WO2022252743A1 - 测试装置和方法 - Google Patents

测试装置和方法 Download PDF

Info

Publication number
WO2022252743A1
WO2022252743A1 PCT/CN2022/080690 CN2022080690W WO2022252743A1 WO 2022252743 A1 WO2022252743 A1 WO 2022252743A1 CN 2022080690 W CN2022080690 W CN 2022080690W WO 2022252743 A1 WO2022252743 A1 WO 2022252743A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
detection
aging
connection
test
Prior art date
Application number
PCT/CN2022/080690
Other languages
English (en)
French (fr)
Inventor
孙钮一
杨丹
梅娜
孙拓北
Original Assignee
深圳市中兴微电子技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市中兴微电子技术有限公司 filed Critical 深圳市中兴微电子技术有限公司
Priority to JP2023573242A priority Critical patent/JP2024520507A/ja
Publication of WO2022252743A1 publication Critical patent/WO2022252743A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2801Testing of printed circuits, backplanes, motherboards, hybrid circuits or carriers for multichip packages [MCP]
    • G01R31/281Specific types of tests or tests for a specific type of fault, e.g. thermal mapping, shorts testing
    • G01R31/2817Environmental-, stress-, or burn-in tests
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/26Testing of individual semiconductor devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer

Definitions

  • the present disclosure relates to, but is not limited to, the technical field of testing.
  • solder joints in electronic products such as the solder joints between the chip (IC) and the substrate (Substrate), the solder joints between the main board of the printed circuit board (PCB) and each device, etc.
  • These solder joints can be controlled folding.
  • Chip interconnect solder joints C4Bump
  • ball grid array package solder balls BGA ball
  • solder joints may fail due to electromigration, etc., which in turn affects the performance of electronic products. Therefore, the aging performance of solder joints has an important impact on the packaging reliability and board-level reliability of electronic products. In order to perform aging tests on solder joints, the aging can be accelerated by means of heating to obtain reliability indicators such as characteristic life and overcurrent limit of batch solder joints.
  • the present disclosure provides a device and method for testing solder joint aging.
  • the present disclosure provides a test device, including: a connection circuit with a plurality of installation positions, each of which is configured to connect a sample; a detection unit configured to detect the sample; a control unit, which configured to control the detection unit to detect a sample.
  • the present disclosure provides a testing method, comprising: connecting a sample to the mounting position of the testing device described herein; using the testing device to test the sample.
  • FIG. 1 is a block diagram of a device for aging testing of solder joints provided by the present disclosure
  • FIG. 2 is a schematic diagram of a circuit structure of a solder joint aging test device provided by the present disclosure
  • FIG. 3 is a schematic diagram of the state of each structure in each time period in a method of solder joint aging test provided by the present disclosure
  • FIG. 4 is a schematic diagram of the state of each switch in the aging stage and the detection stage in a method of solder joint aging test provided by the present disclosure
  • FIG. 6 is a flow chart of another solder joint aging testing method provided in the present disclosure.
  • the present disclosure may be described with reference to plan views and/or cross-sectional views by way of idealized schematic views of the present disclosure. Accordingly, the example illustrations may be modified according to manufacturing techniques and/or tolerances.
  • the present disclosure is not limited to the embodiments shown in the drawings, but includes modifications of configurations formed based on manufacturing processes. Accordingly, the regions illustrated in the figures have schematic properties, and the shapes of the regions shown in the figures illustrate the specific shapes of the regions of the elements, but are not intended to be limiting.
  • the present disclosure provides a device for testing solder joint aging.
  • the device for testing solder joint aging of the present disclosure is used to test the aging performance of solder joints in samples, so as to evaluate the life and overcurrent capability of solder joint electromigration reliability, or to realize the evaluation of solder joint electromigration reliability. Daily monitoring, or testing the quality of samples, etc.
  • the device for solder joint aging test of the present disclosure includes: a circuit unit, which includes a heater and a connecting circuit with a plurality of installation positions T, each installation position T is configured to connect a sample with a solder joint , the heater is used to heat the sample; the power supply unit is configured to supply power to the connecting circuit so that current is generated in the sample to age the solder joints; the detection unit is configured to detect the electrical properties of the sample to perform an aging test on the solder joints therein a control unit configured to control the power supply unit to supply power to the connection circuit when the device is in the aging stage, and control the detection unit to detect the electrical properties of the sample when the device is in the testing stage.
  • a circuit unit which includes a heater and a connecting circuit with a plurality of installation positions T, each installation position T is configured to connect a sample with a solder joint , the heater is used to heat the sample
  • the power supply unit is configured to supply power to the connecting circuit so that current is generated in the sample to age the solder joints
  • the sample is an object (DUT, Device Under Test) that contains at least one solder joint and needs to be tested. It can be an actual electronic product such as a chip or a printed circuit board, or it can be a test product specially used for testing. Or a test module configured to load actual electronics into it, etc.
  • DUT Device Under Test
  • the sample can be an actual electronic product such as a chip or a printed circuit board, or it can be a test product specially used for testing. Or a test module configured to load actual electronics into it, etc.
  • the device for solder joint aging test of the present disclosure includes a circuit unit, in which there is a preset connection circuit (such as a test board in the form of a printed circuit board, which can be set on a carrier), and there are multiple connections in the connection circuit.
  • a preset connection circuit such as a test board in the form of a printed circuit board, which can be set on a carrier
  • the specific form of the installation position T connecting the sample can be various, such as connecting the original input terminal and output terminal of the sample, or connecting the special test terminal of the sample, or directly connecting to a specific position of the sample, etc., as long as It is enough to ensure that the sample is electrically connected to the connection circuit, and the current can flow through the solder joint of the sample.
  • the circuit unit also includes a heater capable of heating at least the sample placed on the installation position T, so that a certain temperature stress can be applied to the sample according to requirements during the aging stage, and the aging of the solder joints therein can be accelerated.
  • a heater capable of heating at least the sample placed on the installation position T, so that a certain temperature stress can be applied to the sample according to requirements during the aging stage, and the aging of the solder joints therein can be accelerated.
  • both the above test plate and the stage can be set in an oven (heater).
  • the circuit unit only needs to provide a connection circuit with a mounting position T, and heat the samples in the connection circuit, and it is not limited to the forms of the above-mentioned test board, stage, and oven.
  • the power supply unit is configured to supply power to the connecting circuit, so that a current flows in the sample connected therein, and the aging of the solder joint is accelerated by applying a preset current stress.
  • the aging process of the solder joints in the sample under long-term natural use can be simulated in a relatively short period of time.
  • the detection unit is configured to detect the electrical properties of the sample during the aging detection stage, and the electrical properties naturally reflect the performance of the solder joints in the sample, that is, the detection unit can detect the performance of the solder joints in the sample after aging , that is, for aging tests.
  • the control unit is configured to control other units, so as to perform the aging phase, the detection phase, etc. according to a preset process.
  • control unit can specifically be a "terminal” (such as a computing device, a tablet computer, a notebook computer, a personal digital assistant, etc.), which can store preset test conditions, control signals, etc., and can send control signals to other units , receive the data fed back by other units, and process the data (such as analyzing the detection data to obtain the detection result), output (such as displaying or sending the detection result), etc.
  • a terminal such as a computing device, a tablet computer, a notebook computer, a personal digital assistant, etc.
  • the above circuit units, power supply units, detection units, control units, etc. can all be connected to a bus (such as a control bus), so that the control unit can send control signals to other units through the bus and receive data fed back by other units .
  • a bus such as a control bus
  • control unit only needs to realize two-way data communication with the circuit unit, power supply unit, and detection unit, and it does not have to use bus communication (for example, wireless communication is also possible).
  • the sample with solder joints can be installed in the connection circuit of the circuit unit (such as a test board), and heated by a heater (such as an oven), and at the same time, the power supply unit generates current to accelerate aging, and the detection unit detects Samples are used to determine the performance of the solder joints after aging, and the solder joint aging test is completed; moreover, the entire test process is automatically realized under the control of the control unit (such as a terminal), without human intervention or influence, thereby It can realize solder joint aging test with convenient operation, stable output and high measurement accuracy.
  • the control unit such as a terminal
  • the power supply unit includes multiple constant current power supplies; the control unit is configured to control the output current of the multiple constant current power supplies when the device is in an aging stage.
  • the above power supply unit can be a multi-channel constant current power supply, so that a stable current can be provided according to the form and quantity of samples that need to be aged in the connection circuit, so that each sample can obtain the required and stable current, and receive the required current stress.
  • the power supply unit may also be other forms of constant current power supply, or constant voltage power supply, or other power supplies.
  • the detection unit is configured to detect the electrical resistance of the sample.
  • the above detection unit can be a resistance detection device configured to detect the resistance value of the sample. Because when the solder joint fails due to electromigration, the resistance will often change significantly, so the aging test can be realized by detecting the resistance.
  • the detection unit can also be configured to detect other electrical properties such as voltage and current, as long as the electrical properties of the sample detected by it can reflect the aging condition of the solder joints therein.
  • control unit is configured to control the device alternately between the burn-in phase and the detection phase.
  • a detection stage can be performed, and then the aging stage can be continued, and so on. Therefore, if the solder joint failure of a certain sample is found for the first time in a certain detection stage, it can be determined that the solder joint failed in the previous aging stage, so that it can be more accurately determined that the solder joints in each sample are due to aging. and the time of failure.
  • the above aging phases and detection phases can be carried out alternately until all samples are found to be invalid (or reach the maximum preset aging time) in a certain detection phase, then this test ends and the samples (such as a batch of Electronic products) distribution of failure time.
  • the specific setting manners of the aging phase and the detection phase are not limited thereto. For example, after the aging stage lasts for a long predetermined time, only one inspection stage is carried out, and the unfailed samples in this inspection stage are regarded as qualified, and the failed samples are regarded as unqualified, and then the test is ended.
  • control unit is configured to control the detection unit to disconnect from the connection circuit when the device is in the aging phase; the control unit is configured to control the power supply unit to disconnect from the connection circuit when the device is in the detection phase.
  • the power supply unit supplies power to the connection circuit, and the detection unit can be disconnected from the connection circuit (not detected); and in the detection phase, when the detection unit detects, the power supply unit can be disconnected from the connection circuit. On (no power supplied).
  • connection of each unit in the aging phase and the detection phase is not limited to the above forms.
  • the detection unit performs detection while the power supply unit is supplying power to the connection circuit (such that the detection phase is also an aging phase).
  • connection circuit includes a plurality of parallel connection branches, and each connection branch is provided with a series installation position T and a connection switch S; the plurality of parallel connection branches are connected to the power supply unit through the power supply branch, and the power supply The branch is provided with a power switch K1; multiple parallel connection branches are connected to the detection unit through the detection branch, and the detection branch is provided with a detection switch K2; the control unit is configured to control the connection switch S, the power switch K1, and the detection switch K2.
  • connection circuit may include a plurality of parallel connection branches, each connection branch is provided with an installation position T (configured to connect samples) and controls the connection branch The connection switch S for on-off of the road; and all the parallel connection branches are respectively connected to the power supply unit and the detection unit through the power switch K1 and the detection switch K2.
  • connection branch is directly connected to the power supply unit and the detection unit (such as connecting one of their poles), and the other end is connected to the power supply unit and the detection unit respectively through the power switch K1 and the detection switch K2 (such as connecting to one pole). their other pole).
  • connection switch S it is possible to determine which samples are in In the pathway, that is to determine which samples are aged and tested.
  • control unit is configured to control the connection switches S of all the connection branches with the sample to be tested to be turned on, control the power switch K1 to be turned on, and control the detection switch K2 to be turned off when the device is in the aging stage;
  • the control unit is configured to control the connection switch S of the connection branch with the sample to be tested to turn on, control the power switch K1 to turn off, and control the detection switch K2 to turn on when the device is in the detection stage.
  • sample to be tested is the "sample to be tested”.
  • the power switch K1 can be controlled to be turned on and the detection switch K2 to be turned off (so the detection unit is disconnected from the connecting circuit), and at the same time, the sample to be aged (the sample to be tested) can be controlled
  • the connection switch S of the connection branch where it is located is turned on, so that the selected sample is aged.
  • the detection switch K2 can be controlled to be turned on and the power switch K1 is turned off (so the power supply unit is disconnected from the connection circuit), and the connection of the connection branch where the sample to be tested (the sample to be tested) is controlled is controlled.
  • the switch S is turned on, so that the selected sample is detected.
  • control unit is configured to control the connection switches S of all the connection branches with the sample to be tested to be turned on one by one in turn when the device is in the detection phase.
  • connection switches S that control the connection branches where all the samples (sample to be tested) that currently need to be detected (sample to be tested) are located are turned on one by one in turn, that is, only one connection switch S is turned on at the same time , and in this detection stage, all the connection switches S corresponding to the samples to be tested are turned on once; thus, in each detection stage, all the samples to be tested can be detected one by one.
  • control unit is configured to continuously turn off the connection switch S of the connection branch where it is located after detecting the failure of the solder joint of any sample.
  • control unit can control the connection switch S of the connection branch where the sample is located to continue to turn off (until the next test), it is neither aged nor instrumented.
  • a certain detection stage only some samples are detected (so only the connection switches S corresponding to some samples to be tested are turned on); or, multiple samples can be detected simultaneously (so these The multiple connection switches S corresponding to the sample are turned on at the same time); or, when the overall detection data (such as the total resistance) of multiple samples is abnormal (that is, there may be failed samples in multiple samples) Each sample is tested separately (that is, to determine the specific failed sample); or, after the solder joint of a certain sample fails, continue to perform aging and testing on it.
  • the present disclosure provides a method for testing solder joint aging.
  • the solder joint aging test method of the present disclosure is performed using the above solder joint aging test device. Referring to FIG. 5 , the method may include step S101 and step S102.
  • step S101 the sample with solder joints is connected to the mounting position T of the above-mentioned solder joint aging test device.
  • step S102 an aging test is performed on the solder joints in the sample with a solder joint aging test device.
  • the disclosed solder joint aging test method can ensure convenient test operation, stable output and high measurement accuracy.
  • the method may include steps S201 to S211.
  • step S201 samples are installed.
  • step S202 parameter configuration.
  • the terminal In the interactive interface of the terminal (control unit), input the conditions of the aging test, such as heating rate, holding temperature (temperature stress), cooling rate, current applied to the sample (current stress), number of samples, number of aging stages, each The preset duration of the aging stage, the failure criterion of the sample (such as how much the resistance reaches is failure), etc.
  • the conditions of the aging test such as heating rate, holding temperature (temperature stress), cooling rate, current applied to the sample (current stress), number of samples, number of aging stages, each The preset duration of the aging stage, the failure criterion of the sample (such as how much the resistance reaches is failure), etc.
  • step S203 the test starts.
  • step S204 the temperature is raised.
  • control signal 1 through the bus (represented by “signal 1" in the figure), and controls the temperature rise of the oven according to the set temperature rate until it reaches the holding temperature.
  • step S205 the aging phase.
  • control signal 2 through the bus (represented by "signal 2" in the figure), controls the multi-channel constant current power supply (power supply unit) to be turned on, the power switch K1 is turned on, the detection switch K2 is turned off, each The connection switch S of the connection branch where the sample to be tested is located is turned on, so that the current flows through each sample to be tested, and the solder joints in the samples are aged rapidly under the action of current stress and temperature stress.
  • the multi-channel constant current power supply power supply unit
  • step S206 the detection phase starts.
  • the terminal outputs a control signal 3 through the bus (represented by “signal 3" in the figure), controls the power switch K1 to turn off, the detection switch K2 is turned on, and the resistance detection device ( detection unit) is connected to the connection circuit, and all the connection switches S are temporarily turned off.
  • step S207 the detection phase.
  • the terminal controls the connection switches S of the connection branches where the samples to be tested are located to be turned on one by one, that is, only one connection switch S is turned on at the same time, and the connection switches S of the connection branches where all the samples to be tested are located are all turned on. conduction once.
  • the resistance detection device detects the resistance of the sample on the connection branch, and records the corresponding resistance value.
  • connection switch S the number in “()" behind “S" in Fig. 4 indicates the serial number of the connection switch S, that is, there are n connection switches S in total.
  • connection switch S when switching the connected connection switch S, there may be a short time between each connection switch S being turned off at the same time (that is, the previous connection switch S is turned off for a certain period of time and then the next one is turned off). Connect switch S to conduct again).
  • step S208 the detection phase ends.
  • step S209 the judgment is fed back.
  • the resistance detection equipment compares each resistance value detected this time with the preset failure standard, determines the new failure (that is, the failure is found for the first time in this detection) sample, and sends the information of the new failure sample (the sample is in position on the test plate, time to sample failure) is fed back to the terminal.
  • the terminal excludes the newly failed sample from the samples to be tested, and the connection switch S that controls the connection branch where the sample is located remains off during the subsequent process of this test.
  • the sample corresponding to S(2) i.e. the second connection switch S
  • the sample corresponding to S(2) is found to be invalid in the second detection stage, so that the second connection switch S is no longer conducting .
  • the terminal judges whether all the samples are invalid: if not, return to step S205, and if so, go to the next step.
  • step S210 the temperature is lowered.
  • the terminal sends out the control signal 1 again to control the oven to cool down according to the preset cooling rate.
  • step S211 the result is output.
  • the terminal records and processes the received detection data, and outputs a report form of the test results.
  • each detection stage is carried out at room temperature, so that the temperature will be lowered before each detection stage (correspondingly, the temperature will also be raised before each aging stage); All test data (resistance values) are sent to the terminal, which judges which samples fail, and records the specific resistance values of all samples.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Tests Of Electronic Circuits (AREA)

Abstract

一种测试装置,包括:具有多个安装位的连接电路,每个安装位配置为连接一个样品;检测单元,其配置为检测样品;控制单元,其配置为控制检测单元检测样品。一种测试方法,包括:将样品连接到测试装置的安装位上;利用测试装置对样品进行测试。

Description

测试装置和方法
相关申请的交叉引用
本申请要求2021年6月3日提交给中国专利局的第202110621034.2号专利申请的优先权,其全部内容通过引用合并于此。
技术领域
本公开涉及但不限于测试技术领域。
背景技术
电子产品中有很多焊点,如芯片(IC)中晶元与基板(Substrate)的焊点,印刷线路板(PCB)的主板与各器件的焊点等,这些焊点具体可为受控折叠芯片互连焊点(C4Bump)、球栅阵列封装焊球(BGA ball)等形式。
随着时间的推移(老化),焊点可能因为电迁移等而失效,进而影响电子产品的性能,因此焊点的老化性能对电子产品的封装可靠性、板级可靠性等均有重要影响。为对焊点进行老化测试,可通过加热等方式加速其老化,以获取批次焊点的特征寿命、过电流极限等可靠性指标。
但目前还不能实现操作便捷、输出稳定、测量精度高的焊点老化测试。
发明内容
本公开提供一种焊点老化测试的装置和方法。
第一方面,本公开提供一种测试装置,包括:具有多个安装位的连接电路,每个所述安装位配置为连接一个样品;检测单元,其配置为检测所述样品;控制单元,其配置为控制所述检测单元检测样品。
第二方面,本公开提供一种测试方法,包括:将样品连接到本文 所述的测试装置的安装位上;用所述测试装置对样品进行测试。
附图说明
图1为本公开提供的一种焊点老化测试的装置的组成框图;
图2为本公开提供的一种焊点老化测试的装置的电路结构示意图;
图3为本公开提供的一种焊点老化测试的方法中各时段各结构的状态示意图;
图4为本公开提供的一种焊点老化测试的方法中老化阶段和检测阶段各开关的状态示意图;
图5为本公开提供的一种焊点老化测试的方法的流程图;
图6为本公开提供的另一种焊点老化测试的方法的流程图。
具体实施方式
为使本领域的技术人员更好地理解本公开的技术方案,下面结合附图对本公开实施方式提供的焊点老化测试的装置和方法进行详细描述。
在下文中将参考附图更充分地描述本公开,但是所示的实施方式可以以不同形式来体现,且本公开不应当被解释为限于以下阐述的实施方式。反之,提供这些实施方式的目的在于使本公开透彻和完整,并将使本领域技术人员充分理解本公开的范围。
本公开实施方式的附图用来提供对本公开实施方式的进一步理解,并且构成说明书的一部分,与详细实施方式一起用于解释本公开,并不构成对本公开的限制。通过参考附图对详细实施方式进行描述,以上和其它特征和优点对本领域技术人员将变得更加显而易见。
本公开可借助本公开的理想示意图而参考平面图和/或截面图进行描述。因此,可根据制造技术和/或容限来修改示例图示。
在不冲突的情况下,本公开各实施方式及实施方式中的各特征可相互组合。
本公开所使用的术语仅用于描述特定实施方式,且不意欲限制 本公开。如本公开所使用的术语“和/或”包括一个或多个相关列举条目的任何和所有组合。如本公开所使用的单数形式“一个”和“该”也意欲包括复数形式,除非上下文另外清楚指出。如本公开所使用的术语“包括”、“由……制成”,指定存在所述特征、整体、步骤、操作、元件和/或组件,但不排除存在或添加一个或多个其它特征、整体、步骤、操作、元件、组件和/或其群组。
除非另外限定,否则本公开所用的所有术语(包括技术和科学术语)的含义与本领域普通技术人员通常理解的含义相同。还将理解,诸如那些在常用字典中限定的那些术语应当被解释为具有与其在相关技术以及本公开的背景下的含义一致的含义,且将不解释为具有理想化或过度形式上的含义,除非本公开明确如此限定。
本公开不限于附图中所示的实施方式,而是包括基于制造工艺而形成的配置的修改。因此,附图中例示的区具有示意性属性,并且图中所示区的形状例示了元件的区的具体形状,但并不是旨在限制性的。
第一方面,参照图1至图4,本公开提供一种焊点老化测试的装置。
本公开的焊点老化测试的装置用于对样品中的焊点的老化性能进行测试,以对焊点电迁移可靠性进行寿命和过电流能力评估,或是实现对焊点电迁移可靠性的日常监控,或是对样品的质量进行检测等。
参照图1、图2,本公开的焊点老化测试的装置包括:电路单元,其包括加热器和具有多个安装位T的连接电路,每个安装位T配置为连接一个具有焊点的样品,加热器用于加热样品;电源单元,其配置为为连接电路供电,以使样品中产生电流而焊点老化;检测单元,其配置为检测样品的电性能,以对其中的焊点进行老化测试;控制单元,其配置为在装置处于老化阶段时控制电源单元为连接电路供电,并在装置处于检测阶段时控制检测单元检测样品的电性能。
其中,样品是含有至少一个焊点的、需要被测试的对象(DUT,Device Under Test),其可为芯片、印刷线路板等实际的电子产品,也可为专门用于进行测试的测试品,或者是配置为将实际电子产品装 入其中的测试模块等。
本公开的焊点老化测试的装置包括电路单元,电路单元中有预设的连接电路(如印刷线路板形式的测试板,其可设于载台上),连接电路中有多个配置为连接样品的安装位T;样品被连接到安装位T时被载台支撑,且相当于组成连接电路的一部分。
其中,安装位T连接样品的具体形式可以是多样的,如可连接样品原有的输入端、输出端,或连接样品的专用的测试端,或直接连接在样品的某个特定位置等,只要能保证样品在电学上接入连接电路中,且电流可流过样品的焊点即可。
电路单元中还包括至少能对设于安装位T上的样品进行加热的加热器,从而可在老化阶段按照需求向样品施加一定的温度应力,加速其中的焊点老化。例如,以上测试板和载台都可设于烘箱(加热器)中。
其中,电路单元只要能提供具有安装位T的连接电路,并对连接电路中的样品进行加热即可,其不限于以上测试板、载台、烘箱的形式。
电源单元则配置为为连接电路供电,从而使连接在其中的样品中有电流流过,通过施加预设的电流应力加速焊点老化。
由此,通过加热器和电源单元的共同作用,可在较短时间内模拟样品中的焊点在长时间的自然使用下的老化过程。
检测单元则配置为在老化后的检测阶段中,检测样品的电性能,该电性能自然也反映了样品中的焊点的性能,即检测单元可检测样品中的焊点在经过老化后的性能,也就是进行老化测试。
控制单元则配置为控制其它单元,从而按照预设的流程进行老化阶段和检测阶段等。
其中,控制单元具体可为“终端”(例如可以为计算设备、平板电脑、笔记本电脑、个人数字助理等),其中可存储有预先设置的测试条件、控制信号等,可向其它单元发出控制信号,接收其它单元反馈的数据,并对数据进行处理(如分析检测数据而得出检测结果)、输出(如显示或发送检测结果)等。
其中,参照图1,以上电路单元、电源单元、检测单元、控制单元等均可与总线(如控制总线)连接,从而控制单元可通过总线向其它单元发送控制信号,并接收其它单元反馈的数据。
其中,控制单元只要能实现与电路单元、电源单元、检测单元的双向数据通信即可,其而不必须采用总线通信(如也可通过无线通信)。
本公开中,具有焊点的样品可被安装在电路单元的连接电路(如测试板)中,并被加热器(如烘箱)加热,同时通过电源单元供电产生电流以加速老化,检测单元则检测样品以确定其中焊点老化后的性能,完成焊点老化测试;而且,整个测试过程均在控制单元(如终端)的控制下自动实现,不需人的干预,也不受人的影响,从而可实现操作便捷、输出稳定、测量精度高的焊点老化测试。
在一些实施方式中,电源单元包括多路恒流电源;控制单元配置为在装置处于老化阶段时控制多路恒流电源的输出电流。
以上电源单元可为多路恒流电源,从而可根据连接电路中需要进行老化的样品的形式、数量等提供稳定的电流,使各个样品均可获得所需的、稳定的电流,受到所需的电流应力。
其中,电源单元也可为其它形式的恒流电源,或为恒压电源,或为其它电源。
在一些实施方式中,检测单元配置为检测样品的电阻。
以上检测单元可为配置为检测样品的电阻值的电阻检测设备,因为当焊点发生电迁移而失效时,往往电阻会产生明显的变化,故可通过检测电阻实现老化测试。
其中,检测单元也可配置为对电压、电流等其它电性能进行检测,只要其检测到的样品的电性能可体现其中焊点的老化情况即可。
在一些实施方式中,控制单元配置为控制装置交替处于老化阶段和检测阶段。
参照图3、图4,可以是在每持续一定时间的老化阶段后,进行一次检测阶段,之后继续老化阶段,并依次类推。从而,若在某个检测阶段第一次发现某个样品的焊点失效,则可确定该焊点就是在之前的那个老化阶段中失效的,从而比较准确的确定各个样品中的焊点因 老化而失效的时间。
例如,可以交替进行以上老化阶段和检测阶段,直到某个检测阶段中发现所有样品都已失效(或者达到最大的预设老化时间),则结束本次测试,并确定样品(如一个批次的电子产品)失效时间的分布状况。
其中,老化阶段和检测阶段的具体设置方式不限于此。例如,也可以是在老化阶段持续较长的预定时间后,仅进行一次检测阶段,以该检测阶段中未失效的样品为合格,失效的为不合格,之后即结束本次测试。
在一些实施方式中,控制单元配置为在装置处于老化阶段时,控制检测单元与连接电路断开;控制单元配置为在装置处于检测阶段时,控制电源单元与连接电路断开。
参照图3,在老化阶段中,电源单元为连接电路供电,而检测单元可与连接电路断开(不检测);而在检测阶段中,当检测单元进行检测时,电源单元可与连接电路断开(不供电)。
其中,老化阶段与检测阶段中各单元的连接也不限于以上形式。例如,也可以是检测单元在电源单元为连接电路供电的同时,进行检测(这样检测阶段同时也是老化阶段)。
在一些实施方式中,连接电路包括多个并联的连接支路,每个连接支路设有串联的安装位T和连接开关S;多个并联的连接支路通过电源支路连接电源单元,电源支路设有电源开关K1;多个并联的连接支路通过检测支路连接检测单元,检测支路设有检测开关K2;控制单元配置为控制连接开关S、电源开关K1、检测开关K2。
参照图2,作为本公开的一种示例性实施方式,以上连接电路可包括多个并联的连接支路,每个连接支路设有一个安装位T(配置为连接样品)和控制该连接支路通断的连接开关S;而所有并联的连接支路,通过电源开关K1、检测开关K2分别连接电源单元、检测单元。
例如,可参照图2,各连接支路一端直接连接电源单元和检测单元(如连接它们的一极),另一端则通过电源开关K1、检测开关K2 连接分别连接电源单元、检测单元(如连接它们的另一极)。
由此,通过控制电源开关K1、检测开关K2,即可控制电源单元、检测单元是否与连接电路相连,也就是控制是进行检测还是进行老化;而通过控制各连接开关S,可确定哪些样品处于通路中,也就是确定对哪些样品进行老化、检测。
在一些实施方式中,控制单元配置为在装置处于老化阶段时,控制所有具有待测的样品的连接支路的连接开关S导通,控制电源开关K1导通,控制检测开关K2关断;
控制单元配置为在装置处于检测阶段时,控制具有待测的样品的连接支路的连接开关S导通,控制电源开关K1关断,控制检测开关K2导通。
其中,在当前处于连接电路的所有样品中,可能并不是所有样品都需要进行检测,比如若某样品在之前的检测中已经被发现失效,则其后续就不需要被再次检测了,或者,若有的样品是为了实现电流平衡等而装入连接电路的,则其也不需被检测;而在除去各种在之后实际不再需要被检测样品后,剩余的在本次测试的后续阶段仍需要被检测的样品为“待测的样品”。
参照图3、图4,在老化阶段时,可以是控制电源开关K1导通而检测开关K2关断(故检测单元与连接电路断开),同时控制需要进行老化的样品(待测的样品)所在的连接支路的连接开关S导通,从而对选定的样品进行老化。
在检测阶段时,可以是控制检测开关K2导通而电源开关K1关断(故电源单元与连接电路断开),而控制需要进行检测的样品(待测的样品)所在的连接支路的连接开关S导通,从而对选定的样品进行检测。
在一些实施方式中,控制单元配置为在装置每次处于检测阶段时,控制所有具有待测的样品的连接支路的连接开关S轮流逐一导通。
参照图4,可以是在每个检测阶段中,控制当前需要进行检测的所有样品(待测的样品)所在的连接支路的连接开关S轮流逐一导 通,即同时只有一个连接开关S导通,且在该检测阶段中所有对应待测的样品的连接开关S均导通一次;从而,在每个检测阶段中,可实现对所有待测的样品的逐一检测。
在一些实施方式中,控制单元配置为在检测出任意样品的焊点失效后,持续关断其所在连接支路的连接开关S。
当某个检测阶段中,检测出某样品的焊点失效后,则后续可不再对其进行检测,故控制单元可控制该样品所在的连接支路的连接开关S持续关断(直到开始下一次测试),既不再对其进行老化,也不再对其进行检测。
当然,以上各开关的具体控制方式可有不同。
例如,可以是在某个检测阶段中,仅对部分样品进行检测(故仅有部分待测的样品对应的连接开关S导通);或者,也可以是同时对多个样品进行检测(故这些样品对应的多个连接开关S同时导通);或者,也可以是在多个样品的整体检测数据(如总电阻)有异常时(即多个样品中可能有失效的样品)才进一步对其中各样品进行单独检测(即确定具体的失效样品);或者,也可以是在某样品的焊点失效后,继续对其进行老化和检测等。
第二方面,参照图1至图6,本公开提供一种焊点老化测试的方法。
本公开的焊点老化测试的方法使用以上的焊点老化测试的装置进行,参照图5,所述方法可以包括步骤S101和步骤S102。
在步骤S101,将具有焊点的样品连接到上述的焊点老化测试的装置的安装位T上。
在步骤S102,用焊点老化测试的装置对样品中的焊点进行老化测试。
本公开的焊点老化测试的方法可保证测试的操作便捷、输出稳定、测量精度高。
参照图6,在一个示例性实施方式中,所述方法可包括步骤S201至步骤S211。
在步骤S201,样品安装。
将需要测试的各样品安装在测试板(连接电路)的各安装位T上,将测试板置于烘箱(加热器)中的载台上。
在步骤S202,参数配置。
在终端(控制单元)的交互界面,输入老化测试的条件,如升温速率、保温温度(温度应力)、降温速率、施加给样品的电流(电流应力)、样品个数、老化阶段次数、每个老化阶段的预设时长、样品失效判据(如电阻达到多少为失效)等。
在步骤S203,测试开始。
在终端的交互界面启动测试。
在步骤S204,升温。
参照图3,终端通过总线输出控制信号1(图中用“信号1”表示),控制烘箱按照设置的温速率温升,直至达到保温温度。
在步骤S205,老化阶段。
参照图3、图4,终端通过总线输出控制信号2(图中用“信号2”表示),控制多路恒流电源(电源单元)开启,电源开关K1导通,检测开关K2关断,各待测的样品所在的连接支路的连接开关S导通,从而电流流过各待测的样品,样品中的焊点在电流应力和温度应力的作用下加速老化。
在步骤S206,检测阶段开始。
参照图3、图4,老化阶段持续预设时长后,终端通过总线输出控制信号3(图中用“信号3”表示),控制电源开关K1关断,检测开关K2导通,电阻检测设备(检测单元)与连接电路相连,所有连接开关S暂时关断。
在步骤S207,检测阶段。
参照图4,终端控制各待测的样品所在的连接支路的连接开关S逐一导通,即同时只有一个连接开关S导通,且所有待测的样品所在的连接支路的连接开关S均导通一次。
每个连接支路的连接开关S导通时,电阻检测设备检测该连接支路上的样品的电阻,并记录对应的电阻值。
其中,图4中“S”后边“()”中的数字,表示连接开关S的 编号,即总共有n个连接开关S。
其中,参照图4,为保证检测的稳定,在切换导通的连接开关S时,之间可有短暂的时间各连接开关S同时关断(即前一个连接开关S关断一定时间后下一个连接开关S再导通)。
在步骤S208,检测阶段结束。
参照图4,在完成对当前所有待测的样品的检测后,终端控制检测开关K2和所有连接开关S均关断。
在步骤S209,反馈判断。
电阻检测设备将本次检测到的各电阻值和预设的失效标准比对,确定出新失效(即在本次检测中首次发现其失效)样品,并将新失效的样品的信息(样品在测试板上的位置,样品失效的时间)反馈回终端。
终端将新失效的样品从待测的样品中排除,控制该样品所在连接支路的连接开关S在本次测试的后续过程中一直保持关断。
例如,参照图4,其中S(2)(即第二个连接开关S)对应的样品在第二个检测阶段中被发现失效,从而该第二个连接开关S在后续就也不再导通。
终端判断是否所有样品均失效:若否则返回步骤S205,若是则进入下一步。
在步骤S210,降温。
所有样品均失效后,参照图3,终端再次发出控制信号1,控制烘箱按照预设的降温速率降温。
在步骤S211,结果输出。
终端记录并处理所接收的检测数据,输出测试结果的报告表。
其中,以上方法中的很多具体步骤可进行改变。
例如,在检测阶段的前后,以及在切换导通的连接开关S时,先将所有连接开关S关断是为保持系统稳定,但若没有该所有连接开关S同时关断的过程也是可行的;再如,也可以是每次检测阶段均是在室温进行的,从而在每次检测阶段前还要降温(相应每个老化阶段前也均要升温);再如,电阻检测设备也可直接将所有检测数据(电 阻值)发给终端,由终端判断哪些样品失效,并记录所有样品具体的电阻值等。
本公开已经公开了示例实施方式,并且虽然采用了具体术语,但它们仅用于并仅应当被解释为一般说明性含义,并且不用于限制的目的。在一些实例中,对本领域技术人员显而易见的是,除非另外明确指出,否则可单独使用与特定实施方式相结合描述的特征、特性和/或元素,或可与其它实施方式相结合描述的特征、特性和/或元件组合使用。因此,本领域技术人员将理解,在不脱离由所附的权利要求阐明的本公开的范围的情况下,可进行各种形式和细节上的改变。

Claims (9)

  1. 一种测试装置,包括:
    具有多个安装位的连接电路,每个所述安装位配置为连接一个样品;
    检测单元,其配置为检测所述样品;
    控制单元,其配置为控制所述检测单元检测样品。
  2. 根据权利要求1所述的测试装置,其中,所述测试装置还包括:
    电源单元,其配置为为所述连接电路供电;
    所述控制单元还配置为控制电源单元为连接电路供电。
  3. 根据权利要求2所述的测试装置,其中,
    所述电源单元包括恒流电源。
  4. 根据权利要求3所述的测试装置,其中,
    所述控制单元还配置为控制恒流电源的输出电流。
  5. 根据权利要求4所述的测试装置,其中,
    所述控制单元配置为根据样品的数量控制恒流电源的输出电流。
  6. 根据权利要求2所述的测试装置,其中,
    所述控制单元配置为在电源单元供电时,控制所述检测单元与连接电路断开。
  7. 根据权利要求2所述的测试装置,其中,
    所述控制单元配置为在检测单元检测时,控制所述电源单元与连接电路断开。
  8. 根据权利要求1所述的测试装置,其中,
    所述检测单元配置为检测样品的电阻。
  9. 一种测试方法,包括:
    将样品连接到所述测试装置的安装位上;所述测试装置为权利要求1至8中任意一项所述的测试装置;
    用所述测试装置对样品进行测试。
PCT/CN2022/080690 2021-06-03 2022-03-14 测试装置和方法 WO2022252743A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023573242A JP2024520507A (ja) 2021-06-03 2022-03-14 試験装置および方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110621034.2 2021-06-03
CN202110621034.2A CN115436773A (zh) 2021-06-03 2021-06-03 测试装置和方法

Publications (1)

Publication Number Publication Date
WO2022252743A1 true WO2022252743A1 (zh) 2022-12-08

Family

ID=84240495

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/080690 WO2022252743A1 (zh) 2021-06-03 2022-03-14 测试装置和方法

Country Status (3)

Country Link
JP (1) JP2024520507A (zh)
CN (1) CN115436773A (zh)
WO (1) WO2022252743A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013032931A (ja) * 2011-08-01 2013-02-14 Toyota Motor Corp はんだ接合部の寿命評価方法
KR101588963B1 (ko) * 2014-07-21 2016-01-26 삼성전기주식회사 수명 시험 장치
CN108664669A (zh) * 2017-03-27 2018-10-16 无锡市五十五度科技有限公司 一种bga焊点热寿命预测方法、测试平台及测试机箱
CN110658403A (zh) * 2019-09-30 2020-01-07 无锡市同芯恒通科技有限公司 一种焊点可靠性测试系统及方法
CN112305311A (zh) * 2020-10-12 2021-02-02 珠海市运泰利自动化设备有限公司 一种通道可配置的高效率精密直流电阻测试系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013032931A (ja) * 2011-08-01 2013-02-14 Toyota Motor Corp はんだ接合部の寿命評価方法
KR101588963B1 (ko) * 2014-07-21 2016-01-26 삼성전기주식회사 수명 시험 장치
CN108664669A (zh) * 2017-03-27 2018-10-16 无锡市五十五度科技有限公司 一种bga焊点热寿命预测方法、测试平台及测试机箱
CN110658403A (zh) * 2019-09-30 2020-01-07 无锡市同芯恒通科技有限公司 一种焊点可靠性测试系统及方法
CN112305311A (zh) * 2020-10-12 2021-02-02 珠海市运泰利自动化设备有限公司 一种通道可配置的高效率精密直流电阻测试系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
XIAO JINGJING: "Multichannel Online Lifetime Accelerating and Testing System for Light-Emitting Diodes", MASTER THESIS, TIANJIN POLYTECHNIC UNIVERSITY, CN, no. 7, 15 July 2019 (2019-07-15), CN , XP093010389, ISSN: 1674-0246 *

Also Published As

Publication number Publication date
JP2024520507A (ja) 2024-05-24
CN115436773A (zh) 2022-12-06

Similar Documents

Publication Publication Date Title
KR101924149B1 (ko) 전자기기를 위한 통합 성능검사 시스템
WO2006017980A1 (fr) Dispositif de test permettant d'evaluer la fiabilite d'une connexion
WO2022252743A1 (zh) 测试装置和方法
CN113359000B (zh) 一种在线老化测试装置
CN104749478A (zh) 压接测试电路和测试方法及其应用
US6988061B2 (en) Operational verification for product safety testers
US6956391B2 (en) Testing method for electronic component and testing device
CN112698135A (zh) 一种用于卫星供配电系统装星测试的检测系统及方法
CN208125894U (zh) 一种通用型继电器综合参数测试仪
TWI825361B (zh) 檢查裝置、檢查系統以及檢查方法
CN115656807A (zh) 继电器自动校验装置
KR20020036835A (ko) 웨이퍼 레벨 번-인과 전기적 시험 시스템 및 방법
CN104820177B (zh) 用于飞针测试的测针切换控制系统及方法
CN114556118A (zh) 包括具有用于大批量老化半导体器件的集成加热的条形插座的老化板
JPH02206249A (ja) ホームバスケーブルの検査装置
CN111562476A (zh) 一种半导体器件的测试结构及测试方法
CN113759300B (zh) 电池管理单元的性能测试方法及测试装置
CN218974516U (zh) 一种pcba功耗判定设备及系统
CN112666441A (zh) 一种基于半导体功率器件和模块的系统
CN219016435U (zh) 绝缘电阻测试装置
CN113702859B (zh) 一种电源测试装置
CN108181495A (zh) 电流电压转换测试系统及方法
KR20090130725A (ko) 전력소자 자동 진단 시스템
CN113311317A (zh) 一种电子内窥镜单板的自动测试方法及系统
CN106771624B (zh) 互连电阻在线监测系统和方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22814791

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023573242

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22814791

Country of ref document: EP

Kind code of ref document: A1