WO2022252143A1 - 集成电源模块和车辆 - Google Patents

集成电源模块和车辆 Download PDF

Info

Publication number
WO2022252143A1
WO2022252143A1 PCT/CN2021/097862 CN2021097862W WO2022252143A1 WO 2022252143 A1 WO2022252143 A1 WO 2022252143A1 CN 2021097862 W CN2021097862 W CN 2021097862W WO 2022252143 A1 WO2022252143 A1 WO 2022252143A1
Authority
WO
WIPO (PCT)
Prior art keywords
power module
heat dissipation
dissipation member
power
integrated
Prior art date
Application number
PCT/CN2021/097862
Other languages
English (en)
French (fr)
Inventor
林哲
韩卫军
Original Assignee
舍弗勒技术股份两合公司
林哲
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 舍弗勒技术股份两合公司, 林哲 filed Critical 舍弗勒技术股份两合公司
Priority to PCT/CN2021/097862 priority Critical patent/WO2022252143A1/zh
Publication of WO2022252143A1 publication Critical patent/WO2022252143A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/18Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating

Definitions

  • the invention relates to the technical field of vehicles, and in particular to an integrated power supply module and a vehicle.
  • xEV may refer to any motor vehicle that derives at least part of its motive power from a power source.
  • DC support capacitors also known as DC-Link capacitors
  • the bus bar can be used for energy transfer between the battery and the electric motor (e-Motor). Due to the heating effect of the current (it should be understood that when the current passes through the resistance, the current does work and consumes electric energy to generate heat. This phenomenon is called is the heating effect of the current), therefore, when the bus passes a large current, the temperature of the bus may rise sharply.
  • e-Motor electric motor
  • connection point will introduce additional parasitic inductance, which may cause voltage spikes, which may cause the parasitic inductance to limit the rated current of the power module.
  • the object of the present invention is to overcome or at least alleviate the shortcomings of the above-mentioned prior art, and provide an integrated power module and a vehicle.
  • an integrated power module comprising: a heat dissipation component; a power module, which is superimposed on the top of the heat dissipation component; a capacitor core, which is superimposed on the top of the heat dissipation component; a plastic sealing component , plastic-sealing the power module and the capacitor core together.
  • the power module is superimposed on the first position on the top of the heat dissipation member, and the capacitor core is superimposed on the top of the heat dissipation member and the first position At a second location that is different from the location, the distance between the first location and the second location is equal to or smaller than a first predetermined distance.
  • the heat dissipation member includes a first heat dissipation member and a second heat dissipation member sequentially arranged along a first direction, and the power module passes through the first heat dissipation member and the second heat dissipation member.
  • Two heat dissipation members dissipate heat, and the capacitor core dissipates heat through the first heat dissipation member and the second heat dissipation member.
  • the power supply module includes a first power supply module and a second power supply module arranged in sequence along the first direction, and the first power supply module passes through the first heat dissipation member To dissipate heat, the second power module dissipates heat through the second heat dissipating member.
  • the distance from the first power supply module to the second power supply module is less than or equal to a second predetermined distance.
  • the first power supply module and the second power supply module are sequentially arranged symmetrically on the top of the first heat dissipation member and the second heat dissipation member along the first direction. The top of the component.
  • the first power supply module includes a first power supply die, a first output bus bar, and a first auxiliary pin, wherein the first output bus bar is used to supply power to the load The power that the first power chip can supply, the first auxiliary pin is used to drive the first power chip, and the second power module includes a second power chip, a second output bus and a second An auxiliary pin, wherein the second output bus is used to supply the load with the power that the second power chip can supply, and the second auxiliary pin is used to drive the second power chip.
  • the first power die includes a first IGBT power die and a first diode die
  • the second power die includes a second IGBT power die and a second diode die.
  • the first auxiliary pin and the second auxiliary pin extend along a second direction crossing the first direction.
  • the drive board used to drive the first power supply module and the second power supply module is along the direction crossing the first direction and also crossing the second direction configured in the third direction.
  • the integrated power supply module further includes: a casing for housing the heat dissipation member, the power supply module, the capacitor core, the plastic sealing member and the drive board configured in it.
  • the integrated power supply module further includes: a positive input busbar, which is superimposed on the top of the heat dissipation member, as the positive pole of the integrated power supply module; and a negative input busbar, which stacked on the top of the heat dissipation component, as the negative pole of the integrated power module.
  • a vehicle which is provided with the above-mentioned integrated power supply module.
  • the integrated power module of the present invention plastic-seals the power module and the capacitor core together via a plastic sealing member, so that the power module and the capacitor core can be integrated into the same plastic package, so that compared with separately setting the power module and the capacitor core,
  • the current loop can be made as small as possible, and the parasitic inductance generated at the connection point between the power module and the capacitor can be reduced, so even under the condition of high input DC voltage, the parasitic inductance can avoid the rated current of the power module limit, which can improve the performance of the power module.
  • the structure of the integrated power module integrating the power module and the capacitor core is more compact, so that the volume of the integrated power module can be effectively reduced.
  • both the power module and the capacitor core are superimposed on the top of the heat dissipation member, so that both the power module and the capacitor core can be dissipated through the heat dissipation member. Since the capacitor core can already be dissipated via heat dissipation components, when designing a power module, there is no need to carefully select the material of the power module and carefully distribute the power module grains in the power supply to deal with the problem that the capacitor core cannot be dissipated. The interior of the module can effectively reduce the design complexity of the power module.
  • Fig. 1a is a schematic plan view of an integrated power module according to an exemplary embodiment.
  • Fig. 1b is a schematic cross-sectional view of an integrated power module according to an exemplary embodiment.
  • Fig. 2 is a schematic plan view of an integrated power module according to an exemplary embodiment.
  • Fig. 3 is a schematic plan view of an integrated power module according to an exemplary embodiment.
  • Fig. 4 is a packaged schematic diagram of an integrated power module according to an exemplary embodiment.
  • Fig. 5 is a schematic diagram of an integrated power module according to an exemplary embodiment.
  • the integrated power module 100 may include a heat dissipation component 110 , a power module 120 , a capacitor core 130 and a plastic packaging component 140 .
  • the power module 120 is superimposed on the top of the heat dissipation member 110 , and the capacitor core 130 is also superimposed on the top of the heat dissipation member 110 .
  • the power module 120 and the capacitor core 130 are stacked on the heat dissipation member 110 , and the heat dissipation member 110 dissipates heat from the power module 120 and the capacitor core 130 .
  • heat dissipation channels are added for the power module 120 and the capacitor core 130 through the heat dissipation member 110 .
  • the heat dissipation member 110 includes but not limited to heat sinks, heat sinks and the like.
  • the plastic sealing member 140 plastic seals the power module 120 and the capacitor core 130 stacked on the top of the heat dissipation member 110 together.
  • the power module 120 and the capacitor core 130 are integrated into the same plastic package via the plastic packaging member 140, that is, the power module 120 and the capacitor core 130 can be integrated together and located in the same plastic package.
  • the plastic sealing member 140 includes but not limited to a plastic sealing layer and the like.
  • the integrated power module 100 may also include four terminals 1501 to 1504, wherein the terminal 1501 and the terminal 1502 can be used as the positive input terminal and the negative input terminal of the integrated power module 100 respectively, Terminal 1501 corresponds to the positive input bus bar and terminal 1502 corresponds to the negative input bus bar, both of which are superimposed on the top of the heat dissipation member 110 .
  • Terminal 1503 and terminal 1504 can be used as the positive output terminal and negative output terminal of the power module 120 respectively, and the load can be connected to the terminal 1503 and the terminal 1504, and receive the power that the integrated power module 100 can supply through the terminal 1503 and the terminal 1504.
  • the integrated power module 100 of the present invention plastic-seals the power module 120 and the capacitor core 130 together through the plastic sealing member 140, thus, the power module 120 and the capacitor core 130 can be integrated into the same plastic package 140, thereby compared with separate Setting the power module and the capacitor core can make the current loop as small as possible, which can reduce the parasitic inductance generated at the connection point between the power module and the capacitor, so that even under the condition of high input DC voltage, the parasitic The inductance limits the rated current of the power module, thereby improving the performance of the power module.
  • the structure of the integrated power module integrating the power module and the capacitor core is more compact, so that the volume of the integrated power module can be effectively reduced.
  • both the power module and the capacitor core are superimposed on the top of the heat dissipation member, so that both the power module and the capacitor core can be dissipated through the heat dissipation member. Since the capacitor core can already be dissipated via heat dissipation components, when designing a power module, there is no need to carefully select the material of the power module and carefully distribute the power module grains in the power supply to deal with the problem that the capacitor core cannot be dissipated. The interior of the module can effectively reduce the design complexity of the power module.
  • the power module 120 is superimposed on the top of the heat dissipation member 110 at a first position, and the capacitor core 130 is superimposed on the top of the heat dissipation member 110 at the first position.
  • the distance between the first location and the second location is equal to or smaller than a first predetermined distance.
  • the power module 120 and the capacitor core 130 are stacked at different positions on the top of the heat dissipation member 110, and the distance between the power module 120 and the capacitor core 130 is not greater than the first predetermined distance.
  • the power module 120 and the capacitor core 130 are close to each other.
  • the first predetermined distance can be a preset value, can also be a value calculated according to a related algorithm, or can be a value designed by the designer of the integrated power module according to actual application needs.
  • the first predetermined distance of the present invention The value of is not specifically limited.
  • the distance between the power module 120 and the capacitor core 130 is not greater than the first predetermined distance, and the power module 120 and the capacitor core 130 are close to each other, so that the current loop (current area) can be reduced, thereby reducing the area affected by the magnetic field (also known as the magnetic field area), which in turn reduces EMI noise.
  • the structure of the integrated power module 100 is more compact, so that the volume of the integrated power module can be reduced more effectively.
  • the heat dissipation member includes a first heat dissipation member and a second heat dissipation member sequentially arranged along a first direction
  • the power module conducts heat dissipation via the first heat dissipation member and the second heat dissipation member. dissipate heat, and the capacitor core dissipates heat through the first heat dissipating member and the second heat dissipating member.
  • the heat dissipation member 110 may include a first heat dissipation member 1101 and a second heat dissipation member 1102, and the first heat dissipation member 1101 and the second heat dissipation member 1102 are along a first direction (for example, corresponding to that shown in FIG.
  • the x-axis direction and the z-axis direction are perpendicular to the y-axis direction (not shown in FIG. 2 )) and arranged in sequence.
  • both the first heat dissipation member 1101 and the second heat dissipation member 1102 dissipate heat to the power module 120
  • both the first heat dissipation member 1101 and the second heat dissipation member 1102 also dissipate heat to the capacitor
  • the core 130 dissipates heat.
  • the power module 120 and the capacitor core 130 share the same cooling surface, and the heat dissipation member adopts the double-sided cooling structure of the first heat dissipation member 1101 and the second heat dissipation member 1102, so that heat can be dissipated more effectively, especially more effectively
  • the heat of the capacitor core 130 and the bus bar is dissipated in a low manner.
  • the power module includes a first power module and a second power module arranged in sequence along the first direction, and the first power module dissipates heat through the first heat dissipation member, so The second power module dissipates heat through the second heat dissipation member.
  • the power module 120 may include a first power module 1201 and a second power module 1202, the first power module 1201 and a part of the capacitor core 130 are superimposed on the top of the first heat dissipation member 1101, the second power module 1202 and Another part of the capacitor core 130 is superimposed on the top of the second heat dissipation member 1102, the first heat dissipation member 1101 dissipates heat to the first power module 1201 and the part of the capacitor core 130, and the second heat dissipation member 1102 dissipates heat to the second power module 1202 and the other part of the capacitor core 130 to dissipate heat.
  • a distance from the first power module to the second power module is less than or equal to a second predetermined distance.
  • the first power supply module 1201 is superimposed on the corresponding position on the top of the first heat dissipation member 1101
  • the second power supply module 1202 is superimposed on the corresponding position on the top of the second heat dissipation member 1102, and the first power supply
  • the distance between the module 1201 and the second power module 1202 in the first direction is not greater than the second predetermined distance. In other words, the first power module 1201 and the second power module 1202 are close to each other in the first direction.
  • the second predetermined distance can be a preset value, can also be a value calculated according to a related algorithm, or can be a value designed by the designer of the integrated power module according to actual application needs, and the second predetermined distance of the present invention The value of is not specifically limited.
  • the distance between the first power module 1201 and the second power module 1202 is not greater than the second predetermined distance, and the first power module 1201 and the second power module 1202 are close to each other, so that the current loop can be further reduced, thereby further Reduced magnetic field area further reduces EMI noise.
  • the structure of the integrated power module 100 is more compact, so that the volume of the integrated power module can be reduced more effectively.
  • the first power module and the second power module are sequentially and symmetrically arranged on the top of the first heat dissipation member and the top of the second heat dissipation member along the first direction.
  • the first power module 1201 and the second power module 1202 are centrally symmetrical with respect to overlapping portions of the first heat dissipation member 1101 and the second heat dissipation member 1102 along the first direction.
  • the first power module includes a first power die, a first output bus and a first auxiliary pin, wherein the first output bus is used to supply the first The power supply chip can supply, the first auxiliary pin is used to drive the first power chip, the second power module includes a second power chip, a second output bus and a second auxiliary pin, wherein, the second output bus bar is used to supply the power that the second power chip can supply to the load, and the second auxiliary pin is used to drive the second power chip.
  • the first power die includes a first IGBT power die and a first diode die
  • the second power die includes a second IGBT power die and a second two Pole grains.
  • the first power module 1201 may include a first power die including a first IGBT power die Q1 and a first diode die D1 , for supplying the load with the power that the first power die can supply.
  • the second power supply module 1202 may include a second IGBT power supply die Q2 and a second diode die D2
  • the insulating layer 190 is used to protect the first power module 1201 and the second power module 1202 .
  • the power module 120 directly decouples the output current through the first output bus bar 1701 and the second output bus bar 1702 , so the first output bus bar 1701 and the second output bus bar 1702 can be made thinner.
  • the distance between the first output bus 1701 and the second output bus 1702 is very short, for example, the distance between the first output bus 1701 and the second output bus 1702 is not greater than a certain preset threshold, so it can be automatically balanced
  • the inductance on the side of the first power module 1201 and the inductance on the side of the second power module 1202 is not greater than a certain preset threshold, so it can be automatically balanced.
  • the capacitor core 130 , the first power module 1201 and the second power module 1202 can be directly connected via a positive input bus bar 1801 and a negative input bus bar 1802 by, for example, a welding process.
  • the first auxiliary pin and the second auxiliary pin extend along a second direction crossing the first direction.
  • the first auxiliary pin 1601 and the second auxiliary pin 1602 extend along the x-axis direction (corresponding to the second direction), and the x-axis direction and the first direction (not shown in FIG. 3 and the x-axis direction) perpendicular to the y-axis direction which is perpendicular to the z-axis direction).
  • the driver board used to drive the power module is usually placed on the top side of the power module, that is to say, the driver board and the power module are arranged parallel to each other, so the direction of the current inside the power module is the same as that of the driver board.
  • the directions of the internal signal currents are parallel, which may cause electromagnetic interference (English: Electromagnetic Interference, EMI for short) noise to be coupled from the power module side to the driver board side.
  • the driving board used to drive the first power module and the second power module is along a direction that crosses the first direction and also crosses the second direction. Configured in the third direction.
  • the driving board 210 is arranged along the z-axis direction (corresponding to the third direction), therefore, the driving board 210 and the power module 120 are arranged perpendicular to each other.
  • the driver board 210 is provided with a connector 230 through which the driver board 210 can send and receive signals, so the signal current inside the driver board 210 flows along the z-axis direction, in other words, the direction of the signal current inside the driver board 210 is the z-axis direction.
  • the driving board 210 can drive the first power module 1201 and the second power module 1202 via the first auxiliary pin 1601 and the second auxiliary pin 1602 . Since the first auxiliary pin 1601 and the second auxiliary pin 1602 extend along the x-axis direction, the current inside the power module 120 flows along the x-axis direction, in other words, the direction of the current inside the power module 120 is the x-axis direction. Therefore, the direction of the signal current inside the driving board 210 is perpendicular to the direction of the current inside the power module 120 .
  • the direction of the signal current inside the driver board 210 is parallel to that of the power module 120.
  • the direction of the internal current is vertical instead of parallel, so the EMI noise will not be coupled from the side of the power module to the side of the driver board, thus will not affect the signal on the driver board.
  • the integrated power module 100 may further include a housing, which is used to configure the heat dissipation member, the power module, the capacitor core, the plastic sealing member and the drive board. in it.
  • the integrated power module 100 also includes a housing 220 , and the heat dissipation member 110 , the power module 120 , the capacitor core 130 , the plastic sealing member 140 and the drive board 210 are all arranged in the housing 220 , thereby forming the integrated power module 100 single integrated device.
  • the above-mentioned integrated power module 100 may be set in a vehicle (not shown).
  • the integrated power module 100 can be applied to xEV.
  • the capacitance value of the capacitor core 130 is related to both the rated current/voltage of the power module 120 and the rated power of the motor power.
  • an electric motor with a power of 150kW generally requires an 820A/750V power module and a 500uF/450V capacitor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Thermal Sciences (AREA)
  • Inverter Devices (AREA)

Abstract

本发明提供一种集成电源模块和车辆,该集成电源模块包括:散热构件;电源模块,其叠加设置在所述散热构件的顶部;电容器芯,其叠加设置在所述散热构件的顶部;塑封构件,将所述电源模块和所述电容器芯塑封在一起。由此,不仅可以降低电源模块和电容器之间的连接点所产生的寄生电感,而且还可以经由散热构件来对电源模块和电容器芯这两者进行散热。

Description

集成电源模块和车辆 技术领域
本发明涉及车辆技术领域,且特别地涉及一种集成电源模块和车辆。
背景技术
由于电源模块具有尺寸紧凑并且功率密度和可靠性都非常高的优点,因此,现有的xEV中广泛使用电源模块,其中xEV可表示从电源获得其至少一部分原动力的任何机动车。但是,针对xEV,无功功率(inactive power)是马达负载所必需的,因此,直流支撑电容器(也称为DC-Link电容器)是必不可少的。
母线(busbar)可用于电池和电动马达(e-Motor)之间的能量传递,由于电流的热效应(应能够理解,在电流通过电阻时,电流做功而消耗电能从而产生了热量,这种现象称为电流的热效应),因此,在母线传递大电流时,母线的温度可能急剧上升。
在通常的xEV的电机控制器(英文:Power Electronic Unit,简称:PEU)设计中,考虑到在xEV行驶的过程中可能存在振动,因此采用螺钉来连接电源模块和直流支撑电容器。近来,还采用电阻焊例如BOSCH MH6560来连接电源模块和直流支撑电容器。
然而,无论使用哪种连接工艺来连接电源模块和直流支撑电容器,连接点都会引入额外的寄生电感,该寄生电感可能引起尖峰电压,从而可能导致寄生电感限制电源模块的额定电流。
另外,在设计电源模块时,还需要考虑温度。由于直流支撑电容器没有散热接口,因此,在通过电源端子加热直流支撑电容器的情况下,直流支撑电容器的温度可能上升,这可能会影响电源模块的正常工作。因此,设计电源模块时可能需要谨慎选择电源模块的材料并仔细地将电源模块晶粒(die)分布在电源模块内部,这增加了电源模块的设计复杂度。
发明内容
本发明的目的在于克服或至少减轻上述现有技术存在的不足,提供一种 集成电源模块和车辆。
根据本发明的一方面,提供了一种集成电源模块,包括:散热构件;电源模块,其叠加设置在所述散热构件的顶部;电容器芯,其叠加设置在所述散热构件的顶部;塑封构件,将所述电源模块和所述电容器芯塑封在一起。
结合前述集成电源模块,在一种实现方式中,所述电源模块叠加设置在所述散热构件的顶部的第一位置处,所述电容器芯叠加设置在所述散热构件的顶部的与所述第一位置不同的第二位置处,所述第一位置与所述第二位置之间的距离等于或小于第一预定距离。
结合前述集成电源模块,在一种实现方式中,所述散热构件包括沿第一方向依次布设的第一散热构件和第二散热构件,所述电源模块经由所述第一散热构件和所述第二散热构件进行散热,并且所述电容器芯经由所述第一散热构件和所述第二散热构件进行散热。
结合前述集成电源模块,在一种实现方式中,所述电源模块包括沿所述第一方向依次布设的第一电源模块和第二电源模块,所述第一电源模块经由所述第一散热构件进行散热,所述第二电源模块经由所述第二散热构件进行散热。
结合前述集成电源模块,在一种实现方式中,在所述第一方向上,所述第一电源模块到所述第二电源模块的距离小于或等于第二预定距离。
结合前述集成电源模块,在一种实现方式中,所述第一电源模块和所述第二电源模块沿所述第一方向依次对称配置于所述第一散热构件的顶部和所述第二散热构件的顶部。
结合前述集成电源模块,在一种实现方式中,所述第一电源模块包括第一电源晶粒、第一输出母线和第一辅助引脚,其中,所述第一输出母线用于向负载供给所述第一电源晶粒能够供给的电源,所述第一辅助引脚用于驱动所述第一电源晶粒,所述第二电源模块包括第二电源晶粒、第二输出母线和第二辅助引脚,其中,所述第二输出母线用于向负载供给所述第二电源晶粒能够供给的电源,所述第二辅助引脚用于驱动所述第二电源晶粒。
结合前述集成电源模块,在一种实现方式中,所述第一电源晶粒包括第一IGBT电源晶粒和第一二极管晶粒,所述第二电源晶粒包括第二IGBT电源晶粒和第二二极管晶粒。
结合前述集成电源模块,在一种实现方式中,所述第一辅助引脚和所述第二辅助引脚沿与所述第一方向交叉的第二方向延伸。
结合前述集成电源模块,在一种实现方式中,用于驱动所述第一电源模块和所述第二电源模块的驱动板是沿与所述第一方向交叉且与所述第二方向也交叉的第三方向配置的。
结合前述集成电源模块,在一种实现方式中,该集成电源模块还包括:壳体,用于将所述散热构件、所述电源模块、所述电容器芯、所述塑封构件和所述驱动板配置于其内。
结合前述集成电源模块,在一种实现方式中,该集成电源模块还包括:正极输入母线,其叠加设置在所述散热构件的顶部,作为所述集成电源模块的正极;以及负极输入母线,其叠加设置在所述散热构件的顶部,作为所述集成电源模块的负极。
根据本发明的另一方面,提供了一种车辆,其设置有上述的集成电源模块。
可见,本发明的集成电源模块经由塑封构件将电源模块和电容器芯塑封在一起,由此,可将电源模块和电容器芯集成至同一塑料封装中,从而相比于分离设置电源模块和电容器芯,可以使得电流环路尽可能地小,可以降低电源模块和电容器之间的连接点所产生的寄生电感,因此,即使在高输入直流电压的条件下,也可以避免寄生电感对电源模块的额定电流的限制,从而可以提高电源模块的性能。
而且,相比于分离设置电源模块和电容器芯,集成设置电源模块和电容器芯的集成电源模块的结构更紧凑,从而能够有效实现集成电源模块体积的减小。
另外,本发明的集成电源模块将电源模块和电容器芯这两者叠加设置在散热构件的顶部,因此,可以经由散热构件来对电源模块和电容器芯这两者进行散热。由于已经可以经由散热构件对电容器芯进行散热,因此,在设计电源模块时,自然无需为了应对无法对电容器芯进行散热的问题而谨慎选择电源模块的材料并仔细地将电源模块晶粒分布在电源模块内部,从而能够有效降低电源模块的设计复杂度。
根据下面参考附图对示例性实施例的详细说明,本发明的其它特征及方 面将变得清楚。
附图说明
包含在说明书中并且构成说明书的一部分的附图与说明书一起示出了本发明的示例性实施例、特征和方面,并且用于解释本发明的原理。显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1a是根据一示例性实施例示出的一种集成电源模块的平面示意图。
图1b是根据一示例性实施例示出的一种集成电源模块的剖面示意图。
图2是根据一示例性实施例示出的一种集成电源模块的平面示意图。
图3是根据一示例性实施例示出的一种集成电源模块的平面示意图。
图4是根据一示例性实施例示出的一种集成电源模块的封装后示意图。
图5是根据一示例性实施例示出的一种集成电源模块的示意图。
具体实施方式
以下将参考附图详细说明本发明的各种示例性实施例、特征和方面。附图中相同的附图标记表示功能相同或相似的元件。尽管在附图中示出了实施例的各种方面,但是除非特别指出,不必按比例绘制附图。
在这里专用的词“示例性”意为“用作例子、实施例或说明性”。这里作为“示例性”所说明的任何实施例不必解释为优于或好于其它实施例。
另外,为了更好的说明本发明,在下文的具体实施方式中给出了众多的具体细节。本领域技术人员应当理解,没有某些具体细节,本发明同样可以实施。在另外一些实例中,对于本领域技术人员熟知的方法、手段、元件和电路未作详细描述,以便于凸显本发明的主旨。
请参阅图1a和1b,该集成电源模块100可以包括散热构件110、电源模块120、电容器芯130和塑封构件140。
该电源模块120叠加设置在该散热构件110的顶部,并且该电容器芯130也叠加设置在该散热构件110的顶部。在本实施方式中,该电源模块120和该电容器芯130堆叠设置于该散热构件110上,该散热构件110对该电源模块120 和该电容器芯130进行散热。换言之,经由该散热构件110为该电源模块120和该电容器芯130增加散热通道。该散热构件110包括但不限于散热片、散热器等。
该塑封构件140将叠加设置在该散热构件110的顶部的该电源模块120和该电容器芯130塑封在一起。在本实施方式中,经由该塑封构件140将该电源模块120和该电容器芯130集成至同一塑料封装中,亦即,该电源模块120和该电容器芯130可以集成在一起,并位于同一塑料封装内。该塑封构件140包括但不限于塑封层等。
请继续参阅图1a和1b,该集成电源模块100还可以包括端子1501至1504这四个端子,其中,端子1501和端子1502可分别用作该集成电源模块100的正极输入端子和负极输入端子,端子1501对应于正极输入母线并且端子1502对应于负极输入母线,端子1501和端子1502这两者均叠加设置在散热构件110的顶部。端子1503和端子1504可分别用作电源模块120的正极输出端子和负极输出端子,负载可与端子1503和端子1504连接,并经由端子1503和端子1504接收该集成电源模块100能够供给的电力。
可见,本发明的集成电源模块100经由塑封构件140将电源模块120和电容器芯130塑封在一起,由此,可将电源模块120和电容器芯130集成至同一塑料封装140中,从而相比于分离设置电源模块和电容器芯,可以使得电流环路尽可能地小,可以降低电源模块和电容器之间的连接点所产生的寄生电感,因此,即使在高输入直流电压的条件下,也可以避免寄生电感对电源模块的额定电流的限制,从而可以提高电源模块的性能。
而且,相比于分离设置电源模块和电容器芯,集成设置电源模块和电容器芯的集成电源模块的结构更紧凑,从而能够有效实现集成电源模块体积的减小。
另外,本发明的集成电源模块将电源模块和电容器芯这两者叠加设置在散热构件的顶部,因此,可以经由散热构件来对电源模块和电容器芯这两者进行散热。由于已经可以经由散热构件对电容器芯进行散热,因此,在设计电源模块时,自然无需为了应对无法对电容器芯进行散热的问题而谨慎选择电源模块的材料并仔细地将电源模块晶粒分布在电源模块内部,从而能够有效降低电源模块的设计复杂度。
在一种可能的实现方式中,所述电源模块120叠加设置在所述散热构件110的顶部的第一位置处,所述电容器芯130叠加设置在所述散热构件110的顶部的与所述第一位置不同的第二位置处,所述第一位置与所述第二位置之间的距离等于或小于第一预定距离。
请继续参阅图1a和1b,电源模块120和电容器芯130叠加设置在散热构件110的顶部的不同位置处,并且电源模块120和电容器芯130之间的间距不大于第一预定距离。换言之,电源模块120和电容器芯130彼此接近。其中,该第一预定距离可以是预设值,也可以是根据相关算法计算出的值,还可以是集成电源模块的设计人员根据实际应用需要而设计的值,本发明对该第一预定距离的取值不做具体限定。
因此,电源模块120和电容器芯130之间的间距不大于第一预定距离,电源模块120和电容器芯130彼此接近,这样,可以减少电流环路(电流面积),从而可减少受磁场影响的区域(也称为磁场区域),进而可减少EMI噪声。另外,由于电源模块120和电容器芯130彼此接近,因此集成电源模块100的结构更紧凑,从而能够更有效地实现集成电源模块体积的减小。
在一种可能的实现方式中,所述散热构件包括沿第一方向依次布设的第一散热构件和第二散热构件,所述电源模块经由所述第一散热构件和所述第二散热构件进行散热,并且所述电容器芯经由所述第一散热构件和所述第二散热构件进行散热。
请参阅图2,散热构件110可以包括第一散热构件1101和第二散热构件1102,第一散热构件1101和第二散热构件1102沿第一方向(例如,对应于与图2中所示出的x轴方向和z轴方向均垂直的y轴方向(图2未示出))依次布设。请继续参阅图1a和1b以及图2,第一散热构件1101和第二散热构件1102这两者对电源模块120进行散热,并且第一散热构件1101和第二散热构件1102这两者还对电容器芯130进行散热。
因此,电源模块120和电容器芯130共享同一冷却面,并且散热构件采用第一散热构件1101和第二散热构件1102这种双侧冷却结构,从而可以更有效地耗散热量,尤其是能够更有效地耗散电容器芯130和母线的热量。
在一种可能的实现方式中,所述电源模块包括沿所述第一方向依次布设的第一电源模块和第二电源模块,所述第一电源模块经由所述第一散热构件 进行散热,所述第二电源模块经由所述第二散热构件进行散热。
请参阅图2,电源模块120可以包括第一电源模块1201和第二电源模块1202,第一电源模块1201和电容器芯130的一部分叠加设置于第一散热构件1101的顶部,第二电源模块1202和电容器芯130的另一部分叠加设置于第二散热构件1102的顶部,第一散热构件1101对第一电源模块1201和电容器芯130的该一部分进行散热,并且第二散热构件1102对第二电源模块1202和电容器芯130的该另一部分进行散热。
在一种可能的实现方式中,在所述第一方向上,所述第一电源模块到所述第二电源模块的距离小于或等于第二预定距离。
请继续参阅图2,第一电源模块1201叠加设置在第一散热构件1101的顶部的相应位置处,第二电源模块1202叠加设置在第二散热构件1102的顶部的相应位置处,并且第一电源模块1201和第二电源模块1202在第一方向上之间的间距不大于第二预定距离。换言之,第一电源模块1201和第二电源模块1202在第一方向上彼此接近。其中,该第二预定距离可以是预设值,也可以是根据相关算法计算出的值,还可以是集成电源模块的设计人员根据实际应用需要而设计的值,本发明对该第二预定距离的取值不做具体限定。
因此,第一电源模块1201和第二电源模块1202之间的间距不大于第二预定距离,第一电源模块1201和第二电源模块1202彼此接近,这样,可以进一步减少电流环路,从而可进一步减少磁场区域,进而可进一步减少EMI噪声。另外,由于第一电源模块1201和第二电源模块1202彼此接近,因此集成电源模块100的结构更紧凑,从而能够更有效地实现集成电源模块体积的减小。
在一种可能的实现方式中,所述第一电源模块和所述第二电源模块沿所述第一方向依次对称配置于所述第一散热构件的顶部和所述第二散热构件的顶部。
请继续参阅图2,第一电源模块1201和第二电源模块1202沿第一方向相对于第一散热构件1101和第二散热构件1102的重叠部分呈中心对称。
在一种可能的实现方式中,所述第一电源模块包括第一电源晶粒、第一输出母线和第一辅助引脚,其中,所述第一输出母线用于向负载供给所述第一电源晶粒能够供给的电源,所述第一辅助引脚用于驱动所述第一电源晶粒,所述第二电源模块包括第二电源晶粒、第二输出母线和第二辅助引脚,其中, 所述第二输出母线用于向负载供给所述第二电源晶粒能够供给的电源,所述第二辅助引脚用于驱动所述第二电源晶粒。
在一种可能的实现方式中,所述第一电源晶粒包括第一IGBT电源晶粒和第一二极管晶粒,所述第二电源晶粒包括第二IGBT电源晶粒和第二二极管晶粒。
请参阅图3,第一电源模块1201可以包括包含第一IGBT电源晶粒Q1和第一二极管晶粒D1的第一电源晶粒、用于向负载供给该第一电源晶粒能够供给的电力的第一输出母线1701、以及用于驱动该第一电源晶粒的第一辅助引脚1601,第二电源模块1202可以包括包含第二IGBT电源晶粒Q2和第二二极管晶粒D2的第二电源晶粒、用于向负载供给该第二电源晶粒能够供给的电力的第二输出母线1702、以及用于驱动该第二电源晶粒的第二辅助引脚1602。绝缘层190用于保护第一电源模块1201和第二电源模块1202。
因此,电源模块120以第一输出母线1701和第二输出母线1702直接去耦合输出电流,因此第一输出母线1701和第二输出母线1702可以被制作地更细。
请参阅图4,第一输出母线1701和第二输出母线1702之间的间距很短,例如第一输出母线1701和第二输出母线1702之间的间距不大于某预设阈值,因此可以自动平衡第一电源模块1201侧的电感和第二电源模块1202侧的电感。
请继续参阅图3,电容器芯130、第一电源模块1201和第二电源模块1202可以通过例如焊接工艺经由正极输入母线1801和负极输入母线1802直接连接。
在一种可能的实现方式中,所述第一辅助引脚和所述第二辅助引脚沿与所述第一方向交叉的第二方向延伸。
请继续参阅图3,第一辅助引脚1601和第二辅助引脚1602沿x轴方向(对应于第二方向)延伸,x轴方向与第一方向(图3未示出的与x轴方向和z轴方向均垂直的y轴方向)垂直。
对于现有的电源模块,用于驱动电源模块的驱动板通常被放置在电源模块的顶侧,也就是说,驱动板与电源模块彼此平行地配置,因此电源模块内部的电流的方向与驱动板内部的信号电流的方向是平行的,这可能导致电磁干扰(英文:Electromagnetic Interference,简称:EMI)噪声从电源模块侧耦 合到驱动板侧。
为此,在一种可能的实现方式中,用于驱动所述第一电源模块和所述第二电源模块的驱动板是沿与所述第一方向交叉且与所述第二方向也交叉的第三方向配置的。
请参阅图3和图5,沿z轴方向(对应于第三方向)配置驱动板210,因此,驱动板210与电源模块120彼此垂直地配置。驱动板210设置有连接器230,驱动板210可经由连接器230收发信号,因此驱动板210内部的信号电流沿z轴方向流动,换言之,驱动板210内部的信号电流的方向为z轴方向。
驱动板210可经由第一辅助引脚1601和第二辅助引脚1602来驱动第一电源模块1201和第二电源模块1202。由于第一辅助引脚1601和第二辅助引脚1602沿x轴方向延伸,因此电源模块120内部的电流沿x轴方向流动,换言之,电源模块120内部的电流的方向为x轴方向。因此,驱动板210内部的信号电流的方向与电源模块120内部的电流的方向垂直。
由此,相比于驱动板210内部的信号电流的方向与电源模块120内部的电流的方向平行,即使在电源模块210中存在EMI噪声,由于驱动板210内部的信号电流的方向与电源模块120内部的电流的方向是垂直的而不是平行的,因此该EMI噪声也不会从电源模块侧耦合到驱动板侧,从而不会影响驱动板上的信号。
在一种可能的实现方式中,集成电源模块100还可以包括壳体,该壳体用于将所述散热构件、所述电源模块、所述电容器芯、所述塑封构件和所述驱动板配置于其内。
请继续参阅图5,集成电源模块100还包括壳体220,散热构件110、电源模块120、电容器芯130、塑封构件140和驱动板210均配置于壳体220内,从而形成集成电源模块100的单一集成器件。
在一种可能的实现方式中,可以将上述集成电源模块100设置于车辆(未示出)中。
本实施方式中,集成电源模块100可应用于xEV中。通常,对于xEV应用,电容器芯130的电容值与电源模块120的额定电流/电压和马达功率的额定功率这两者有关。示例性的,对于350V的直流支撑系统,功率为150kW的电动马达通常需要820A/750V的电源模块以及500uF/450V的电容器。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (13)

  1. 一种集成电源模块,其特征在于,包括:
    散热构件;
    电源模块,其叠加设置在所述散热构件的顶部;
    电容器芯,其叠加设置在所述散热构件的顶部;
    塑封构件,将所述电源模块和所述电容器芯塑封在一起。
  2. 根据权利要求1所述的集成电源模块,其特征在于,
    所述电源模块叠加设置在所述散热构件的顶部的第一位置处,
    所述电容器芯叠加设置在所述散热构件的顶部的与所述第一位置不同的第二位置处,
    所述第一位置与所述第二位置之间的距离等于或小于第一预定距离。
  3. 根据权利要求1所述的集成电源模块,其特征在于,
    所述散热构件包括沿第一方向依次布设的第一散热构件和第二散热构件,所述电源模块经由所述第一散热构件和所述第二散热构件进行散热,并且所述电容器芯经由所述第一散热构件和所述第二散热构件进行散热。
  4. 根据权利要求3所述的集成电源模块,其特征在于,
    所述电源模块包括沿所述第一方向依次布设的第一电源模块和第二电源模块,所述第一电源模块经由所述第一散热构件进行散热,所述第二电源模块经由所述第二散热构件进行散热。
  5. 根据权利要求4所述的集成电源模块,其特征在于,
    在所述第一方向上,所述第一电源模块到所述第二电源模块的距离小于或等于第二预定距离。
  6. 根据权利要求4所述的集成电源模块,其特征在于,
    所述第一电源模块和所述第二电源模块沿所述第一方向依次对称配置于所述第一散热构件的顶部和所述第二散热构件的顶部。
  7. 根据权利要求4所述的集成电源模块,其特征在于,
    所述第一电源模块包括第一电源晶粒、第一输出母线和第一辅助引脚,其中,所述第一输出母线用于向负载供给所述第一电源晶粒能够供给的电源,所述第一辅助引脚用于驱动所述第一电源晶粒,
    所述第二电源模块包括第二电源晶粒、第二输出母线和第二辅助引脚,其中,所述第二输出母线用于向负载供给所述第二电源晶粒能够供给的电源, 所述第二辅助引脚用于驱动所述第二电源晶粒。
  8. 根据权利要求7所述的集成电源模块,其特征在于,
    所述第一电源晶粒包括第一IGBT电源晶粒和第一二极管晶粒,
    所述第二电源晶粒包括第二IGBT电源晶粒和第二二极管晶粒。
  9. 根据权利要求7所述的集成电源模块,其特征在于,
    所述第一辅助引脚和所述第二辅助引脚沿与所述第一方向交叉的第二方向延伸。
  10. 根据权利要求9所述的集成电源模块,其特征在于,
    用于驱动所述第一电源模块和所述第二电源模块的驱动板是沿与所述第一方向交叉且与所述第二方向也交叉的第三方向配置的。
  11. 根据权利要求10所述的集成电源模块,其特征在于,还包括:
    壳体,用于将所述散热构件、所述电源模块、所述电容器芯、所述塑封构件和所述驱动板配置于其内。
  12. 根据权利要求1-11中任一项所述的集成电源模块,其特征在于,还包括:
    正极输入母线,其叠加设置在所述散热构件的顶部,作为所述集成电源模块的正极;以及
    负极输入母线,其叠加设置在所述散热构件的顶部,作为所述集成电源模块的负极。
  13. 一种车辆,其特征在于,设置有根据权利要求1-12中任一项所述的集成电源模块。
PCT/CN2021/097862 2021-06-02 2021-06-02 集成电源模块和车辆 WO2022252143A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/097862 WO2022252143A1 (zh) 2021-06-02 2021-06-02 集成电源模块和车辆

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/097862 WO2022252143A1 (zh) 2021-06-02 2021-06-02 集成电源模块和车辆

Publications (1)

Publication Number Publication Date
WO2022252143A1 true WO2022252143A1 (zh) 2022-12-08

Family

ID=84322682

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/097862 WO2022252143A1 (zh) 2021-06-02 2021-06-02 集成电源模块和车辆

Country Status (1)

Country Link
WO (1) WO2022252143A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010251559A (ja) * 2009-04-16 2010-11-04 Sanken Electric Co Ltd 電子回路装置
CN102437731A (zh) * 2011-09-30 2012-05-02 安徽华东光电技术研究所 基于氧化铍散热结构的电源模块及其制作方法
CN109348670A (zh) * 2018-09-11 2019-02-15 陕西千山航空电子有限责任公司 一种电源模块结构
CN110085579A (zh) * 2019-04-25 2019-08-02 广东美的制冷设备有限公司 高集成智能功率模块及其制作方法以及空调器
CN110931449A (zh) * 2019-12-10 2020-03-27 青岛歌尔智能传感器有限公司 电源模块封装结构及电源模块的封装方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010251559A (ja) * 2009-04-16 2010-11-04 Sanken Electric Co Ltd 電子回路装置
CN102437731A (zh) * 2011-09-30 2012-05-02 安徽华东光电技术研究所 基于氧化铍散热结构的电源模块及其制作方法
CN109348670A (zh) * 2018-09-11 2019-02-15 陕西千山航空电子有限责任公司 一种电源模块结构
CN110085579A (zh) * 2019-04-25 2019-08-02 广东美的制冷设备有限公司 高集成智能功率模块及其制作方法以及空调器
CN110931449A (zh) * 2019-12-10 2020-03-27 青岛歌尔智能传感器有限公司 电源模块封装结构及电源模块的封装方法

Similar Documents

Publication Publication Date Title
US11270984B2 (en) Semiconductor module
US8693193B2 (en) Power converter
US6215679B1 (en) Alternator power converter
US6115270A (en) Electric power conversion assembly with ceramic smoothing capacitor
US11538794B2 (en) Power converter with an upper arm and a lower arm and at least first and second semiconductor devices connected by a bridging member
US20170110395A1 (en) Semiconductor device
CN108511396B (zh) 电子装置
US11489417B2 (en) Packaging of wide bandgap power electronic power stages
WO2011118057A1 (ja) 電力変換装置
US11631641B2 (en) Semiconductor device, semiconductor module, and vehicle
CN109417066B (zh) 半导体装置
KR20150058015A (ko) 반도체 장치 및 반도체 장치의 제조 방법
JP2008136333A (ja) 電力変換装置
US11855525B2 (en) Connection structure of snubber circuit within semiconductor device and power module structure using same
WO2022252143A1 (zh) 集成电源模块和车辆
US20200211954A1 (en) Semiconductor module
WO2011096164A1 (ja) 半導体装置
CN110741547A (zh) 电子控制装置以及使用该电子控制装置的电动动力转向装置
US20220140706A1 (en) Power electronics assembly having vertically stacked transistors
CN116130474A (zh) 半导体装置
US10566879B2 (en) Electronic device
JPH03108749A (ja) 電力変換装置用トランジスタモジュール
JP7428679B2 (ja) パワー半導体装置および電力変換装置
US11990799B2 (en) Capacitor module, inverter module, and motor unit
JP7392674B2 (ja) 電力変換装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21943512

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21943512

Country of ref document: EP

Kind code of ref document: A1