WO2022252275A1 - 一种疏水浆料,液体二极管及其制备方法与应用 - Google Patents

一种疏水浆料,液体二极管及其制备方法与应用 Download PDF

Info

Publication number
WO2022252275A1
WO2022252275A1 PCT/CN2021/099389 CN2021099389W WO2022252275A1 WO 2022252275 A1 WO2022252275 A1 WO 2022252275A1 CN 2021099389 W CN2021099389 W CN 2021099389W WO 2022252275 A1 WO2022252275 A1 WO 2022252275A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
hydrophobic
diode
slurry
coating
Prior art date
Application number
PCT/CN2021/099389
Other languages
English (en)
French (fr)
Inventor
黄钢
晋义凯
袁帅杰
赵瑞溪
赵景
李峥嵘
冯梓灵
Original Assignee
五邑大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 五邑大学 filed Critical 五邑大学
Publication of WO2022252275A1 publication Critical patent/WO2022252275A1/zh

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/04Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06N3/042Acrylic polymers
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/0002Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate
    • D06N3/0006Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate using woven fabrics
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/0002Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate
    • D06N3/0015Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate using fibres of specified chemical or physical nature, e.g. natural silk
    • D06N3/0036Polyester fibres
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/0056Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the compounding ingredients of the macro-molecular coating
    • D06N3/0059Organic ingredients with special effects, e.g. oil- or water-repellent, antimicrobial, flame-resistant, magnetic, bactericidal, odour-influencing agents; perfumes
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/0056Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the compounding ingredients of the macro-molecular coating
    • D06N3/0063Inorganic compounding ingredients, e.g. metals, carbon fibres, Na2CO3, metal layers; Post-treatment with inorganic compounds
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/04Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/12Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. gelatine proteins
    • D06N3/14Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. gelatine proteins with polyurethanes
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N2209/00Properties of the materials
    • D06N2209/12Permeability or impermeability properties
    • D06N2209/126Permeability to liquids, absorption
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N2211/00Specially adapted uses
    • D06N2211/10Clothing
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N2211/00Specially adapted uses
    • D06N2211/12Decorative or sun protection articles
    • D06N2211/18Medical, e.g. bandage, prostheses, catheter

Definitions

  • the invention relates to the technical field of functional materials, in particular to a hydrophobic slurry, a liquid diode and a preparation method and application thereof.
  • liquid diodes Similar to electronic diodes that preferentially conduct current in one forward direction and block current in the reverse direction, fluidic devices that rectify a liquid into a directional flow can be considered “liquid diodes”. Such liquid diodes have broad applications in microfluidics, blood analysis, oil-water separation, and water harvesting.
  • liquid diodes There are two types of liquid diodes, one involving a hydrophobic layer and a hydrophilic layer, the Janus material. The other is all made of hydrophilic materials. Due to the existence of the hydrophilic layer in the "liquid diode” in the related art, the liquid will remain in the hydrophilic layer during the liquid transmission process, thus causing unnecessary waste.
  • the liquid diode prepared by using the hydrophobic slurry can reduce the loss in the liquid transmission process and realize the continuous and directional transmission of the liquid.
  • the present invention provides a hydrophobic slurry, and the liquid diode prepared by using the hydrophobic slurry can reduce the loss in the liquid transmission process and realize the continuous and directional transmission of the liquid.
  • the present invention also provides a preparation method of the above-mentioned hydrophobic slurry.
  • the present invention also provides the application of the above-mentioned hydrophobic slurry.
  • the invention also provides a liquid diode, which can reduce the loss in the liquid transmission process and realize the continuous and directional transmission of the liquid.
  • the present invention also provides a preparation method of the above-mentioned liquid diode.
  • the present invention also provides the application of the above-mentioned liquid diode.
  • the first aspect of the present invention provides a kind of hydrophobic slurry, and described hydrophobic slurry comprises following preparation raw material:
  • Fluorinated hydrophobic agent, nano silica and thickener Fluorinated hydrophobic agent, nano silica and thickener.
  • the fluorine-containing short-chain hydrophobic agent can reduce the surface energy of the fabric; the nano-silica can enhance the surface roughness and create a micro-nano structure; the thickener can enhance the viscosity of the slurry. Prevents size from penetrating the back of the fabric.
  • the hydrophobic slurry includes the following preparation raw materials in parts by weight: 75-85 parts of fluorine-containing hydrophobic agent; 3-7 parts of nano-silica; 2-4 parts of thickener .
  • the fluorine-containing hydrophobic agent includes a C 4-6 fluorine-containing hydrophobic agent.
  • the particle size of the nano silicon dioxide is 5nm-12nm.
  • the particle size of the nano-silica is too large, so that the nano-silica is not easily covered by the hydrophobic agent and the thickener, resulting in the shedding of the nano-silica.
  • the thickener includes at least one of polyacrylate polymer, polyurethane and polyacrylamide.
  • the second aspect of the present invention provides the preparation method of the above-mentioned hydrophobic slurry, comprising the following steps: mixing the fluorine-containing hydrophobic agent, the nano-silica and the thickener.
  • the third aspect of the present invention provides the application of the above-mentioned hydrophobic slurry in the preparation of liquid diodes.
  • the fourth aspect of the present invention provides a liquid diode, comprising the following preparation raw materials: the above-mentioned hydrophobic slurry and polyester;
  • the fifth aspect of the present invention provides the preparation method of the above-mentioned liquid diode, comprising the following steps: coating the hydrophobic slurry on the surface of polyester and drying to obtain the liquid diode.
  • the diode prepared by the invention has a double-layer structure, and the material of each layer shows hydrophobicity, but there is a difference in hydrophobicity between the double-layers.
  • the thickness of the coating is 6 ⁇ m ⁇ 36 ⁇ m.
  • the drying temperature is 110°C-130°C.
  • the sixth aspect of the present invention provides the application of the above-mentioned liquid diode in the process of preparing dehumidification materials and/or clothing fabrics.
  • the clothing fabric includes a unidirectional moisture-wicking clothing fabric.
  • the liquid diode fabric prepared by the present invention has the ability of one-way moisture transfer, the one-way transfer index reaches 966.9%, and the liquid water dynamic transfer index reaches up to 0.92, all reaching the national 5 Level standard; the liquid diode reduces the loss in the liquid transmission process, and realizes the continuous and directional transmission of the liquid; the liquid diode of the present invention not only has broad application prospects in the preparation of dehumidification materials and/or clothing fabrics; There are also potential applications in water harvesting, oil-water separation, blood testing and seawater desalination.
  • Figure 1 is a process flow diagram of an embodiment of the present invention.
  • the hydrophobic slurry is coated on the surface of the polyester, and dried to obtain the liquid diode; wherein, the hydrophobic slurry is composed of a water repellent, nano silicon dioxide and a thickener.
  • This embodiment is a preparation method of a liquid diode, comprising the following steps:
  • polyester fabric polyester woven fabric, warp density is 188 threads/10cm, weft density is 160 threads/10cm, fineness is 35tex
  • the coating thickness is 15 ⁇ m, after the coating is completed; dry at 110 ° C for 6 minutes, that is get a liquid diode.
  • This embodiment is a preparation method of a liquid diode, comprising the following steps:
  • polyester fabric polywoven fabric, with a warp density of 188 threads/10cm, a weft density of 160 threads/10cm, and a fineness of 35tex
  • dry, and iron for subsequent use.
  • the coating thickness is 15 ⁇ m, after the coating is completed; dry at 110 ° C for 6 minutes, that is get a liquid diode.
  • This embodiment is a preparation method of a liquid diode, comprising the following steps:
  • polyester fabric polywoven fabric, with a warp density of 188 threads/10cm, a weft density of 160 threads/10cm, and a fineness of 35tex
  • dry, and iron for subsequent use.
  • the coating thickness is 15 ⁇ m, after the coating is completed; dry at 110 ° C for 6 minutes, that is get a liquid diode.
  • This embodiment is a preparation method of a liquid diode, comprising the following steps:
  • polyester fabric polywoven fabric, with a warp density of 188 threads/10cm, a weft density of 160 threads/10cm, and a fineness of 35tex
  • dry, and iron for subsequent use.
  • the coating thickness is 15 ⁇ m, after the coating is completed; dry at 110 ° C for 6 minutes, that is get a liquid diode.
  • This embodiment is a preparation method of a liquid diode, comprising the following steps:
  • polyester fabric polywoven fabric, with a warp density of 188 threads/10cm, a weft density of 160 threads/10cm, and a fineness of 35tex
  • dry, and iron for subsequent use.
  • the coating thickness is 6 ⁇ m, after the coating is completed; dry at 110 ° C for 6 minutes, that is get a liquid diode.
  • This embodiment is a preparation method of a liquid diode, comprising the following steps:
  • polyester fabric polywoven fabric, with a warp density of 188 threads/10cm, a weft density of 160 threads/10cm, and a fineness of 35tex
  • dry, and iron for subsequent use.
  • the coating thickness is 13 ⁇ m, after the coating is completed; dry at 110 ° C for 6 minutes, that is get a liquid diode.
  • This embodiment is a preparation method of a liquid diode, comprising the following steps:
  • polyester fabric polywoven fabric, with a warp density of 188 threads/10cm, a weft density of 160 threads/10cm, and a fineness of 35tex
  • dry, and iron for subsequent use.
  • the thickness of the coating is 17 ⁇ m, after the coating is completed; dry at 110 ° C for 6 minutes, that is get a liquid diode.
  • This embodiment is a preparation method of a liquid diode, comprising the following steps:
  • polyester fabric polywoven fabric, with a warp density of 188 threads/10cm, a weft density of 160 threads/10cm, and a fineness of 35tex
  • dry, and iron for subsequent use.
  • This embodiment is a preparation method of a liquid diode, comprising the following steps:
  • polyester fabric polywoven fabric, with a warp density of 188 threads/10cm, a weft density of 160 threads/10cm, and a fineness of 35tex
  • dry, and iron for subsequent use.
  • the coating thickness is 29 ⁇ m, after the coating is completed; dry at 110 ° C for 6 minutes, that is get a liquid diode.
  • This embodiment is a preparation method of a liquid diode, comprising the following steps:
  • polyester fabric polywoven fabric, with a warp density of 188 threads/10cm, a weft density of 160 threads/10cm, and a fineness of 35 tex), dry it, and iron it for subsequent use.
  • the coating thickness is 36 ⁇ m, after the coating is completed; dry at 110 ° C for 6 minutes, that is get a liquid diode.
  • This comparative example is a preparation method of a liquid diode, comprising the following steps:
  • Polyester fabric (polyester woven fabric with a warp density of 188 threads/10cm, a weft density of 160 threads/10cm, and a fineness of 35tex) is weighed.
  • the calculation method of alkali reduction rate is:
  • g1 is the untreated fabric mass
  • g2 is the treated fabric mass
  • Washing in step S3 is to remove dust, grease and other impurities on the surface of the polyester fabric.
  • This comparative example is a preparation method of a liquid diode, comprising the following steps:
  • Moisture transfer was measured in accordance with GB/T 21655.2-2009 standard using EY60 moisture management tester from China Yili Company.
  • the measurement of one-way transfer index (O) and liquid water dynamic transfer index (M) adopts the formula in the built-in software of MMT.
  • the formula for calculating the one-way conveying capacity is as follows:
  • U b is the water absorption of the permeable surface
  • U t is the water absorption of the immersed surface
  • t is the total test time
  • M C 1 A BD +C 2 O D +C 3 S BD ;
  • a BD , OD and S BD are the dimensionless calculated values of water absorption rate, one-way transfer index and diffusion velocity of permeable surface, respectively.
  • m 2 is the mass of the fabric after absorbing water
  • m 1 is the mass of the fabric before absorbing water
  • m 3 is the mass of water in the test.
  • Table 1 water contact angle, cumulative one-way transport capacity and overall moisture management capacity.
  • Table 2 shows the loss rate data of the liquid diodes prepared in Example 6 and Comparative Examples 1-2 of the present invention during water transmission.
  • the liquid diode fabrics prepared in Examples 1 to 9 all have the effect of unidirectional moisture transfer, and the liquid diode prepared in Example 6 of the present invention is the best, and its unidirectional transmission index can reach 966.9% (up to Level 5 standard), the comprehensive index of liquid water dynamic transfer is 0.92. Both values are higher than the evaluation of GB/T 21655.2-2009 textile moisture absorption and quick-drying (reaching the 5th grade standard).
  • the contact angle of the coating surface in Examples 1-4 of the present invention increases with the increase in the amount of silica, and the roughness of the coating surface gradually increases, resulting in enhanced hydrophobicity and increased contact angle.
  • the contact angle of the coating surface of Example 5-10 of the present invention increases gradually with the increase of coating thickness, and this is because the increase of coating thickness causes coating surface porosity to reduce, by Laplace equation It can be seen that the Laplace force increases when the pore diameter decreases, resulting in a larger contact angle. The contact angle of the non-coated surface remained basically unchanged because no penetration occurred.
  • Examples 1 to 4 of the present invention when the non-coating contact angle is low when the amount of silica is low, the leakage phenomenon is likely to occur due to the low viscosity of the slurry, so the contact angle of the non-coating surface is relatively large; as the amount of silica increases, this phenomenon (Leakage) is improved, and the contact angle of the non-coated surface decreases; the amount of silica is further increased in the later stage, and the contact angle of the non-coated surface does not change much.
  • Example 1-3 of the present invention When the coating thickness of Example 1-3 of the present invention is constant, the contact angle difference between the coating surface and the non-coating surface increases, and the unidirectional moisture permeability index of the coating surface increases accordingly, because the hydrophobic difference between the two sides is conducive to enhancing the unidirectional conductivity. wetness.
  • Example 4 of the present invention the amount of nano-silica used is too much, resulting in a decrease in coating pores, so the path of water droplets passing through the coating surface is reduced, and the unidirectional moisture permeability index of the coating surface is reduced accordingly.
  • the unidirectional moisture permeability index of the non-coated surface decreases gradually due to the increase of the difference in hydrophobicity between the two sides.
  • Example 5 because the coating is too thin, there is little difference in water content between the two sides during the test. Therefore, although the unidirectional moisture permeability index shows a positive and a negative on both sides, the moisture management ability is very poor.
  • Example 1-3 of the present invention When the coating thickness of Example 1-3 of the present invention is constant, the contact angle difference between the coated surface and the non-coated surface increases, and the comprehensive index of liquid water dynamic transfer increases accordingly, because the difference in hydrophobicity between the two sides is conducive to enhancing the one-way moisture permeability.
  • Example 4 of the present invention the amount of nano-silica used is too much, resulting in a decrease in coating pores, so the path of water droplets passing through the coating surface decreases, and the comprehensive index of liquid water dynamic transmission decreases thereupon.
  • Example 5 of the present invention because the coating is too thin, the difference in water content on both sides is not large during the test, so the comprehensive index of liquid water dynamic transfer is very small.
  • Example 6 is an order of magnitude smaller than that in Comparative Example 1 and Comparative Example 2.
  • the results show that the "liquid diode" fabric prepared by fully hydrophobic materials can not only achieve efficient one-way moisture transfer, but also effectively reduce the loss in the process of moisture transmission. That is, when the mass fraction of the hydrophobic agent is 80%, the mass fraction of nano-silica is 5%, the mass fraction of the thickener is 3%, mechanically stirred for 20 minutes, dried at 110°C for 6 minutes, and the thickness of the coating on one side is 13 ⁇ m. The obtained polyester fabric has the best effect.
  • Comparative Example 1 the polyester was changed from hydrophobicity to hydrophilicity due to the alkali reduction treatment on the polyester, so when the water droplets were transferred from the coating side to the non-coating side, they were captured by the hydrophilic groups on the non-coating side, Water loss was caused; in Comparative Example 2, the substrate was replaced with a more hydrophilic cotton fabric, so the water loss was more.
  • the liquid diode fabric prepared by the present invention has the ability of one-way moisture transfer, the one-way transfer index reaches 966.9%, and the liquid water dynamic transfer index reaches up to 0.92, all reaching the national level 5 standard;
  • the liquid diode reduces the loss in the liquid transmission process and realizes the continuous and directional transmission of the liquid.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Abstract

一种疏水浆料,液体二极管及其制备方法与应用,所述液体二极管包括以下制备原料:疏水浆料和涤纶;所述疏水浆料包括以下制备原料:含氟疏水剂、纳米二氧化硅和增稠剂。所述液体二极管的制备方法,包括以下步骤:将所述疏水浆料涂覆于涤纶表面,烘干,即得所述液体二极管。制得的液体二极管织物具备了单向导湿的能力,单向传递指数最高达到了966.9%,液态水动态传递综合指数最高达到了0.92,均达到了国家5级标准;所述液体二极管减少了液体传输过程中的损耗,实现了液体的持续、定向传输。

Description

一种疏水浆料,液体二极管及其制备方法与应用 技术领域
本发明涉及功能材料技术领域,具体涉及一种疏水浆料,液体二极管及其制备方法与应用。
背景技术
自然界中存在许多动植物,比如猪笼草、仙人掌、沙漠甲虫和蜥蜴,它们可以巧妙地依靠自身表面的特殊微结构来控制液滴的定向运动,从而在恶劣环境下生存。类似于电子二极管优先在一个正向传导电流,而在反向阻塞电流,将液体整流到定向流动的流体装置可被认为“液体二极管”。这种液体二极管在微流体、血液分析、油水分离和水收集等领域都有广泛的应用。
液体二极管有两种,一种是涉及一个疏水层和一个亲水层,即Janus材料。另外一种是全部由亲水材料制备而成。相关技术中的“液体二极管”由于亲水层的存在,导致液体传输过程中会残留在亲水层,从而造成不必要的浪费。
因此,需要开发一种疏水浆料,利用该疏水浆料制得的液体二极管能减少液体传输过程中的损耗,实现液体的持续、定向传输。
发明内容
为解决现有技术中存在的问题,本发明提供了一种疏水浆料,利用该疏水浆料制得的液体二极管能减少液体传输过程中的损耗,实现液体的持续、定向传输。
本发明还提供了上述疏水浆料的制备方法。
本发明还提供了上述疏水浆料的应用。
本发明还提供了一种液体二极管,该液体二极管能减少液体传输过程中的损耗,实现液体的持续、定向传输。
本发明还提供了上述液体二极管的制备方法。
本发明还提供了上述液体二极管的应用。
本发明的第一方面提供了一种疏水浆料,所述疏水浆料包括以下制备原料:
含氟疏水剂、纳米二氧化硅和增稠剂。
含氟短链疏水剂起到降低织物表面能作用;纳米二氧化硅起到增强表面粗糙度,制造微纳米结构;增稠剂起到增强浆料粘度作用,在进行单面涂层整理时,防止浆料渗透到织物背面。
根据本发明的一些实施方式,所述疏水浆料包括以下重量份数的制备原料:含氟疏水剂75份~85份;纳米二氧化硅3份~7份;增稠剂2份~4份。
根据本发明的一些实施方式,所述含氟疏水剂包括C 4~6的含氟疏水剂。
碳含量较低,则疏水效果较差。
根据本发明的一些实施方式,所述纳米二氧化硅,粒径为5nm~12nm。
纳米二氧化硅的粒径过大,导致纳米二氧化硅不易被疏水剂和增稠剂包覆,造成纳米二氧化硅的脱落。
根据本发明的一些实施方式,所述增稠剂包括聚丙烯酸酯高聚物、聚氨酯和聚丙烯酰胺中的至少一种。
本发明的第二方面提供了上述疏水浆料的制备方法,包括以下步骤:将所述含氟疏水剂、所述纳米二氧化硅和所述增稠剂混合即得。
本发明的第三方面提供了上述疏水浆料在制备液体二极管中的应用。
本发明的第四方面提供了一种液体二极管,包括以下制备原料:上述疏水浆料和涤纶;
本发明的第五方面提供了上述液体二极管的制备方法,包括以下步骤:将所述疏水浆料涂覆于涤纶表面,烘干,即得所述液体二极管。
本发明制备的二极管为双层结构,每层材料均显示出疏水性但双层间有疏水性差异。
根据本发明的一些实施方式,所述涂覆,厚度为6μm~36μm。
根据本发明的一些实施方式,所述烘干的温度为110℃~130℃。
本发明的第六方面提供了上述液体二极管在制备除湿材料和/或服装面料过程中的应用。
根据本发明的一些实施方式,所述服装面料包括单向导湿服装面料。
本发明至少具备如下有益效果:本发明制得的液体二极管织物具备了单向导湿的能力,单向传递指数最高达到了966.9%,液态水动态传递综合指数最高达到了0.92,均达到了国家5级标准;该液体二极管减少了液体传输过程中的损耗,实现了液体的持续、定向传输;本发明的液体二极管不仅在制备除湿材料和/或服装面料中存在广阔的应用前景;同时还在雾水收集,油水分离,血液检测和海水淡化等方面也具备应用潜力。
附图说明
图1为本发明实施方式的工艺流程图。
具体实施方式
以下将结合实施例对本发明的构思及产生的技术效果进行清楚、完整地描述,以充分地理解本发明的目的、特征和效果。显然,所描述的实施例只是本发明的一部分实施例,而不是全部实施例,基于本发明的实施例,本领域的技术人员在不付出创造性劳动的前提下所获得的其他实施例,均属于本发明保护的范围。
本发明实施方式的工艺流程图见图1,由图1得知:
在涤纶表面涂覆疏水浆料,烘干即得液体二极管;其中,疏水浆料由防水剂、纳米二氧化硅和增稠剂组成。
实施例1
本实施例为一种液体二极管的制备方法,包括以下步骤:
S1、涤纶织物(涤纶机织物,经密为188根/10cm,纬密为160根/10cm,细度为35tex)前处理:
将涤纶织物水洗干净,烘干,熨平备用。
S2、制备疏水浆料:
按质量百分数计,将80%防水剂(上海赛超化工助剂有限公司MT410)、3%纳米二氧化硅(麦克林,粒径为15nm,比表面积300±50m 2/g,CAS号:68611-44-9)和3%增稠剂(佛山市川化富联精细化工有限公司ATF)混合(余量为水),在机械搅拌下持续20min得到疏水浆料。
S3、如图1所示,将上述疏水浆料使用棒涂法在前处理后的涤纶织物一侧进行涂覆,涂层厚度为15μm,涂覆完成后;在110℃下烘干6min,即得液体二极管。
实施例2
本实施例为一种液体二极管的制备方法,包括以下步骤:
S1、涤纶织物前处理:
将涤纶织物(涤纶机织物,经密为188根/10cm,纬密为160根/10cm,细度为35tex)水洗干净,烘干,熨平备用。
S2、制备疏水浆料:
按质量百分数计,将80%防水剂(上海赛超化工助剂有限公司MT410)、4%纳米二氧化硅(麦克林,粒径为15nm,比表面积300±50m 2/g,CAS号:68611-44-9)和3%增稠剂(佛山市川化富联精细化工有限公司ATF)混合(余量为水),在机械搅拌下持续20min得到疏水浆料。
S3、如图1所示,将上述疏水浆料使用棒涂法在前处理后的涤纶织物一侧进行涂覆,涂层厚度为15μm,涂覆完成后;在110℃下烘干6min,即得液体二极管。
实施例3
本实施例为一种液体二极管的制备方法,包括以下步骤:
S1、涤纶织物前处理:
将涤纶织物(涤纶机织物,经密为188根/10cm,纬密为160根/10cm,细度为35tex)水洗干净,烘干,熨平备用。
S2、制备疏水浆料:
按质量百分数计,将80%防水剂(上海赛超化工助剂有限公司MT410)、5%纳米二氧化硅(麦克林,粒径为15nm,比表面积300±50m 2/g,CAS号:68611-44-9)和3%增稠剂(佛山市川化富联精细化工有限公司ATF)混合(余量为水),在机械搅拌下持续20min得到疏水浆料。
S3、如图1所示,将上述疏水浆料使用棒涂法在前处理后的涤纶织物一侧进行涂覆,涂层厚度为15μm,涂覆完成后;在110℃下烘干6min,即得液体二极管。
实施例3
将实施例1中的纳米二氧化硅改为5%,其他步骤与实施例1相同。
实施例4
本实施例为一种液体二极管的制备方法,包括以下步骤:
S1、涤纶织物前处理:
将涤纶织物(涤纶机织物,经密为188根/10cm,纬密为160根/10cm,细度为35tex)水洗干净,烘干,熨平备用。
S2、制备疏水浆料:
按质量百分数计,将80%防水剂(上海赛超化工助剂有限公司MT410)、6%纳米二氧化硅(麦克林,粒径为15nm,比表面积300±50m 2/g,CAS号:68611-44-9)和3%增稠剂(佛山市川化富联精细化工有限公司ATF)混合(余量为水),在机械搅拌下持续20min得到疏水浆料。
S3、如图1所示,将上述疏水浆料使用棒涂法在前处理后的涤纶织物一侧进行涂覆,涂层厚度为15μm,涂覆完成后;在110℃下烘干6min,即得液体二极管。
实施例5
本实施例为一种液体二极管的制备方法,包括以下步骤:
S1、涤纶织物前处理:
将涤纶织物(涤纶机织物,经密为188根/10cm,纬密为160根/10cm,细度为35tex)水洗干净,烘干,熨平备用。
S2、制备疏水浆料:
按质量百分数计,将80%防水剂(上海赛超化工助剂有限公司MT410)、5%纳米二氧化硅(麦克林,粒径为15nm,比表面积300±50m 2/g,CAS号:68611-44-9)和3%增稠剂(佛山市川化富联精细化工有限公司ATF)混合(余量为水),在机械搅拌下持续20min得到疏水浆料。
S3、如图1所示,将上述疏水浆料使用棒涂法在前处理后的涤纶织物一侧进行涂覆,涂层厚度为6μm,涂覆完成后;在110℃下烘干6min,即得液体二极管。
实施例6
本实施例为一种液体二极管的制备方法,包括以下步骤:
S1、涤纶织物前处理:
将涤纶织物(涤纶机织物,经密为188根/10cm,纬密为160根/10cm,细度为35tex)水洗干净,烘干,熨平备用。
S2、制备疏水浆料:
按质量百分数计,将80%防水剂(上海赛超化工助剂有限公司MT410)、5%纳米二氧化硅(麦克林,粒径为15nm,比表面积300±50m 2/g,CAS号:68611-44-9)和3%增稠剂(佛山市川化富联精细化工有限公司ATF)混合(余量为水),在机械搅拌下持续20min得到疏水浆料。
S3、如图1所示,将上述疏水浆料使用棒涂法在前处理后的涤纶织物一侧进行涂覆,涂层厚度为13μm,涂覆完成后;在110℃下烘干6min,即得液体二极管。
实施例7
本实施例为一种液体二极管的制备方法,包括以下步骤:
S1、涤纶织物前处理:
将涤纶织物(涤纶机织物,经密为188根/10cm,纬密为160根/10cm,细度为35tex)水洗干净,烘干,熨平备用。
S2、制备疏水浆料:
按质量百分数计,将80%防水剂(上海赛超化工助剂有限公司MT410)、5%纳米二氧化硅(麦克林,粒径为15nm,比表面积300±50m 2/g,CAS号:68611-44-9)和3%增稠剂(佛山市川化富联精细化工有限公司ATF)混合(余量为水),在机械搅拌下持续20min得到疏水浆料。
S3、如图1所示,将上述疏水浆料使用棒涂法在前处理后的涤纶织物一侧进行涂覆,涂层厚度为17μm,涂覆完成后;在110℃下烘干6min,即得液体二极管。
实施例8
本实施例为一种液体二极管的制备方法,包括以下步骤:
S1、涤纶织物前处理:
将涤纶织物(涤纶机织物,经密为188根/10cm,纬密为160根/10cm,细度为35tex)水洗干净,烘干,熨平备用。
S2、制备疏水浆料:
按质量百分数计,将80%防水剂(上海赛超化工助剂有限公司MT410)、5%纳米二氧化硅(麦克林,粒径为15nm,比表面积300±50m 2/g,CAS号:68611-44-9)和3%增稠剂(佛山市川化富联精细化工有限公司ATF)混合(余量为水),在机械搅拌下持续20min得到疏水浆料。
S3、如图1所示,将上述疏水浆料使用棒涂法在前处理后的涤纶织物一侧进行涂覆,涂层厚度为24μm,涂覆完成后;在110℃下烘干6min,即得液体二极管。
实施例9
本实施例为一种液体二极管的制备方法,包括以下步骤:
S1、涤纶织物前处理:
将涤纶织物(涤纶机织物,经密为188根/10cm,纬密为160根/10cm,细度为35tex)水洗干净,烘干,熨平备用。
S2、制备疏水浆料:
按质量百分数计,将80%防水剂(上海赛超化工助剂有限公司MT410)、5%纳米二氧化硅(麦克林,粒径为15nm,比表面积300±50m 2/g,CAS号:68611-44-9)和3%增稠剂(佛山市川化富联精细化工有限公司ATF)混合(余量为水),在机械搅拌下持续20min得到疏水浆料。
S3、如图1所示,将上述疏水浆料使用棒涂法在前处理后的涤纶织物一侧进行涂覆,涂层厚度为29μm,涂覆完成后;在110℃下烘干6min,即得液体二极管。
实施例10
本实施例为一种液体二极管的制备方法,包括以下步骤:
S1、涤纶织物前处理:
将涤纶织物(涤纶机织物,经密为188根/10cm,纬密为160根/10cm,细度为35 tex)水洗干净,烘干,熨平备用。
S2、制备疏水浆料:
按质量百分数计,将80%防水剂(上海赛超化工助剂有限公司MT410)、5%纳米二氧化硅(麦克林,粒径为15nm,比表面积300±50m 2/g,CAS号:68611-44-9)和3%增稠剂(佛山市川化富联精细化工有限公司ATF)混合(余量为水),在机械搅拌下持续20min得到疏水浆料。
S3、如图1所示,将上述疏水浆料使用棒涂法在前处理后的涤纶织物一侧进行涂覆,涂层厚度为36μm,涂覆完成后;在110℃下烘干6min,即得液体二极管。
对比例1
本对比例为一种液体二极管的制备方法,包括以下步骤:
S1、涤纶织物(涤纶机织物,经密为188根/10cm,纬密为160根/10cm,细度为35tex)称重。
S2、将4g碳酸钠,0.5g连二亚硫酸钠溶解于1000mL水中,配置成预处理液。
S3、将涤纶织物放入预处理液中,在90℃下预处理20min,水洗,得预处理织物。
S4、将4g氢氧化钠和2g苯扎氯铵2g搅拌均匀,得碱处理液;将经过预处理织物添加至碱处理液中,在99℃中处理60min,水洗,60℃烘干,得碱减涤纶织物。
S5、制备疏水浆料:
按质量百分数计,将80%防水剂(上海赛超化工助剂有限公司MT410)、5%纳米二氧化硅(麦克林,粒径为15nm,比表面积300±50m 2/g,CAS号:68611-44-9)和3%增稠剂(佛山市川化富联精细化工有限公司ATF)混合(余量为水),在机械搅拌下持续20min得到疏水浆料。
S6、将上述疏水浆料使用棒涂法在碱减涤纶织物一侧进行涂覆,涂层厚度为24μm,涂覆完成后;在110℃下烘干6min,即得液体二极管。
其中碱减率计算方法为:
Figure PCTCN2021099389-appb-000001
其中,g 1是未处理织物质量,g 2是处理后织物质量。
步骤S3中水洗是为了去除涤纶织物表面的灰尘、油脂以及其他杂质。
对比例2
本对比例为一种液体二极管的制备方法,包括以下步骤:
S1、棉织物前处理:
将棉织物(棉机织物,经密为325根/10cm,纬密为262根/10cm,细度为30tex)水洗干净,烘干,熨平备用。
S2、制备疏水浆料:
按质量百分数计,将80%防水剂(上海赛超化工助剂有限公司MT410)、5%纳米二氧化硅(麦克林,粒径为15nm,比表面积300±50m 2/g,CAS号:68611-44-9)和3%增稠剂(佛山市川化富联精细化工有限公司ATF)混合(余量为水),在机械搅拌下持续20min得到疏水浆料。
S3、如图1所示,将上述疏水浆料使用棒涂法在前处理后的棉织物一侧进行涂覆,涂层厚度为24μm,涂覆完成后;在110℃下烘干6min,即得液体二极管。
本发明实施例1~10和对比例1~2制得的液体二极管的性能测试方法如下:
1.水接触角的测量方法:
使用德国Kruss公司DSA25E接触角测量仪,将10μL去离子水滴在疏水涤纶织物上,随机测量五个位点,取其平均值。
2.单向传递指数及液态水动态传递综合指数测量方法:
使用中国易立公司EY60水分管理测试仪,按照GB/T 21655.2-2009标准测量了水分转移性。单向传递指数(O)和液态水动态传递综合指数(M)的测量采用了MMT内置软件中的公式。单向输送能力计算公式如下:
Figure PCTCN2021099389-appb-000002
其中:U b为渗透面的吸水量,U t为浸水面的吸水量,t为总测试时间。
液态水动态传递综合指数计算公式如下:
M=C 1A BD+C 2O D+C 3S BD
其中:C 1,C 2和C 3—权重值(C 1=0.25,C 2=0.5,C 3=0.25)。
A BD,O D和S BD分别是渗透面吸水速率、单向传递指数和渗透面扩散速度的无量纲化计算值。
3.水分传递过程中损耗量测量方法:
1)剪取长与宽的长度为5cm×5cm的液体二极管并织物称重;
2)将制备的液体二极管平放在滤纸上,使用总量为2.5mL由活性红染色的去离子水连续滴加在涂层侧,当水滴全部转移到非涂层侧后,称量“液体二极管”织物的重量。
水分损耗计算公式:
Figure PCTCN2021099389-appb-000003
其中,m 2是织物吸水后的质量,m 1是织物吸水前的质量,m 3是测试中水的质量。
本发明实施例1~10制得的液体二极管的性能测试结果见表1(水接触角、累积单程输送能力和总体水分管理能力)。本发明实施例6、对比例1~2制得的液体二极管的水传输过程中损耗率数据表见表2。
表1 本发明实施例1~10制得的液体二极管的性能测试结果
Figure PCTCN2021099389-appb-000004
从表1可以看出,实施例1~9制备的液体二极管织物均有单向导湿的效果,且本发明实施例6制得的液体二极管最佳,其单向传递指数可达到966.9%(达到5级标准),液态水动态传递综合指数0.92。二者数值均高于GB/T 21655.2-2009纺织品吸湿速干性的评定(达到5级标准)。
涂层接触角:
本发明实施例1-4涂层面接触角随二氧化硅用量的增加,涂层面的粗糙度逐渐增加,导致疏水性增强、接触角增大。
本发明实施例5-10涂层面的接触角随涂层厚度的增加逐渐增加,这是由于涂层厚度增加导致涂层面孔隙减小,由拉普拉斯方程
Figure PCTCN2021099389-appb-000005
可知当孔径减小时拉普拉斯力增强,导致接触角变大。因未发生渗透,非涂层面接触角基本保持不变。
非涂层接触角:
本发明实施例1~4非涂层接触角在二氧化硅用量低时,由于浆料粘度小易发生渗漏现象,因此非涂层面接触角较大;随着二氧化硅用量增加这一现象(渗漏)得到改善,非涂层面接触角下降;后期进一步增加二氧化硅用量,非涂层面接触角变化不大。
单向导湿指数:
本发明实施例1-3涂层厚度一定时,涂层面与非涂层面接触角相差增大,涂层面向上的单向导湿指数随之增加,因为双侧的疏水差异有利于增强单向导湿性。本发明实施例4中,纳米二氧化硅用量过多,导致涂层孔隙减少,因此水滴通过涂层面的路径减少、涂层面向上的单向导湿指数随之减少。
本发明实施例1-4中非涂层面向上的单向导湿指数由于双侧疏水性差异的增大,非涂层面单向导湿指数逐渐下降。
实施例5由于涂层太薄,在测试时双侧含水差异量不大,因此虽然单向导湿指数双侧显示一正一负,但水分管理能力很差。
本发明实施例6-10由于涂层厚度的增加,水滴由涂层侧到非涂层侧的通道增长,由于疏水性材料所提供的排斥力,因此水滴通过难度逐渐增加,导致两种单向导湿指数逐渐下降。
液态水动态传递综合指数:
本发明实施例1-3涂层厚度一定时,涂层面与非涂层面接触角相差增大,液态水动态传递综合指数随之增加,因为双侧的疏水差异有利于增强单向导湿性。
本发明实施例4中,纳米二氧化硅用量过多,导致涂层孔隙减少,因此水滴通过涂 层面的路径减少、液态水动态传递综合指数随之减少。
本发明实施例5由于涂层太薄,在测试时双侧含水差异量不大,因此液态水动态传递综合指数很小。
本发明实施例6-10由于涂层厚度的增加,水滴由涂层侧到非涂层侧的通道增长,由于疏水性材料所提供的排斥力,因此水滴通过难度逐渐增加,导致液态水动态传递综合指数逐渐下降。
表2 本发明实施例6、对比例1~2制得的液体二极管的水在传输过程中损耗率数据表
样品 水分损耗(%)
实施例6 2.0±1.2
对比例1 16.4±2.9
对比例2 35.2±4.8
从表2可以看出,水分传输过程中,实施例6的水分损耗量比对比例1、对比例2小了一个数量级。结果表明由全疏水材料所制备的“液体二极管”织物不仅可以实现高效的单向导湿,而且能有效的减少水分传输过程中的损耗。即当疏水剂质量分数为80%,纳米二氧化硅质量分数为5%,增稠剂质量分数为3%,机械搅拌20min,110℃温度下烘干6min,单侧涂层厚度为13μm,所制得的涤纶织物效果最优。
对比例1中由于对涤纶进行了碱减量处理导致涤纶由疏水性变为亲水性,因此当水滴由涂层侧传递到非涂层侧时由非涂层侧的亲水基团捕捉,造成了水分损耗;对比例2中将底物换为了亲水性更强的棉织物,因此水分损耗更多。
综上所述,本发明制得的液体二极管织物具备了单向导湿的能力,单向传递指数最高达到了966.9%,液态水动态传递综合指数最高达到了0.92,均达到了国家5级标准;该液体二极管减少了液体传输过程中的损耗,实现了液体的持续、定向传输。
上面结合说明书及附图内容对本发明实施例作了详细说明,但是本发明不限于上述实施例,在所属技术领域普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下作出各种变化。此外,在不冲突的情况下,本发明的实施例及实施例中的特征可以相互组合。

Claims (10)

  1. 一种疏水浆料,其特征在于:所述疏水浆料包括以下制备原料:含氟疏水剂、纳米二氧化硅和增稠剂。
  2. 根据权利要求1所述的一种疏水浆料,其特征在于:所述疏水浆料包括以下重量份数的制备原料:含氟疏水剂75份~85份;纳米二氧化硅3份~7份;增稠剂2份~4份。
  3. 根据权利要求1所述的一种疏水浆料,其特征在于:所述含氟疏水剂包括C 4~6的含氟疏水剂;优选地,所述纳米二氧化硅,粒径为5nm~12nm;优选地,所述增稠剂包括聚丙烯酸酯高聚物、聚氨酯和聚丙烯酰胺中的至少一种。
  4. 一种制备如权利要求1至3任一项所述疏水浆料的方法,其特征在于:包括以下步骤:将所述含氟疏水剂、所述纳米二氧化硅和所述增稠剂混合即得。
  5. 一种如权利要求1至3任一项所述的疏水浆料在制备液体二极管中的应用。
  6. 一种液体二极管,其特征在于:包括以下制备原料:如权利要求1至3任一项所述的疏水浆料和涤纶。
  7. 一种制备如权利要求6所述液体二极管的方法,其特征在于:包括以下步骤:将所述疏水浆料涂覆于涤纶表面,烘干,即得所述液体二极管。
  8. 根据权利要求7所述的方法,其特征在于:所述涂覆,厚度为6μm~36μm。
  9. 根据权利要求7所述的方法,其特征在于:所述烘干的温度为110℃~130℃。
  10. 一种如权利要求7所述液体二极管在制备除湿材料和/或服装面料中的应用。
PCT/CN2021/099389 2021-06-02 2021-06-10 一种疏水浆料,液体二极管及其制备方法与应用 WO2022252275A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110613834.XA CN113529429B (zh) 2021-06-02 2021-06-02 一种疏水浆料,液体二极管及其制备方法与应用
CN202110613834.X 2021-06-02

Publications (1)

Publication Number Publication Date
WO2022252275A1 true WO2022252275A1 (zh) 2022-12-08

Family

ID=78095032

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/099389 WO2022252275A1 (zh) 2021-06-02 2021-06-10 一种疏水浆料,液体二极管及其制备方法与应用

Country Status (2)

Country Link
CN (1) CN113529429B (zh)
WO (1) WO2022252275A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060147705A1 (en) * 2004-12-30 2006-07-06 Industrial Technology Research Institute Method for forming self-cleaning coating comprising hydrophobically-modified particles
CN105926276A (zh) * 2016-06-06 2016-09-07 莱美科技股份有限公司 一种基于涤或涤棉的疏水疏油织物的整理方法
CN108102541A (zh) * 2017-12-22 2018-06-01 肇庆欧迪斯实业有限公司 高效疏水剂及其制备方法
CN109295734A (zh) * 2018-10-10 2019-02-01 五邑大学 拒水拒油织物整理剂、拒水拒油织物的制备方法及拒水拒油织物及其应用
CN109338737A (zh) * 2018-10-10 2019-02-15 五邑大学 疏水织物整理剂、疏水织物制备方法及疏水织物及其应用
CN110644228A (zh) * 2019-09-18 2020-01-03 五邑大学 疏水浆料、单向导湿织物及制备方法
CN110714325A (zh) * 2019-10-30 2020-01-21 江南大学 一种纳米二氧化硅-无氟超疏水整理剂及制备方法和应用
CN110983760A (zh) * 2019-12-24 2020-04-10 南通赛晖科技发展股份有限公司 一种多功能单向导湿棉织物的制备方法
US20200131693A1 (en) * 2018-10-24 2020-04-30 Cornell University Hydrophobic/oleophobic fabrics with directional liquid transport property

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104532579A (zh) * 2014-12-12 2015-04-22 浙江理工大学 一种含氟拒水拒油整理剂及其制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060147705A1 (en) * 2004-12-30 2006-07-06 Industrial Technology Research Institute Method for forming self-cleaning coating comprising hydrophobically-modified particles
CN105926276A (zh) * 2016-06-06 2016-09-07 莱美科技股份有限公司 一种基于涤或涤棉的疏水疏油织物的整理方法
CN108102541A (zh) * 2017-12-22 2018-06-01 肇庆欧迪斯实业有限公司 高效疏水剂及其制备方法
CN109295734A (zh) * 2018-10-10 2019-02-01 五邑大学 拒水拒油织物整理剂、拒水拒油织物的制备方法及拒水拒油织物及其应用
CN109338737A (zh) * 2018-10-10 2019-02-15 五邑大学 疏水织物整理剂、疏水织物制备方法及疏水织物及其应用
US20200131693A1 (en) * 2018-10-24 2020-04-30 Cornell University Hydrophobic/oleophobic fabrics with directional liquid transport property
CN110644228A (zh) * 2019-09-18 2020-01-03 五邑大学 疏水浆料、单向导湿织物及制备方法
CN110714325A (zh) * 2019-10-30 2020-01-21 江南大学 一种纳米二氧化硅-无氟超疏水整理剂及制备方法和应用
CN110983760A (zh) * 2019-12-24 2020-04-10 南通赛晖科技发展股份有限公司 一种多功能单向导湿棉织物的制备方法

Also Published As

Publication number Publication date
CN113529429A (zh) 2021-10-22
CN113529429B (zh) 2023-02-24

Similar Documents

Publication Publication Date Title
Yu et al. Thermoconductive, moisture-permeable, and superhydrophobic nanofibrous membranes with interpenetrated boron nitride network for personal cooling fabrics
Zhi et al. Large-scale fabrication of translucent and repairable superhydrophobic spray coatings with remarkable mechanical, chemical durability and UV resistance
Liu et al. Multifunctional superamphiphobic fabrics with asymmetric wettability for one-way fluid transport and templated patterning
Ju et al. Designing waterproof breathable material with moisture unidirectional transport characteristics based on a TPU/TBAC tree-like and TPU nanofiber double-layer membrane fabricated by electrospinning
Xue et al. Fabrication of superhydrophobic textiles with high water pressure resistance
CN104046152A (zh) 超疏水涂料、超疏水涂层及该超疏水涂层的制备方法
Mai et al. One-step fabrication of flexible, durable and fluorine-free superhydrophobic cotton fabrics for efficient oil/water separation
Zou et al. Dynamic hydrophobicity of superhydrophobic PTFE-SiO2 electrospun fibrous membranes
Qu et al. Bioinspired durable superhydrophobic materials with antiwear property fabricated from quartz sands and organosilane
Xue et al. Fabrication of robust superhydrophobic fabrics based on coating with PVDF/PDMS
Xi et al. Superhydrophobic, compressible, and reusable polyvinyl alcohol-wrapped silver nanowire composite sponge for continuous oil-water separation
CN106079799B (zh) 疏水型透湿聚四氟乙烯复合膜
CN106215461A (zh) 用于油水分离的超疏水/超亲油多孔网膜及其制备方法与应用
Du et al. Biomimetic superhydrophobic membrane with multi-scale porous microstructure for waterproof and breathable application
CN110180403A (zh) 一种纤维管增强型中空纤维复合生物膜及制备方法与应用
He et al. Design of fluorine-free waterborne fabric coating with robust hydrophobicity, water-resistant and breathability
CN108774447A (zh) 一种碳-银微球/环氧树脂超疏水涂层制备方法
WO2022252275A1 (zh) 一种疏水浆料,液体二极管及其制备方法与应用
Tang et al. Electrospinning fabrication of polystyrene-silica hybrid fibrous membrane for high-efficiency air filtration
Liu et al. Scaly bionic structures constructed on a polyester fabric with anti-fouling and anti-bacterial properties for highly efficient oil–water separation
CN114452838B (zh) 一种不对称亲/疏水性复合纤维膜及其制备方法
Xu et al. Durable superamphiphobic cotton fabrics with improved ultraviolet radiation resistance and photocatalysis
Zhou et al. Facile preparation of robust superhydrophobic cotton fabric for ultrafast removal of oil from contaminated waters
CN110644228B (zh) 疏水浆料、单向导湿织物及制备方法
Joshi et al. Multifunctional waterproof breathable coating on polyester-based woven protective clothing for healthcare application

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21943634

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE