WO2022252620A1 - Agent de déplacement d'huile d'imbibition et son procédé de préparation - Google Patents

Agent de déplacement d'huile d'imbibition et son procédé de préparation Download PDF

Info

Publication number
WO2022252620A1
WO2022252620A1 PCT/CN2022/070745 CN2022070745W WO2022252620A1 WO 2022252620 A1 WO2022252620 A1 WO 2022252620A1 CN 2022070745 W CN2022070745 W CN 2022070745W WO 2022252620 A1 WO2022252620 A1 WO 2022252620A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil displacement
displacement agent
imbibition
nano
imbibition oil
Prior art date
Application number
PCT/CN2022/070745
Other languages
English (en)
Chinese (zh)
Inventor
赵聪
吴文炜
刘宇虹
孙静波
王耀国
Original Assignee
宁波锋成先进能源材料研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁波锋成先进能源材料研究院有限公司 filed Critical 宁波锋成先进能源材料研究院有限公司
Publication of WO2022252620A1 publication Critical patent/WO2022252620A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/58Compositions for enhanced recovery methods for obtaining hydrocarbons, i.e. for improving the mobility of the oil, e.g. displacing fluids
    • C09K8/584Compositions for enhanced recovery methods for obtaining hydrocarbons, i.e. for improving the mobility of the oil, e.g. displacing fluids characterised by the use of specific surfactants

Definitions

  • the application relates to a imbibition oil displacement agent and a preparation method thereof, belonging to the technical field of oil and gas field development.
  • low-permeability oil and gas reservoirs have the characteristics of poor reservoir physical properties, low formation energy, low permeability, slow conventional production, and difficult reservoir stimulation, which directly restrict the economic development of low-permeability oil and gas reservoirs.
  • This part of the reservoir is often accompanied by naturally developed fractures or a rock matrix-fracture system is formed after reservoir reconstruction. The fractures play the role of conducting energy transfer, while the rock matrix plays the role of oil storage and energy storage.
  • a kind of imbibition oil displacement agent is provided, the said imbibition oil displacement agent is added with nano-active agent material, combined with non-ionic surfactant, exerts the synergistic effect of both, and obtains an easy-to-prepare,
  • the high-efficiency imbibition displacement agent (system) suitable for low-permeability reservoirs is of great significance and economic value to improve the development efficiency of low-permeability reservoirs.
  • a kind of imbibition oil displacement agent, described imbibition oil displacement agent comprises following component:
  • the nano-active agent material is obtained by polymerizing raw materials containing double bond-modified lamellar nano-materials, hydrophilic monomers and hydrophobic monomers;
  • the hydrophilic monomer is selected from at least one of acid anhydride compounds
  • the hydrophobic monomer is at least one selected from long-chain alkyl allyl quaternary ammonium salts.
  • the percolation oil displacement agent includes the following components:
  • the percolation oil displacement agent includes the following components:
  • Non-ionic surfactant 30-40wt%
  • the percolation oil displacement agent consists of the following components:
  • the nonionic surfactant includes at least one of alkylphenol polyoxyethylene ether, fatty alcohol polyoxyethylene ether, and coconut oil fatty acid diethanolamide.
  • the alkylphenol polyoxyethylene ether includes at least one of OP-9, OP-10, and TX-10;
  • the fatty alcohol polyoxyethylene ether includes at least one of AEO-7 and AEO-9.
  • the solvent III includes water.
  • the percolation oil displacement agent includes the following components:
  • the percolation oil displacement agent includes the following components:
  • the double bond-modified lamella nanomaterial has at least one of the modifying groups shown in formula I;
  • R 1 is selected from any one of C1-C4 alkylene
  • R 2 is selected from any one of C1-C8 alkyl
  • the sheet-layer nanomaterial is selected from at least one of montmorillonite, bentonite, and flake graphite.
  • the montmorillonite is selected from sodium montmorillonite or calcium montmorillonite.
  • the long-chain alkyl allyl quaternary ammonium salt is at least one selected from long-chain alkyl allyl ammonium halides.
  • the long-chain alkyl allyl ammonium halide is selected from cetyl dimethyl propylene ammonium chloride, octadecyl dimethyl propylene ammonium chloride, tetradecyl dimethyl propylene ammonium chloride At least one of ammonium chloride, cetyl dimethyl allyl ammonium bromide.
  • the acid anhydride compound is at least one selected from maleic anhydride compounds.
  • the maleic anhydride compound is selected from at least one of maleic anhydride, methyl maleic anhydride, and ethyl maleic anhydride.
  • the nano active agent material is obtained through the following steps:
  • the mass ratio of the solution I to the solution II is 800-1200:15-25.
  • the mass ratio of the solution I to the solution II is 900-1100:18-23.
  • the mass ratio of the solution I to the solution II is 950-1050:20.
  • the mass ratio of the double bond-modified lamella nanomaterial, the hydrophilic monomer and the hydrophobic monomer is 0.05-0.5:100-200:40-100.
  • the mass ratio of the double bond-modified lamella nanomaterial, the hydrophilic monomer and the hydrophobic monomer is 0.05-0.3:140-180:50-90.
  • the mass ratio of the double bond-modified lamella nanomaterial, the hydrophilic monomer and the hydrophobic monomer is 0.05-0.2:150-160:60-80.
  • the initiator is selected from at least one of potassium persulfate, sodium persulfate, and ammonium persulfate.
  • the solution I contains a solvent I;
  • the solvent I is water.
  • the mass ratio of the hydrophobic monomer to the solvent is 50-90:500-900.
  • the mass ratio of the hydrophobic monomer to the solvent is 60-80:600-800.
  • the solution I is obtained by the following steps: mixing the double-bonded modified sheet-layer nanomaterial, the hydrophilic monomer and the hydrophobic monomer, adding the solvent I, and removing oxygen to obtain The solution I.
  • the solution II contains solvent II;
  • the solvent II is water.
  • the concentration of the initiator is 0.01-1 wt%.
  • the upper limit of the concentration of the initiator is selected from 0.005%, 0.1%, 0.2%, 0.5%, 0.8% or 1%; the lower limit is selected from 0.001%, 0.005%, 0.1%, 0.2% %, 0.5% or 0.8%.
  • the solution II is obtained through the following steps: dissolving the initiator in the solvent II and removing oxygen to obtain the solution II.
  • the conditions of the reaction include: the temperature I is 50-80°C.
  • the temperature I is 70-80°C.
  • the conditions of the reaction include: the time is 2-5 hours.
  • the time is 2.5-4.5 hours.
  • the preparation method includes the following steps: heating the solution I to the temperature II under stirring, adding the solution II dropwise, raising the temperature to the temperature I, and reacting.
  • the dropping speed is 2-7 g/min.
  • the dropping speed is 3-5 g/min.
  • the temperature II is 40-60°C.
  • the stirring speed is 150-350 rpm.
  • the heating rate is 2-8°C/min.
  • the raw materials containing the nano-active agent material and the non-ionic surfactant are mixed to obtain the osmosis oil displacement agent.
  • the preparation method comprises the following steps:
  • the rotational speeds of the stirring I and the stirring II are independently 400-600 rpm.
  • At least one of the imbibition oil displacement agent described in any one of the above, and at least one of the imbibition oil displacement agent prepared according to the preparation method described in any of the above is provided in low permeability and and/or applications in the development of fractured reservoirs.
  • This application provides a low-permeability oil reservoir imbibition oil displacement agent and its preparation method and application.
  • the imbibition oil displacement agent is mainly composed of nano-active agent materials, combined with surfactants, and exerts the synergistic effect of the two to form an easy
  • the prepared high-efficiency imbibition oil displacement agent (system) suitable for low-permeability reservoirs has great significance and economic value for improving the development efficiency of low-permeability reservoirs.
  • composition of described imbibition oil displacement agent comprises:
  • nano active agent material (1) nano active agent material
  • Nonionic surfactant one or more in alkylphenol polyoxyethylene ether, fatty alcohol polyoxyethylene ether, coconut oil fatty acid diethanolamide;
  • the imbibition oil displacement agent includes: 20-60% of nano active agent material, 10-40% of non-ionic surface active agent, and the rest is water.
  • C1-C4, C1-C8, etc. all refer to the number of carbon atoms contained in the group.
  • alkyl refers to a group formed by losing any hydrogen atom on an alkane compound molecule.
  • Alkane compounds include naphthenes, linear alkanes, and branched alkanes.
  • OP-9, OP-10, and TX-10 are alkylphenol polyoxyethylene ethers
  • AEO-7 and AEO-9 are fatty alcohol polyoxyethylene ethers.
  • the added nano-active agent material forms a continuous adsorption layer on the oil-wet rock surface through electrostatic force, hydrogen bond and other chemical bonds, forming a hydrophilic surface to enhance the wettability of the system Ability to absorb oil droplets.
  • the addition of nano-active agents increases the interfacial activity, forming a tighter and more stable adsorption arrangement at the oil-water interface, forming a strongly hydrophilic nano-film on the rock matrix wall, further improving the hydrophilicity of the rock, and further reducing the oil-water interface.
  • Tension, better emulsification and dispersion of crude oil Under the comprehensive effect of changing the wetting performance and reducing the interfacial tension performance, the imbibition efficiency is finally greatly improved.
  • the MT230 used in this application is sodium-based montmorillonite modified by double bonds, produced by Inner Mongolia Aimu Animal Health Products Co., Ltd., and the model is MT230;
  • the nano-active agent material is obtained by the following steps:
  • composition of raw materials 30wt% nano-active agent material, 20wt% fatty alcohol polyoxyethylene ether (specifically AEO-9), 20wt% coconut oil fatty acid diethanolamide, and the rest is water.
  • Preparation method add fatty alcohol polyoxyethylene ether and coconut oil fatty acid diethanolamide into water, stir until uniform at a stirring speed of 400r/min, then add nano active agent material, and stir uniformly at the same speed to obtain the osmotic Oil-absorbing agent.
  • composition of raw materials 60wt% nano-active agent material, 10wt% fatty alcohol polyoxyethylene ether (specifically AEO-9), 10wt% coconut oil fatty acid diethanolamide, and the rest is water.
  • Preparation method add fatty alcohol polyoxyethylene ether and coconut oil fatty acid diethanolamide into water, stir until uniform at a stirring speed of 400r/min, then add nano-active agent material, and stir uniformly at the same speed to obtain the osmotic Oil-absorbing agent.
  • Composition of raw materials 30wt% of nano active agent material, 20wt% of alkylphenol polyoxyethylene ether (specifically OP-10), 10wt% of coconut oil fatty acid diethanolamide, and the rest is water.
  • Preparation method add alkylphenol polyoxyethylene ether and coconut oil fatty acid diethanolamide into water, stir until uniform at a stirring speed of 400r/min, then add nano-active agent material, and stir uniformly at the same speed to obtain the described Osmosis oil displacement agent.
  • Composition of raw materials 60wt% of nano active agent material, the rest is water.
  • Preparation method add the nano-active agent material into water, stir at a stirring speed of 500 r/min until uniform, and prepare the imbibition oil displacement agent.
  • Raw material composition 30wt% fatty alcohol polyoxyethylene ether (specifically AEO-9), 30wt% coconut oil fatty acid diethanolamide, and the rest is water.
  • Preparation method Add fatty alcohol polyoxyethylene ether and coconut oil fatty acid diethanolamide into water, stir at a stirring speed of 400r/min until uniform, and prepare the imbibition oil displacement agent.
  • Chang 6 block simulated water (Chang 6 block simulated water: salinity 47470mg/L, the specific ion composition is shown in Table 1 below) to prepare sample solutions for the following performance tests.
  • Test sample Dilute the low-permeability reservoir imbibition oil displacement agent in Examples 1-3 and Comparative Examples 1-2 with Chang 6 block simulated water by 200 times to obtain the sample to be tested;
  • Test sample dilute the low-permeability oil reservoir imbibition oil displacement agent in Examples 1-3 and Comparative Examples 1-2 with the simulated water of Chang 6 block by 200 times to obtain the sample to be tested;
  • the imbibition oil displacement agents for low-permeability reservoirs in Examples 1-3 and Comparative Examples 1-2 were diluted 200 times with simulated water from Chang 6 block to obtain samples to be tested. 1 Take the sample to be tested and add carmine indicator (addition amount is 0.01wt%), keep the solution temperature at 25 ⁇ 0.2°C, pour the solution to be tested into the cuvette to the top boundary, and stick the scale to the rear wall and stand behind it ;
  • Test sample dilute the low-permeability oil reservoir imbibition flooding agent in Examples 1-3 and Comparative Examples 1-2 with the simulated water of Chang 6 block by 200 times to obtain the sample to be tested;
  • For low-permeability sandstone core slices after smoothing the cut surface with sandpaper, clean the sandstone core slices with alcohol and distilled water, and place them in an oven for one day to dry;
  • Test sample Dilute the low-permeability oil reservoir imbibition flooding agents in Examples 1-3 and Comparative Examples 1-2 by 200 times with Chang 6 block simulated water to obtain the sample to be tested;
  • core preparation the experimental The cores were drilled, cut and dried to measure the gas permeability and porosity; all experimental cores were vacuumed and saturated with simulated formation water, and the constant pressure and constant speed pump was used to displace more than 5PV to measure the water phase permeability; followed by oil flooding, Flood the experimental core to the state of irreducible water, record the volume of displaced water, and measure the permeability of the oil phase under the irreducible water;
  • Self-priming oil displacement efficiency/% (self-priming oil displacement volume/volume of water displaced by oil flooding) ⁇ 100%.
  • Test sample dilute the low-permeability reservoir imbibition oil displacement agent in Examples 1-3 by 200 times with the simulated water of Chang 6 block to obtain the sample to be tested;
  • Temperature resistance Dilute the low-permeability reservoir imbibition oil displacement agent in Examples 1-3 by 200 times with the simulated water of Chang 6 block to obtain the sample to be tested; seal the sample to be tested and place it in an oven at 150°C After aging for 3 days, after taking it out, test the performance after high-temperature aging according to the measurement methods of surface/interfacial tension, capillary self-absorption height, and contact angle.
  • Salt tolerance Dilute the low-permeability reservoir imbibition flooding agent in Examples 1-3 by 200 times with 100000 mg/L salinity simulated brine to obtain the sample to be tested. According to the measurement methods of surface/interfacial tension, capillary self-priming height, and contact angle, the performance under this salinity is tested.
  • the performance of the system after compounding the nano-active agent material and the surfactant is significantly enhanced compared with the individual nano-active agent material and surfactant, and the interfacial tension is an order of magnitude lower than that of the surfactant system.
  • the imbibition efficiency is increased by more than 15%.
  • the nano-active agent material forms a continuous adsorption layer on the surface of oil-wet rock through electrostatic force, hydrogen bond and other chemical bonds, and forms a hydrophilic surface to enhance the wettability change ability of the system and absorb oil droplets.
  • the addition of nano-active agent materials increases the interfacial activity, forms a tighter and more stable adsorption arrangement at the oil-water interface, forms a strongly hydrophilic nano-film on the rock matrix wall, further improves the hydrophilicity of the rock, and further reduces oil-water Interfacial tension, better emulsification and dispersion of crude oil.
  • Test 5 the performance test results of Examples 1, 2, and 3 after high-temperature aging are similar to those before aging, indicating that the samples have good temperature resistance and have no effect on performance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Cosmetics (AREA)
  • Medicinal Preparation (AREA)

Abstract

La présente demande concerne un agent de déplacement d'huile d'imbibition et son procédé de préparation. L'agent de déplacement d'huile d'imbibition comprend les composants suivants : 20 à 60 parties en poids d'un matériau d'agent nanoactif, et 10 à 40 parties en poids d'un tensioactif non ionique. Le matériau d'agent nanoactif est obtenu par polymérisation de matières premières qui contiennent un nanomatériau lamellaire modifié à double liaison, un monomère hydrophile et un monomère hydrophobe ; le monomère hydrophile est choisi parmi au moins un composé parmi des composés d'anhydride d'acide ; et le monomère hydrophobe est choisi parmi au moins un sel parmi les sels d'ammonium quaternaire d'alkyle allyle à chaîne longue. L'agent de déplacement d'huile d'imbibition est préparé par ajout d'un matériau d'agent nanoactif en combinaison avec un tensioactif non ionique pour obtenir un effet synergique des deux de façon à obtenir un agent (système) de déplacement d'huile d'imbibition à haute efficacité qui est facile à préparer et convient pour des réservoirs d'huile à faible perméabilité ; en outre, la présente invention présente une grande importance et une grande valeur économique pour améliorer l'efficacité de développement de réservoirs à faible perméabilité.
PCT/CN2022/070745 2021-06-02 2022-01-07 Agent de déplacement d'huile d'imbibition et son procédé de préparation WO2022252620A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110613591.XA CN113372896B (zh) 2021-06-02 2021-06-02 一种渗吸驱油剂及其制备方法
CN202110613591.X 2021-06-02

Publications (1)

Publication Number Publication Date
WO2022252620A1 true WO2022252620A1 (fr) 2022-12-08

Family

ID=77575421

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/070745 WO2022252620A1 (fr) 2021-06-02 2022-01-07 Agent de déplacement d'huile d'imbibition et son procédé de préparation

Country Status (2)

Country Link
CN (1) CN113372896B (fr)
WO (1) WO2022252620A1 (fr)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113372896B (zh) * 2021-06-02 2023-06-20 宁波锋成先进能源材料研究院有限公司 一种渗吸驱油剂及其制备方法
CN113943411A (zh) * 2021-09-24 2022-01-18 宁波锋成先进能源材料研究院有限公司 一种纳米材料及其制备方法和应用
CN114133487A (zh) * 2021-11-29 2022-03-04 宁波锋成先进能源材料研究院有限公司 改性纤维素基聚表剂、乳化降粘剂及其制备方法和在稠油降粘中的应用
CN114106809A (zh) * 2021-12-10 2022-03-01 宁波锋成先进能源材料研究院有限公司 一种聚合物驱增效剂及其制备方法及在低分子量聚合物增效体系中的应用
CN114410286A (zh) * 2021-12-31 2022-04-29 宁波锋成先进能源材料研究院有限公司 一种耐温耐盐纳米渗吸驱油剂及其制备方法和应用
CN116120907A (zh) * 2022-12-23 2023-05-16 宁波锋成纳米科技有限公司 一种致密油压裂用纳米活性增效剂及其制备方法和应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2581432A1 (fr) * 2011-10-11 2013-04-17 Nederlandse Organisatie voor toegepast -natuurwetenschappelijk onderzoek TNO Récupération améliorée d'hydrocarbures
CN104531118A (zh) * 2014-12-25 2015-04-22 郑州正佳能源环保科技有限公司 一种智能纳米驱油剂的制备方法
CN111423866A (zh) * 2020-04-30 2020-07-17 宁波锋成纳米科技有限公司 纳米驱油剂及其制备方法、应用
CN111793178A (zh) * 2020-07-20 2020-10-20 宁波锋成先进能源材料研究院 一种双亲蒙脱土及其制备方法与应用
CN111826149A (zh) * 2020-07-20 2020-10-27 宁波锋成先进能源材料研究院 一种改性纳米二氧化硅及其制备方法、应用
CN111944507A (zh) * 2020-09-01 2020-11-17 宁波锋成先进能源材料研究院有限公司 一种纳米活性剂体系及其制备方法和应用
CN112708405A (zh) * 2020-12-30 2021-04-27 宁波锋成先进能源材料研究院有限公司 一种一体化调驱剂及其制备方法和应用
CN113372896A (zh) * 2021-06-02 2021-09-10 宁波锋成先进能源材料研究院有限公司 一种渗吸驱油剂及其制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103540307B (zh) * 2012-07-12 2016-12-21 中国石油化工股份有限公司 用于提高高温油藏采收率的组合物及其制备方法
CN106010494B (zh) * 2016-05-27 2019-01-11 中国石油大学(北京) 一种低渗油藏驱油表面活性剂及其制备和产品
CN111995722B (zh) * 2020-09-01 2021-04-23 宁波锋成先进能源材料研究院有限公司 一种有机-无机杂化纳米材料及其制备方法、应用
CN112239663B (zh) * 2020-10-19 2022-07-08 中国石油大学(华东) 一种基于苯乙烯焦油的水包油乳状液驱油剂及其制备方法与应用

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2581432A1 (fr) * 2011-10-11 2013-04-17 Nederlandse Organisatie voor toegepast -natuurwetenschappelijk onderzoek TNO Récupération améliorée d'hydrocarbures
CN104531118A (zh) * 2014-12-25 2015-04-22 郑州正佳能源环保科技有限公司 一种智能纳米驱油剂的制备方法
CN111423866A (zh) * 2020-04-30 2020-07-17 宁波锋成纳米科技有限公司 纳米驱油剂及其制备方法、应用
CN111793178A (zh) * 2020-07-20 2020-10-20 宁波锋成先进能源材料研究院 一种双亲蒙脱土及其制备方法与应用
CN111826149A (zh) * 2020-07-20 2020-10-27 宁波锋成先进能源材料研究院 一种改性纳米二氧化硅及其制备方法、应用
CN111944507A (zh) * 2020-09-01 2020-11-17 宁波锋成先进能源材料研究院有限公司 一种纳米活性剂体系及其制备方法和应用
CN112708405A (zh) * 2020-12-30 2021-04-27 宁波锋成先进能源材料研究院有限公司 一种一体化调驱剂及其制备方法和应用
CN113372896A (zh) * 2021-06-02 2021-09-10 宁波锋成先进能源材料研究院有限公司 一种渗吸驱油剂及其制备方法

Also Published As

Publication number Publication date
CN113372896A (zh) 2021-09-10
CN113372896B (zh) 2023-06-20

Similar Documents

Publication Publication Date Title
WO2022252620A1 (fr) Agent de déplacement d'huile d'imbibition et son procédé de préparation
CN114410286A (zh) 一种耐温耐盐纳米渗吸驱油剂及其制备方法和应用
WO2022048008A1 (fr) Nanomatériau hybride organique-inorganique, son procédé de préparation et son utilisation
CN102464976B (zh) 驱油用组合物及其制备方法
WO2022047904A1 (fr) Nano-système d'agents actifs et procédé de préparation s'y rapportant et son application
CN109609113A (zh) 一种耐温型复合清洁压裂液及其制备方法
CN111303355B (zh) 抗高温二氧化硅Janus胶体颗粒封堵剂及其制备方法和应用
CN107522269B (zh) 多孔石墨烯/聚吡咯电极材料的制备方法
CN107282021B (zh) 一种有机-无机复合膨润土材料及其制备方法和应用
CN109455696B (zh) 一种水性碳纳米管浆料及其制备方法
CN101139718A (zh) 多效固体缓蚀阻垢棒
CN109135709B (zh) 一种适用于稠油油藏的降粘驱油剂及驱油体系
Wu et al. Novel high-hydrophilic carbon dots from petroleum coke for boosting injection pressure reduction and enhancing oil recovery
CN110003875B (zh) 一种缓慢释放型携液携砂泡排剂及其制备方法
CN110452677A (zh) 一种基于改性MoS2制备减阻剂的方法
CN113214439A (zh) 一种纳米活性剂材料及其制备方法与应用
CN113943411A (zh) 一种纳米材料及其制备方法和应用
CN111574984B (zh) 一种改性聚合物的方法、该方法制得的复配聚合物及其应用
Chen et al. Preparation and properties of graphene/carbon nanotube hybrid reinforced mortar composites
Abbas et al. Surface tension, density and viscosity studies on the associative behaviour of oxyethylene-oxybutylene diblock copolymers in water at different temperatures
CN113337265B (zh) 一种低张力降粘驱油剂及其制备方法和应用
CN102274701A (zh) 一种表面活性剂及其制备和应用
CN114106811B (zh) 二维纳米材料强化清洁压裂液及其制备方法与应用
CN113150763B (zh) 一种注水用纳米乳液增注剂及其制备方法
CN107814874A (zh) 一种纳米级耐温抗盐交联聚合物微球及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22814676

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE