WO2022252150A1 - 避免动晕症发生的虚拟实境控制方法 - Google Patents

避免动晕症发生的虚拟实境控制方法 Download PDF

Info

Publication number
WO2022252150A1
WO2022252150A1 PCT/CN2021/097916 CN2021097916W WO2022252150A1 WO 2022252150 A1 WO2022252150 A1 WO 2022252150A1 CN 2021097916 W CN2021097916 W CN 2021097916W WO 2022252150 A1 WO2022252150 A1 WO 2022252150A1
Authority
WO
WIPO (PCT)
Prior art keywords
shaking
displacement
user
displacement control
head
Prior art date
Application number
PCT/CN2021/097916
Other languages
English (en)
French (fr)
Inventor
陈盈吉
Original Assignee
陈盈吉
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 陈盈吉 filed Critical 陈盈吉
Priority to PCT/CN2021/097916 priority Critical patent/WO2022252150A1/zh
Priority to PCT/CN2022/096531 priority patent/WO2022253258A1/zh
Priority to CN202280003833.6A priority patent/CN115701772A/zh
Priority to EP22815301.1A priority patent/EP4354258A1/en
Priority to JP2023574603A priority patent/JP2024522558A/ja
Priority to TW111120520A priority patent/TWI835155B/zh
Publication of WO2022252150A1 publication Critical patent/WO2022252150A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/011Arrangements for interaction with the human body, e.g. for user immersion in virtual reality
    • G06F3/012Head tracking input arrangements
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/011Arrangements for interaction with the human body, e.g. for user immersion in virtual reality
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/017Gesture based interaction, e.g. based on a set of recognized hand gestures
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/02Input arrangements using manually operated switches, e.g. using keyboards or dials
    • G06F3/023Arrangements for converting discrete items of information into a coded form, e.g. arrangements for interpreting keyboard generated codes as alphanumeric codes, operand codes or instruction codes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/033Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor
    • G06F3/0338Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor with detection of limited linear or angular displacement of an operating part of the device from a neutral position, e.g. isotonic or isometric joysticks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/033Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor
    • G06F3/0346Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor with detection of the device orientation or free movement in a 3D space, e.g. 3D mice, 6-DOF [six degrees of freedom] pointers using gyroscopes, accelerometers or tilt-sensors
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/048Interaction techniques based on graphical user interfaces [GUI]
    • G06F3/0481Interaction techniques based on graphical user interfaces [GUI] based on specific properties of the displayed interaction object or a metaphor-based environment, e.g. interaction with desktop elements like windows or icons, or assisted by a cursor's changing behaviour or appearance
    • G06F3/04815Interaction with a metaphor-based environment or interaction object displayed as three-dimensional, e.g. changing the user viewpoint with respect to the environment or object

Definitions

  • the invention relates to a virtual reality control method for VR users to perform displacement operations in a VR world.
  • VR Virtual reality
  • VR users will experience VR technology through a VR system.
  • a VR system usually includes a head-mounted device and a controller, and some VR systems also include a somatosensory detection device for detecting body movements of a VR operator.
  • VR users When experiencing VR technology, VR users will wear a head-mounted device to watch the VR scene in the VR world, and hold a controller in their hands to control the actions of the VR user in the VR world.
  • the head-mounted device is equipped with gyroscope (Gyroscope) and gravity accelerometer (G-sensor) sensors to detect the displacement of the VR user's head.
  • the controller can be a game handle, a remote controller, a keyboard, a mouse or an arbitrary combination of the above controllers.
  • the so-called movement in the VR world refers to the movement of objects in the VR scene seen by the VR user through the head-mounted device. For example, if the VR user issues a "forward" command through the controller, the objects in the VR scene will gradually approach the VR user, and the VR user will feel that he is moving forward; ” command, the objects in the VR scene will gradually move away from the VR user, and at this time the VR user will feel that he is retreating.
  • the above-mentioned principle is to generate visual effects on the human body through the movement of objects in the VR scene, so that VR users feel that they are moving in the VR world.
  • some program developers use teleportation or teleportation control methods to allow VR users to move in the VR world.
  • the VR user's visual stimulation can be reduced, thereby avoiding nausea.
  • the above methods do not conform to the VR user's way of moving in the real world, thus also reducing the immersive experience of the VR user.
  • Some program developers use the method of allowing VR users to ride in vehicles to move in the VR world, allowing VR users to feel that they are sitting in a car, an animal, or a spaceship to relieve the vertigo.
  • this method of control still produces symptoms similar to motion sickness or seasickness.
  • US10890976B2 discloses a VR platform that uses pressure to control motion feedback.
  • the VR platform senses the actual pressure movement direction of the VR user, and transmits the direction information to a PC.
  • the PC calculates and transmits a physical motion feedback to the platform to make the platform move or vibrate, so that the VR user can have a more realistic experience in the VR world.
  • the invention of US10890976B2 can slow down the impact of motion sickness, this invention has inconvenience in use.
  • the VR user must stand on a gravity sensing device to operate, and the movement range of the VR user is also limited by the size of the gravity sensing device, wherein the gravity sensing device must also occupy some space, which also causes the user of home space is squeezed, thereby reducing popularity.
  • the object of the present invention is to propose a virtual reality control method.
  • the method includes the following steps: receiving a displacement control command sent by a VR user through a controller, the displacement control command is selected from forward, backward, left, right, stop, up, down and the like. A group formed by combination; detecting a shaking direction of a shaking of the VR user's head; and judging whether the displacement control command matches the shaking direction of the shaking according to a command matching rule; wherein, when the displacement control When the instruction matches the shaking direction of the shaking, the displacement control instruction is executed; when the displacement control instruction does not match the shaking direction of the shaking, the displacement control instruction is not executed.
  • the step of detecting the shaking direction is executed within a preset time after receiving the displacement control command.
  • the step of executing the displacement control instruction is to control the movement of objects in the VR scene according to the direction of the displacement control instruction.
  • the step of executing the displacement control command is to control the objects in the VR scene to move in a direction opposite to the displacement control command.
  • the above program control method also includes: judging whether a shaking displacement of the shaking is greater than a displacement threshold, and when the shaking displacement of the shaking is greater than the displacement threshold, judging the displacement control instruction according to the instruction matching rule Whether to match the shake direction of this shake.
  • the above program control method also includes: judging whether a shaking acceleration of the shaking is greater than an acceleration threshold, and when the shaking acceleration of the shaking is greater than the acceleration threshold, judging the displacement control instruction according to the instruction matching rule Whether to match the shake direction of this shake.
  • the above program control method also includes: judging whether a shaking displacement of the shaking is greater than a displacement threshold and judging whether a shaking acceleration of the shaking is greater than an acceleration threshold, when the shaking displacement of the shaking is greater than the displacement threshold And when the shaking acceleration of the shaking is greater than the acceleration threshold, it is judged according to the instruction matching rule whether the displacement control instruction matches the shaking direction of the shaking.
  • a head-mounted device is used to detect the shaking of the VR user's head.
  • the vibration of the VR user's head is detected by an integrated sensing device.
  • the virtual reality control method of the present invention is based on the principle of the natural vestibular system of the human body, and combines a head shaking action to stimulate the vestibular system with the operation of the VR system to avoid motion sickness. Effect.
  • Fig. 1 is an exemplary flow chart of the virtual reality control method of the present invention
  • FIG. 2 is a schematic diagram (1) of a VR user performing a forward operation in the VR world.
  • the VR user only presses the "Forward” button, and the VR user's head does not shake. Therefore, the displacement control command and the shaking direction If it does not match, the VR system controls the objects in the VR scene to maintain the original moving operation state;
  • Figure 3 is a schematic diagram (2) of a VR user performing a forward operation in the VR world.
  • the displacement control command does not match the shaking direction, so the VR system will only control the objects in the VR scene to swing, so that the VR user can visually Feel yourself shaking your head in a VR world;
  • Figure 4 is a schematic diagram (3) of a VR user performing a forward operation in the VR world.
  • the displacement control command matches the shaking direction, and the VR system controls the objects in the VR scene to gradually approach;
  • FIG. 5 is a schematic diagram (1) of a VR user performing a left-shift operation in the VR world.
  • the VR user only presses the "Left” button, and the VR user's head does not shake. Therefore, the movement control command and the shaking The direction does not match, and the VR system controls the objects in the VR scene to maintain the original moving operation state;
  • Figure 6 is a schematic diagram (2) of a VR user performing a left shift operation in the VR world.
  • the displacement control command does not match the shaking direction, so the VR system will only control the objects in the VR scene to swing, so that the VR user can see Feel like you're shaking your head in a VR world;
  • Figure 7 is a schematic diagram (3) of a VR user performing a left-moving operation in the VR world.
  • the displacement control command matches the shaking direction, so the VR system controls the objects in the VR scene to gradually move to the right, so that the VR user visually Feel yourself moving to the left in the VR world;
  • FIG 8 is a schematic diagram (1) of the VR user performing the jump/move operation in the VR world.
  • the VR user only presses the "jump/move” button, and the VR user's head does not shake, so the displacement The control command does not match the shaking direction, and the VR system controls the objects in the VR scene to maintain the original moving operation state;
  • Figure 9 is a schematic diagram (2) of a VR user performing jumping/moving up operations in the VR world.
  • the displacement control command does not match the shaking direction, so the VR system will only control the objects in the VR scene to swing, so that the VR user Visually feel like you are shaking your head in a VR world;
  • Figure 10 is a schematic diagram (3) of a VR user performing a jump/up operation in the VR world.
  • the displacement control command matches the shaking direction, and the VR system controls the object in the VR scene to move down;
  • FIG 11 is a schematic diagram (1) of the VR user performing stop-forward movement in the VR world.
  • the VR user only releases the pressed "forward" button, and the VR user's head does not shake, so the displacement
  • the control command does not match the shaking direction, and the VR system controls the objects in the VR scene to maintain the original moving operation state;
  • Figure 12 is a schematic diagram (2) of a VR user performing a stop-forward movement in the VR world.
  • the displacement control command does not match the shaking direction, so the VR system will only control the objects in the VR scene to swing, so that the VR user can visually Feel like you're shaking your head in a VR world;
  • Fig. 13 is a schematic diagram (3) of a VR user performing stop moving forward in the VR world, at this moment the displacement control command matches the shaking direction, and the VR system controls the objects in the VR scene to stop moving;
  • Fig. 14 is a schematic diagram illustrating an instruction matching rule of the present invention.
  • the vestibular system is an important balance sensory organ of the human body, which includes three semicircular canals (external semicircular canal, superior semicircular canal, and posterior semicircular canal) that can sense the acceleration in the three-dimensional space direction of the head.
  • three semicircular canals exital semicircular canal, superior semicircular canal, and posterior semicircular canal
  • the vestibular system is stimulated and provides information to the brain so that the visual response of the human body can keep up with the actual movement.
  • the vestibular system does not play a role when the human body is performing isokinetic exercise.
  • the vestibular system of the human body will be stimulated by the variable speed movement, so that the human body can adapt to the visual picture movement.
  • the vestibular system is no longer stimulated, the human body can still adapt to the visual picture movement without the symptoms of motion sickness.
  • FIG. 1 depicts a flowchart of an exemplary virtual reality control method of the present invention
  • FIGS. (three) the VR user executes a VR program through the VR system
  • the VR system includes the head-mounted device 2 and the controller 3 .
  • the controller can be a gamepad, a remote, a keyboard, a mouse, a pair of controllers (left/right), a touchpad, with gyroscope and gravity accelerometer sensors or with
  • the camera can detect spatial image changes and calculate displacement sensors or an arbitrary combination of the above-mentioned controllers.
  • the processor used to execute the VR program can be directly installed in the head-mounted device, or additionally installed in a computer host.
  • the computer console can be a smart phone, a personal computer, a remote server, or a commercially available game console, such as a Nintendo Switch console, a Sony PS console, and a Microsoft Xbox console.
  • the VR user holds the controller 3 in his hands, wears the head-mounted device 2 on the head 1, and sees a VR scene 4 through the head-mounted device 2 through the eyes, and the VR scene 4 includes an object 41 .
  • the VR system will not execute the displacement control command when it receives the "forward" displacement control command (step S10) , that is, the VR user remains in place in the VR world (the original mobile operation state).
  • the so-called original mobile operation state means that if the VR user is in a static state before pressing the button 31 on the controller 3, the original mobile operation state is a static state; when the VR user presses the button 31 on the controller 3 If it is in the moving state, for example, in the forward moving state, the original moving operation state is the forward moving state.
  • the head-mounted device 2 will detect the shaking direction of the VR user’s head 1 (step S20), and then the VR system will
  • the instruction matching rule 50 shown in FIG. 14 judges whether the above-mentioned displacement control instruction matches the above-mentioned shaking direction (step S30 ), wherein the preset time can be 1 second or less than 1 second.
  • the command matching table 50 may be pre-stored in the head-mounted device 2 or the computer host, or loaded into the head-mounted device 2 or the computer host along with the execution of the VR program.
  • the head-mounted device 2 is used to detect the shaking direction of the VR user's head 1 in this embodiment, the detection of the shaking direction can also be realized by a somatosensory detection device.
  • the head-mounted device 2 can detect the shaking direction of the VR user's head 1 within a duration of the VR user issuing the "forward" displacement control command, wherein the duration is VR The length of time the user keeps pressing the button 31 on the controller 3 .
  • the VR system judges according to the command matching table 50 as “not matching”. ", so the VR system does not execute the "forward" displacement control command issued by the VR user (step S40), but only controls the object 41 in the VR scene 4 to swing to the right (equivalent to the VR user's head 1 in the VR world shake left).
  • the VR system judges it as “matching” according to the command matching table 50 at this time, so the VR system will Execute the “forward” displacement control command issued by the VR user (step S50 ), so as to control the object 41 in the VR scene 4 to gradually approach the VR user (equivalent to the VR user moving forward in the VR world).
  • the VR user when the VR user simply issues a displacement control command through the controller 3 , it cannot directly cause corresponding changes in the VR world. Only when the movement operation of the displacement control command matches the shaking direction of the VR user’s head 1, the VR system will execute the displacement control command issued by the controller 3, and make the VR scene 4 make changes corresponding to the displacement control command . In this way, it can be ensured that before the VR scene 4 changes, the VR user's head 1 has reacted in advance to stimulate the vestibular system of the inner ear, thereby avoiding the occurrence of motion sickness.
  • the VR user can increase or decrease the movement operations in the instruction matching table 50 (such as climbing, flying, getting down, rolling, etc.) according to the needs of different situations, and can customize each movement operation matching criteria.
  • the head-mounted device 2 in addition to detecting the shaking direction of the VR user's head 1, can further detect the shaking displacement of the VR user's head 1, and only when the shaking displacement When it is greater than a displacement threshold, the VR system starts to judge whether the displacement control command matches the shaking direction according to the command matching table 50 .
  • the so-called shaking displacement refers to the shaking amplitude of the VR user's head 1 . If the shaking range of the VR user's head 1 is larger, the shaking displacement is larger; if the shaking range of the VR user's head 1 is smaller, the shaking displacement is smaller.
  • the detection of the above-mentioned shaking displacement can also be realized by a somatosensory detection device.
  • the function of the above-mentioned displacement threshold is to filter out the subtle shaking naturally produced by the human body. Even if people deliberately keep their limbs still, there will still be some slight shaking. The shaking displacement of these shaking can be regarded as background noise and filtered out to avoid misjudgment by the VR system.
  • the displacement threshold can be fixed or customized by the VR user. In some embodiments, the displacement threshold can learn the degree of subtle shaking naturally produced by the current VR user through machine learning, and then adjust it adaptively.
  • the head-mounted device 2 in addition to detecting the shaking direction of the VR user's head 1, can further detect the shaking acceleration of the VR user's head 1, and only when the shaking acceleration When the acceleration is greater than a threshold, the VR system starts to judge whether the displacement control command matches the shaking direction according to the command matching table 50 .
  • the so-called shaking acceleration refers to the variation of the shaking speed of the VR user's head 1 . If the shaking speed of the VR user's head 1 changes faster, the shaking acceleration is greater; if the shaking speed of the VR user's head 1 changes slower, the shaking acceleration is smaller.
  • the above-mentioned shaking acceleration detection can also be realized by a somatosensory detection device.
  • the function of the above-mentioned acceleration threshold is also to filter out the subtle shaking naturally produced by the human body. Even if people deliberately keep their limbs still, there will actually be some slight shaking, but these shaking speeds are not fast and will not have obvious speed changes.
  • the unintentional shaking of the VR user's head 1 can be regarded as background noise (noise) and filtered out to avoid misjudgment by the VR system.
  • another function of the above-mentioned acceleration threshold is to assist the VR user to perform movement operations in the VR world. That is, when the movement operation of the VR user through the displacement control command issued by the controller 3 matches the shaking direction of the VR user's head 1, the VR system can change the VR user's position in the VR world according to the shaking acceleration signal. movement speed. Taking the "forward" movement operation as an example, when the shaking acceleration is greater than the acceleration threshold, the VR system controls the speed at which the object 41 in the VR scene 4 approaches the VR user to increase (that is, the movement speed of the VR user moving forward in the VR world increases) .
  • the head-mounted device 2 of the VR system detects the shaking displacement and shaking acceleration of the VR user's head 1 at the same time, and determines whether the shaking displacement and shaking acceleration are greater than the displacement threshold and the acceleration respectively. threshold, and only when the shaking displacement and shaking acceleration are greater than the displacement threshold and acceleration threshold respectively, the VR system will judge whether the displacement control command matches the shaking direction according to the command matching table.
  • the above-mentioned control method for generating the displacement operation command of "forward” can also be to push the rocker on the controller 3 "forward", the scroll wheel “forward”, and the touch panel “towards”. Slide forward or the controller 3 itself swings "forward”.
  • the matching condition of the above-mentioned "forward" movement operation may be whether the shaking direction of the VR user's head 1 is "front” or "rear".
  • the VR system will not execute the displacement control command at this time, that is, the VR user is in the VR position.
  • the world remains in place (the original move operation state).
  • the head-mounted device 2 detects the shaking direction of the VR user's head 1 , and then the VR system judges whether the displacement control command matches the shaking direction according to the command matching table 50 shown in FIG. 14 .
  • the above-mentioned control method for generating the displacement control command of "move left” can also be to push the rocker on the controller “to the left”, to roll the scroll wheel to the left, or to move the touch panel to the left. ” slide or the controller itself swings “to the left”.
  • the matching condition of the above-mentioned "move left” movement operation may be whether the shaking direction of the VR user's head 1 is "left" or "right".
  • control method of "shift left” above can also be applied to the control method of "move right” by analogy.
  • the VR system when the VR user presses the button 32 on the controller 3 to generate the displacement control command of "jump/up", the VR system will not execute the displacement control command at this time, that is, the VR system will not execute the displacement control command. Or remain in place (or the original mobile operation state) in the VR world.
  • the head-mounted device 2 detects the shaking direction of the head 1 of the VR user, and then the VR system judges whether the displacement control command matches the shaking direction according to the command matching table 50 shown in FIG. 14 .
  • the VR system judges according to the command matching table 50 as "Mismatch", so the VR system does not execute the "jump/move up” displacement control command issued by the VR user, and only controls the object 41 in the VR scene 4 to swing to the right (equivalent to the VR user's head 1 in the Shake left in the VR world).
  • the VR system judges “match” according to the command matching table 50 at this time, so the VR The system will execute the "jump/move up” displacement control command issued by the VR user to control the object 41 in the VR scene 4 to move down (equivalent to the VR user jumping or moving up in the VR world).
  • the matching condition for the above-mentioned "jump" movement operation may be whether the shaking direction of the VR user's head 1 is “up” or "down".
  • the VR user in the state where the VR user continues to perform the forward movement operation, when the VR user releases the pressed button 31 on the controller 3 to issue a "stop" displacement control command, at this time the VR user The player will continue to move forward in the VR world (the original mobile operation state).
  • the head-mounted device 2 detects the shaking direction of the VR user's head 1 , and then the VR system judges whether the displacement control command matches the shaking direction according to the command matching table 50 shown in FIG. 14 .
  • the controller 3 issues a "stop" displacement control command, but the shaking direction of the head 1 is shaking to the left.
  • the VR According to the command matching table 50, the system judges as "no match", so the VR system does not execute the "stop" displacement control command issued by the VR user, and continues to perform the forward movement operation, so that the object 41 in the virtual scene 4 continues to approach .
  • the VR system only controls the object 41 in the VR scene 4 to swing to the right (equivalent to the VR user's head 1 swinging to the left in the VR world).
  • the controller 3 issues a "stop" displacement control command, and the shaking direction of the head 1 is “rear” or "front”, At this time, the VR system judges as “matching” according to the command matching table 50, so the VR system will execute the "stop" displacement control command issued by the VR user to stop performing the forward movement operation, so that the object 41 in the virtual scene 4 stops move.
  • the above-mentioned control method for generating the displacement control command of "stop” can also be “releasing” the joystick on the controller 3, rolling the scroll wheel “stop”, or “stopping” the touch panel. Stop sliding, the controller 3 itself “stops” swinging or the controller 3 itself returns to the preset stop position of the VR program (for example, returning from an inclined state relative to the horizontal plane to a horizontal state relative to the horizontal plane).
  • the above-mentioned control method for generating the displacement control command of "stop” can also be pressing the “backward” button on the controller 3, pushing the rocker “backward”, rolling the scroll wheel “backward”, or “backward” on the touch panel. ” slide or the controller 3 itself swings “backwards”.
  • the displacement operation of the VR user swinging the controller 3 backward corresponds to the reverse It is a "forward" displacement control command, but this is only a special variation of the above-mentioned embodiment, and it can still be controlled through the original command matching table 50 or another command matching table designed to meet the special situation operation.
  • the VR scene is skiing (the command matching table at this time is set for skiing), the VR user uses a pair of controllers (left/right) to perform mobile operations.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • User Interface Of Digital Computer (AREA)

Abstract

本发明揭示一种虚拟实境控制方法。于本发明中,当VR系统接收到VR使用者通过控制器所发出的位移控制指令后,会进一步侦测VR使用者的头戴式装置的晃动方向,然后根据一指令匹配规则判断位移控制指令与晃动方向是否匹配。若匹配,则VR系统会执行该位移控制指令,若不匹配,则VR系统不执行该位移控制指令。本发明确保VR场景变化前,VR使用者的头部已经预先做出反应而刺激内耳的前庭系统,从而避免动晕症的发生。

Description

避免动晕症发生的虚拟实境控制方法 技术领域
本发明涉及一种可供VR使用者于VR世界中进行位移操作的虚拟实境控制方法。
背景技术
虚拟实境(以下简称为VR)是一个利用电脑类比模块所产生的三维空间虚拟世界,早在西元1950年就有学者提出类似的概念。随着科技的进步,近年来VR技术逐渐被发扬光大,2016年更是被称为VR元年。
一般来说,VR使用者会通过VR系统来体验VR技术。VR系统通常包含一头戴式装置以及一控制器,有些VR系统还包含可用以侦测VR操作者的肢体动作的体感侦测装置。在体验VR技术时,VR使用者会配戴头戴式装置以观看VR世界的VR场景,手上则会持有控制器以控制VR使用者在VR世界中的动作。
其中,所述头戴式装置中配有陀螺仪(Gyroscope)与重力加速度计(G-sensor)感测器,以侦测VR使用者的头部的位移。所述控制器可以是一个游戏手把、一个遥控器、一个键盘、一个鼠标或由上述控制器所构成的一任意组合。
所谓VR世界中的移动,是指VR使用者通过头戴式装置所见VR场景中物件的移动。举例来说,若VR使用者通过控制器发出「前进」指令,VR场景中的物件会逐渐靠近VR使用者,此时VR使用者会感觉自己在前进;若VR使用者通过控制器发出「后退」指令,VR场景中的物件会逐渐远离VR使用者,此时VR使用者会感觉自己在后退。
上述的原理是通过VR场景中的物件移动所产生人体视觉上的效果,使得VR使用者感觉自己在VR世界中移动。
尽管VR技术已逐渐成熟,部分VR使用者在体验VR技术时依旧会出现晕眩感、恶心感、疲劳感及眼花等动晕症的症状。其原因在于当人体感觉到的运动与视觉上的画面不相符时,大脑对身体平衡状态及空间方位的判断就会出现误差,进而表现为动晕症。
为了解决上述问题,一些程序开发者使用手拉、手臂摆动、推动仓鼠球等 控制方法,让VR使用者在VR世界中缓慢移动以减缓动晕症的症状。然而,这些移动方式的速度过于缓慢,并不符合VR使用者在真实世界中的移动方式。
此外,部分程序开发者使用传送或瞬间移动的控制方式,让VR使用者在VR世界中移动。藉由画面瞬间的改变,以降低VR使用者视觉上的刺激,进而避免产生恶心感。然而,上述方法并不符合VR使用者在真实世界中的移动方式,因此也降低了VR使用者的沉浸体验感受。
还有一些程序开发者则采用让VR使用者乘坐在交通工具上的方式在VR世界中移动,让VR使用者感受到自己坐在一辆车、一只动物、一艘太空船上以减缓眩晕感。然而,这种控制方法依旧会产生类似晕车或晕船的症状。
US10890976B2揭示了一种以压力控制运动回馈的一VR平台。该VR平台会感测VR使用者的实际压力运动方向,并将该方向信息传输至一PC。该PC会计算并传输一物理运动回馈至平台,使该平台移动或振动,进而使VR使用者在VR世界中有更真实的体验。尽管US10890976B2的发明可以减缓动晕症的影响,但是该发明有着使用上的不便性。VR使用者必须站立于一重力感应装置上才能进行操作,且VR使用者的移动范围亦受限于该重力感应装置的范围大小,其中所述重力感应装置还必须占据一些空间,也造成使用者的居家空间遭到挤压,进而降低普及性。
发明公开
有鉴于此,本发明的目的在于提出一种虚拟实境控制方法。所述方法包含以下步骤:接收一VR使用者通过一控制器所发出的一位移控制指令,该位移控制指令系选自前进、后退、左移、右移、停止、上移、下移及其组合所构成的群组;侦测该VR使用者的头部的一晃动的一晃动方向;以及根据一指令匹配规则判断该位移控制指令与该晃动的晃动方向是否匹配;其中,当该位移控制指令与该晃动的晃动方向匹配时,执行该位移控制指令,当该位移控制指令与该晃动的晃动方向不匹配时,不执行该位移控制指令。
在上述程序控制方法的一些实施例中,所述侦测该晃动方向的步骤是在接收该位移控制指令后的一预设时间内执行。
在上述程序控制方法的一些实施例中,执行该位移控制指令的步骤是控制 该VR场景中的物件根据该位移控制指令的方向移动。
在上述程序控制方法的一些实施例中,执行该位移控制指令的步骤是控制该VR场景中的物件根据相反于该位移控制指令的方向移动。
在上述程序控制方法的一些实施例中,还包含:判断该晃动的一晃动位移是否大于一位移阈值,当该晃动的晃动位移大于该位移阈值时,始根据该指令匹配规则判断该位移控制指令与该晃动的晃动方向是否匹配。
在上述程序控制方法的一些实施例中,还包含:判断该晃动的一晃动加速度是否大于一加速度阈值,当该晃动的晃动加速度大于该加速度阈值时,始根据该指令匹配规则判断该位移控制指令与该晃动的晃动方向是否匹配。
在上述程序控制方法的一些实施例中,当该晃动的晃动加速度大于该加速度阈值时,该VR场景的移动速度增加。
在上述程序控制方法的一些实施例中,还包含:判断该晃动的一晃动位移是否大于一位移阈值以及判断该晃动的一晃动加速度是否大于一加速度阈值,当该晃动的晃动位移大于该位移阈值且该晃动的晃动加速度大于该加速度阈值时,始根据该指令匹配规则判断该位移控制指令与该晃动的晃动方向是否匹配。
在上述程序控制方法的一些实施例中,是以一头戴式装置侦测该VR使用者的头部的晃动。
在上述程序控制方法的一些实施例中,是以一体感侦测装置侦测该VR使用者的头部的晃动。
综上所述,本发明的虚拟实境控制方法是基于人体自然的前庭系统的原理,将用以刺激前庭系统的一头部晃动动作与VR系统的操作结合,以达到避免产生动晕症的效果。
附图简要说明
图1是本发明的虚拟实境控制方法的一例示流程图;
图2是VR使用者在VR世界中执行前进操作的示意图(一),此时VR使用者仅按下「向前」按键,VR使用者的头部并没有晃动,因此位移控制指令与晃动方向不匹配,VR系统控制VR场景中的物件维持原移动操作状态;
图3是VR使用者在VR世界中执行前进操作的示意图(二),此时位移 控制指令与晃动方向不匹配,因此VR系统只会控制VR场景中的物件摆动,使得VR使用者在视觉上觉得自己在VR世界中晃动头部;
图4是VR使用者在VR世界中执行前进操作的示意图(三),此时位移控制指令与晃动方向匹配,VR系统控制VR场景中的物件逐渐靠近;
图5是VR使用者在VR世界中执行左移操作的示意图(一),此时VR使用者仅按下「向左」按键,VR使用者的头部并没有晃动,因此位移控制指令与晃动方向不匹配,VR系统控制VR场景中的物件维持原移动操作状态;
图6是VR使用者在VR世界中执行左移操作的示意图(二),此时位移控制指令与晃动方向不匹配,因此VR系统只会控制VR场景中的物件摆动,使得VR使用者在视觉上觉得自己在VR世界中晃动头部;
图7是VR使用者在VR世界中执行左移操作的示意图(三),此时位移控制指令与晃动方向匹配,因此VR系统控制VR场景中的物件逐渐向右移动,使得VR使用者在视觉上觉得自己在VR世界中向左移动;
图8是VR使用者在VR世界中执行跳跃/上移操作的示意图(一),此时VR使用者仅按下「跳跃/上移」按键,VR使用者的头部并没有晃动,因此位移控制指令与晃动方向不匹配,VR系统控制VR场景中的物件维持原移动操作状态;
图9是VR使用者在VR世界中执行跳跃/上移操作的示意图(二),此时位移控制指令与晃动方向不匹配,因此VR系统只会控制VR场景中的物件摆动,使得VR使用者在视觉上觉得自己在VR世界中晃动头部;
图10是VR使用者在VR世界中执行跳跃/上移操作的示意图(三),此时位移控制指令与晃动方向匹配,VR系统控制VR场景中的物件下移;
图11是VR使用者在VR世界中执行停止前进移动的示意图(一),此时VR使用者仅放开已按下的「向前」按键,VR使用者的头部并没有晃动,因此位移控制指令与晃动方向不匹配,VR系统控制VR场景中的物件维持原移动操作状态;
图12是VR使用者在VR世界中执行停止前进移动的示意图(二),此时位移控制指令与晃动方向不匹配,因此VR系统只会控制VR场景中的物件摆动,使得VR使用者在视觉上觉得自己在VR世界中晃动头部;
图13是VR使用者在VR世界中执行停止前进移动的示意图(三),此 时位移控制指令与晃动方向匹配,VR系统控制VR场景中的物件停止移动;
图14是本发明的一例示指令匹配规则的示意图。
其中,附图标记
1:头部
2:头戴式装置
3:控制器
31:按键
32:按键
33:按键
4:VR场景
41:物件
50:指令匹配规则/指令匹配表
S10~S50:步骤
实现本发明的最佳方式
下面结合附图对发明的结构原理和工作原理作具体的描述:
前庭系统是人体重要的平衡感受器官,其中包含了可以感受头部三度空间方向的加速度的三个半规管(外半规管、上半规管及后半规管)。当人体在进行各个方向的变速运动时,前庭系统会受到刺激并为大脑提供信息,使得人体的视觉反应可以跟上实际的运动。但是,人体在进行等速运动时,前庭系统并不会发挥作用。
举例来说,当我们在骑脚踏车时,我们会在起步的阶段(即变速运动)感受到前进。此时人体的前庭系统会受到变速运动的刺激,使得人体可以适应视觉上的画面移动。当我们接续惯性运动方向等速前进时,尽管前庭系统不再受到刺激,人体依旧可以适应视觉上的画面移动,而没有动晕症的症状。
参照图1至图4,其中图1绘示出本发明的一例示虚拟实境控制方法流程图,图2至4分别绘示出VR使用者在VR世界中执行前进操作的示意图(一)至(三)。本实施例中,VR使用者是通过VR系统执行一VR程序,其中VR系统包含头戴式装置2与控制器3。所述控制器可以是一个游戏手把、一个遥控器、一个键盘、一个鼠标、一对控制器(左/右)、一个触控板、配有陀螺 仪与重力加速度计感测器或配有摄影机可以侦测空间图像变化并计算位移的位移感测器或由上述控制器所构成的一任意组合。用来执行VR程序的处理器可以是直接设置于头戴式装置中,或者是另外设置于一电脑主机中。当用来执行VR程序的处理器是另外设置于一电脑主机中时,电脑主机也视为VR系统的一部分。所述电脑主机可以是智能手机、个人电脑、远程伺服器,抑或是市售的游戏主机,例如任天堂Switch主机、索尼PS主机与微软Xbox主机。
如图2所示,VR使用者的手部握持着控制器3,头部1配戴着头戴式装置2,眼睛通过头戴式装置2看见VR场景4,且VR场景4包含物件41。当VR使用者按下控制器3上的按键31而发出「前进」的位移控制指令时,此时VR系统会接收到「前进」的位移控制指令时(步骤S10)尚不会执行位移控制指令,亦即VR使用者在VR世界中仍保持原地不动(原移动操作状态)。所谓原移动操作状态是指,当VR使用者按下控制器3上的按键31前若处于静止状态,则原移动操作状态为静止状态;当VR使用者按下控制器3上的按键31前若处于移动状态,例如处于前进移动状态,则原移动操作状态为前进移动状态。
接着,在VR使用者发出「前进」的位移控制指令后的一预设时间内,头戴式装置2会侦测VR使用者的头部1的晃动方向(步骤S20),然后VR系统会根据如图14所示的指令匹配规则50(下称指令匹配表50)判断上述位移控制指令与上述晃动方向是否匹配(步骤S30),其中预设时间可以是1秒或者小于1秒。指令匹配表50可以是预储存于头戴式装置2或电脑主机中,或者是伴随着VR程序的执行而载入头戴式装置2或电脑主机中。需特别说明,本实施例虽以头戴式装置2侦测VR使用者的头部1的晃动方向,然而晃动方向的侦测也可以通过体感侦测装置来实现。此外,在一些实施例中,头戴式装置2可以在VR使用者发出「前进」的位移控制指令的一持续时间内侦测VR使用者的头部1的晃动方向,其中持续时间是为VR使用者持续按压控制器3上的按键31的时间长短。
如图3所示,当使用者通过控制器3发出「前进」的位移控制指令,但头部1的晃动方向却为向左晃动时,此时VR系统根据指令匹配表50判断为「不匹配」,因此VR系统不执行VR使用者所发出的「前进」的位移控制指令(步骤S40),仅控制VR场景4中的物件41向右摆动(相当于VR使用者的头部 1在VR世界中向左晃动)。
如图4所示,当使用者发出「前进」的位移控制指令,且头部1的晃动方向为向前晃动时,此时VR系统根据指令匹配表50判断为「匹配」,因此VR系统会执行VR使用者所发出的「前进」的位移控制指令(步骤S50),以控制VR场景4中的物件41逐渐靠近VR使用者(相当于VR使用者在VR世界中前进)。
在本实施例中,当VR使用者单纯通过控制器3发出位移控制指令时,并无法直接造成VR世界中的相应改变。唯有位移控制指令的移动操作与VR使用者的头部1晃动方向相互匹配时,VR系统始会执行控制器3发出位移控制指令,并使VR场景4做出相应于该位移控制指令的变化。如此一来即可确保VR场景4变化前,VR使用者的头部1已经预先做出反应而刺激内耳的前庭系统,从而避免动晕症的发生。
在一些实施例中,VR使用者可根据不同情境下的需求,自行增加或减少指令匹配表50中的移动操作(例如攀爬、飞翔、趴下、翻滚等),且可自定义各移动操作的匹配条件。
在一些实施例中,头戴式装置2除了侦测VR使用者的头部1的晃动方向外,还可以进一步侦测VR使用者的头部1的晃动的晃动位移,且唯有当晃动位移大于一位移阈值时,VR系统始根据指令匹配表50判断位移控制指令与晃动方向是否匹配。所谓晃动位移系指VR使用者的头部1的晃动幅度大小。若VR使用者的头部1的晃动幅度愈大,则晃动位移愈大;若VR使用者的头部1的晃动幅度愈小,晃动位移愈小。在一些实施例中,上述晃动位移的侦测也可以通过体感侦测装置来实现。
上述位移阈值的功用为过滤人体自然产生的细微晃动。即使人刻意保持肢体不动,但多少仍会产生一些细微的晃动,这些晃动的晃动位移可以视为背景杂讯予以滤除,以避免导致VR系统误判。在一些实施例中,位移阈值可以是固定值也可以通过VR使用者自订。在一些实施例中,位移阈值可以通过机器学习的方式学习当前VR使用者自然产生的细微晃动的程度,进而自适应地调整。
在一些实施例中,头戴式装置2除了侦测VR使用者的头部1的晃动方向外,还可以进一步侦测VR使用者的头部1的晃动的晃动加速度,且唯有当晃 动加速度大于一加速度阈值时,VR系统始根据指令匹配表50判断位移控制指令与晃动方向是否匹配。所谓晃动加速度系指VR使用者的头部1的晃动速度变化大小。若VR使用者的头部1的晃动速度变化愈快,则晃动加速度愈大;若VR使用者的头部1的晃动速度变化愈慢,则晃动加速度愈小。在一些实施例中,上述晃动加速度的侦测亦可通过体感侦测装置来实现。
上述加速度阈值的功用同样是为了过滤人体自然产生的细微晃动。即使人刻意保持肢体不动,事实上仍会产生一些细微的晃动,但这些晃动的速度并不快也不会具有明显的速度变化。藉由加速度阈值的设定,可以将VR使用者非有意为的的头部1的晃动视为背景杂讯(噪声)而予以滤除,避免VR系统误判。
在一些实施例中,上述加速度阈值的另一功用为辅助VR使用者在VR世界中进行移动操作。亦即当VR使用者通过控制器3所发出的位移控制指令的移动操作与VR使用者的头部1晃动方向相互匹配时,VR系统可以根据晃动加速度的信号来改变VR使用者在VR世界中的移动速度。以「前进」移动操作为例,当晃动加速度大于加速度阈值时,VR系统控制VR场景4中的物件41靠近VR使用者的速度会增加(即VR使用者在VR世界中前进的移动速度增加)。
在一些实施例中,VR系统的头戴式装置2系同时侦测VR使用者的头部1的晃动的晃动位移以及晃动加速度,并判断所述晃动位移以及晃动加速度是否分别大于位移阈值与加速度阈值,且唯有晃动位移以及晃动加速度分别大于位移阈值与加速度阈值时,VR系统始根据指令匹配表判断位移控制指令与晃动方向是否匹配。
上述的产生「前进」的位移操作指令的控制方式,除了按下按键31外,也可以是将控制器3上的摇杆「向前」推、滚轮「向前」滚、触控面板「向前」滑或控制器3本身「向前」摆动。
受到人体惯性的影响,当VR使用者的头部1进行一方向的晃动时,头部1会随即进行该方向的反向晃动以回到原先的肢体状态,亦即头部1的晃动是一种往复的位移动作。因此,上述「前进」的移动操作的匹配条件可以是VR使用者的头部1的晃动方向是否为「前方」或「后方」。
同理,上述「前进」位移操作也可以类推适用于「后退」的位移控制指令。
如图5所示,当VR使用者按下控制器3上的按键33而发出「左移」的位移控制指令时,此时VR系统尚不会执行位移控制指令,亦即VR使用者在VR世界中仍保持原地不动(原移动操作状态)。接着,头戴式装置2会侦测VR使用者的头部1的晃动方向,然后VR系统根据如图14所示的指令匹配表50判断上述位移控制指令与上述晃动方向是否匹配。
如图6所示,当使用者通过控制器3发出「左移」的位移控制指令,但头部1的晃动方向却为向前晃动时,此时VR系统根据指令匹配表50判断为「不匹配」,因此VR系统不执行VR使用者所发出的「左移」的位移控制指令,仅控制VR场景4中的物件41向VR使用者摆动(相当于VR使用者的头部1在VR世界中向前晃动)。
如图7所示,当使用者发出「左移」的位移控制指令,且头部1的晃动方向为向左晃动时,此时VR系统根据指令匹配表50判断为「匹配」,因此VR系统会执行VR使用者所发出的「左移」的位移控制指令,以控制VR场景4中的物件41逐渐向右移动(相当于VR使用者在VR世界中向左移动)。
上述产生「左移」的位移控制指令的控制方式,除了按下按键33外,也可以是将控制器上的摇杆「向左」推、滚轮「向左」滚、触控面板「向左」滑或控制器本身「向左」摆动。
受到人体惯性的影响,当VR使用者的头部1进行一方向的晃动时,头部1会随即进行该方向的反向晃动以回到原先的肢体状态,亦即人体头部的晃动是一种往复的位移动作。因此,上述「左移」的移动操作的匹配条件可以是VR使用者的头部1的晃动方向是否为「左方」或「右方」。
同理,上述「左移」的控制方式也可以类推适用于「右移」的控制方式。
如图8所示,当VR使用者按下控制器3上的按键32,以产生「跳跃/上移」的位移控制指令时,此时VR系统尚不会执行位移控制指令,亦即VR使用者在VR世界中仍保持原地不动(或原移动操作状态)。接着,头戴式装置2侦测VR使用者的头部1的晃动方向,然后VR系统根据如图14所示的指令匹配表50判断上述位移控制指令与上述晃动方向是否匹配。
如图9所示,当使用者通过控制器3发出「跳跃/上移」的位移控制指令,但头部1的晃动方向却为向左晃动时,此时VR系统根据指令匹配表50判断为「不匹配」,因此VR系统不执行VR使用者所发出的「跳跃/上移」的位移 控制指令,仅控制VR场景4中的物件41向右摆动(相当于VR使用者的头部1在VR世界中向左晃动)。
如图10所示,当使用者发出「跳跃/上移」的位移控制指令,且头部1的晃动方向为向上晃动时,此时VR系统根据指令匹配表50判断为「匹配」,因此VR系统会执行VR使用者所发出的「跳跃/上移」的位移控制指令,以控制VR场景4中的物件41向下移动(相当于VR使用者在VR世界中跳跃或向上移动)。受到人体惯性的影响,当VR使用者的头部1进行一方向的晃动时,人体头部会随即进行该方向的反向晃动以回到原先的肢体状态,亦即人体头部的晃动是一种往复的位移动作。因此,上述「跳跃」的移动操作的匹配条件可以是VR使用者的头部1的晃动方向是否为「上方」或「下方」。
同理,上述「跳跃/上移」的控制方式也可以类推适用于「蹲下/下移」的控制方式。
如图11所示,在VR使用者持续执行前移移动操作的状态下,当VR使用者释放控制器3上已按下的按键31而发出「停止」的位移控制指令时,此时VR使用者在VR世界中仍会继续保持前进(原移动操作状态)。接着,头戴式装置2会侦测VR使用者的头部1的晃动方向,然后VR系统根据如图14所示的指令匹配表50判断上述位移控制指令与上述晃动方向是否匹配。
如图12所示,当使用者在持续执行前移移动操作的状态下藉由控制器3发出「停止」的位移控制指令,但头部1的晃动方向却为向左晃动时,此时VR系统根据指令匹配表50判断为「不匹配」,因此VR系统不执行VR使用者所发出的「停止」的位移控制指令,并持续执行前移移动操作,使虚拟场景4中的物件41持续接近。此时VR系统只控制VR场景4中的物件41向右摆动(相当于VR使用者的头部1在VR世界中向左晃动)。
如图13所示,当使用者在持续执行前移移动操作的状态下藉由控制器3发出「停止」的位移控制指令,且头部1的晃动方向为「后方」或「前方」时,此时VR系统根据指令匹配表50判断为「匹配」,因此VR系统会执行VR使用者所发出的「停止」的位移控制指令而停止执行前移移动操作,使虚拟场景4中的物件41停止移动。
上述产生「停止」的位移控制指令的控制方式,除了放开已按下的按键31外,也可以是将控制器3上的摇杆「松开」、滚轮「停止」滚、触控面板 「停止」滑、控制器3本身「停止」摆动或者控制器3本身复归VR程序所预设的停止位置(例如从相对于水平面呈倾斜状态复归相对于水平面呈水平状态)。
上述产生「停止」的位移控制指令的控制方式,亦可以是按下控制器3上的「向后」按键、摇杆「向后」推、滚轮「向后」滚、触控面板「向后」滑或者控制器3本身「向后」摆动。
在一些实施例中,例如VR场景是划船、滑雪、操控火箭或其他应用反作用力的移动操作中的任意一种时,此时VR使用者将控制器3向后摆动的位移操作所对应的反而是「前进」的位移控制指令,但这仅仅是上述实施例的一种特殊变化态样,仍然可以通过原指令匹配表50或者设计另一种符合该特殊情境操作的指令匹配表来进行控制。比方说,在VR场景为滑雪的情境下(此时的指令匹配表是为滑雪情境下的设定),VR使用者是过一对控制器(左/右)进行移动操作,若VR使用者想要左转,是将右控制器向后滑动以产生「左移」的位移控制指令并匹配VR使用者的头部1的晃动方向(「左方」或「右方」),如此的操作不仅可以模拟实际滑雪时的动作,并同样可以达到避免VR使用者产生动晕症的效果。
当然,本发明还可有其它多种实施例,在不背离本发明精神及其实质的情况下,熟悉本领域的技术人员当可根据本发明作出各种相应的改变和变形,但这些相应的改变和变形都应属于本发明所附的权利要求的保护范围。

Claims (11)

  1. 一种虚拟实境控制方法,其特征在于,包含:
    接收一VR使用者通过一控制器所发出的一位移控制指令,该位移控制指令选自前进、后退、左移、右移、停止、上移、下移及其组合所构成的群组;
    侦测该VR使用者的头部的一晃动的一晃动方向;以及
    根据一指令匹配规则判断该位移控制指令与该晃动的晃动方向是否匹配;
    其中,当该位移控制指令与该晃动的晃动方向匹配时,执行该位移控制指令,当该位移控制指令与该晃动的晃动方向不匹配时,不执行该位移控制指令。
  2. 根据权利要求1所述的虚拟实境控制方法,其特征在于,所述侦测该晃动方向的步骤是在接收该位移控制指令后的一预设时间内执行。
  3. 根据权利要求1所述的虚拟实境控制方法,其特征在于,执行该位移控制指令的步骤是控制一VR场景中的一物件根据该位移控制指令的方向移动。
  4. 根据权利要求1所述的虚拟实境控制方法,其特征在于,执行该位移控制指令的步骤是控制一VR场景中的物件根据相反于该位移控制指令的方向移动。
  5. 根据权利要求1所述的虚拟实境控制方法,其特征在于,还包含:
    判断该晃动的一晃动位移是否大于一位移阈值,当该晃动的晃动位移大于该位移阈值时,始根据该指令匹配规则判断该位移控制指令与该晃动的晃动方向是否匹配。
  6. 根据权利要求1所述的虚拟实境控制方法,其特征在于,还包含:
    判断该晃动的一晃动加速度是否大于一加速度阈值,当该晃动的晃动加速度大于该加速度阈值时,始根据该指令匹配规则判断该位移控制指令与该晃动的晃动方向是否匹配。
  7. 根据权利要求6所述的虚拟实境控制方法,其特征在于,当该晃动的晃动加速度大于该加速度阈值时,一VR场景中的物件的移动速度增加。
  8. 根据权利要求1所述的虚拟实境控制方法,其特征在于,还包含:
    判断该晃动的一晃动位移是否大于一位移阈值以及判断该晃动的一晃动加速度是否大于一加速度阈值,当该晃动的晃动位移大于该位移阈值且该晃动 的晃动加速度大于该加速度阈值时,始根据该指令匹配规则判断该位移控制指令与该晃动的晃动方向是否匹配。
  9. 根据权利要求1所述的虚拟实境控制方法,其特征在于,以一头戴式装置侦测该VR使用者的头部的晃动。
  10. 根据权利要求1所述的虚拟实境控制方法,其特征在于,以一体感侦测装置侦测该VR使用者的头部的晃动。
  11. 根据权利要求1所述的虚拟实境控制方法,其特征在于,所述侦测该晃动方向的步骤是在接收该位移控制指令的一持续时间内执行。
PCT/CN2021/097916 2021-06-02 2021-06-02 避免动晕症发生的虚拟实境控制方法 WO2022252150A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PCT/CN2021/097916 WO2022252150A1 (zh) 2021-06-02 2021-06-02 避免动晕症发生的虚拟实境控制方法
PCT/CN2022/096531 WO2022253258A1 (zh) 2021-06-02 2022-06-01 避免动晕症发生的虚拟实境控制方法
CN202280003833.6A CN115701772A (zh) 2021-06-02 2022-06-01 避免动晕症发生的虚拟实境控制方法
EP22815301.1A EP4354258A1 (en) 2021-06-02 2022-06-01 Virtual reality control method for avoiding motion sickness
JP2023574603A JP2024522558A (ja) 2021-06-02 2022-06-01 仮想現実の制御方法
TW111120520A TWI835155B (zh) 2021-06-02 2022-06-01 避免動暈症發生的虛擬實境控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/097916 WO2022252150A1 (zh) 2021-06-02 2021-06-02 避免动晕症发生的虚拟实境控制方法

Publications (1)

Publication Number Publication Date
WO2022252150A1 true WO2022252150A1 (zh) 2022-12-08

Family

ID=84322702

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2021/097916 WO2022252150A1 (zh) 2021-06-02 2021-06-02 避免动晕症发生的虚拟实境控制方法
PCT/CN2022/096531 WO2022253258A1 (zh) 2021-06-02 2022-06-01 避免动晕症发生的虚拟实境控制方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/096531 WO2022253258A1 (zh) 2021-06-02 2022-06-01 避免动晕症发生的虚拟实境控制方法

Country Status (5)

Country Link
EP (1) EP4354258A1 (zh)
JP (1) JP2024522558A (zh)
CN (1) CN115701772A (zh)
TW (1) TWI835155B (zh)
WO (2) WO2022252150A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106527709A (zh) * 2016-10-28 2017-03-22 惠州Tcl移动通信有限公司 一种虚拟场景调整方法及头戴式智能设备
US20190076618A1 (en) * 2017-09-14 2019-03-14 Advanced Micro Devices, Inc. Method, apparatus and system for mitigating motion sickness in a virtual reality environment
CN109542222A (zh) * 2018-11-13 2019-03-29 深圳市创凯智能股份有限公司 三维视角控制方法、装置、设备以及可读存储介质
CN109613980A (zh) * 2018-12-04 2019-04-12 北京洛必达科技有限公司 一种vr游戏信息处理系统及处理方法
US20190204909A1 (en) * 2017-12-28 2019-07-04 Quan Xiao Apparatus and Method of for natural, anti-motion-sickness interaction towards synchronized Visual Vestibular Proprioception interaction including navigation (movement control) as well as target selection in immersive environments such as VR/AR/simulation/game, and modular multi-use sensing/processing system to satisfy different usage scenarios with different form of combination

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9996149B1 (en) * 2016-02-22 2018-06-12 Immersacad Corporation Method for one-touch translational navigation of immersive, virtual reality environments
JP2018072604A (ja) * 2016-10-31 2018-05-10 株式会社コロプラ Vr酔いを抑制するための方法、当該方法をコンピュータに実行させるためのプログラムおよび、情報処理装置
WO2018122600A2 (en) * 2016-12-28 2018-07-05 Quan Xiao Apparatus and method of for natural, anti-motion-sickness interaction towards synchronized visual vestibular proprioception interaction including navigation (movement control) as well as target selection in immersive environments such as vr/ar/simulation/game, and modular multi-use sensing/processing system to satisfy different usage scenarios with different form of combination
JP2019040555A (ja) * 2017-08-29 2019-03-14 ソニー株式会社 情報処理装置、情報処理方法、およびプログラム
US10890976B2 (en) 2018-09-21 2021-01-12 Jeff Welch Pressure controlled kinetic feedback platform with modular attachments
JP2019220185A (ja) * 2019-07-09 2019-12-26 株式会社ソニー・インタラクティブエンタテインメント 情報処理装置および画像生成方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106527709A (zh) * 2016-10-28 2017-03-22 惠州Tcl移动通信有限公司 一种虚拟场景调整方法及头戴式智能设备
US20190076618A1 (en) * 2017-09-14 2019-03-14 Advanced Micro Devices, Inc. Method, apparatus and system for mitigating motion sickness in a virtual reality environment
US20190204909A1 (en) * 2017-12-28 2019-07-04 Quan Xiao Apparatus and Method of for natural, anti-motion-sickness interaction towards synchronized Visual Vestibular Proprioception interaction including navigation (movement control) as well as target selection in immersive environments such as VR/AR/simulation/game, and modular multi-use sensing/processing system to satisfy different usage scenarios with different form of combination
CN109542222A (zh) * 2018-11-13 2019-03-29 深圳市创凯智能股份有限公司 三维视角控制方法、装置、设备以及可读存储介质
CN109613980A (zh) * 2018-12-04 2019-04-12 北京洛必达科技有限公司 一种vr游戏信息处理系统及处理方法

Also Published As

Publication number Publication date
EP4354258A1 (en) 2024-04-17
TW202248810A (zh) 2022-12-16
CN115701772A (zh) 2023-02-10
TWI835155B (zh) 2024-03-11
JP2024522558A (ja) 2024-06-21
WO2022253258A1 (zh) 2022-12-08

Similar Documents

Publication Publication Date Title
CN106943743B (zh) 一种人机互动控制方法
JP3986535B2 (ja) ビデオゲームプログラム、ビデオゲーム装置及びビデオゲーム制御方法
US11467658B2 (en) Application processing system, method of processing application, and storage medium storing program for processing application
JP6957218B2 (ja) シミュレーションシステム及びプログラム
US20190204909A1 (en) Apparatus and Method of for natural, anti-motion-sickness interaction towards synchronized Visual Vestibular Proprioception interaction including navigation (movement control) as well as target selection in immersive environments such as VR/AR/simulation/game, and modular multi-use sensing/processing system to satisfy different usage scenarios with different form of combination
Schouten et al. Human behavior analysis in ambient gaming and playful interaction
WO2018122600A2 (en) Apparatus and method of for natural, anti-motion-sickness interaction towards synchronized visual vestibular proprioception interaction including navigation (movement control) as well as target selection in immersive environments such as vr/ar/simulation/game, and modular multi-use sensing/processing system to satisfy different usage scenarios with different form of combination
Otaran et al. Haptic ankle platform for interactive walking in virtual reality
JP6769697B2 (ja) プログラム及びゲーム装置
WO2022252150A1 (zh) 避免动晕症发生的虚拟实境控制方法
JP7441442B2 (ja) Vr装置、方法、プログラム及び記憶媒体
JP4779123B2 (ja) 人体動作を感知可能な電子ゲームコントローラ
KR101364594B1 (ko) 사용자의 움직임과 모션 플랫폼 사이의 양방향 상호 작용을 기반으로 한 실감형 스노보드 장치 및 그 제어방법.
EP3946659A1 (en) Peripersonal boundary-based augmented reality game environment
WO2010068901A2 (en) Interface apparatus for software
JP7248720B2 (ja) ゲームプログラム、ゲーム装置、ゲームシステム、およびゲーム処理方法
US10242241B1 (en) Advanced mobile communication device gameplay system
JP7052128B1 (ja) 情報処理システム、プログラム及び情報処理方法
JP2017099608A (ja) 制御システム及びプログラム
JP6919050B1 (ja) ゲームシステム、プログラム及び情報処理方法
Tocu et al. Multi-control virtual reality driving simulator
CN110934595B (zh) 一种监测用户运动数据的体感游戏系统及工作方法
JP7300162B2 (ja) 重心計測機能付き操作装置及び操作システム
US10406434B1 (en) Video game controller using core muscles and other applications
WO2004053636A2 (en) Human-computer interfaces incorporating haptics and path-based interaction

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21943517

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21943517

Country of ref document: EP

Kind code of ref document: A1