WO2022250504A1 - 전고체 리튬 이차전지 및 이의 제조 방법 - Google Patents

전고체 리튬 이차전지 및 이의 제조 방법 Download PDF

Info

Publication number
WO2022250504A1
WO2022250504A1 PCT/KR2022/007604 KR2022007604W WO2022250504A1 WO 2022250504 A1 WO2022250504 A1 WO 2022250504A1 KR 2022007604 W KR2022007604 W KR 2022007604W WO 2022250504 A1 WO2022250504 A1 WO 2022250504A1
Authority
WO
WIPO (PCT)
Prior art keywords
graphitized
carbon nanofibers
active material
secondary battery
material layer
Prior art date
Application number
PCT/KR2022/007604
Other languages
English (en)
French (fr)
Inventor
김태곤
이동찬
이정범
김슬참
권혜진
하회진
김기태
김소희
김정길
김명수
Original Assignee
주식회사 엘지에너지솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지에너지솔루션 filed Critical 주식회사 엘지에너지솔루션
Priority to US18/034,650 priority Critical patent/US20230395801A1/en
Priority to JP2023524813A priority patent/JP2023546707A/ja
Priority to EP22811695.0A priority patent/EP4216301A1/en
Priority to CN202280007207.4A priority patent/CN116457962A/zh
Publication of WO2022250504A1 publication Critical patent/WO2022250504A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/626Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to an all-solid-state lithium secondary battery and a manufacturing method thereof.
  • Secondary batteries have been mainly applied to small fields such as mobile devices and notebook computers, but recently, their application direction is expanding to medium and large fields, for example, energy storage systems (ESS) and electric vehicles (electric vehicles). , EV) is expanding into fields requiring high energy and high power.
  • ESS energy storage systems
  • electric vehicles electric vehicles
  • the all-solid-state lithium secondary battery is a secondary battery using an incombustible inorganic solid electrolyte instead of a liquid electrolyte, and has higher thermal stability than a lithium secondary battery using a liquid electrolyte, and has a very low risk of explosion due to leakage during overcharging, such an explosion It is attracting attention in that it does not require additional facilities for risk prevention.
  • the all-solid-state lithium secondary battery uses a solid electrolyte with a rather large volume, many attempts are made to improve the energy density of the battery.
  • a metal layer capable of forming an alloy with lithium such as lithium metal
  • lithium metal is used as an anode active material layer.
  • a gap is generated between the solid electrolyte and the metal layer, which adversely affects battery driving.
  • lithium metal precipitates as a dendrite on the surface of the metal layer during discharging of the all-solid lithium secondary battery life and safety of the solid-state lithium secondary battery are impaired.
  • One problem to be solved by the present invention is an all-solid lithium secondary battery in which lithium ions are reduced during charging so that lithium metal can be effectively stored, initial charge/discharge efficiency can be improved, and lifespan characteristics can be improved. is to provide
  • Another problem to be solved by the present invention is to provide an all-solid-state lithium secondary battery with a competitive price by lowering the content of silver nanoparticles used.
  • Another problem to be solved by the present invention is to provide a method for manufacturing the above-described all-solid-state lithium secondary battery.
  • a positive electrode active material layer a negative electrode active material layer, and a solid electrolyte layer disposed between the positive electrode active material layer and the negative electrode active material layer, wherein the negative electrode active material layer is graphitized platelet carbon nano
  • the negative electrode active material layer is graphitized platelet carbon nano
  • silver ions are reduced to form the graphitized platelet carbon nanofibers and the graphitized platelet carbon nanofibers.
  • the negative electrode active material layer includes graphitized platelet carbon nanofibers and silver nanoparticles
  • lithium ions are reduced and precipitated by the negative electrode active material layer during charging and can be effectively stored in the negative electrode. have.
  • stored lithium may be dissolved in the form of lithium ions and moved to the positive electrode during discharging.
  • the graphitized platelet carbon nanofibers may improve the initial charge/discharge efficiency and lifespan characteristics of the battery by increasing the mobility of the lithium ions.
  • the above-described movement of lithium ions can be effectively achieved even with a low content of silver nanoparticles, thereby increasing the price competitiveness of the manufactured all-solid-state lithium secondary battery.
  • FIG. 1 is a schematic diagram for explaining graphitized platelet carbon nanofibers mentioned in the present invention.
  • FIG. 2 is a schematic diagram for explaining the platelet carbon nanofibers mentioned in the present invention.
  • FIG. 3 is a schematic diagram for explaining the graphitized platelet carbon nanofibers mentioned in the present invention.
  • FIG. 4 is a schematic diagram for explaining an all-solid-state lithium secondary battery according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram for explaining an all-solid-state lithium secondary battery according to an embodiment of the present invention.
  • FIG. 6 is a TEM photograph of platelet carbon nanofibers mentioned in the present invention.
  • FIG. 7 is a TEM photograph of the graphitized platelet carbon nanofibers mentioned in the present invention.
  • FIG. 8 is a TEM photograph of graphitized platelet carbon nanofibers including silver nanoparticles used in an all-solid-state lithium secondary battery according to an embodiment of the present invention.
  • FIG. 9 is a TEM photograph of platelet carbon nanofibers including silver nanoparticles used in an all-solid-state lithium secondary battery according to another embodiment of the present invention.
  • specific surface area is measured by the BET method, and can be specifically calculated from the amount of nitrogen gas adsorbed under liquid nitrogen temperature (77K) using BEL Japan's BELSORP-mini II.
  • graphitized platelet carbon nanofibers may mean a carbon structure having a fibrous form in which graphene sheets are stacked.
  • the graphitized platelet carbon nanofibers may mean carbon nanofibers having a structure in which hexagonal planes of carbon are arranged at right angles to a fiber axis (L).
  • the length of the graphitized platelet carbon nanofibers means the length of a line segment or curve appearing when one end and the other end of the graphitized platelet carbon nanofibers are connected along the graphitized platelet carbon nanofibers, , for example, may mean the distance between one end and the other end along the fiber axis of the graphitized platelet carbon nanofibers when the graphitized platelet carbon nanofibers are stretched in a straight line.
  • the diameter of the graphitized platelet carbon nanofibers is perpendicular to the fiber axis (L) of the graphitized platelet carbon nanofibers and the short axis parallel to the plane of the graphene sheet or the hexagonal plane of carbon ( D) In the direction, it means the width of the graphitized platelet carbon nanofibers.
  • FIGS. 2 and 3 are schematic diagrams for explaining the carbon nanofiber side (S) of FIG.
  • the platelet carbon nanofibers have the same shape as described in the above paragraph.
  • the side surface of the platelet carbon nanofibers is a form in which the edge plane (E in FIG. 2) of the graphene sheet (black line in FIGS. 2 and 3) is exposed, but the graphitized platelet carbon nanofibers The side of the basal plane (Basal Plane) (B in Fig. 3) is exposed.
  • Basal Plane Basal Plane
  • the graphitized platelet carbon nanofibers have a form in which a plurality of graphene sheets are stacked in the growth direction of the graphitized platelet carbon nanofibers, and the graphitized platelet carbon nanofibers are the graphitized platelet carbon nanofibers. and a bent portion protruding toward a side surface of the platelet carbon nanofibers, and the bent portion corresponds to a basal surface of the graphene sheet.
  • the bent portion is formed by extending one graphene sheet and connecting it to another graphene sheet, and as shown in FIGS. 3 and 7, a basal surface is exposed toward the outside from a side surface of the graphitized platelet carbon nanofiber.
  • the base surface may have a closed loop shape, and may exist in a bent state at the side of the graphitized platelet carbon nanofibers. The loop shape may appear periodically along the growth direction of the graphitized platelet carbon nanofibers.
  • the graphitized platelet carbon nanofibers may be formed by graphitizing platelet carbon nanofibers by heat-treating them at a high temperature. Specifically, the graphitized platelet carbon nanofibers may be formed by heat-treating the platelet carbon nanofibers at a temperature of 2,000° C. or higher, for example, 2,000° C. to 3,500° C.
  • the heat treatment time may be 10 minutes to 24 hours.
  • the XRD (X-ray diffraction) measurement method of graphitized platelet carbon nanofibers and platelet carbon nanofibers may be as follows.
  • a Bruker AXS D4 Endeavor XRD (voltage: 40 kV, current: 40 mA) can be used, and under the condition of Cu K ⁇ radiation (wavelength: 1.54 ⁇ ), 2-Theta 87.5 per 0.02° from 10° to 90° It can be measured at a scanning speed in seconds.
  • the Full Width at Half-Maximum (FWHM) of the (002) crystal peak appearing at 2 ⁇ around 20° to 30° can be measured, and the d(002) value and Lc calculated through the Scherrer formula (002) value can be obtained.
  • I D /I G (ratio) in the present specification can be measured from a wavelength-peak graph during Raman spectrum measurement. Specifically, after fitting the graph by setting a base line so that the D peak and G peak can be distinguished, I D /I G can be confirmed by dividing the D peak intensity by the G peak intensity (using the built-in software). , NRS-2000B, Jasco Co.). In the Raman spectrum, the G peak around 1590 cm -1 is due to the E 2g vibration mode of the sp 2 bond of carbon, and the D peak around 1350 cm -1 appears when there is a defect in the sp 2 bond of carbon.
  • the average diameter of the graphitized platelet carbon nanofibers is the top 50 graphitized graphitized fibers in order of diameter when the negative active material layer is observed at ⁇ 20,000 magnification through an SEM. It corresponds to the average value of the diameters of the platelet carbon nanofibers (or platelet carbon nanofibers) and the diameters of the lower 50 graphitized platelet carbon nanofibers (or platelet carbon nanofibers).
  • the average length of the graphitized platelet carbon nanofibers is the top 50 graphitized graphitized fibers in order of length when the negative electrode active material layer is observed at ⁇ 20,000 magnification through SEM. It corresponds to the average value of the lengths of the platelet carbon nanofibers (or platelet carbon nanofibers) and the lengths of the lower 50 graphitized platelet carbon nanofibers (or platelet carbon nanofibers).
  • the average particle diameter of the silver nanoparticles is obtained when the platelet carbon nanofibers containing silver nanoparticles or the platelet carbon nanofibers containing silver nanoparticles of the negative electrode active material layer are observed through TEM at ⁇ 1,000,000 magnification. , corresponds to the average value of the particle diameters of the top 50 silver nanoparticles and the bottom 50 silver nanoparticles with large particle diameters.
  • An all-solid lithium secondary battery includes a positive active material layer, a negative active material layer, and a solid electrolyte layer disposed between the positive active material layer and the negative active material layer, wherein the negative active material layer is graphitized.
  • graphitized platelet carbon nano fibers (GPCNF) and silver nanoparticles are examples of graphitized platelet carbon nano fibers (GPCNF) and silver nanoparticles.
  • the all-solid lithium secondary battery may include an anode active material layer.
  • the all-solid lithium secondary battery may include a negative electrode, and the negative electrode may include a negative electrode current collector and a negative electrode active material layer.
  • the anode current collector may be any material having conductivity without causing chemical change in the battery, and is not particularly limited.
  • copper, stainless steel, aluminum, nickel, titanium, calcined carbon, or aluminum or stainless steel surface treated with carbon, nickel, titanium, silver, etc. may be used as the anode current collector.
  • a transition metal that adsorbs carbon well such as nickel or stainless steel, can be used as the anode current collector.
  • the anode active material layer 100 may be disposed on at least one surface of the anode current collector 110 .
  • the negative electrode active material layer 100 may be disposed on one side of the negative electrode current collector 110, or may be disposed on both sides of the negative electrode current collector (not shown).
  • the negative electrode active material layer may include graphitized platelet carbon nanofibers and silver nanoparticles.
  • the negative electrode active material layer may be formed of graphitized platelet carbon nanofibers and silver nanoparticles.
  • the graphitized platelet carbon nanofibers may serve as a movement path allowing lithium ions transferred from the cathode active material layer to be easily deposited and stored on the anode current collector.
  • the graphitized platelet carbon nanofibers include bent portions protruding toward a side surface of the graphitized platelet carbon nanofibers, and the bent portions correspond to a basal surface of the graphene sheet. That is, the basal surface is exposed toward the outside from the side of the graphitized platelet carbon nanofibers. More specifically, the base surface may have a closed loop shape, and may exist in a bent state at the side of the graphitized platelet carbon nanofibers. The loop shape may appear periodically along the growth direction of the graphitized platelet carbon nanofibers. As lithium ions can move quickly onto the basal surface, graphitized platelet carbon nanofibers can play a role in inducing fast movement of lithium ions. Accordingly, the irreversible capacity for initial lithium ion occlusion may decrease.
  • d (002) of the graphitized platelet carbon nanofibers may be 0.330 nm to 0.350 nm, specifically 0.330 nm to 0.345 nm, more specifically It may be 0.330 nm to 0.340 nm.
  • the crystallinity of the graphitized platelet carbon nanofibers is high, so electrical conductivity is greatly improved, and it is advantageous for occlusion and movement of lithium ions.
  • the Lc(002) of the platelet carbon nanofibers may be 20 nm to 200 nm, specifically 20 nm to 150 nm, more specifically 20 nm to 100 nm, for example 35 nm to 100 nm. have.
  • electrical conductivity is improved due to excellent graphitization degree of the graphitized platelet carbon nanofibers, and crystallinity defects in the longitudinal direction of the graphitized platelet carbon nanofibers are small, resulting in the material itself.
  • the mechanical strength of may be excellent.
  • the phenomenon of cutting the graphitized platelet carbon nanofibers can be reduced, and the graphitized platelet carbon nanofibers can be charged and discharged during battery charging and discharging. Deterioration of the battery due to defects in the battery can be minimized.
  • I D /I G of the graphitized platelet carbon nanofibers may be 0.1 to 1.0, specifically 0.1 to 0.5, more specifically 0.1 to 1.0. may be 0.3.
  • the crystallinity of the graphitized platelet carbon nanofibers is high, so electrical conductivity is greatly improved, and it is advantageous for occlusion and movement of lithium ions.
  • the graphitized platelet carbon nanofibers may have an average length of 0.1 ⁇ m to 5 ⁇ m, specifically 0.1 ⁇ m to 2.5 ⁇ m, and more specifically 0.1 ⁇ m to 1 ⁇ m.
  • a conductive path can be effectively formed in the negative electrode active material layer, and thus the efficiency of the all-solid lithium secondary battery can be improved.
  • structural collapse of the negative electrode active material layer can be effectively suppressed.
  • the graphitized platelet carbon nanofibers may have an average diameter of 10 nm to 500 nm, specifically 10 nm to 400 nm, and more specifically 10 ⁇ m to 300 nm. When the above range is satisfied, the mechanical structure of the graphitized platelet carbon nanofibers can be effectively maintained even when lithium ions are occluded and moved through the graphitized platelet carbon nanofibers.
  • the specific surface area of the graphitized platelet carbon nanofibers may be 5 m 2 /g to 10 m 2 /g, specifically 5 m 2 /g to 80 m 2 /g, more specifically 5 m 2 /g to 60 m 2 /g. m 2 /g.
  • silver nanoparticles can be stably disposed on the surface of the graphitized platelet carbon nanofibers, so that lithium ions can be occluded and moved effectively.
  • the graphitized platelet carbon nanofibers may be included in the negative electrode active material layer in an amount of 50% to 98% by weight, specifically 60% to 95% by weight, more specifically 70% to 90% by weight. have.
  • the mobility of lithium ions can be effectively improved while minimizing the decrease in energy density of the all-solid lithium secondary battery, so the initial charge / discharge efficiency and life characteristics of the all-solid lithium secondary battery can be improved. .
  • the silver nanoparticles have a lithium affinity (Lithiophilic) property, they can easily form an alloy with lithium ions. Accordingly, the silver nanoparticles may form an alloy with lithium ions transferred from the positive electrode active material layer to promote occlusion and diffusion of lithium ions into the negative electrode active material layer.
  • the silver nanoparticles may include silver (Ag). Furthermore, the silver nanoparticles may further contain at least one selected from the group consisting of gold, platinum, palladium, silicon, aluminum, bismuth, tin, indium, and zinc. Alternatively, the silver nanoparticles may be made of silver. The silver nanoparticles may be in a solid state.
  • the silver nanoparticles may be disposed on the surface of the graphitized platelet carbon nanofibers.
  • the silver nanoparticles may be formed by reducing silver ions in an aqueous silver ion solution on the surface of the graphitized platelet carbon nanofibers. may be disposed on the surface of Alternatively, the powder of silver nanoparticles and the platelet carbon nanofibers may be mixed in a powder state, and the silver nanoparticles may be disposed on the surface of the platelet carbon nanofibers.
  • the average particle diameter of the silver nanoparticles may be 1 nm to 100 nm, specifically 1 nm to 50 nm, more specifically 1 nm to 30 nm, and for example, 1 nm to 2 nm.
  • the silver nanoparticles may be effectively dispersed in the negative electrode active material layer, lithium ions may be easily absorbed and diffused even when the content of the silver nanoparticles is low.
  • the initial efficiency and lifespan characteristics of the battery can be improved.
  • the silver nanoparticles may be included in an amount of 1% to 40% by weight based on the total weight of the graphitized platelet carbon nanofibers and the silver nanoparticles, specifically 3% by weight to 30% by weight, more specifically 5% to 20% by weight, such as 7% to 10% by weight.
  • the lithium ions transferred to the positive electrode active material layer can be effectively alloyed with the silver nanoparticles, and thus the electrochemical characteristics of the all-solid lithium secondary battery can be improved.
  • the energy density and price competitiveness of the all-solid-state lithium secondary battery can be improved.
  • the reason why the silver nanoparticles can be used in an amount of 10% by weight or less, specifically 7% to 10% by weight is because the negative electrode active material layer includes the graphitized platelet carbon nanofibers. Lithium ions transferred from the positive electrode active material layer are alloyed with silver nanoparticles having lithium affinity, and the occlusion and diffusion of the lithium ions into the negative electrode is promoted. In particular, through the layered structure on the platelet carbon nanofibers described in the present invention, The above lithium ion occlusion and diffusion may be further promoted. Accordingly, the rate at which lithium metal is precipitated and stored on the anode active material layer and the anode current collector may be improved.
  • the side surfaces of the graphitized platelet carbon nanofibers have a closed loop shape at regular intervals, the silver nanoparticles can be effectively dispersed and disposed along the curved surface, and battery charging and discharging Aggregation of silver nanoparticles can be effectively suppressed even in this repeated process. Accordingly, it may be possible to sufficiently improve the capacity and initial charge/discharge efficiency of the all-solid-state lithium secondary battery even with a small amount of silver nanoparticles.
  • the weight ratio of the graphitized platelet carbon nanofibers to the silver nanoparticles may be 99:1 to 60:40, specifically 97:3 to 70:30, more specifically 95:1 to 60:40. 5 to 80:20, such as 95:5 to 88:12. When this is satisfied, the capacity and initial charge/discharge efficiency of the all-solid-state lithium secondary battery can be more effectively improved.
  • the loading amount of the negative electrode active material layer may be 0.1 mg/cm 2 to 2.0 mg/cm 2 , specifically 0.3 mg/cm 2 to 1.8 mg/cm 2 , and more specifically 0.5 mg/cm 2 to 1.6 mg/cm 2 can be When the above range is satisfied, the effect of improving the initial efficiency and lifespan of the battery may be maximized without compromising the energy density due to the increase in the thickness of the negative electrode.
  • the negative electrode active material layer may have a thickness of 1 ⁇ m to 100 ⁇ m, specifically 1 ⁇ m to 50 ⁇ m, and more specifically 1 ⁇ m to 20 ⁇ m. When the above range is satisfied, the effect of improving the initial efficiency and lifespan of the battery may be maximized without compromising the energy density due to the increase in the thickness of the negative electrode.
  • the anode active material layer may further include an anode binder.
  • the negative electrode binder is polyvinylidene fluoride (PVdF), polyvinyl alcohol (PVA), carboxymethyl cellulose (CMC), starch, hydroxypropyl cellulose, polyvinylpyrrolidone, polytetrafluoroethylene (PTFE), poly It may include at least one selected from the group consisting of tetrafluoroethylene, polyethylene, polypropylene, ethylene-propylene-diene monomer (EPDM), styrene-butadiene rubber (SBR), and fluororubber.
  • PVdF polyvinylidene fluoride
  • PVA polyvinyl alcohol
  • CMC carboxymethyl cellulose
  • PTFE polytetrafluoroethylene
  • EPDM ethylene-propylene-diene monomer
  • SBR styrene-butadiene rubber
  • the negative electrode binder may be included in the negative electrode active material layer in an amount of 1% to 20% by weight, specifically 1% to 15% by weight, more specifically 1% to 10% by weight. When the above range is satisfied, mechanical properties of the negative electrode may be improved while the resistance of the negative electrode is maintained at a low level, and lithium ion occlusion and diffusion may be further promoted.
  • the negative electrode active material layer may further include at least one of lithium ions, lithium, and an alloy of lithium and silver nanoparticles.
  • the all-solid-state lithium secondary battery is in operation, at least one of lithium ions, lithium, and an alloy of lithium and silver nanoparticles may exist in the negative electrode active material layer due to lithium ions transferred from the positive electrode active material layer. have.
  • the all-solid lithium secondary battery may include a cathode active material layer.
  • the all-solid-state lithium secondary battery may include a cathode, and the cathode may include a cathode active material layer or be formed of the cathode active material layer.
  • the positive electrode may include a positive electrode current collector.
  • the positive electrode current collector is not particularly limited as long as it has high conductivity without causing chemical change to the positive electrode or battery.
  • the cathode current collector includes a carbon-based conductive material and a binder, and may further include a primer layer coated on a surface of the cathode current collector. Accordingly, binding force and electrical conductivity between the positive electrode active material layer and the current collector may be greatly improved.
  • the positive electrode active material layer may be disposed on at least one surface of the positive electrode current collector. Specifically, the positive electrode active material layer may be disposed on one side or both sides of the positive electrode current collector.
  • the cathode active material layer may include a cathode active material.
  • the cathode active material may include Li 1+x M y O 2+z , where M is Ni, Co, Mn, Fe, P, Al, Mg, Ca, Zr, Zn, Ti, Ru, Nb, W, It may be at least one element selected from the group consisting of B, Si, Na, K, Mo, and V, and may be 0 ⁇ x ⁇ 5, 0 ⁇ y ⁇ 2, 0 ⁇ z ⁇ 2.
  • the Li 1+x M y O 2+z is LiCoO 2 , LiNiO 2 , LiMnO 2 , Li[Ni 0.5 Co 0.3 Mn 0.2 ]O 2 , Li[Ni 0.6 Co 0.2 Mn 0.2 ]O 2 , Li[ Ni 0.7 Co 0.1 Mn 0.2 ]O 2 , Li[Ni 0.8 Co 0.1 Mn 0.1 ]O 2 , Li[Ni 0.9 Co 0.05 Mn 0.05 ]O 2 , LiMn 2 O 4 , LiFePO 4 , 0.5Li 2 MnO 3 0.5Li [Mn 0.4 Ni 0.3 Co 0.3 ] O 2 It may include at least one selected from the group consisting of.
  • the Li 1+x M y O 2+z is Li[Ni 0.6 Co 0.2 Mn 0.2 ]O 2 , Li[Ni 0.7 Co 0.1 Mn 0.2 ]O 2 , Li[Ni 0.8 Co 0.1 Mn 0.1 ]O 2 and Li[Ni 0.9 Co 0.05 Mn 0.05 ]O 2 .
  • the positive electrode active material includes Li 1+x M y O 2+z , lithium can be sufficiently supplied to the negative electrode, and Li 1+x M y O 2+z can be used for the first cycle without deteriorating overall performance of the battery. After electrochemical activity, the loss of battery capacity due to the irreversible capacity of the negative electrode can be eliminated.
  • the Li 1+x M y O 2+z may be in the form of secondary particles formed by combining or assembling primary particles, or may be in the form of single particles.
  • the cathode active material may be included in an amount of 50 wt% to 95 wt%, specifically 60 wt% to 90 wt%, in the cathode active material layer.
  • the positive electrode active material layer may further include a solid electrolyte.
  • the solid electrolyte may specifically include at least one selected from the group consisting of a polymer solid electrolyte, an oxide-based solid electrolyte, a sulfide-based solid electrolyte, and a halide-based solid electrolyte.
  • the polymer solid electrolyte may be a composite of a lithium salt and a polymer resin. Specifically, the polymer solid electrolyte may be formed by adding a polymer resin to a solvated lithium salt. Specifically, the polymer solid electrolyte may have an ion conductivity of about 1 ⁇ 10 -7 S/cm or more, preferably about 1 ⁇ 10 -3 S/cm or more.
  • the polymer resin is a polyether-based polymer, a polycarbonate-based polymer, an acrylate-based polymer, a polysiloxane-based polymer, a phosphazene-based polymer, a polyethylene derivative, an alkylene oxide derivative such as polyethylene oxide, a phosphoric acid ester polymer, poly agitation lysine lysine), polyester sulfide, polyvinyl alcohol, polyvinylidene fluoride, polymers containing ionic dissociation groups, and the like, and may include one or more of these.
  • the polymer solid electrolyte is a branched copolymer obtained by copolymerizing an amorphous polymer such as PMMA, polycarbonate, polysiloxane (pdms) and/or phosphazene as a comonomer on a PEO (poly ethylene oxide) main chain, and a comb polymer resin. (comb-like polymer) and crosslinked polymer resin, etc. may be exemplified, and one or more of them may be included.
  • an amorphous polymer such as PMMA, polycarbonate, polysiloxane (pdms) and/or phosphazene
  • PEO poly ethylene oxide
  • comb polymer resin comb-like polymer
  • crosslinked polymer resin, etc. may be exemplified, and one or more of them may be included.
  • the lithium salt is ionizable and can be expressed as Li + X - .
  • the anion of the lithium salt is not particularly limited, but F - , Cl - , Br - , I - , NO 3 - , N(CN) 2 - , BF 4 - , ClO 4 - , PF 6 - , (CF 3 ) 2 PF 4 - , (CF 3 ) 3 PF 3 - , (CF 3 ) 4 PF 2 - , (CF 3 ) 5 PF - , (CF 3 ) 6 P - , CF 3 SO 3 - , CF 3 CF 2 SO 3 - , (CF 3 SO 2 ) 2 N - , (FSO 2 ) 2 N - , CF 3 CF 2 (CF 3 ) 2 CO - , (CF 3 SO 2 ) 2 CH - , (SF 5 ) 3 C - , (CF 3 SO 2 ) 3 C -
  • the oxide-based solid electrolyte may contain oxygen (O) and have ionic conductivity of a metal belonging to group 1 or group 2 of the periodic table.
  • Non-limiting examples thereof include LLTO-based compounds, Li 6 La 2 CaTa 2 O 12 , Li 6 La 2 ANb 2 O 12 (A is Ca or Sr), Li 2 Nd 3 TeSbO 12 , Li 3 BO 2.5 N 0.5 , Li 9 SiAlO 8 , LAGP-based compound, LATP-based compound, Li 1+x Ti 2-x Al x Si y (PO 4 ) 3-y (where 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1), LiAl x Zr 2-x (PO 4 ) 3 (where 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1), LiTi x Zr 2-x (PO 4 ) 3 (where 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1), LISICON-based compounds, LIPON-based compounds, perovskite-based compounds, Nasicon-based compounds, and LL
  • the sulfide-based solid electrolyte contains sulfur (S) and has ionic conductivity of a metal belonging to group 1 or group 2 of the periodic table, and may include Li-PS-based glass or Li-PS-based glass ceramic.
  • Non-limiting examples of such sulfide-based solid electrolytes are Li 6 PS 5 Cl, Li 6 PS 5 Br, Li 6 PS 5 I, Li 2 SP 2 S 5 , Li 2 S-LiI-P 2 S 5 , Li 2 S -LiI-Li 2 OP 2 S 5 , Li 2 S-LiBr-P 2 S 5 , Li 2 S-Li 2 OP 2 S 5 , Li 2 S-Li 3 PO 4 -P 2 S 5 , Li 2 SP 2 S 5 -P 2 O 5 , Li 2 SP 2 S 5 -SiS 2 , Li 2 SP 2 S 5 -SnS, Li 2 SP 2 S 5 -Al 2 S 3 , Li 2 S-GeS 2 , Li 2 S- Ge
  • the halide-based solid electrolyte may include at least one of Li 3 YCl 6 and Li 3 YBr 6 , but is not particularly limited thereto.
  • the solid electrolyte may be included in an amount of 5 wt % to 50 wt %, specifically 10 wt % to 30 wt %, in the positive electrode active material layer.
  • the cathode active material layer may further include a cathode conductive material.
  • the positive electrode conductive material is not particularly limited as long as it has conductivity without causing chemical change in the positive electrode or battery.
  • the positive electrode conductive material may include graphite such as natural graphite or artificial graphite; carbon black such as carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black, and summer black; graphene; conductive fibers such as carbon nanofibers and carbon nanotubes; fluorinated carbon; metal powders such as aluminum and nickel powder; conductive whiskers such as zinc oxide and potassium titanate; conductive metal oxides such as titanium oxide; It may include one or a mixture of two or more selected from conductive materials such as polyphenylene derivatives.
  • the cathode conductive material may be included in an amount of 1 wt% to 30 wt% in the cathode active material layer.
  • the cathode active material layer may further include a cathode binder.
  • the positive electrode binder is not particularly limited as long as it is a component that assists in bonding of the positive electrode active material, the conductive material, and the bonding to the current collector, and specifically, polyvinylidene fluoride (PVdF), polyvinyl alcohol (PVA), carboxymethyl cellulose (CMC), starch, hydroxypropylcellulose, polyvinylpyrrolidone, polytetrafluoroethylene (PTFE), polytetrafluoroethylene, polyethylene, polypropylene, ethylene-propylene-diene monomer (EPDM), styrene-butadiene It may include at least one selected from the group consisting of rubber (SBR) and fluororubber.
  • PVdF polyvinylidene fluoride
  • PVA polyvinyl alcohol
  • CMC carboxymethyl cellulose
  • PTFE polytetrafluoroethylene
  • EPDM ethylene-propylene-diene monomer
  • SBR rubber
  • the positive electrode binder may be included in an amount of 1% to 30% by weight in the positive electrode active material layer.
  • the positive electrode active material layer may include one or more additives such as an oxidation stabilization additive, a reduction stabilization additive, a flame retardant, a heat stabilizer, and an antifogging agent, if necessary.
  • additives such as an oxidation stabilization additive, a reduction stabilization additive, a flame retardant, a heat stabilizer, and an antifogging agent, if necessary.
  • the all-solid lithium secondary battery may include a solid electrolyte layer.
  • the solid electrolyte layer may function as an insulation role and an ion conductive channel in an all-solid lithium secondary battery.
  • the solid electrolyte layer 300 may be disposed between the negative active material layer 100 and the positive active material layer 200 .
  • the solid electrolyte layer 300 includes the solid electrolyte.
  • the solid electrolyte may specifically include at least one selected from the group consisting of a polymer solid electrolyte, an oxide-based solid electrolyte, and a sulfide-based solid electrolyte.
  • the polymer solid electrolyte may be a composite of a lithium salt and a polymer resin. Specifically, the polymer solid electrolyte may be formed by adding a polymer resin to a solvated lithium salt. Specifically, the polymer solid electrolyte may have an ion conductivity of about 1 ⁇ 10 -7 S/cm or more, preferably about 1 ⁇ 10 -3 S/cm or more.
  • the polymer resin is a polyether-based polymer, a polycarbonate-based polymer, an acrylate-based polymer, a polysiloxane-based polymer, a phosphazene-based polymer, a polyethylene derivative, an alkylene oxide derivative such as polyethylene oxide, a phosphoric acid ester polymer, poly agitation lysine lysine), polyester sulfide, polyvinyl alcohol, polyvinylidene fluoride, polymers containing ionic dissociation groups, and the like, and may include one or more of these.
  • the polymer solid electrolyte is a branched copolymer obtained by copolymerizing an amorphous polymer such as PMMA, polycarbonate, polysiloxane (pdms) and/or phosphazene as a comonomer on a PEO (poly ethylene oxide) main chain, and a comb polymer resin. (comb-like polymer) and crosslinked polymer resin, etc. may be exemplified, and one or more of them may be included.
  • an amorphous polymer such as PMMA, polycarbonate, polysiloxane (pdms) and/or phosphazene
  • PEO poly ethylene oxide
  • comb polymer resin comb-like polymer
  • crosslinked polymer resin, etc. may be exemplified, and one or more of them may be included.
  • the lithium salt is ionizable and can be expressed as Li + X - .
  • the anion of the lithium salt is not particularly limited, but F - , Cl - , Br - , I - , NO 3 - , N(CN) 2 - , BF 4 - , ClO 4 - , PF 6 - , (CF 3 ) 2 PF 4 - , (CF 3 ) 3 PF 3 - , (CF 3 ) 4 PF 2 - , (CF 3 ) 5 PF - , (CF 3 ) 6 P - , CF 3 SO 3 - , CF 3 CF 2 SO 3 - , (CF 3 SO 2 ) 2 N - , (FSO 2 ) 2 N - , CF 3 CF 2 (CF 3 ) 2 CO - , (CF 3 SO 2 ) 2 CH - , (SF 5 ) 3 C - , (CF 3 SO 2 ) 3 C -
  • the oxide-based solid electrolyte may contain oxygen (O) and have ionic conductivity of a metal belonging to group 1 or group 2 of the periodic table.
  • Non-limiting examples thereof include LLTO-based compounds, Li 6 La 2 CaTa 2 O 12 , Li 6 La 2 ANb 2 O 12 (A is Ca or Sr), Li 2 Nd 3 TeSbO 12 , Li 3 BO 2.5 N 0.5 , Li 9 SiAlO 8 , LAGP-based compound, LATP-based compound, Li 1+x Ti 2-x Al x Si y (PO 4 ) 3-y (where 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1), LiAl x Zr 2-x (PO 4 ) 3 (where 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1), LiTi x Zr 2-x (PO 4 ) 3 (where 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1), LISICON-based compounds, LIPON-based compounds, perovskite-based compounds, Nasicon-based compounds, and LL
  • the sulfide-based solid electrolyte contains sulfur (S) and has ionic conductivity of a metal belonging to group 1 or group 2 of the periodic table, and may include Li-PS-based glass or Li-PS-based glass ceramic.
  • Non-limiting examples of such sulfide-based solid electrolytes are Li 6 PS 5 Cl, Li 6 PS 5 Br, Li 6 PS 5 I, Li 2 SP 2 S 5 , Li 2 S-LiI-P 2 S 5 , Li 2 S -LiI-Li 2 OP 2 S 5 , Li 2 S-LiBr-P 2 S 5 , Li 2 S-Li 2 OP 2 S 5 , Li 2 S-Li 3 PO 4 -P 2 S 5 , Li 2 SP 2 S 5 -P 2 O 5 , Li 2 SP 2 S 5 -SiS 2 , Li 2 SP 2 S 5 -SnS, Li 2 SP 2 S 5- Al 2 S 3 , Li 2 S-GeS 2 , Li 2 S- GeS 2
  • the solid electrolyte layer may further include a binder for the solid electrolyte layer.
  • the binder for the solid electrolyte layer may be introduced for binding between solid electrolytes and binding between the solid electrolyte layer and battery elements (eg, an anode, a cathode, etc.) stacked on both sides of the solid electrolyte layer.
  • the material of the binder for the solid electrolyte layer is not particularly limited and may be appropriately selected within the range of components used as a binder of the solid electrolyte in an all-solid lithium secondary battery.
  • the binder for the solid electrolyte layer is polyvinylidene fluoride (PVdF), polyvinyl alcohol (PVA), carboxymethylcellulose (CMC), starch, hydroxypropylcellulose, polyvinylpyrrolidone, polytetrafluoroethylene , made of polyethylene, polypropylene, ethylene-propylene-diene monomer (EPDM), styrene-butadiene rubber (SBR), styrene-butadiene styrene block copolymer (SBS), nitrile butadiene rubber (NBR), fluororubber, and an acrylic binder It may contain at least one selected from the group.
  • PVdF polyvinylidene fluoride
  • PVA polyvinyl alcohol
  • the thickness of the solid electrolyte layer may be 10 ⁇ m to 90 ⁇ m, specifically 20 ⁇ m to 80 ⁇ m, in consideration of ionic conductivity, physical strength, and energy density of a battery to be applied.
  • the tensile strength of the solid electrolyte layer may be 500 kgf/cm 2 to 2,000 kgf/cm 2 .
  • the porosity of the solid electrolyte layer 300 may be 15% or less or about 10% or less.
  • the all-solid lithium secondary battery may further include a metal layer.
  • the all-solid-state lithium secondary battery 10 further includes a negative electrode current collector 110, and a metal layer ( 120) may be further included.
  • the metal layer 120 may include lithium, and may be specifically made of lithium.
  • the metal layer may refer to a layer formed by storing lithium ions transferred from the cathode active material layer on the anode current collector and the anode active material layer via the anode active material layer when the all-solid lithium secondary battery is charged. Therefore, the metal layer appears clearly during charging.
  • the metal layer is observed even during the discharging process, but theoretically may not be observed during complete discharging.
  • the present invention has meaning in an all-solid lithium secondary battery, and may not have much significance in a lithium secondary battery using a liquid electrolyte.
  • a liquid electrolyte since lithium stored in the negative electrode (eg, in the form of a metal layer) may be continuously exposed to the liquid electrolyte, it may be difficult to fully store lithium in the negative electrode.
  • a method for manufacturing an all-solid-state lithium secondary battery according to another embodiment of the present invention is to reduce silver ions to a mixture of silver ions and graphitized platelet carbon nanofibers to obtain the graphitized platelet carbon nanofibers and the graphitized platelet carbon nanofibers.
  • the all-solid-state lithium secondary battery may be the same as the all-solid-state lithium secondary battery of the above-described embodiment.
  • the negative active material layer may be the same as the negative active material layer of the above-described embodiment.
  • a dry mixed powder including the graphitized platelet carbon nanofibers and silver nanoparticles disposed on the graphitized platelet carbon nanofibers is formed.
  • the dry mixed powder may be prepared by mixing silver nanoparticles in powder form and graphitized platelet carbon nanofibers in powder form.
  • the dry mixed powder may be prepared by mixing graphitized platelet carbon nanofibers with a silver ion solution and then reducing silver nano ions.
  • a chemical reduction method such as a chemical reduction method, an electrochemical reduction method, a photochemical reduction method, a laser reduction method, an ultrasonic reduction method, and sputtering, but preferably a chemical reduction method using a polyol process or a microwave A microwave-assisted polyol method may be used.
  • the silver ion solution may include a solvent and a stabilizer along with silver ions.
  • Ethylene glycol may be used as the solvent, and polyvinylpyrrolidone may be used as the stabilizer.
  • the molar concentration of silver ions in the silver ion solution may be 1 mM to 1,000 mM, specifically 1 mM to 500 mM, and more specifically 1 mM to 300 mM.
  • the content and size of the silver nanoparticles formed can be adjusted to an appropriate level, so that the capacity, initial charge/discharge efficiency, and lifespan characteristics of the all-solid-state lithium secondary battery can be effectively controlled.
  • reducing the silver ions may include reacting the mixed solution at 100° C. to 500° C., and specifically, may include reacting at 100° C. to 300° C. That is, it can be reacted by heat treatment at the above-mentioned temperature. Accordingly, silver ions may be appropriately reduced to obtain silver nanoparticles having a desirable size. Also, in the above process, the silver nanoparticles may be disposed on the surface of the graphitized platelet carbon nanofibers.
  • Reducing the silver ions may include adjusting the pH of the mixed solution.
  • the mixed solution may be adjusted to have an acidity of pH 8 to pH 14, more specifically pH 9 to pH 13. Accordingly, silver ions may be appropriately reduced to obtain silver nanoparticles having a desired size.
  • the solid content of the mixed solution may be washed and dried to obtain the dry mixed powder.
  • the weight ratio of the graphitized platelet carbon nanofibers to the silver nanoparticles may be 99:1 to 60:40, specifically 97:3 to 70:30, more specifically 95:1 to 60:40. 5 to 80:20. When this is satisfied, the capacity and initial charge/discharge efficiency of the all-solid-state lithium secondary battery can be more effectively improved.
  • an anode active material layer may be formed on the anode current collector through the anode slurry including the dry mixed powder.
  • the negative electrode slurry may include dry mixed powder and a solvent for the negative electrode slurry.
  • the solvent for the anode slurry may be selected from the group consisting of water, N-methyl pyrrolidone, and the like, but is not necessarily limited thereto.
  • the anode slurry may further include an anode binder.
  • the negative electrode binder may be the same as the negative electrode binder of the above-described embodiment.
  • the negative electrode active material layer may be formed by applying and drying the negative electrode slurry on the negative electrode current collector.
  • a pressing process may be added in addition to the coating and drying process.
  • the present invention provides a battery module including the all-solid-state lithium secondary battery as a unit cell, a battery pack including the battery module, and a device including the battery pack as a power source.
  • a power tool that moves under the power of an omniscient motor (power tool); electric vehicles, including electric vehicles (EVs), hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and the like; electric two-wheeled vehicles including electric bicycles (E-bikes) and electric scooters (E-scooters); electric golf carts; Urban Air Mobility (UAM); A power storage system and the like may be mentioned, but is not limited thereto.
  • Graphitized platelet carbon nanofibers were prepared by heat-treating the platelet carbon nanofibers in an Ar atmosphere at 2800° C. for 6 hours.
  • a dry blended powder was obtained (see FIG. 8).
  • the content of the silver nanoparticles (based on the total weight of the graphitized platelet carbon nanofibers and the silver nanoparticles) was 10% by weight, and the average particle diameter of the silver nanoparticles was 2nm.
  • the dry mixed powder and polyvinylidene fluoride were added to N-methyl pyrrolidone (NMP) as a solvent and stirred to form an anode slurry.
  • NMP N-methyl pyrrolidone
  • the weight ratio of the dry mixed powder to the polyvinylidene fluoride was 93:7.
  • the anode slurry was applied to a stainless steel current collector (thickness: 15 ⁇ m), dried in a vacuum oven at 100 ° C. for 12 hours, and then rolled using a roll press to obtain a stainless steel current collector and a stainless steel current collector.
  • a negative electrode including a negative electrode active material layer located on was prepared. The thickness of the negative active material layer was 10 ⁇ m, and the loading amount of the negative active material layer was 1 mg/cm 2 .
  • Li[Ni 0.82 Co 0.14 Mn 0.04 ]O 2 as a cathode active material, Li 6 PS 6 Cl as a solid electrolyte, carbon nanofibers (VGCF, Showa Denko) as a conductive material, and polytetrafluoroethylene as a binder in a ratio of 77:20 : 1: 2 was added to the container sequentially in a weight ratio.
  • a positive electrode mixture was prepared by repeatedly mixing 10 times for 30 seconds at 10,000 RPM using a Lab Blender whenever each component was introduced.
  • a positive electrode mixture was prepared by applying a shear force to the mixture at 100 rpm at 100 ° C using a Twin Screw Kneader (LG Electronics) and performing high shear mixing for 5 minutes.
  • a free-standing film having a thickness of 200 ⁇ m was prepared using the positive electrode mixture at 100° C. using a two roll mil equipment (Inoue Co.). Thereafter, the film was placed on one surface of an aluminum current collector (thickness: 20 ⁇ m) coated with a primer, and the film was bonded to the current collector using a lamination roll maintained at 120° C. to prepare a positive electrode.
  • a solid electrolyte slurry was prepared by mixing Li 6 PS 6 Cl solid electrolyte and nitryl butadiene rubber (NBR) in xylene as a solvent, and then mixing with a Thinky Mixer at 2,000 RPM for 1 minute 10 times with a zirconia ball. This was coated on a release paper, PET film, and dried in a vacuum oven at 45° C. for 6 hours to prepare a solid electrolyte layer. At this time, the weight ratio of the Li 6 PS 6 Cl solid electrolyte and the nitryl butadiene rubber (NBR) was 95:5% by weight, and the thickness of the prepared solid electrolyte layer was 100 ⁇ m.
  • NBR nitryl butadiene rubber
  • the content and average particle diameter of silver nanoparticles were adjusted as shown in Table 1 by controlling the weight ratio of graphitized platelet carbon nanofibers, AgNO 3 , and polyvinylidene pyrrolidone, pH value, and reaction conditions in the microwave reactor. Except for the point, an all-solid-state lithium secondary battery was manufactured in the same manner as in Example 1.
  • Example 1 carbon black (PRINTEX, Orion Engineered Carbons) was used instead of the graphitized platelet carbon nanofibers, and the weight ratio of carbol black, AgNO 3 , polyvinylidene pyrrolidone, pH value, and microwave reactor An all-solid-state lithium secondary battery was manufactured in the same manner as in Example 1, except that the content and average particle diameter of the silver nanoparticles were adjusted as shown in Table 1 by controlling the reaction conditions.
  • PRINTEX Orion Engineered Carbons
  • Comparative Example 3 Manufacturing of a lithium secondary battery
  • a negative electrode and a positive electrode were prepared in the same manner as in Example 1.
  • LiPF6 1 mol lithium hexafluorophosphate
  • Comparative Example 4 Manufacturing of a lithium secondary battery
  • the content and average particle diameter of silver nanoparticles were adjusted as shown in Table 1 by controlling the weight ratio of graphitized platelet carbon nanofibers, AgNO 3 , and polyvinylidene pyrrolidone, pH value, and reaction conditions in the microwave reactor.
  • a lithium secondary battery was manufactured in the same manner as in Comparative Example 3, except for the points.
  • Comparative Example 5 Manufacturing of a lithium secondary battery
  • An all-solid-state lithium secondary battery was manufactured in the same manner as in Example 1, except that non-graphitized platelet carbon nanofibers were used instead of the graphitized platelet carbon nanofibers.
  • 9 is a TEM photograph of a dry-mixed powder containing silver nanoparticles disposed on platelet carbon nanofibers.
  • the graphitized platelet carbon nanofibers of Examples 1 to 5 and Comparative Examples 3 and 4 had d (002) of 0.335 nm and Lc (002) of 41 nm.
  • XRD analysis of the graphitized platelet carbon nanofibers was performed using a Bruker AXS D4 Endeavor XRD (voltage: 40 kV, current: 40 mA). Under the condition of Cu K ⁇ radiation (wavelength: 1.54 ⁇ ), 2-Theta was measured at a scanning speed of 87.5 seconds per 0.02° from 10° to 90°.
  • the Full Width at Half-Maximum (FWHM) of the (002) crystal peak appearing at 2 ⁇ around 20° to 30° can be measured, and the d(002) value and Lc calculated through the Scherrer formula (002) values were obtained.
  • the I D /I G (ratio) of the graphitized platelet carbon nanofibers was 0.24.
  • I D /I G (ratio) was measured from the wavelength-peak graph during Raman spectrum measurement.
  • the platelet carbon nanofibers were also evaluated in the same manner.
  • the average length of the platelet carbon nanofibers and the graphitized platelet carbon nanofibers was 1 ⁇ m, and the average diameter was 200 nm.
  • the average diameter is the diameter of the top 50 graphitized platelet carbon nanofibers and the bottom 50 graphitized platelet carbon nanofibers, in order of average diameter, when the negative electrode active material layer is observed at ⁇ 20,000 magnification through SEM. It corresponds to the average value of the diameter of fibers (or platelet carbon nanofibers).
  • the average length is the length of the top 50 graphitized platelet carbon nanofibers (or platelet carbon nanofibers) and the bottom 50 graphitized platelet carbon nanofibers (or platelet carbon nanofibers) in order of average length when the negative electrode active material layer is observed at ⁇ 20,000 magnification through SEM. It corresponds to the average value of the lengths of the graphitized platelet carbon nanofibers (or platelet carbon nanofibers).
  • a monocell was prepared by mounting each of the batteries of Examples and Comparative Examples on a pressurizing jig and fastening bolts/nuts located at square corners with the same pressure of 1 N m.
  • the initial charge / discharge efficiency was evaluated as a ratio of discharge capacity to charge capacity once (see Table 2).
  • the average particle diameter of the silver nanoparticles is the particle diameter of the top 50 silver nanoparticles with the largest particle diameter when observing the graphitized platelet carbon nanofibers containing the silver nanoparticles of the negative electrode active material layer through TEM at ⁇ 1,000,000 magnification This corresponds to the average particle diameter of the lower 50 silver nanoparticles.
  • the GPCNF is a graphitized platelet carbon nanofiber
  • PCNF is a non-graphitized platelet carbon nanofiber
  • CB is carbon black.
  • the content of the silver nanoparticles refers to an amount based on the total weight of the platelet carbon nanofibers and the silver nanoparticles in the negative electrode active material layer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

본 발명은 전고체 리튬 이차전지 및 이의 제조 방법에 관한 것으로, 상기 전고체 리튬 이차전지는 양극 활물질층, 음극 활물질층, 및 상기 양극 활물질층과 상기 음극 활물질층 사이에 배치된 고체 전해질층을 포함하며, 상기 음극 활물질층은 흑연화된 플레이트렛 탄소나노섬유(Graphitized Platelet Carbon Nano Fiber, GPCNF) 및 은 나노 입자를 포함한다.

Description

전고체 리튬 이차전지 및 이의 제조 방법
본 발명은 전고체 리튬 이차전지 및 이의 제조 방법에 관한 것이다.
이차전지는 주로 모바일 기기나 노트북 컴퓨터 등의 소형 분야에 적용되어 왔지만, 최근에는 그 적용 방향이 중대형 분야로 확장되고 있으며, 예를 들면 에너지 저장 장치(energy storage system, ESS), 전기 자동차(electric vehicle, EV) 등의 분야와 같이 고에너지 및 고출력이 요구되는 분야로 확장되고 있다.
한편, 최근에는 전고체 리튬 이차전지(all-solid lithium secondary battery)에 대한 관심이 높아지고 있는 추세이다. 상기 전고체 리튬 이차전지는 액체 전해질 대신 불연성의 무기 고체 전해질을 이용하는 이차전지로서, 액체 전해질을 사용하는 리튬 이차전지에 비해 열적 안정성이 높고, 과충전 시 누액에 의한 폭발 위험성이 매우 적으며, 이러한 폭발 위험 방지를 위한 설비 추가가 필요가 없다는 측면에서 주목되고 있다.
다만, 전고체 리튬 이차전지는 다소 부피가 큰 고체 전해질을 사용하기 때문에, 전지의 에너지 밀도를 개선하고자 하는 시도가 많다. 이를 위해 음극 활물질층으로 리튬 금속 등의 리튬과 합금을 형성할 수 있는 금속층을 사용하게 된다. 다만, 그러한 금속층을 사용하게 되면, 금속층 상에 석출되는 리튬이 이온화되어 용해되면서 고체 전해질과 금속층 사이에 공극이 발생하게 되어, 전지 구동에 악영향을 미치게 된다. 또한, 전고체 리튬 이차전지의 방전 시 리튬 금속이 금속층의 표면에서 수지 상으로(dendrite) 석출되므로, 전고체 리튬 이차전지의 수명 및 안전성을 해치게 된다.
이러한 문제를 해결하기 위해 종래에는 공극이 발생하는 것을 방지하기 위한 엔드 플레이트(end plate) 등을 양극이나 음극에 배치시켜서 높은 외압을 인가시키는 방법도 사용되고 있다. 그러나, 외압을 인가하는 엔드 플레이트를 사용할 시 전고체 리튬 이차전지의 부피가 지나치게 증가하여, 전고체 리튬 이차전지의 에너지 밀도가 저하되는 문제가 있다.
이에, 전고체 리튬 이차전지의 수명 및 안전성을 개선시킬 수 있는 새로운 방법이 요구되고 있다.
본 발명이 해결하고자 하는 일 과제는, 충전 시 리튬 이온이 환원되어 리튬 금속이 효과적으로 저장될 수 있으며, 초기 충전/방전 효율이 개선될 수 있고, 수명 특성이 개선될 수 있는 전고체 리튬 이차전지를 제공하는 것이다.
본 발명이 해결하고자 하는 다른 과제는, 사용되는 은 나노 입자의 함량을 낮추어, 가격 경쟁력이 있는 전고체 리튬 이차전지를 제공하는 것이다.
본 발명이 해결하고자 하는 또 다른 과제는, 상술한 전고체 리튬 이차전지의 제조 방법을 제공하는 것이다.
본 발명의 일 실시예에 따르면, 양극 활물질층, 음극 활물질층, 및 상기 양극 활물질층과 상기 음극 활물질층 사이에 배치된 고체 전해질층을 포함하며, 상기 음극 활물질층은 흑연화된 플레이트렛 탄소나노섬유(Graphitized Platelet Carbon Nano Fiber, GPCNF) 및 은 나노 입자를 포함하는 전고체 리튬 이차전지가 제공된다.
본 발명의 다른 실시예에 따르면, 은 이온과 흑연화된 플레이트렛 탄소나노섬유의 혼합물에 대하여, 은 이온을 환원시켜서 상기 흑연화된 플레이트렛 탄소나노섬유 및 상기 흑연화된 플레이트렛 탄소나노섬유 상에 배치된 은 나노 입자를 포함하는 건조 혼합 분말을 형성하는 제1 단계; 및 상기 건조 혼합 분말을 포함하는 음극 혼합물을 통해 음극 집전체 상에 음극 활물질층을 형성하는 제2 단계;를 포함하는, 전고체 리튬 이차전지의 제조 방법이 제공된다.
본 발명에 따른 전고체 리튬 이차전지는 음극 활물질층이 흑연화된 플레이트렛 탄소나노섬유 및 은 나노 입자를 포함하므로, 충전 시 음극 활물질층에 의해 리튬 이온이 환원 및 석출되어 효과적으로 음극에 저장될 수 있다. 또한, 방전 시 저장된 리튬이 리튬 이온의 형태로 용해되어 양극으로 이동될 수 있다. 상기 흑연화된 플레이트렛 탄소나노섬유는 상기 리튬 이온의 이동도를 증가시켜 상기 전지의 초기 충전/방전 효율 및 수명 특성을 개선시킬 수 있다. 또한, 상기 흑연화된 플레이트렛 탄소나노섬유를 사용함에 따라, 낮은 함량의 은 나노 입자 사용으로도, 상술한 리튬 이온의 이동이 효과적으로 이루어질 수 있으므로, 제조된 전고체 리튬 이차전지의 가격 경쟁력을 높일 수 있다.
도 1은 본 발명에서 언급되는 흑연화된 플레이트렛 탄소나노섬유를 설명하기 위한 모식도이다.
도 2는 본 발명에서 언급되는 플레이트렛 탄소나노섬유를 설명하기 위한 모식도이다.
도 3은 본 발명에서 언급되는 흑연화된 플레이트렛 탄소나노섬유를 설명하기 위한 모식도이다.
도 4는 본 발명의 일 실시예에 따른 전고체 리튬 이차전지를 설명하기 위한 모식도이다.
도 5는 본 발명의 일 실시예에 따른 전고체 리튬 이차전지를 설명하기 위한 모식도이다.
도 6은 본 발명에서 언급되는 플레이트렛 탄소나노섬유의 TEM사진이다.
도 7은 본 발명에서 언급되는 흑연화된 플레이트렛 탄소나노섬유의 TEM사진이다.
도 8은 본 발명의 일 실시예에 따른 전고체 리튬 이차전지에 사용된 은 나노 입자를 포함하는 흑연화된 플레이트렛 탄소나노섬유의 TEM사진이다.
도 9는 본 발명의 다른 실시예에 따른 전고체 리튬 이차전지에 사용된 은 나노 입자를 포함하는 플레이트렛 탄소나노섬유의 TEM사진이다.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 안 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 명세서에서 사용되는 용어는 단지 예시적인 실시예들을 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도는 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.
본 명세서에서, "포함하다", "구비하다" 또는 "가지다" 등의 용어는 실시된 특징, 숫자, 단계, 구성 요소 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 구성 요소, 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
본 명세서에서, "비표면적"은 BET법에 의해 측정한 것으로서, 구체적으로는 BEL Japan사의 BELSORP-mini II를 이용하여 액체 질소 온도 하(77K)에서의 질소가스 흡착량으로부터 산출될 수 있다.
본 명세서에서 흑연화된 플레이트렛 탄소나노섬유란, 그래핀 시트(graphene sheet)들이 적층되어 섬유 형태를 가지는 탄소 구조체를 의미할 수 있다. 도 1을 참조하면, 상기 흑연화된 플레이트렛 탄소나노섬유는 탄소의 육각망면이 섬유축(L)에 대하여 직각으로 배열되어 있는 구조를 가지는 탄소나노섬유를 의미할 수 있다. 상기 흑연화된 플레이트렛 탄소나노섬유의 길이는 상기 흑연화된 플레이트렛 탄소나노섬유의 일 말단과 타 말단을 상기 흑연화된 플레이트렛 탄소나노섬유를 따라 이을 시 나타나는 선분 또는 곡선의 길이를 의미하며, 예컨대 상기 흑연화된 플레이트렛 탄소나노섬유를 직선으로 늘렸을 때, 상기 흑연화된 플레이트렛 탄소나노섬유의 섬유축을 따라 상기 일 말단과 타 말단 간의 거리를 의미할 수 있다. 또한, 상기 흑연화된 플레이트렛 탄소나노섬유의 직경은, 상기 흑연화된 플레이트렛 탄소나노섬유의 섬유축(L)과 수직이며 상기 그래핀 시트의 면 또는 탄소의 육각망면과 평행을 이루는 단축(D) 방향에 있어서, 상기 흑연화된 플레이트렛 탄소나노섬유의 너비를 의미한다.
도 2 및 도 3은 도 1의 탄소나노섬유 측면(S)을 설명하기 위한 모식도이다. 도 2 및 도 3을 참조하면, 플레이트렛 탄소나노섬유와 흑연화된 플레이트렛 탄소나노섬유의 차이를 알 수 있다. 상기 플레이트렛 탄소나노섬유는 위 단락에서 설명한 형태를 동일하게 가진다. 다만, 플레이트렛 탄소나노섬유의 측면은 그래핀 시트(도 2 및 도 3의 검은 선분)의 엣지 플레인(Edge Plane)(도 2의 E)이 노출된 형태이나, 흑연화된 플레이트렛 탄소나노섬유의 측면은 기저면(베이셜 플레인, Basal Plane)(도 3의 B)가 노출된 형태이다. 이러한 차이는 도 6의 플레이트렛 탄소나노섬유와 도 7의 흑연화된 플레이트렛 탄소나노섬유의 TEM사진을 통해서도 확연히 드러난다.
구체적으로, 상기 흑연화된 플레이트렛 탄소나노섬유는 복수의 그래핀 시트들이 상기 흑연화된 플레이트렛 탄소나노섬유의 성장 방향으로 적층된 형태이며, 상기 흑연화된 플레이트렛 탄소나노섬유는 상기 흑연화된 플레이트렛 탄소나노섬유의 측면을 향하여 돌출된 굴곡부를 포함하며, 상기 굴곡부는 상기 그래핀 시트의 기저면에 해당한다. 상기 굴곡부는 일 그래핀 시트가 연장되어 타 그래핀 시트와 연결되어 형성된 것이며, 도 3 및 도 7에서와 같이 상기 흑연화된 플레이트렛 탄소나노섬유의 측면에서 외부를 향해 기저면을 노출하고 있다. 보다 구체적으로, 상기 기저면은 닫혀진 루프(Closed Loop) 형태를 가지며, 상기 흑연화된 플레이트렛 탄소나노섬유의 측면에서 휘어진 상태로 존재할 수 있다. 상기 루프 형태는 상기 흑연화된 플레이트렛 탄소나노섬유의 성장 방향을 따라 주기적으로 나타날 수 있다.
상기 흑연화된 플레이트렛 탄소나노섬유는 플레이트렛 탄소나노섬유를 고온에서 열처리하여 흑연화시켜서 형성할 수 있다. 구체적으로, 상기 흑연화된 플레이트렛 탄소나노섬유는 플레이트렛 탄소나노섬유를 2,000℃ 이상의 온도, 예를 들어 2,000℃ 내지 3,500℃에서 열처리하여 형성할 수 있다. 상기 열처리 시간은 10분 내지 24시간일 수 있다.
본 명세서에 있어서, 흑연화된 플레이트렛 탄소나노섬유 및 플레이트렛 탄소나노섬유의 XRD(X-ray diffraction) 측정 방법은 다음과 같을 수 있다. XRD 분석은 Bruker AXS D4 Endeavor XRD (전압: 40 kV, 전류: 40 mA)을 이용할 수 있으며, Cu Kα radiation (파장: 1.54 Å)의 조건에서, 2-Theta 10°에서 90°까지 0.02°마다 87.5초씩의 스캐닝 속도로 측정될 수 있다. 측정 결과 중 2θ가 20°내지 30°부근에서 나타나는 (002) 결정 피크의 반가폭(FWHM, Full Width at Half-Maximum)을 측정할 수 있고, Scherrer 수식을 통해 계산하여 d(002)값과 Lc(002)값을 얻을 수 있다.
본 명세서의 ID/IG (비율)은 라만 스펙트럼 측정 시의 파장-피크 그래프로부터 측정 가능하다. 구체적으로 D 피크와 G 피크가 구분 가능하도록 기준선(base line)을 설정하여 그래프를 조정(fitting) 한 후, D 피크 강도를 G 피크 강도로 나누어서 ID/IG 를 확인할 수 있다(내장 소프트웨어 사용, NRS-2000B, Jasco社). 라만 스펙트럼에 있어서, 1590cm-1 근처의 G 피크는 탄소의 sp2 결합의 E2g 진동모드로부터 기인한 것이며, 1350cm-1 부근의 D 피크는 탄소의 sp2 결합에 결함이 존재할 때 나타난다.
본 명세서에서 흑연화된 플레이트렛 탄소나노섬유(또는 플레이트렛 탄소나노섬유)의 평균 직경은 음극 활물질층을 SEM을 통해 ×20,000 배율로 관찰했을 시, 직경이 큰 순서로, 상위 50개의 흑연화된 플레이트렛 탄소나노섬유(또는 플레이트렛 탄소나노섬유)들의 직경과 하위 50개의 흑연화된 플레이트렛 탄소나노섬유(또는 플레이트렛 탄소나노섬유)들의 직경의 평균값에 해당한다.
본 명세서에서 흑연화된 플레이트렛 탄소나노섬유(또는 플레이트렛 탄소나노섬유)의 평균 길이는 음극 활물질층을 SEM을 통해 ×20,000 배율로 관찰했을 시, 길이가 큰 순서로, 상위 50개의 흑연화된 플레이트렛 탄소나노섬유(또는 플레이트렛 탄소나노섬유)들의 길이와 하위 50개의 흑연화된 플레이트렛 탄소나노섬유(또는 플레이트렛 탄소나노섬유)들의 길이의 평균값에 해당한다.
본 명세서에서 은 나노 입자의 평균 입경은 제조된 은 나노 입자를 포함하는 플레이트렛 탄소나노섬유 또는 음극 활물질층의 은 나노 입자를 포함하는 플레이트렛 탄소나노섬유를 TEM을 통해 ×1,000,000 배율로 관찰했을 시, 입경이 큰 상위 50개의 은 나노 입자들의 입경과 하위 50개의 은 나노 입자들의 입경의 평균값에 해당한다.
이하, 본 발명에 대해 구체적으로 설명한다.
전고체 리튬 이차전지
본 발명의 일 실시예에 따른 전고체 리튬 이차전지는 양극 활물질층, 음극 활물질층, 및 상기 양극 활물질층과 상기 음극 활물질층 사이에 배치된 고체 전해질층을 포함하며, 상기 음극 활물질층은 흑연화된 플레이트렛 탄소나노섬유(Graphitized Platelet Carbon Nano Fiber, GPCNF) 및 은 나노 입자를 포함할 수 있다.
(1) 음극 활물질층
상기 전고체 리튬 이차전지는 음극 활물질층을 포함할 수 있다. 구체적으로, 상기 전고체 리튬 이차전지는 음극을 포함할 수 있으며, 상기 음극은 음극 집전체 및 음극 활물질층을 포함할 수 있다.
상기 음극 집전체는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 되고, 특별히 제한되는 것은 아니다. 예를 들어, 상기 음극 집전체로는 구리, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 또는 알루미늄이나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것 등이 사용될 수 있다. 구체적으로는, 니켈, 스테인리스 스틸과 같은 탄소를 잘 흡착하는 전이 금속을 음극 집전체로 사용할 수 있다.
도 4를 참조하면, 상기 음극 활물질층(100)은 상기 음극 집전체(110)의 적어도 일면 상에 배치될 수 있다. 구체적으로, 상기 음극 활물질층(100)은 상기 음극 집전체(110)의 일면 상에 배치될 수 있으며, 이와 달리 상기 음극 집전체의 양면 상에 배치될 수도 있다(미도시).
상기 음극 활물질층은 흑연화된 플레이트렛 탄소나노섬유 및 은 나노 입자를 포함할 수 있다. 구체적으로 상기 음극 활물질층은 흑연화된 플레이트렛 탄소나노섬유 및 은 나노 입자로 이루어질 수 있다.
1) 흑연화된 플레이트렛 탄소나노섬유
상기 흑연화된 플레이트렛 탄소나노섬유는 양극 활물질층으로부터 전달된 리튬 이온이 음극 집전체 상에서 쉽게 석출 및 저장될 수 있도록 하는 이동 경로 역할을 할 수 있다.
상기 흑연화된 플레이트렛 탄소나노섬유는 상기 흑연화된 플레이트렛 탄소나노섬유의 측면을 향하여 돌출된 굴곡부를 포함하며, 상기 굴곡부는 상기 그래핀 시트의 기저면에 해당한다. 즉 상기 흑연화된 플레이트렛 탄소나노섬유의 측면에서 외부를 향해 기저면을 노출하고 있다. 보다 구체적으로, 상기 기저면은 닫혀진 루프(Closed Loop) 형태를 가지며, 상기 흑연화된 플레이트렛 탄소나노섬유의 측면에서 휘어진 상태로 존재할 수 있다. 상기 루프 형태는 상기 흑연화된 플레이트렛 탄소나노섬유의 성장 방향을 따라 주기적으로 나타날 수 있다. 상기 기저면 상으로 리튬 이온의 이동이 빠르게 일어날 수 있는 바, 흑연화된 플레이트렛 탄소나노섬유는 리튬 이온의 빠른 이동을 유도할 수 있는 역할을 할 수 있다. 이에 따라, 초기 리튬 이온의 흡장에 대한 비가역 용량이 줄어들 수 있다.
상기 흑연화된 플레이트렛 탄소나노섬유에 대해 XRD 측정 시, 상기 흑연화된 플레이트렛 탄소나노섬유의 d(002)는 0.330nm 내지 0.350nm일 수 있으며, 구체적으로 0.330nm 내지 0.345nm, 보다 구체적으로 0.330nm 내지 0.340nm일 수 있다. 상기 범위를 만족하는 경우, 상기 흑연화된 플레이트렛 탄소나노섬유의 결정성이 높아서, 전기 전도도가 크게 개선되며, 리튬 이온의 흡장 및 이동에도 유리하다.
상기 플레이트렛 탄소나노섬유에 대해 XRD 측정 시, 상기 플레이트렛 탄소나노섬유의 Lc(002)는 20nm 내지 200nm일 수 있으며, 구체적으로 20nm 내지 150nm, 보다 구체적으로 20nm 내지 100nm, 예컨대 35nm 내지 100nm일 수 있다. 상기 범위를 만족하는 경우, 상기 흑연화된 플레이트렛 탄소나노섬유의 흑연화도가 우수하여 전기 전도도가 개선되며, 상기 흑연화된 플레이트렛 탄소나노섬유의 길이 방향으로의 결정성의 결함이 작아, 소재 자체의 기계적 강도가 우수할 수 있다. 따라서, 상기 흑연화된 플레이트렛 탄소나노섬유를 분산시켜 사용하는 과정에서, 상기 흑연화된 플레이트렛 탄소나노섬유이 절단되는 현상이 줄어들 수 있으며, 전지의 충전 및 방전 시 흑연화된 플레이트렛 탄소나노섬유의 결함에 의한 전지 열화 현상이 최소화될 수 있다.
상기 흑연화된 플레이트렛 탄소나노섬유에 대해 라만 스펙트럼 측정 시, 상기 흑연화된 플레이트렛 탄소나노섬유의 ID/IG는 0.1 내지 1.0일 수 있으며, 구체적으로 0.1 내지 0.5, 보다 구체적으로 0.1 내지 0.3일 수 있다. 상기 범위를 만족할 시, 상기 흑연화된 플레이트렛 탄소나노섬유의 결정성이 높아서, 전기 전도도가 크게 개선되며, 리튬 이온의 흡장 및 이동에도 유리하다.
상기 흑연화된 플레이트렛 탄소나노섬유의 평균 길이는 0.1㎛ 내지 5㎛일 수 있으며, 구체적으로 0.1㎛ 내지 2.5㎛, 보다 구체적으로 0.1㎛ 내지 1㎛일 수 있다. 상기 범위를 만족할 시 음극 활물질층 내에서 도전성 경로가 효과적으로 형성될 수 있으므로, 전고체 리튬 이차전지의 효율이 개선될 수 있다. 또한, 은 나노 입자가 리튬 이온과 합금 반응하여 부피가 변화할 시에도, 음극 활물질층의 구조적인 붕괴가 효과적으로 억제될 수 있다.
상기 흑연화된 플레이트렛 탄소나노섬유의 평균 직경은 10nm 내지 500nm일 수 있으며, 구체적으로 10nm 내지 400nm, 보다 구체적으로 10㎛ 내지 300nm일 수 있다. 상기 범위를 만족할 시 흑연화된 플레이트렛 탄소나노섬유를 통해 리튬 이온의 흡장 및 이동이 발생하더라도, 상기 흑연화된 플레이트렛 탄소나노섬유의 기계적 구조가 효과적으로 유지될 수 있다.
상기 흑연화된 플레이트렛 탄소나노섬유의 비표면적은 5m2/g 내지 10m2/g일 수 있으며, 구체적으로 5 m2/g 내지 80 m2/g, 보다 구체적으로 5 m2/g 내지 60 m2/g일 수 있다. 상기 범위를 만족하는 경우, 은 나노 입자가 안정적으로 상기 흑연화된 플레이트렛 탄소나노섬유 표면 상에 배치될 수 있어서, 리튬 이온의 흡장 및 이동이 효과적으로 이루어질 수 있다.
상기 흑연화된 플레이트렛 탄소나노섬유는 상기 음극 활물질층 내에 50중량% 내지 98중량%로 포함될 수 있으며, 구체적으로 60중량% 내지 95중량%, 보다 구체적으로 70중량% 내지 90중량%로 포함될 수 있다. 상기 범위를 만족할 시 전고체 리튬 이차전지의 에너지 밀도의 감소를 최소화하면서도 리튬 이온의 이동도가 효과적으로 개선될 수 있는 바, 전고체 리튬 이차전지의 초기 충전/방전 효율 및 수명 특성이 향상될 수 있다.
2) 은 나노 입자
상기 은 나노 입자는 리튬 친화성(Lithiophilic)한 특성이 있으므로, 리튬 이온과 쉽게 합금을 이룰 수 있다. 이에 따라, 은 나노 입자는 양극 활물질층으로부터 전달된 리튬 이온과 합금을 형성하여 음극 활물질층 내로 리튬 이온의 흡장 및 확산을 촉진시킬 수 있다.
상기 은 나노 입자는 은(Ag)을 포함할 수 있다. 나아가, 상기 은 나노 입자는 금, 백금, 팔라듐, 규소, 알루미늄, 비스무스, 주석, 인듐, 및 아연으로 이루어진 군에서 선택되는 적어도 어느 하나를 더 포함할 수도 있다. 이와 달리, 상기 은 나노 입자는 은으로 이루어질 수 있다. 상기 은 나노 입자는 고체 상일 수 있다.
상기 은 나노 입자는 상기 흑연화된 플레이트렛 탄소나노섬유의 표면 상에 배치될 수 있다. 구체적으로, 상기 은 나노 입자는 은 이온 수용액 내 은 이온이 상기 흑연화된 플레이트렛 탄소나노섬유의 표면 상에서 환원되어 형성된 것일 수 있으며, 이에 따라 상기 은 나노 입자는 상기 흑연화된 플레이트렛 탄소나노섬유의 표면 상에 배치되어 있을 수 있다. 이와 달리, 은 나노 입자의 파우더와 상기 플레이트렛 탄소나노섬유를 분말 상태로 혼합하여, 상기 은 나노 입자가 상기 플레이트렛 탄소나노섬유의 표면 상에 배치될 수도 있다.
상기 은 나노 입자의 평균 입경은 1nm 내지 100nm일 수 있으며, 구체적으로 1nm 내지 50nm, 보다 구체적으로 1 nm 내지 30nm일 수 있으며, 예컨대 1nm 내지 2nm일 수 있다. 상기 범위를 만족할 시, 상기 음극 활물질층 내에서 상기 은 나노 입자가 효과적으로 분산되어 있을 수 있으므로, 상기 은 나노 입자의 함량이 낮은 수준이더라도 리튬 이온의 흡장 및 확산이 용이할 수 있다. 또한, 전지의 초기 효율 및 수명 특성이 개선될 수 있다.
상기 음극 활물질층에 있어서, 상기 은 나노 입자는 상기 흑연화된 플레이트렛 탄소나노섬유 및 상기 은 나노 입자의 전체 중량을 기준으로 1중량% 내지 40중량%로 포함될 수 있으며, 구체적으로 3중량% 내지 30중량%, 보다 구체적으로 5중량% 내지 20중량%, 예컨대 7중량% 내지 10중량%로 포함될 수 있다. 상기 범위를 만족할 시, 양극 활물질층으로 전달된 리튬 이온이 효과적으로 은 나노 입자와 합금화될 수 있으므로, 전고체 리튬 이차전지의 전기화학적 특성이 개선될 수 있다. 또한, 다소 낮은 함량의 은 나노 입자를 사용하므로, 전고체 리튬 이차전지의 에너지 밀도 및 가격 경쟁력이 향상될 수 있다.
특히 상기 은 나노 입자의 함량을 10중량% 이하, 구체적으로 7중량% 내지 10중량%로 사용할 수 있는 것은 상기 음극 활물질층이 상기 흑연화된 플레이트렛 탄소나노섬유를 포함하기 때문이다. 양극 활물질층에서부터 전달된 리튬 이온이 리튬 친화성을 가지는 은 나노 입자와 합금화되어 상기 리튬 이온의 음극으로의 흡장 및 확산이 촉진되는데, 특히 본 발명에서 설명하는 플레이트렛 탄소나노섬유 상의 층상 구조를 통해서 위와 같은 리튬 이온의 흡장 및 확산이 더욱 촉진될 수 있다. 따라서, 리튬 금속이 음극 활물질층과 음극 집전체 상에 석출되어 저장되는 속도도 개선될 수 있다. 또한, 상기 흑연화된 플레이트렛 탄소나노섬유의 측면은 일정 주기로 닫혀진 루프(Closed Loop) 형태를 가지므로, 굴곡면을 따라 상기 은 나노 입자의 분산 및 배치가 효과적으로 이루어질 수 있으며, 전지의 충전과 방전이 반복되는 과정에서도 은 나노 입자의 응집이 효과적으로 억제될 수 있다. 이에 따라, 적은 은 나노 입자 함량으로도 전고체 리튬 이차전지의 용량 및 초기 충전/방전 효율 개선이 충분히 가능할 수 있다.
상기 음극 활물질층 내에서, 상기 흑연화된 플레이트렛 탄소나노섬유와 상기 은 나노 입자의 중량비는 99:1 내지 60:40일 수 있으며, 구체적으로 97:3 내지 70:30, 보다 구체적으로 95:5 내지 80:20, 예컨대 95:5 내지 88:12 일 수 있다. 이를 만족할 시, 전고체 리튬 이차전지의 용량 및 초기 충전/방전 효율이 더욱 효과적으로 개선될 수 있다.
상기 음극 활물질층의 로딩양은 0.1mg/cm2 내지 2.0mg/cm2일 수 있으며, 구체적으로 0.3 mg/cm2 내지 1.8 mg/cm2, 보다 구체적으로 0.5 mg/cm2 내지 1.6 mg/cm2일 수 있다. 상기 범위를 만족할 시 음극의 두께 증가에 의한 에너지 밀도를 저해하지 않으면서도, 전지의 초기 효율 및 수명 개선 효과가 극대화될 수 있다.
상기 음극 활물질층의 두께는 1㎛ 내지 100㎛ 일 수 있으며, 구체적으로 1 ㎛ 내지 50 ㎛, 보다 구체적으로 1 ㎛ 내지 20 ㎛일 수 있다. 상기 범위를 만족할 시 음극의 두께 증가에 의한 에너지 밀도를 저해하지 않으면서도, 전지의 초기 효율 및 수명 개선 효과가 극대화될 수 있다.
3) 음극 바인더
상기 음극 활물질층은 음극 바인더를 더 포함할 수 있다. 상기 음극 바인더는 폴리비닐리덴 플루오라이드(PVdF), 폴리비닐알코올(PVA), 카르복시메틸셀룰로오스(CMC), 전분, 히드록시프로필셀룰로오스, 폴리비닐피롤리돈, 폴리테트라플루오로에틸렌(PTFE), 폴리테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 모노머(EPDM), 스티렌-부타디엔 고무(SBR), 및 불소 고무로 이루어진 군에서 선택된 적어도 1종을 포함할 수 있다.
상기 음극 바인더는 상기 음극 활물질층 내에 1중량% 내지 20중량%로 포함될 수 있으며, 구체적으로 1중량% 내지 15중량%, 보다 구체적으로 1중량% 내지 10중량%로 포함될 수 있다. 상기 범위를 만족하는 경우, 음극의 저항을 낮은 수준으로 유지하면서도 음극의 기계적 물성을 개선시킬 수 있고, 리튬 이온 흡장 및 확산을 더욱 촉진할 수 있다.
경우에 따라, 상기 음극 활물질층은 리튬 이온, 리튬, 및 리튬과 은 나노 입자의 합금 중 적어도 어느 하나를 더 포함할 수 있다. 구체적으로, 상기 전고체 리튬 이차전지가 구동 중이라면, 양극 활물질층에서 전달된 리튬 이온에 의해, 상기 음극 활물질층에는 리튬 이온, 리튬, 및 리튬과 은 나노 입자의 합금 중 적어도 어느 하나가 존재할 수 있다.
(2) 양극 활물질층
상기 전고체 리튬 이차전지는 양극 활물질층을 포함할 수 있다. 구체적으로, 상기 전고체 리튬 이차전지는 양극을 포함할 수 있으며, 상기 양극은 양극 활물질층을 포함하거나, 상기 양극 활물질층으로 이루어질 수 있다.
상기 양극은 양극 집전체를 포함할 수 있다. 상기 양극 집전체는 양극 또는 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어 스테인리스 스틸, 구리, 알루미늄, 니켈, 티탄, 및 소성 탄소로 이루어진 군에서 선택된 적어도 1종을 포함할 수 있고, 구체적으로 알루미늄을 포함할 수 있다. 상기 양극 집전체는 탄소계 도전재와 바인더를 포함하며, 상기 양극 집전체의 표면에 코팅된 프라이머층(primer layer)를 더 포함할 수도 있다. 이에 따라, 양극 활물질층과 집전체 사이의 결착력과 전기 전도도가 크게 개선될 수 있다.
상기 양극 활물질층은 상기 양극 집전체의 적어도 일면 상에 배치될 수 있다. 구체적으로, 상기 양극 활물질층은 상기 양극 집전체의 일면 또는 양면 상에 배치될 수 있다.
상기 양극 활물질층은 양극 활물질을 포함할 수 있다.
상기 양극 활물질은 리튬 코발트 산화물(LiCoO2), 리튬 니켈 산화물(LiNiO2) 등의 층상 화합물이나 1 또는 그 이상의 전이금속으로 치환된 화합물; 화학식 Li1+xMn2-xO4(여기서, x 는 0 ~ 0.33 임), LiMnO3, LiMn2O3, LiMn2O4, LiMnO2등을 포함하는 리튬 망간 산화물; 리튬 동 산화물(Li2CuO2); LiV3O8, LiV3O4, V2O5, Cu2V2O7등의 바나듐 산화물; 화학식 LiNi1-xMxO2(여기서, M = Co, Mn, Al, Cu, Fe, P, Mg, Ca, Zr, Ti, Ru, Nb, W, B, Si, Na, K, Mo, V 또는 Ga 이고, x = 0.01 ~ 0.3 임)으로 표현되는 Ni 사이트형 리튬 니켈 산화물; 화학식 LiMn1-xMxO2(여기서, M = Co, Ni, Fe, Cr, Zn 또는 Ta 이고, x = 0.01 ~ 0.1 임) 또는 Li2Mn3MO8(여기서, M = Fe, Co, Ni, Cu 또는 Zn 임)으로 표현되는 리튬 망간 복합 산화물; LiNixMn2-xO4로 표현되는 스피넬 구조의 리튬 망간 복합 산화물; 화학식의 Li 일부가 알칼리토금속 이온으로 치환된 LiMn2O4; 디설파이드 화합물; LiMnxFe1-xPO4(0≤x≤0.9); Fe2(MoO4)3 등을 포함할 수 있다. 그러나, 이들만으로 한정되는 것은 아니다.
상기 양극 활물질은 Li1+xMyO2+z를 포함할 수 있으며, M은 Ni, Co, Mn, Fe, P, Al, Mg, Ca, Zr, Zn, Ti, Ru, Nb, W, B, Si, Na, K, Mo, 및 V로 이루어진 군에서 선택되는 적어도 어느 하나의 원소일 수 있으며, 0≤x≤5, 0<y≤2, 0≤z≤2일 수 있다. 구체적으로, 상기 Li1+xMyO2+z는 LiCoO2, LiNiO2, LiMnO2, Li[Ni0.5Co0.3Mn0.2]O2, Li[Ni0.6Co0.2Mn0.2]O2, Li[Ni0.7Co0.1Mn0.2]O2, Li[Ni0.8Co0.1Mn0.1]O2, Li[Ni0.9Co0.05Mn0.05]O2, LiMn2O4, LiFePO4, 0.5Li2MnO3·0.5Li[Mn0.4Ni0.3Co0.3]O2로 이루어진 군에서 선택되는 적어도 어느 하나를 포함할 수 있다. 바람직하게, 상기 Li1+xMyO2+z는 상기 Li[Ni0.6Co0.2Mn0.2]O2, Li[Ni0.7Co0.1Mn0.2]O2, Li[Ni0.8Co0.1Mn0.1]O2, Li[Ni0.9Co0.05Mn0.05]O2 중 어느 하나를 포함할 수 있다. 상기 양극 활물질이 Li1+xMyO2+z를 포함하므로, 음극에 리튬이 충분히 공급될 수 있으며, Li1+xMyO2+z가 전지 전체 성능의 저하를 야기하지 않으면서 최초 사이클 후 전기 화학적으로 활성을 나타내므로, 음극의 비가역 용량에 의한 전지 용량 손실이 해소될 수 있다. 상기 Li1+xMyO2+z는 1차 입자들이 결합 또는 조립되어 형성된 2차 입자 형태일 수 있으며, 이와 달리 단일 입자 형태일 수도 있다.
상기 양극 활물질은 상기 양극 활물질층 내에 50중량% 내지 95중량%, 구체적으로 60중량% 내지 90중량%로 포함될 수 있다.
상기 양극 활물질층은 고체 전해질을 더 포함할 수 있다.
상기 고체 전해질은 구체적으로 고분자 고체 전해질, 산화물계 고체 전해질, 황화물계 고체 전해질, 및 할라이드계 고체 전해질로 이루어진 군에서 선택된 적어도 1종을 포함할 수 있다.
상기 고분자 고체 전해질은 리튬 염 및 고분자 수지의 복합물일 수 있다. 구체적으로, 상기 고분자 고체 전해질은 용매화된 리튬 염에 고분자 수지가 첨가되어 형성될 수 있다. 구체적으로, 상기 고분자 고체 전해질의 이온 전도도는 약 1×10-7 S/cm 이상, 바람직하게는 약 1×10-3 S/cm 이상일 수 있다.
상기 고분자 수지는 폴리에테르계 고분자, 폴리카보네이트계 고분자, 아크릴레이트계 고분자, 폴리실록산계 고분자, 포스파젠계 고분자, 폴리에틸렌 유도체, 폴리에틸렌옥사이드와 같은 알킬렌 옥사이드 유도체, 인산 에스테르 폴리머, 폴리 에지테이션 리신(agitation lysine), 폴리에스테르 술파이드, 폴리비닐 알코올, 폴리 불화 비닐리덴, 이온성 해리기를 포함하는 중합체 등이 있으며 이 중 하나 이상을 포함할 수 있다. 또한, 상기 고분자 고체 전해질은 고분자 수지로서 PEO(poly ethylene oxide) 주쇄에 PMMA, 폴리카보네이트, 폴리실록산(pdms) 및/또는 포스파젠과 같은 무정형 고분자를 공단량체로 공중합시킨 가지형 공중합체, 빗형 고분자 수지 (comb-like polymer) 및 가교 고분자 수지 등을 예로 들 수 있으며 이 중 1종 이상이 포함될 수 있다.
상기 리튬 염은 이온화 가능한 것으로서, Li+X-로 표현될 수 있다. 이러한 리튬 염의 음이온으로는 특별히 제한되지 않으나, F-, Cl-, Br-, I-, NO3 -, N(CN)2 -, BF4 -, ClO4 -, PF6 -, (CF3)2PF4 -, (CF3)3PF3 -, (CF3)4PF2 -, (CF3)5PF-, (CF3)6P-, CF3SO3 -, CF3CF2SO3 -, (CF3SO2)2N-, (FSO2)2N- , CF3CF2(CF3)2CO-, (CF3SO2)2CH-, (SF5)3C-, (CF3SO2)3C-, CF3(CF2)7SO3 -, CF3CO2 -, CH3CO2 -, SCN-, (CF3CF2SO2)2N- 등이 예시될 수 있다.
상기 산화물계 고체 전해질은 산소(O)를 포함하고 주기율표 제1족 또는 제2족에 속하는 금속의 이온 전도성을 갖는 것일 수 있다. 이의 비제한적인 예로는 LLTO계 화합물, Li6La2CaTa2O12, Li6La2ANb2O12(A는 Ca 또는 Sr), Li2Nd3TeSbO12, Li3BO2.5N0.5, Li9SiAlO8, LAGP계 화합물, LATP계 화합물, Li1+xTi2-xAlxSiy(PO4)3-y(여기에서, 0≤x≤1, 0≤y≤1), LiAlxZr2-x(PO4)3(여기에서, 0≤x≤1, 0≤y≤1), LiTixZr2-x(PO4)3(여기에서, 0≤x≤1, 0≤y≤1), LISICON계 화합물, LIPON계 화합물, 페롭스카이트계 화합물, 나시콘계 화합물, 및 LLZO계 화합물 중 선택된 1종 이상을 포함할 수 있다. 그러나 특별히 이에 한정되는 것은 아니다.
상기 황화물계 고체 전해질은 황(S)을 함유하고 주기율표 제1족 또는 제2족에 속하는 금속의 이온 전도성을 갖는 것으로서, Li-P-S계 유리나 Li-P-S계 유리 세라믹을 포함할 수 있다. 이러한 황화물계 고체 전해질의 비제한적인 예로는 Li6PS5Cl, Li6PS5Br, Li6PS5I, Li2S-P2S5, Li2S-LiI-P2S5, Li2S-LiI-Li2O-P2S5, Li2S-LiBr-P2S5, Li2S-Li2O-P2S5, Li2S-Li3PO4-P2S5, Li2S-P2S5-P2O5, Li2S-P2S5-SiS2, Li2S-P2S5-SnS, Li2S-P2S5-Al2S3, Li2S-GeS2, Li2S-GeS2-ZnS 등을 들 수 있으며, 이 중 하나 이상을 포함할 수 있다. 그러나 특별히 이에 한정되는 것은 아니다.
상기 할라이드계 고체 전해질은 Li3YCl6 및 Li3YBr6 중 적어도 어느 하나를 포함할 수 있으나, 특별히 이에 한정되는 것은 아니다.
상기 고체 전해질은 상기 양극 활물질층 내에 5중량% 내지 50중량%, 구체적으로 10중량% 내지 30중량%로 포함될 수 있다.
상기 양극 활물질층은 양극 도전재를 더 포함할 수 있다.
상기 양극 도전재는 상기 양극 또는 전지에 화학적 변화를 유발하지 않으면서 도전성을 가지는 것이라면 특별히 제한되지 않으며, 예를 들어 상기 양극 도전재는 천연 흑연이나 인조 흑연 등의 흑연; 카본블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙 등의 카본블랙; 그래핀; 탄소 나노 섬유 및 탄소 나노 튜브 등의 전도성 섬유; 불화 카본; 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 휘스커; 산화 티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재에서 선택된 1종 또는 2종 이상의 혼합물을 포함할 수 있다.
상기 양극 도전재는 상기 양극 활물질층 내에 1중량% 내지 30중량%로 포함될 수 있다.
상기 양극 활물질층은 양극 바인더를 더 포함할 수 있다.
상기 양극 바인더는 양극 활물질, 도전재 등의 결합, 및 집전체에의 결합에 조력하는 성분이라면 특별히 제한되지 않으며, 구체적으로 폴리비닐리덴 플루오라이드(PVdF), 폴리비닐알코올(PVA), 카르복시메틸셀룰로오스(CMC), 전분, 히드록시프로필셀룰로오스, 폴리비닐피롤리돈, 폴리테트라플루오로에틸렌(PTFE), 폴리테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 모노머(EPDM), 스티렌-부타디엔 고무(SBR), 및 불소 고무로 이루어진 군에서 선택된 적어도 1종을 포함할 수 있다.
상기 양극 바인더는 상기 양극 활물질층 내에 1중량% 내지 30중량%로 포함될 수 있다.
상기 양극 활물질층은 필요에 따라, 산화안정 첨가제, 환원 안정 첨가제, 난연제, 열안정제, 무적제(antifogging agent) 등과 같은 첨가제를 1종 이상 포함할 수 있다.
(3) 고체 전해질층
상기 전고체 리튬 이차전지는 고체 전해질층을 포함할 수 있다.
상기 고체 전해질층은 전고체 리튬 이차전지에서 절연 역할 및 이온 전도성 채널로서 기능하는 것일 수 있다.
도 2를 참조하면, 상기 고체 전해질층(300)은 상기 음극 활물질층(100)과 상기 양극 활물질층(200) 사이에 배치될 수 있다.
상기 고체 전해질층(300)은 상기 고체 전해질을 포함한다. 상기 고체 전해질은 구체적으로 고분자 고체 전해질, 산화물계 고체 전해질, 및 황화물계 고체 전해질로 이루어진 군에서 선택된 적어도 1종을 포함할 수 있다.
상기 고분자 고체 전해질은 리튬 염 및 고분자 수지의 복합물일 수 있다. 구체적으로, 상기 고분자 고체 전해질은 용매화된 리튬 염에 고분자 수지가 첨가되어 형성될 수 있다. 구체적으로, 상기 고분자 고체 전해질의 이온 전도도는 약 1×10-7 S/cm 이상, 바람직하게는 약 1×10-3 S/cm 이상일 수 있다.
상기 고분자 수지는 폴리에테르계 고분자, 폴리카보네이트계 고분자, 아크릴레이트계 고분자, 폴리실록산계 고분자, 포스파젠계 고분자, 폴리에틸렌 유도체, 폴리에틸렌옥사이드와 같은 알킬렌 옥사이드 유도체, 인산 에스테르 폴리머, 폴리 에지테이션 리신(agitation lysine), 폴리에스테르 술파이드, 폴리비닐 알코올, 폴리 불화 비닐리덴, 이온성 해리기를 포함하는 중합체 등이 있으며 이 중 하나 이상을 포함할 수 있다. 또한, 상기 고분자 고체 전해질은 고분자 수지로서 PEO(poly ethylene oxide) 주쇄에 PMMA, 폴리카보네이트, 폴리실록산(pdms) 및/또는 포스파젠과 같은 무정형 고분자를 공단량체로 공중합시킨 가지형 공중합체, 빗형 고분자 수지 (comb-like polymer) 및 가교 고분자 수지 등을 예로 들 수 있으며 이 중 1종 이상이 포함될 수 있다.
상기 리튬 염은 이온화 가능한 것으로서, Li+X-로 표현될 수 있다. 이러한 리튬 염의 음이온으로는 특별히 제한되지 않으나, F-, Cl-, Br-, I-, NO3 -, N(CN)2 -, BF4 -, ClO4 -, PF6 -, (CF3)2PF4 -, (CF3)3PF3 -, (CF3)4PF2 -, (CF3)5PF-, (CF3)6P-, CF3SO3 -, CF3CF2SO3 -, (CF3SO2)2N-, (FSO2)2N- , CF3CF2(CF3)2CO-, (CF3SO2)2CH-, (SF5)3C-, (CF3SO2)3C-, CF3(CF2)7SO3 -, CF3CO2 -, CH3CO2 -, SCN-, (CF3CF2SO2)2N- 등이 예시될 수 있다.
상기 산화물계 고체 전해질은 산소(O)를 포함하고 주기율표 제1족 또는 제2족에 속하는 금속의 이온 전도성을 갖는 것일 수 있다. 이의 비제한적인 예로는 LLTO계 화합물, Li6La2CaTa2O12, Li6La2ANb2O12(A는 Ca 또는 Sr), Li2Nd3TeSbO12, Li3BO2.5N0.5, Li9SiAlO8, LAGP계 화합물, LATP계 화합물, Li1+xTi2-xAlxSiy(PO4)3-y(여기에서, 0≤x≤1, 0≤y≤1), LiAlxZr2-x(PO4)3(여기에서, 0≤x≤1, 0≤y≤1), LiTixZr2-x(PO4)3(여기에서, 0≤x≤1, 0≤y≤1), LISICON계 화합물, LIPON계 화합물, 페롭스카이트계 화합물, 나시콘계 화합물, 및 LLZO계 화합물 중 선택된 1종 이상을 포함할 수 있다. 그러나 특별히 이에 한정되는 것은 아니다.
상기 황화물계 고체 전해질은 황(S)을 함유하고 주기율표 제1족 또는 제2족에 속하는 금속의 이온 전도성을 갖는 것으로서, Li-P-S계 유리나 Li-P-S계 유리 세라믹을 포함할 수 있다. 이러한 황화물계 고체 전해질의 비제한적인 예로는 Li6PS5Cl, Li6PS5Br, Li6PS5I, Li2S-P2S5, Li2S-LiI-P2S5, Li2S-LiI-Li2O-P2S5, Li2S-LiBr-P2S5, Li2S-Li2O-P2S5, Li2S-Li3PO4-P2S5, Li2S-P2S5-P2O5, Li2S-P2S5-SiS2, Li2S-P2S5-SnS, Li2S-P2S5-Al2S3, Li2S-GeS2, Li2S-GeS2-ZnS 등을 들 수 있으며, 이 중 하나 이상을 포함할 수 있다. 그러나 특별히 이에 한정되는 것은 아니다.
상기 고체 전해질층은 고체 전해질층용 바인더를 더 포함할 수 있다. 상기 고체 전해질층용 바인더는 고체 전해질 간의 결착 및 고체 전해질층과 이의 양면에 적층되는 전지 요소들(예를 들어 양극, 음극 등)과의 결착을 위해 도입될 수 있다.
상기 고체 전해질층용 바인더의 재료로는 특별히 한정되는 것은 아니며 전고체 리튬 이차전지 내의 고체 전해질의 바인더로 사용되는 성분의 범위 내에서 적절하게 선택할 수 있다. 구체적으로, 상기 고체 전해질층용 바인더는 폴리비닐리덴 플루오라이드(PVdF), 폴리비닐알코올(PVA), 카르복시메틸셀룰로오스(CMC), 전분, 히드록시프로필셀룰로오스, 폴리비닐피롤리돈, 폴리테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 모노머(EPDM), 스티렌-부타디엔 고무(SBR), 스티렌-부타디엔 스티렌 블록 공중합체(SBS), 니트릴 부타디엔 고무(NBR), 불소 고무, 및 아크릴계 바인더로 이루어진 군에서 선택된 적어도 1종을 포함할 수 있다.
상기 고체 전해질층의 두께는 이온 전도도, 물리적 강도, 적용되는 전지의 에너지 밀도 등을 고려하여 10㎛ 내지 90㎛, 구체적으로 20㎛ 내지 80㎛일 수 있다. 또한, 상기 고체 전해질층의 인장 강도는 500kgf/cm2 내지 2,000kgf/cm2일 수 있다. 또한, 상기 고체 전해질층(300)의 기공도는 15% 이하 또는 약 10% 이하일 수 있다.
상기 전고체 리튬 이차전지는 금속층을 더 포함할 수 있다. 도 5를 참조하면, 상기 전고체 리튬 이차전지(10)는 음극 집전체(110)를 더 포함하며, 충전 상태에서 상기 음극 활물질층(100)과 상기 음극 집전체(110) 사이에 위치한 금속층(120)을 더 포함할 수 있다. 상기 금속층(120)은 리튬을 포함할 수 있고, 구체적으로 리튬으로 이루어질 수도 있다.
상기 금속층은 전고체 리튬 이차전지가 충전될 시, 양극 활물질층으로부터 전달된 리튬 이온이 음극 활물질층을 거쳐 음극 집전체와 음극 활물질층 상에 저장되어 형성된 층을 의미할 수 있다. 따라서, 상기 금속층은 충전 시에 명확하게 나타난다.
상기 금속층은 방전 과정에서도 관찰되나, 이론적으로 완전 방전 시에는 관찰되지 않을 수 있다.
본 발명은 전고체 리튬 이차전지에서 의미가 있으며, 액체 전해질을 사용하는 리튬 이차전지에서는 큰 의미가 없을 수 있다. 예컨대, 액체 전해질을 사용하게 되면, 음극에 저장되는 리튬(예컨대 금속층의 형태)이 액체 전해질에 지속적으로 노출될 수 있으므로, 음극에 리튬이 온전히 저장되기 어려울 수 있다.
전고체 리튬 이차전지의 제조 방법
본 발명의 다른 실시예에 따른 전고체 리튬 이차전지의 제조 방법은, 은 이온과 흑연화된 플레이트렛 탄소나노섬유의 혼합물에 대하여, 은 이온을 환원시켜서 상기 흑연화된 플레이트렛 탄소나노섬유 및 상기 흑연화된 플레이트렛 탄소나노섬유 상에 배치된 은 나노 입자를 포함하는 건조 혼합 분말을 형성하는 제1 단계; 및 상기 건조 혼합 분말을 포함하는 음극 슬러리를 통해 음극 집전체 상에 음극 활물질층을 형성하는 제2 단계;를 포함할 수 있다. 여기서, 상기 전고체 리튬 이차전지는 상술한 실시예의 전고체 리튬 이차전지와 동일할 수 있다. 또한, 상기 음극 활물질층은 상술한 실시예의 음극 활물질층과 동일할 수 있다.
(1) 제1 단계
제1 단계에서 상기 흑연화된 플레이트렛 탄소나노섬유 및 상기 흑연화된 플레이트렛 탄소나노섬유 상에 배치된 은 나노 입자를 포함하는 건조 혼합 분말이 형성된다. 상기 건조 혼합 분말은 파우더 형태의 은 나노 입자와 파우더 형태의 흑연화된 플레이트렛 탄소나노섬유를 혼합하여 제조할 수 있다. 이와 달리, 상기 건조 혼합 분말은 은 이온 용액에 흑연화된 플레이트렛 탄소나노섬유를 혼합한 뒤 은 나노 이온을 환원시켜서 제조될 수도 있다. 상기 은 나노 입자를 환원시키는 방법은 화학적 환원법, 전기화학적 환원법, 광화학적 환원법, 레이저 환원법, 초음파 환원법, 스퍼터링 등의 다양한 방법이 있으나, 바람직하게는 폴리올 공정(Polyol Process)을 이용한 화학적 환원법이나 마이크로파를 이용한 microwave-assisted Polyol 방법이 사용될 수 있다.
상기 폴리올 공정에 있어서, 은 이온 용액은 은 이온과 더불어 용매 및 안정화제를 포함할 수 있다. 상기 용매는 에틸렌 글리콜 등이 사용될 수 있으며, 상기 안정화제로는 폴리비닐피롤리돈이 사용될 수 있다. 그러나 반드시 이에 한되는 것은 아니다.
상기 은 이온 용액 내에서 은 이온의 몰농도는 1mM 내지 1,000mM일 수 있으며, 구체적으로 1mM 내지 500mM, 보다 구체적으로 1mM 내지 300mM 일 수 있다. 상기 몰농도 범위를 만족할 시, 형성되는 은 나노 입자의 함량과 크기가 적절한 수준으로 조절될 수 있어서, 전고체 리튬 이차전지의 용량, 초기 충전/방전 효율, 수명 특성이 효과적으로 조절될 수 있다.
상기 제1 단계에 있어서, 상기 은 이온을 환원시키는 것은 상기 혼합 용액을 100℃ 내지 500℃에서 반응시키는 것을 포함할 수 있으며, 구체적으로 100℃ 내지 300℃에서 반응시키는 것을 포함할 수 있다. 즉 상술한 온도에서 열처리하는 것으로 반응시킬 수 있다. 이에 따라, 은 이온이 적절하게 환원되어 바람직한 크기를 가지는 은 나노 입자를 수득할 수 있다. 또한, 상기 과정에서 상기 은 나노 입자는 상기 흑연화된 플레이트렛 탄소나노섬유의 표면 상에 배치될 수 있다.
상기 은 이온을 환원시키는 것은 상기 혼합 용액의 pH를 조절하는 것을 포함할 수 있다. 구체적으로 상기 혼합 용액은 pH 8 내지 pH 14, 보다 구체적으로 pH 9 내지 pH 13의 산성도를 가지도록 조절될 수 있다. 이에 따라, 은 이온이 적절하게 환원되어 바람직한 크기를 가지는 은 나노 입자를 수득할 수 있다.
이 후, 상기 혼합 용액의 고형분을 세척한 뒤 건조시켜서 상기 건조 혼합 분말을 수득할 수 있다.
상기 건조 혼합 분말에 있어서, 상기 흑연화된 플레이트렛 탄소나노섬유와 상기 은 나노 입자의 중량비는 99:1 내지 60:40일 수 있으며, 구체적으로 97:3 내지 70:30, 보다 구체적으로 95:5 내지 80:20일 수 있다. 이를 만족할 시, 전고체 리튬 이차전지의 용량 및 초기 충전/방전 효율이 더욱 효과적으로 개선될 수 있다.
(2) 제2 단계
상기 제2 단계에서는 상기 건조 혼합 분말을 포함하는 음극 슬러리를 통해 음극 집전체 상에 음극 활물질층이 형성될 수 있다. 상기 음극 슬러리는 건조 혼합 분말 및 음극 슬러리용 용매를 포함할 수 있다.
상기 음극 슬러리용 용매는 물, N-메틸 피롤리돈 등으로 이루어진 군에서 선택될 수 있으나, 반드시 이에 한정되는 것은 아니다.
상기 음극 슬러리는 음극 바인더를 더 포함할 수 있다. 상기 음극 바인더는 상술한 실시예의 음극 바인더와 동일할 수 있다.
상기 제2 단계에 있어서, 상기 음극 슬러리를 음극 집전체 상에 도포 및 건조하여 상기 음극 활물질층이 형성될 수 있다. 경우에 따라, 도포 및 건조 공정과 더불어, 가압 공정이 추가될 수 있다.
또한, 본 발명은, 상기 전고체 리튬 이차 전지를 단위전지로 포함하는 전지모듈, 상기 전지모듈을 포함하는 전지팩, 및 상기 전지팩을 전원으로 포함하는 디바이스를 제공한다. 이 때, 상기 디바이스의 구체적인 예로는, 전지적 모터에 의해 동력을 받아 움직이는 파워 툴(power tool); 전기자동차(Electric Vehicle, EV), 하이브리드 전기자동차(Hybrid Electric Vehicle, HEV), 플러그-인 하이브리드 전기자동차(Plug-in Hybrid Electric Vehicle, PHEV) 등을 포함하는 전기차; 전기 자전거(E-bike), 전기 스쿠터(E-scooter)를 포함하는 전기 이륜차; 전기 골프 카트(electric golf cart); 도심항공교통(Urban Air Mobility, UAM); 전력저장용 시스템 등을 들 수 있으나, 이에 한정되는 것은 아니다.
이하, 실시예를 통해 본 발명을 더욱 설명하지만, 하기 실시예는 본 발명을 예시하기 위한 것이며, 본 발명의 범주가 이들만으로 한정되는 것은 아니다.
실시예 및 비교예
실시예 1: 전고체 리튬 이차전지의 제조
(1) 음극 제조
플레이트렛 탄소나노섬유에 대해 Ar분위기, 2800℃ 온도 조건에서 6시간동안 열처리하여 흑연화된 플레이트렛 탄소나노섬유를 제조하였다.
에틸렌 글리콜 용매에 흑연화된 플레이트렛 탄소나노섬유와 AgNO3, 폴리비닐피롤리돈을 혼합하고, NaOH 펠렛을 통해 pH가 8 내지 14 범위를 만족하도록 조절한 뒤 24시간 동안 교반하여 혼합 용액을 제조하였다. 초음파 장치를 통해 Ar bubbling을 진행한 혼합 용액에 대해 Microwave Reactor (LG전자 사)의 Continuous Wave Mode (2.45GHz, 500W)를 이용하여 10초, 20초, 30초, 1분, 2분, 5분의 시간 단위로 처리하여 가열과 냉각을 반복하였다. 이를 통해 은 이온이 환원되어 흑연화된 플레이트렛 탄소나노섬유 상에 은 나노 입자가 배치되었다. 이 후, 아세톤 용액을 통해 통해 필터링 및 세척을 진행하고 100℃의 진공 오븐에서 24시간 건조하여 흑연화된 플레이트렛 탄소나노섬유 및 흑연화된 플레이트렛 탄소나노섬유 상에 배치된 은 나노 입자를 포함하는 건식 혼합 분말을 수득하였다(도 8 참조). 상기 은 나노 입자의 함량(상기 흑연화된 플레이트렛 탄소나노섬유 및 상기 은 나노 입자의 전체 중량을 기준으로)은 10중량% 였으며, 은 나노 입자의 평균 입경은 2nm 였다.
상기 건식 혼합 분말과 폴리비닐리덴 플루오라이드를 용매인 N-메틸 피롤리돈(NMP)에 투입 및 교반하여 음극 슬러리를 형성하였다. 상기 음극 슬러리 중에서, 상기 건식 혼합 분말과 상기 폴리비닐리덴 플루오라이드의 중량비는 93:7이었다.
상기 음극 슬러리를 스테인리스 스틸 집전체(두께: 15㎛)에 도포하고, 진공 오븐에서 100℃에서 12시간 건조시킨 뒤 롤 프레스를 이용하여 압연 공정을 진행하여, 스테인리스 스틸 집전체 및 스테인리스 스틸 집전체 상에 위치한 음극 활물질층을 포함하는 음극을 제조하였다. 상기 음극 활물질층의 두께는 10㎛였으며, 음극 활물질층의 로딩양은 1mg/cm2 이었다.
(2) 양극 제조
양극 활물질로서 Li[Ni0.82Co0.14Mn0.04]O2, 고체 전해질로서 Li6PS6Cl, 도전재로서 탄소나노섬유(VGCF, Showa Denko 사), 및 바인더로서 폴리테트라플루오로에틸렌을 77:20:1:2의 중량비로 순차적으로 용기에 투입하였다. 각각의 구성을 투입할 때마다 Lab Blender를 사용하여 10,000RPM으로 30초씩 10회 반복 믹싱(mixing)하여 양극 혼합물을 제조하였다. 상기 혼합물에 대해 Twin Screw Kneader (LG전자 사)를 사용하여 100℃에서 100rpm으로 전단력을 인가하여 고전단 믹싱을 5분간 수행하여, 양극 혼합물 제조하였다. 상기 양극 혼합물을 100℃에서 Two roll mil 장비(Inoue 사)를 사용하여 200㎛ 두께의 자립형 필름(Free-standing Film)을 제조하였다. 이 후, 상기 필름을 프라이머가 코팅된 알루미늄 집전체(두께: 20㎛)의 일면 상에 위치시키고, 120℃로 유지되는 라미네이션 롤을 사용하여 필름을 집전체에 접합시켜서 양극을 제조하였다.
(3) 전고체 리튬 이차전지의 제조
Li6PS6Cl 고체 전해질과 니크릴 부타디엔 고무(NBR)를 용매인 자일렌에 혼합한 뒤, Thinky Mixer로 2,000RPM에서 1분씩 10회 지르코니아 볼과 함께 믹싱하여 고체 전해질 슬러리를 제조하였다. 이를 이형지인 PET 필름 위에 코팅하고, 45℃의 진공 오븐에서 6시간 건조시켜서 고체 전해질층을 준비하였다. 이 때, Li6PS6Cl 고체 전해질과 니크릴 부타디엔 고무(NBR)의 중량비는 95:5중량%이며, 제조된 고제 전해질층의 두께는 100㎛였다.
상기 음극 및 상기 양극 사이에 상기 고체 전해질층을 배치시켜서 조립체를 제조한 뒤, 상기 조립체를 파우치에 넣고 밀봉하였다. 이 후, Al 플레이트 위에 상기 파우치를 고정시킨 뒤, 등방 가압 장비(Warm Isostatic Pressure)로 500MPa, 30분 조건으로 가압 처리하여 실시예 1의 전고체 리튬 이차전지를 제조하였다.
실시예 2 내지 5: 전고체 리튬 이차전지의 제조
흑연화된 플레이트렛 탄소나노섬유, AgNO3, 폴리비닐리덴피롤리돈의 중량비, pH값, Microwave Reactor에서의 반응 조건 등을 제어하여, 은 나노 입자의 함량과 평균 입경을 표 1과 같이 조절한 점을 제외하고는, 실시예 1과 동일한 방법으로 전고체 리튬 이차전지를 제조하였다.
비교예 1 내지 2: 전고체 리튬 이차전지의 제조
(1) 음극 제조
상기 실시예 1에서 흑연화된 플레이트렛 탄소나노섬유 대신 카본 블랙(PRINTEX, Orion Engineered Carbons 사)을 사용하였으며, 카볼블랙, AgNO3, 폴리비닐리덴피롤리돈의 중량비, pH값, Microwave Reactor에서의 반응 조건 등을 제어하여, 은 나노 입자의 함량과 평균 입경을 표 1과 같이 조절한 점을 제외하고는, 실시예 1과 동일한 방법으로 전고체 리튬 이차전지를 제조하였다.
비교예 3: 리튬 이차전지의 제조
(1) 음극 및 양극 제조
실시예 1과 동일한 방법으로 음극 및 양극을 제조하였다.
(3) 리튬 이차전지의 제조
이 후, 상기 제조된 음극 및 양극과 그 사이에 15㎛ 두께의 폴리에틸렌계 분리막을 배치하여 모노셀을 제조한 뒤, 상기 모노셀에 전해액 (에틸렌카보네이트(EC)/에틸메틸카보네이트(EMC)=1/2 (부피비), 리튬 헥사 플로로 포스페이트 (LiPF6 1몰))을 주입하여 리튬 이차전지를 제조하였다.
비교예 4: 리튬 이차전지의 제조
흑연화된 플레이트렛 탄소나노섬유, AgNO3, 폴리비닐리덴피롤리돈의 중량비, pH값, Microwave Reactor에서의 반응 조건 등을 제어하여, 은 나노 입자의 함량과 평균 입경을 표 1과 같이 조절한 점을 제외하고는, 비교예 3과 동일한 방법으로 리튬 이차전지를 제조하였다.
비교예 5: 리튬 이차전지의 제조
흑연화된 플레이트렛 탄소나노섬유 대신, 흑연화되지 않은 플레이트렛 탄소나노섬유를 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 전고체 리튬 이차전지를 제조하였다. 도 9는 플레이트렛 탄소나노섬유 상에 배치된 은 나노 입자를 포함하는 건식 혼합 분말의 TEM 사진이다.
한편, 제조된 음극을 관찰한 결과, 실시예 1 내지 5 및 비교예 3, 4의 흑연화된 플레이트렛 탄소나노섬유의 d(002)는 0.335nm였으며, Lc(002)는 41nm였다. 상기 흑연화된 플레이트렛 탄소나노섬유의 XRD 분석은 Bruker AXS D4 Endeavor XRD (전압: 40 kV, 전류: 40 mA)을 이용하였다. Cu Kα radiation (파장: 1.54 Å)의 조건에서, 2-Theta 10°에서 90°까지 0.02°마다 87.5초씩의 스캐닝 속도로 측정하였다. 측정 결과 중 2θ가 20°내지 30°부근에서 나타나는 (002) 결정 피크의 반가폭(FWHM, Full Width at Half-Maximum)을 측정할 수 있고, Scherrer 수식을 통해 계산하여 d(002)값과 Lc(002)값을 얻었다. 상기 흑연화된 플레이트렛 탄소나노섬유의 ID/IG (비율)은 0.24였다. ID/IG (비율)은 라만 스펙트럼 측정 시의 파장-피크 그래프로부터 측정 하였다.
상기 플레이트렛 탄소나노섬유에 대해서도 동일 방법으로 평가하였다.
d(002) (nm) Lc(002) (nm) ID/IG
흑연화된 플레이트렛 탄소나노섬유 0.335 41 0.24
플레이트렛 탄소나노섬유 0.336 28 1.33
상기 플레이트렛 탄소나노섬유와 흑연화된 플레이트렛 탄소나노섬유의 평균 길이는 1㎛였으며, 평균 직경은 200nm였다. 상기 평균 직경은 음극 활물질층을 SEM을 통해 ×20,000 배율로 관찰했을 시, 평균 직경이 큰 순서로, 상위 50개의 흑연화된 플레이트렛 탄소나노섬유들의 직경과 하위 50개의 흑연화된 플레이트렛 탄소나노섬유(또는 플레이트렛 탄소나노섬유)들의 직경의 평균값에 해당한다. 상기 평균 길이는 음극 활물질층을 SEM을 통해 ×20,000 배율로 관찰했을 시, 평균 길이가 큰 순서로, 상위 50개의 흑연화된 플레이트렛 탄소나노섬유(또는 플레이트렛 탄소나노섬유)들의 길이와 하위 50개의 흑연화된 플레이트렛 탄소나노섬유(또는 플레이트렛 탄소나노섬유)들의 길이의 평균값에 해당한다.
실험예 1: 초기 충전/방전 효율 평가
실시예들 및 비교예들의 전지 각각을 가압 지그에 장착하고 사각 모서리부에 위치한 볼트/너트를 1N·m의 동일 압력으로 체결하여 모노셀을 준비하였다. 60℃에서 하기 조건으로 1회 충전 및 1회 방전시켰을 때, 1회 충전 용량 대비 1회 방전 용량의 비율로 초기 충전/방전 효율을 평가하였다(표 2 참조).
충전 조건: 4.25V까지 0.1C CC충전, 이 후 CV충전으로 4.25V 0.05C cut-off
방전 조건: 3.0V까지 0.1C CC방전
실험예 2: 용량 유지율 평가
실시예들 및 비교예들의 전지 각각을 60℃ 에서, 하기 조건으로 충방전을 진행한 뒤, 50 cycle에서의 용량 유지율(%)을 평가하였다. 1회 충전/방전 시 방전 용량을 100%로 기준 삼았다.
충전 조건: 4.25V까지 0.5C CC충전, 0.5C cut-off
방전 조건: 3.0V까지 0.33C CC방전
탄소물질 종류 은 나노 입자 함량(중량%) 은 나노 입자 의 평균 입경(nm) 고체 전해질층 사용 여부 초기 충방전 효율(%) 0.5C/0.5C 60℃ 용량 유지율(%, @50사이클)
실시예 1 GPCNF 10 2 O 98.1 97.2
실시예 2 GPCNF 5 1.5 O 95.7 94.9
실시예 3 GPCNF 20 3.5 O 96.8 95.3
실시예 4 GPCNF 30 6 O 95.5 94.2
실시예 5 GPCNF 10 10 O 97.6 96.9
비교예 1 CB 10 5 O 71.3 85.8
비교예 2 CB 10 10 O 63.7 82.5
비교예 3 GPCNF 10 2 X 95.7 74.8
비교예 4 GPCNF 10 10 X 95.1 73.9
비교예 5 PCNF 10 1.5 O 96.6 95.1
상기 은 나노 입자의 평균 입경은 음극 활물질층의 은 나노 입자를 포함하는 흑연화된 플레이트렛 탄소나노섬유를 TEM을 통해 ×1,000,000 배율로 관찰했을 시, 입경이 큰 상위 50개의 은 나노 입자들의 입경과 하위 50개의 은 나노 입자들의 입경의 평균값에 해당한다.상기 GPCNF는 흑연화된 플레이트렛 탄소나노섬유이고, PCNF는 흑연화되지 않은 플레이트렛 탄소나노섬유이며, CB는 카본블랙이다.
상기 은 나노 입자의 함량은, 상기 음극 활물질층에 있어서, 상기 플레이트렛 탄소나노섬유 및 상기 은 나노 입자의 전체 중량을 기준으로 볼 때의 함량을 의미한다.

Claims (18)

  1. 양극 활물질층, 음극 활물질층, 및 상기 양극 활물질층과 상기 음극 활물질층 사이에 배치된 고체 전해질층을 포함하며,
    상기 음극 활물질층은 흑연화된 플레이트렛 탄소나노섬유 및 은 나노 입자를 포함하는 전고체 리튬 이차전지.
  2. 청구항 1에 있어서,
    상기 흑연화된 플레이트렛 탄소나노섬유는 플레이트렛 탄소나노섬유를 2,000℃ 이상의 온도에서 열처리하여 형성된 것인 전고체 리튬 이차전지.
  3. 청구항 1에 있어서,
    상기 흑연화된 플레이트렛 탄소나노섬유는 복수의 그래핀 시트들이 상기 흑연화된 플레이트렛 탄소나노섬유의 성장 방향으로 적층된 형태이며,
    상기 흑연화된 플레이트렛 탄소나노섬유는 상기 흑연화된 플레이트렛 탄소나노섬유의 측면을 향하여 돌출된 굴곡부를 포함하며,
    상기 굴곡부는 상기 그래핀 시트의 기저면에 해당하는 전고체 리튬 이차전지.
  4. 청구항 1에 있어서,
    상기 은 나노 입자는 상기 흑연화된 플레이트렛 탄소나노섬유 표면 상에 배치된 전고체 리튬 이차전지.
  5. 청구항 1에 있어서,
    상기 흑연화된 플레이트렛 탄소나노섬유에 대해 XRD 측정 시,
    상기 흑연화된 플레이트렛 탄소나노섬유의 d(002)는 0.330nm 내지 0.350nm인 전고체 리튬 이차전지.
  6. 청구항 1에 있어서,
    상기 흑연화된 플레이트렛 탄소나노섬유에 대해 XRD 측정 시,
    상기 흑연화된 플레이트렛 탄소나노섬유의 Lc(002)는 20nm 내지 200nm인 전고체 리튬 이차전지.
  7. 청구항 1에 있어서,
    상기 흑연화된 플레이트렛 탄소나노섬유의 ID/IG는 0.1 내지 1.0인 전고체 리튬 이차전지.
  8. 청구항 1에 있어서,
    상기 흑연화된 플레이트렛 탄소나노섬유의 평균 직경은 10nm 내지 500nm인 전고체 리튬 이차전지.
  9. 청구항 1에 있어서,
    상기 흑연화된 플레이트렛 탄소나노섬유의 평균 길이는 0.1㎛ 내지 5㎛인 전고체 리튬 이차전지.
  10. 청구항 1에 있어서,
    상기 흑연화된 플레이트렛 탄소나노섬유의 비표면적은 5m2/g 내지 100m2/g인 전고체 리튬 이차전지.
  11. 청구항 1에 있어서,
    상기 흑연화된 플레이트렛 탄소나노섬유는 상기 음극 활물질층 내에 50중량% 내지 98중량%로 포함되는 전고체 리튬 이차전지.
  12. 청구항 1에 있어서,
    상기 은 나노 입자의 평균 입경은 1nm 내지 100nm인 전고체 리튬 이차전지.
  13. 청구항 1에 있어서,
    상기 음극 활물질층에 있어서,
    상기 은 나노 입자는 상기 흑연화된 플레이트렛 탄소나노섬유 및 상기 은 나노 입자의 전체 중량을 기준으로 1중량% 내지 40중량%로 포함되는 전고체 리튬 이차전지.
  14. 청구항 1에 있어서,
    상기 흑연화된 플레이트렛 탄소나노섬유와 상기 은 나노 입자의 중량비는 99:1 내지 60:40인 전고체 리튬 이차전지.
  15. 청구항 1에 있어서,
    상기 음극 활물질층은 음극 바인더를 더 포함하는 전고체 리튬 이차전지.
  16. 청구항 1에 있어서,
    상기 음극 활물질층의 두께는 1㎛ 내지 100㎛인 전고체 리튬 이차전지.
  17. 청구항 1에 있어서,
    음극 집전체를 더 포함하며,
    충전 상태에서, 상기 음극 활물질층과 상기 음극 집전체 사이에 위치한 금속층을 더 포함하며,
    상기 금속층은 리튬을 포함하는 전고체 리튬 이차전지.
  18. 은 이온과 흑연화된 플레이트렛 탄소나노섬유의 혼합물에 대하여, 은 이온을 환원시켜서 상기 흑연화된 플레이트렛 탄소나노섬유 및 상기 흑연화된 플레이트렛 탄소나노섬유 상에 배치된 은 나노 입자를 포함하는 건조 혼합 분말을 형성하는 제1 단계; 및
    상기 건조 혼합 분말을 포함하는 음극 혼합물을 통해 음극 집전체 상에 음극 활물질층을 형성하는 제2 단계;를 포함하는, 청구항 1의 전고체 리튬 이차전지의 제조 방법.
PCT/KR2022/007604 2021-05-28 2022-05-27 전고체 리튬 이차전지 및 이의 제조 방법 WO2022250504A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US18/034,650 US20230395801A1 (en) 2021-05-28 2022-05-27 All-solid lithium secondary battery and preparation method thereof
JP2023524813A JP2023546707A (ja) 2021-05-28 2022-05-27 全固体リチウム二次電池およびその製造方法
EP22811695.0A EP4216301A1 (en) 2021-05-28 2022-05-27 All-solid lithium secondary battery and preparation method thereof
CN202280007207.4A CN116457962A (zh) 2021-05-28 2022-05-27 全固态锂二次电池及其制备方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20210069413 2021-05-28
KR10-2021-0069413 2021-05-28

Publications (1)

Publication Number Publication Date
WO2022250504A1 true WO2022250504A1 (ko) 2022-12-01

Family

ID=84229100

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/007604 WO2022250504A1 (ko) 2021-05-28 2022-05-27 전고체 리튬 이차전지 및 이의 제조 방법

Country Status (5)

Country Link
US (1) US20230395801A1 (ko)
EP (1) EP4216301A1 (ko)
JP (1) JP2023546707A (ko)
CN (1) CN116457962A (ko)
WO (1) WO2022250504A1 (ko)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080022494A (ko) * 2006-09-06 2008-03-11 후지 쥬코교 가부시키가이샤 축전 디바이스용 부극 활물질 및 그 제조 방법
KR20080111809A (ko) * 2007-06-20 2008-12-24 금호석유화학 주식회사 탄소나노섬유를 혼성화시킨 리튬 이차전지용 음극 활물질
KR20190079132A (ko) * 2017-12-27 2019-07-05 현대자동차주식회사 전고체 전지
KR20200078479A (ko) * 2017-11-21 2020-07-01 삼성전자주식회사 전고체 이차 전지 및 그 충전 방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080022494A (ko) * 2006-09-06 2008-03-11 후지 쥬코교 가부시키가이샤 축전 디바이스용 부극 활물질 및 그 제조 방법
KR20080111809A (ko) * 2007-06-20 2008-12-24 금호석유화학 주식회사 탄소나노섬유를 혼성화시킨 리튬 이차전지용 음극 활물질
KR20200078479A (ko) * 2017-11-21 2020-07-01 삼성전자주식회사 전고체 이차 전지 및 그 충전 방법
KR20190079132A (ko) * 2017-12-27 2019-07-05 현대자동차주식회사 전고체 전지

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HABAZAKI, H. KIRIU, M. KONNO, H.: "High rate capability of carbon nanofilaments with platelet structure as anode materials for lithium ion batteries", ELECTROCHEMISTRY COMMUNICATIONS, ELSEVIER AMSTERDAM, NL, vol. 8, no. 8, 1 August 2006 (2006-08-01), NL , pages 1275 - 1279, XP005591195, ISSN: 1388-2481, DOI: 10.1016/j.elecom.2006.06.012 *

Also Published As

Publication number Publication date
CN116457962A (zh) 2023-07-18
EP4216301A1 (en) 2023-07-26
JP2023546707A (ja) 2023-11-07
KR20220162077A (ko) 2022-12-07
US20230395801A1 (en) 2023-12-07

Similar Documents

Publication Publication Date Title
WO2019194510A1 (ko) 리튬 이차전지용 양극 활물질, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
WO2016148441A1 (ko) 리튬 금속 산화물 및 이를 포함하는 리튬 이차전지용 음극 활물질, 및 이의 제조방법
WO2020153728A1 (ko) 리튬 이차전지용 음극활물질, 이를 포함하는 음극 및 리튬 이차전지
WO2022092906A1 (ko) 양극 활물질 및 이의 제조방법
WO2022139452A1 (ko) 리튬 이차전지용 양극의 제조 방법 및 이에 의하여 제조된 리튬 이차전지용 양극
WO2019054811A1 (ko) 리튬 이차전지용 음극 및 이를 포함하는 리튬 이차전지
WO2021154035A1 (ko) 리튬 이차전지용 양극 활물질 및 이의 제조 방법
WO2022255665A1 (ko) 양극활물질과 비가역 첨가제를 포함하는 마스터 배치 및 이를 함유하는 리튬 이차전지용 양극 슬러리
WO2021066580A1 (ko) 음극활물질, 음극활물질의 제조방법, 이를 포함하는 음극 및 리튬 이차전지
WO2021153936A1 (ko) 이차전지용 양극 활물질 및 이를 포함하는 리튬 이차전지
WO2022010225A1 (ko) 음극 및 상기 음극을 포함하는 이차 전지
WO2023038337A1 (ko) 실리콘계 음극 활물질, 상기 실리콘계 음극 활물질의 제조 방법, 상기 실리콘계 음극 활물질을 포함하는 음극, 상기 음극을 포함하는 이차 전지
WO2022250504A1 (ko) 전고체 리튬 이차전지 및 이의 제조 방법
WO2021125825A1 (ko) 음극 및 상기 음극을 포함하는 이차 전지
WO2022255745A1 (ko) 전고체 리튬 이차전지 및 이의 제조 방법
WO2022119408A1 (ko) 음극의 제조방법
WO2022250506A1 (ko) 전고체 리튬 이차전지 및 이의 제조 방법
WO2022250505A1 (ko) 전고체 리튬 이차전지 및 이의 제조 방법
WO2021080384A1 (ko) 양극 활물질, 이를 포함하는 양극 및 리튬 이차전지
WO2024128742A1 (ko) 양극 및 이를 포함하는 리튬 이차전지
WO2019050203A2 (ko) 리튬 이차전지용 음극, 및 이를 포함하는 리튬 이차전지
WO2017135758A1 (ko) 음극 활물질, 이를 포함하는 음극 및 리튬 이차전지
WO2024147645A1 (ko) 양극 활물질, 양극 활물질 슬러리, 양극, 리튬 이온 이차전지 및 양극 활물질의 제조 방법
WO2024035219A1 (ko) 양극, 이의 제조 방법 및 상기 양극을 포함하는 리튬 이차전지
WO2024155129A1 (ko) 양극 활물질, 이를 포함하는 양극 및 리튬 이차전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22811695

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023524813

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280007207.4

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2022811695

Country of ref document: EP

Effective date: 20230421

NENP Non-entry into the national phase

Ref country code: DE