于海湾、河口、大陆架、大陆坡海域的海洋要素观测。
但是现有技术依然存在以下缺陷:
1.物理海洋学研究对象决定了哪里有风浪就去那里观测,台风来临之际,迎着台风去布置海床基观测台风对水体的影响,可能造成设 备或人员的安全事故,非常危险,有时不能完成布放,母船不得不回港躲避风浪。
2.海床基在布防过程中,由于存在翻转力矩可能倾覆,导致不能正常观测,甚至无法回收而丢失。
3.海上天气炎热,风浪大的时候,甲板剧烈摇晃,组装海床基困难,影响组装的质量,高海况的时候甚至不能完成组装,在船上组装海床基的差错影响海床基的质量可能造成海床基丢失。
4.在母船上组装海床基消耗非常昂贵船时费。
水泥船,即以水泥与钢丝不锈钢筋为主要材质的船舶。包括钢丝网水泥船和不锈钢筋混凝土船。钢丝网水泥船是用不锈钢筋与钢丝网扎成骨架,内外涂抹水泥而成的船舶。不锈钢筋混凝土船,即用不锈钢筋混凝土作为船体结构材料的船。水泥船具有抗腐蚀性和耐久性。钢丝网水泥船造价低廉,材料容易获得,建造设备和施工工艺简单,维修保养费用低,且能节约木材和钢材。主要缺点是自重大,抗冲击性能差,只能在一定范围内使用。钢丝网水泥船可作农船、渔船和运输船舶。不锈钢筋混凝土船可作对自重要求不高,泊位固定或较少移动的工程船舶和趸船。
因此,有必要研制水泥材质的船配重,进一步研究可在高海况远程布放的海床基,解决上述技术难题。
发明内容
本发明的目的是提供一种无人艇牵引的远程布放智能海床基,以解决上述现有技术存在的问题。
为实现上述目的,本发明提供了如下方案:本发明提供一种无人艇牵引的远程布放智能海床基,包括海床基箱体及其搭载的仪器、声学释放器、连接缆和配重,所述声学释放器通过所述连接缆连接设置在所述配重的底部中间位置连接环,其特征在于:所述配重为钢筋混凝土制成的平底船壳;所述配重底部设置进水装置;所述配重和无人艇之间使用释放装置、牵引杆和牵引环构造成可释放的连接;控制器使用信号线缆电信号连接卫星通信装置、所述释放装置和所述进水装置;远程布放者通过所述卫星通信装置向所述控制器发送控制指令,远程控制所述释放装置和所述进水装置完成智能海床基的布放。
优选的,所述释放装置包括长螺栓、圆盘、三角挡块、小弹簧、连接杆、大弹簧、圆柱销、吸盘式电磁铁、短螺栓、机架、密封减震垫和三棱垫块,所述控制器使用所述信号线缆连接所述吸盘式电磁铁的电源继电器;所述长螺栓将所述机架、所述三棱垫块、所述密封减震垫和所述无人艇连接在一起,所述吸盘式电磁铁使用所述短螺栓连接在所述机架上;所述连接杆一端焊接所述三角挡块,所述小弹簧套设在所述连接杆上,所述连接杆另一端穿过所述机架与所述圆盘螺纹连接,所述圆盘选用铁磁性材料制成,所述圆盘正对所述吸盘式电磁铁的吸合面;所述大弹簧套设在所述圆柱销上,所述圆柱销穿入所述机架的连接孔和所述牵引杆端部的连接孔之中,所述大弹簧位于所述机架的连接孔上方,所述三角挡块位于所述圆柱销上方且与所述圆柱销限位配合。
优选的,所述进水装置包括密封板、橡胶密封垫、左电磁释放器 和右电磁释放器,所述密封板与所述配重的底部之间设置有所述橡胶密封垫,所述密封板压紧在所述橡胶密封垫上,所述密封板两端分别卡接在所述左电磁释放器、所述右电磁释放器下方;所述配重上设置有下导流孔,所述密封板上设置有上导流孔,所述下导流孔和所述上导流孔交错布置,所述控制器使用所述信号线缆电信号连接所述卫星通信装置、所述左电磁释放器和所述右电磁释放器中电磁铁的电源继电器;所述控制器通过所述卫星通信装置接收海床基远程布放者发出的布放指令,根据布放指令所述控制器生成和发出控制信号给所述电磁铁的电源继电器,控制所述密封板脱离所述配重。
优选的,所述左电磁释放器和所述右电磁释放器结构相同,且均包括密封垫、粗螺栓、楔形垫块、细螺栓、电磁铁、支架、铁磁性盘、耐腐蚀弹簧、连杆、挡块和所述信号线缆,所述粗螺栓连接所述配重、所述楔形垫块、所述密封垫和所述支架为一体,所述细螺栓将所述电磁铁固定在所述支架上,所述连杆一端与所述挡块焊接在一起,所述连杆另一端依次穿过所述耐腐蚀弹簧、所述支架上的安装孔并与所述铁磁性盘螺纹连接,所述铁磁性盘正对所述电磁铁,所述控制器使用所述信号线缆连接所述电磁铁的电源继电器,控制其接通或断开。
优选的,所述海床基箱体包括箱盖和主箱体,主箱体上设置有引导经过海流的侧导流孔和导流面。
优选的,所述密封板和所述配重之间设置有至少三条侧系缆。
优选的,所述橡胶密封垫嵌入钢丝,所述钢丝用于强化所述橡胶密封垫的强度和刚度。
优选的,所述配重的顶部设置有船舱盖,所述配重和所述船舱盖之间设置有橡胶垫,所述船舱盖和所述配重上捆绑有弹性橡胶绳,所述弹性橡胶绳的拉脱力小于所述海床基箱体的净浮力。
一种无人艇牵引的远程布放智能海床基的布放方法,具体步骤如下:
S1.在实验室出海准备时,按观测需求选定海床基挂载的仪器,检查设置和维护选定的观测仪器,根据预估的布放区域的环境参数设计海床基,选定浮球和配重的参数,预制配重;
S2.将各个仪器组装到海床基后,通过调配搭载的仪器或浮球在海床基箱体中的安装位置,实现海床基箱体及其搭载的仪器和浮球净浮力的合力位于海床基的几何对称轴上;
S3.声学释放器通过连接缆连接在连接环上;在配重底部铺设橡胶密封垫,将密封板卡在左电磁释放器和右电磁释放器之下,信号线缆连接控制器、左电磁释放器和右电磁释放器,海床基箱体安装在配重内的填充物中;
S4.在船舱盖和配重之间铺设橡胶垫;
S5.使用弹性橡胶绳将船舱盖和配重捆扎在一起;
S6.配重使用释放装置、牵引杆和牵引环连接无人艇;使用信号线缆连接控制器和释放装置的吸盘式电磁铁的电源继电器;
S7.远程布放者使用智能终端与无人艇的自动驾驶仪建立TCP/IP连接,在无人艇的自动驾驶仪中设定海床基布放点的经纬坐标,无人艇牵引配重到达布放区域后,或者远程布放者在线操控无人艇牵引配 重到达布放区域后,远程布放者根据安装在无人艇上的侧扫声呐回传的实际测量的布放环境信息判定适合布放海床基的时候,远程布放者与控制器建立TCP/IP连接,发出布放指令,控制器通过卫星通信装置接收布放指令,根据布放指令发出控制信号经信号线缆传输到释放装置的吸盘式电磁铁的电源继电器,接通电源释放牵引杆;
S8.控制器根据布放指令发出控制信号给进水装置的电源继电器接通电源,配重涌入海水下沉,海床基箱体在自己的浮力作用下向上顶起船舱盖,拉开弹性橡胶绳,船舱盖与配重分离,侧系缆展开保持海床基箱体的姿态稳定,随着配重的不断下沉,海床基箱体在配重的重力牵引下下沉,最后配重静止在硬沉积物层上,完成布放。
与现有技术对比,本发明具备以下有益效果:
1.在运输过程中所述配重作为容器容纳海床基,实现远程布放,布放后作为配重,将海床基锚定在固定位置,获得对极端海况下的观测数据,拓展了人类对极端海洋状况的精确认识,避免了在高海况冒着生命危险进行海洋观测可能造成设备和人员的安全事故。
2.导流面、导流孔和侧系缆保证海床基布放过程中姿态稳定,避免布放过程中海床基翻转倾覆,布放质量更有保证,减小智能海床基丢失机率。
3.本发明可以避免在海上天气炎热,风浪大的时候,在船上组装海床基,避免影响组装质量及造成海床基丢失的情况出现。
4.在母船上组装海床基消耗非常昂贵船时费,远程布放的智能海床基节省船时费,节省海洋观测经费。
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为远程布放前的海床基示意图;
图2为远程布放后的海床基示意图;
图3为释放装置结构示意图;
图4为进水装置结构示意图;
图5为密封板示意图;
图6为进水装置为电磁阀阵列的海床基示意图
图7为海床基主箱体的结构示意图;
图8为海床基主箱体的结构示意图的俯视图。
图中:船舱盖101、侧导流孔102、主箱体103、控制器104、短内六角螺栓105、温盐深仪106、单点海流计107、声学多普勒流速剖面仪108、溶解氧记录仪109、卫星通信装置110、信号线缆111、箱盖112、导流面113、牵引环114、牵引杆115、释放装置116、外置天线117、方向指示线118、无人艇119、后牵引环120、海床基箱体121、左电磁释放器122、长内六角螺栓123、密封板124、上导流孔125、下导流孔126、橡胶密封垫127、连接环128、连接缆129、声学释放器130、倒刺131、弹性橡胶绳132、浮球133、右电磁释放 器134、配重135、橡胶垫136、海水137;
侧系缆201、软沉积物层202、硬沉积物层203;
长螺栓301、圆盘302、三角挡块303、小弹簧304、连接杆305、大弹簧306、圆柱销307、吸盘式电磁铁308、短螺栓309、机架310、密封减震垫311、三棱垫块312;
密封垫400、粗螺栓401、楔形垫块402、细螺栓403、电磁铁404、支架405、铁磁性盘406、耐腐蚀弹簧407、连杆408、挡块409;
连接缆孔501、定位孔502;
电磁阀601。
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。
实施例1
如图1所示,一种无人艇牵引的远程布放智能海床基,其包括海床基箱体121及其搭载的仪器、声学释放器130、连接缆129和配重135,声学释放器130通过连接缆129连接设置在配重135底部中间位置的连接环128;声学释放器130设置在主箱体103的几何对称轴 上,即声学释放器130的轴线与主箱体103的几何对称轴重合。在回收的时候,声学释放器130接收到来自母船的甲板单元的释放指令,打开锁扣,连接缆129与连接环128分离,海床基箱体121与配重135分离,在自己的净浮力作用下上浮到海面。海床基箱体121由箱盖112、主箱体103上和密封板124构造而成,箱盖112使用短内六角螺栓105连接在主箱体103上,密封板124使用长内六角螺栓123连接在主箱体103上。海床基箱体121搭载的仪器包括温盐深仪106、单点海流计107、声学多普勒流速剖面仪108、溶解氧记录仪109和卫星通信装置110,根据观测目的可以增减若干仪器,搭载的仪器使用摆动支架固定在箱盖112上,摆动支架图中未画出。回收的时候卫星通信装置110还可以用作信标机,向母船发送海床基上浮到海面的经纬坐标。远程布放前,卫星通信装置110一直开机工作;完成远程布放后,控制器104根据温盐深仪106采集的压力数据控制卫星通信装置110关机;回收上浮后,控制器104根据温盐深仪106采集的压力数据控制卫星通信装置110开机。
配重135为钢筋混凝土制成的平底船壳,钢筋优选使用耐海水腐蚀的不锈钢筋;配重135底部设置进水装置,在到达布放位置后,远程布放者远程控制进水装置打开配重135进水,智能海床基下沉完成布放;在运输过程中配重135内部容纳海床基箱体121及其搭载的仪器,布放后固定海床基箱体121;配重135外形为船壳形状被无人艇119牵引的时候阻力较小,配重135的平底便于其平稳坐落在硬沉积物层203上,倒刺131防止配重135水平移动。
配重135和无人艇119之间使用释放装置116、牵引杆115和牵引环114构造成可释放的连接;优选的,配重135前部设置有牵引环114,通过牵引杆115连接释放装置116,释放装置116刚性连接在无人艇119上;配重135一端设置有牵引环114,另一端设置有后牵引环120,达到配重135下沉的过程中受力对称的技术效果。方向指示线118指示的是无人艇119前进的方向。可释放的连接还可以是释放装置116刚性连接在配重135上,牵引环114设置在无人艇119上,通过牵引杆115连接释放装置116和牵引环114,这样连接不需要对无人艇加装释放装置116,不需要配备专用无人艇,租用即可,图1中未画出,也就是释放装置116、牵引杆115和牵引环114变换一种连接方法;此时,配重135两端都设置有释放装置116,即另一端设置相同的释放装置,达到配重135下沉的过程中受力对称的技术效果。
控制器104使用信号线缆111电信号连接卫星通信装置110、声学释放器130、释放装置116、进水装置和搭载的仪器,远程布放者远程控制释放装置116和进水装置完成布放。控制器104设置在主箱体103内,控制器104包括容纳在水密封外壳中的中央处理器、内存、外存、接口电路和电源,PCB电路板连接中央处理器、内存、外存和接口电路,中央处理器、内存、外存、接口电路分别连接电源,接口电路使用信号线缆111电信号连接至温盐深仪106、单点海流计107、声学多普勒流速剖面仪108、溶解氧记录仪109、卫星通信装置110和声学释放器130的接口电路;接口电路使用信号线缆111连接释放装置116的吸盘式电磁铁308的电源继电器;接口电路使用信号线缆 111连接配重135的进水装置的电源继电器。信号线缆111与各个仪器和继电器的需要断开的连接采用感应耦合器连接,或在控制器接口电路中设置保护电路,避免接头断开后造成短路损坏电路。吸盘式电磁铁308、电磁铁404和常闭式电磁阀601通过继电器与电源连接,信号线缆111传输控制信号控制继电器的闭合或打开,接通或断开它们的电源。
实施例2
如图3所示,释放装置116包括长螺栓301、圆盘302、三角挡块303、小弹簧304、连接杆305、大弹簧306、圆柱销307、吸盘式电磁铁308、短螺栓309、机架310、密封减震垫311和三棱垫块312,长螺栓301将机架310、三棱垫块312、密封减震垫311和无人艇119连接在一起,吸盘式电磁铁308使用短螺栓309连接在机架310上;连接杆305一端焊接三角挡块303,小弹簧304套在连接杆305上,连接杆305穿过机架310与圆盘302螺纹连接,圆盘302选用铁磁性材料制成,圆盘302正对吸盘式电磁铁308的吸合面;圆柱销307套上大弹簧306穿入机架310的连接孔和牵引杆115端部的连接孔之中,三角挡块303挡在圆柱销307的后面。牵引杆115的连接孔套在圆柱销307上,圆柱销307将受到牵引杆115的拉力传给机架310,再传给无人艇119。吸盘式电磁铁308通电产生吸力,吸引圆盘302拉动连接杆305和三角挡块303,三角挡块303离开圆柱销307的背面,圆柱销307在大弹簧306的弹力作用下脱离牵引杆115端部的连接孔,配重135与无人艇119分离;安装的时候吸盘式电磁铁308断电不产 生吸力,圆柱销307套上大弹簧306穿入机架310的连接孔和牵引杆115端部的连接孔之中,三角挡块303在小弹簧304弹力作用下挡住圆柱销307。本申请中暴露在海水中的零件都选用耐腐蚀防附着的材料。
控制器104使用信号线缆111连接卫星通信装置110和吸盘式电磁铁308的电源继电器,通过卫星通信装置110接收海床基远程布放者发出的布放指令,根据布放指令控制器104生成和发出控制信号给吸盘式电磁铁308的电源继电器控制其接通或断开电源。
实施例3
如图1和图5所示,进水装置包括密封板124、橡胶密封垫127、左电磁释放器122和右电磁释放器134,密封板124与配重135的底部之间设置有橡胶密封垫127,密封板124压紧在橡胶密封垫127上,其两端卡在左电磁释放器122和右电磁释放器134之下;橡胶密封垫127嵌入钢丝强化橡胶密封垫127强度和刚度,避免持续的密封压力将橡胶从上导流孔125或下导流孔126中挤出,降低密封效果;配重135上设置有下导流孔126阵列,密封板124上设置有上导流孔125阵列,密封板124上定位孔502与设置在配重135底部的定位销配合,图中未画出定位销,保证下导流孔126阵列和上导流孔125阵列交错布置,增强橡胶密封垫127的密封效果,保证海床基箱体121与配重135位置相对固定。密封板124中心位置设置有供连接缆129穿过的连接缆孔501。
如图1和图4所示,控制器104使用信号线缆111电信号连接卫 星通信装置110、左电磁释放器122和右电磁释放器134的电磁铁404的电源继电器;控制器104通过卫星通信装置110接收海床基远程布放者发出的布放指令,根据布放指令控制器104生成和发出控制信号给左电磁释放器122和右电磁释放器134的电磁铁404的电源继电器,控制其接通或断开,电磁铁404通电产生吸力,吸引铁磁性盘406,拉动连杆408和挡块409,密封板124在橡胶密封垫127的弹力作用下脱离配重135;海水从下导流孔126涌入配重135,配重135下沉。
实施例4
如图4所示,左电磁释放器122和右电磁释放器134结构相同,且均包括密封垫400、粗螺栓401、楔形垫块402、细螺栓403、电磁铁404、支架405、铁磁性盘406、耐腐蚀弹簧407、连杆408、挡块409和信号线缆111,粗螺栓401连接配重135、楔形垫块402、密封垫400和支架405为一体,细螺栓403将电磁铁404固定在支架405上,连杆408和挡块409焊接在一起,连杆408穿过耐腐蚀弹簧407和支架405上的安装孔,螺纹连接铁磁性盘406,铁磁性盘406正对电磁铁404,控制器104使用信号线缆111连接电磁铁404的电源继电器,控制其接通或断开。控制器104发出控制信号给电磁铁404的电源继电器,电磁铁404通电产生吸力,吸引铁磁性盘406,拉动连杆408和挡块409,密封板124在橡胶密封垫127的弹力作用下脱离配重135;安装过程中电磁铁404处于断电状态,密封板124端部斜面压缩挡块409端部的斜面,挡块409压缩耐腐蚀弹簧407,密封板124上表面与挡块409接触,挡块409挡住密封板124。
实施例5
如图6所示,进水装置还可以是设置在每个下导流孔126处的常闭式电磁阀601阵列,控制器104使用信号线缆111电信号连接卫星通信装置110和配重135的常闭式电磁阀601阵列的电源继电器,控制器104通过卫星通信装置110接收海床基远程布放者发出的布放指令,根据布放指令控制器104发出控制信号给常闭式电磁阀601阵列的继电器接通电源,常闭式电磁阀601阵列打开海水137注入配重135。常闭式电磁阀601阵列同时打开并保持到智能海床基坐底或常闭式电磁阀601阵列的电源耗尽,对称布置的多进水孔是实现海床基箱体下降过程中保持姿态稳定的前提条件。常闭式电磁阀601阵列代替了实施例1中的由密封板124、橡胶密封垫127、左电磁释放器122和右电磁释放器134构造的进水装置。
实施例6
如图7、图8所示,主箱体103上设置有侧导流孔102和导流面113。主箱体103上部为正棱台或圆台,优选正八棱台,对应的海床基箱体121下部为正棱柱或圆柱,优选正八棱柱,侧导流孔102对称布置在正棱台的八个侧面,导流面113中间向下凸起,优选光滑的球面或椭球面。海床基的几何对称轴指的是正棱台和正棱柱的多个横截面的正多边形边形的中心的连线;海床基布放过程中,海水经过下导流孔126和上导流孔125,被导流面113平均分为八股海流,分别从侧导流孔102流出主箱体103,八股海流同时对主箱体103产生阻力,与不分流的海床基比较,均分的八股海流对下沉中海床基的阻力对称, 阻力的合力位于海床基的几何对称轴上,主箱体103更容易保持下降过程的姿态稳定。同时,通过调配搭载的仪器或浮球的安装位置,实现海床基箱体121及其搭载的仪器和浮球净浮力的合力位于海床基的几何对称轴上,如图1中点划线所示;连接缆129提供的配重135牵引海床基箱体121向下运动的力也位于此点划线上,换言之,海床基箱体121下降过程受到海水阻力的合力、海床基箱体121及其搭载的仪器和浮球净浮力的合力位于海床基的几何对称轴上和配重135牵引力都作用在此点划线上,从而减小翻转力矩,达到减小海床基的倾覆机率,保持海床基箱体121下降过程的姿态稳定。同时,导流面113分隔沉积物与搭载的仪器,避免搭载的仪器直接接触沉积物污损仪器。
如图2所示,密封板124和配重135之间设置至少3条侧系缆201,海床基箱体121的底面与配重135顶面平行的状态时,所有侧系缆201处于松弛状态,也就是侧系缆201的长度比图2中所示的长度长百分之一至百分之二,此时,只有连接缆129提供配重135牵引海床基箱体121向下运动的力,由于加工公差和安装误差的存在和下降过程中受到海流的不均匀扰动,可能存在极小的翻转力矩,当海床基箱体121相对于配重135发生倾斜,侧系缆201其中的一条或几条才受到拉力,其产生的力矩平衡反转力矩,进一步保持海床基箱体121下降过程的姿态稳定。
每根侧系缆201至少包含一段海水可以腐蚀的材料制成的细丝,如用砂纸打磨掉镀锌层的镀锌铁丝,布放在海水中,镀锌铁丝被海水 腐蚀,回收海床基的时候镀锌铁丝已经不能承受拉力。也就是剪断一根塑料绳,在断口处连接一段直径为直径一毫米的打磨掉镀锌层的镀锌铁丝制成侧系缆201,这是因为塑料绳柔韧性较好,去除镀锌层的铁丝容易被海水腐蚀,达到延时断开侧系缆201的技术效果。侧系缆201还可以是耐腐蚀材料制成的绳子,此时所有侧系缆201总的拉断力小于海床基的净浮力,优选的,总的拉断力等于0.2至0.3倍海床基的净浮力,确保回收海床基的时候,海床基的净浮力拉断所有侧系缆201。
实施例7
在配重135的顶部设置有船舱盖101,在配重135和船舱盖101之间设置橡胶垫136,在船舱盖101和配重135上捆绑有弹性橡胶绳132,弹性橡胶绳132的拉脱力小于海床基箱体121的净浮力。船舱盖101由玻璃钢制成,其表面贴反光铝箔,反射太阳辐射,反光铝箔表面喷涂透明清漆,防止海水137腐蚀铝箔。船舱盖101起到防晒隔热的作用,防止仪器高温老化,尤其是仪器内部安装的电池,长时间高温缩短电池寿命。铝箔一定程度屏蔽了卫星通信信号,外置天线117增加接收信号的强度,减低卫星通信装置110功率、提高传输码率和可靠性;卫星通信装置110使用感应耦合器和信号线缆111连接外置天线117,保证外置天线117脱离后,卫星通信装置110使用内置天线继续正常工作。
实施例8
一种无人艇牵引的远程布放智能海床基的布放方法,其步骤如下:
S1.在实验室出海准备的时候,按观测需求选定海床基挂载的仪器,检查设置维护选定的观测仪器,根据预估的布放区域的环境参数设计海床基,选定浮球133和配重135,预制配重135;
S2.将各个仪器组装到海床基后,通过调配搭载的仪器或浮球的在海床基箱体121中的安装位置,实现海床基箱体121及其搭载的仪器和浮球净浮力的合力位于海床基的几何对称轴上,便于保持海床基箱体121下降过程的姿态稳定;
S3.声学释放器130通过连接缆129连接在配重135的连接环128上;在配重135底部铺设橡胶密封垫127,将密封板124卡在左电磁释放器122和右电磁释放器134之下,连接从控制器104到左电磁释放器122和右电磁释放器134的电磁铁404的电源继电器的信号线缆111;海床基箱体121安装在配重135内的填充物中,填充物可以选用木屑或沙石或它们的混合物,填充物图中未画出;
S4.在船舱盖101和配重135之间铺设橡胶垫136;
S5.使用弹性橡胶绳132将船舱盖101和配重135捆扎在一起;
S6.使用释放装置116、牵引杆115和牵引环114构造成可释放的连接,连接配重135和无人艇119;使用信号线缆111连接控制器104和释放装置116的吸盘式电磁铁308的电源继电器;
S7.远程布放者使用智能终端与无人艇119的自动驾驶仪建立TCP/IP连接,在无人艇119的自动驾驶仪中设定海床基布放点的经纬坐标,无人艇119牵引配重135到达布放区域后,或者远程布放者在线操控无人艇119牵引配重135到达布放区域后,远程布放者根据 安装在无人艇119上的侧扫声呐回传的实际测量的布放环境信息判定适合布放海床基的时候,远程布放者通过卫星通信装置110与控制器104建立TCP/IP连接,发出布放指令,根据布放指令发出控制信号经信号线缆111传输到释放装置116的吸盘式电磁铁308的电源继电器,接通继电器释放牵引杆115;
S8.控制器104根据布放指令发出控制信号给进水装置的电源继电器接通电源,配重135涌入海水137下沉,海床基箱体121在自己的净浮力作用下向上顶起船舱盖101,拉开弹性橡胶绳132,船舱盖101与配重135分离,侧系缆201展开保持海床基箱体121的姿态稳定,随着配重135的不断下沉,海床基箱体121在配重135的重力牵引下不断下沉,最后配重135静止下来,倒刺131插入软沉积物层202和硬沉积物层203交界的沉积物中;坐在硬沉积物层203上,完成布放。
可以在无人艇119上安装远程监控系统监测布放过程,本发明所使用的零部件均需要遵守海洋仪器设计规范要求,充分考虑零部件耐腐蚀、防附着和耐水压的要求。
总之,本发明虽然列举了上述优选实施方式,释放装置116和进水装置还可以以其它结构实施,如释放装置116可以由电机驱动的锁扣实现,进水装置可以由控制器104控制的水泵实现进水,限于篇幅不在一一穷举实施例,但是应该说明,虽然本领域的技术人员可以进行各种变化和改型,除非这样的变化和改型偏离了本发明的范围,否则都应该包括在本发明的保护范围内。
Claims (9)
- 一种无人艇牵引的远程布放智能海床基,包括海床基箱体(121)及其搭载的仪器、声学释放器(130)、连接缆(129)和配重(135),所述声学释放器(130)通过所述连接缆(129)连接设置在所述配重(135)的底部中间位置连接环(128),其特征在于:所述配重(135)为钢筋混凝土制成的平底船壳;所述配重(135)底部设置进水装置;所述配重(135)和无人艇(119)之间使用释放装置(116)、牵引杆(115)和牵引环(114)构造成可释放的连接;控制器(104)使用信号线缆(111)电信号连接卫星通信装置(110)、所述释放装置(116)和所述进水装置;远程布放者通过所述卫星通信装置(110)向所述控制器(104)发送控制指令,远程控制所述释放装置(116)和所述进水装置完成智能海床基的布放。
- 根据权利要求1所述的无人艇牵引的远程布放智能海床基,其特征在于,所述释放装置(116)包括长螺栓(301)、圆盘(302)、三角挡块(303)、小弹簧(304)、连接杆(305)、大弹簧(306)、圆柱销(307)、吸盘式电磁铁(308)、短螺栓(309)、机架(310)、密封减震垫(311)和三棱垫块(312),所述控制器(104)使用所述信号线缆(111)连接所述吸盘式电磁铁(308)的电源继电器;所述长螺栓(301)将所述机架(310)、所述三棱垫块(312)、所述密封减震垫(311)和所述无人艇(119)连接在一起,所述吸盘式电磁铁(308)使用所述短螺栓(309)连接在所述机架(310)上;所述连接杆(305)一端焊接所述三角挡块(303),所述小弹簧(304)套设在所述连接杆(305)上,所述连接杆(305)另一端穿过所述机架(310)与所 述圆盘(302)螺纹连接,所述圆盘(302)选用铁磁性材料制成,所述圆盘(302)正对所述吸盘式电磁铁(308)的吸合面;所述大弹簧(306)套设在所述圆柱销(307)上,所述圆柱销(307)穿入所述机架(310)的连接孔和所述牵引杆(115)端部的连接孔之中,所述大弹簧(306)位于所述机架(310)的连接孔上方,所述三角挡块(303)位于所述圆柱销(307)上方且与所述圆柱销(307)限位配合。
- 根据权利要求1所述的无人艇牵引的远程布放智能海床基,其特征在于,所述进水装置包括密封板(124)、橡胶密封垫(127)、左电磁释放器(122)和右电磁释放器(134),所述密封板(124)与所述配重(135)的底部之间设置有所述橡胶密封垫(127),所述密封板(124)压紧在所述橡胶密封垫(127)上,所述密封板(124)两端分别卡接在所述左电磁释放器(122)、所述右电磁释放器(134)下方;所述配重(135)上设置有下导流孔(126),所述密封板(124)上设置有上导流孔(125),所述下导流孔(126)和所述上导流孔(125)交错布置,所述控制器(104)使用所述信号线缆(111)电信号连接所述卫星通信装置(110)、所述左电磁释放器(122)和所述右电磁释放器(134)中电磁铁(404)的电源继电器;所述控制器(104)通过所述卫星通信装置(110)接收海床基远程布放者发出的布放指令,根据布放指令所述控制器(104)生成和发出控制信号给所述电磁铁(404)的电源继电器,控制所述密封板(124)脱离所述配重(135)。
- 根据权利要求3所述的无人艇牵引的远程布放智能海床基,其特征在于,所述左电磁释放器(122)和所述右电磁释放器(134) 结构相同,且均包括密封垫(400)、粗螺栓(401)、楔形垫块(402)、细螺栓(403)、电磁铁(404)、支架(405)、铁磁性盘(406)、耐腐蚀弹簧(407)、连杆(408)、挡块(409)和所述信号线缆(111),所述粗螺栓(401)连接所述配重(135)、所述楔形垫块(402)、所述密封垫(400)和所述支架(405)为一体,所述细螺栓(403)将所述电磁铁(404)固定在所述支架(405)上,所述连杆(408)一端与所述挡块(409)焊接在一起,所述连杆(408)另一端依次穿过所述耐腐蚀弹簧(407)、所述支架(405)上的安装孔并与所述铁磁性盘(406)螺纹连接,所述铁磁性盘(406)正对所述电磁铁(404),所述控制器(104)使用所述信号线缆(111)连接所述电磁铁(404)的电源继电器,控制其接通或断开。
- 根据权利要求1所述的无人艇牵引的远程布放智能海床基,其特征在于,所述海床基箱体(121)包括箱盖(112)和主箱体(103),主箱体(103)上设置有引导经过海流的侧导流孔(102)和导流面(113)。
- 根据权利要求3所述的无人艇牵引的远程布放智能海床基,其特征在于,所述密封板(124)和所述配重(135)之间设置有至少三条侧系缆(201)。
- 根据权利要求3所述的无人艇牵引的远程布放智能海床基,其特征在于,所述橡胶密封垫(127)嵌入钢丝,所述钢丝用于强化所述橡胶密封垫(127)的强度和刚度。
- 根据权利要求1所述的无人艇牵引的远程布放智能海床基,其特征在于,所述配重(135)的顶部设置有船舱盖(101),所述配 重(135)和所述船舱盖(101)之间设置有橡胶垫(136),所述船舱盖(101)和所述配重(135)上捆绑有弹性橡胶绳(132),所述弹性橡胶绳(132)的拉脱力小于所述海床基箱体(121)的净浮力。
- 根据权利要求1至8中任一项所述的无人艇牵引的远程布放智能海床基,其特征在于,其布放方法如下:S1.在实验室出海准备时,按观测需求选定海床基挂载的仪器,检查设置和维护选定的观测仪器,根据预估的布放区域的环境参数设计海床基,选定浮球(133)和配重(135)的参数,预制配重(135);S2.将各个仪器组装到海床基后,通过调配搭载的仪器或浮球(133)在海床基箱体(121)中的安装位置,实现海床基箱体(121)及其搭载的仪器和浮球(133)净浮力的合力位于海床基的几何对称轴上;S3.声学释放器(130)通过连接缆(129)连接在连接环(128)上;在配重(135)底部铺设橡胶密封垫(127),将密封板(124)卡在左电磁释放器(122)和右电磁释放器(134)之下,信号线缆(111)连接控制器(104)、左电磁释放器(122)和右电磁释放器(134),海床基箱体(121)安装在配重(135)内的填充物中;S4.在船舱盖(101)和配重(135)之间铺设橡胶垫(136);S5.使用弹性橡胶绳(132)将船舱盖(101)和配重(135)捆扎在一起;S6.配重(135)使用释放装置(116)、牵引环(114)和牵引杆(115)连接无人艇(119);使用信号线缆(111)连接控制器(104) 和释放装置(116)的吸盘式电磁铁(308)的电源继电器;S7.远程布放者使用智能终端与无人艇(119)的自动驾驶仪建立TCP/IP连接,在无人艇(119)的自动驾驶仪中设定海床基布放点的经纬坐标,无人艇(119)牵引配重(135)到达布放区域后,或者远程布放者在线操控无人艇(119)牵引配重(135)到达布放区域后,远程布放者根据安装在无人艇(119)上的侧扫声呐回传的实际测量的布放环境信息判定适合布放海床基的时候,远程布放者与控制器(104)建立TCP/IP连接,发出布放指令,控制器(104)通过卫星通信装置(110)接收布放指令,根据布放指令发出控制信号经信号线缆(111)传输到释放装置(116)的吸盘式电磁铁(308)的电源继电器,接通电源释放牵引杆(115);S8.控制器(104)根据布放指令发出控制信号给进水装置的电源继电器接通电源,配重(135)涌入海水(137)下沉,海床基箱体(121)在自己的浮力作用下向上顶起船舱盖(101),拉开弹性橡胶绳(132),船舱盖(101)与配重(135)分离,侧系缆(201)展开保持海床基箱体(121)的姿态稳定,随着配重(135)的不断下沉,海床基箱体(121)在配重(135)的重力牵引下下沉,最后配重(135)静止在硬沉积物层(203)上,完成布放。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110607467.2 | 2021-06-01 | ||
CN202110607467.2A CN113371159B (zh) | 2021-06-01 | 2021-06-01 | 一种无人艇牵引的远程布放智能海床基 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022252767A1 true WO2022252767A1 (zh) | 2022-12-08 |
Family
ID=77575265
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/082153 WO2022252767A1 (zh) | 2021-06-01 | 2022-03-22 | 一种无人艇牵引的远程布放智能海床基 |
Country Status (3)
Country | Link |
---|---|
CN (1) | CN113371159B (zh) |
WO (1) | WO2022252767A1 (zh) |
ZA (1) | ZA202204531B (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116007986A (zh) * | 2022-12-15 | 2023-04-25 | 青岛地质工程勘察院(青岛地质勘查开发局) | 一种具有水平纠正功能的海底沉积物探测取样装置 |
CN118107760A (zh) * | 2024-04-30 | 2024-05-31 | 青岛海洋地质研究所 | 一种基于科考船投放式潜航式无人艇 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113371159B (zh) * | 2021-06-01 | 2024-05-03 | 广东海洋大学 | 一种无人艇牵引的远程布放智能海床基 |
CN115807834B (zh) * | 2023-02-06 | 2023-06-09 | 天津大学 | 减震式海底基准站 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101531321B1 (ko) * | 2014-07-11 | 2015-06-25 | 대한민국 | 계류식 해양환경 관측부이 |
CN108128411A (zh) * | 2018-01-23 | 2018-06-08 | 阳江核电有限公司 | 一种核电厂海上辐射监测浮标及其布设方法 |
CN110641622A (zh) * | 2019-10-18 | 2020-01-03 | 上海海洋大学 | 一种采用无人船投放浮标的装置和方法 |
CN111301645A (zh) * | 2020-03-24 | 2020-06-19 | 杭州海询科技有限公司 | 海床基 |
CN213274245U (zh) * | 2020-11-02 | 2021-05-25 | 广东海洋大学 | 一种自适应坐底观测系统 |
CN113371159A (zh) * | 2021-06-01 | 2021-09-10 | 广东海洋大学 | 一种无人艇牵引的远程布放智能海床基 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2716948A1 (de) * | 1977-04-16 | 1978-10-19 | Babcock Ag | Anordnung zum positionieren einer schwimmenden offshore-plattform auf einem gruendungskoerper |
DE2856475A1 (de) * | 1978-12-28 | 1980-07-31 | Maschf Augsburg Nuernberg Ag | Gelenkverbindung eines beines einer bohr- und/oder produktionsplattform mit dem zugeordneten gruendungskoerper |
DE102010020995B4 (de) * | 2010-05-11 | 2014-12-04 | Werner Möbius Engineering GmbH | Gründungssystem für die Gründung einer Offshore-Windenergieanlage |
CN202089226U (zh) * | 2011-03-25 | 2011-12-28 | 国家海洋局第一海洋研究所 | 浮体仪器一体化抗拖网海床基 |
CN202213700U (zh) * | 2011-08-26 | 2012-05-09 | 国家海洋环境监测中心 | 自平衡抗吸附海床基 |
CN103713326A (zh) * | 2013-12-09 | 2014-04-09 | 国家深海基地管理中心 | 海底地震仪抗拖网海床基 |
CN104816805A (zh) * | 2015-03-21 | 2015-08-05 | 云升军 | 一种新型海床基 |
CN206644966U (zh) * | 2017-03-07 | 2017-11-17 | 青岛科技大学 | 多功能自重下沉式抗拖网海床基 |
CN110274580A (zh) * | 2019-07-22 | 2019-09-24 | 青岛星铂创新科技有限公司 | 一种海床基 |
CN111422328A (zh) * | 2020-03-25 | 2020-07-17 | 自然资源部第一海洋研究所 | 一种自平衡下降式海床基 |
CN112325859B (zh) * | 2020-11-02 | 2024-02-27 | 广东海洋大学 | 一种漂浮式海床基 |
-
2021
- 2021-06-01 CN CN202110607467.2A patent/CN113371159B/zh active Active
-
2022
- 2022-03-22 WO PCT/CN2022/082153 patent/WO2022252767A1/zh active Application Filing
- 2022-04-22 ZA ZA2022/04531A patent/ZA202204531B/en unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101531321B1 (ko) * | 2014-07-11 | 2015-06-25 | 대한민국 | 계류식 해양환경 관측부이 |
CN108128411A (zh) * | 2018-01-23 | 2018-06-08 | 阳江核电有限公司 | 一种核电厂海上辐射监测浮标及其布设方法 |
CN110641622A (zh) * | 2019-10-18 | 2020-01-03 | 上海海洋大学 | 一种采用无人船投放浮标的装置和方法 |
CN111301645A (zh) * | 2020-03-24 | 2020-06-19 | 杭州海询科技有限公司 | 海床基 |
CN213274245U (zh) * | 2020-11-02 | 2021-05-25 | 广东海洋大学 | 一种自适应坐底观测系统 |
CN113371159A (zh) * | 2021-06-01 | 2021-09-10 | 广东海洋大学 | 一种无人艇牵引的远程布放智能海床基 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116007986A (zh) * | 2022-12-15 | 2023-04-25 | 青岛地质工程勘察院(青岛地质勘查开发局) | 一种具有水平纠正功能的海底沉积物探测取样装置 |
CN116007986B (zh) * | 2022-12-15 | 2023-08-22 | 青岛地质工程勘察院(青岛地质勘查开发局) | 一种具有水平纠正功能的海底沉积物探测取样装置 |
CN118107760A (zh) * | 2024-04-30 | 2024-05-31 | 青岛海洋地质研究所 | 一种基于科考船投放式潜航式无人艇 |
Also Published As
Publication number | Publication date |
---|---|
CN113371159A (zh) | 2021-09-10 |
ZA202204531B (en) | 2022-11-30 |
CN113371159B (zh) | 2024-05-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022252767A1 (zh) | 一种无人艇牵引的远程布放智能海床基 | |
WO2022252771A1 (zh) | 一种无人艇牵引的远程布放智能潜标 | |
CN108216492B (zh) | 一种实现海洋数据区域监测的高精度潜标阵系统 | |
US11136740B1 (en) | Underwater traffic tunnel | |
JP5921647B1 (ja) | 潮流又は海流を使用して発電する海域での発電設備 | |
CN109835438A (zh) | 一种升降式潜标装置 | |
RU2375247C1 (ru) | Способ и устройство для возврата подводного оборудования | |
US4231312A (en) | Flexible ocean upwelling pipe | |
KR101950805B1 (ko) | 부유식 해상시설물 | |
CA2900477C (en) | Apparatus for mooring floater using submerged pontoon | |
CN112606954B (zh) | 一种具有数据回收仪的潜标及其回收方法 | |
KR101011887B1 (ko) | 해양관측용 부표 | |
US4234269A (en) | Deployment, release and recovery of ocean riser pipes | |
CN112407154A (zh) | 一种浮标系统 | |
CN215245386U (zh) | 一种海床基用主箱体 | |
CN214267883U (zh) | 一种浮标系统 | |
JP7017200B2 (ja) | 監視計測システム及び監視計測塔の設置方法 | |
US4273068A (en) | Connection of cold water riser pipes to supporting structures | |
CN215706960U (zh) | 一种远程布放的定点观测装置用船形重力锚 | |
CN115653002A (zh) | 一种沉管的长距离水下运输方法 | |
US4208290A (en) | Self-cleaning inlet screen to an ocean riser pipe | |
CN113655192A (zh) | 一种应用于电磁耦合传输锚系的甲烷监测节点装置和系统 | |
CN106185643A (zh) | 一种水下垂直运输系统接收装置 | |
CN217918319U (zh) | 一种水泥基材料预制装配式海洋浮标 | |
CN215986027U (zh) | 一种应用于电磁耦合传输锚系的甲烷监测节点装置和系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22814815 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22814815 Country of ref document: EP Kind code of ref document: A1 |