WO2022249695A1 - 液状組成物 - Google Patents

液状組成物 Download PDF

Info

Publication number
WO2022249695A1
WO2022249695A1 PCT/JP2022/013642 JP2022013642W WO2022249695A1 WO 2022249695 A1 WO2022249695 A1 WO 2022249695A1 JP 2022013642 W JP2022013642 W JP 2022013642W WO 2022249695 A1 WO2022249695 A1 WO 2022249695A1
Authority
WO
WIPO (PCT)
Prior art keywords
zinc oxide
liquid composition
particles
metal compound
weight
Prior art date
Application number
PCT/JP2022/013642
Other languages
English (en)
French (fr)
Inventor
志保 岩見
宏一 長井
慧 氏本
稜哉 伊藤
Original Assignee
株式会社 資生堂
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 資生堂 filed Critical 株式会社 資生堂
Priority to JP2023524043A priority Critical patent/JPWO2022249695A1/ja
Priority to CN202280031594.5A priority patent/CN117222394A/zh
Publication of WO2022249695A1 publication Critical patent/WO2022249695A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/19Cosmetics or similar toiletry preparations characterised by the composition containing inorganic ingredients
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/19Cosmetics or similar toiletry preparations characterised by the composition containing inorganic ingredients
    • A61K8/25Silicon; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/19Cosmetics or similar toiletry preparations characterised by the composition containing inorganic ingredients
    • A61K8/27Zinc; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/19Cosmetics or similar toiletry preparations characterised by the composition containing inorganic ingredients
    • A61K8/29Titanium; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q17/00Barrier preparations; Preparations brought into direct contact with the skin for affording protection against external influences, e.g. sunlight, X-rays or other harmful rays, corrosive materials, bacteria or insect stings
    • A61Q17/04Topical preparations for affording protection against sunlight or other radiation; Topical sun tanning preparations
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K23/00Use of substances as emulsifying, wetting, dispersing, or foam-producing agents
    • C09K23/54Silicon compounds

Definitions

  • the present invention relates to a liquid composition and a redispersion facilitating agent.
  • the metal compound particles contained in cosmetics and paints are used as raw materials with various functions.
  • this metal compound particle has a feature that various effects can be obtained depending on the difference in size (average particle diameter).
  • Metal compound particles with a large average particle size are sometimes used as white pigments as coloring agents, and those with a small average particle size have an excellent UV-blocking effect. It functions as a body and is used in sunscreen cosmetics.
  • zinc oxide particles scatter both UVA and UVB rays of ultraviolet light, they are used as an ultraviolet scattering agent in ointments, creams and lotions to protect against sunburn and other ultraviolet-induced skin damage. There is Moreover, some zinc oxide particles are used as phosphors, and all of them are used in cosmetics and the like.
  • Magnesium titanate particles become phosphors by doping with manganese, and are used in cosmetics and the like (Patent Document 1).
  • Titanium mica is obtained by coating muscovite as a base material with a thin layer of titanium oxide on its surface, and has colored reflective interference colors such as red, yellow, blue, and green, and is usually used in cosmetics as a pearlescent agent. It is used.
  • bismuth oxychloride As a pigment, bismuth oxychloride (BiOCl) has a unique soft luster and is non-toxic, so it is used by blending it in various cosmetics such as makeup cosmetics and nail products.
  • Barium sulfate is used as an additive for cosmetics such as skin creams and sunscreens.
  • Calcium cerium phosphate (Ca 4 P 2 O 9 :Ce) partially doped with cerium in calcium phosphate is known as a phosphor (Patent Document 2), and is used as a matrix for cosmetic phosphor materials. It is used for a wide variety of purposes, such as suppressing makeup loss due to sebum absorption and realizing a soft focus effect due to light scattering.
  • Metal compound particles with a large specific gravity and a large particle size may precipitate in the liquid composition and form aggregates.
  • the particle surface is modified (also called “surface treatment” or “coating") or a dispersant is used.
  • a dispersant such as polyhydroxystearic acid is used to disperse zinc oxide of 100 nm or more (Patent Document 3).
  • Coated barium sulfate is also said to impart favorable rheological properties to the application matrix and to be redispersible in adhesives, dyes, or cosmetic solvents (US Pat.
  • a combination of carboxyvinyl polymer and amphoteric polymer is used (Patent Document 5).
  • Alkylalkoxysilanes are used for surface treatment (hydrophobization treatment) of metal compound particles, and triethoxyoctyl zinc oxide, which functions as an ultraviolet scattering agent, is contained in, for example, makeup bases (Patent Document 6). .
  • the redispersibility of aggregates generated by precipitation of metal compound particles in the liquid composition is not sufficient even with coating or addition of a dispersant. It takes a lot of effort to redisperse the metal compound particles generated in the liquid composition by stirring (or rotating), and if the liquid composition is used for a long time without being sufficiently redispersed, the component composition It is also conceivable that the expected effect of the liquid composition may be lost or the stability during storage may be deteriorated.
  • C 5-10 alkyltri-C 1-3 alkoxysilane-treated zinc oxide which is commonly used as a UV scattering agent, functions as a redispersion facilitating agent for metal compound particles, and that the metal compound particles and C A liquid composition containing 5-10 alkyltri-C 1-3 alkoxysilane-treated zinc oxide and having excellent redispersibility was found.
  • the present invention provides (1) (A) C 5-10 alkyltri-C 1-3 alkoxysilane-treated zinc oxide particles having an average particle size of 100 nm or less, and (B) a concentration of 0.2% by weight or more and a specific gravity of 3 above and metal compound particles having an average particle size of 1 ⁇ m or more,
  • a liquid composition comprising: (2) The liquid composition according to (1), wherein the concentration of the C 5-10 alkyltri-C 1-3 alkoxysilane-treated zinc oxide particles is 1% by weight or more.
  • the metal compound particles are selected from the group consisting of barium sulfate, titanium mica, zinc oxide, zinc oxide phosphor, magnesium titanate, magnesium titanate phosphor, calcium phosphate, calcium cerium phosphate phosphor, and bismuth oxychloride. Or the liquid composition according to any one of (1) to (3), which is a powder of multiple types. (5) Any of (1) to (4), wherein the C 5-10 alkyltri-C 1-3 alkoxysilane-treated zinc oxide particles are octyltriethoxysilane-treated zinc oxide particles or octyltrimethoxysilane-treated zinc oxide particles. The liquid composition according to (1).
  • (11) 1 wherein the metal compound particles are selected from the group consisting of barium sulfate, titanium mica, zinc oxide, zinc oxide phosphor, magnesium titanate, magnesium titanate phosphor, calcium phosphate, calcium cerium phosphate phosphor, and bismuth oxychloride; Or the redispersion facilitating agent according to (9) or (10), which is a powder of multiple types. (12) Any of (9) to (11), wherein the C 5-10 alkyltri-C 1-3 alkoxysilane-treated zinc oxide particles are octyltriethoxysilane-treated zinc oxide particles or octyltrimethoxysilane-treated zinc oxide particles.
  • (13) Use of the redispersion facilitating agent according to any one of (9) to (12) for redispersing metal compound particles that precipitate and aggregate in a liquid composition.
  • the C 5-10 alkyltri-C 1-3 alkoxysilane-treated zinc oxide according to the present invention is suitable for redispersing precipitable metal compound particles in liquid compositions. Since the liquid composition of the present invention containing metal compound particles and C 5-10 alkyltri-C 1-3 alkoxysilane-treated zinc oxide has excellent redispersibility, it requires little effort such as stirring (or rotating) during use. It is suitable for long-term use because it can be used immediately, and there is little deviation in the composition of ingredients due to long-term use.
  • when applied to numerical values refers to a range of values that fall within the range of the specified reference value or more and the specified reference value or less.
  • Alkoxysilane is a silane compound having an alkyl group of 5 to 10 carbon atoms and three alkoxy groups of 1 to 3 carbon atoms and reactive with a zinc oxide compound.
  • These silane compounds are silane compounds represented by the following general formula (1).
  • RSiX3 (1) (R represents an alkyl group having 5 to 10 carbon atoms (which may be linear or branched), and each X independently represents an alkoxy group having 1 to 3 carbon atoms.)
  • the alkyl group represented by R is an alkyl group having 5 to 10 carbon atoms, and includes a pentyl group, a hexyl group, a heptyl group, an octyl group, a nonyl group, and a decyl group. It may be a chain or a branched chain.
  • Examples of the alkoxy group represented by X in the above general formula (1) include alkoxy groups having 1 to 3 carbon atoms such as methoxy, ethoxy, propoxy and isopropoxy groups.
  • silane compounds include, for example, pentyltrimethoxysilane, hexyltrimethoxysilane, heptyltrimethoxysilane, octyltrimethoxysilane, nonyltrimethoxysilane, decyltrimethoxysilane, pentyltriethoxysilane, hexyltriethoxysilane, heptyl triethoxysilane, octyltriethoxysilane, nonyltriethoxysilane, decyltriethoxysilane, pentyltripropoxysilane, hexyltripropoxysilane, heptyltripropoxysilane, octyltripropoxysilane, nonyltripropoxysilane, decyltripropoxysilane, pentyl triisopropoxysilane, hexyltriisopropoxysilane,
  • octyltriethoxysilane and octyltrimethoxysilane are particularly preferred.
  • the silane compound is characterized in that it can be easily treated uniformly, that it is easy to supply, and that it is inexpensive. Excellent redispersibility of compound particles.
  • the silane compound and zinc oxide particles are mixed in an organic solvent such as n-hexane, cyclohexane, or a lower alcohol, and optionally pulverized. is removed by heating or under reduced pressure, and the silane compound is chemically reacted with a reactive group (such as an alkoxy group) on the surface of the zinc oxide particle powder, preferably by heat treatment at 80 to 250°C.
  • an organic solvent such as n-hexane, cyclohexane, or a lower alcohol
  • optionally pulverized is removed by heating or under reduced pressure, and the silane compound is chemically reacted with a reactive group (such as an alkoxy group) on the surface of the zinc oxide particle powder, preferably by heat treatment at 80 to 250°C.
  • JP-A-2007-326902 may be used to coat zinc oxide particle powder with a specific polysiloxane compound, and then surface-treat the silane compound or silazane compound in water.
  • the silane compound is applied to the surface of the inorganic oxide-treated zinc oxide particle powder.
  • a coating method is also included.
  • the method for producing the inorganic oxide-treated zinc oxide particle powder include conventionally known treatment methods such as a wet treatment method using a solvent and a mechanochemical method.
  • the method described in WO98/17730 may be used to obtain a silica-coated zinc oxide particle powder by coating the surface of the zinc oxide particle powder with a silicone compound and firing the coated powder.
  • the coating amount of the silane compound on the zinc oxide particle powder is preferably 3 to 15% by mass, more preferably 4 to 10% by mass, based on the total amount of the zinc oxide particle powder used. Within this range, the zinc oxide particle powder surface is uniformly coated with the silane compound, and the silane compound does not agglomerate or precipitate on the zinc oxide particle powder surface.
  • the C 5-10 alkyltri-C 1-3 alkoxysilane-treated zinc oxide particles of the present invention preferably have an average particle size of 200 nm or less, 100 nm or less, 50 nm or less, or 40 nm or less, more preferably 50 nm or less, or 40 nm. or less or 35 nm or less.
  • the average particle size of the C 5-10 alkyltri-C 1-3 alkoxysilane-treated zinc oxide particles is preferably smaller than the average particle size of the metal compound. 1/10 or less, 1/20 or less, 1/30 or less, 1/40 or less, 1/50 or less, 1/90 or less, 1/100 or less, 1/150 or less, or 1/200 or less. Within this range, excellent redispersibility characteristics are obtained when the metal compound particles contained in the liquid composition of the present invention are aggregated or precipitated.
  • the amount of the C 5-10 alkyltri-C 1-3 alkoxysilane-treated zinc oxide particles used in the present invention is 0.1% by weight or more, 0.5% by weight or more, 1.0% by weight or more relative to the entire liquid composition. , 3% by weight or more, 5% by weight or more, 7% by weight or more, or 10% by weight or more, and 30% by weight or less, 25% by weight or less, 20% by weight or less, or 15% by weight or less, and 0.1-30% by weight, 0.5-30% by weight, 1-30% by weight, 3-30% by weight, 5-30% by weight, 7-30% by weight, 10-30% by weight based on the total liquid composition % by weight, 0.1-25% by weight, 0.5-25% by weight, 1-25% by weight, 3-25% by weight, 5-25% by weight, 7-25% by weight, 10-25% by weight, 0 .1-20% by weight, 0.5-20% by weight, 1-20% by weight, 3-20% by weight, 5-20% by weight, 7-20% by weight, 10-20%
  • the “metallic compound particles” of the present invention mean organic or inorganic compounds containing metal atoms in the form of particles.
  • the metal compound particles in the present invention are not particularly limited, but for example zinc oxide particles, magnesium titanate particles, calcium cerium phosphate particles, mica titanium particles, barium sulfate particles, titanium oxide particles, cerium oxide particles, zirconium oxide particles. Particles, iron oxide particles, bismuth oxychloride particles and the like can be mentioned, and these can be used singly or in combination of two or more.
  • the average particle diameter (before aggregation) of the metal compound particles used in the present invention is, for example, 0.1 ⁇ m or more, 0.5 ⁇ m or more, 1 ⁇ m or more, 2 ⁇ m or more, or 3 ⁇ m or more, and 300 ⁇ m or less, 250 ⁇ m or less, 200 ⁇ m or less, 150 ⁇ m. 100 ⁇ m or less, 80 ⁇ m or less, 50 ⁇ m or less, 30 ⁇ m or less, 20 ⁇ m or less, or 10 ⁇ m or less, and the average particle size range is 0.1 to 200 ⁇ m, 0.1 to 150 ⁇ m, 0.1 to 100 ⁇ m, 0.1 ⁇ m or less.
  • the average particle size of the metal compound used in the present invention is preferably larger than the average particle size of the C 5-10 alkyltri-C 1-3 alkoxysilane-treated zinc oxide particles, for example, C 5-10 alkyltri-C 1 -3 10 times or more, 20 times or more, 30 times or more, 40 times or more, 50 times or more, 80 times or more, 100 times or more, 150 times or more, or 200 times or more the average particle size of the alkoxysilane-treated zinc oxide particles .
  • excellent redispersibility characteristics are obtained when the metal compound particles contained in the liquid composition of the present invention are aggregated or precipitated.
  • the metal compound particles in the present invention have a specific gravity of 3 or more, 3.5 or more, 4 or more, 4.5 or more, or 5 or more, and 20 or less, 15 or less, 10 or less, 9 or less, 8 or less, or 7 or less. , or 6 or less, such as 3 to 20, 3 to 15, 3 to 10, 3 to 9, 3 to 8, 3 to 7, 3 to 6, 4 to 20, 4 to 15, 4 to 10, 4 to Specific gravity in the range of 9, 4-8, 4-7, 4-6, 5-20, 5-15, 5-10, 5-9, 5-8, 5-7 or 5-6.
  • the metal compound particles used in the present invention are 0.1% by weight or more, 0.2% by weight or more, 0.5% by weight or more, 1.0% by weight or more, 3% by weight or more, or 5% by weight or more, 25% by weight or less, 20% by weight or less, 15% by weight or less, or 10% by weight or less; 2-25% by weight, 0.5-25% by weight, 1-25% by weight, 3-25% by weight, 5-25% by weight, 0.1-20% by weight, 0.2-20% by weight, 0.2-20% by weight; 5-20% by weight, 1-20% by weight, 3-20% by weight, 5-20% by weight, 0.1-15% by weight, 0.2-15% by weight, 0.5-15% by weight, 1- 15 wt%, 3-15 wt%, 5-15 wt%, 0.1-10 wt%, 0.2-10 wt%, 0.5-10 wt%, 1-10 wt%, 3-10 wt% %, or 5-10% by weight. Within this range, excellent redispersibility characteristics are obtained when the metal compound
  • the shape of the metal compound particles of the present invention is not particularly limited, and may be spherical, needle-like, or plate-like.
  • the "average particle size" in the present invention is a value obtained by measurement with an image analyzer (Luzex IIIU, manufactured by Nireco), for example, when the particles are not spherical.
  • the metal compound particles in the present invention may be surface-treated.
  • Surface treatments include, for example, silane compound treatment, silicone compound treatment, fluorine-modified silicone compound treatment, fluorine compound treatment, higher fatty acid treatment (stearic acid, etc.), higher alcohol treatment, fatty acid ester treatment, metallic soap treatment, amino acid treatment, alkylphos Fate processing and the like can be mentioned.
  • the metal compound particles in the present invention may be phosphors.
  • Phosphors include zinc oxide phosphors, magnesium titanate phosphors, calcium cerium phosphate phosphors, and the like, and the liquid composition of the present invention may contain one or more of these phosphors.
  • a phosphor made of metal compound particles can be synthesized, for example, by the method described in JP-A-2019-167330.
  • the C 5-10 alkyltri-C 1-3 alkoxysilane treated zinc oxide particles of the present invention increase the viscosity of liquid compositions.
  • the viscosity of the liquid composition of the present invention is, for example, 500 mPa ⁇ s or more, 800 mPa ⁇ s or more, 1000 mPa ⁇ s or more, 1100 mPa ⁇ s or more, 1200 mPa ⁇ s or more, 1500 mPa s or more, 2000 mPa s or more, 2500 mPa s or more, or 3000 mPa s or more, 10000 mPa s or less, 9000 mPa s or less, 8000 mPa s or less, 7000 mPa s or less, 6000 mPa s or less, 5000 mPa s or less, or 4000 mPa s or less, and the viscosity range of the liquid composition of
  • the metal compound particles contained in the liquid composition of the present invention precipitate and form aggregates when stored or left to stand.
  • the redispersibility of compound particles is improved.
  • the C 5-10 alkyltri-C 1-3 alkoxysilane-treated zinc oxide particles of the present invention exhibit excellent effects, they precipitate together with the metal compound particles and surround the metal compound particles, thereby It may prevent agglomeration.
  • the C 5-10 alkyltri-C 1-3 alkoxysilane-treated zinc oxide particles may form a structure to increase the static viscosity of the entire liquid composition and prevent aggregation of the metal compound particles.
  • the C 5-10 alkyltri-C 1-3 alkoxysilane-treated zinc oxide particles have general versatility because they enhance redispersibility regardless of the type of the metal compound of the present invention.
  • the metal compound particles are redispersible, and precipitated and aggregated by stirring (or rotating) only 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 times or less. Metal compound particles can be redispersed.
  • the liquid composition of the present invention may contain a dispersant.
  • a dispersant refers to a substance that can be uniformly dispersed in an aqueous or oily medium by adsorbing onto the surface of particles (powder) dispersed in an aqueous or oily phase.
  • Preferred dispersants contained in the liquid composition of the present invention include PEG-10 dimethicone, bisbutyl dimethicone polyglyceryl-3, PEG-polydimethylpolysiloxane ethyl dimethicone, lauryl PEG-polydimethylpolysiloxane ethyl dimethicone, cetyl PEG/PPG.
  • the content of the dispersant in the liquid composition of the present invention is preferably 0.01% by weight or more, preferably 0.05% by weight or more, more preferably 0.1% by weight or more, relative to the entire liquid composition. more preferably 0.2% by weight or more, and 20% by weight or less, preferably 15% by weight or less, more preferably 10% by weight or less, and still more preferably 5% by weight or less, 0.01 to 99.99% by weight, 0.1 to 99.9% by weight, 0.05 to 50% by weight, 0.1 to 40% by weight, 0.1 to 30% by weight of the total liquid composition %, 0.1-20% by weight, 0.1-10% by weight, 0.1-5% by weight, 0.2-40% by weight, 0.2-30% by weight, 0.2-20% by weight, 0.2-10 wt%, 0.2-5 wt%, 0.4-40 wt%, 0.4-30 wt%, 0.4-20 wt%, 0.4-10 wt% or 0.4-30 wt%. 4 to 5% by weight.
  • Oil refers to a hydrophobic substance that phase separates from water, which is a component of the liquid composition of the present invention.
  • Oils that can be used in the present invention are not particularly limited, and include, for example, at least one or more of hydrocarbon oils, ester oils, silicone oils, liquid fats, solid fats and higher alcohols.
  • Hydrocarbon oils include liquid paraffin, tetraisobutane, hydrogenated polydecene, olefin oligomers, isododecane, isohexadecane, squalane, and hydrogenated polyisobutene.
  • Ester oils include alkyl benzoate (e.g. alkyl (C 12-15 ) benzoate), diisopropyl sebacate, octyl palmitate, cetyl isooctanoate (cetyl 2-ethylhexanoate), triethylhexanoin, neopentyl dicaprate.
  • alkyl benzoate e.g. alkyl (C 12-15 ) benzoate
  • diisopropyl sebacate octyl palmitate
  • cetyl isooctanoate cetyl 2-ethylhexanoate
  • triethylhexanoin neopentyl dicaprate.
  • Glycol, triisostearin diisostearyl malate, PPG-3 dipivalate, di-2-ethylhexyl succinate, 2-ethylhexyl 2-ethylhexanoate, polyglyceryl
  • silicone oils examples include dimethicone, amino-modified polysiloxane, polyether-modified polysiloxane, alkyl-modified polysiloxane, and fluorine-modified polysiloxane.
  • Liquid fats and oils include avocado oil, camellia oil, macadamia nut oil, mink oil, olive oil, castor oil, jojoba oil, triglycerin, and glycerin trioctanoate.
  • Solid fats and oils include coconut oil, hydrogenated coconut oil, palm oil, beef tallow, mutton tallow, Japanese wax, and hydrogenated castor oil.
  • higher alcohols include isostearyl alcohol, oleyl alcohol, copolymers of butylene glycol and propylene glycol (eg, PBG/PPG-9/1 copolymer).
  • the total oil content that can be contained in the liquid composition of the present invention is 5% by weight or more, preferably 10% by weight or more, more preferably 12% by weight or more, relative to the total liquid composition. It is preferably 15% by weight or more.
  • the liquid composition of the present invention can contain various components, as long as they do not affect the effects of the present invention.
  • additive components that can be usually blended in cosmetics, for example, clay minerals (dimethyl distearyl ammonium hectorite, etc.), powders other than metal compound particles (polymethyl methacrylate, crosslinked silicone, network type Silicone block copolymer, silica, hydrophobized talc (dimethicone-treated talc, etc.), corn starch, hydrophobized polyurethane, etc.), coating agent (trimethylsiloxysilicate, dimethicone, etc.), percutaneous absorption inhibitor (polypropylene glycol (17 ), etc.), oil phase thickeners (dimethyldistearyl ammonium hectorite, dextrin palmitate, sucrose triacetate tetrastearate, etc.), UV absorbers (octocrylene, polysilicone-15, bisethylhexyl
  • the liquid composition of the present invention is a water-in-oil composition.
  • the water-in-oil composition of the present invention can be produced according to a normal production method. Specifically, the liquid composition in this embodiment is obtained by the following procedure. That is, an oily component is mixed to prepare an oil phase, and a water-soluble component is mixed to prepare an aqueous phase.
  • the powder of C 5-10 alkyltri-C 1-3 alkoxysilane-treated zinc oxide particles and the powder of metal compound particles can be dispersed in an aqueous phase or an oil phase, but are preferably dispersed in the same phase.
  • a water-in-oil composition is obtained by adding the water phase to the oil phase and stirring.
  • composition of the present invention includes liquid compositions used for sunscreen cosmetics such as makeup bases and sunscreen creams. Moreover, as a dosage form, it can be set as milky lotions etc., for example.
  • Redispersion facilitating agent for metal compound particles One aspect of the present invention is C 5-10 alkyltri-C 1-3 alkoxysilane-treated zinc oxide particles as a redispersion facilitating agent for metal compound particles.
  • the “redispersion facilitating agent” means a compound that improves the redispersibility of the metal compound particles that have precipitated and aggregated in the liquid composition and facilitates the redispersion of the metal compound particles. do.
  • the ability of the C 5-10 alkyltri-C 1-3 alkoxysilane-treated zinc oxide particles to function as a redispersant for the metal compound particles in the liquid composition can be confirmed by, for example, the method using stirring balls described in the following examples. , can be confirmed by reducing the number of times of stirring (or rotation) and the time of stirring (or rotation) required for redispersion of the metal compound particles.
  • the fact that the C 5-10 alkyltri-C 1-3 alkoxysilane-treated zinc oxide particles are a redispersion facilitating agent for metal compound particles can be confirmed by, for example, a method using a stirring ball, but is not limited thereto.
  • a stirring ball is put into a liquid composition containing C 5-10 alkyltri-C 1-3 alkoxysilane-treated zinc oxide particles and metal compound particles, and the liquid composition containing the stirring ball is allowed to stand or is centrifuged, thereby precipitating metal. It produces aggregates of compound particles. After that, the mixture is stirred (or rotated) manually or using a rotator or the like, and the number of times of stirring (or rotation) and the time until the aggregates are redispersed are measured.
  • Measurements of liquid compositions containing C 5-10 alkyltri-C 1-3 alkoxysilane-treated zinc oxide particles are measurements of liquid compositions without C 5-10 alkyltri-C 1-3 alkoxysilane-treated zinc oxide particles. It can be confirmed that the value is lower than the value.
  • the C 5-10 alkyltri-C 1-3 alkoxysilane-treated zinc oxide particles which are redispersion facilitating agents for the metal compound particles of the present invention, can be added to the liquid composition to increase the redispersibility of the metal compound particles in a method using a stirring ball.
  • the number of times of stirring (or rotation) required for redispersion can be reduced by 1, 5, 10, 15, 20, 30, 50, 70, 100, 150, or 200 times or more, and the stirring required for redispersion of the metal compound particles (or rotation) can be reduced to 1/2, 1/3, 1/4, 1/5, 1/10 or 1/20, and the metal compound particles contained in the liquid composition can be reduced to only 1, It can be redispersed by agitation (or rotation) no more than 2, 3, 4, 5, 6, 7, 8, 9 or 10 times.
  • the C 5-10 alkyltri-C 1-3 alkoxysilane of the C 5-10 alkyltri-C 1-3 alkoxysilane-treated zinc oxide particles which is the redispersion facilitating agent for the metal compound particles of the present invention, has 5 to 10 carbon atoms. It is a silane compound having an alkyl group and three alkoxy groups having 1 to 3 carbon atoms and having reactivity with a zinc oxide compound. These silane compounds are silane compounds represented by the following general formula (1).
  • RSiX3 (1) (R represents an alkyl group having 5 to 10 carbon atoms (which may be linear or branched), and each X independently represents an alkoxy group having 1 to 3 carbon atoms.)
  • the alkyl group represented by R is an alkyl group having 5 to 10 carbon atoms, and includes a pentyl group, a hexyl group, a heptyl group, an octyl group, a nonyl group, and a decyl group. It may be a chain or a branched chain.
  • Examples of the alkoxy group represented by X in the above general formula (1) include alkoxy groups having 1 to 3 carbon atoms such as methoxy, ethoxy, propoxy and isopropoxy groups.
  • silane compounds include, for example, pentyltrimethoxysilane, hexyltrimethoxysilane, heptyltrimethoxysilane, octyltrimethoxysilane, nonyltrimethoxysilane, decyltrimethoxysilane, pentyltriethoxysilane, hexyltriethoxysilane, heptyl triethoxysilane, octyltriethoxysilane, nonyltriethoxysilane, decyltriethoxysilane, pentyltripropoxysilane, hexyltripropoxysilane, heptyltripropoxysilane, octyltripropoxysilane, nonyltripropoxysilane, decyltripropoxysilane, pentyl triisopropoxysilane, hexyltriisopropoxysilane,
  • octyltriethoxysilane and octyltrimethoxysilane are particularly preferred.
  • the silane compound is characterized in that it can be easily treated uniformly, that it is easy to supply, and that it is inexpensive. Excellent redispersibility of compound particles.
  • the silane compound and zinc oxide particles are mixed in an organic solvent such as n-hexane, cyclohexane, or a lower alcohol, and optionally pulverized. is removed by heating or under reduced pressure, and the silane compound is chemically reacted with a reactive group (such as an alkoxy group) on the surface of the zinc oxide particle powder, preferably by heat treatment at 80 to 250°C.
  • an organic solvent such as n-hexane, cyclohexane, or a lower alcohol
  • optionally pulverized is removed by heating or under reduced pressure, and the silane compound is chemically reacted with a reactive group (such as an alkoxy group) on the surface of the zinc oxide particle powder, preferably by heat treatment at 80 to 250°C.
  • JP-A-2007-326902 may be used to coat zinc oxide particle powder with a specific polysiloxane compound, and then surface-treat the silane compound or silazane compound in water.
  • the silane compound is applied to the surface of the inorganic oxide-treated zinc oxide particle powder.
  • a coating method is also included.
  • the method for producing the inorganic oxide-treated zinc oxide particle powder include conventionally known treatment methods such as a wet treatment method using a solvent and a mechanochemical method.
  • the method described in WO98/17730 may be used to obtain a silica-coated zinc oxide particle powder by coating the surface of the zinc oxide particle powder with a silicone compound and firing the coated powder.
  • the coating amount of the silane compound on the zinc oxide particle powder is preferably 3 to 15% by mass, more preferably 4 to 10% by mass, based on the total amount of the zinc oxide particle powder used. Within this range, the zinc oxide particle powder surface is uniformly coated with the silane compound, and the silane compound does not agglomerate or precipitate on the zinc oxide particle powder surface.
  • the C 5-10 alkyltri-C 1-3 alkoxysilane-treated zinc oxide particles which are redispersion facilitating agents for metal compound particles of the present invention, have an average particle size of 200 nm or less, 100 nm or less, 50 nm or less, or 40 nm or less. , more preferably 50 nm or less, 40 nm or less, or 35 nm or less.
  • the average particle size of the C 5-10 alkyltri-C 1-3 alkoxysilane-treated zinc oxide particles, which is a redispersion facilitating agent for the metal compound particles is preferably smaller than the average particle size of the metal compound.
  • the C 5-10 alkyltri-C 1-3 alkoxysilane-treated zinc oxide particles which are redispersion facilitating agents for the metal compound particles of the present invention, are 0.1% by weight or more and 0.5% by weight of the total liquid composition. % by weight or more, 1.0% by weight or more, 3% by weight or more, 5% by weight or more, 7% by weight or more, or 10% by weight or more, and 30% by weight or less, 25% by weight or less, and 20% by weight or less , or 15% by weight or less, and 0.1 to 30% by weight, 0.5 to 30% by weight, 1 to 30% by weight, 3 to 30% by weight, 5 to 30% by weight of the total liquid composition , 7-30% by weight, 10-30% by weight, 0.1-25% by weight, 0.5-25% by weight, 1-25% by weight, 3-25% by weight, 5-25% by weight, 7-25% by weight % by weight, 10-25% by weight, 0.1-20% by weight, 0.5-20% by weight, 1-20% by weight, 3-20% by weight, 5-20%
  • the metal compound particles to which the redispersion facilitating agent of the present invention is applied are not particularly limited, but examples include zinc oxide particles, magnesium titanate particles, calcium cerium phosphate particles, titanium mica particles, barium sulfate particles, Titanium particles, cerium oxide particles, zirconium oxide particles, iron oxide particles and the like can be mentioned, and these can be used singly or in combination of two or more.
  • the average particle diameter (before aggregation) of the metal compound particles to which the redispersion facilitating agent of the present invention is applied is, for example, 0.1 ⁇ m or more, 0.5 ⁇ m or more, 1 ⁇ m or more, 2 ⁇ m or more, or 3 ⁇ m or more, and 300 ⁇ m or more.
  • the average particle size ranges from 0.1 to 200 ⁇ m, 0.1 to 150 ⁇ m, 0.1-100 ⁇ m, 0.1-50 ⁇ m, 0.1-20 ⁇ m, 0.1-10 ⁇ m, 2-200 ⁇ m, 2-150 ⁇ m, 2-100 ⁇ m, 2-50 ⁇ m, 2-20 ⁇ m, 2-10 ⁇ m, 3- 200 ⁇ m, 3-150 ⁇ m, 3-100 ⁇ m, 3-50 ⁇ m, 3-20 ⁇ m or 3-10 ⁇ m.
  • the average particle size of the metal compound particles to which the redispersion facilitating agent of the present invention is applied is preferably larger than the average particle size of the C 5-10 alkyltri-C 1-3 alkoxysilane-treated zinc oxide particles. , 10 times or more, 20 times or more, 30 times or more, 40 times or more, 50 times or more, 80 times or more, 100 times or more the average particle size of the C 5-10 alkyltri-C 1-3 alkoxysilane-treated zinc oxide particles, 150 times or more, or 200 times or more. Within this range, redispersibility characteristics are excellent when the metal compound particles are aggregated and precipitated.
  • the metal compound particles to which the redispersion facilitating agent in the present invention is applied have a specific gravity of 3 or more, 3.5 or more, 4 or more, 4.5 or more, or 5 or more, and 20 or less, 15 or less, or 10 or less. , 9 or less, 8 or less, or 7 or less, for example, 3 to 20, 3 to 15, 3 to 10, 3 to 9, 3 to 8, 3 to 7, 4 to 20, 4 to 15, 4 to 10, Specific gravity in the range of 4-9, 4-8, 4-7, 5-20, 5-15, 5-10, 5-9, 5-8 or 5-7.
  • the shape of the metal compound particles to which the redispersion facilitating agent of the present invention is applied is not particularly limited, and may be spherical, needle-like, plate-like, or the like.
  • the "average particle size" in the present invention is, for example, a value determined by measurement with an image analyzer (Luzex IIIU, manufactured by Nireco) when the particles are not spherical, and is determined as a number-average circular area equivalent diameter. be able to.
  • the metal compound particles to which the redispersion facilitating agent in the present invention is applied may be surface-treated.
  • Surface treatments include, for example, silane compound treatment (octyltriethoxylan, etc.), silicone compound treatment, fluorine-modified silicone compound treatment, fluorine compound treatment, higher fatty acid treatment (stearic acid, etc.), higher alcohol treatment, fatty acid ester treatment, metallic soap. treatment, amino acid treatment, alkyl phosphate treatment and the like.
  • the metal compound particles to which the redispersion facilitating agent in the present invention is applied may be phosphors.
  • Phosphors include zinc oxide phosphors, magnesium titanate phosphors, calcium cerium phosphate phosphors, and the like, and the liquid composition of the present invention may contain one or more of these phosphors.
  • a phosphor made of metal compound particles can be synthesized, for example, by the method described in JP-A-2019-167330.
  • the metal compound particles to which the redispersion facilitating agent of the present invention is applied precipitate and form aggregates due to storage or standing.
  • Zinc oxide particles improve redispersibility.
  • the reason why the C 5-10 alkyltri-C 1-3 alkoxysilane-treated zinc oxide particles, which are the redispersion facilitating agents of the present invention, exhibit excellent effects is not clear, they precipitate together with the metal compound particles and may prevent aggregation of the metal compound particles.
  • the C 5-10 alkyltri-C 1-3 alkoxysilane-treated zinc oxide particles, which are redispersion facilitating agents form a structure to increase the static viscosity of the entire liquid composition, and cause aggregation of the metal compound particles.
  • the C 5-10 alkyltri-C 1-3 alkoxysilane-treated zinc oxide particles which are redispersion facilitating agents, enhance redispersibility regardless of the type of the metal compound of the present invention, and are therefore versatile. be.
  • C 5-10 alkyltri-C 1-3 alkoxysilane treated zinc oxide as a redispersion facilitating agent for metal compound particles for redispersion of said metal compound particles that settle in the composition
  • particles By adding C 5-10 alkyltri-C 1-3 alkoxysilane-treated zinc oxide particles to the liquid composition, the number of metal compound particles contained in the liquid composition can be reduced to only 1, 2, 3, 4, 5. , 6, 7, 8, 9 or 10 times of agitation (or rotation).
  • One aspect of the present invention is the use of C 5-10 alkyltri-C 1-3 alkoxysilane treated zinc oxide particles as a redispersion facilitating agent for metal compound particles.
  • C 5-10 alkyltri-C 1-3 alkoxysilane-treated zinc oxide particles can be added as a component of the liquid composition to facilitate redispersion of metal compound particles that precipitate and agglomerate in the liquid composition. .
  • Example 1 Effect of octyltriethoxysilane-treated zinc oxide 1-1) Redispersibility test using a stirring ball Transfer 35 mL of the liquid composition to be tested to a centrifuge bottle (manufactured by Corning, 50 mL polypropylene Falcon conical tube), and add one stirring ball (made of steel, diameter 5.56 mm). and centrifuged at 740 rpm (110 xg) for 60 minutes at room temperature to precipitate and aggregate the metal compound particles, thereby reproducing the state when the liquid composition was stored for a certain period of time (centrifuge: manufactured by Himac, CF7D2). After that, the centrifugal bottle was shaken up and down by hand, and the number of times of stirring was counted when the sound of the stirring ball began to be heard, and the redispersibility was evaluated.
  • a stirring ball transfer 35 mL of the liquid composition to be tested to a centrifuge bottle (manufactured by Corning, 50 mL polypropylene Falcon con
  • the zinc oxide phosphor contained in the liquid composition may precipitate during storage and form aggregates.
  • the effects of the following six compounds known as UV scattering agents in the liquid composition on the redispersibility of the zinc oxide phosphor were examined by the above "1-1) Redispersibility test using a stirring ball.” rice field.
  • the component composition of the tested liquid composition is as shown in Table 1, and was produced according to a normal production method.
  • the octyltriethoxysilane-treated zinc oxide particles significantly improved the redispersibility of the zinc oxide phosphor compared to other UV scattering agents.
  • the redispersibility of octyltriethoxysilane-treated zinc oxide particles having a particle size of 25 and 35 nm was similarly improved in contrast to the zinc oxide phosphor having a particle size (average particle size) of 3 ⁇ m.
  • viscometer TVB-15 manufactured by TOKI SANGYO viscometer TVB-15 manufactured by TOKI SANGYO
  • the octyltriethoxysilane-treated zinc oxide particles form a structure and increase the static viscosity of the entire liquid composition, thereby suppressing the precipitation and aggregation of the zinc oxide phosphor, which is a metal compound. gender was suggested.
  • Example 2 Effect on Various Metal Compound Particles
  • octyltriethoxysilane-treated zinc oxide on the redispersibility of the following four types of metal compound particles other than the zinc oxide phosphor was evaluated as described in "1-1) Stir ball. redispersibility test using ".
  • the component composition of the tested liquid composition is as shown in Table 2, and was produced according to the usual production method: 1) Formulation Examples 7 and 8: stearic acid-treated zinc oxide phosphor (specific gravity 5.6, particle size 3 ⁇ m) 2) Formulation Examples 9 and 10: Magnesium titanate phosphor (specific gravity 4.5, particle size 3 to 4 ⁇ m) 3) Formulation Examples 11 and 12: Barium sulfate (specific gravity 4.4, particle size 10 to 20 ⁇ m) 4) Formulation Examples 13 and 14: Titanium mica (specific gravity 3.1, particle size 22-74 ⁇ m)
  • the octyltriethoxysilane-treated zinc oxide improved the redispersibility of the stearic acid-treated zinc oxide phosphor. Therefore, it was found that the effect of octyltriethoxysilane-treated zinc oxide was observed even when the metal compound particles were surface-treated. Similarly, it was found that octyltriethoxysilane-treated zinc oxide improves the redispersibility of magnesium titanate, barium sulfate, and titanium mica, and is effective regardless of the type of metal compound particles.
  • the octyltriethoxysilane-treated zinc oxide increased the viscosity of the liquid composition, but the viscosity was comparable to Formulation Examples 3 to 6, which had poor redispersibility. Since it is believed that the octyltriethoxysilane-treated zinc oxide settles together with the metal compound particles, the octyltriethoxysilane-treated zinc oxide forms a structure to increase the static viscosity of the entire liquid composition, and the metal compound particles It was suggested that the redispersibility may be improved by directly acting such as suppressing aggregation by surrounding the
  • the liquid composition containing octyltriethoxysilane-treated zinc oxide particles and metal compound particles has excellent redispersibility of the metal compound particles, and the octyltriethoxysilane-treated zinc oxide particles have excellent redispersibility of the metal compound particles. It was found to be useful as a redispersion facilitating agent for metal compound particles.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Birds (AREA)
  • Epidemiology (AREA)
  • Inorganic Chemistry (AREA)
  • Dermatology (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Cosmetics (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)

Abstract

5-10アルキルトリC1-3アルコキシシラン処理酸化亜鉛粒子及び金属化合物粒子を含む、新規な液状組成物を提供する。 液状組成物中の金属化合物粒子の再分散性を改善する。 C5-10アルキルトリC1-3アルコキシシラン処理酸化亜鉛粒子及び金属化合物粒子を含む液状組成物。

Description

液状組成物
 本発明は液状組成物、及び再分散容易化剤に関する。
 化粧料や塗料などに含有されている金属化合物粒子は、様々な機能を持つ原料として使用されている。特にこの金属化合物粒子は大きさ(平均粒子径)の違いにより、さまざまな効果を得ることができる特徴を有している。金属化合物粒子の平均粒子径が大きいものでは、着色剤としての白色顔料として用いることがあり、また平均粒子径が小さいものでは、紫外線カット効果に優れる機能があり、さらにドープした金属化合物粒子は蛍光体として機能し、日焼け止め化粧料等に用いられている。
 酸化亜鉛粒子は、紫外線のUVA及びUVB線を共に散乱することから、紫外線散乱剤として日焼け及び他の紫外線により生じる皮膚への損傷に対して保護するための、軟膏、クリーム及びローションに使用されている。また、酸化亜鉛粒子には蛍光体となるものもあり、いずれも化粧料等に使用されている。
 チタン酸マグネシウム粒子は、マンガンでドープすることにより蛍光体となり、化粧料等に使用されている(特許文献1)。
 雲母チタンは、白雲母を基体としてその表面に酸化チタンの薄層で被覆したものであり、赤色、黄色、青色、緑色等の有色の反射干渉色を有し、通常、パール剤として化粧料に用いられるものである。
 オキシ塩化ビスマス(BiOCl)は、顔料として、独特の柔らかい光輝性光沢を有し、非毒性であることから、メイクアップ化粧品、ネイル製品などの種々の化粧料に配合して用いられている。
 硫酸バリウムは、例えばスキンクリームおよび日焼け止めクリームのような化粧品用の添加剤として使用される。
 リン酸カルシウム中において部分的にセリウムがドープした、リン酸カルシウムセリウム(Ca:Ce)は蛍光体として知られており(特許文献2)、化粧品用蛍光体材料の母体としての利用以外にも、皮脂吸着による化粧崩れの抑制や、光散乱によるソフトフォーカス効果の実現などのために使用される等、その使用目的は多岐にわたる。
 比重が大きく、粒子径の大きな金属化合物粒子は、液状組成物において沈殿して、凝集物を形成することがある。金属化合物粒子の分散性を維持し、凝集体の生成を抑制して再分散性をよくする目的で、粒子表面を修飾(「表面処理」、「コーティング」ともいう)したり、分散剤が使用されることがある。例えば、100nm以上の酸化亜鉛を分散させるために、ポリヒドロキシステアリン酸等の分散剤が使用されている(特許文献3)。また、コーティングされた硫酸バリウムは、適用マトリックスに有利なレオロジー特性を伝え、接着剤、染料、または化粧品の溶剤中で再分散可能であるとされる(特許文献4)。さらに、毛髪化粧料中の雲母チタンの再分散性を良好にするために、カルボキシビニルポリマーと両性高分子とを併用している(特許文献5)。
 アルキルアルコキシシランは金属化合物粒子の表面処理(疎水化処理)のために使用されており、紫外線散乱剤として機能するトリエトキシオクチル酸化亜鉛は、例えば化粧下地などに含まれている(特許文献6)。
国際公開第2016/017372号 特開2020-50733号公報 特表2012-511499号公報 特表2003-535010号公報 特開平11-171729号公報 特開2017-088599号公報
 しかしながら、液状組成物中の金属化合物粒子の沈殿により生じた凝集物の再分散性はコーティングや分散剤の添加によっても十分とはいえない。液状組成物中に生じた金属化合物粒子を攪拌(又は回転)して再分散するのに多大な労力を必要とし、また十分に再分散しないまま液状組成物の使用を長期に継続すると、成分組成がかたより液状組成物の期待される効果が消失したり、保管中の安定性が悪化してしまうことも考えられる。
 かかる実情において本発明者は、凝集性のある金属化合物粒子のさらなる再分散性向上のための第三成分について鋭意検討を重ねた。その結果、一般的に紫外線散乱剤として使用されるC5-10アルキルトリC1-3アルコキシシラン処理酸化亜鉛が、金属化合物粒子の再分散容易化剤として機能すること、また金属化合物粒子とC5-10アルキルトリC1-3アルコキシシラン処理酸化亜鉛を含む、再分散性に優れた液状組成物を見出した。
  すなわち、本発明は
(1)(A)平均粒子径100nm以下のC5-10アルキルトリC1-3アルコキシシラン処理酸化亜鉛粒子、及び
  (B)0.2重量%以上の濃度で、比重3以上で、かつ平均粒子径1μm以上の金属化合物粒子、
  を含む、液状組成物。
(2)前記C5-10アルキルトリC1-3アルコキシシラン処理酸化亜鉛粒子の濃度が1重量%以上である、(1)に記載の液状組成物。
(3)液状組成物の粘度が10000mPa・s以下である、(1)又は(2)に記載の液状組成物。
(4)前記金属化合物粒子が、硫酸バリウム、雲母チタン、酸化亜鉛、酸化亜鉛蛍光体、チタン酸マグネシウム、チタン酸マグネシウム蛍光体、リン酸カルシウム、リン酸カルシウムセリウム蛍光体及びオキシ塩化ビスマスからなる群から選ばれる1又は複数種の粉末である、(1)~(3)のいずれかに記載の液状組成物。
(5)前記C5-10アルキルトリC1-3アルコキシシラン処理酸化亜鉛粒子がオクチルトリエトキシシラン処理酸化亜鉛粒子又はオクチルトリメトキシシラン処理酸化亜鉛粒子である、(1)~(4)のいずれかに記載の液状組成物。
(6)沈殿する前記金属化合物粒子が再分散性である、(1)~(5)のいずれかに記載の液状組成物。
(7)油中水型組成物である、(1)~(6)のいずれかに記載の液状組成物。
(8)日焼け止め化粧料である、(1)~(7)のいずれかに記載の液状組成物。
(9)C5-10アルキルトリC1-3アルコキシシラン処理酸化亜鉛粒子を有効成分として含む、液状組成物中で沈殿及び凝集する金属化合物粒子の再分散容易化剤。
(10)前記金属化合物粒子が、比重3以上で、かつ平均粒子径1μm以上の粉末である、(9)に記載の再分散容易化剤。
(11)前記金属化合物粒子が、硫酸バリウム、雲母チタン、酸化亜鉛、酸化亜鉛蛍光体、チタン酸マグネシウム、チタン酸マグネシウム蛍光体、リン酸カルシウム、リン酸カルシウムセリウム蛍光体及びオキシ塩化ビスマスからなる群から選ばれる1又は複数種の粉末である、(9)又は(10)に記載の再分散容易化剤。
(12)前記C5-10アルキルトリC1-3アルコキシシラン処理酸化亜鉛粒子がオクチルトリエトキシシラン処理酸化亜鉛粒子又はオクチルトリメトキシシラン処理酸化亜鉛粒子である、(9)~(11)のいずれかに記載の再分散容易化剤。
(13)液状組成物中で沈殿、凝集する金属化合物粒子の再分散のための、(9)~(12)のいずれかに記載の再分散容易化剤の使用。
 本発明に係るC5-10アルキルトリC1-3アルコキシシラン処理酸化亜鉛は,液状組成物中で沈殿性の金属化合物粒子を再分散させることに適している。本発明の、金属化合物粒子とC5-10アルキルトリC1-3アルコキシシラン処理酸化亜鉛を含む液状組成物は再分散性に優れるため、使用時の攪拌(又は回転)等の労力が少なくて済むことから即時使用が可能であり、また長期の使用にともなう成分組成のかたよりが少なく長期使用にも適している。
 以下、本発明を具体的な実施の形態に即して詳細に説明する。但し、本発明は以下の実施の形態に束縛されるものではなく、本発明の趣旨を逸脱しない範囲において、任意の形態で実施することが可能である。
 なお、本開示で引用する特許公報、特許出願公開公報、及び非特許文献等は、何れもその全体が援用により、あらゆる目的において本開示に組み込まれるものとする。
 本開示において、数値に対して適用された場合の「~」とは、規定された基準値以上で、かつ規定された基準値以下の範囲に入る値の範囲を指す。
(A)C 5-10 アルキルトリC 1-3 アルコキシシラン処理酸化亜鉛粒子
 本発明で用いるC5-10アルキルトリC1-3アルコキシシラン処理酸化亜鉛粒子のC5-10アルキルトリC1-3アルコキシシランは炭素数5~10のアルキル基を有し、かつ3つの炭素数1~3のアルコキシ基を有し酸化亜鉛化合物と反応性を有するシラン化合物である。これらのシラン化合物は下記一般式(1)で示されるシラン化合物である。
      RSiX   (1)
(Rは炭素数5~10のアルキル基(直鎖であっても分岐鎖であっても構わない)を示し、Xはそれぞれ独立して、炭素数1~3のアルコキシ基を示す。)
 上記一般式(1)中、Rで示されるアルキル基としては、炭素数5~10のアルキル基であり、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基が挙げられ、直鎖であっても分岐鎖であっても構わない。上記一般式(1)中、Xで示されるアルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基の炭素数1~3のアルコキシ基が挙げられる。
 具体的なシラン化合物としては、例えばペンチルトリメトキシシラン、ヘキシルトリメトキシシラン、ヘプチルトリメトキシシラン、オクチルトリメトキシシラン、ノニルトリメトキシシラン、デシルトリメトキシシラン、ペンチルトリエトキシシラン、ヘキシルトリエトキシシラン、ヘプチルトリエトキシシラン、オクチルトリエトキシシラン、ノニルトリエトキシシラン、デシルトリエトキシシラン、ペンチルトリプロポキシシラン、ヘキシルトリプロポキシシラン、ヘプチルトリプロポキシシラン、オクチルトリプロポキシシラン、ノニルトリプロポキシシラン、デシルトリプロポキシシラン、ペンチルトリイソプロポキシシラン、ヘキシルトリイソプロポキシシラン、ヘプチルトリイソプロポキシシラン、オクチルトリイソプロポキシシラン、ノニルトリイソプロポキシシラン、デシルトリイソプロポキシシランが挙げられる。これらのうち特に好ましくはオクチルトリエトキシシラン、オクチルトリメトキシシランである。当該シラン化合物は処理が均一にできやすく、かつ供給が容易でコスト的に安価である特徴があり、さらにこれらの化合物で表面処理した酸化亜鉛粒子は、本発明の液状組成物中に含まれる金属化合物粒子の再分散性の特性が優れている。
 前記シラン化合物による酸化亜鉛粒子の処理方法としては、n-ヘキサン、シクロヘキサン、低級アルコール等の有機溶媒中でシラン化合物と酸化亜鉛粒子(粉末)とを混合し、場合により微粉砕した後、有機溶媒を加熱や減圧により除去し、好ましくは80~250℃で加熱処理する方法等で、シラン化合物を酸化亜鉛粒子粉末の表面で反応性基(アルコキシ基等)にて化学反応させる方法が挙げられる。
 その他、特開2007-326902号公報に記載される方法により、酸化亜鉛粒子粉末を特定のポリシロキサン化合物で被覆処理した後に、前記シラン化合物又はシラザン化合物を水中にて表面処理する方法も挙げられる。
 また、酸化亜鉛粒子粉末の表面を、シリカ、アルミナ、ジルコニア、酸化チタン、酸化鉄、酸化セリウムなどの無機酸化物で予め被覆した後に、前記シラン化合物を当該無機酸化物処理酸化亜鉛粒子粉末に表面被覆する方法も挙げられる。無機酸化物処理酸化亜鉛粒子粉末の製造方法としては、溶媒を用いた湿式処理方法やメカノケミカル法など、従来公知の処理方法が挙げられる。例えば、WO98/17730号公報に記載の方法により酸化亜鉛粒子粉末表面にシリコーン化合物を被覆し、焼成することによってシリカ被覆処理酸化亜鉛粒子粉末を得る方法が挙げられる。
 シラン化合物の酸化亜鉛粒子粉末への被覆量は、用いられる酸化亜鉛粒子粉末の総量に対して、3~15質量%であるのが好ましく、より好ましくは4~10質量%である。当該範囲内であれば、酸化亜鉛粒子粉末表面にシラン化合物が均一に被覆され、酸化亜鉛粒子粉末表面でシラン化合物の凝集や、析出がない。
 本発明のC5-10アルキルトリC1-3アルコキシシラン処理酸化亜鉛粒子は、平均粒子径が200nm以下、100nm以下、50nm以下、又は40nm以下であるのが好ましく、より好ましくは50nm以下、40nm以下又は35nm以下である。また、C5-10アルキルトリC1-3アルコキシシラン処理酸化亜鉛粒子の平均粒子径が、金属化合物の平均粒子径より小さいことが好ましく、例えば、(凝集前の)金属化合物の平均粒子径の1/10以下、1/20以下、1/30以下、1/40以下、1/50以下、1/90以下、1/100以下、1/150以下又は1/200以下である。当該範囲内であれば、本発明の液状組成物中に含まれる金属化合物粒子が凝集、沈殿した場合の再分散性の特性が優れている。
 本発明で用いるC5-10アルキルトリC1-3アルコキシシラン処理酸化亜鉛粒子は、液状組成物全体に対して0.1重量%以上、0.5%重量%以上、1.0重量%以上、3重量%以上、5重量%以上、7重量%以上、又は10重量%以上であり、また、30重量%以下、25重量%以下、20重量%以下、又は15重量%以下であり、また液状組成物全体に対して0.1~30重量%,0.5~30重量%、1~30重量%、3~30重量%、5~30重量%、7~30重量%、10~30重量%、0.1~25重量%,0.5~25重量%、1~25重量%、3~25重量%、5~25重量%、7~25重量%、10~25重量%、0.1~20重量%,0.5~20重量%、1~20重量%、3~20重量%、5~20重量%、7~20重量%、10~20重量%、0.1~15重量%,0.5~15重量%、1~15重量%、3~15重量%、5~15重量%、7~15重量%又は10~15重量%である。当該範囲内であれば、本発明の液状組成物中に含まれる金属化合物粒子が凝集、沈殿した場合の再分散性の特性が優れている。
(B)金属化合物粒子
 本発明の「金属化合物粒子」とは、金属原子を含む、有機又は無機化合物であって、粒子状のものを意味する。本発明における金属化合物粒子としては、特に限定されるものではないが、例えば酸化亜鉛粒子、チタン酸マグネシウム粒子、リン酸カルシウムセリウム粒子、雲母チタン粒子、硫酸バリウム粒子、酸化チタン粒子、酸化セリウム粒子、酸化ジルコニウム粒子、酸化鉄粒子及びオキシ塩化ビスマス粒子等が挙げられ、これらを一種又は二種以上併用して用いることができる。
 本発明に用いる金属化合物粒子の(凝集前の)平均粒子径は例えば、0.1μm以上、0.5μm以上、1μm以上、2μm以上又は3μm以上であり、300μm以下、250μm以下、200μm以下、150μm以下、100μm以下、80μm以下、50μm以下、30μm以下、20μm以下又は10μm以下であり、また平均粒子径の範囲は0.1~200μm、0.1~150μm、0.1~100μm、0.1~50μm、0.1~20μm、0.1~10μm、2~200μm、2~150μm、2~100μm、2~50μm、2~20μm、2~10μm、3~200μm、3~150μm、3~100μm、3~50μm、3~20μm又は3~10μmである。また、本発明に用いる金属化合物の平均粒子径は、C5-10アルキルトリC1-3アルコキシシラン処理酸化亜鉛粒子の平均粒子径より大きいことが好ましく、例えば、C5-10アルキルトリC1-3アルコキシシラン処理酸化亜鉛粒子の平均粒子径の10倍以上、20倍以上、30倍以上、40倍以上、50倍以上、80倍以上、100倍以上、150倍以上又は200倍以上である。当該範囲内であれば、本発明の液状組成物中に含まれる金属化合物粒子が凝集、沈殿した場合の再分散性の特性が優れている。
 本発明における金属化合物粒子としては、比重が3以上、3.5以上、4以上、4.5以上、又は5以上であり、20以下、15以下、10以下、9以下、8以下、7以下、又は6以下であり、例えば3~20、3~15、3~10、3~9、3~8、3~7、3~6、4~20、4~15、4~10、4~9、4~8、4~7、4~6、5~20、5~15、5~10、5~9、5~8、5~7又は5~6の範囲の比重である。
 本発明で用いる金属化合物粒子は、液状組成物全体に対して0.1重量%以上、0.2重量%以上、0.5重量%以上、1.0重量%以上、3重量%以上、又は5重量%以上であり、また、25重量%以下、20重量%以下、15重量%以下、又は10重量%以下であり、また液状組成物全体に対して0.1~25重量%,0.2~25重量%,0.5~25重量%、1~25重量%、3~25重量%、5~25重量%、0.1~20重量%,0.2~20重量%,0.5~20重量%、1~20重量%、3~20重量%、5~20重量%、0.1~15重量%,0.2~15重量%,0.5~15重量%、1~15重量%、3~15重量%、5~15重量%、0.1~10重量%,0.2~10量%,0.5~10重量%、1~10重量%、3~10重量%、又は5~10重量%である。当該範囲内であれば、本発明の液状組成物中に含まれる金属化合物粒子が凝集、沈殿した場合の再分散性の特性が優れている。
 本発明の金属化合物粒子は、形状は特に限定されるものではなく、球状、針状、板状などのいずれのものでもよい。本発明における「平均粒子径」とは、粒子が球状でない場合には、例えば、画像解析装置(ルーゼックスIIIU、ニレコ社製)による測定により求めた値である。
 本発明における金属化合物粒子は、表面処理がなされていてもよい。表面処理は、例えば、シラン化合物処理、シリコーン化合物処理、フッ素変性シリコーン化合物処理、フッ素化合物処理、高級脂肪酸処理(ステアリン酸等)、高級アルコール処理、脂肪酸エステル処理、金属石鹸処理、アミノ酸処理、アルキルフォスフェート処理等があげられる。
 本発明における金属化合物粒子は蛍光体であってもよい。蛍光体としては、酸化亜鉛蛍光体、チタン酸マグネシウム蛍光体、リン酸カルシウムセリウム蛍光体などが挙げられ、本発明の液状組成物には、これらの蛍光体の1又は複数種が含まれていてもよい。金属化合物粒子の蛍光体は例えば、特開2019-167330号公報に記載される方法により合成できる。
 本発明のC5-10アルキルトリC1-3アルコキシシラン処理酸化亜鉛粒子は、液状組成物の粘度を上げる。本発明の液状組成物の粘度は、金属化合物粒子の再分散性を向上させるために、例えば、500mPa・s以上、800mPa・s以上、1000mPa・s以上、1100mPa・s以上、1200mPa・s以上、1500mPa・s以上、2000mPa・s以上、2500mPa・s以上又は3000mPa・s以上であり、10000mPa・s以下、9000mPa・s以下、8000mPa・s以下、7000mPa・s以下、6000mPa・s以下、5000mPa・s以下、又は4000mPa・s以下であり、また本発明の液状組成物の粘度の範囲は、800~10000mPa・s、1000~10000mPa・s、1100~10000mPa・s、1200~10000mPa・s、1500~10000mPa・s、2000~10000mPa・s、2500~10000mPa・s又は3000~10000mPa・sである。
 本発明の液状組成物に含まれる金属化合物粒子は沈殿し、保管や放置により凝集体を形成するが、C5-10アルキルトリC1-3アルコキシシラン処理酸化亜鉛粒子が含まれることにより、金属化合物粒子の再分散性が向上する。本発明のC5-10アルキルトリC1-3アルコキシシラン処理酸化亜鉛粒子が優れた効果を発揮する理由は明確でないが、金属化合物粒子とともに沈降して、金属化合物粒子を取り囲むことにより金属化合物粒子どうしの凝集を防ぐ可能性がある。また、C5-10アルキルトリC1-3アルコキシシラン処理酸化亜鉛粒子は、構造体を形成して液状組成物全体の静置粘度を上げ、金属化合物粒子どうしの凝集を防ぐ可能性がある。いずれにしても、C5-10アルキルトリC1-3アルコキシシラン処理酸化亜鉛粒子は、本発明の金属化合物の種類によらず再分散性を高めるため、汎用性がある。
 本発明の液状組成物は金属化合物粒子が再分散性であり、わずか1、2、3、4、5、6、7、8,9又は10回以下の攪拌(又は回転)により沈殿・凝集した金属化合物粒子を再分散させることができる。
分散剤
 本発明の液状組成物は,分散剤を含有してもよい。分散剤とは、水相又は油相中に分散された粒子(粉体)の表面に吸着することで、水性又は油性媒体中に均一に分散せしめることのできる物質を指す。本発明の液状組成物に含まれる好ましい分散剤としては、PEG-10ジメチコン、ビスブチルジメチコンポリグリセリル-3、PEG-ポリジメチルポリシロキサンエチルジメチコン、ラウリルPEG-ポリジメチルポリシロキサンエチルジメチコン、セチルPEG/PPG-10/ジメチコン、イソステアリン酸、ジイソステアリン酸ポリグリセリル-2、カルボキシデシルトリシロキサン、PEG-12ジメチコン、もしくはモノステアリン酸ポリオキシエチレンソルビタン又はこれらの2以上の組み合わせを含む。
 本発明の液状組成物における好ましい分散剤の含有量は、液状組成物全体に対して0.01重量%以上であり、好ましくは0.05質量%以上、より好ましくは0.1重量%以上であり、さらに好ましくは0.2重量%以上であり、また、20重量%以下であり、好ましくは15重量%以下、より好ましくは10重量%以下であり、さらに好ましくは5重量%以下であり、また液状組成物全体に対して0.01~99.99重量%,0.1~99.9重量%、0.05~50重量%、0.1~40重量%、0.1~30重量%、0.1~20重量%、0.1~10重量%、0.1~5重量%、0.2~40重量%、0.2~30重量%、0.2~20重量%、0.2~10重量%、0.2~5重量%、0.4~40重量%、0.4~30重量%、0.4~20重量%、0.4~10重量%又は0.4~5重量%である。
油分
 本発明の液状組成物は,油分を含有してもよい。油分とは、本発明の液状組成物の成分である、水と相分離する疎水性の物質を指す。本発明で使用し得る油分は、特に限定されず、例えば、炭化水素油、エステル油、シリコーン油、液体油脂、固体油脂及び高級アルコールの少なくとも一種以上を含む。
 炭化水素油としては、流動パラフィン、テトライソブタン、水添ポリデセン、オレフィンオリゴマー、イソドデカン、イソヘキサデカン、スクワラン、水添ポリイソブテン等が挙げられる。
 エステル油としては、安息香酸アルキル(例えば、安息香酸アルキル(C12-15))、セバシン酸ジイソプロピル、パルミチン酸オクチル、イソオクタン酸セチル(2-エチルヘキサン酸セチル)、トリエチルヘキサノイン、ジカプリン酸ネオペンチルグリコール、トリイソステアリン、リンゴ酸ジイソステアリル、ジピバリン酸PPG-3、コハク酸ジ2-エチルヘキシル、2-エチルヘキサン酸2-エチルヘキシル、オクタカプリル酸ポリグリセリル-6、トリ(カプリル酸/カプリン酸)グリセリル等が挙げられる。
 シリコーン油としては、ジメチコン、アミノ変性ポリシロキサン、ポリエーテル変性ポリシロキサン、アルキル変性ポリシロキサン、フッ素変性ポリシロキサン等が挙げられる。
 液体油脂としては、アボカド油、ツバキ油、マカデミアナッツ油、ミンク油、オリーブ油、ヒマシ油、ホホバ油、トリグリセリン、トリオクタン酸グリセリン等が挙げられる。
 固体油脂としては、ヤシ油、硬化ヤシ油、パーム油、牛脂、羊脂、モクロウ、硬化ヒマシ油等が挙げられる。
 高級アルコールとしては、イソステアリルアルコール、オレイルアルコール、ブチレングリコールとプロピレングリコールの共重合体(例えば、PBG/PPG-9/1コポリマー)等が挙げられる。
 本発明の液状組成物に含まれうる油分全体の含有量は、液状組成物全体に対して、5重量%以上であり、好ましくは10重量%以上、より好ましくは12重量%以上であり、さらに好ましくは15重量%以上である。
任意成分
 本発明の液状組成物は、本発明の効果に影響を及ぼさない範囲で、各種成分を適宜配合することができる。各種成分としては、化粧料に通常配合し得るような添加成分、例えば、粘土鉱物(ジメチルジステアリルアアンモニウムヘクトライト等)、金属化合物粒子以外の粉末(ポリメタクリル酸メチル、架橋型シリコーン・網状型シリコーンブロック共重合体、シリカ、疎水化タルク(ジメチコン処理タルク等)、トウモロコシデンプン、疎水化処理ポリウレタン等)、被膜剤(トリメチルシロキケイ酸、ジメチコン等)、経皮吸収抑制剤(ポリプロピレングリコール(17)等)、油相増粘剤(ジメチルジステアリルアンモニウムヘクトライト、パルミチン酸デキストリン、トリ酢酸テトラステアリン酸スクロース等)、紫外線吸収剤(オクトクリレン、ポリシリコーン―15、ビスエチルヘキシルオキシフェノールメトキシフェニルトリアジン、ジエチルアミノヒドロキシベンゾイル安息香酸ヘキシル、サリチル酸エチルヘキシル等)、C5-10アルキルトリC1-3アルコキシシラン処理酸化亜鉛粒子以外の紫外線散乱剤(ステアリン酸/水酸化Al処理酸化チタン、ハイドロゲンジメチコン/水酸化Al処理酸化チタン、シリカ/ジメチコン/ハイドロゲンジメチコン処理酸化チタン、ジメチコン処理酸化亜鉛、シリカ/ジメチコン処理酸化亜鉛、パルミチン酸デキストリン処理酸化亜鉛、ハイドロゲンジメチコン処理酸化亜鉛等)、キレート剤(エデト酸ナトリウム水和物等)、香料、保湿剤(グリセリン等)、防腐剤、アニオン性界面活性剤、カチオン性界面活性剤、両性界面活性剤、非イオン性界面活性剤、水溶性高分子、シリコーン化多糖類等の皮膜形成剤、金属イオン封鎖剤、低級アルコール(エチルアルコール等)、多価アルコール、各種抽出液、糖、アミノ酸、有機アミン、高分子エマルジョン、pH調整剤、皮膚栄養剤、ビタミンB2以外のビタミン、医薬品、医薬部外品、化粧品等に適用可能な水溶性薬剤、酸化防止剤、緩衝剤、噴射剤、有機系粉末、顔料、染料、色素、水、酸成分、アルカリ成分等をあげることができる。これらの任意成分は、油相中及び水相中に適宜配合することができる。
 本発明の液状組成物の一態様としては、油中水型組成物がある。本発明の油中水型組成物は通常の製造方法に従って製造することができる。
 具体的には、以下の手順により本実施形態における液状組成物が得られる。すなわち、油性成分を混合して油相を調製し、水溶性成分を混合して水相を調製する。C5-10アルキルトリC1-3アルコキシシラン処理酸化亜鉛粒子の粉末、金属化合物粒子の粉末は水相または油相に分散させることができるが、同一相に分散させることが好ましい。前記水相を油相に添加し、撹拌することにより、油中水型組成物を得る。
 本発明の組成物としては、化粧下地、サンスクリーンクリーム等の日焼け止め化粧料等に使用される液状組成物が含まれる。また、剤型としては、例えば乳液類等とすることができる。
金属化合物粒子の再分散容易化剤
 本発明の一態様としては、金属化合物粒子の再分散容易化剤としてのC5-10アルキルトリC1-3アルコキシシラン処理酸化亜鉛粒子がある。本発明において「再分散容易化剤」とは、液状組成物中で沈殿し、凝集した金属化合物粒子の再分散性を向上させ、該金属化合物粒子の再分散を容易化するための化合物を意味する。C5-10アルキルトリC1-3アルコキシシラン処理酸化亜鉛粒子が液状組成物中で金属化合物粒子の再分散剤として機能することは、例えば以下の実施例に記載の攪拌球を用いる方法等に従って、金属化合物粒子の再分散に要する攪拌(又は回転)回数や攪拌(又は回転)時間を低下させることにより確認することができる。
 C5-10アルキルトリC1-3アルコキシシラン処理酸化亜鉛粒子が金属化合物粒子の再分散容易化剤であることは、例えば攪拌球を用いる方法により確認することができるが、これに限定されない。C5-10アルキルトリC1-3アルコキシシラン処理酸化亜鉛粒子と金属化合物粒子を含む液状組成物に攪拌球を入れ、攪拌球を含む液状組成物を放置または遠心処理することにより、沈殿した金属化合物粒子の凝集体を生成する。その後、手動またはローテーター等を使用して攪拌(又は回転)し、凝集体が再分散するまでの攪拌(又は回転)回数や時間を測定する。C5-10アルキルトリC1-3アルコキシシラン処理酸化亜鉛粒子を含む液状組成物の測定値が、C5-10アルキルトリC1-3アルコキシシラン処理酸化亜鉛粒子を含まない液状組成物の測定値よりも低値であることを確認することができる。
 本発明の金属化合物粒子の再分散容易化剤であるC5-10アルキルトリC1-3アルコキシシラン処理酸化亜鉛粒子は、液状組成物に添加することにより、攪拌球を用いる方法において金属化合物粒子の再分散に要する攪拌(又は回転)回数を1、5、10、15、20、30、50、70、100、150又は200回以上低下することができ、金属化合物粒子の再分散に要する攪拌(又は回転)回数を1/2、1/3、1/4、1/5、1/10又は1/20に低下することができ、液状組成物中に含まれる金属化合物粒子をわずか1、2、3、4、5、6、7、8,9又は10回以下の攪拌(又は回転)により再分散させることができる。
 本発明の金属化合物粒子の再分散容易化剤であるC5-10アルキルトリC1-3アルコキシシラン処理酸化亜鉛粒子のC5-10アルキルトリC1-3アルコキシシランは炭素数5~10のアルキル基を有し、かつ3つの炭素数1~3のアルコキシ基を有し酸化亜鉛化合物と反応性を有するシラン化合物である。これらのシラン化合物は下記一般式(1)で示されるシラン化合物である。
      RSiX   (1)
(Rは炭素数5~10のアルキル基(直鎖であっても分岐鎖であっても構わない)を示し、Xはそれぞれ独立して、炭素数1~3のアルコキシ基を示す。)
 上記一般式(1)中、Rで示されるアルキル基としては、炭素数5~10のアルキル基であり、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基が挙げられ、直鎖であっても分岐鎖であっても構わない。上記一般式(1)中、Xで示されるアルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基の炭素数1~3のアルコキシ基が挙げられる。
 具体的なシラン化合物としては、例えばペンチルトリメトキシシラン、ヘキシルトリメトキシシラン、ヘプチルトリメトキシシラン、オクチルトリメトキシシラン、ノニルトリメトキシシラン、デシルトリメトキシシラン、ペンチルトリエトキシシラン、ヘキシルトリエトキシシラン、ヘプチルトリエトキシシラン、オクチルトリエトキシシラン、ノニルトリエトキシシラン、デシルトリエトキシシラン、ペンチルトリプロポキシシラン、ヘキシルトリプロポキシシラン、ヘプチルトリプロポキシシラン、オクチルトリプロポキシシラン、ノニルトリプロポキシシラン、デシルトリプロポキシシラン、ペンチルトリイソプロポキシシラン、ヘキシルトリイソプロポキシシラン、ヘプチルトリイソプロポキシシラン、オクチルトリイソプロポキシシラン、ノニルトリイソプロポキシシラン、デシルトリイソプロポキシシランが挙げられる。これらのうち特に好ましくはオクチルトリエトキシシラン、オクチルトリメトキシシランである。当該シラン化合物は処理が均一にできやすく、かつ供給が容易でコスト的に安価である特徴があり、さらにこれらの化合物で表面処理した酸化亜鉛粒子は、本発明の液状組成物中に含まれる金属化合物粒子の再分散性の特性が優れている。
 前記シラン化合物による酸化亜鉛粒子の処理方法としては、n-ヘキサン、シクロヘキサン、低級アルコール等の有機溶媒中でシラン化合物と酸化亜鉛粒子(粉末)とを混合し、場合により微粉砕した後、有機溶媒を加熱や減圧により除去し、好ましくは80~250℃で加熱処理する方法等で、シラン化合物を酸化亜鉛粒子粉末の表面で反応性基(アルコキシ基等)にて化学反応させる方法が挙げられる。
 その他、特開2007-326902号公報に記載される方法により、酸化亜鉛粒子粉末を特定のポリシロキサン化合物で被覆処理した後に、前記シラン化合物又はシラザン化合物を水中にて表面処理する方法も挙げられる。
 また、酸化亜鉛粒子粉末の表面を、シリカ、アルミナ、ジルコニア、酸化チタン、酸化鉄、酸化セリウムなどの無機酸化物で予め被覆した後に、前記シラン化合物を当該無機酸化物処理酸化亜鉛粒子粉末に表面被覆する方法も挙げられる。無機酸化物処理酸化亜鉛粒子粉末の製造方法としては、溶媒を用いた湿式処理方法やメカノケミカル法など、従来公知の処理方法が挙げられる。例えば、WO98/17730号公報に記載の方法により酸化亜鉛粒子粉末表面にシリコーン化合物を被覆し、焼成することによってシリカ被覆処理酸化亜鉛粒子粉末を得る方法が挙げられる。
 シラン化合物の酸化亜鉛粒子粉末への被覆量は、用いられる酸化亜鉛粒子粉末の総量に対して、3~15質量%であるのが好ましく、より好ましくは4~10質量%である。当該範囲内であれば、酸化亜鉛粒子粉末表面にシラン化合物が均一に被覆され、酸化亜鉛粒子粉末表面でシラン化合物の凝集や、析出がない。
 本発明の金属化合物粒子の再分散容易化剤であるC5-10アルキルトリC1-3アルコキシシラン処理酸化亜鉛粒子は、平均粒子径が200nm以下、100nm以下、50nm以下、又は40nm以下であるのが好ましく、より好ましくは50nm以下、40nm以下又は35nm以下である。また、金属化合物粒子の再分散容易化剤であるC5-10アルキルトリC1-3アルコキシシラン処理酸化亜鉛粒子の平均粒子径が、金属化合物の平均粒子径より小さいことが好ましく、例えば、(凝集前の)金属化合物の平均粒子径の1/10以下、1/20以下、1/30以下、1/40以下、1/50以下、1/90以下、1/100以下、1/150以下又は1/200以下である。当該範囲内であれば、本発明の液状組成物中に含まれる金属化合物粒子が凝集、沈殿した場合の再分散性の特性が優れている。
 本発明の金属化合物粒子の再分散容易化剤であるC5-10アルキルトリC1-3アルコキシシラン処理酸化亜鉛粒子は、液状組成物の全体に対して0.1重量%以上、0.5重量%以上、1.0重量%以上、3重量%以上、5重量%以上、7重量%以上、又は10重量%以上であり、また、30重量%以下、25重量%以下、20重量%以下、又は15重量%以下であり、また液状組成物全体に対して0.1~30重量%,0.5~30重量%、1~30重量%、3~30重量%、5~30重量%、7~30重量%、10~30重量%、0.1~25重量%,0.5~25重量%、1~25重量%、3~25重量%、5~25重量%、7~25重量%、10~25重量%、0.1~20重量%,0.5~20重量%、1~20重量%、3~20重量%、5~20重量%、7~20重量%、10~20重量%、0.1~15重量%,0.5~15重量%、1~15重量%、3~15重量%、5~15重量%、7~15重量%又は10~15重量%の濃度で使用することができる。当該範囲内であれば、本発明の液状組成物中に含まれる金属化合物粒子が凝集、沈殿した場合の再分散性の特性が優れている。
 本発明の再分散容易化剤の適用される金属化合物粒子としては、特に限定されるものではないが、例えば酸化亜鉛粒子、チタン酸マグネシウム粒子、リン酸カルシウムセリウム粒子、雲母チタン粒子、硫酸バリウム粒子、酸化チタン粒子、酸化セリウム粒子、酸化ジルコニウム粒子、酸化鉄粒子等が挙げられ、これらを一種又は二種以上併用して用いることができる。
 本発明の再分散容易化剤の適用される金属化合物粒子の(凝集前の)平均粒子径は、例えば、0.1μm以上、0.5μm以上、1μm以上、2μm以上又は3μm以上であり、300μm以下、250μm以下、200μm以下、150μm以下、100μm以下、80μm以下、50μm以下、30μm以下、20μm以下又は10μm以下であり、また平均粒子径の範囲は0.1~200μm、0.1~150μm、0.1~100μm、0.1~50μm、0.1~20μm、0.1~10μm、2~200μm、2~150μm、2~100μm、2~50μm、2~20μm、2~10μm、3~200μm、3~150μm、3~100μm、3~50μm、3~20μm又は3~10μmである。また、本発明の再分散容易化剤の適用される金属化合物粒子の平均粒子径は、C5-10アルキルトリC1-3アルコキシシラン処理酸化亜鉛粒子の平均粒子径より大きいことが好ましく、例えば、C5-10アルキルトリC1-3アルコキシシラン処理酸化亜鉛粒子の平均粒子径の10倍以上、20倍以上、30倍以上、40倍以上、50倍以上、80倍以上、100倍以上、150倍以上又は200倍以上である。当該範囲内であれば、金属化合物粒子が凝集、沈殿した場合の再分散性の特性が優れている。
 本発明における再分散容易化剤の適用される金属化合物粒子としては、比重が3以上、3.5以上、4以上、4.5以上、又は5以上であり、20以下、15以下、10以下、9以下、8以下、又は7以下であり、例えば3~20、3~15、3~10、3~9、3~8、3~7、4~20、4~15、4~10、4~9、4~8、4~7、5~20、5~15、5~10、5~9、5~8又は5~7の範囲の比重である。
 本発明の再分散容易化剤の適用される金属化合物粒子は、形状は特に限定されるものではなく、球状、針状、板状などのいずれのものでもよい。本発明における「平均粒子径」とは、粒子が球状でない場合には、例えば、画像解析装置(ルーゼックスIIIU、ニレコ社製)による測定により求めた値であり、数平均の円面積相当径として求めることができる。
 本発明における再分散容易化剤の適用される金属化合物粒子は、表面処理がなされていてもよい。表面処理は、例えば、シラン化合物処理(オクチルトリエトキシラン等)、シリコーン化合物処理、フッ素変性シリコーン化合物処理、フッ素化合物処理、高級脂肪酸処理(ステアリン酸等)、高級アルコール処理、脂肪酸エステル処理、金属石鹸処理、アミノ酸処理、アルキルフォスフェート処理等があげられる。
 本発明における再分散容易化剤の適用される金属化合物粒子は蛍光体であってもよい。蛍光体としては、酸化亜鉛蛍光体、チタン酸マグネシウム蛍光体、リン酸カルシウムセリウム蛍光体などが挙げられ、本発明の液状組成物には、これらの蛍光体の1又は複数種が含まれていてもよい。金属化合物粒子の蛍光体は例えば、特開2019-167330号公報に記載される方法により合成できる。
 本発明の再分散容易化剤の適用される金属化合物粒子は沈殿し、保管や放置により凝集体を形成するが、再分散容易化剤であるC5-10アルキルトリC1-3アルコキシシラン処理酸化亜鉛粒子により、再分散性が向上する。本発明の再分散容易化剤であるC5-10アルキルトリC1-3アルコキシシラン処理酸化亜鉛粒子が優れた効果を発揮する理由は明確でないが、金属化合物粒子とともに沈降して、金属化合物粒子を取り囲むことにより金属化合物粒子どうしの凝集を防ぐ可能性がある。また、再分散容易化剤であるC5-10アルキルトリC1-3アルコキシシラン処理酸化亜鉛粒子は、構造体を形成して液状組成物全体の静置粘度を上げ、金属化合物粒子どうしの凝集を防ぐ可能性がある。いずれにしても、再分散容易化剤であるC5-10アルキルトリC1-3アルコキシシラン処理酸化亜鉛粒子は、本発明の金属化合物の種類によらず再分散性を高めるため、汎用性がある。
 本発明の一態様としては、組成物中で沈降する前記金属化合物粒子の再分散のための金属化合物粒子の再分散容易化剤としてのC5-10アルキルトリC1-3アルコキシシラン処理酸化亜鉛粒子の使用がある。液状組成物中にC5-10アルキルトリC1-3アルコキシシラン処理酸化亜鉛粒子を添加しておくことにより、液状組成物中に含まれる金属化合物粒子をわずか1、2、3、4、5、6、7、8,9又は10回の攪拌(又は回転)により再分散させることができる。
 本発明の一態様としては、C5-10アルキルトリC1-3アルコキシシラン処理酸化亜鉛粒子の金属化合物粒子の再分散容易化剤としての使用がある。液状組成物中で沈殿、凝集する金属化合物粒子を容易に再分散させるために、C5-10アルキルトリC1-3アルコキシシラン処理酸化亜鉛粒子を該液状組成物の成分として添加することができる。
 次に実施例によって本発明を更に詳細に説明する。なお,本発明はこれにより限定されるものではない。
 実施例1:オクチルトリエトキシシラン処理酸化亜鉛の効果
 1-1)攪拌球を用いた再分散性試験
 試験対象の液状組成物35mLを遠心ボトル(コーニング社製、50mLポリプロピレンファルコンコニカルチューブ)に移し、攪拌球(スチール製、直径5.56mm)1個を入れ、740rpm(110xg)で60分間、室温にて遠心し、金属化合物粒子を沈殿・凝集させることにより、液状組成物を一定期間保管した時の状態を再現した(遠心機:himac社製、CF7D2)。その後、遠心ボトルを手で上下に振って、攪拌球の音が鳴り始めた時の攪拌回数をカウントし再分散性を評価した。
 1-2)オクチルトリエトキシシラン処理酸化亜鉛による再分散容易化
 液状組成物に含まれる酸化亜鉛蛍光体は、保存により沈殿し、凝集体を形成することがある。その液状組成物に紫外線散乱剤として知られている以下の6種類の化合物の酸化亜鉛蛍光体の再分散性に与える効果を前記「1-1)攪拌球を用いた再分散性試験」により調べた。試験した液状組成物の成分組成は表1に記載の通りであり、通常の製造方法に従って製造した。なお、酸化亜鉛蛍光体はLumateG(比重5.6,粒子径3μm)(堺化学工業)をオクチルトリエトキシシラン処理して使用した:
 1)処方例1:オクチルトリエトキシシラン処理酸化亜鉛 (粒子径25nm)
 2)処方例2:オクチルトリエトキシシラン処理酸化亜鉛 (粒子径35nm)
 3)処方例3:ジメチコン処理酸化亜鉛 (粒子径25nm)
 4)処方例4:シリカ/ジメチコン処理酸化亜鉛 (粒子径20nm)
 5)処方例5:パルミチン酸デキストリン処理酸化亜鉛 (粒子径25nm)
 6)処方例6:ハイドロゲンジメチコン処理酸化亜鉛 (粒子径50nm)
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、オクチルトリエトキシシラン処理酸化亜鉛粒子は他の紫外線散乱剤と比較して、酸化亜鉛蛍光体の再分散性を著しく向上した。粒子径(平均粒子径)3μmの酸化亜鉛蛍光体に対し、粒子径25、35nmのオクチルトリエトキシシラン処理酸化亜鉛粒子は、同様に再分散性を向上した。処方例の粘度を粘度計(TOKI SANGYO社製、VISCOMETER TVB-15)で調べたところ、オクチルトリエトキシシラン処理酸化亜鉛は他の紫外線散乱剤と比較して、粘度を上げることが分かった。このことから、オクチルトリエトキシシラン処理酸化亜鉛粒子は、構造体を形成して液状組成物全体の静置粘度を上げることにより金属化合物である酸化亜鉛蛍光体の沈殿、凝集を抑制している可能性が示唆された。
 実施例2:各種金属化合物粒子に対する効果
 次に、酸化亜鉛蛍光体以外の以下の4種類の金属化合物粒子の再分散性に対するオクチルトリエトキシシラン処理酸化亜鉛の効果を前記「1-1)攪拌球を用いた再分散性試験」により調べた。試験した液状組成物の成分組成は表2に記載の通りであり、通常の製造方法に従って製造した:
 1)処方例7,8:ステアリン酸処理酸化亜鉛蛍光体(比重5.6、粒子径3μm)
 2)処方例9,10:チタン酸マグネシウム蛍光体(比重4.5、粒子径3~4μm)
 3)処方例11,12:硫酸バリウム(比重4.4、粒子径10~20μm)
 4)処方例13,14:雲母チタン(比重3.1、粒子径22~74μm)
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、オクチルトリエトキシシラン処理酸化亜鉛は、ステアリン酸処理酸化亜鉛蛍光体の再分散性を向上した。従って、金属化合物粒子が表面処理してあっても、オクチルトリエトキシシラン処理酸化亜鉛の効果が認められることが分かった。同様に、オクチルトリエトキシシラン処理酸化亜鉛は、チタン酸マグネシウム、硫酸バリウム、雲母チタンの再分散性を向上し、金属化合物粒子の種類によらず効果を奏することが分かった。いずれの場合も、オクチルトリエトキシシラン処理酸化亜鉛は液状組成物の粘度を上げたが、再分散性が不良の処方例3~6と同程度であった。オクチルトリエトキシシラン処理酸化亜鉛は金属化合物粒子とともに沈降するものと思われることから、オクチルトリエトキシシラン処理酸化亜鉛は構造体を形成して液状組成物全体の静置粘度を上げるとともに、金属化合物粒子を取り囲み凝集を抑制するなど、直接的に作用して、再分散性を向上している可能性が示唆された。
 以上のことから、オクチルトリエトキシシラン処理酸化亜鉛粒子及び金属化合物粒子を含む液状組成物は、金属化合物粒子の再分散性に優れ、またオクチルトリエトキシシラン処理酸化亜鉛粒子は金属化合物粒子の再分散性を向上し、金属化合物粒子の再分散容易化剤として有用であることが分かった。

Claims (13)

  1.  (A)平均粒子径100nm以下のC5-10アルキルトリC1-3アルコキシシラン処理酸化亜鉛粒子、及び
     (B)0.2重量%以上の濃度で、比重3以上で、かつ平均粒子径1μm以上の金属化合物粒子、
    を含む、液状組成物。
  2.  前記C5-10アルキルトリC1-3アルコキシシラン処理酸化亜鉛粒子の濃度が1重量%以上である、請求項1に記載の液状組成物。
  3.  液状組成物の粘度が10000mPa・s以下である、請求項1又は2に記載の液状組成物。
  4.  前記金属化合物粒子が、硫酸バリウム、雲母チタン、酸化亜鉛、酸化亜鉛蛍光体、チタン酸マグネシウム、チタン酸マグネシウム蛍光体、リン酸カルシウム、リン酸カルシウムセリウム蛍光体及びオキシ塩化ビスマスからなる群から選ばれる1又は複数種の粉末である、請求項1~3のいずれか1項に記載の液状組成物。
  5.  前記C5-10アルキルトリC1-3アルコキシシラン処理酸化亜鉛粒子がオクチルトリエトキシシラン処理酸化亜鉛粒子又はオクチルトリメトキシシラン処理酸化亜鉛粒子である、請求項1~4のいずれか1項に記載の液状組成物。
  6.  沈殿する前記金属化合物粒子が再分散性である、請求項1~5のいずれか1項に記載の液状組成物。
  7.  油中水型組成物である、請求項1~6のいずれか1項に記載の液状組成物。
  8.  日焼け止め化粧料である、請求項1~7のいずれか1項に記載の液状組成物。
  9.  C5-10アルキルトリC1-3アルコキシシラン処理酸化亜鉛粒子を有効成分として含む、液状組成物中で沈殿及び凝集する金属化合物粒子の再分散容易化剤。
  10.  前記金属化合物粒子が、比重3以上で、かつ平均粒子径1μm以上の粉末である、請求項9に記載の再分散容易化剤。
  11.  前記金属化合物粒子が、硫酸バリウム、雲母チタン、酸化亜鉛、酸化亜鉛蛍光体、チタン酸マグネシウム、チタン酸マグネシウム蛍光体、リン酸カルシウム、リン酸カルシウムセリウム蛍光体及びオキシ塩化ビスマスからなる群から選ばれる1又は複数種の粉末である、請求項9又は10に記載の再分散容易化剤。
  12.  前記C5-10アルキルトリC1-3アルコキシシラン処理酸化亜鉛粒子がオクチルトリエトキシシラン処理酸化亜鉛粒子又はオクチルトリメトキシシラン処理酸化亜鉛粒子である、請求項9~11のいずれか1項に記載の再分散容易化剤。
  13.  液状組成物中で沈殿、凝集する金属化合物粒子の再分散のための、請求項9~12のいずれか1項に記載の再分散容易化剤の使用。
PCT/JP2022/013642 2021-05-28 2022-03-23 液状組成物 WO2022249695A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023524043A JPWO2022249695A1 (ja) 2021-05-28 2022-03-23
CN202280031594.5A CN117222394A (zh) 2021-05-28 2022-03-23 液态组合物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-090643 2021-05-28
JP2021090643 2021-05-28

Publications (1)

Publication Number Publication Date
WO2022249695A1 true WO2022249695A1 (ja) 2022-12-01

Family

ID=84229841

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/013642 WO2022249695A1 (ja) 2021-05-28 2022-03-23 液状組成物

Country Status (3)

Country Link
JP (1) JPWO2022249695A1 (ja)
CN (1) CN117222394A (ja)
WO (1) WO2022249695A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004323462A (ja) * 2003-04-28 2004-11-18 Kanebo Ltd 化粧料
JP2007084478A (ja) * 2005-09-21 2007-04-05 Tayca Corp 化粧料
JP2012111726A (ja) * 2010-11-26 2012-06-14 Shiseido Co Ltd 日焼け止め水中油型乳化化粧料
JP2015044879A (ja) * 2011-11-30 2015-03-12 花王株式会社 水中油型乳化化粧料
JP2015124172A (ja) * 2013-12-26 2015-07-06 株式会社 資生堂 油中水型乳化日焼け止め化粧料
JP2019094280A (ja) * 2017-11-20 2019-06-20 花王株式会社 水中油型乳化化粧料
JP2020050811A (ja) * 2018-09-28 2020-04-02 住友大阪セメント株式会社 表面処理金属酸化物粒子、分散液、組成物および化粧料

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004323462A (ja) * 2003-04-28 2004-11-18 Kanebo Ltd 化粧料
JP2007084478A (ja) * 2005-09-21 2007-04-05 Tayca Corp 化粧料
JP2012111726A (ja) * 2010-11-26 2012-06-14 Shiseido Co Ltd 日焼け止め水中油型乳化化粧料
JP2015044879A (ja) * 2011-11-30 2015-03-12 花王株式会社 水中油型乳化化粧料
JP2015124172A (ja) * 2013-12-26 2015-07-06 株式会社 資生堂 油中水型乳化日焼け止め化粧料
JP2019094280A (ja) * 2017-11-20 2019-06-20 花王株式会社 水中油型乳化化粧料
JP2020050811A (ja) * 2018-09-28 2020-04-02 住友大阪セメント株式会社 表面処理金属酸化物粒子、分散液、組成物および化粧料

Also Published As

Publication number Publication date
CN117222394A (zh) 2023-12-12
JPWO2022249695A1 (ja) 2022-12-01

Similar Documents

Publication Publication Date Title
US9662280B2 (en) Self-dispersible coated metal oxide powder, and process for production and use
US6197282B1 (en) Fine ultraviolet screening particles, process for preparing the same, and cosmetic preparation
JP6889998B2 (ja) 組成物
JP5808083B2 (ja) 日焼け止め化粧料
EP0801941B1 (en) Cosmetics
WO2007069430A1 (ja) 微粒子酸化チタン分散物及びそれを含む化粧料
JP2023093715A (ja) 複合粉体、皮膚外用組成物、及び無機蛍光粉体の蛍光強度増強方法
US20210322296A1 (en) Aqueous dispersion composition and use thereof
KR20230002539A (ko) 표면 개질 산화 아연 입자, 분산액, 화장료
JP4011799B2 (ja) 日焼け止め化粧料
WO2020067406A1 (ja) 表面処理金属酸化物粒子、分散液、組成物、化粧料および表面処理金属酸化物粒子の製造方法
WO2022249695A1 (ja) 液状組成物
JP2007099686A (ja) 微粒子酸化鉄油性分散物
JP2020055737A (ja) 表面処理金属酸化物粒子、分散液、組成物、化粧料および表面処理金属酸化物粒子の製造方法
EP4144696A1 (en) Surface-modified zinc oxide particles, liquid dispersion, and cosmetic
US20240139085A1 (en) Surface-modified zinc oxide particles, dispersion liquid, cosmetic preparation, and method for producing surface-modified zinc oxide particles
US20240207151A1 (en) Liquid composition
JP2001207060A (ja) 微粒子粉体分散物及び化粧料
WO2022264841A1 (ja) 水中油型乳化化粧料
WO2010140470A1 (ja) 複合化粉体及びそれを配合したメーキャップ化粧料
WO2022264840A1 (ja) 水中油型乳化化粧料
WO2022224672A1 (ja) 水中油型乳化化粧料
WO2023145613A1 (ja) 水中油型乳化皮膚外用剤
KR100343319B1 (ko) 복합 실리콘 일레스토머 분체의 제조방법 및 이 방법에의해 제조된 분체를 함유하는 일소방지용 화장료 조성물
WO2023026999A1 (ja) 粉体含有組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22810971

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280031594.5

Country of ref document: CN

Ref document number: 18557674

Country of ref document: US

Ref document number: 2023524043

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22810971

Country of ref document: EP

Kind code of ref document: A1