WO2022249545A1 - 制御装置、制御方法及び制御プログラム - Google Patents

制御装置、制御方法及び制御プログラム Download PDF

Info

Publication number
WO2022249545A1
WO2022249545A1 PCT/JP2022/003497 JP2022003497W WO2022249545A1 WO 2022249545 A1 WO2022249545 A1 WO 2022249545A1 JP 2022003497 W JP2022003497 W JP 2022003497W WO 2022249545 A1 WO2022249545 A1 WO 2022249545A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
control
operations
sensor
remaining battery
Prior art date
Application number
PCT/JP2022/003497
Other languages
English (en)
French (fr)
Inventor
祐治 高橋
亮二 門田
Original Assignee
ソニーグループ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーグループ株式会社 filed Critical ソニーグループ株式会社
Priority to DE112022002820.3T priority Critical patent/DE112022002820T5/de
Priority to JP2023523970A priority patent/JPWO2022249545A1/ja
Publication of WO2022249545A1 publication Critical patent/WO2022249545A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C17/00Arrangements for transmitting signals characterised by the use of a wireless electrical link

Definitions

  • the present disclosure relates to a control device, control method, and control program.
  • Patent Document 1 discloses a technique for transmitting data from a sensor using power generated by ambient light.
  • the operations up to data transmission include, for example, the operation of writing data from the sensor, the operation of recognizing the written data, and the operation of transmitting the data after recognition. Due to insufficient power generation, etc., there are times when all these operations cannot be performed. If the data write operation is postponed, there is room for consideration in the operation control, such as the loss of data.
  • One aspect of the present disclosure makes it possible to suppress data loss.
  • a control device is a control device that controls a plurality of operations that consume energy-harvested power in at least one control mode out of a plurality of control modes, wherein the plurality of operations are controlled by sensors.
  • operation B including recognizing the data written by operation A
  • operation C including transmitting the data after recognition by operation B
  • the plurality of control modes includes a sensor A first control mode for controlling a plurality of operations so that at least one of operation B and operation C for data from the previous sensor is given priority over operation A for data from the sensor; and a second control mode for controlling a plurality of operations such that operation A on data from earlier sensors takes precedence over operations B and C on data from earlier sensors.
  • a control method is a control method for controlling a plurality of operations that consume energy-harvested power in at least one control mode out of a plurality of control modes, wherein the plurality of operations are controlled by sensors.
  • operation B including recognizing the data written by operation A
  • operation C including transmitting the data after recognition by operation B
  • the plurality of control modes includes a sensor A first control mode for controlling a plurality of operations so that at least one of operation B and operation C for data from the previous sensor is given priority over operation A for data from the sensor; and a second control mode for controlling a plurality of operations such that operation A on data from earlier sensors takes precedence over operations B and C on data from earlier sensors.
  • a control program is a control program that causes a computer to control a plurality of operations that consume energy-harvesting power in at least one control mode out of a plurality of control modes, wherein the plurality of operations are , operation A including writing data from the sensor, operation B including recognizing data written by operation A, and operation C including transmitting data after recognition by operation B, and a plurality of control modes.
  • the plurality of operations are , operation A including writing data from the sensor, operation B including recognizing data written by operation A, and operation C including transmitting data after recognition by operation B, and a plurality of control modes.
  • FIG. 1 is a diagram showing an example of a schematic configuration of a system according to an embodiment
  • FIG. FIG. 4 is a diagram showing an example of control including control in a first control mode
  • FIG. FIG. 5 is a diagram showing an example of control including control in a second control mode
  • It is a figure which shows a comparative example.
  • FIG. 10 is a diagram showing an example of control including control in a third control mode
  • FIG. 10 is a diagram showing an example of control including control in a third control mode
  • FIG. 10 is a diagram showing an example of control including control in a third control mode
  • FIG. 10 is a diagram showing an example of control including control in a third control mode
  • FIG. 10 is a diagram illustrating an example of control when the amount of additional power fluctuates; 4 is a flow chart showing an example of processing executed in a control device; It is a figure which shows the example of the hardware constitutions of a control apparatus.
  • FIG. 1 is a diagram showing an example of a schematic configuration of a system according to an embodiment.
  • the system 100 includes a sensor 1 , a storage device 2 , a recognition device 3 , a transmission device 4 , a control device 5 , a battery monitoring device 6 , a battery 7 and an energy harvester 8 . Since the energy harvester 8 performs energy harvesting as will be described later, the system 100 can also be referred to as an energy harvesting system, an energy harvesting system, or the like.
  • the sensor 1 detects various targets.
  • the sensor 1 can be any type of sensor installed anywhere.
  • the sensor 1 may be a sensor device for IoT (Internet of Things).
  • the sensor 1 may be a temperature sensor, a humidity sensor, an illuminance sensor, a motion sensor, an air pressure sensor, a weather sensor, and the like.
  • the sensor 1 may repeatedly performs detection, for example, at predetermined intervals or at designated timing. Some detections by sensor 1 are schematically illustrated as dashed arrows pointing towards sensor 1 .
  • the data indicating the detection result of the sensor 1 is referred to as data DAT and illustrated.
  • the data DAT describes, for example, sensor information and detection results in association with each other.
  • the sensor information may be information for specifying the type (model, etc.) of the sensor 1 or may be identification information (sensor ID) for uniquely specifying the sensor 1 .
  • the data DAT may be data in which sensor information, detection time, and detected temperature are associated with each other.
  • the data DAT from the sensor 1 is written to the storage device 2 and taken into the system 100.
  • the storage device 2 stores the written data DAT.
  • operation A the operation of writing the data DAT from the sensor 1 to the storage device 2 (the operation of retrieving the data DAT) is referred to as "operation A" and schematically indicated by an outline arrow.
  • the recognition device 3 recognizes the data DAT written in the storage device 2.
  • An example of recognition is the necessity of transmission of data DAT by the transmission device 4, which will be described later.
  • the recognition device 3 recognizes from the contents of the data DAT whether or not the data DAT is data DAT that needs to be transmitted.
  • the recognition device 3 recognizes (extracts) the data DAT detected at the time, time slot, or the like when transmission is required, as the data DAT that needs to be transmitted.
  • the recognition device 3 recognizes data DAT indicating a value within a predetermined range as data DAT that needs to be transmitted.
  • a data table in which the content of the data DAT and the recognition result are associated with each other may be used, or an algorithm for calculating the recognition result from the content of the data DAT may be used.
  • the recognition device 3 generates DATrecog corresponding to the data DAT recognized as requiring transmission, and writes it to the storage device 2 .
  • the data DATrecog describes, for example, the original data DAT and information (such as a flag) indicating that the data DAT has been recognized in association with each other.
  • the original data DAT is deleted from the storage device 2 .
  • the data DATrecog may update (overwrite) the original data DAT.
  • Data DAT recognized by the recognition device 3 as not requiring transmission is deleted (discarded) from the storage device 2 .
  • the recognition device 3 may collectively recognize a plurality of data DAT, which will be described later.
  • operations such as recognition of data DAT by the recognition device 3, generation of data DATrecog, writing to the storage device 2, and deletion of the original data DAT from the storage device 2 are referred to as "operation B". , and schematically indicated by white arrows.
  • the transmission device 4 transmits the data DATrecog written in the storage device 2 .
  • An example of the destination is a server device (cloud computer, etc.) (not shown).
  • the server device or the like receives and collects the data DATrecog from the transmission device 4 via the network.
  • the collected data DATrecog are used (analyzed, etc.) in various ways.
  • the data DATrecog sent by the sending device 4 is deleted from the storage device 2 .
  • operations such as transmission of the data DATrecog by the transmission device 4 and deletion of the data DATrecog from the storage device 2 are referred to as "operation C" and schematically indicated by white arrows.
  • the control device 5 performs overall control of the system 100 .
  • the control by the control device 5 includes the control of the operations A to C described above. Details will be described later.
  • the storage battery monitoring device 6, the storage battery 7, and the energy harvester 8 will be described in the order of the energy harvester 8, the storage battery 7, and the storage battery monitoring device 6 for convenience.
  • the energy harvester 8 is, for example, an energy harvesting device that performs energy harvesting using natural energy. Various types of energy harvesting may be used. Photovoltaic power generation, vibration power generation, etc. may be performed by the energy harvester 8, to mention just a few examples.
  • the power generated by the energy harvester 8 may be referred to as "environmentally harvested power”.
  • the energy harvested power is charged in the storage battery 7 . This amount of power charged in the storage battery 7 may be referred to as "additional power amount”.
  • the storage battery 7 is charged with the energy harvesting power described above and discharges (supplies) the power consumed by the operation of the system 100 .
  • the technology disclosed relates to the power consumed by the operations A to C described above, among the operations of the system 100 . In the following, power consumed by operations other than operations A to C in system 100 will be ignored. Examples of other operations include control of operations A to C by the control device 5, monitoring of the storage battery 7 by the storage battery monitoring device 6, charging of the storage battery 7 from the energy harvester 8, and the like.
  • the storage battery monitoring device 6 monitors the storage battery 7. For example, the storage battery monitoring device 6 monitors the remaining capacity of the storage battery 7 . Since the method of monitoring the remaining capacity of the storage battery 7 is well known, detailed description thereof will not be given here. Hereinafter, the remaining capacity of the storage battery 7 may be simply referred to as "remaining battery capacity”.
  • the control device 5 controls the operations A to C.
  • FIG. The control device 5 controls the operations A to C by transmitting and receiving control signals, communication signals, etc. to and from the sensor 1, the storage device 2, the recognition device 3, the transmission device 4, the storage battery monitoring device 6, and the like.
  • the control device 5 controls the sensor 1 and the like so that the operation A is performed.
  • the control device 5 controls the recognition device 3 and the like so that the operation B is performed.
  • the control device 5 controls the transmission device 4 and the like so that the operation C is performed.
  • control device 5 controls the operations A to C based on the monitoring result of the storage battery 7 by the storage battery monitoring device 6 .
  • An example of the monitoring result of the storage battery 7 is the remaining battery level.
  • Another example of the monitoring result is the amount of additional power, which is calculated based on changes in remaining battery power, for example.
  • the control device 5 can also control the operations A to C based on the remaining memory capacity (described later) of the storage device 2 .
  • control device 5 controls the operations A to C in at least one control mode among the plurality of control modes.
  • control the control of the operations A to C by the control device 5 may be simply referred to as "control” unless otherwise specified.
  • control mode will be described in order.
  • the first control mode is selected when there is sufficient remaining battery power (which may be additional power). For example, the control device 5 performs control in the first control mode when the remaining battery level is equal to or higher than the first level.
  • An example of a first level is the amount of power consumed if three operations, operations A through C, are performed simultaneously.
  • the first level is not necessarily fixed at one value. For example, the first level may be dynamically changed according to the status of the system 100 or the like.
  • the control device 5 performs control so that at least one of the operation B and the operation C for the data DAT from the sensor 1 is given priority over the operation A for the data DAT from the sensor 1. do.
  • FIG. 2 is a diagram showing an example of control including control in the first control mode.
  • the “remaining battery level (before operation)” is the remaining battery level after charging with the additional power.
  • Battery level (after operation) is the battery after discharging the power consumption of operation A to operation C performed at that time (some or all operations may not be performed depending on the time) remaining amount.
  • the unit of electric energy is the arbitrary unit a.u. Assume that the amount of electric power required for each of the operations A to C is 1.0.
  • the additional power amount is 10.0 at any of time t1 to time t10. Assume that the initial battery level (before time t1) is 0.0.
  • Data DAT1 to DAT6 are exemplified as data DAT to be newly captured. Among them, data DAT1, data DAT2, data DAT4 and data DAT6 are recognized by the recognition device 3 as requiring transmission, and data DAT3 and data DAT5 are recognized by the recognition device 3 as unnecessary to be transmitted (can be discarded). do. DATrecogs corresponding to DAT1, data DAT2, data DAT4 and data DAT6 are shown as data DATrecog1, data DATrecog2, data DATrecog4 and data DATrecog6.
  • the remaining battery level (before operation) becomes 10.0 due to the additional power amount of 10.0.
  • the control device 5 controls so that the operation A for the new data DAT1 is performed.
  • the operation A consumes 1.0 of electric power, and the remaining battery level (after the operation) becomes 9.0.
  • the remaining battery level becomes 19.0 due to the additional power amount of 10.0.
  • the control device 5 controls such that the operation B for the data DAT1 and the operation A for the new data DAT2 are performed. Power consumption of 2.0 is consumed by operation B and operation A, and the remaining battery level is 17.0.
  • the remaining battery level becomes 27.0 due to the additional power amount of 10.0.
  • the control device 5 performs control so that operation C for data DATrecog1, operation B for data DAT2, and operation A for new data DAT3 are performed. Power consumption of 3.0 is consumed by operation C to operation A, and the remaining battery level becomes 24.0.
  • the remaining battery level becomes 34.0 due to the additional power amount of 10.0.
  • the control device 5 performs control so that operation C for data DATrecog2, operation B for data DAT3, and operation A for new data DAT4 are performed. Power consumption of 3.0 is consumed by operation C to operation A, and the remaining battery level is 31.0.
  • the remaining battery level becomes 41.0 due to the additional power amount of 10.0.
  • the control device 5 controls such that operation B for DAT4 and operation A for new data DAT5 are performed. Power consumption of 2.0 is consumed by operation B and operation A, and the remaining battery level is 39.0.
  • the remaining battery level becomes 49.0 due to the additional power amount of 10.0.
  • the control device 5 controls so that operation C for data DATrecog4, operation B for data DAT5, and operation A for new data DAT6 are performed. Power consumption of 3.0 is consumed by operation C to operation A, and the remaining battery level is 46.0.
  • the control device 5 controls such that the operation B for the data DAT6 is performed.
  • the operation B consumes 1.0 of electric power, and the remaining battery level becomes 55.0.
  • the remaining battery level becomes 65.0 due to the additional power amount of 10.0.
  • the control device 5 controls so that the operation C for the data DATrecog6 is performed.
  • the operation C consumes 1.0 of electric power, and the remaining battery level becomes 64.0.
  • the power source for operations A to C is the power generated by the energy harvester 8.
  • the surrounding environment changes depending on the location of the energy harvester 8 provided together with the sensor 1, the time (time zone), and the like, and the amount of power generated may fluctuate.
  • the energy harvester 8 is a photovoltaic power generation device
  • the amount of power generated may decrease when it is cloudy or the room is not sufficiently lit. Due to fluctuations in the amount of power generated, the remaining battery capacity may also fluctuate, resulting in a shortage of the remaining battery capacity. If the amount of generated electric power or remaining battery power is insufficient, it may become impossible to perform control in the above-described first control mode. To deal with this, there are control modes other than the first control mode.
  • the second control mode is selected when there is not enough remaining battery power (which may be additional power), in other words, when the remaining battery power may be insufficient.
  • the control device 5 performs control in the second control mode when the remaining battery charge is less than the first level, more specifically, when the remaining battery charge is less than the first level and equal to or higher than the second level.
  • An example of the second level is the amount of power consumed when two operations including operation A among operations A to C are performed simultaneously.
  • the second level does not necessarily have to be fixed to one value, and may be dynamically changed according to the situation of the system 100, for example.
  • the control device 5 performs control so that the operation A for the data DAT from the sensor 1 is given priority over the operations B and C for the data DAT from the sensor 1 earlier than that. . Further, of the operations B and C for the previous data DAT, the control device 5 may perform control so that the operation C is preferentially performed. By prioritizing the operation C over the operation B, the transmission of the data DAT can be completed preferentially. Delays in transmission of data DAT are minimized.
  • FIG. 3 is a diagram showing an example of control including control in the second control mode.
  • the additional power amount is 2.0 at any time from time t11 to time t20.
  • the remaining battery level becomes 2.0 due to the additional power amount of 2.0.
  • the control device 5 controls so that the operation A for the new data DAT1 is performed.
  • the operation A consumes 1.0 of electric power, and the remaining battery level becomes 1.0.
  • the remaining battery level becomes 3.0 due to the additional power amount of 2.0.
  • the control device 5 controls such that the operation B for the data DAT1 and the operation A for the new data DAT2 are performed. Power consumption of 2.0 is consumed by operation B and operation A, and the remaining battery level becomes 1.0.
  • the remaining battery level becomes 3.0 due to the additional power amount of 2.0.
  • the control device 5 performs control so that operation C for data DATrecog1, operation A for new data DAT3, and operation B for data DAT2 are performed. Power consumption of 3.0 is consumed by operation C to operation A, and the remaining battery level becomes 0.0.
  • the remaining battery level becomes 2.0 due to the additional power amount of 2.0.
  • the control device 5 controls such that the operation A for the new data DAT4 and the operation C for the data DATrecog2 are performed. Operation B for data DAT3 fetched earlier is postponed. Power consumption of 2.0 is consumed by operation A and operation C, and the remaining battery level becomes 0.0.
  • the remaining battery level becomes 2.0 due to the additional power amount of 2.0.
  • the control device 5 controls such that operation A for the new data DAT5 and operation B for the new data DAT3 are performed. Power consumption of 2.0 is consumed by operation A and operation B, and the remaining battery level becomes 0.0.
  • the remaining battery level becomes 2.0 due to the additional power amount of 2.0.
  • the control device 5 controls such that operation A for the new data DAT6 and operation B for the new data DAT4 are performed. Power consumption of 2.0 is consumed by operation A and operation B, and the remaining battery level becomes 0.0.
  • control device 5 controls so that the operation C for the data DATrecog4 and the operation B for the data DAT5 are performed. Power consumption of 2.0 is consumed by operation C and operation B, and the remaining battery level becomes 0.0.
  • the remaining battery level becomes 2.0 due to the additional power amount of 2.0.
  • the control device 5 controls so that the operation B for the data DATrecog6 is performed.
  • the operation B consumes 1.0 of electric energy, and the remaining battery level becomes 1.0.
  • the remaining battery level becomes 3.0 due to the additional power amount of 2.0.
  • the control device 5 controls so that the operation C for the data DATrecog6 is performed.
  • the remaining battery level becomes 4.0 due to the additional power amount of 2.0. No action is taken.
  • the second control mode gives priority to operation A over operations B and C for the previous data DAT.
  • the second control mode is controlled such that the operation A for the data DAT4 is given priority over the operation B for the data D3 and the operation C for the data D2.
  • Operation C for data D2 is performed with priority over operation B for data D3. If an operation B for data D3 or an operation C for data D4 is preferentially performed instead of operation A for data D4, operation A cannot be performed due to insufficient remaining battery power, and data DAT4 cannot be fetched.
  • the second control mode suppresses such omission of data DAT. This will also become clear from the comparative example described below with reference to FIG.
  • FIG. 4 is a diagram showing a comparative example. At any of time t11E to time t20E, the additional power amount is 2.0, as in FIG. 3 described above. However, in the comparative example, only control in the first control mode is performed.
  • the remaining battery level becomes 2.0 due to the additional power amount of 2.0.
  • An operation A is performed for the new data DAT1.
  • the operation A consumes 1.0 of electric power, and the remaining battery level becomes 1.0.
  • the remaining battery level becomes 3.0 due to the additional power amount of 2.0.
  • Operation B for data DAT1 and operation A for new data DAT2 are performed.
  • Power consumption of 2.0 is consumed by operation B and operation A, and the remaining battery level becomes 1.0.
  • the remaining battery level becomes 3.0 due to the additional power amount of 2.0.
  • Operation C for data DATrecog1, operation B for data DAT2, and operation A for new data DAT3 are performed.
  • Power consumption of 3.0 is consumed by operation C to operation A, and the remaining battery level becomes 0.0.
  • the remaining battery level becomes 2.0 due to the additional power amount of 2.0.
  • Operation A is performed for the new data DAT4.
  • the operation A consumes 1.0 of electric power, and the remaining battery level becomes 1.0.
  • the remaining battery level becomes 3.0 due to the additional power amount of 2.0.
  • Operation B for data DAT4 and operation A for new data DAT6 are performed.
  • Power consumption of 2.0 is consumed by operation B and operation A, and the remaining battery level becomes 1.0.
  • the remaining battery level becomes 3.0 due to the additional power amount of 2.0.
  • Operation C for data DATrecog4, operation B for data DAT5, and operation A for new data DAT6 are performed.
  • Power consumption of 2.0 is consumed by operation C to operation A, and the remaining battery level becomes 0.0.
  • the remaining battery level becomes 3.0 due to the additional power amount of 2.0.
  • Operation C for data DATrecog6 is performed.
  • the operation C consumes 1.0 of electric power, and the remaining battery level becomes 2.0.
  • the third control mode is selected when the remaining battery power (which may be additional power) may become insufficient.
  • the control device 5 performs control in the second control mode when the remaining battery level is less than the second level, more specifically, when the remaining battery level is less than the second level and equal to or higher than the third level.
  • An example of a third level is the amount of power consumed when one of actions A-C, and more particularly action A, is performed.
  • the third level does not necessarily have to be fixed to one value, and may be dynamically changed according to the situation of the system 100, for example.
  • the control device 5 in addition to the contents of the second control mode described above, the control device 5 collectively operates on a plurality of data DAT when a plurality of data DAT are written in the storage device 2. Control so that B is performed.
  • the recognition device 3 collectively recognizes a plurality of data DAT written in the storage device 2 . If at least one data DAT among the plurality of data DATs is a data DAT that requires transmission, one data DATrecog (compressed data) corresponding to the plurality of data DATs is generated. By transmitting the data DATrecog thus obtained, it is possible to transmit information of a plurality of data DATs at once. However, there is a possibility that the accuracy in the time direction will decrease. For example, it may not be possible to accurately grasp which data DAT obtained at what timing among the plurality of original data DATs corresponds to certain information included in the data DATrecog. Even so, it is still possible to obtain the advantage of being able to prevent the data DAT from being lost.
  • control device 5 may control such that after a predetermined number of data DAT are written to the storage device 2, the operation B is collectively performed on that number of data DAT. This will be described with reference to FIG.
  • FIG. 5 is a diagram showing an example of control including control in the third control mode.
  • the additional power amount is 1.5 at any of time t21 to time t30.
  • the operation B is collectively performed on the two data DAT.
  • the remaining battery level becomes 1.5 due to the additional power amount of 1.5.
  • the control device 5 controls so that the operation A for the new data DAT1 is performed.
  • the operation A consumes 1.0 of electric power, and the remaining battery level becomes 0.5.
  • the remaining battery level becomes 2.0 due to the additional power amount of 1.5.
  • the control device 5 controls such that the operation A for the new data DAT2 is performed.
  • the operation A consumes 1.0 of electric power, and the remaining battery level becomes 1.0.
  • the remaining battery level becomes 2.5 due to the additional power amount of 1.5.
  • the control device 5 performs control so that operation A is performed on new data DAT3, and operation B is performed collectively on data DAT1 and data DAT2.
  • the data DAT1 and the data DAT2 after being collectively recognized are shown as data DATrecog12.
  • the operation A and the operation B consume 2.0 of electric power, and the remaining battery level becomes 0.5.
  • the remaining battery level becomes 2.0 due to the additional power amount of 1.5.
  • the control device 5 controls so that the operation A for the new data DAT4 and the operation C for the data DATrecog12 are performed. Power consumption of 2.0 is consumed by operation A and operation C, and the remaining battery level becomes 0.0.
  • the remaining battery level becomes 1.5 due to the additional power amount of 1.5.
  • the control device 5 controls such that the operation A for the new data DAT5 is performed.
  • the operation A consumes 1.0 of electric power, and the remaining battery level becomes 0.5.
  • the remaining battery level becomes 2.0 due to the additional power amount of 1.5.
  • the control device 5 performs control so that operation A is performed on the new data DAT6, and operation B is collectively performed on the data DAT3 and data DAT4. Data DAT3 and data DAT4 after being collectively recognized are shown as data DATrecog34. Power consumption of 2.0 is consumed by operation A and operation B, and the remaining battery level becomes 0.0.
  • the control device 5 controls so that the operation C for the data DATrecog 34 is performed.
  • the operation C consumes 2.0 of electric power, and the remaining battery level becomes 0.5.
  • the remaining battery level becomes 2.0 due to the additional power amount of 1.5.
  • the control device 5 performs control so that the operation B is collectively performed on the data DAT5 and the data DAT6.
  • the data DAT5 and data DAT6 after being collectively recognized are shown as data DATrecog56.
  • the operation B consumes 1.0 of electric energy, and the remaining battery level becomes 1.0.
  • the remaining battery level becomes 2.5 due to the additional power amount of 1.5.
  • the control device 5 controls so that the operation C for the DATrecog 56 is performed.
  • the operation C consumes 1.0 of electric power, and the remaining battery level becomes 1.5.
  • operation B is collectively performed on a plurality of data DAT in the third control mode. Specifically, in the above example, at time t23, operation B is collectively performed on data DAT1 and data DAT2. At time t26, operation B is collectively performed on data DAT3 and data DAT4. At time t28, operation B is collectively performed on data DAT5 and data DAT6.
  • the amount of power consumed by the operation B can be reduced, for example, compared to the case where the operation B is performed for each of the data DAT1 to DAT6. Accordingly, the remaining battery capacity for performing the operation A can be secured, and the DAT can be prevented from being missed.
  • the control device 5 may perform control so that the operation B is collectively performed on all the data DAT written to the storage device 2 by the timing at which the operation B can be performed. This will be described with reference to FIG.
  • FIG. 6 is a diagram showing an example of control including control in the third control mode.
  • Time t31 is the same as time t21 in FIG. 5 described above, so description thereof will not be repeated.
  • the remaining battery level becomes 2.0 due to the additional power amount of 1.5.
  • the control device 5 controls such that the operation A for the new data DAT2 and the operation B for the data DAT are performed. Power consumption of 2.0 is consumed by operation A and operation B, and the remaining battery level becomes 0.0.
  • the remaining battery level becomes 1.5 due to the additional power amount of 1.5.
  • the control device 5 controls so that the operation A for the new data DAT3 is performed.
  • the operation A consumes 1.0 of electric power, and the remaining battery level becomes 0.5.
  • the remaining battery level becomes 2.0 due to the additional power amount of 1.5.
  • the control device 5 controls such that the operation A for the new data DAT4 and the operation C for the data DATrecog1 are performed. Power consumption of 2.0 is consumed by operation A and operation C, and the remaining battery level becomes 0.0.
  • the remaining battery level becomes 1.5 due to the additional power amount of 1.5.
  • the control device 5 controls such that the operation A for the new data DAT5 is performed.
  • the operation A consumes 1.0 of electric power, and the remaining battery level becomes 0.5.
  • the remaining battery level becomes 2.0 due to the additional power amount of 1.5.
  • the control device 5 performs control so that the operation A is performed on the new data DAT6 and the operation B is performed collectively on the data DAT2 to DAT5.
  • the data DAT2 to DAT5 that have been collectively recognized are shown as data DATrecog2345. Power consumption of 2.0 is consumed by operation A and operation B, and the remaining battery level becomes 0.0.
  • the control device 5 controls so that the operation C for the data DATrecog2345 is performed.
  • the operation C consumes 1.0 of electric power, and the remaining battery level becomes 0.5.
  • the remaining battery level becomes 2.0 due to the additional power amount of 1.5.
  • the control device 5 controls such that the operation B for the data DAT6 is performed.
  • the operation B consumes 1.0 of electric energy, and the remaining battery level becomes 1.0.
  • the remaining battery level becomes 2.5 due to the additional power amount of 1.5.
  • the control device 5 controls so that the operation C for the data DATrecog6 is performed.
  • the operation C consumes 1.0 of electric power, and the remaining battery level becomes 1.5.
  • operation B is collectively performed on data DAT2 to DAT5.
  • the amount of power consumed by the operation B can be reduced, for example, compared to the case where the operation B is performed for each of the data DAT2 to DAT5. Accordingly, it is possible to secure the remaining battery power for performing the operation A, and to prevent the data DAT from being lost.
  • operation B is collectively performed on more data DAT. This will be described with reference to FIGS. 7 and 8.
  • FIG. 7 is a diagram showing an example of control including control in the third control mode.
  • the additional power amount is 1.0 at any time from time t41 to time t50.
  • the operation B is collectively performed on the three data DAT.
  • the remaining battery level becomes 1.0 due to the additional power amount of 1.0.
  • the control device 5 controls so that the operation A for the new data DAT1 is performed.
  • the operation A consumes 1.0 of electric power, and the remaining battery level becomes 0.0.
  • the remaining battery level becomes 1.0 due to the additional power amount of 1.0.
  • the control device 5 controls such that the operation A for the new data DAT2 is performed.
  • the operation A consumes 1.0 of electric power, and the remaining battery level becomes 0.0.
  • the remaining battery level becomes 1.0 due to the additional power amount of 1.0.
  • the control device 5 controls so that the operation A for the new data DAT3 is performed.
  • the operation A consumes 1.0 of electric power, and the remaining battery level becomes 0.0.
  • the remaining battery level becomes 1.0 due to the additional power amount of 1.0.
  • the control device 5 controls such that the operation A for the new data DAT4 is performed.
  • the operation A consumes 1.0 of electric power, and the remaining battery level becomes 0.0.
  • the remaining battery level becomes 1.0 due to the additional power amount of 1.0.
  • the control device 5 controls such that the operation A for the new data DAT5 is performed.
  • the operation A consumes 1.0 of electric power, and the remaining battery level becomes 0.0.
  • the remaining battery level becomes 1.0 due to the additional power amount of 1.0.
  • the control device 5 controls so that the operation A for the new data DAT6 is performed. Operation A power consumption of 1.0 is consumed, and the remaining battery level becomes 0.0.
  • the control device 5 performs control so that the operation B is collectively performed on the data DAT1 to DAT3.
  • the data DAT1 to DAT3 after being collectively recognized are shown as data DATrecog123.
  • the operation B consumes 1.0 of electric power, and the remaining battery level becomes 0.0.
  • the remaining battery level becomes 1.0 due to the additional power amount of 1.0.
  • the control device 5 controls so that the operation C is performed on the data DATrecog 123 .
  • the operation C consumes 1.0 of electric energy, and the remaining battery level becomes 0.0.
  • the remaining battery level becomes 1.0 due to the additional power amount of 1.0.
  • the control device 5 performs control so that the operation B is collectively performed on the data DAT4 to DAT6.
  • the data DAT4 to data DAT6 after being collectively recognized are shown as data DATrecog456.
  • the operation B consumes 1.0 of electric power, and the remaining battery level becomes 0.0.
  • the remaining battery level becomes 1.0 due to the additional power amount of 1.0.
  • the control device 5 controls so that the operation C is performed on the data DATrecog 456 .
  • the operation C consumes 1.0 of electric energy, and the remaining battery level becomes 0.0.
  • operation B is collectively performed on data DAT1 to DAT3
  • operation B is collectively performed on data DAT4 to DAT6.
  • the amount of power consumed by the operation B can be reduced, for example, compared to the case where the operation B is performed for each of the data DAT1 to DAT6. Accordingly, it is possible to secure the remaining battery power for performing the operation A, and to prevent the data DAT from being lost.
  • FIG. 8 is a diagram showing an example of control including control in the third control mode.
  • the operation B is collectively performed on all the data DAT written in the storage device 2 by the timing at which the operation B can be performed.
  • Time t51 to time t56 are the same as time t41 to time t46 in FIG. 7 described above, so description thereof will not be repeated.
  • the control device 5 performs control so that the operation B is collectively performed on the data DAT1 to DAT6.
  • the data DAT1 to DAT6 after being collectively recognized are shown as data DATrecog123456.
  • the operation B consumes 1.0 of electric power, and the remaining battery level becomes 0.0.
  • the remaining battery level becomes 1.0 due to the additional power amount of 1.0.
  • the control device 5 controls so that the operation C is performed on the data DATrecog123456.
  • the operation C consumes 1.0 of electric energy, and the remaining battery level becomes 0.0.
  • the remaining battery level becomes 2.0 due to the additional power amount of 1.0. No action is taken.
  • operation B is collectively performed on data DAT1 to data DAT6.
  • the amount of power consumed by the operation B can be reduced, for example, compared to the case where the operation B is performed for each of the data DAT1 to DAT6. It is possible to secure the amount of electric power for performing the operation A, and to prevent the data DAT from being lost.
  • the fourth control mode is selected when there is no free space in the remaining storage capacity (hereinafter simply referred to as "memory") in the storage device 2, that is, when the remaining memory capacity may be insufficient. .
  • the control device 5 performs control in the fourth control mode when the remaining memory capacity is less than a predetermined amount.
  • the remaining memory capacity required for writing one piece of data DAT or data DATrecog is represented as "1R".
  • the control device 5 performs control so that the operation C is preferentially performed. Note that the operation B before the operation C must be performed without fail. By preferentially performing the operation C, the data DATrecog and the data DAT that is the basis of the data DATrecog are deleted from the storage device 2, and the memory size shortage is resolved.
  • the predetermined amount examples are 2R, 1R, etc.
  • the predetermined amount may be 1R. This is because the remaining amount of memory can be recovered by performing the operation C on the data DATrecog. If only the data DAT is written to the storage device 2, the predetermined amount may be 2R. This is because the remaining memory capacity is required to perform the operation B and write the data DATrecog to the storage device 2 before the operation C.
  • the predetermined amounts are not necessarily fixed at those values, and may be dynamically changed according to the situation of the system 100, for example.
  • FIG. 9 is a diagram showing an example of control including control in the fourth control mode.
  • the additional power amount is 1.0 at any time from time t61 to time t70. It is assumed that the initial (before time t61) remaining memory capacity is 4R.
  • the remaining battery level becomes 1.0 due to the additional power amount of 1.0.
  • the remaining memory capacity (before operation) is 4R.
  • the control device 5 controls so that the operation A for the new data DAT1 is performed.
  • the operation A consumes 1.0 of electric power, and the remaining battery level becomes 0.0.
  • the remaining battery level becomes 1.0 due to the additional power amount of 1.0.
  • the remaining memory is 3R.
  • the control device 5 controls such that the operation A for the new data DAT2 is performed.
  • the operation A consumes 1.0 of electric power, and the remaining battery level becomes 0.0.
  • the remaining battery level becomes 1.0 due to the additional power amount of 1.0.
  • the remaining amount of memory is 2R.
  • the control device 5 controls so that the operation A for the new data DAT3 is performed.
  • the operation A consumes 1.0 of electric power, and the remaining battery level becomes 0.0.
  • the remaining battery level becomes 1.0 due to the additional power amount of 1.0.
  • the remaining memory is 1R.
  • the control device 5 performs control so that the operation B is preferentially performed on the data DAT1 to DAT3. Although operation A is not performed and new data DAT is lost, the data DAT1 to data DAT3, which are the sources of the data DATrecog123, are deleted from the storage device 2, and the remaining memory capacity is recovered.
  • the operation B consumes 1.0 of electric power, and the remaining battery level becomes 0.0.
  • the remaining battery level becomes 1.0 due to the additional power amount of 1.0.
  • the remaining memory is 3R.
  • the control device 5 controls such that the operation A for the new data DAT4 is performed.
  • the operation A consumes 1.0 of electric power, and the remaining battery level becomes 0.0.
  • the remaining battery level becomes 1.0 due to the additional power amount of 1.0.
  • the remaining memory is 2R.
  • the control device 5 controls such that the operation A for the new data DAT5 is performed.
  • the operation A consumes 1.0 of electric power, and the remaining battery level becomes 0.0.
  • the remaining battery level becomes 1.0 due to the additional power amount of 1.0.
  • the remaining memory is 1R.
  • the control device 5 controls so that the operation A for the new data DAT6 is performed.
  • the control device 5 controls so that the operation C for the data DATrecog 123 is performed.
  • the data DATrecog 123 is deleted from the storage device 2 and the remaining memory capacity is recovered.
  • the operation C consumes 1.0 of electric energy, and the remaining battery level becomes 0.0.
  • the remaining battery level becomes 1.0 due to the additional power amount of 1.0.
  • the remaining memory is 1R.
  • the control device 5 performs control so that the operation B is collectively performed on the data DATrecog 456 with priority. Although operation A is not performed and new data DAT is lost, the data DAT4 to data DAT6 that are the basis of the data DATrecog 456 are deleted from the storage device 2, and the remaining memory capacity is recovered.
  • the operation C consumes 1.0 of electric energy, and the remaining battery level becomes 0.0.
  • the remaining battery level becomes 1.0 due to the additional power amount of 1.0.
  • the remaining memory is 3R.
  • the control device 5 controls so that the operation C for the data DATrecog 456 is performed.
  • the operation C consumes 1.0 of electric energy, and the remaining battery level becomes 0.0.
  • the fifth control mode is selected when the remaining battery level (which may be additional power) may become insufficient.
  • the control device 5 performs control in the fifth control mode when the remaining battery level is less than the third level.
  • the control device 5 in addition to the content of the third control mode (and the fourth control mode), the control device 5 also performs the operation A on the data DAT from the sensor 1 from the sensor 1 earlier than that. control is performed so that the operation B and the operation C for the data DAT are not performed. It can also be said that the operation A is an intermittent operation.
  • FIG. 10 is a diagram showing an example of control including control in the fifth control mode.
  • the additional power amount is 0.8 at any of time t71 to time t80.
  • the remaining battery level becomes 0.8 due to the additional power amount of 0.8.
  • the control device 5 controls so that the operation A is not performed. New data DAT is lost.
  • the remaining battery level becomes 1.6 due to the additional power amount of 0.8.
  • the control device 5 controls so that the operation A for the new data DAT1 is performed.
  • the operation A consumes 1.0 of electric power, and the remaining battery level becomes 0.6.
  • the remaining battery level becomes 1.4 due to the additional power amount of 0.8.
  • the control device 5 controls such that the operation A for the new data DAT2 is performed.
  • the operation A consumes 1.0 of electric power, and the remaining battery level becomes 0.4.
  • the remaining battery level becomes 1.2 due to the additional power amount of 0.8.
  • the control device 5 controls so that the operation A for the new data DAT3 is performed.
  • the operation A consumes 1.0 of electric power, and the remaining battery level becomes 0.2.
  • the remaining battery level becomes 1.0 due to the additional power amount of 0.8.
  • the control device 5 controls such that the operation A for the new data DAT4 is performed.
  • the operation A consumes 1.0 of electric power, and the remaining battery level becomes 0.0.
  • the remaining battery level becomes 0.8 due to the additional power amount of 0.8.
  • the control device 5 controls so that the operation A is not performed. New data DAT is lost.
  • the remaining battery level becomes 1.6 due to the additional power amount of 0.8.
  • the control device 5 controls such that the operation A for the new data DAT5 is performed.
  • the operation A consumes 1.0 of electric power, and the remaining battery level becomes 0.6.
  • the remaining battery level becomes 1.6 due to the additional power amount of 0.8.
  • the control device 5 controls so that the operation A for the new data DAT6 is performed.
  • the operation A consumes 1.0 of electric power, and the remaining battery level becomes 0.4.
  • the control device 5 controls such that the operation B is performed on the data DAT1 to DAT6.
  • the operation B consumes 1.0 of electric power, and the remaining battery level becomes 0.2.
  • the remaining battery level becomes 1.0 due to the additional power amount of 0.8.
  • the control device 5 controls so that the operation C for the data DATrecog123456 is performed. 1.0 of electric energy is consumed by the operation C, and the remaining battery level becomes 0.0.
  • the fifth control mode is selected, and control is performed so that operation A for new data DAT is not performed.
  • the operation A is performed on the new data DAT at times t72 to t75, t77 and t78. Therefore, it is possible to prevent the data DAT from being lost.
  • FIG. 11 is a diagram showing an example of control when the amount of additional power fluctuates.
  • the remaining battery level becomes 1.0 due to the additional power amount of 1.0.
  • the control device 5 controls so that the operation A for the new data DAT1 is performed.
  • the operation A consumes 1.0 of electric power, and the remaining battery level becomes 0.0.
  • the remaining battery level becomes 1.5 due to the additional power amount of 1.5.
  • the control device 5 controls such that the operation A for the new data DAT2 is performed.
  • the operation A consumes 1.0 of electric power, and the remaining battery level becomes 0.5.
  • the remaining battery level becomes 2.0 due to the additional power amount of 1.5.
  • the control device 5 performs control so that the operation A is performed on the new data DAT3, and the operation B is performed collectively on the data DAT1 and the data DAT. Power consumption of 2.0 is consumed by operation A and operation B, and the remaining battery level becomes 0.0.
  • the remaining battery level becomes 2.0 due to the additional power amount of 2.0.
  • the control device 5 controls so that the operation A for the new data DAT3 is performed. Power consumption of 2.0 is consumed by operation A and operation B, and the remaining battery level becomes 0.0.
  • the remaining battery level becomes 2.0 due to the additional power amount of 2.0.
  • the control device 5 performs control so that operation A is performed on new data DAT5, and operation B is performed collectively on data DAT3 and data DAT4. Power consumption of 2.0 is consumed by operation A and operation B, and the remaining battery level becomes 0.0.
  • the remaining battery level becomes 3.0 due to the additional power amount of 3.0.
  • the control device 5 performs control so that operation A for the new data DAT6, operation C for the data DATrecog34, and operation B for the data DAT5 are performed. Power consumption of 3.0 is consumed by operation A, operation C, and operation B, and the remaining battery level becomes 0.0.
  • the remaining battery level becomes 3.0 due to the additional power amount of 3.0.
  • the control device 5 controls so that the operation B for the new data DAT6 is performed.
  • the operation B consumes 1.0 of electric power, and the remaining battery level becomes 2.0.
  • the remaining battery level becomes 14.0 due to the additional power amount of 5.0. No action is taken.
  • FIG. 12 is a flowchart showing an example of processing (control method) executed in the control device.
  • step S1 the control device 5 determines whether or not to start importing the data DAT. For example, when the time or time period when the collection of the data DAT is required, the control device 5 determines that the acquisition of the data DAT should be started. When starting to take in the data DAT (step S1: Yes), the control device 5 advances the process to step S2. Otherwise (step S1: No), the control device 5 repeats the process of step S1.
  • step S2 the control device 5 determines whether or not the remaining amount of memory is equal to or greater than a predetermined amount. If the remaining amount of memory is equal to or greater than the predetermined amount (step S2: Yes), the control device 5 advances the process to step S4. If the remaining memory capacity is less than the predetermined amount (step S2: No), the control device 5 advances the process to step S3.
  • step S3 the control device 5 controls the operations A to C in the fourth control mode.
  • Control in the fourth control mode is as described above with reference to FIG. 9, for example.
  • step S4 the control device 5 determines whether or not the remaining battery level is equal to or higher than the first level. If the remaining battery level is equal to or higher than the first level (step S4: Yes), the control device 5 advances the process to step S5. If the remaining battery level is less than the first level (step S4: No), the controller 5 proceeds to step S6.
  • step S5 the control device 5 controls the operations A to C in the first control mode.
  • Control in the first control mode is as described above with reference to FIG. 2, for example.
  • step S6 it is determined whether or not the remaining battery level is equal to or higher than the second level. If the remaining battery level is equal to or higher than the second level (step S6: Yes), the controller 5 proceeds to step S7. If the remaining battery level is less than the second level (step S6: No), the controller 5 proceeds to step S8.
  • step S7 the control device 5 controls the operations A to C in the second control mode.
  • Control in the second control mode is as described above with reference to FIG. 4, for example.
  • step S8 the control device 5 determines whether or not the remaining battery level is equal to or higher than the third level. If the remaining battery level is equal to or higher than the third level (step S8: Yes), the controller 5 proceeds to step S9. If the remaining battery level is less than the third level (step S8: No), the controller 5 proceeds to step S10.
  • step S9 the control device 5 controls the operations A to C in the third control mode.
  • Control in the third control mode is as described above with reference to FIGS. 5 to 8, for example.
  • step S10 the control device 5 controls the operations A to C in the fifth control mode.
  • Control in the fourth control mode is as described above with reference to FIG. 10, for example.
  • step S3 After the processing of step S3, step S5, step S7, step S9 or step S10 is completed, the control device 5 advances the processing to step S11.
  • step S11 the control device 5 determines whether or not to finish importing the data DAT. For example, when the time or time period when collection of data DAT is not necessary comes, the control device 5 determines that the acquisition of data DAT should be terminated. When retrieving the data DAT is finished (step S11: Yes), the control device 5 advances the process to step S12. Otherwise (step S11: No), the control device 5 returns the process to step S2.
  • step S12 the control device 5 determines whether or not to end the system operation. For example, when an instruction or the like for terminating the operation of the system 100 is given by a user operation (for example, an operation by an administrator of the system 100, etc.), the control device 5 determines that the system operation should be terminated. When ending the system operation (step S12: Yes), the control device 5 ends the processing of the flowchart. Otherwise (step S12: No), the control device 5 returns the process to step S1.
  • control is performed in an appropriate control mode according to the remaining battery level (additional electric power may be used), remaining memory capacity, and the like. As described above, it is possible to prevent the data DAT from being lost.
  • FIG. 13 is a diagram illustrating an example of the hardware configuration of the control device.
  • the control device 5 is realized by a computer 1000.
  • FIG. The computer 1000 has a CPU 1100 , a RAM 1200 , a ROM (Read Only Memory) 1300 , a HDD (Hard Disk Drive) 1400 , a communication interface 1500 and an input/output interface 1600 .
  • Each part of computer 1000 is connected by bus 1050 .
  • the CPU 1100 operates based on programs stored in the ROM 1300 or HDD 1400 and controls each section. For example, the CPU 1100 loads programs stored in the ROM 1300 or HDD 1400 into the RAM 1200 and executes processes corresponding to various programs.
  • the ROM 1300 stores a boot program such as BIOS (Basic Input Output System) executed by the CPU 1100 when the computer 1000 is started, and programs dependent on the hardware of the computer 1000.
  • BIOS Basic Input Output System
  • the HDD 1400 is a computer-readable recording medium that non-temporarily records programs executed by the CPU 1100 and data used by such programs.
  • HDD 1400 is a recording medium that records a control program according to the present disclosure, which is an example of program data 1450 .
  • a communication interface 1500 is an interface for connecting the computer 1000 to an external network 1550 (for example, the Internet).
  • CPU 1100 receives data from another device via communication interface 1500, and transmits data generated by CPU 1100 to another device.
  • the input/output interface 1600 is an interface for connecting the input/output device 1650 and the computer 1000 .
  • the CPU 1100 receives data from input devices such as a keyboard and mouse via the input/output interface 1600 .
  • the CPU 1100 transmits data to an output device such as a display, a speaker, or a printer via the input/output interface 1600 .
  • the input/output interface 1600 may function as a media interface for reading a program or the like recorded on a predetermined recording medium.
  • Media include, for example, optical recording media such as DVD (Digital Versatile Disc) and PD (Phase change rewritable disk), magneto-optical recording media such as MO (Magneto-Optical disk), tape media, magnetic recording media, semiconductor memories, etc. is.
  • optical recording media such as DVD (Digital Versatile Disc) and PD (Phase change rewritable disk)
  • magneto-optical recording media such as MO (Magneto-Optical disk)
  • tape media magnetic recording media
  • magnetic recording media semiconductor memories, etc. is.
  • the CPU 1100 of the computer 1000 implements the functions of the control device 5 by executing the control program loaded on the RAM 1200 .
  • the HDD 1400 also stores a control program according to the present disclosure.
  • CPU 1100 reads and executes program data 1450 from HDD 1400 , as another example, these programs may be obtained from another device via external network 1550 .
  • the control device 5 may be realized by various hardware configurations, not limited to the hardware configuration described above.
  • the control device 5 may be implemented by a dedicated device or the like customized to implement the functions of the control device 5 .
  • control device 5 has a plurality of control modes that consume energy harvested power (power generated by the energy harvester 8) in at least one of a plurality of control modes. control behavior.
  • the plurality of actions includes Action A, Action B and Action C.
  • Operation A involves writing data DAT from sensor 1 (to storage device 2).
  • Action B involves recognition (by recognition device 3) of the data DAT written by action A.
  • FIG. Action C involves sending (by sending device 4) the data DAT after recognition by action B (data DATrecog).
  • the multiple control modes include a first control mode and a second control mode.
  • a plurality of operations are performed such that at least one of the operation B and the operation C for the data DAT from the sensor 1 earlier than the operation A for the data DAT from the sensor 1 is performed with priority. to control.
  • a plurality of operations are controlled such that operation A for data DAT from sensor 1 is given priority over operations B and C for data DAT from sensor 1 earlier than that.
  • the operation A for the data D is given priority over the operation B and the operation C for the previous data DAT in the second control mode. As a result, it is possible to prevent the data DAT from being lost.
  • the control device 5 may control a plurality of operations so that the operation C is preferentially performed. . Thereby, the transmission of the data DAT can be preferentially completed.
  • the control device 5 controls a plurality of operations in the first control mode when the remaining capacity (remaining battery capacity) of the storage battery 7 charged with the energy harvesting power is equal to or higher than the first level. Multiple operations may be controlled in the second control mode for less than one level.
  • a first level may be the amount of power consumed when the three operations A through C are performed simultaneously. For example, in this way, it is possible to control a plurality of operations in an appropriate control mode according to the remaining battery level, and prevent new data DAT from being lost.
  • the plurality of control modes are the third control for controlling the plurality of operations so that the operation B is collectively performed for the plurality of data DAT from the sensor 1.
  • the control device 5 may control a plurality of operations in the third control mode when the remaining capacity (remaining battery level) of the storage battery 7 charged with the energy harvested power is less than the second level.
  • the second level may be the amount of power consumed when two operations including the operation A among the operations A to C are performed at the same time.
  • the third control mode power consumption can be suppressed more than when the operation B is performed for each of the plurality of data DAT. Even if the remaining battery level is likely to run short, it is possible to prevent new data DAT from being missed.
  • the operation C for the previous data DAT from the sensor 1 is given priority over the operation A for the new data DAT from the sensor 1.
  • the controller 5 controlling a plurality of operations in the fourth control mode when the remaining memory capacity for writing data DAT is less than a predetermined amount; You can With the fourth control mode, it is possible to prevent new data DAT from being lost due to lack of remaining memory capacity.
  • the plurality of control modes includes operation A for new data from sensor 1 and operation B and operation C for data DAT from sensor 1 earlier than that.
  • the control device 5 controls the operation in the fifth control mode when the remaining battery level of the storage battery 7 is less than the third level, and controls the operation in the third level. may be the amount of power consumed when operation A is performed.
  • new data DAT may be lost once, for example, the remaining battery capacity can be recovered to prevent (minimize) the subsequent loss of new data DAT.
  • the control method described with reference to FIG. 12 etc. is also one of the embodiments.
  • the control method controls a plurality of energy harvesting power consuming operations in at least one of a plurality of control modes. Multiple control modes and multiple operations have been described above. Such a control method can also prevent new data DAT from being missed.
  • the control program (for example, program data 1450) described with reference to FIG. 13 etc. is also one of the embodiments.
  • the control program causes a computer (eg, computer 1000) to control a plurality of energy harvesting power consuming operations in at least one of a plurality of control modes. Multiple control modes and multiple operations have been described above. Such a control program can also prevent new data DAT from being missed.
  • a control device for controlling a plurality of operations that consume energy-harvested power in at least one of a plurality of control modes includes: Operation A, which includes writing data from a sensor; an act B comprising recognizing the data written by said act A; an action C including transmission of data after recognition by the action B; including
  • the plurality of control modes are A first control that controls the plurality of operations such that at least one of an operation B and an operation C for data from the sensor prior to the operation A for the data from the sensor is given priority over the operation A for the data from the sensor.
  • the second control mode controls the plurality of operations such that operation C is preferentially performed among operation B and operation C for data from the sensor earlier than that, (1)
  • the control device according to the above.
  • the plurality of control modes include a third control mode that controls the plurality of operations so that the operation B is collectively performed on the plurality of data from the sensors, The control device according to any one of (1) to (4).
  • the second level is the amount of power consumed when two of the operations A to C, including the operation A, are performed at the same time.
  • the plurality of control modes control the plurality of operations such that the operation C for data from the sensor prior thereto is given priority over the operation A for data from the sensor.
  • the control device controls the plurality of operations in the fourth control mode when the remaining amount of memory for writing the data is less than a predetermined amount.
  • the control device according to any one of (1) to (6).
  • the plurality of control modes control the plurality of operations such that neither the operation A for data from the sensor nor the operations B and C for earlier data from the sensor are performed.
  • the control device controls the operation in the fifth control mode when the remaining battery level of the storage battery charged with the energy harvesting power is less than a third level, The third level is the amount of power consumed if the operation A is performed.
  • a control method for controlling a plurality of operations that consume energy-harvested power in at least one of a plurality of control modes comprising:
  • the plurality of operations include: Operation A, which includes writing data from a sensor; an act B comprising recognizing the data written by said act A; an action C including transmission of data after recognition by the action B; including
  • the plurality of control modes are A first control that controls the plurality of operations such that at least one of an operation B and an operation C for data from the sensor prior to the operation A for the data from the sensor is given priority over the operation A for the data from the sensor.
  • a control program that causes a computer to control a plurality of energy harvesting power consuming operations in at least one of a plurality of control modes,
  • the plurality of operations include: Operation A, which includes writing data from a sensor; an act B comprising recognizing the data written by said act A; an action C including transmission of data after recognition by the action B; including
  • the plurality of control modes are A first control that controls the plurality of operations such that at least one of an operation B and an operation C for data from the sensor prior to the operation A for the data from the sensor is given priority over the operation A for the data from the sensor.
  • mode and a second control mode for controlling the plurality of operations such that the operation A for the data from the sensor is performed with priority over the operation B and the operation C for the data from the sensor before it; including, control program.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

制御装置(5)は、複数の制御モードのうちの少なくとも1つの制御モードで、環境発電電力を消費する複数の動作を制御する制御装置であって、複数の動作は、センサ(1)からのデータ(DAT)の書き込みを含む動作Aと、動作Aによって書き込まれたデータ(DAT)の認識を含む動作Bと、動作Bによる認識後のデータ(DATrecog)の送信を含む動作Cと、を含み、複数の制御モードは、センサ(1)からのデータ(DAT)に対する動作Aよりも、それよりも以前のセンサ(1)からのデータ(DAT)に対する動作B及び動作Cの少なくとも一方が優先して行われるように、複数の動作を制御する第1制御モードと、センサ(1)からのデータ(DAT)に対する動作Aが、それよりも以前のセンサ(A)からのデータ(DAT)に対する動作B及び動作Cよりも優先して行われるように、複数の動作を制御する第2制御モードと、を含む。

Description

制御装置、制御方法及び制御プログラム
 本開示は、制御装置、制御方法及び制御プログラムに関する。
 例えば特許文献1は、環境光による発電電力を用いてセンサからのデータを送信する技術を開示する。
特開2019-46157号公報
 データ送信に至るまでの動作として、例えば、センサからのデータを書き込む動作、書き込まれたデータを認識する動作、認識後のデータを送信する動作等がある。発電電力の不足等に起因して、これらすべての動作を行うことができない時がある。データの書き込み動作を後回しにすると、データの取りこぼしが発生する等、動作制御に検討の余地が残る。
 本開示の一側面は、データの取りこぼしを抑制することを可能にする。
 本開示の一側面に係る制御装置は、複数の制御モードのうちの少なくとも1つの制御モードで、環境発電電力を消費する複数の動作を制御する制御装置であって、複数の動作は、センサからのデータの書き込みを含む動作Aと、動作Aによって書き込まれたデータの認識を含む動作Bと、動作Bによる認識後のデータの送信を含む動作Cと、を含み、複数の制御モードは、センサからのデータに対する動作Aよりも、それよりも以前のセンサからのデータに対する動作B及び動作Cの少なくとも一方が優先して行われるように、複数の動作を制御する第1制御モードと、センサからのデータに対する動作Aが、それよりも以前のセンサからのデータに対する動作B及び動作Cよりも優先して行われるように、複数の動作を制御する第2制御モードと、を含む。
 本開示の一側面に係る制御方法は、複数の制御モードのうちの少なくとも1つの制御モードで、環境発電電力を消費する複数の動作を制御する制御方法であって、複数の動作は、センサからのデータの書き込みを含む動作Aと、動作Aによって書き込まれたデータの認識を含む動作Bと、動作Bによる認識後のデータの送信を含む動作Cと、を含み、複数の制御モードは、センサからのデータに対する動作Aよりも、それよりも以前のセンサからのデータに対する動作B及び動作Cの少なくとも一方が優先して行われるように、複数の動作を制御する第1制御モードと、センサからのデータに対する動作Aが、それよりも以前のセンサからのデータに対する動作B及び動作Cよりも優先して行われるように、複数の動作を制御する第2制御モードと、を含む。
 本開示の一側面に係る制御プログラムは、コンピュータに、複数の制御モードのうちの少なくとも1つの制御モードで、環境発電電力を消費する複数の動作を制御させる制御プログラムであって、複数の動作は、センサからのデータの書き込みを含む動作Aと、動作Aによって書き込まれたデータの認識を含む動作Bと、動作Bによる認識後のデータの送信を含む動作Cと、を含み、複数の制御モードは、センサからのデータに対する動作Aよりも、それよりも以前のセンサからのデータに対する動作B及び動作Cの少なくとも一方が優先して行われるように、複数の動作を制御する第1制御モードと、センサからのデータに対する動作Aが、それよりも以前のセンサからのデータに対する動作B及び動作Cよりも優先して行われるように、複数の動作を制御する第2制御モードと、を含む。
実施形態に係るシステムの概略構成の例を示す図である。 第1制御モードでの制御を含む制御の例を示す図である。 第2制御モードでの制御を含む制御の例を示す図である。 比較例を示す図である。 第3制御モードでの制御を含む制御の例を示す図である。 第3制御モードでの制御を含む制御の例を示す図である。 第3制御モードでの制御を含む制御の例を示す図である。 第3制御モードでの制御を含む制御の例を示す図である。 第4制御モードでの制御を含む制御の例を示す図である。 第5制御モードでの制御を含む制御の例を示す図である。 追加電力量が変動する場合の制御の例を示す図である。 制御装置において実行される処理の例を示すフローチャートである。 制御装置のハードウェア構成の例を示す図である。
 以下に、本開示の実施形態について図面に基づいて詳細に説明する。なお、以下の各実施形態において、同一の要素には同一の符号を付することにより重複する説明を省略する。
 以下に示す項目順序に従って本開示を説明する。
  1.実施形態
   1.1 第1制御モード
   1.2 第2制御モード
   1.3 第3制御モード
   1.4 第4制御モード
   1.5 第5制御モード
   1.6 追加電力量が変動する場合の制御
   1.7 処理フローの例
  2.ハードウェア構成の例
  3.効果の例
1.実施形態
 図1は、実施形態に係るシステムの概略構成の例を示す図である。システム100は、センサ1と、記憶装置2と、認識装置3と、送信装置4と、制御装置5と、蓄電池監視装置6と、蓄電池7と、エナジーハーベスタ8とを含む。後述するようにエナジーハーベスタ8が環境発電を行うので、システム100は、エナジーハーベストシステム、環境発電システム等ということもできる。
 センサ1は、さまざまな対象を検出する。センサ1は、あらゆる場所に設置されたあらゆる種類のセンサであってよい。例えば、センサ1は、IoT(Internet of Things)用のセンサデバイスであってよい。センサ1のほんの一部の例について述べると、温度センサ、湿度センサ、照度センサ、人感センサ、気圧センサ、気象センサ等がセンサ1であってよい。なお、図1には1つのセンサ1が例示されるが、2つ以上のセンサ1が存在していてもよい。センサ1は、システム100の動作中、例えば所定周期或いは指定されたタイミングで、繰り返し検出を行う。センサ1によるいくつかの検出が、センサ1に向かう破線矢印として模式的に図示される。
 センサ1の検出結果を示すデータを、データDATと称し図示する。データDATは、例えば、センサ情報と、検出結果とを対応付けて記述する。センサ情報は、センサ1の種類(機種等)を特定するための情報であってもよいし、センサ1を一意に特定するための識別情報(センサID)であってもよい。例えばセンサ1が温度センサの場合、データDATは、センサ情報と、検出時刻と、検出温度とを対応づけたデータであってよい。
 センサ1からのデータDATは、記憶装置2に書き込まれ、システム100内に取り込まれる。記憶装置2は、書き込まれたデータDATを記憶する。図1において、センサ1からのデータDATの記憶装置2への書き込み動作(データDATの取り込み動作)を、「動作A」と称し、白抜き矢印で模式的に示す。
 認識装置3は、記憶装置2に書き込まれたデータDATを認識する。認識の例は、後述の送信装置4によるデータDATの送信の要否である。認識装置3は、データDATの内容から、そのデータDATが、送信が必要なデータDATであるか否かを認識する。例えば、認識装置3は、送信が求められる時刻、時間帯等に検出されたデータDATを、送信が必要なデータDATとして認識(抽出)する。或いは、認識装置3は、所定の範囲内の値を示すデータDATを、送信が必要なデータDATとして認識する。認識には、例えば、データDATの内容と認識結果とを対応付けたデータテーブルが用いられたり、データDATの内容から認識結果を算出等するためのアルゴリズムが用いられたりしてよい。
 認識装置3は、送信が必要であると認識したデータDATに対応するDATrecogを生成し、記憶装置2に書き込む。データDATrecogは、例えば、もととなるデータDATと、そのデータDATが認識済みであることを示す情報(例えばフラグ等)とを対応付けて記述する。データDATrecogが記憶装置2に書き込まれると、そのもととなったデータDATは記憶装置2から削除される。データDATrecogは、そのもととなったデータDATを更新(上書き)するものであってもよい。また、認識装置3によって送信が不要である認識されたデータDATは、記憶装置2から削除(廃棄)される。認識装置3は複数のデータDATをまとめて認識してもよく、これについては後述する。
 図1において、認識装置3によるデータDATの認識、データDATrecogの生成、記憶装置2への書き込み、また、もととなったデータDATの記憶装置2からの削除等の動作を、「動作B」と称し、白抜き矢印で模式的に示す。
 送信装置4は、記憶装置2に書き込まれたデータDATrecogを送信する。送信先の例は、図示しないサーバ装置等(クラウドコンピュータ等)である。サーバ装置等は、ネットワークを介して送信装置4からのデータDATrecogを受信して収集する。収集されたデータDATrecogはさまざまに活用(分析等)される。送信装置4によって送信されたデータDATrecogは、記憶装置2から削除される。
 図1において、送信装置4によるデータDATrecogの送信、データDATrecogの記憶装置2からの削除等の動作を、「動作C」と称し、白抜き矢印で模式的に示す。
 制御装置5は、システム100の全体制御を行う。制御装置5による制御は、上述の動作A~動作Cの制御を含む。詳細は後述する。
 蓄電池監視装置6、蓄電池7及びエナジーハーベスタ8について、便宜上、エナジーハーベスタ8、蓄電池7及び蓄電池監視装置6の順に説明する。
 エナジーハーベスタ8は、例えば自然エネルギーを用いた環境発電を行う環境発電装置である。さまざまな種類の環境発電が用いられてよい。ほんの一部の例について述べると、太陽光発電、振動発電等が、エナジーハーベスタ8によって行われてよい。以下、エナジーハーベスタ8の発電電力を、「環境発電電力」という場合もある。環境発電電力は、蓄電池7に充電される。蓄電池7に充電されるこの電力量を、「追加電力量」という場合もある。
 蓄電池7は、上述の環境発電電力によって充電されるとともに、システム100の動作によって消費される電力を放電(供給)する。開示される技術は、システム100の動作のうち、とくに上述の動作A~動作Cによって消費される電力に関連する。以下では、システム100における動作A~動作C以外の他の動作によって消費される電力は無視するものとする。なお、他の動作の例は、制御装置5による動作A~動作Cの制御、蓄電池監視装置6による蓄電池7の監視、エナジーハーベスタ8から蓄電池7への充電等である。
 蓄電池監視装置6は、蓄電池7を監視する。例えば、蓄電池監視装置6は、蓄電池7の残存容量を監視する。蓄電池7の残存容量の監視手法は公知であるのでここでは詳細な説明は行わない。以下、蓄電池7の残存容量を、単に「電池残量」という場合もある。
 再び制御装置5について説明する。制御装置5は、動作A~動作Cを制御する。制御装置5は、センサ1、記憶装置2、認識装置3、送信装置4及び蓄電池監視装置6等との間で制御信号、通信信号等を送受信することによって、動作A~動作Cを制御する。例えば、制御装置5は、動作Aが行われるように、センサ1等を制御する。制御装置5は、動作Bが行われるように、認識装置3等を制御する。制御装置5は、動作Cが行われるように、送信装置4等を制御する。
 例えば、制御装置5は、蓄電池監視装置6による蓄電池7の監視結果に基づいて、動作A~動作Cを制御する。蓄電池7の監視結果の例は、電池残量である。監視結果の別の例は、追加電力量であり、例えば電池残量の変化に基づいて算出される。制御装置5は、記憶装置2のメモリ残量(後述)に基づいても、動作A~動作Cを制御し得る。
 制御のための複数の制御モードが存在する。制御装置5は、それらの複数の制御モードのうちの少なくとも1つの制御モードで、動作A~動作Cを制御する。以下、とくに説明がある場合を除き、制御装置5による動作A~動作Cの制御を、単に「制御」という場合もある。各制御モードについて順に説明する。
1.1 第1制御モード
 第1制御モードは、十分な電池残量(追加電力量でもよい)が存在する場合に選択される。例えば、制御装置5は、電池残量が第1レベル以上の場合に、第1制御モードで制御する。第1レベルの一例は、動作A~動作Cの3つの動作が同時に行われた場合に消費される電力量である。第1レベルは必ずしも1つの値に固定される必要は無い。例えば、システム100の状況等に応じて第1レベルが動的に変更されてもよい。第1制御モードでは、制御装置5は、センサ1からのデータDATに対する動作Aよりも、それ以前のセンサ1からのデータDATに対する動作B及び動作Cの少なくとも一方が優先して行われるように制御する。
 図2は、第1制御モードでの制御を含む制御の例を示す図である。「電池残量(動作前)」は、追加電力量による充電後の電池残量である。「電池残量(動作後)」は、その時刻で行われた動作A~動作C(時刻によっては一部又は全部の動作が行われない場合もある)の消費電力量を放電した後の電池残量である。電力量の単位は任意単位a.u.である。動作A~動作Cそれぞれに必要な電力量はいずれも1.0であるものとする。時刻t1~時刻t10のいずれにおいても、追加電力量は10.0である。当初(時刻t1よりも前)の電池残量は0.0であるものとする。
 新たに取り込まれるデータDATとして、データDAT1~データDAT6が例示される。このうちのデータDAT1、データDAT2、データDAT4及びデータDAT6は認識装置3により送信が必要と認識され、データDAT3及びデータDAT5は認識装置3により送信が不要と認識される(破棄され得る)ものとする。DAT1、データDAT2、データDAT4及びデータDAT6に対応するDATrecogを、データDATrecog1、データDATrecog2、データDATrecog4及びデータDATrecog6と称し図示する。
 時刻t1において、追加電力量10.0により、電池残量(動作前)が10.0になる。制御装置5は、新たなデータDAT1に対する動作Aが行われるように制御する。動作Aによって電力量1.0が消費され、電池残量(動作後)は9.0になる。
 時刻t2において、追加電力量10.0により、電池残量が19.0になる。制御装置5は、データDAT1に対する動作B及び新たなデータDAT2に対する動作Aが行われるように制御する。動作B及び動作Aによって電力量2.0が消費され、電池残量は17.0になる。
 時刻t3において、追加電力量10.0により、電池残量が27.0になる。制御装置5は、データDATrecog1に対する動作C、データDAT2に対する動作B及び新たなデータDAT3に対する動作Aが行われるように制御する。動作C~動作Aによって電力量3.0が消費され、電池残量は24.0になる。
 時刻t4において、追加電力量10.0により、電池残量が34.0になる。制御装置5は、データDATrecog2に対する動作C、データDAT3に対する動作B及び新たなデータDAT4に対する動作Aが行われるように制御する。動作C~動作Aによって電力量3.0が消費され、電池残量は31.0になる。
 時刻t5において、追加電力量10.0により、電池残量が41.0になる。制御装置5は、DAT4に対する動作B及び新たなデータDAT5に対する動作Aが行われるように制御する。動作B及び動作Aによって電力量2.0が消費され、電池残量は39.0になる。
 時刻t6において、追加電力量10.0により、電池残量が49.0になる。制御装置5は、データDATrecog4に対する動作C、データDAT5に対する動作B及び新たなデータDAT6に対する動作Aが行われるように制御する。動作C~動作Aによって電力量3.0が消費され、電池残量は46.0になる。
 時刻t7以降は、新たなデータDATは無いものとする。時刻t7において、追加電力量10.0により、電池残量が56.0になる。制御装置5は、データDAT6に対する動作Bが行われるように制御する。動作Bによって電力量1.0が消費され、電池残量は55.0になる。
 時刻t8において、追加電力量10.0により、電池残量が65.0になる。制御装置5は、データDATrecog6に対する動作Cが行われるように制御する。動作Cによって電力量1.0が消費され、電池残量は64.0になる。
 時刻t9において、追加電力量10.0により、電池残量が74.0になる。とくに動作は行われない。
 時刻t10において、追加電力量10.0により、電池残量が84.0になる。とくに動作は行われない。
 例えば以上のように、十分な電池残量が存在する場合には、第1制御モードにより、単純に、同じデータDATに対する動作A~動作Cがこの順に行われる。センサ1からのデータDATをもれなく取り込み、認識したうえで、必要に応じて送信することができる。
 これまでも説明したように、動作A~動作Cの電力源は、エナジーハーベスタ8の発電電力である。センサ1とともに設けられるエナジーハーベスタ8の配置場所や時刻(時間帯)等によって周囲環境が変化し、発電電力量が変動し得る。例えばエナジーハーベスタ8が太陽光発電装置である場合には、曇りであったり室内光が十分でなかったりする場合に、発電電力量が低下し得る。発電電力量の変動によって、電池残量も変動し、その結果、電池残量が不足する可能性がある。発電電力量や電池残量が不足すると、上述の第1制御モードでの制御が行えなくなる場合もある。これに対処するため、第1制御モード以外の制御モードが存在する。
1.2 第2制御モード
 第2制御モードは、十分な電池残量(追加電力量でもよい)が存在しない場合、換言すれば、電池残量が不足し得る場合に選択される。例えば、制御装置5は、電池残量が第1レベル未満の場合、より具体的には電池残量が第1レベル未満且つ第2レベル以上の場合に第2制御モードで制御する。第2レベルの一例は、動作A~動作Cのうち、動作Aを含む2つ動作が同時に行われた場合に消費される電力量である。第2レベルは必ずしも1つの値に固定される必要は無く、例えば、システム100の状況等に応じて動的に変更されてもよい。第2制御モードでは、制御装置5は、センサ1からのデータDATに対する動作Aが、それよりも以前のセンサ1からのデータDATに対する動作B及び動作Cよりも優先して行われるように制御する。また、以前のデータDATに対する動作B及び動作Cのうちでは、制御装置5は、動作Cが優先して行われるように制御してよい。動作Cを動作Bよりも優先することで、データDATの送信を優先して完了することができる。データDATの送信の遅れが最小化される。
 図3は、第2制御モードでの制御を含む制御の例を示す図である。時刻t11~時刻t20のいずれにおいても、追加電力量は2.0である。
 時刻t11において、追加電力量2.0により、電池残量が2.0になる。制御装置5は、新たなデータDAT1に対する動作Aが行われるように制御する。動作Aによって電力量1.0が消費され、電池残量は1.0になる。
 時刻t12において、追加電力量2.0により、電池残量が3.0になる。制御装置5は、データDAT1に対する動作B及び新たなデータDAT2に対する動作Aが行われるように制御する。動作B及び動作Aによって電力量2.0が消費され、電池残量は1.0になる。
 時刻t13において、追加電力量2.0により、電池残量が3.0になる。制御装置5は、データDATrecog1に対する動作C、新たなデータDAT3に対する動作A及びデータDAT2に対する動作Bが行われるように制御する。動作C~動作Aよって電力量3.0が消費され、電池残量は0.0になる。
 時刻t14において、追加電力量2.0により、電池残量が2.0になる。制御装置5は、新たなデータDAT4に対する動作A及びデータDATrecog2に対する動作Cが行われるように制御する。先に取り込まれたデータDAT3に対する動作Bは後回しにされる。動作A及び動作Cによって電力量2.0が消費され、電池残量は0.0になる。
 時刻t15において、追加電力量2.0により、電池残量が2.0になる。制御装置5は、新たなデータDAT5に対する動作A及びデータDAT3に対する動作Bが行われるように制御する。動作A及び動作Bによって電力量2.0が消費され、電池残量は0.0になる。
 時刻t16において、追加電力量2.0により、電池残量が2.0になる。制御装置5は、新たなデータDAT6に対する動作A及びデータDAT4に対する動作Bが行われるように制御する。動作A及び動作Bによって電力量2.0が消費され、電池残量は0.0になる。
 時刻t17以降は、新たなデータDATは無いものとする。時刻t17において、追加電力量2.0により、電池残量が2.0になる。制御装置5は、データDATrecog4に対する動作C及びデータDAT5に対する動作Bが行われるように制御する。動作C及び動作Bによって電力量2.0が消費され、電池残量は0.0になる。
 時刻t18において、追加電力量2.0により、電池残量が2.0になる。制御装置5は、データDATrecog6に対する動作Bが行われるように制御する。動作Bによって電力量1.0が消費され、電池残量は1.0になる。
 時刻t19において、追加電力量2.0により、電池残量が3.0になる。制御装置5は、データDATrecog6に対する動作Cが行われるように制御する。
 時刻t20において、追加電力量2.0により、電池残量が4.0になる。とくに動作は行われない。
 例えば以上のように、電池残量が不足し得る場合には、第2制御モードにより、動作Aが、それ以前のデータDATに対する動作Bや動作Cよりも優先して行われる。具体的に、上記の例では、時刻t14において、第2制御モードにより、データDAT4に対する動作Aが、データD3に対する動作B及びデータD2に対する動作Cよりも優先して行われるように制御される。データD2に対する動作Cが、データD3に対する動作Bよりも優先して行われる。仮にデータD4に対する動作Aではなく、データD3に対する動作BやデータD4に対する動作Cが優先して行われると、電池残量が不足して動作Aが行えなくなり、データDAT4を取り込むことができなくなる。第2制御モードにより、このようなデータDATの取りこぼしが抑制される。このことは、次に図4を参照して説明する比較例からも明らかになる。
 図4は、比較例を示す図である。時刻t11E~時刻t20Eのいずれにおいても、追加電力量は上述の図3と同様に、2.0である。ただし、比較例では、第1制御モードによる制御しか行われない。
 時刻t11Eにおいて、追加電力量2.0により、電池残量が2.0になる。新たなデータDAT1に対する動作Aが行われる。動作Aによって電力量1.0が消費され、電池残量は1.0になる。
 時刻t12Eにおいて、追加電力量2.0により、電池残量が3.0になる。データDAT1に対する動作B及び新たなデータDAT2に対する動作Aが行われる。動作B及び動作Aによって電力量2.0が消費され、電池残量は1.0になる。
 時刻t13Eにおいて、追加電力量2.0により、電池残量が3.0になる。データDATrecog1に対する動作C、データDAT2に対する動作B及び新たなデータDAT3に対する動作Aが行われる。動作C~動作Aよって電力量3.0が消費され、電池残量は0.0になる。
 時刻t14Eにおいて、追加電力2.0により、電池残量が2.0になる。データDATrecog2に対する動作C及びデータDAT3に対する動作Bが行われる。この時点で電池残量が無くなるため、動作Aは行えない。したがって、新たなデータDATを取り込むことができず、データDATの取りこぼしが発生する。
 時刻t15Eにおいて、追加電力量2.0により、電池残量が2.0になる。新たなデータDAT4に対する動作Aが行われる。動作Aによって電力量1.0が消費され、電池残量は1.0になる。
 時刻t16Eにおいて、追加電力量2.0により、電池残量が3.0になる。データDAT4に対する動作B及び新たなデータDAT6に対する動作Aが行われる。動作B及び動作Aによって電力量2.0が消費され、電池残量は1.0になる。
 時刻t17Eにおいて、追加電力量2.0により、電池残量が3.0になる。データDATrecog4に対する動作C、データDAT5に対する動作B及び新たなデータDAT6に対する動作Aが行われる。動作C~動作Aによって電力量2.0が消費され、電池残量は0.0になる。
 時刻t18E以降は、新たなデータDATは無いものとする。時刻t18Eにおいて、追加電力量2.0により、電池残量が2.0になる。データDAT6に対する動作Bが行われる。動作Bによって電力量1.0が消費され、電池残量は1.0になる。
 時刻t19Eにおいて、追加電力量2.0により、電池残量が3.0になる。データDATrecog6に対する動作Cが行われる。動作Cによって電力量1.0が消費され、電池残量は2.0になる。
 時刻t20Eにおいて、追加電力量2.0により、電池残量が4.0になる。とくに動作は行われない。
 例えば以上のように、比較例では、時刻t14Eにおいて、データDATrecog2に対する動作C及びデータDAT3に対する動作Bが先に行われ、電池残量が無くなる。そのため、新たなデータDATに対する動作Aを行えず、データDATの取りこぼしが発生する。このようなデータDATの取りこぼしが、先に図3を参照して説明したように、第2制御モードによって抑制される。
1.3 第3制御モード
 第3制御モードは、電池残量(追加電力量でもよい)がさらに不足し得る場合に選択される。例えば、制御装置5は、電池残量が第2レベル未満の場合、より具体的には電池残量が第2レベル未満且つ第3レベル以上の場合に第2制御モードで制御する。第3レベルの一例は、動作A~動作Cのうちの1つの動作、より特定的には動作Aが行われた場合に消費される電力量である。第3レベルは必ずしも1つの値に固定される必要は無く、例えば、システム100の状況等に応じて動的に変更されてもよい。第3制御モードでは、制御装置5は、上述の第2制御モードの内容に加えて、複数のデータDATが記憶装置2に書き込まれている場合には、複数のデータDATに対してまとめて動作Bが行われるように制御する。
 その場合、認識装置3は、記憶装置2に書き込まれている複数のデータDATをまとめて認識する。複数のデータDATのうちの少なくとも1つのデータDATが送信が必要なデータDATである場合、それら複数のデータDATに対応する1つのデータDATrecog(圧縮データ)が生成される。こうして得られたデータDATrecogを送信することで、複数のデータDATの情報を1度に送信することが可能になる。ただし、時間方向の精度が低下する可能性はある。例えば、データDATrecogに含まれる或る情報が、もともとの複数のデータDATのうちの、どのタイミングで取得されたどのデータDATに対応するのかを、正確には把握できない可能性はある。それでも、データDATの取りこぼしを抑制することができるメリットが依然として得られる。
 例えば、制御装置5は、予め定められた数のデータDATが記憶装置2に書き込まれた後で、その数のデータDATに対してまとめて動作Bが行われるように制御してよい。これについて、図5を参照して説明する。
 図5は、第3制御モードでの制御を含む制御の例を示す図である。時刻t21~時刻t30のいずれにおいても、追加電力量は1.5である。この例では、2つのデータDATに対してまとめて動作Bが行われる。
 時刻t21において、追加電力量1.5により、電池残量が1.5になる。制御装置5は、新たなデータDAT1に対する動作Aが行われるように制御する。動作Aによって電力量1.0が消費され、電池残量は0.5になる。
 時刻t22において、追加電力量1.5により、電池残量が2.0になる。制御装置5は、新たなデータDAT2に対する動作Aが行われるように制御する。動作Aによって電力量1.0が消費され、電池残量は1.0になる。
 時刻t23において、追加電力量1.5により、電池残量が2.5になる。制御装置5は、新たなデータDAT3に対する動作Aが行われ、データDAT1及びデータDAT2に対してまとめて動作Bが行われるように制御する。まとめて認識された後のデータDAT1及びデータDAT2を、データDATrecog12と称し図示する。動作A及び動作Bによって電力量2.0が消費され、電池残量は0.5になる。
 時刻t24において、追加電力量1.5により、電池残量が2.0になる。制御装置5は、新たなデータDAT4に対する動作A及びデータDATrecog12に対する動作Cが行われるように制御する。動作A及び動作Cによって電力量2.0が消費され、電池残量は0.0になる。
 時刻t25において、追加電力量1.5により、電池残量が1.5になる。制御装置5は、新たなデータDAT5に対する動作Aが行われるように制御する。動作Aによって電力量1.0が消費され、電池残量は0.5になる。
 時刻t26において、追加電力量1.5により、電池残量が2.0になる。制御装置5は、新たなデータDAT6に対する動作Aが行われ、データDAT3及びデータDAT4に対してまとめて動作Bが行われるように制御する。まとめて認識された後のデータDAT3及びデータDAT4を、データDATrecog34と称し図示する。動作A及び動作Bによって電力量2.0が消費され、電池残量は0.0になる。
 時刻t27以降は、新たなデータDATは無いものとする。時刻t27において、追加電力量1.5により、電池残量が1.5になる。制御装置5は、データDATrecog34に対する動作Cが行われるように制御する。動作Cによって電力量2.0が消費され、電池残量は0.5になる。
 時刻t28において、追加電力量1.5により、電池残量が2.0になる。制御装置5は、データDAT5及びデータDAT6に対してまとめて動作Bが行われるように制御する。まとめて認識された後のデータDAT5及びデータDAT6を、データDATrecog56と称し図示する。動作Bによって電力量1.0が消費され、電池残量は1.0になる。
 時刻t29において、追加電力量1.5により、電池残量が2.5になる。制御装置5は、DATrecog56に対する動作Cが行われるように制御する。動作Cによって電力量1.0が消費され、電池残量は1.5になる。
 時刻t30において、追加電力量1.5により、電池残量が3.0になる。とくに動作は行われない。
 例えば以上のように、追加電力が不足し得る場合には、第3制御モードにより、複数のデータDATに対してまとめて動作Bが行われる。具体的に、上記の例では、時刻t23において、データDAT1及びデータDAT2に対してまとめて動作Bが行われる。時刻t26において、データDAT3及びデータDAT4に対してまとめて動作Bが行われる。時刻t28において、データDAT5及びデータDAT6に対してまとめて動作Bが行われる。これにより、例えば、DAT1~データDAT6の1つ1つに対して動作Bを行う場合よりも、動作Bによって消費される電力量を低減することができる。その分、動作Aを行うための電池残量を確保し、DATの取りこぼしを抑制することができる。
 制御装置5は、動作Bが行えるタイミングまでに記憶装置2に書き込まれたすべてのデータDATに対してまとめて動作Bが行われるように制御してもよい。これについて、図6を参照して説明する。
 図6は、第3制御モードでの制御を含む制御の例を示す図である。時刻t31は、上述の図5の時刻t21と同様であるので説明は繰り返さない。
 時刻t32において、追加電力量1.5により、電池残量が2.0になる。制御装置5は、新たなデータDAT2に対する動作A及びデータDATに対する動作Bが行われるように制御する。動作A及び動作Bによって電力量2.0が消費され、電池残量は0.0になる。
 時刻t33において、追加電力量1.5により、電池残量が1.5になる。制御装置5は、新たなデータDAT3に対する動作Aが行われるように制御する。動作Aによって電力量1.0が消費され、電池残量は0.5になる。
 時刻t34において、追加電力量1.5により、電池残量が2.0になる。制御装置5は、新たなデータDAT4に対する動作A及びデータDATrecog1に対する動作Cが行われるように制御する。動作A及び動作Cによって電力量2.0が消費され、電池残量は0.0になる。
 時刻t35において、追加電力量1.5により、電池残量が1.5になる。制御装置5は、新たなデータDAT5に対する動作Aが行われるように制御する。動作Aによって電力量1.0が消費され、電池残量は0.5になる。
 時刻t36において、追加電力量1.5により、電池残量が2.0になる。制御装置5は、新たなデータDAT6に対する動作Aが行われ、データDAT2~データDAT5に対してまとめて動作Bが行われるように制御する。まとめて認識された後のデータDAT2~データDAT5を、データDATrecog2345と称し図示する。動作A及び動作Bによって電力量2.0が消費され、電池残量は0.0になる。
 時刻t37以降は、新たなデータDATは無いものとする。時刻t37において、追加電力量1.5により、電池残量が1.5になる。制御装置5は、データDATrecog2345に対する動作Cが行われるように制御する。動作Cによって電力量1.0が消費され、電池残量は0.5になる。
 時刻t38において、追加電力量1.5により、電池残量が2.0になる。制御装置5は、データDAT6に対する動作Bが行われるように制御する。動作Bによって電力量1.0が消費され、電池残量は1.0になる。
 時刻t39において、追加電力量1.5により、電池残量が2.5になる。制御装置5は、データDATrecog6に対する動作Cが行われるように制御する。動作Cによって電力量1.0が消費され、電池残量は1.5になる。
 時刻t40において、追加電力量1.5により、電池残量が3.0になる。とくに動作は行われない。
 上記の例では、時刻t36において、データDAT2~データDAT5に対してまとめて動作Bが行われる。これにより、例えば、DAT2~データDAT5の1つ1つに対して動作Bを行う場合よりも、動作Bによって消費される電力量を低減することができる。その分、動作Aを行うための電池残量を確保し、データDATの取りこぼしを抑制することができる。
 追加電力がさらに不足する場合には、より多くのデータDATに対してまとめて動作Bが行われる。これについて、図7及び図8を参照して説明する。
 図7は、第3制御モードでの制御を含む制御の例を示す図である。時刻t41~時刻t50のいずれにおいても、追加電力量は1.0である。この例では、3つのデータDATに対してまとめて動作Bが行われる。
 時刻t41において、追加電力量1.0により、電池残量が1.0になる。制御装置5は、新たなデータDAT1に対する動作Aが行われるように制御する。動作Aによって電力量1.0が消費され、電池残量は0.0になる。
 時刻t42において、追加電力量1.0により、電池残量が1.0になる。制御装置5は、新たなデータDAT2に対する動作Aが行われるように制御する。動作Aによって電力量1.0が消費され、電池残量は0.0になる。
 時刻t43において、追加電力量1.0により、電池残量が1.0になる。制御装置5は、新たなデータDAT3に対する動作Aが行われるように制御する。動作Aによって電力量1.0が消費され、電池残量は0.0になる。
 時刻t44において、追加電力量1.0により、電池残量が1.0になる。制御装置5は、新たなデータDAT4に対する動作Aが行われるように制御する。動作Aによって電力量1.0が消費され、電池残量は0.0になる。
 時刻t45において、追加電力量1.0により、電池残量が1.0になる。制御装置5は、新たなデータDAT5に対する動作Aが行われるように制御する。動作Aによって電力量1.0が消費され、電池残量は0.0になる。
 時刻t46において、追加電力量1.0により、電池残量が1.0になる。制御装置5は、新たなデータDAT6に対する動作Aが行われるように制御する。動作A電力量1.0が消費され、電池残量は0.0になる。
 時刻t47以降は、新たなデータDATは無いものとする。時刻t47において、追加電力量1.0により、電池残量が1.0になる。制御装置5は、データDAT1~データDAT3に対してまとめて動作Bが行われるように制御する。まとめて認識された後のデータDAT1~データDAT3を、データDATrecog123と称し図示する。動作Bによって電力量1.0が消費され、電池残量は0.0になる。
 時刻t48において、追加電力量1.0により、電池残量が1.0になる。制御装置5は、データDATrecog123に対して動作Cが行われるように制御する。動作Cによって電力量1.0が消費され、電池残量は0.0になる。
 時刻t49において、追加電力量1.0により、電池残量が1.0になる。制御装置5は、データDAT4~データDAT6に対してまとめて動作Bが行われるように制御する。まとめて認識された後のデータDAT4~データDAT6を、データDATrecog456と称し図示する。動作Bによって電力量1.0が消費され、電池残量は0.0になる。
 時刻t50において、追加電力量1.0により、電池残量が1.0になる。制御装置5は、データDATrecog456に対して動作Cが行われるように制御する。動作Cによって電力量1.0が消費され、電池残量は0.0になる。
 上記の例では、時刻t47において、データDAT1~データDAT3に対してまとめて動作Bが行われ、時刻t49において、データDAT4~データDAT6に対してまとめて動作Bが行われる。これにより、例えば、DAT1~データDAT6の1つ1つに対して動作Bを行う場合よりも、動作Bによって消費される電力量を低減することができる。その分、動作Aを行うための電池残量を確保し、データDATの取りこぼしを抑制することができる。
 図8は、第3制御モードでの制御を含む制御の例を示す図である。動作Bが行えるタイミングまでに記憶装置2に書き込まれたすべてのデータDATに対してまとめて動作Bが行われる。時刻t51~時刻t56は、上述の図7の時刻t41~時刻t46と同様であるので説明は繰り返さない。
 時刻t57以降は、新たなデータDATは無いものとする。時刻t57において、追加電力量1.0により、電池残量が1.0になる。制御装置5は、データDAT1~データDAT6に対してまとめて動作Bが行われるように制御する。まとめて認識された後のデータDAT1~データDAT6を、データDATrecog123456と称し図示する。動作Bによって電力量1.0が消費され、電池残量は0.0になる。
 時刻t58において、追加電力量1.0により、電池残量が1.0になる。制御装置5は、データDATrecog123456に対して動作Cが行われるように制御する。動作Cによって電力量1.0が消費され、電池残量は0.0になる。
 時刻t59において、追加電力量1.0により、電池残量が1.0になる。とくに動作は行われない。
 時刻t60において、追加電力量1.0により、電池残量が2.0になる。とくに動作は行われない。
 上記の例では、時刻t57において、データDAT1~データDAT6に対してまとめて動作Bが行われる。これにより、例えば、DAT1~データDAT6の1つ1つに対して動作Bを行う場合よりも、動作Bによって消費される電力量を低減することができる。その分、動作Aを行うための電力量を確保し、データDATの取りこぼしを抑制することができる。
1.4 第4制御モード
 第4制御モードは、記憶装置2における残りの記憶容量(以下、単に「メモリ」という。)に空きがない場合、すなわちメモリ残量が不足し得る場合に選択される。例えば、制御装置5は、メモリ残量が所定量未満の場合に第4制御モードで制御する。理解を容易にするために、1つのデータデータDAT又はデータDATrecogの書き込みに必要なメモリ残量をいずれも「1R」として表す。第4制御モードでは、制御装置5は、動作Cが優先して行われるように制御する。なお、動作Cの前の動作Bは必ず行う必要はある。動作Cが優先して行われることで、データDATrecogさらにはそのもととなったデータDATが記憶装置2から削除され、メモリサイズ不足が解消する。
 所定量の例は、2R、1R等である。例えば、動作Bが行われた後のデータDATすなわちデータDATrecogが記憶装置2に書き込まれている場合には、所定量は1Rであってよい。データDATrecogに対する動作Cが行われることでメモリ残量を回復できるからである。データDATだけが記憶装置2に書き込まれている場合には、所定量は2Rであってよい。動作Cの前に、動作Bを行い、データDATrecogをさらに記憶装置2に書き込むためのメモリ残量が必要だからである。所定量は必ずしもそれらの値に固定される必要は無く、例えば、システム100の状況等に応じて動的に変更されてもよい。
 図9は、第4制御モードでの制御を含む制御の例を示す図である。時刻t61~時刻t70のいずれにおいても、追加電力量は1.0である。当初(時刻t61よりも前)のメモリ残量は4Rであるものとする。
 時刻t61において、追加電力量1.0により、電池残量が1.0になる。メモリ残量(動作前)は4Rである。制御装置5は、新たなデータDAT1に対する動作Aが行われるように制御する。動作Aによって電力量1.0が消費され、電池残量は0.0になる。
 時刻t62において、追加電力量1.0により、電池残量が1.0になる。メモリ残量は3Rである。制御装置5は、新たなデータDAT2に対する動作Aが行われるように制御する。動作Aによって電力量1.0が消費され、電池残量は0.0になる。
 時刻t63において、追加電力量1.0により、電池残量が1.0になる。メモリ残量2Rである。制御装置5は、新たなデータDAT3に対する動作Aが行われるように制御する。動作Aによって電力量1.0が消費され、電池残量は0.0になる。
 時刻t64において、追加電力量1.0により、電池残量が1.0になる。メモリ残量は1Rである。制御装置5は、データDAT1~データDAT3に対して動作Bが優先して行われるように制御する。動作Aが行われず新たなデータDATの取りこぼしが発生するものの、データDATrecog123のもととなったデータDAT1~データDAT3が記憶装置2から削除され、メモリ残量が回復する。動作Bによって電力量1.0が消費され、電池残量は0.0になる。
 時刻t65において、追加電力量1.0により、電池残量が1.0になる。メモリ残量は3Rである。制御装置5は、新たなデータDAT4に対する動作Aが行われるように制御する。動作Aによって電力量1.0が消費され、電池残量は0.0になる。
 時刻t66において、追加電力量1.0により、電池残量が1.0になる。メモリ残量は2Rである。制御装置5は、新たなデータDAT5に対する動作Aが行われるように制御する。動作Aによって電力量1.0が消費され、電池残量は0.0になる。
 時刻t67において、追加電力量1.0により、電池残量が1.0になる。メモリ残量は1Rである。制御装置5は、新たなデータDAT6に対する動作Aが行われるように制御する。
 時刻t68以降は、新たなデータDATは無いものとする。時刻t68において、追加電力量1.0により、電池残量が1.0になる。メモリ残量は0Rである。制御装置5は、データDATrecog123に対する動作Cが行われるように制御する。データDATrecog123が記憶装置2から削除され、メモリ残量が回復する。動作Cによって電力量1.0が消費され、電池残量は0.0になる。
 時刻t69において、追加電力量1.0により、電池残量が1.0になる。メモリ残量は1Rである。制御装置5は、データDATrecog456に対してまとめて動作Bが優先して行われるように制御する。動作Aが行われず新たなデータDATの取りこぼしが発生するものの、データDATrecog456のもととなったデータDAT4~データDAT6が記憶装置2から削除され、メモリ残量が回復する。動作Cによって電力量1.0が消費され、電池残量は0.0になる。
 時刻t70において、追加電力量1.0により、電池残量が1.0になる。メモリ残量は3Rである。制御装置5は、データDATrecog456に対する動作Cが行われるように制御する。動作Cによって電力量1.0が消費され、電池残量は0.0になる。
 上記の例では、時刻t64において、第4制御モードにより、新たなデータDATに対する動作Aではなく、それまでのデータDAT1~データDAT3に対する動作Cを優先するために、それに向けて動作Bが行われる。データDATの取りこぼしが発生するものの、その分メモリ残量が回復し、その後の時刻t65~時刻t67においては新たなデータDATに対して動作Aが行われる。従って、データDATの取りこぼしを抑制することができる。
1.5 第5制御モード
 第5制御モードは、電池残量(追加電力量でもよい)がさらに不足し得る場合に選択される。例えば、制御装置5は、電池残量が第3レベル未満の場合に第5制御モードで制御する。第5制御モードでは、制御装置5は、上述の第3制御モード(さらには第4制御モード)の内容に加えて、センサ1からのデータDATに対する動作Aも、それよりも以前のセンサ1からのデータDATに対する動作B及び動作Cも行われないように制御する。動作Aが間欠動作するともいえる。
 図10は、第5制御モードでの制御を含む制御の例を示す図である。時刻t71~時刻t80のいずれにおいても、追加電力量は0.8である。
 時刻t71において、追加電力量0.8により、電池残量が0.8になる。制御装置5は、動作Aが行われないように制御する。新たなデータDATの取りこぼしが発生する。
 時刻t72において、追加電力量0.8により、電池残量が1.6になる。制御装置5は、新たなデータDAT1に対する動作Aが行われるように制御する。動作Aによって電力量1.0が消費され、電池残量は0.6になる。
 時刻t73おいて、追加電力量0.8により、電池残量が1.4になる。制御装置5は、新たなデータDAT2に対する動作Aが行われるように制御する。動作Aによって電力量1.0が消費され、電池残量は0.4になる。
 時刻t74において、追加電力量0.8により、電池残量が1.2になる。制御装置5は、新たなデータDAT3に対する動作Aが行われるように制御する。動作Aによって電力量1.0が消費され、電池残量は0.2になる。
 時刻t75において、追加電力量0.8により、電池残量が1.0になる。制御装置5は、新たなデータDAT4に対する動作Aが行われるように制御する。動作Aによって電力量1.0が消費され、電池残量は0.0になる。
 時刻t76において、追加電力量0.8により、電池残量が0.8になる。制御装置5は、動作Aが行われないように制御する。新たなデータDATの取りこぼしが発生する。
 時刻t77において、追加電力量0.8により、電池残量が1.6になる。制御装置5は、新たなデータDAT5に対する動作Aが行われるように制御する。動作Aによって電力量1.0が消費され、電池残量は0.6になる。
 時刻t78において、追加電力量0.8により、電池残量が1.6になる。制御装置5は、新たなデータDAT6に対する動作Aが行われるように制御する。動作Aによって電力量1.0が消費され、電池残量は0.4になる。
 時刻t79以降は、新たなデータDATは無いものとする。時刻t79において、追加電力量0.8により、電池残量が1.2になる。制御装置5は、データDAT1~データDAT6に対する動作Bが行われるように制御する。動作Bよって電力量1.0が消費され、電池残量は0.2になる。
 時刻t80以降は、新たなデータDATは無いものとする。時刻t80において、追加電力量0.8により、電池残量が1.0になる。制御装置5は、データDATrecog123456に対する動作Cが行われるように制御する。動作Cよって電力量1.0が消費され、電池残量は0.0になる。
 上記の例では、時刻t71及び時刻t76において、第5制御モードが選択され、新たなデータDATに対する動作Aが行われないように制御される。新たなデータDATの取りこぼしが発生するものの、その後の時刻t72~時刻75、時刻t77及び時刻t78においては新たなデータDATに対して動作Aが行われる。従って、データDATの取りこぼしを抑制することができる。
1.6 追加電力量が変動する場合の制御
 先に述べたように、実際には、エナジーハーベスタ8の発電電力量すなわち追加電力量が変動する。一例について、図11を参照して説明する。
 図11は、追加電力量が変動する場合の制御の例を示す図である。時刻t81において、追加電力量1.0により、電池残量が1.0になる。制御装置5は、新たなデータDAT1に対する動作Aが行われるように制御する。動作Aで電力量1.0が消費され、電池残量は0.0になる。
 時刻t82において、追加電力量1.5により、電池残量が1.5になる。制御装置5は、新たなデータDAT2に対する動作Aが行われるように制御する。動作Aによって電力量1.0が消費され、電池残量は0.5になる。
 時刻t83において、追加電力量1.5により、電池残量が2.0になる。制御装置5は、新たなデータDAT3に対する動作Aが行われ、データDAT1及びデータDATに対してまとめて動作Bが行われるように制御する。動作A及び動作Bによって電力量2.0が消費され、電池残量は0.0になる。
 時刻t84において、追加電力量2.0により、電池残量が2.0になる。制御装置5は、新たなデータDAT3に対する動作Aが行われるように制御する。動作A及び動作Bによって電力量2.0が消費され、電池残量は0.0になる。
 時刻t85において、追加電力量2.0により、電池残量が2.0になる。制御装置5は、新たなデータDAT5に対する動作Aが行われ、データDAT3及びデータDAT4に対してまとめて動作Bが行われるように制御する。動作A及び動作Bによって電力量2.0が消費され、電池残量は0.0になる。
 時刻t86において、追加電力量3.0により、電池残量が3.0になる。制御装置5は、新たなデータDAT6に対する動作A、データDATrecog34に対する動作C及びデータDAT5に対する動作Bが行われるように制御する。動作A、動作C及び動作Bによって電力量3.0が消費され、電池残量は0.0になる。
 時刻t87において、追加電力量3.0により、電池残量が3.0になる。制御装置5は、新たなデータDAT6に対する動作Bが行われるように制御する。動作Bによって電力量1.0が消費され、電池残量は2.0になる。
 時刻t88以降は、新たなデータDATは無いものとする。時刻t88において、追加電力量4.0により、電池残量が6.0になる。制御装置5は、データDATrecog6に対する動作Cが行われるように制御する。動作Bによって電力量1.0が消費され、電池残量は5.0になる。
 時刻t89において、追加電力量4.0により、電池残量が9.0になる。とくに動作は行われない。
 時刻t90において、追加電力量5.0により、電池残量が14.0になる。とくに動作は行われない。
 例えば以上のようにして、追加電力量の変動等に応じたさまざまな制御が行われ、データDATの取りこぼしが抑制される。
1.7 処理フローの例
 図12は、制御装置において実行される処理(制御方法)の例を示すフローチャートである。
 ステップS1において、制御装置5は、データDATの取り込みを開始するか否かを判断する。例えば、データDATの収集が必要な時刻や時間帯になると、制御装置5は、データDATの取り込みを開始すべきと判断する。データDATの取り込みを開始する場合(ステップS1:Yes)、制御装置5は、ステップS2に処理を進める。そうでない場合(ステップS1:No)、制御装置5は、ステップS1の処理を繰り返す。
 ステップS2において、制御装置5は、メモリ残量が所定量以上であるか否かを判断する。メモリ残量が所定量以上の場合(ステップS2:Yes)、制御装置5は、ステップS4に処理を進める。メモリ残量が所定量未満の場合(ステップS2:No)、制御装置5は、ステップS3に処理を進める。
 ステップS3において、制御装置5は、第4制御モードで動作A~動作Cを制御する。第4制御モードでの制御については、例えば先に図9を参照して説明したとおりである。
 ステップS4において、制御装置5は、電池残量が第1レベル以上であるか否かを判断する。電池残量が第1レベル以上の場合(ステップS4:Yes)、制御装置5は、ステップS5に処理を進める。電池残量が第1レベル未満の場合(ステップS4:No)、制御装置5は、ステップS6に処理を進める。
 ステップS5において、制御装置5は、第1制御モードで動作A~動作Cを制御する。第1制御モードでの制御については、例えば先に図2を参照して説明したとおりである。
 ステップS6において、電池残量が第2レベル以上であるか否かを判断する。電池残量が第2レベル以上の場合(ステップS6:Yes)、制御装置5は、ステップS7に処理を進める。電池残量が第2レベル未満の場合(ステップS6:No)、制御装置5は、ステップS8に処理を進める。
 ステップS7において、制御装置5は、第2制御モードで動作A~動作Cを制御する。第2制御モードでの制御については、例えば先に図4を参照して説明したとおりである。
 ステップS8において、制御装置5は、電池残量が第3レベル以上であるか否かを判断する。電池残量が第3レベル以上の場合(ステップS8:Yes)、制御装置5は、ステップS9に処理を進める。電池残量が第3レベル未満の場合(ステップS8:No)、制御装置5は、ステップS10に処理を進める。
 ステップS9において、制御装置5は、第3制御モードで動作A~動作Cを制御する。第3制御モードでの制御については、例えば先に図5~図8を参照して説明したとおりである。
 ステップS10において、制御装置5は、第5制御モードで動作A~動作Cを制御する。第4制御モードでの制御については、例えば先に図10を参照して説明したとおりである。
 ステップS3、ステップS5、ステップS7、ステップS9又はステップS10の処理が完了した後、制御装置5は、ステップS11に処理を進める。
 ステップS11において、制御装置5は、データDATの取り込みを終了するか否かを判断する。例えば、データDATの収集が不要な時刻や時間帯になると、制御装置5は、データDATの取り込みを終了すべきと判断する。データDATの取り込みを終了する場合(ステップS11:Yes)、制御装置5は、ステップS12に処理を進める。そうでない場合(ステップS11:No)、制御装置5は、ステップS2に処理を戻す。
 ステップS12において、制御装置5は、システム動作を終了するか否かを判断する。例えば、システム100の動作を終了するための指示等がユーザ操作(例えばシステム100の管理者等の操作)によって与えられると、制御装置5は、システム動作を終了すべきと判断する。システム動作を終了する場合(ステップS12:Yes)、制御装置5は、フローチャートの処理を終了する。そうでない場合(ステップS12:No)、制御装置5は、ステップS1に処理を戻す。
 例えば以上のようにして、電池残量(追加電力量でもよい)やメモリ残量等に応じた適切な制御モードでの制御が行われる。これまで説明したように、データDATの取りこぼしを抑制することができる。
2.ハードウェア構成の例
 図13は、制御装置のハードウェア構成の例を示す図である。この例では、制御装置5は、コンピュータ1000によって実現される。コンピュータ1000は、CPU1100、RAM1200、ROM(Read Only Memory)1300、HDD(Hard Disk Drive)1400、通信インターフェイス1500、及び入出力インターフェイス1600を有する。コンピュータ1000の各部は、バス1050によって接続される。
 CPU1100は、ROM1300又はHDD1400に格納されたプログラムに基づいて動作し、各部の制御を行う。例えば、CPU1100は、ROM1300又はHDD1400に格納されたプログラムをRAM1200に展開し、各種プログラムに対応した処理を実行する。 
 ROM1300は、コンピュータ1000の起動時にCPU1100によって実行されるBIOS(Basic Input Output System)等のブートプログラムや、コンピュータ1000のハードウェアに依存するプログラム等を格納する。
 HDD1400は、CPU1100によって実行されるプログラム、及び、かかるプログラムによって使用されるデータ等を非一時的に記録する、コンピュータが読み取り可能な記録媒体である。具体的には、HDD1400は、プログラムデータ1450の一例である本開示に係る制御プログラムを記録する記録媒体である。 
 通信インターフェイス1500は、コンピュータ1000が外部ネットワーク1550(例えばインターネット)と接続するためのインターフェイスである。例えば、CPU1100は、通信インターフェイス1500を介して、他の機器からデータを受信したり、CPU1100が生成したデータを他の機器へ送信したりする。
 入出力インターフェイス1600は、入出力デバイス1650とコンピュータ1000とを接続するためのインターフェイスである。例えば、CPU1100は、入出力インターフェイス1600を介して、キーボードやマウス等の入力デバイスからデータを受信する。また、CPU1100は、入出力インターフェイス1600を介して、ディスプレイやスピーカやプリンタ等の出力デバイスにデータを送信する。また、入出力インターフェイス1600は、所定の記録媒体(メディア)に記録されたプログラム等を読み取るメディアインターフェイスとして機能してもよい。メディアとは、例えばDVD(Digital Versatile Disc)、PD(Phase change rewritable Disk)等の光学記録媒体、MO(Magneto-Optical disk)等の光磁気記録媒体、テープ媒体、磁気記録媒体、または半導体メモリ等である。
 例えば、コンピュータ1000が制御装置5として機能する場合、コンピュータ1000のCPU1100は、RAM1200上にロードされた制御プログラムを実行することにより、制御装置5の機能を実現する。また、HDD1400には、本開示に係る制御プログラムが格納される。なお、CPU1100は、プログラムデータ1450をHDD1400から読み取って実行するが、他の例として、外部ネットワーク1550を介して、他の装置からこれらのプログラムを取得してもよい。
 上記のようなハードウェア構成に限らず、さまざまなハードウェア構成によって制御装置5が実現されてよい。例えば、制御装置5の機能を実現するためにカスタマイズされた専用のデバイス等によって制御装置5が実現されてもよい。
3.効果の例
 以上説明した制御装置5は、例えば次のように特定される。図1~図3等を参照して説明したように、制御装置5は、複数の制御モードのうちの少なくとも1つの制御モードで、環境発電電力(エナジーハーベスタ8の発電電力)を消費する複数の動作を制御する。複数の動作は、動作A、動作B及び動作Cを含む。動作Aは、センサ1からのデータDATの(記憶装置2への)書き込みを含む。動作Bは、動作Aによって書き込まれたデータDATの(認識装置3による)認識を含む。動作Cは、動作Bによる認識後のデータDAT(データDATrecog)の(送信装置4による)送信を含む。複数の制御モードは、第1制御モードと、第2制御モードとを含む。第1制御モードでは、センサ1からのデータDATに対する動作Aよりも、それよりも以前のセンサ1からのデータDATに対する動作B及び動作Cの少なくとも一方が優先して行われるように、複数の動作を制御する。第2制御モードでは、センサ1からのデータDATに対する動作Aが、それよりも以前のセンサ1からのDATに対する動作B及び動作Cよりも優先して行われるように、複数の動作を制御する。
 上記の制御装置5では、第2制御モードにより、データDに対する動作Aが、それ以前のデータDATに対する動作Bや動作Cよりも優先して行われる。これにより、データDATの取りこぼしを抑制することができる。
 第2制御モードは、上述の以前のセンサ1からのデータDATに対する動作B及び動作Cのうちでは、制御装置5は、動作Cが優先して行われるように、複数の動作を制御してよい。これにより、データDATの送信を優先して完了することができる。
 制御装置5は、環境発電電力で充電された蓄電池7の残存容量(電池残量)が第1レベル以上の場合に、第1制御モードで複数の動作を制御し、蓄電池7の残存容量が第1レベル未満の場合に、第2制御モードで複数の動作を制御してよい。第1レベルは、動作A~動作Cの3つの動作が同時に行われた場合に消費される電力量であってよい。例えばこのようにして、電池残量に応じた適切な制御モードで複数の動作を制御し、新たなデータDATの取りこぼしを抑制することができる。
 図5~図8等を参照して説明したように、複数の制御モードは、センサ1からの複数のデータDATに対してまとめて動作Bが行われるように複数の動作を制御する第3制御モードを含んでよい。制御装置5は、環境発電電力で充電された蓄電池7の残存容量(電池残量)が第2レベル未満の場合に、第3制御モードで複数の動作を制御してよい。第2レベルは、動作A~動作Cのうち、動作Aを含む2つ動作が同時に行われた場合に消費される電力量であってよい。第3制御モードにより、複数のデータDATそれぞれに対して動作Bが行われる場合よりも電力消費を抑制することができる。電池残量がさらに不足し得る場合でも、新たなデータDATの取りこぼしを抑制することができる。
 図9等を参照して説明したように、複数の制御モードは、センサ1からの新たなデータDATに対する動作Aよりも、それよりも以前のセンサ1からのデータDATに対する動作Cが優先して行われるように複数の動作を制御する第4制御モードを含み、制御装置5は、データDATの書き込みのためのメモリ残量が所定量未満の場合に、第4制御モードで複数の動作を制御してよい。第4制御モードにより、メモリ残量不足に起因する新たなデータDATの取りこぼしを抑制することができる。
 図10等を参照して説明したように、複数の制御モードは、センサ1からの新たなデータに対する動作Aも、それよりも以前のセンサ1からのデータDATに対する動作B及び動作Cも行われないように複数の動作を制御する第5制御モードを含み、制御装置5は、蓄電池7の電池残量が第3レベル未満の場合に、第5制御モードで前記動作を制御し、第3レベルは、動作Aが行われた場合に消費される電力量であってよい。第5制御モードにより、例えば新たなデータDATの取りこぼしが1度は発生するものの、その分電池残量を回復し、その後の新たなデータDATの取りこぼしを抑制(最小化)することができる。
 図12等を参照して説明した制御方法も、実施形態の1つである。制御方法は、複数の制御モードのうちの少なくとも1つの制御モードで、環境発電電力を消費する複数の動作を制御する。複数の制御モード及び複数の動作についてはこれまで説明したとおりである。このような制御方法によっても、新たなデータDATの取りこぼしを抑制することができる。
 図13等を参照して説明した制御プログラム(例えばプログラムデータ1450)も、実施形態の1つである。制御プログラムは、コンピュータ(例えばコンピュータ1000)に、複数の制御モードのうちの少なくとも1つの制御モードで、環境発電電力を消費する複数の動作を制御する。複数の制御モード及び複数の動作についてはこれまで説明したとおりである。このような制御プログラムによっても、新たなデータDATの取りこぼしを抑制することができる。
 なお、本開示に記載された効果は、あくまで例示であって、開示された内容に限定されない。他の効果があってもよい。
 以上、本開示の実施形態について説明したが、本開示の技術的範囲は、上述の実施形態そのままに限定されるものではなく、本開示の要旨を逸脱しない範囲において種々の変更が可能である。また、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。
 なお、本技術は以下のような構成も取ることができる。
(1)
 複数の制御モードのうちの少なくとも1つの制御モードで、環境発電電力を消費する複数の動作を制御する制御装置であって、
 前記複数の動作は、
  センサからのデータの書き込みを含む動作Aと、
  前記動作Aによって書き込まれたデータの認識を含む動作Bと、
  前記動作Bによる認識後のデータの送信を含む動作Cと、
 を含み、
 前記複数の制御モードは、
  前記センサからのデータに対する前記動作Aよりも、それよりも以前の前記センサからのデータに対する動作B及び動作Cの少なくとも一方が優先して行われるように、前記複数の動作を制御する第1制御モードと、
  前記センサからのデータに対する前記動作Aが、それよりも以前の前記センサからのデータに対する動作B及び動作Cよりも優先して行われるように、前記複数の動作を制御する第2制御モードと、
 を含む、
 制御装置。
(2)
 前記第2制御モードは、前記それよりも以前の前記センサからのデータに対する動作B及び動作Cのうちでは、動作Cが優先して行われるように、前記複数の動作を制御する、
 (1)に記載の制御装置。
(3)
 前記環境発電電力で充電された蓄電池の残存容量が第1レベル以上の場合に、前記第1制御モードで前記複数の動作を制御し、
 前記蓄電池の前記残存容量が前記第1レベル未満の場合に、前記第2制御モードで前記複数の動作を制御する、
 (1)又は(2)に記載の制御装置。
(4)
 前記第1レベルは、前記動作A、前記動作B及び前記動作Cが同時に行われた場合に消費される電力量である、
 (3)に記載の制御装置。
(5)
 前記複数の制御モードは、前記センサからの複数のデータに対してまとめて前記動作Bが行われるように前記複数の動作を制御する第3制御モードを含む、
 (1)~(4)のいずれかに記載の制御装置。
(6)
 前記環境発電電力で充電された蓄電池の残存容量が第2レベル未満の場合に、前記第3制御モードで前記複数の動作を制御し、
 前記第2レベルは、前記動作A~動作Cのうち、前記動作Aを含む2つ動作が同時に行われた場合に消費される電力量である、
 (5)に記載の制御装置。
(7)
 前記複数の制御モードは、前記センサからのデータに対する前記動作Aよりも、それよりも以前の前記センサからのデータに対する前記動作Cが優先して行われるように前記複数の動作を制御する第4制御モードを含み、
 前記制御装置は、前記データの書き込みのためのメモリ残量が所定量未満の場合に、前記第4制御モードで前記複数の動作を制御する、
 (1)~(6)のいずれかに記載の制御装置。
(8)
 前記複数の制御モードは、前記センサからのデータに対する前記動作Aも、それよりも以前の前記センサからのデータに対する前記動作B及び動作Cも行われないように前記複数の動作を制御する第5制御モードを含み、
 前記制御装置は、前記環境発電電力で充電された蓄電池の電池残量が第3レベル未満の場合に、前記第5制御モードで前記動作を制御し、
 第3レベルは、前記動作Aが行われた場合に消費される電力量である、
 (1)~(7)のいずれかに記載の制御装置。
(9)
 複数の制御モードのうちの少なくとも1つの制御モードで、環境発電電力を消費する複数の動作を制御する制御方法であって、
 前記複数の動作は、
  センサからのデータの書き込みを含む動作Aと、
  前記動作Aによって書き込まれたデータの認識を含む動作Bと、
  前記動作Bによる認識後のデータの送信を含む動作Cと、
 を含み、
 前記複数の制御モードは、
  前記センサからのデータに対する前記動作Aよりも、それよりも以前の前記センサからのデータに対する動作B及び動作Cの少なくとも一方が優先して行われるように、前記複数の動作を制御する第1制御モードと、
  前記センサからのデータに対する前記動作Aが、それよりも以前の前記センサからのデータに対する動作B及び動作Cよりも優先して行われるように、前記複数の動作を制御する第2制御モードと、
 を含む、
 制御方法。
(10)
 コンピュータに、複数の制御モードのうちの少なくとも1つの制御モードで、環境発電電力を消費する複数の動作を制御させる制御プログラムであって、
 前記複数の動作は、
  センサからのデータの書き込みを含む動作Aと、
  前記動作Aによって書き込まれたデータの認識を含む動作Bと、
  前記動作Bによる認識後のデータの送信を含む動作Cと、
 を含み、
 前記複数の制御モードは、
  前記センサからのデータに対する前記動作Aよりも、それよりも以前の前記センサからのデータに対する動作B及び動作Cの少なくとも一方が優先して行われるように、前記複数の動作を制御する第1制御モードと、
  前記センサからのデータに対する前記動作Aが、それよりも以前の前記センサからのデータに対する動作B及び動作Cよりも優先して行われるように、前記複数の動作を制御する第2制御モードと、
 を含む、
 制御プログラム。
   1 センサ
   2 記憶装置
   3 認識装置
   4 送信装置
   5 制御装置
   6 蓄電池監視装置
   7 蓄電池
   8 エナジーハーベスタ(環境発電装置)
 100 システム(エナジーハーベストシステム、環境発電システム)
1450 プログラムデータ(制御プログラム)

Claims (10)

  1.  複数の制御モードのうちの少なくとも1つの制御モードで、環境発電電力を消費する複数の動作を制御する制御装置であって、
     前記複数の動作は、
      センサからのデータの書き込みを含む動作Aと、
      前記動作Aによって書き込まれたデータの認識を含む動作Bと、
      前記動作Bによる認識後のデータの送信を含む動作Cと、
     を含み、
     前記複数の制御モードは、
      前記センサからのデータに対する前記動作Aよりも、それよりも以前の前記センサからのデータに対する動作B及び動作Cの少なくとも一方が優先して行われるように、前記複数の動作を制御する第1制御モードと、
      前記センサからのデータに対する前記動作Aが、それよりも以前の前記センサからのデータに対する動作B及び動作Cよりも優先して行われるように、前記複数の動作を制御する第2制御モードと、
     を含む、
     制御装置。
  2.  前記第2制御モードは、前記それよりも以前の前記センサからのデータに対する動作B及び動作Cのうちでは、動作Cが優先して行われるように、前記複数の動作を制御する、
     請求項1に記載の制御装置。
  3.  前記環境発電電力で充電された蓄電池の残存容量が第1レベル以上の場合に、前記第1制御モードで前記複数の動作を制御し、
     前記蓄電池の前記残存容量が前記第1レベル未満の場合に、前記第2制御モードで前記複数の動作を制御する、
     請求項1に記載の制御装置。
  4.  前記第1レベルは、前記動作A、前記動作B及び前記動作Cが同時に行われた場合に消費される電力量である、
     請求項3に記載の制御装置。
  5.  前記複数の制御モードは、前記センサからの複数のデータに対してまとめて前記動作Bが行われるように前記複数の動作を制御する第3制御モードを含む、
     請求項1に記載の制御装置。
  6.  前記環境発電電力で充電された蓄電池の残存容量が第2レベル未満の場合に、前記第3制御モードで前記複数の動作を制御し、
     前記第2レベルは、前記動作A~動作Cのうち、前記動作Aを含む2つ動作が同時に行われた場合に消費される電力量である、
     請求項5に記載の制御装置。
  7.  前記複数の制御モードは、前記センサからのデータに対する前記動作Aよりも、それよりも以前の前記センサからのデータに対する前記動作Cが優先して行われるように前記複数の動作を制御する第4制御モードを含み、
     前記制御装置は、前記データの書き込みのためのメモリ残量が所定量未満の場合に、前記第4制御モードで前記複数の動作を制御する、
     請求項1に記載の制御装置。
  8.  前記複数の制御モードは、前記センサからのデータに対する前記動作Aも、それよりも以前の前記センサからのデータに対する前記動作B及び動作Cも行われないように前記複数の動作を制御する第5制御モードを含み、
     前記制御装置は、前記環境発電電力で充電された蓄電池の電池残量が第3レベル未満の場合に、前記第5制御モードで前記動作を制御し、
     第3レベルは、前記動作Aが行われた場合に消費される電力量である、
     請求項1に記載の制御装置。
  9.  複数の制御モードのうちの少なくとも1つの制御モードで、環境発電電力を消費する複数の動作を制御する制御方法であって、
     前記複数の動作は、
      センサからのデータの書き込みを含む動作Aと、
      前記動作Aによって書き込まれたデータの認識を含む動作Bと、
      前記動作Bによる認識後のデータの送信を含む動作Cと、
     を含み、
     前記複数の制御モードは、
      前記センサからのデータに対する前記動作Aよりも、それよりも以前の前記センサからのデータに対する動作B及び動作Cの少なくとも一方が優先して行われるように、前記複数の動作を制御する第1制御モードと、
      前記センサからのデータに対する前記動作Aが、それよりも以前の前記センサからのデータに対する動作B及び動作Cよりも優先して行われるように、前記複数の動作を制御する第2制御モードと、
     を含む、
     制御方法。
  10.  コンピュータに、複数の制御モードのうちの少なくとも1つの制御モードで、環境発電電力を消費する複数の動作を制御させる制御プログラムであって、
     前記複数の動作は、
      センサからのデータの書き込みを含む動作Aと、
      前記動作Aによって書き込まれたデータの認識を含む動作Bと、
      前記動作Bによる認識後のデータの送信を含む動作Cと、
     を含み、
     前記複数の制御モードは、
      前記センサからのデータに対する前記動作Aよりも、それよりも以前の前記センサからのデータに対する動作B及び動作Cの少なくとも一方が優先して行われるように、前記複数の動作を制御する第1制御モードと、
      前記センサからのデータに対する前記動作Aが、それよりも以前の前記センサからのデータに対する動作B及び動作Cよりも優先して行われるように、前記複数の動作を制御する第2制御モードと、
     を含む、
     制御プログラム。
PCT/JP2022/003497 2021-05-28 2022-01-31 制御装置、制御方法及び制御プログラム WO2022249545A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112022002820.3T DE112022002820T5 (de) 2021-05-28 2022-01-31 Steuervorrichtung, steuerverfahren und steuerprogramm
JP2023523970A JPWO2022249545A1 (ja) 2021-05-28 2022-01-31

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-090151 2021-05-28
JP2021090151 2021-05-28

Publications (1)

Publication Number Publication Date
WO2022249545A1 true WO2022249545A1 (ja) 2022-12-01

Family

ID=84229690

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/003497 WO2022249545A1 (ja) 2021-05-28 2022-01-31 制御装置、制御方法及び制御プログラム

Country Status (3)

Country Link
JP (1) JPWO2022249545A1 (ja)
DE (1) DE112022002820T5 (ja)
WO (1) WO2022249545A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015115654A1 (ja) * 2014-01-31 2015-08-06 株式会社フジクラ センサノード、及びセンサノードの制御方法
JP2017009305A (ja) * 2015-06-17 2017-01-12 Nttエレクトロニクス株式会社 センシング装置及びセンシングシステム
JP2020174330A (ja) * 2019-04-12 2020-10-22 株式会社ポコアポコネットワークス ローカル基地局

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019046157A (ja) 2017-09-01 2019-03-22 株式会社フジクラ センサ装置及びセンサ装置の制御方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015115654A1 (ja) * 2014-01-31 2015-08-06 株式会社フジクラ センサノード、及びセンサノードの制御方法
JP2017009305A (ja) * 2015-06-17 2017-01-12 Nttエレクトロニクス株式会社 センシング装置及びセンシングシステム
JP2020174330A (ja) * 2019-04-12 2020-10-22 株式会社ポコアポコネットワークス ローカル基地局

Also Published As

Publication number Publication date
DE112022002820T5 (de) 2024-03-21
JPWO2022249545A1 (ja) 2022-12-01

Similar Documents

Publication Publication Date Title
US9652177B2 (en) Memory controller including host command queue and method of operating the same
US20140258761A1 (en) Asynchronous management of access requests to control power consumption
US9501130B2 (en) Data storage device and data processing system including the same
KR20200122364A (ko) 자원 스케줄링 방법 및 단말 장치
US10318165B2 (en) Data operating method, device, and system
TWI704489B (zh) 儲存備份記憶體封裝中之狀態管理
KR20100104550A (ko) 저장 장치 및 저장 장치의 버퍼 메모리 관리 방법
US8359425B2 (en) Memory control device, memory device, and shutdown control method
US20150074330A1 (en) Memory device, information-processing device and information-processing method
CN113590501A (zh) 一种数据存储方法及相关设备
CN112100088A (zh) 电子装置以及使用该电子装置的存储部的方法
WO2022249545A1 (ja) 制御装置、制御方法及び制御プログラム
US11418452B2 (en) Method and electronic device processing data
US20110185142A1 (en) Information processing apparatus and data saving acceleration method of the information processing apparatus
US8806078B2 (en) Information processing device and program product
CN110633226A (zh) 融合存储器、存储系统及深度学习计算方法
CN104035790A (zh) 信息处理装置、信息处理方法、程序存储介质
CN111625948B (zh) 超长场景的回放型仿真方法、装置、设备和介质
KR102295751B1 (ko) 차량의 센서 퓨전 장치
US20110010510A1 (en) Method for updating a program section
US9317440B2 (en) Computing device and virtual device control method for controlling virtual device by computing system
CN113759331B (zh) 一种雷达定位方法、装置、设备及存储介质
US20230236742A1 (en) NONVOLATILE MEMORY EXPRESS (NVMe) OVER COMPUTE EXPRESS LINK (CXL)
CN103765478A (zh) 绘图控制装置
CN111026330B (zh) 一种基于sd卡的数据缓存装置、方法及机载存储系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22810831

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023523970

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 18560735

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112022002820

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22810831

Country of ref document: EP

Kind code of ref document: A1