WO2022249512A1 - 移動手摺の点検装置および移動手摺の点検システム - Google Patents

移動手摺の点検装置および移動手摺の点検システム Download PDF

Info

Publication number
WO2022249512A1
WO2022249512A1 PCT/JP2021/041906 JP2021041906W WO2022249512A1 WO 2022249512 A1 WO2022249512 A1 WO 2022249512A1 JP 2021041906 W JP2021041906 W JP 2021041906W WO 2022249512 A1 WO2022249512 A1 WO 2022249512A1
Authority
WO
WIPO (PCT)
Prior art keywords
moving handrail
information
handrail
abnormality
moving
Prior art date
Application number
PCT/JP2021/041906
Other languages
English (en)
French (fr)
Inventor
良知 西村
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2023523951A priority Critical patent/JP7460021B2/ja
Publication of WO2022249512A1 publication Critical patent/WO2022249512A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B31/00Accessories for escalators, or moving walkways, e.g. for sterilising or cleaning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B31/00Accessories for escalators, or moving walkways, e.g. for sterilising or cleaning
    • B66B31/02Accessories for escalators, or moving walkways, e.g. for sterilising or cleaning for handrails

Definitions

  • the present disclosure relates to a moving handrail inspection device and a moving handrail inspection system.
  • Patent Document 1 discloses an inspection device for moving handrails.
  • the inspection device may detect that the steel wire inside the handrail is broken.
  • Patent Document 1 the worker uses the inspection device in the vicinity of the entrance/exit of the passenger conveyor. For this reason, it can only be used during maintenance and inspection of the passenger conveyor.
  • An object of the present disclosure is to provide a passenger conveyor inspection device and a moving handrail inspection system capable of detecting abnormalities in moving handrails during normal operation.
  • a moving handrail inspection device includes: a housing arranged below a moving handrail having a steel wire inside at a lower part of a railing of a passenger conveyor; and a magnetic sensor for detecting a change in the magnetic field generated in the space through which the steel wire of the moving handrail passes.
  • a moving handrail inspection system includes a moving handrail inspection device in which the communication device transmits information of an image of the surface of the moving handrail captured by the detection camera, and information of the image from the communication device.
  • receiving the first alert information to the effect that an abnormality of the steel wire of the moving handrail has been detected, and determining whether or not foreign matter is attached to the surface of the moving handrail based on the image of the surface of the moving handrail; If it is determined that no foreign matter is adhered to the surface of the moving handrail when receiving the first alert information, it notifies that an abnormality has been detected, and when receiving the first alert information, the moving handrail. and a remote management device that does not report that an abnormality has been detected when it is determined that foreign matter is attached to the surface of the device.
  • the moving handrail inspection device is arranged below the moving handrail at the bottom of the railing of the passenger conveyor. Therefore, an abnormality of the moving handrail can be detected during normal operation of the passenger conveyor.
  • FIG. 1 is a configuration diagram of a passenger conveyor to which a moving handrail inspection system according to Embodiment 1 is applied;
  • FIG. 1 is a side view showing a main part of a passenger conveyor to which a moving handrail inspection system according to Embodiment 1 is applied;
  • FIG. FIG. 2 is a diagram showing a magnetic sensor of the inspection system for moving handrails according to Embodiment 1;
  • 1 is a block diagram of a moving handrail inspection system according to Embodiment 1.
  • FIG. FIG. 4 is a flowchart for explaining an overview of a moving handrail abnormality determination process performed by the moving handrail inspection system according to the first embodiment;
  • FIG. 2 is a hardware configuration diagram of a communication device of the inspection system for moving handrails according to Embodiment 1.
  • FIG. 10 is a configuration diagram of a passenger conveyor to which a moving handrail inspection system according to Embodiment 2 is applied;
  • FIG. 10 is a diagram showing an outline of an inspection device of a moving handrail inspection system according to Embodiment 2;
  • FIG. 10 is a block diagram of a moving handrail inspection system according to Embodiment 2;
  • FIG. 10 is a flowchart for explaining an outline of abnormal vibration determination processing of a moving handrail performed by the moving handrail inspection system according to Embodiment 2;
  • FIG. 1 is a configuration diagram of a passenger conveyor to which a moving handrail inspection system according to Embodiment 1 is applied.
  • the passenger conveyor 1 is an escalator, as shown in FIG.
  • a passenger conveyor 1 spans between the upper and lower floors of a building.
  • the first entrance/exit 2a is provided on the upper floor of the building.
  • the second entrance/exit 2b is provided on the lower floor of the building.
  • the passenger conveyor 1 is a machine that transports passengers between a first boarding/alighting opening 2a and a second boarding/alighting opening 2b.
  • the passenger conveyor 1 comprises a main frame 3, a balustrade 4, a moving handrail 5, a driving device 6, a main sprocket 7, a handrail sprocket 8, a handrail chain 9, and a control device 10.
  • the main frame 3 spans between the first boarding/alighting opening 2a and the second boarding/alighting opening 2b.
  • the main frame 3 has a machine room 11 .
  • the machine room 11 is provided at the end of the main frame 3 on the side of the first entrance/exit 2a.
  • a pair of balustrades 4 are provided between the first entrance 2a and the second entrance 2b.
  • a pair of balustrades 4 are provided on both sides of the route along which passengers are transported.
  • Each of the pair of moving handrails 5 is an endless belt.
  • Each of the pair of moving handrails 5 is provided between the first boarding/alighting opening 2a and the second boarding/alighting opening 2b.
  • One of the pair of moving handrails 5 is provided so as to surround one of the pair of balustrades 4 .
  • the other of the pair of moving handrails 5 is provided so as to surround the other of the pair of handrails 4 in the same manner as one of the pair of moving handrails 5 .
  • Each of the pair of moving handrails 5 is divided into an outward path portion 5a, a return path portion 5b and two folded portions 5c in a state of being installed on the balustrade 4.
  • the outward path portion 5 a is a portion that contacts the upper surface of the balustrade 4 .
  • the return path portion 5b is a portion that passes under the balustrade 4.
  • Each of the two folded portions 5c is a portion that exists between the forward portion 5a and the return portion 5b.
  • One of the two folded portions 5c is a portion that contacts the end of the balustrade 4 at the first entrance/exit 2a.
  • the other of the two folded portions 5c is a portion that contacts the end of the balustrade 4 at the second entrance/exit 2b.
  • the driving device 6 is provided inside the machine room 11 .
  • a drive device 6 is provided to be rotatably driven.
  • the main sprocket 7 is provided inside the machine room 11 of the main frame 3 .
  • the main sprocket 7 is provided so as to be rotatable following the rotational drive of the drive device 6 via the drive chain.
  • a main sprocket 7 is provided so that when it rotates it can actuate a plurality of steps (not shown) of the passenger conveyor 1 .
  • the handrail sprocket 8 is provided inside the main frame 3.
  • a handrail sprocket 8 is provided under one of the pair of balustrades 4 .
  • the handrail sprocket 8 is in contact with the return path portion 5b on one of the pair of moving handrails 5.
  • a similar handrail sprocket 8 is provided on the lower portion of the other of the pair of balustrades 4 .
  • the handrail chain 9 is an endless chain.
  • One end of the handrail chain 9 is wound around the main sprocket 7. - ⁇
  • the other end of the handrail chain 9 is wound around the handrail sprocket 8. - ⁇
  • the control device 10 is provided inside the machine room 11 .
  • a control device 10 is provided to control the passenger conveyor 1 as a whole.
  • the moving handrail inspection system 12 is provided to detect abnormalities in the moving handrail 5.
  • the moving handrail inspection system 12 includes an inspection device 13 and a remote management device 14 .
  • the inspection device 13 is permanently installed on the passenger conveyor 1.
  • the inspection device 13 is arranged under one of the pair of balustrades 4 .
  • the inspection device 13 is fixed to the main frame 3 by a connecting member (not shown).
  • the inspection device 13 is provided on one of the pair of handrails 5 adjacent to the return route portion 5b and below the return route portion 5b.
  • the inspection device 13 is provided so as to face the lower surface of the moving handrail 5 in the return path portion 5b.
  • a similar inspection device 13 is provided on the other of the pair of balustrades 4 .
  • the remote management device 14 is installed in the building of the company that maintains and manages the passenger conveyor 1.
  • the remote management device 14 is installed in a building different from the building in which the passenger conveyor 1 is installed.
  • a remote management device 14 is provided to communicate with the inspection device 13 .
  • remote management device 14 has a display for displaying information.
  • the control device 10 sends a control command to the drive device 6 to drive the drive device 6 to rotate.
  • the main sprocket 7 rotates following the driving device 6 .
  • the main sprocket 7 operates a plurality of steps.
  • the handrail chain 9 moves following the rotation of the main sprocket 7.
  • - ⁇ The handrail sprocket 8 rotates following the movement of the handrail chain 9.
  • the handrail sprocket 8 moves the moving handrail 5 by static friction generated between the handrail sprocket 8 and the moving handrail 5 .
  • the moving handrail 5 follows the rotation of the handrail sprocket 8 and rotates around the balustrade 4.
  • the inspection device 13 photographs the surface of the moving handrail 5 when the passenger conveyor 1 operates normally.
  • the inspection device 13 transmits the photographed information to the remote management device 14 .
  • the inspection device 13 When the passenger conveyor 1 is normally operated, the inspection device 13 generates a magnetic field in the space including the facing parts of the adjacent moving handrails 5 . The inspection device 13 measures the distribution of the magnetic field. While the handrail 5 is moving in normal operation, the inspection device 13 monitors whether the distribution of the magnetic field changes from the steady distribution. For example, if there is a broken portion of the steel wire inside the moving handrail 5, the inspection device 13 detects a change in the distribution of the magnetic field caused by the broken portion passing through the magnetic field. In this case, the inspection device 13 notifies the remote management device 14 that an abnormality has been detected.
  • the inspection device 13 monitors the surface of the moving handrail 5 for abnormalities based on the information obtained by photographing the surface of the moving handrail 5 . For example, when a crack occurs in a part of the surface of the moving handrail 5, the inspection device 13 detects the crack. In this case, the inspection device 13 notifies the remote management device 14 that the abnormality has been detected.
  • the remote management device 14 displays the information received from the inspection device 13 on the display.
  • the remote management device 14 displays the information that the surface of the moving handrail 5 has been photographed and the information of the received abnormality notification. For example, a maintenance worker of a company that performs maintenance dispatches a worker to the passenger conveyor 1 based on the information displayed on the remote control device 14 .
  • FIG. 2 is a side view showing a main part of the passenger conveyor to which the moving handrail inspection system according to Embodiment 1 is applied.
  • FIG. 2B shows a cross-sectional view of the moving handrail 5 taken along the line AA in FIG. 2A.
  • the moving handrail 5 moves from the left side to the right side of the paper surface.
  • the moving handrail 5 includes a core 15 and a plurality of steel wires 16. - ⁇
  • the material of the core 15 is a resin such as rubber, elastomer, or the like.
  • the core 15 is formed in an endless shape.
  • the core 15 has cloth made of chemical fibers such as cotton or polyester between it and the balustrade 4 (not shown in FIG. 2).
  • Each of the plurality of steel wires 16 is formed by twisting together a plurality of metal wires 16a. Each of the plurality of steel wires 16 is formed endless. Each of the plurality of steel wires 16 is provided in parallel with the core body 15 inside the core body 15 . As shown in FIG. 2B , the plurality of steel wires 16 are arranged in the width direction of the handrail 5 inside the core 15 .
  • the inspection device 13 includes a housing 17 , a magnetic sensor 18 , a detection camera 19 and a communication device 20 .
  • the housing 17 is a metal box.
  • the housing 17 is arranged below the moving handrail 5 .
  • the housing 17 is fixed to the main frame 3 by connecting members.
  • the housing 17 is fixed at a position separated from the moving handrail 5 by a specified clearance distance L.
  • the clearance distance L is set in order to prevent the moving handrail 5 from being damaged by the installation of the housing 17 .
  • the clearance distance L is a distance at which the moving handrail 5 and the housing 17 do not come into contact with each other even when the moving handrail 5 undergoes chordal vibration during normal operation.
  • the housing 17 has an opening on the surface facing the moving handrail 5 .
  • the magnetic sensor 18 is a leakage magnetic flux measurement type sensor.
  • the magnetic sensor 18 can detect leakage magnetic flux at the detection portion.
  • the magnetic sensor 18 detects the magnetic field distribution based on the detection result of the leakage magnetic flux.
  • the width of the detection portion of the magnetic sensor 18 is the same length as the width of the moving handrail 5 .
  • the magnetic sensor 18 is provided inside the housing 17 .
  • a detecting portion of the magnetic sensor 18 faces the moving handrail 5 through the opening of the housing 17 .
  • the magnetic sensor 18 detects an abnormality that has occurred in the steel wire 16 inside the core 15 by detecting changes in the magnetic field. Specifically, when the steel wire 16 breaks inside the core body 15 , the magnetic sensor 18 detects the breakage of the steel wire 16 . Further, when a part of the metal wire 16a protrudes from the steel wire 16 inside the core body 15, the magnetic sensor 18 detects an abnormality of the metal wire 16a. The magnetic sensor 18 identifies an abnormal location indicating the position of the abnormality detected in the moving handrail 5 .
  • the detection camera 19 is a camera that shoots moving images or still images.
  • the detection camera 19 is provided inside the housing 17 .
  • the detection camera 19 is provided at a position where the moving handrail 5 can be photographed through the opening of the housing 17 .
  • the detection camera 19 is provided downstream of the magnetic sensor 18 in the moving handrail 5 during operation. Specifically, the detection camera 19 is provided so as to photograph a portion of the moving handrail 5 immediately after the magnetic sensor 18 measures the magnetic field.
  • the detection camera 19 is provided so as to photograph the entire width of the moving handrail 5 .
  • the detection camera 19 creates shooting information indicating the captured moving image or still image.
  • the detection camera 19 monitors the state of the surface of the moving handrail 5 based on the photographing information of the photographed still image. Specifically, the detection camera 19 monitors whether or not the core body 15 is cracked, expanded, or the like due to aging deterioration of the resin material forming the core body 15 . If the surface of the core body 15 of the moving handrail 5 has an abnormal portion such as a cracked portion, an expanded portion, or the like, the detection camera 19 detects the presence of the abnormal portion on the surface of the moving handrail 5 based on the photographed information. To detect. The detection camera 19 identifies an abnormal location indicating the position of the detected abnormality in the moving handrail 5 .
  • the communication device 20 is provided inside the housing 17 .
  • a communication device 20 is electrically connected to the magnetic sensor 18 and the detection camera 19 .
  • a communicator 20 is provided to communicate with the remote management device 14 .
  • the communication device 20 transmits the data measured by the magnetic sensor 18 to the remote management device 14 at regular intervals.
  • the communication device 20 transmits first alert information including information on the location of the abnormality detected by the magnetic sensor 18 to the remote control device 14 .
  • the communication device 20 transmits image information captured by the detection camera 19 to the remote management device 14 at regular intervals.
  • the detection camera 19 detects an abnormal spot on the surface of the moving handrail 5
  • the communication device 20 transmits second alert information including information on the abnormal spot detected by the detection camera 19 to the remote control device 14 .
  • the remote management device 14 When receiving the first alert information or the second alert information from the communication device 20, the remote management device 14 displays the first alert information or the second alert information on a display (not shown). Based on the image information received from the detection camera 19 , the remote management device 14 determines whether or not a foreign object exists on the surface of the core body 15 . The remote management device 14 determines whether or not there is an abnormality on the surface of the core 15 based on the imaging information. The remote management device 14 constantly displays the information measured by the inspection device 13 and the information of the judgment result on the display.
  • the maintenance staff monitors the display of the remote management device 14.
  • the maintenance staff can confirm the abnormality that has occurred in the handrail 5 by confirming the first alert information or the second alert information displayed on the display. For example, by confirming the abnormality, the maintenance staff grasps signs of deterioration of the handrail 5 before the deterioration of the handrail 5 progresses and the steel wire 16 or the metal wire 16a protrudes from the core body 15. It is possible to
  • FIG. 3 is a diagram showing a magnetic sensor of the moving handrail inspection system according to the first embodiment.
  • the magnetic sensor 18 includes a permanent magnet 18a and an MR element array 18b.
  • the permanent magnet 18a generates a magnetic field in space.
  • the MR element array 18b measures the magnetic field distribution D by measuring leakage magnetic flux.
  • the permanent magnet 18a generates a magnetic field in the space through which the moving handrail 5 moves.
  • the distribution D of the magnetic field is affected by the plurality of steel wires 16 that are ferromagnetic. Since the moving handrail 5 passes through the magnetic field at a substantially constant speed, the distribution D of the magnetic field is a steady distribution with little distribution change per hour.
  • the distribution D of the magnetic field changes from the steady distribution.
  • the MR element array 18b detects that the magnetic field distribution D has changed. In this case, the magnetic sensor 18 detects abnormality of the steel wire 16 .
  • FIG. 4 is a block diagram of the moving handrail inspection system according to the first embodiment.
  • the communication device 20 includes a traffic monitor 21 and a first communication controller 22.
  • the operation monitor 21 receives control information for the passenger conveyor 1 from the control device 10 .
  • the operation monitor 21 constantly monitors the operation status of the passenger conveyor 1, any abnormalities that have occurred, etc. based on the control information.
  • the operation monitor 21 creates information such as the value of the speed of the moving handrail 5 (not shown in FIG. 4), the lap time that elapses when the moving handrail 5 goes around the balustrade 4 (not shown in FIG. 4), and the like. .
  • the first communication controller 22 confirms the state of communication with the remote management device 14 and transmits and receives information detected by the inspection device 13 .
  • the first communication controller 22 includes a first transmitter 23 and a first receiver 24 .
  • the first transmission unit 23 transmits imaging information captured by the detection camera 19 to the remote management device 14 .
  • the first transmitter 23 transmits the first alert information or the second alert information to the remote management device 14 .
  • the first receiving unit 24 receives response information to the first alert information or the second alert information from the remote management device 14 .
  • the remote management device 14 includes an alarm device 25 , a second communication controller 26 and an information processor 27 .
  • the annunciator 25 is a display.
  • the annunciator 25 informs maintenance personnel of information such as an alarm by displaying information on the display.
  • the second communication controller 26 controls communication with devices other than the remote management device 14 .
  • the second communication controller 26 has a second receiver 28 and a second transmitter 29 .
  • the second receiving unit 28 receives information from the communication device 20 of the inspection device 13. For example, the second receiver 28 receives first alert information or second alert information from the communication device 20 .
  • the second transmission unit 29 transmits the information to the communication device 20 of the inspection device 13.
  • the second transmitter 29 transmits response information corresponding to the first alert information or the second alert information received by the second receiver 28 to the communication device 20 .
  • the second transmission unit 29 transmits information to be displayed on the notification device 25 to the notification device 25 .
  • the information processor 27 makes an abnormality determination of the passenger conveyor 1 based on the information received by the second communication controller 26 .
  • the information processor 27 includes a history storage unit 30 , an abnormality determination unit 31 and an alarm output unit 32 .
  • the history storage unit 30 stores the alert information as an alert history.
  • the abnormality determination unit 31 determines whether an abnormality has occurred inside the moving handrail 5 as abnormality determination processing.
  • the abnormality determination unit 31 determines whether the magnetic sensor 18 has detected an abnormality. Specifically, when the second communication controller 26 receives the first alert information from the communication device 20, the abnormality determination unit 31 determines that the magnetic sensor 18 has detected an abnormality. When the abnormality determination unit 31 determines that the magnetic sensor 18 has not detected an abnormality, it causes the annunciator 25 to notify that no abnormality has been detected via the second communication controller 26 .
  • the abnormality determination unit 31 determines that the magnetic sensor 18 has detected an abnormality, it identifies the position of the abnormal portion of the moving handrail 5 detected by the magnetic sensor 18 based on the first alert information. After that, based on the information received from the detection camera 19, the abnormality determination unit 31 determines whether or not a foreign object exists at the abnormal location. Specifically, the abnormality determination unit 31 analyzes the still image included in the image information received by the second communication controller 26 to determine whether a foreign object exists at the abnormal location of the moving handrail 5 . determine whether or not
  • the abnormality determination unit 31 may use a learned first determination model in which machine learning has been performed on the image data of the foreign matter adhering to the moving handrail 5 .
  • the abnormality determination unit 31 identifies a location where a foreign object exists and a location where a foreign object does not exist based on the first determination model.
  • the abnormality determination unit 31 may determine whether or not a foreign object exists at the abnormal location in the still image based on the first determination model.
  • the annunciator 25 When the abnormality determination unit 31 detects that a foreign object exists at the abnormal location, the annunciator 25 notifies the information of the abnormal location and the information indicating that the follow-up observation state is in progress via the second communication controller 26.
  • the abnormality determination unit 31 determines that an abnormality has occurred in the moving handrail 5 when it does not detect that a foreign object exists at the abnormal location.
  • the alarm output unit 32 causes the annunciator 25 to notify that the abnormality has occurred via the second transmission unit 29 .
  • the maintenance personnel may assume that the abnormal detection of the magnetic sensor 18 is an erroneous detection due to the attachment of a magnetic metallic foreign object to the moving handrail 5. I reckon. In this case, the maintenance staff observes the progress of the information transmitted by the inspection device 13 installed on the moving handrail 5 .
  • the maintenance worker refers to the information captured by the detection camera 19 and determines whether or not to dispatch a worker to the passenger conveyor 1 provided with the moving handrail 5. Consider whether When dispatched to the passenger conveyor 1 , the worker performs maintenance work on the passenger conveyor 1 .
  • FIG. 5 is a flow chart for explaining an outline of a moving handrail abnormality determination process performed by the moving handrail inspection system according to the first embodiment.
  • the remote management device 14 always executes abnormality determination processing for the moving handrail 5 when the passenger conveyor 1 is operating normally.
  • step S1 the remote management device 14 determines whether the magnetic sensor 18 has detected an abnormality.
  • step S1 If it is determined in step S1 that the magnetic sensor 18 has not detected an abnormality, the remote management device 14 performs the operation of step S2. In step S2, the remote management device 14 notifies the annunciator 25 that no abnormality has been detected. After that, the remote management device 14 performs the operations after step S1.
  • step S1 When it is determined in step S1 that the magnetic sensor 18 has detected an abnormality, the remote management device 14 performs the operation of step S3. In step S ⁇ b>3 , the remote management device 14 determines whether or not a foreign object exists at the abnormal location of the moving handrail 5 detected by the magnetic sensor 18 based on the photographing information of the detection camera 19 .
  • step S3 When it is determined in step S3 that a foreign object exists at the abnormal location, the remote management device 14 performs the operation of step S4.
  • step S4 the remote management device 14 uses the annunciator 25 to notify that the patient is in a follow-up observation state. After that, the remote management device 14 performs the operations after step S1.
  • step S3 When it is determined in step S3 that there is no foreign object at the abnormal location, the remote management device 14 performs the operation of step S5.
  • step S5 the remote management device 14 issues an alarm to the effect that an abnormal location has been found by the annunciator 25 and information on the abnormal location. After that, the remote management device 14 performs the operations after step S1.
  • inspection device 13 includes housing 17 and magnetic sensor 18 .
  • the inspection device 13 is provided at a position where the housing 17 does not interfere with the user of the passenger conveyor 1 and each machine constituting the passenger conveyor 1 during normal operation. Therefore, the inspection device 13 can be permanently installed on the passenger conveyor 1 .
  • the magnetic sensor 18 can constantly detect abnormalities occurring in the steel wire 16 of the moving handrail 5 by detecting changes in the magnetic field in the space through which the moving handrail 5 passes during normal operation. That is, deterioration diagnosis of the moving handrail 5 can be performed during normal operation of the passenger conveyor. As a result, it is possible to shorten the work time for diagnosing deterioration inside the handrail in the maintenance and inspection of the passenger conveyor 1, or reduce the number of work items for diagnosing deterioration.
  • the inspection device 13 also includes a communication device 20 .
  • the communication device 20 transmits first alert information to the remote management device 14 when the magnetic sensor 18 detects a change in the magnetic field. Therefore, the inspection device 13 can notify a maintenance company located at a remote location of an abnormality detected in the passenger conveyor 1 . As a result, the passenger conveyor 1 can be inspected while the inspection device 13 is permanently installed.
  • the inspection device 13 also includes a detection camera 19.
  • a detection camera 19 detects an abnormality in the surface condition of the moving handrail.
  • the communication device 20 notifies the remote management device 14 that the anomaly has been detected as second alert information. Therefore, it is possible to inspect the deterioration state of the surface of the moving handrail 5 while the inspection device 13 is permanently installed.
  • the inspection system 12 also includes an inspection device 13 and a remote management device 14 .
  • the remote management device 14 detects the magnetic sensor 18 as a steel wire based on the image information. It is determined that a metal foreign object is detected instead of the abnormality of 16. In this case, the remote management device 14 notifies that a follow-up observation will be performed without notifying that an abnormality has been detected. The maintenance staff performs follow-up observation based on the report of follow-up observation. Therefore, it is possible to prevent the remote management device 14 from erroneously detecting an abnormality in the moving handrail 5 when the magnetic sensor 18 detects an abnormality even when there is no abnormality in the steel wire 16 .
  • the passenger conveyor 1 may be a moving walkway instead of an escalator.
  • the inspection device 13 may communicate with the remote management device 14 via a transmission/reception board provided in the machine room 11.
  • FIG. 6 is a hardware configuration diagram of a communication device of the moving handrail inspection system according to the first embodiment.
  • Each function of the communication device 20 can be realized by a processing circuit.
  • the processing circuitry comprises at least one processor 100a and at least one memory 100b.
  • the processing circuitry comprises at least one piece of dedicated hardware 200 .
  • each function of the communication device 20 is realized by software, firmware, or a combination of software and firmware. At least one of software and firmware is written as a program. At least one of software and firmware is stored in at least one memory 100b. At least one processor 100a implements each function of the communication device 20 by reading and executing a program stored in at least one memory 100b.
  • the at least one processor 100a is also referred to as a central processing unit, processing unit, arithmetic unit, microprocessor, microcomputer, DSP.
  • the at least one memory 100b is a nonvolatile or volatile semiconductor memory such as RAM, ROM, flash memory, EPROM, EEPROM, magnetic disk, flexible disk, optical disk, compact disk, mini disk, DVD, or the like.
  • processing circuitry comprises at least one piece of dedicated hardware 200
  • the processing circuitry may be implemented, for example, in single circuits, multiple circuits, programmed processors, parallel programmed processors, ASICs, FPGAs, or combinations thereof.
  • each function of the communication device 20 is implemented by a processing circuit.
  • each function of the communication device 20 is collectively realized by a processing circuit.
  • a part of each function of the communication device 20 may be realized by dedicated hardware 200, and the other part may be realized by software or firmware.
  • the function of transmitting information to the remote management device 14 is realized by a processing circuit as dedicated hardware 200, and the functions other than the function of transmitting information to the remote management device 14 are implemented by at least one processor 100a. It may be realized by reading and executing a program stored in one memory 100b.
  • the processing circuit implements each function of the communication device 20 with hardware 200, software, firmware, or a combination thereof.
  • each function of the remote management device 14, each function of the magnetic sensor 18, and each function of the detection camera 19 are also realized by a processing circuit equivalent to the processing circuit that realizes each function of the communication device 20.
  • the magnetic sensor 18 detects an abnormality occurring in the steel wire 16 based on information obtained by averaging changes in the magnetic field repeatedly measured while the moving handrail 5 goes around the balustrade 4 a specified number of times. do.
  • the magnetic sensor 18 acquires from the operation monitor 21 of the communication device 20 information on the circling time that elapses when the moving handrail 5 circulates around the balustrade 4 . Based on the circulation time information, the magnetic sensor 18 continuously measures the magnetic field with the time taken by the handrail 5 to go around the balustrade 4 as one cycle. The magnetic sensor 18 calculates a value obtained by averaging the values measured at a specific time in one cycle over a plurality of cycles in the continuously measured values of the magnetic field repeatedly measured for a prescribed number of cycles. Based on the averaged value, the magnetic sensor 18 calculates continuous measurements of the magnetic field averaged over a plurality of cycles. The magnetic sensor 18 detects an abnormal portion by distinguishing an abnormal portion from a non-abnormal portion of the moving handrail 5 based on continuous measurement values of the magnetic field averaged over a plurality of periods.
  • the communication device 20 transmits first alert information including information on the abnormal location to the remote management device 14 .
  • the magnetic sensor 18 performs a calculation of averaging changes in the magnetic field measured while the moving handrail 5 circles the balustrade 4 a specified number of times.
  • the magnetic sensor 18 detects abnormalities occurring in the steel wire 16 based on information obtained by averaging changes in the magnetic field. Therefore, the detection accuracy of the magnetic sensor 18 can be improved.
  • the handrail 5 may vibrate in a direction toward the inspection device 13 . When the string vibration occurs, the distance between the magnetic sensor 18 and the steel wire 16 periodically fluctuates. In this case, the magnetic field detected by the magnetic sensor 18 varies periodically.
  • the magnetic sensor 18 can determine that the steel wire 16 has an abnormality by detecting a change in the magnetic field generated by the string vibration. That is, an erroneous determination that an abnormality has occurred in the steel wire 16 that is actually normal can be made.
  • the magnetic sensor 18 can reduce the influence of changes in magnetic field detection values due to string vibration by detecting anomalies based on information obtained by averaging changes in the magnetic field. Therefore, erroneous determination caused by string vibration can be suppressed. As a result, detection accuracy can be improved.
  • the detection accuracy of the magnetic sensor 18 can be improved in the same manner as when the moving handrail 5 performs string vibration.
  • the magnetic sensor 18 may identify an abnormal portion and a non-abnormal portion of the moving handrail 5 based on the learned second determination model.
  • the second judgment model includes information on the measured value of the change in the magnetic field when the steel wire 16 has an abnormal location, and information on the measured value of the change in the magnetic field when the moving handrail 5 has string vibration. It may be a model created by machine learning using information and as teacher data.
  • the detection camera 19 detects an abnormality occurring on the surface of the moving handrail 5 based on information obtained by averaging images repeatedly taken while the moving handrail 5 goes around the balustrade 4 a specified number of times. do.
  • the detection camera 19 acquires from the operation monitor 21 of the communication device 20 information on the circling time that elapses when the moving handrail 5 circulates around the balustrade 4 .
  • the detection camera 19 continuously captures images of the surface of the moving handrail 5 based on the information about the circulation time, with the time for the moving handrail 5 going around the balustrade 4 as one cycle.
  • the detection camera 19 averages a plurality of images of the same location on the moving handrail 5 during a prescribed period to create an averaged image.
  • the detection camera 19 determines whether or not there is an abnormality on the surface of the moving handrail 5 based on the information of the averaged image.
  • the detection camera 19 performs this determination on the averaged image created for each portion of the moving handrail 5 . Based on the result of the determination, the detection camera 19 identifies abnormal locations and non-abnormal locations existing on the surface of the moving handrail 5, and detects abnormal locations.
  • the communication device 20 transmits second alert information including information on the abnormal location to the remote management device 14 .
  • the detection camera 19 performs a calculation of averaging the images captured while the moving handrail 5 goes around the balustrade 4 a specified number of times.
  • the detection camera 19 detects an abnormality occurring on the surface of the moving handrail 5 based on information obtained by averaging the images. Therefore, the detection accuracy of the detection camera 19 can be improved.
  • the handrail 5 may vibrate in a direction toward the inspection device 13 .
  • the distance between the detection camera 19 and the core body 15 periodically fluctuates. In this case, since the detection camera 19 is out of focus on the moving handrail 5 , the detection camera 19 may be unable to photograph the moving handrail 5 normally.
  • the detection camera 19 detects an abnormality based on information obtained by averaging the images, thereby reducing the influence of the shooting failure caused by the string vibration. Therefore, erroneous determination by the detection camera 19 caused by string vibration can be suppressed. As a result, detection accuracy can be improved.
  • the detection accuracy of the detection camera 19 can be improved in the same way as when the handrail 5 vibrates the string.
  • the detection camera 19 may identify an abnormal portion and a non-abnormal portion of the moving handrail 5 captured in an image based on the learned third determination model.
  • the third judgment model is based on normal image information captured by the detection camera 19 in a state in which no disturbance such as string vibration of the moving handrail 5 has occurred, and a state in which disturbance such as string vibration of the moving handrail 5 has occurred.
  • the model may be created by machine learning using the abnormal image information captured by the detection camera 19 in , as teacher data.
  • the detection camera 19 identifies an abnormality in the surface material of the moving handrail 5 captured in the captured image and a foreign substance adhering to the surface of the moving handrail 5 .
  • the detection camera 19 identifies abnormalities in the surface material of the moving handrail 5 shown in the captured image and foreign matter adhering to the surface of the moving handrail 5 based on the learned fourth determination model.
  • the fourth judgment model is a model created by machine learning using image information indicating an abnormality such as a crack on the surface of the moving handrail 5 and image information indicating that a foreign object adheres to the surface of the moving handrail 5 as training data. is.
  • the detection camera 19 identifies an abnormality in the surface material of the moving handrail 5 captured in the captured image and a foreign substance adhering to the surface of the moving handrail 5 . For this reason, when a foreign object adheres to the normal surface of the moving handrail 5 , it is possible to prevent the detection camera 19 from detecting the foreign object as an abnormality on the surface of the moving handrail 5 . As a result, erroneous detection by the detection camera 19 can be suppressed. The accuracy of abnormality detection of the detection camera 19 can be improved.
  • FIG. 7 is a configuration diagram of a passenger conveyor to which the moving handrail inspection system according to Embodiment 2 is applied.
  • the same reference numerals are given to the same or corresponding parts as those of the first embodiment. Description of this part is omitted.
  • the passenger conveyor 1 is provided with a plurality of handrail rollers 8a.
  • a plurality of handrail rollers 8a are provided under one of the pair of balustrades 4 .
  • Each of the plurality of handrail rollers 8a is in contact with the downward facing surface of the return path portion 5b of one of the pair of moving handrails 5.
  • a pair of handrail rollers 8 a is provided on the side opposite to the handrail sprocket 8 with respect to the moving handrail 5 .
  • a pair of handrail rollers 8a guide the moving handrail 5 so that the moving handrail 5 generates a frictional force with the handrail sprocket 8.
  • a plurality of similar handrail rollers 8a are provided on the lower portion of the other of the pair of balustrades 4 as well.
  • the moving handrail 5 rotates around the pair of balustrades 4 by driving or rotating in conjunction with the driving device 6, the main sprocket 7, the handrail chain 9, the handrail sprocket 8, and the plurality of handrail rollers 8a. Therefore, if one or more of the driving device 6, the main sprocket 7, the handrail chain 9, the handrail sprocket 8, and the plurality of handrail rollers 8a malfunction, the moving handrail 5 will vibrate abnormally. can. Specifically, when the main sprocket 7, the handrail sprocket 8, or the handrail roller 8a is partially damaged due to deterioration over time, or when the handrail chain 9 is partially broken, the moving handrail 5 is driven. The magnitude of the applied frictional force changes intermittently. The handrail 5 may vibrate abnormally if the frictional force changes intermittently.
  • the inspection device 13 can detect abnormal vibrations of the moving handrail 5 .
  • the inspection device 13 transmits third alert information to the effect that the abnormal vibration has been detected to the remote management device 14.
  • FIG. Based on the information about the abnormal vibration detected by the inspection device 13, the remote control device 14 detects that an abnormality has occurred in the drive device 6, the main sprocket 7, the handrail chain 9, the handrail sprocket 8, and the plurality of handrail rollers 8a. can be detected. In this case, for example, maintenance personnel dispatch workers to the passenger conveyor 1 .
  • FIG. 8 is a diagram showing an overview of an inspection device of a moving handrail inspection system according to the second embodiment.
  • FIG. 9 is a block diagram of a moving handrail inspection system according to the second embodiment.
  • the inspection device 13 further includes a displacement sensor 40 in the second embodiment.
  • the displacement sensor 40 is a sensor that measures the distance to the target.
  • the displacement sensor 40 measures distance in a non-contact manner using detection waves.
  • the displacement sensor 40 detects changes in the position of the target by detecting changes in the distance to the target.
  • displacement sensor 40 is a type of displacement sensor that uses a laser as the detection wave. Note that the displacement sensor 40 is not limited to a type that uses a laser as long as it is a sensor that measures the distance to an object in a non-contact manner.
  • the displacement sensor 40 is provided inside the housing 17 .
  • a detection laser La for the displacement sensor 40 is irradiated perpendicularly to the surface of the moving handrail 5 .
  • the displacement sensor 40 receives the reflected laser beam reflected by the moving handrail 5 from the laser La as a reflected wave, and measures the distance to the moving handrail 5 based on the reflected laser beam.
  • the displacement sensor 40 can detect abnormal vibrations of the moving handrail 5 by continuously measuring changes in the distance from the moving handrail 5 .
  • the displacement sensor 40 preliminarily stores pattern information of distance change indicating abnormal vibration of the handrail 5 caused by an abnormality in the equipment that drives the handrail 5 .
  • the displacement sensor 40 detects abnormal vibration of the moving handrail 5 when the change in distance from the moving handrail 5 matches the pattern information.
  • the displacement sensor 40 can transmit information to the communicator 20.
  • the displacement sensor 40 transmits information on the measured distance to the moving handrail 5 to the communication device 20 .
  • the displacement sensor 40 detects abnormal vibration of the moving handrail 5
  • the displacement sensor 40 transmits information to the effect that the abnormal vibration has been detected to the communication device 20.
  • the first communication controller 22 receives information from the displacement sensor 40 via the operation monitor 21.
  • the first transmission unit 23 of the first communication controller 22 receives the information indicating that the abnormal vibration has been detected from the displacement sensor 40
  • the first transmission unit 23 sends the third alert information indicating that the abnormal vibration has been detected and the abnormal vibration.
  • Information on the distance from the moving handrail 5 measured by the displacement sensor 40 when it is detected is transmitted to the remote management device 14 .
  • the second receiving section 28 of the second communication controller 26 receives information such as third alert information from the first communication controller 22 .
  • the second transmitter 29 transmits response information corresponding to the third alert information to the communication device 20 .
  • the information processor 27 performs abnormal vibration determination based on the third alert information.
  • the history storage unit 30 stores the third alert information as an alert history.
  • the abnormality determination unit 31 determines that the displacement sensor 40 has detected an abnormality when receiving the third alert information as abnormal vibration determination processing. If the abnormality determination unit 31 has not received the third alert information, it determines that the displacement sensor 40 has not detected an abnormality. In this case, the abnormality determination unit 31 causes the annunciator 25 to notify that no abnormality is detected via the second communication controller 26 .
  • the drive device 6, the main sprocket 7, the handrail chain 9, and the handrail sprocket 8 are operated based on the third alert information and the information from the detection camera 19. and a plurality of handrail rollers 8a.
  • the abnormality determination unit 31 determines that an abnormality has actually occurred in the driving equipment, it causes the annunciator 25 to notify through the second communication controller 26 that an abnormality has been found in the driving equipment.
  • the maintenance staff refers to data such as information on the distance from the moving handrail 5 measured by the displacement sensor 40 when the abnormal vibration is detected, and the passenger conveyor. Consider whether to dispatch workers to 1.
  • FIG. 10 is a flow chart for explaining an outline of abnormal handrail vibration determination processing performed by the handrail inspection system according to the second embodiment.
  • the remote management device 14 always executes abnormal vibration determination processing of the moving handrail 5 when the passenger conveyor 1 is operating normally.
  • step S11 the remote management device 14 determines whether or not the displacement sensor 40 has detected an abnormality.
  • step S11 If it is determined in step S11 that the displacement sensor 40 has not detected an abnormality, the remote management device 14 performs the operation of step S12. In step S12, the remote management device 14 notifies the annunciator 25 that no abnormality has been detected.
  • step S11 When it is determined in step S11 that the displacement sensor 40 has detected an abnormality, the remote management device 14 performs the operation of step S13. In step S ⁇ b>13 , the remote management device 14 determines whether or not the abnormality detected by the displacement sensor 40 actually occurs based on the information captured by the detection camera 19 .
  • step S13 If it is determined in step S13 that no abnormality has actually occurred, the remote management device 14 performs the operation of step S14.
  • step S14 the remote management device 14 uses the annunciator 25 to notify that the patient is in the follow-up observation state. After that, the remote management device 14 performs the operations after step S11.
  • step S13 If it is determined in step S13 that an abnormality has actually occurred, the remote management device 14 performs the operation of step S15.
  • step S15 the remote control device 14 issues an alarm to the effect that an abnormality has actually been found in the driving device by the annunciator 25 and information on the abnormality. After that, the remote management device 14 performs the operations after step S11.
  • inspection device 13 further includes displacement sensor 40 .
  • the inspection device 13 detects abnormal vibrations of the moving handrail 5 .
  • the inspection device 13 transmits third alert information to the remote management device 14 when detecting abnormal vibration. Therefore, it is possible to remotely inspect driving devices such as the driving device 6 of the passenger conveyor 1, the main sprocket 7, the handrail chain 9, the handrail sprocket 8 and the plurality of handrail rollers 8a. Also, the inspection device 13 can always inspect the drive equipment of the passenger conveyor 1 . As a result, it is possible to timely diagnose an abnormality of the driving device of the passenger conveyor 1.
  • the inspection system 12 can improve the safety of the passenger conveyor 1 by performing timely abnormality diagnosis.
  • the inspection device 13 constantly inspects the drive equipment, it is possible to reduce inspection items in the normal maintenance and inspection work of the passenger conveyor 1.
  • these drive devices are inspected during maintenance inspection of the passenger conveyor and during maintenance inspection of the moving handrail 5 .
  • the maintenance and inspection is carried out during the period from the end of business to the start of business at the place where the passenger conveyor is installed. Therefore, the time during which work can be performed while the passenger conveyor is stopped is limited.
  • the inspection system 12 according to Embodiments 1 and 2 can remotely inspect the inside of the moving handrail 5, the surface of the moving handrail 5, and the driving equipment related to the moving handrail 5.
  • the displacement sensor 40 measures the distance from the moving handrail 5 without contacting the moving handrail 5 . Therefore, it is possible to suppress the occurrence of scratches or the like on the moving handrail 5 due to the installation of the displacement sensor 40 . In addition, it is possible to suppress the influence of disturbance during measurement.
  • the displacement sensor 40 may be a displacement sensor with a built-in camera.
  • a camera incorporated in the displacement sensor 40 may be used instead of the detection camera 19. FIG. Therefore, the number of parts can be reduced.
  • the remote management device 14 may cause the annunciator 25 to notify that an abnormal vibration has been detected.
  • step S13 of the flowchart of FIG. 10 may be made by maintenance personnel.
  • maintenance personnel may determine whether or not the moving handrail 5 is actually vibrating abnormally based on the image of the detection camera 19 .
  • the maintenance staff may advance the steps of the flowchart of FIG. 10 by inputting the determination result into the remote management device 14 .
  • the inspection system according to the present disclosure can be used for passenger conveyors.

Landscapes

  • Escalators And Moving Walkways (AREA)

Abstract

乗客コンベアの通常運転中に移動手摺および移動手摺の駆動機器の異常を検出できる移動手摺の点検装置および移動手摺の点検システムを提供する。移動手摺の点検装置は、乗客コンベアの欄干の下部において内部に鋼線を有する移動手摺の下方に配置された筐体と、移動手摺の下方に位置するよう筐体に設けられ、移動手摺の鋼線が通過する空間に発生させた磁界の変化を検出する磁気センサと、移動手摺の異常な振動を検出する変位センサとを備えた。移動手摺の点検装置は、乗客コンベアの欄干の下部において移動手摺の下方に配置される。このため、乗客コンベアの通常運転中に移動手摺および移動手摺の駆動機器の異常を検出できる。

Description

移動手摺の点検装置および移動手摺の点検システム
 本開示は、移動手摺の点検装置および移動手摺の点検システムに関する。
 特許文献1は、移動手摺の点検装置を開示する。当該点検装置は、移動手摺の内部の鋼線が破断していることを検出し得る。
日本特許第6307011号公報
 しかしながら、特許文献1において、作業員は、乗客コンベアの乗降口付近にいる状態で当該点検装置を使用する。このため、乗客コンベアの保守点検の際にしか使用できない。
 本開示は、上述の課題を解決するためになされた。本開示の目的は、通常運転中に移動手摺の異常を検出できる乗客コンベアの点検装置および移動手摺の点検システムを提供することである。
 本開示に係る移動手摺の点検装置は、乗客コンベアの欄干の下部において内部に鋼線を有する移動手摺の下方に配置された筐体と、前記移動手摺の下方に位置するよう前記筐体に設けられ、前記移動手摺の前記鋼線が通過する空間に発生させた磁界の変化を検出する磁気センサと、を備えた。
 本開示に係る移動手摺の点検システムは、前記通信機が前記検出カメラに撮影された前記移動手摺の表面の映像の情報を送信する移動手摺の点検装置と、前記通信機から前記映像の情報と前記移動手摺の前記鋼線の異常が検出された旨の前記第1アラート情報とを受信し、前記移動手摺の表面の映像に基づいて前記移動手摺の表面に異物が付着しているか否かを判定し、前記第1アラート情報を受信したとき前記移動手摺の表面に異物が付着していないと判定した場合に異常を検出した旨を報知し、前記第1アラート情報を受信したとき前記移動手摺の表面に異物が付着していると判定した場合に異常を検出した旨を報知しない遠隔管理装置と、を備えた。
 本開示によれば、移動手摺の点検装置は、乗客コンベアの欄干の下部において移動手摺の下方に配置される。このため、乗客コンベアの通常運転中に移動手摺の異常を検出できる。
実施の形態1における移動手摺の点検システムが適用される乗客コンベアの構成図である。 実施の形態1における移動手摺の点検システムが適用された乗客コンベアの要部を示す側面図である。 実施の形態1における移動手摺の点検システムの磁気センサを示す図である。 実施の形態1における移動手摺の点検システムのブロック図である。 実施の形態1における移動手摺の点検システムが行う移動手摺の異常判定処理の概要を説明するためのフローチャートである。 実施の形態1における移動手摺の点検システムの通信機のハードウェア構成図である。 実施の形態2における移動手摺の点検システムが適用される乗客コンベアの構成図である。 実施の形態2における移動手摺の点検システムの点検装置の概要を示す図である。 実施の形態2における移動手摺の点検システムのブロック図である。 実施の形態2における移動手摺の点検システムが行う移動手摺の異常振動判定処理の概要を説明するためのフローチャートである。
 本開示を実施するための形態について添付の図面に従って説明する。なお、各図中、同一または相当する部分には同一の符号が付される。当該部分の重複説明は適宜に簡略化ないし省略される。
実施の形態1.
 図1は実施の形態1における移動手摺の点検システムが適用される乗客コンベアの構成図である。
 図1に示されるように、例えば、乗客コンベア1は、エスカレーターである。乗客コンベア1は、建築物の上階と下階との間に掛け渡される。第1乗降口2aは、建築物の上階に設けられる。第2乗降口2bは、建築物の下階に設けられる。乗客コンベア1は、第1乗降口2aと第2乗降口2bとの間で乗客を輸送する機械である。
 乗客コンベア1は、主枠3と欄干4と移動手摺5と駆動装置6と主スプロケット7と手摺スプロケット8と手摺チェーン9と制御装置10とを備える。
 主枠3は、第1乗降口2aと第2乗降口2bとの間に掛け渡される。主枠3は、機械室11を有する。機械室11は、主枠3の第1乗降口2aの側の端部に設けられる。
 一対の欄干4は、第1乗降口2aと第2乗降口2bとの間に設けられる。一対の欄干4は、乗客が輸送される経路の両側にそれぞれ設けられる。
 一対の移動手摺5の各々は、無端状のベルトである。一対の移動手摺5の各々は、第1乗降口2aと第2乗降口2bとの間に設けられる。一対の移動手摺5の一方は、一対の欄干4の一方の周囲を囲むように設けられる。一対の移動手摺5の他方は、一対の移動手摺5の一方と同様に、一対の欄干4の他方の周囲を囲むように設けられる。
 一対の移動手摺5の各々は、欄干4に設置された状態において、往路部分5aと復路部分5bと2つの折り返し部分5cとに分けられる。往路部分5aは、欄干4の上面と接する部分である。復路部分5bは、欄干4の下部を通過する部分である。2つの折り返し部分5cの各々は、往路部分5aと復路部分5bとの間に存在する部分である。2つの折り返し部分5cの一方は、第1乗降口2aにおいて欄干4の端部に接する部分である。2つの折り返し部分5cの他方は、第2乗降口2bにおいて欄干4の端部に接する部分である。
 駆動装置6は、機械室11の内部に設けられる。駆動装置6は、回転駆動し得るよう設けられる。主スプロケット7は、主枠3の機械室11の内部に設けられる。主スプロケット7は、駆動チェーンを介して駆動装置6の回転駆動に追従して回転し得るよう設けられる。主スプロケット7は、回転した場合、乗客コンベア1の図示されない複数のステップを稼働させ得るよう設けられる。
 手摺スプロケット8は、主枠3の内部に設けられる。手摺スプロケット8は、一対の欄干4の一方の下部に設けられる。手摺スプロケット8は、一対の移動手摺5の一方において復路部分5bと接する。図示されないが、一対の欄干4の他方の下部にも同様の手摺スプロケット8が設けられる。
 例えば、手摺チェーン9は、無端状のチェーンである。手摺チェーン9の一端は、主スプロケット7に巻き掛けられる。手摺チェーン9の他端は、手摺スプロケット8に巻き掛けられる。
 制御装置10は、機械室11の内部に設けられる。制御装置10は、乗客コンベア1全体を制御し得るよう設けられる。
 移動手摺の点検システム12は、移動手摺5の異常を検出し得るよう設けられる。移動手摺の点検システム12は、点検装置13と遠隔管理装置14とを備える。
 点検装置13は、乗客コンベア1に常設される。点検装置13は、一対の欄干4の一方の下部に配置される。具体的には、点検装置13は、図示されない接続部材によって主枠3に固定される。点検装置13は、一対の移動手摺5の一方において復路部分5bに隣接して復路部分5bの下方に設けられる。点検装置13は、復路部分5bにおいて移動手摺5の下側の面に対向するよう設けられる。図示されないが、一対の欄干4の他方において同様の点検装置13が設けられる。
 遠隔管理装置14は、乗客コンベア1を保守管理する会社の建物に設けられる。例えば、遠隔管理装置14は、乗客コンベア1が設けられた建築物とは別の建築物に設けられる。遠隔管理装置14は、点検装置13と通信し得るよう設けられる。図示されないが、遠隔管理装置14は、情報を表示するディスプレイを有する。
 乗客コンベア1が通常運転するとき、制御装置10は、駆動装置6に制御指令を送信することで、駆動装置6を回転駆動させる。主スプロケット7は、駆動装置6に追従して回転する。この際、主スプロケット7は、複数のステップを稼働させる。手摺チェーン9は、主スプロケット7の回転に追従して移動する。手摺スプロケット8は、手摺チェーン9の移動に追従して回転する。手摺スプロケット8は、移動手摺5との間に発生する静止摩擦力によって、移動手摺5を移動させる。移動手摺5は、手摺スプロケット8の回転に追従して、欄干4の周囲を回転移動する。
 乗客コンベア1が通常運転する際、点検装置13は、移動手摺5の表面を撮影する。点検装置13は、撮影した情報を遠隔管理装置14に送信する。
 乗客コンベア1が通常運転する際、点検装置13は、隣接する移動手摺5のうち対向する部分を含む空間に磁界を発生させる。点検装置13は、当該磁界の分布を測定する。通常運転において移動手摺5が移動しているときに、点検装置13は、当該磁界の分布が定常的な分布から変化するか否かを監視する。例えば、移動手摺5の内部において鋼線の破断部分が存在する場合、点検装置13は、当該破断部分が当該磁界を通過することによって生じた磁界の分布の変化を検出する。この場合、点検装置13は、遠隔管理装置14に対して異常を検出した旨を報知する。
 点検装置13は、移動手摺5の表面を撮影した情報に基づいて、移動手摺5の表面の異常を監視する。例えば、移動手摺5の表面の一部にひび割れが発生している場合、点検装置13は、当該ひび割れを検出する。この場合、点検装置13は、遠隔管理装置14に対して当該異常を検出した旨を報知する。
 遠隔管理装置14は、点検装置13から受信した情報をディスプレイに表示する。遠隔管理装置14は、移動手摺5の表面が撮影された情報および受信した異常の報知の情報を表示する。例えば、保守管理する会社の保守員は、遠隔管理装置14に表示された情報に基づいて、当該乗客コンベア1に作業員を派遣する。
 次に、図2を用いて、移動手摺5と点検装置13と遠隔管理装置14とを説明する。
 図2は実施の形態1における移動手摺の点検システムが適用された乗客コンベアの要部を示す側面図である。図2の(A)において、点検装置13の紙面手前側の面が透過された状態が示される。図2の(B)は、図2の(A)における移動手摺5のA-A断面図を示す。
 図2(A)において、移動手摺5は、紙面左側から右側へ向かって移動する。移動手摺5は、芯体15と複数の鋼線16とを備える。
 芯体15の素材は、ゴム、エラストマー、等の樹脂である。芯体15は、無端状に形成される。芯体15は、綿またはポリエステル等の化学繊維で製作された布を図2には示されない欄干4との間に有する。
 複数の鋼線16の各々は、複数の金属素線16aが撚り合わされて形成される。複数の鋼線16の各々は、無端状に形成される。複数の鋼線16の各々は、芯体15の内部において芯体15と並行に設けられる。図2の(B)に示されるように、複数の鋼線16は、芯体15の内部において移動手摺5の幅方向に並ぶ。
 点検装置13は、筐体17と磁気センサ18と検出カメラ19と通信機20とを備える。
 例えば、筐体17は、金属製の箱である。筐体17は、移動手摺5の下方に配置される。図示されないが、筐体17は、接続部材によって主枠3に固定される。筐体17は、移動手摺5と規定のクリアランス距離Lだけ離れた位置に固定される。筐体17の設置によって移動手摺5に傷がつくことを抑制するため、当該クリアランス距離Lが設定される。当該クリアランス距離Lは、通常運転時に移動手摺5が弦振動した場合でも移動手摺5と筐体17とが接触しない距離である。筐体17は、移動手摺5と対向する面に開口部を有する。
 磁気センサ18は、漏洩磁束測定方式のセンサである。磁気センサ18は、検出部において漏洩磁束を検出し得る。磁気センサ18は、漏洩磁束の検出結果に基づいて磁界の分布を検出する。磁気センサ18の検出部の幅は、移動手摺5の幅と同じ長さである。磁気センサ18は、筐体17の内部に設けられる。磁気センサ18の検出部は、筐体17の開口部を介して移動手摺5に対向する。
 磁気センサ18は、磁界の変化を検出することで、芯体15の内部において鋼線16に発生した異常を検出する。具体的には、芯体15の内部において鋼線16が破断した場合に、磁気センサ18は、当該鋼線16の破断を検出する。また、芯体15の内部において金属素線16aの一部が鋼線16から飛び出した場合に、磁気センサ18は、当該金属素線16aの異常を検出する。磁気センサ18は、移動手摺5において検出した異常の位置を示す異常箇所を特定する。
 検出カメラ19は、動画または静止画を撮影するカメラである。検出カメラ19は、筐体17の内部に設けられる。検出カメラ19は、筐体17の開口部を介して移動手摺5を撮影し得る位置に設けられる。検出カメラ19は、稼働中の移動手摺5において磁気センサ18よりも下流に設けられる。具体的には、検出カメラ19は、磁気センサ18が磁場を測定した直後の移動手摺5の一部を撮影し得るよう設けられる。検出カメラ19は、移動手摺5の幅方向の全体を撮影し得るよう設けられる。検出カメラ19は、撮影した動画または静止画を示す撮影情報を作成する。
 検出カメラ19は、撮影した静止画像の撮影情報に基づいて移動手摺5の表面の状態を監視する。具体的には、検出カメラ19は、芯体15を構成する樹脂材料の経年的な劣化に起因する芯体15のひび割れ、膨張、等の状態が生じているか否かを監視する。移動手摺5の芯体15の表面にひび割れ箇所、膨張箇所、等の異常箇所が存在する場合、検出カメラ19は、撮影した情報に基づいて移動手摺5の表面に当該異常箇所が存在することを検出する。検出カメラ19は、移動手摺5における検出した異常の位置を示す異常箇所を特定する。
 通信機20は、筐体17の内部に設けられる。通信機20は、磁気センサ18と検出カメラ19とに電気的に接続される。通信機20は、遠隔管理装置14と通信し得るよう設けられる。
 通信機20は、磁気センサ18が測定したデータを規定の周期ごとに遠隔管理装置14に送信する。磁気センサ18が鋼線16の異常を検出した場合、通信機20は、磁気センサ18が検出した異常箇所の情報を含む第1アラート情報を遠隔管理装置14に送信する。通信機20は、検出カメラ19が撮影した撮影情報を規定の周期ごとに遠隔管理装置14に送信する。検出カメラ19が移動手摺5の表面の異常箇所を検出した場合、通信機20は、検出カメラ19が検出した異常箇所の情報を含む第2アラート情報を遠隔管理装置14に送信する。
 遠隔管理装置14は、通信機20から第1アラート情報または第2アラート情報を受信した場合、当該第1アラート情報または第2アラート情報を図示されないディスプレイに表示する。遠隔管理装置14は、検出カメラ19から受信した撮影情報に基づいて、芯体15の表面に異物が存在するか否かを判定する。遠隔管理装置14は、撮影情報に基づいて芯体15の表面に異常があるか否かを判定する。遠隔管理装置14は、点検装置13で測定された情報、判定した結果の情報を常にディスプレイに表示する。
 保守員は、遠隔管理装置14のディスプレイを監視する。保守員は、当該ディスプレイに表示された第1アラート情報または第2アラート情報を確認することで、移動手摺5に発生した異常を確認し得る。例えば、保守員は、異常を確認することで、移動手摺5の劣化が進行して鋼線16または金属素線16aが芯体15から突出する前に、当該移動手摺5の劣化の兆候を把握することが可能である。
 次に、図3を用いて、磁気センサ18が鋼線16の異常を検出する方法を説明する。
 図3は実施の形態1における移動手摺の点検システムの磁気センサを示す図である。
 図3に示されるように、例えば、磁気センサ18は、永久磁石18aとMR素子アレイ18bとを備える。
 永久磁石18aは、空間に磁界を発生させる。MR素子アレイ18bは、漏洩磁束を測定することで磁界の分布Dを測定する。
 通常運行時に、永久磁石18aは、移動中の移動手摺5が通過する空間に磁界を発生させる。この際、当該磁界の分布Dは、強磁性体である複数の鋼線16の影響を受ける。移動手摺5が略一定の速度で当該磁界を通過するため、磁界の分布Dは、時間当たりの分布変化が小さい定常的な分布となる。
 破断した鋼線16の破断箇所Bが当該磁界を通過した場合、磁界の分布Dは、定常的な分布から変化する。MR素子アレイ18bは、磁界の分布Dが変化したことを検出する。この場合、磁気センサ18は、鋼線16の異常を検出する。
 次に、図4を用いて、点検装置13の通信機20と遠隔管理装置14とを説明する。
 図4は実施の形態1における移動手摺の点検システムのブロック図である。
 図4に示されるように、通信機20は、運行監視器21と第1通信制御器22とを備える。
 運行監視器21は、制御装置10から乗客コンベア1の制御情報を受信する。運行監視器21は、制御情報に基づいて乗客コンベア1の運行状況、発生した異常、等を常時監視する。例えば、運行監視器21は、図4には図示されない移動手摺5の速度の値、移動手摺5が図4には図示されない欄干4を一周する場合に経過する周回時間、等の情報を作成する。
 第1通信制御器22は、遠隔管理装置14との通信状態の確認と点検装置13で検出された情報の送信および受信とを行う。第1通信制御器22は、第1送信部23と第1受信部24とを備える。
 第1送信部23は、検出カメラ19が撮影した撮影情報を遠隔管理装置14に送信する。第1送信部23は、第1アラート情報または第2アラート情報を遠隔管理装置14に送信する。
 第1受信部24は、遠隔管理装置14から第1アラート情報または第2アラート情報に対する応答情報を受信する。
 遠隔管理装置14は、報知器25と第2通信制御器26と情報処理器27とを備える。
 例えば、報知器25は、ディスプレイである。報知器25は、ディスプレイに情報を表示することで保守員に警報などの情報を報知する。
 第2通信制御器26は、遠隔管理装置14とは別の装置との通信を制御する。第2通信制御器26は、第2受信部28と第2送信部29とを備える。
 第2受信部28は、点検装置13の通信機20から情報を受信する。例えば、第2受信部28は、通信機20から第1アラート情報または第2アラート情報を受信する。
 第2送信部29は、情報を点検装置13の通信機20に送信する。例えば、第2送信部29は、第2受信部28が受信した第1アラート情報または第2アラート情報に対応する応答情報を通信機20に送信する。第2送信部29は、報知器25に対して報知器25に表示させる情報を送信する。
 情報処理器27は、第2通信制御器26が受信した情報に基づいて乗客コンベア1の異常判定を行う。情報処理器27は、履歴記憶部30と異常判定部31と警報出力部32とを備える。
 履歴記憶部30は、第2通信制御器26が点検装置13から第1アラート情報または第2アラート情報を受信した場合、アラート履歴として当該アラート情報を記憶する。
 異常判定部31は、異常判定処理として移動手摺5の内部に異常が発生したか否かを判定する。
 異常判定処理において、異常判定部31は、磁気センサ18が異常を検出したか否かを判定する。具体的には、第2通信制御器26が通信機20からの第1アラート情報を受信した場合、異常判定部31は、磁気センサ18が異常を検出したと判定する。異常判定部31は、磁気センサ18が異常を検出していないと判定した場合、第2通信制御器26を介して報知器25に異常が検出されていない旨を報知させる。
 異常判定部31は、磁気センサ18が異常を検出したと判定した場合、第1アラート情報に基づいて、磁気センサ18が検出した移動手摺5の異常箇所の位置を特定する。その後、異常判定部31は、検出カメラ19から受信した情報に基づいて、当該異常箇所に異物が存在するか否かを判定する。具体的には、異常判定部31は、第2通信制御器26が受信した撮影情報において、当該撮影情報に含まれる静止画を解析することで移動手摺5の当該異常箇所に異物が存在するか否かを判定する。
 この際、異常判定部31は、移動手摺5に付着した異物の画像データに関する機械学習が行われた学習済みの第1判定モデルを利用してもよい。異常判定部31は、第1判定モデルに基づいて異物が存在する場所と異物が存在しない場所とを特定する。異常判定部31は、第1判定モデルに基づいて、当該静止画における当該異常箇所に異物が存在するか否かを判定してもよい。
 異常判定部31は、当該異常箇所に異物が存在することを検出した場合、第2通信制御器26を介して報知器25に当該異常箇所の情報と経過観察状態である旨の情報とを報知させる。
 異常判定部31は、当該異常箇所に異物が存在することを検出しない場合、移動手摺5に異常が発生したと判定する。
 異常判定部31が異常発生の判定をした場合、警報出力部32は、第2送信部29を介して、報知器25に当該異常が発生した旨を報知させる。
 例えば、報知器25に経過観察状態である旨の情報が表示された場合、保守員は、磁気センサ18の異常検出が磁性を有する金属異物が移動手摺5に付着したことによる誤検出であるとみなす。この場合、保守員は、当該移動手摺5に設置された点検装置13が送信する情報の経過を観察する。
 例えば、報知器25に異常が発生した旨が報知された場合、保守員は、検出カメラ19の撮影情報を参照し、当該移動手摺5が設けられた乗客コンベア1に作業員を派遣するか否かを検討する。作業員は、当該乗客コンベア1に派遣された場合、当該乗客コンベア1の保守作業を実施する。
 次に、図5を用いて、遠隔管理装置14の異常判定部31が行う異常判定処理を説明する。
 図5は実施の形態1における移動手摺の点検システムが行う移動手摺の異常判定処理の概要を説明するためのフローチャートである。
 例えば、遠隔管理装置14は、乗客コンベア1が通常運転している場合、常に移動手摺5の異常判定処理を実行する。
 図5に示されるように、ステップS1において、遠隔管理装置14は、磁気センサ18が異常を検出したか否かを判定する。
 ステップS1で、磁気センサ18が異常を検出していないと判定した場合、遠隔管理装置14は、ステップS2の動作を行う。ステップS2において、遠隔管理装置14は、報知器25によって異常が検出されていない旨を報知する。その後、遠隔管理装置14は、ステップS1以降の動作を行う。
 ステップS1で、磁気センサ18が異常を検出したと判定した場合、遠隔管理装置14は、ステップS3の動作を行う。ステップS3において、遠隔管理装置14は、検出カメラ19の撮影情報に基づいて磁気センサ18が検出した移動手摺5の異常箇所に異物が存在するか否かを判定する。
 ステップS3で、当該異常箇所に異物が存在すると判定した場合、遠隔管理装置14は、ステップS4の動作を行う。ステップS4において、遠隔管理装置14は、報知器25によって経過観察状態である旨を報知する。その後、遠隔管理装置14は、ステップS1以降の動作を行う。
 ステップS3で、当該異常箇所に異物が存在しないと判定した場合、遠隔管理装置14は、ステップS5の動作を行う。ステップS5において、遠隔管理装置14は、報知器25によって異常箇所が発見された旨の警報と当該異常箇所の情報とを報知する。その後、遠隔管理装置14は、ステップS1以降の動作を行う。
 以上で説明した実施の形態1によれば、点検装置13は、筐体17と磁気センサ18とを備える。点検装置13は、筐体17によって通常運転時に乗客コンベア1の利用者および乗客コンベア1を構成する各機械に干渉しない位置に設けられる。このため、点検装置13は、乗客コンベア1に常設できる。また、磁気センサ18は、通常運転中の移動手摺5が通過する空間の磁界の変化を検出することで、移動手摺5の鋼線16に発生した異常を常に検出できる。即ち、乗客コンベアの通常運転中に移動手摺5の劣化診断を行うことができる。その結果、乗客コンベア1の保守点検において手摺内部の劣化診断の作業時間を短縮できる、または当該劣化診断の作業項目を削減できる。
 また、点検装置13は、通信機20を備える。通信機20は、磁気センサ18が磁界の変化を検出した場合、遠隔管理装置14に第1アラート情報を送信する。このため、点検装置13は、乗客コンベア1で検出した異常を、離れた場所にある保守会社に報知することができる。その結果、点検装置13が常設された状態で乗客コンベア1を点検することができる。
 また、点検装置13は、検出カメラ19を備える。検出カメラ19は、移動手摺の表面状態の異常を検出する。通信機20は、検出カメラ19が異常を検出した場合、当該異常が検出された旨を第2アラート情報として遠隔管理装置14に送信する。このため、点検装置13が常設された状態で、移動手摺5の表面の劣化状態を点検することができる。
 また、点検システム12は、点検装置13と遠隔管理装置14とを備える。例えば、磁気センサ18が移動手摺5に付着した金属の異物を検出して点検装置13が第1アラート情報を送信した場合に、遠隔管理装置14は、映像情報に基づいて磁気センサ18が鋼線16の異常でなく金属の異物を検出したと判定する。この場合、遠隔管理装置14は、異常を検出した旨を報知せずに、経過観察を行う旨を報知する。保守員は、経過観察の報知に基づいて、経過観察を行う。このため、鋼線16に異常が無い場合でも磁気センサ18が異常を検出した場合に、遠隔管理装置14が移動手摺5の異常を誤検出することを抑制できる。
 なお、例えば、乗客コンベア1は、エスカレーターでなく、動く歩道であってもよい。
 なお、点検装置13は、機械室11に設けられた送受信ボードを介して遠隔管理装置14と通信を行ってもよい。
 次に、図6を用いて、通信機20を構成するハードウェアの例を説明する。
 図6は実施の形態1における移動手摺の点検システムの通信機のハードウェア構成図である。
 通信機20の各機能は、処理回路により実現し得る。例えば、処理回路は、少なくとも1つのプロセッサ100aと少なくとも1つのメモリ100bとを備える。例えば、処理回路は、少なくとも1つの専用のハードウェア200を備える。
 処理回路が少なくとも1つのプロセッサ100aと少なくとも1つのメモリ100bとを備える場合、通信機20の各機能は、ソフトウェア、ファームウェア、またはソフトウェアとファームウェアとの組み合わせで実現される。ソフトウェアおよびファームウェアの少なくとも一方は、プログラムとして記述される。ソフトウェアおよびファームウェアの少なくとも一方は、少なくとも1つのメモリ100bに格納される。少なくとも1つのプロセッサ100aは、少なくとも1つのメモリ100bに記憶されたプログラムを読み出して実行することにより、通信機20の各機能を実現する。少なくとも1つのプロセッサ100aは、中央処理装置、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、DSPともいう。例えば、少なくとも1つのメモリ100bは、RAM、ROM、フラッシュメモリ、EPROM、EEPROM等の、不揮発性または揮発性の半導体メモリ、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク、DVD等である。
 処理回路が少なくとも1つの専用のハードウェア200を備える場合、処理回路は、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC、FPGA、またはこれらの組み合わせで実現される。例えば、通信機20の各機能は、それぞれ処理回路で実現される。例えば、通信機20の各機能は、まとめて処理回路で実現される。
 通信機20の各機能について、一部を専用のハードウェア200で実現し、他部をソフトウェアまたはファームウェアで実現してもよい。例えば、遠隔管理装置14に情報を送信する機能については専用のハードウェア200としての処理回路で実現し、遠隔管理装置14に情報を送信する機能以外の機能については少なくとも1つのプロセッサ100aが少なくとも1つのメモリ100bに格納されたプログラムを読み出して実行することにより実現してもよい。
 このように、処理回路は、ハードウェア200、ソフトウェア、ファームウェア、またはこれらの組み合わせで通信機20の各機能を実現する。
 図示されないが、遠隔管理装置14の各機能、磁気センサ18の各機能、および検出カメラ19の各機能も、通信機20の各機能を実現する処理回路と同等の処理回路で実現される。
 次に、点検装置13の第1変形例を説明する。第1変形例において、磁気センサ18は、移動手摺5が規定の回数だけ欄干4を周回する間に繰り返し測定した磁界の変化を平均化した情報に基づいて、鋼線16に発生した異常を検出する。
 具体的には、磁気センサ18は、通信機20の運行監視器21から移動手摺5が欄干4を一周する場合に経過する周回時間の情報を取得する。磁気センサ18は、周回時間の情報に基づいて、移動手摺5が欄干4を一周する時間を一周期として、磁界を連続的に測定する。磁気センサ18は、規定の周期数分繰り返し測定した磁界の連続的な測定値において、一周期の中の特定の時刻に測定された値を複数の周期分で平均した値を演算する。磁気センサ18は、当該平均した値に基づいて、複数の周期を平均化した磁界の連続的な測定値を演算する。磁気センサ18は、複数の周期を平均化した磁界の連続的な測定値に基づいて、移動手摺5のうち異常箇所と非異常箇所とを識別し、異常箇所を検出する。
 磁気センサ18が異常箇所を検出した場合、通信機20は、当該異常箇所の情報を含む第1アラート情報を遠隔管理装置14に送信する。
 以上で説明した実施の形態1の第1変形例において、磁気センサ18は、移動手摺5が規定の回数だけ欄干4を周回する間に測定した磁界の変化を平均化する演算を行う。磁気センサ18は、磁界の変化を平均化した情報に基づいて、鋼線16に発生した異常を検出する。このため、磁気センサ18の検出精度を向上できる。具体的には、例えば、通常運転中において、移動手摺5は、点検装置13への方向に弦振動し得る。当該弦振動が発生した場合、磁気センサ18と鋼線16との距離が周期的に変動する。この場合、磁気センサ18が検出する磁界は周期的に変動する。磁気センサ18は、当該弦振動によって発生した磁界の変化を検出することで、鋼線16に異常が発生していると判定し得る。即ち、実際は正常な鋼線16に対して異常が発生しているという誤った判定がなされ得る。磁気センサ18は、磁界の変化を平均化した情報に基づいて異常を検出することで、弦振動による磁界の検出値の変化の影響を小さくできる。このため、弦振動が原因となる誤判定を抑制できる。その結果、検出精度を向上できる。
 なお、移動手摺5が弦振動を行っておらず、点検装置13が振動している場合においても、移動手摺5が弦振動を行っている場合と同様に磁気センサ18の検出精度を向上できる。
 なお、磁気センサ18は、学習済みの第2判定モデルに基づいて移動手摺5のうち異常箇所と非異常箇所とを識別してもよい。この場合、第2判定モデルは、鋼線16に異常箇所が存在する場合における磁界の変化の測定値の情報と、移動手摺5に弦振動が発生している場合における磁界の変化の測定値の情報と、を教師データとした機械学習によって作成されたモデルであってもよい。
 次に、点検装置13の第2変形例を説明する。第2変形例において、検出カメラ19は、移動手摺5が規定の回数だけ欄干4を周回する間に繰り返し撮影した画像を平均化した情報に基づいて、移動手摺5の表面に発生した異常を検出する。
 具体的には、検出カメラ19は、通信機20の運行監視器21から移動手摺5が欄干4を一周する場合に経過する周回時間の情報を取得する。検出カメラ19は、周回時間の情報に基づいて、移動手摺5が欄干4を一周する時間を一周期として、移動手摺5の表面の画像を連続的に撮影する。検出カメラ19は、規定の周期の間に移動手摺5における同一箇所を撮影した複数の画像を平均化して平均化画像を作成する。検出カメラ19は、平均化画像の情報に基づいて移動手摺5の表面に異常があるか否かを判定する。検出カメラ19は、移動手摺5の各部分に対して作成した平均化画像に対して当該判定を行う。当該判定の結果に基づいて、検出カメラ19は、移動手摺5の表面に存在する異常箇所と非異常箇所とを識別し、異常箇所を検出する。
 検出カメラ19が異常箇所を検出した場合、通信機20は、当該異常箇所の情報を含む第2アラート情報を遠隔管理装置14に送信する。
 以上で説明した実施の形態1の第2変形例において、検出カメラ19は、移動手摺5が規定の回数だけ欄干4を周回する間に撮影した画像を平均化する演算を行う。検出カメラ19は、画像を平均化した情報に基づいて、移動手摺5の表面に発生した異常を検出する。このため、検出カメラ19の検出精度を向上できる。具体的には、例えば、通常運転中において、移動手摺5は、点検装置13への方向に弦振動し得る。当該弦振動が発生した場合、検出カメラ19と芯体15との距離が周期的に変動する。この場合、検出カメラ19のピントが移動手摺5に合わなくなることで、検出カメラ19は、移動手摺5を正常に撮影できない状態になり得る。検出カメラ19は、画像を平均化した情報に基づいて異常を検出することで、弦振動による撮影の不具合の影響を小さくできる。このため、弦振動が原因となる検出カメラ19の誤判定を抑制できる。その結果、検出精度を向上できる。
 なお、移動手摺5が弦振動を行っておらず、点検装置13が振動している場合においても、移動手摺5が弦振動を行っている場合と同様に検出カメラ19の検出精度を向上できる。
 なお、検出カメラ19は、学習済の第3判定モデルに基づいて撮影した画像に写る移動手摺5の異常箇所と非異常箇所とを識別してもよい。この場合、第3判定モデルは、移動手摺5の弦振動等の外乱が発生していない状態で検出カメラ19が撮影した正常な画像情報と、移動手摺5の弦振動等の外乱が発生した状態で検出カメラ19が撮影した正常でない画像情報と、を教師データとした機械学習によって作成されたモデルであってもよい。
 次に、点検装置13の第3変形例を説明する。第3変形例において、検出カメラ19は、撮影した画像に写る移動手摺5の表面材料の異常と移動手摺5の表面に付着した異物とを識別する。
 具体的には、検出カメラ19は、学習済みの第4判定モデルに基づいて、撮影した画像に写る移動手摺5の表面材料の異常と移動手摺5の表面に付着した異物とを識別する。第4判定モデルは、移動手摺5の表面にひび割れ等の異常がある画像情報と、移動手摺5の表面に異物が付着している画像情報と、を教師データとした機械学習によって作成されたモデルである。
 以上で説明した実施の形態1の第3変形例において、検出カメラ19は、撮影した画像に写る移動手摺5の表面材料の異常と移動手摺5の表面に付着した異物とを識別する。このため、移動手摺5の正常な表面に異物が付着している場合に、検出カメラ19が当該異物を移動手摺5の表面の異常として検出することを抑制できる。その結果、検出カメラ19の誤検出を抑制できる。検出カメラ19の異常検出の精度を向上できる。
実施の形態2.
 図7は実施の形態2における移動手摺の点検システムが適用される乗客コンベアの構成図である。なお、実施の形態1の部分と同一又は相当部分には同一符号が付される。当該部分の説明は省略される。
 図7に示されるように、乗客コンベア1には、複数の手摺ローラ8aが設けられる。複数の手摺ローラ8aは、一対の欄干4の一方の下部に設けられる。複数の手摺ローラ8aの各々は、一対の移動手摺5の一方において復路部分5bの下側を向く面と接する。一対の手摺ローラ8aは、移動手摺5に対して手摺スプロケット8とは反対側に設けられる。一対の手摺ローラ8aは、移動手摺5が手摺スプロケット8との間に摩擦力を発生させるよう移動手摺5を案内する。図示されないが、一対の欄干4の他方の下部にも同様の複数の手摺ローラ8aが設けられる。
 移動手摺5は、駆動装置6、主スプロケット7、手摺チェーン9、手摺スプロケット8および複数の手摺ローラ8aが連動して駆動または回転することで一対の欄干4の周囲を回転移動する。このため、駆動装置6、主スプロケット7、手摺チェーン9、手摺スプロケット8および複数の手摺ローラ8aのうちの1つ以上の駆動に異常が発生した場合、移動手摺5には、異常な振動が発生し得る。具体的には、経年的な劣化等を原因として、主スプロケット7、手摺スプロケット8、手摺ローラ8aの一部が破損した場合、または手摺チェーン9の一部が破断した場合、移動手摺5を駆動させる摩擦力の大きさは、断続的に変化する。移動手摺5は、当該摩擦力が断続的に変化した場合、異常に振動し得る。
 実施の形態2において、点検装置13は、移動手摺5の異常な振動を検出し得る。点検装置13は、移動手摺5の異常な振動を検出した場合、異常な振動を検出した旨の第3アラート情報を遠隔管理装置14に送信する。遠隔管理装置14は、点検装置13が検出した当該異常な振動の情報に基づいて、駆動装置6、主スプロケット7、手摺チェーン9、手摺スプロケット8および複数の手摺ローラ8aに異常が発生したことを検出し得る。この場合、例えば、保守員は、当該乗客コンベア1に作業員を派遣する。
 次に、図8と図9とを用いて、点検装置13を説明する。
 図8は実施の形態2における移動手摺の点検システムの点検装置の概要を示す図である。図9は実施の形態2における移動手摺の点検システムのブロック図である。
 図8に示されるように、実施の形態2において、点検装置13は、変位センサ40を更に備える。
 変位センサ40は、対象との距離を測定するセンサである。変位センサ40は、検出波を用いて非接触で距離を測定する。変位センサ40は、対象との距離の変化を検出することで、対象の位置の変化を検出する。例えば、変位センサ40は、検出波としてレーザを使用するタイプの変位センサである。なお、変位センサ40は、非接触で対象との距離を測定するセンサであればレーザを使用するタイプに限らない。
 変位センサ40は、筐体17の内部に設けられる。変位センサ40の検出用のレーザLaは、移動手摺5の表面に対して垂直に照射される。変位センサ40は、レーザLaが移動手摺5に反射した反射レーザを反射波として受信し、反射レーザに基づいて移動手摺5との距離を測定する。
 変位センサ40は、移動手摺5との距離の変化を連続的に測定することで、移動手摺5が異常に振動したことを検出し得る。例えば、変位センサ40は、移動手摺5を駆動する機器の異常に起因する移動手摺5の異常な振動を示す距離の変化のパターン情報を予め記憶する。変位センサ40は、移動手摺5との距離の変化が当該パターン情報と一致する場合、移動手摺5の異常な振動を検出する。
 図9に示されるように、変位センサ40は、通信機20に情報を送信し得る。変位センサ40は、測定した移動手摺5との距離の情報を通信機20に送信する。変位センサ40は、移動手摺5の異常な振動を検出した場合、異常な振動を検出した旨の情報を通信機20に送信する。
 第1通信制御器22は、運行監視器21を介して変位センサ40から情報を受信する。第1通信制御器22の第1送信部23は、変位センサ40から異常な振動を検出した旨の情報を受信した場合、異常な振動を検出した旨の第3アラート情報と、異常な振動を検出したときに変位センサ40が測定した移動手摺5との距離の情報と、を遠隔管理装置14に送信する。
 遠隔管理装置14において、第2通信制御器26の第2受信部28は、第1通信制御器22から第3アラート情報等の情報を受信する。第2送信部29は、第3アラート情報に対応する応答情報を通信機20に送信する。
 情報処理器27は、第3アラート情報に基づいて、異常振動判定を行う。
 遠隔管理装置14において、履歴記憶部30は、第2通信制御器26が第3アラート情報を受信した場合、アラート履歴として当該第3アラート情報を記憶する。
 遠隔管理装置14において、異常判定部31は、異常振動判定処理として、第3アラート情報を受信した場合、変位センサ40が異常を検出したと判定する。異常判定部31は、第3アラート情報を受信していない場合、変位センサ40が異常を検出していないと判定する。この場合、異常判定部31は、第2通信制御器26を介して報知器25に異常が検出されていない旨を報知させる。
 異常判定部31は、変位センサ40が異常を検出したと判定した場合、第3アラート情報と検出カメラ19からの情報とに基づいて、駆動装置6、主スプロケット7、手摺チェーン9、手摺スプロケット8および複数の手摺ローラ8a等の駆動機器に実際に異常が発生しているか否かを判定する。異常判定部31は、駆動機器に実際に異常が発生していると判定した場合、第2通信制御器26を介して駆動機器に異常が発見された旨を報知器25に報知させる。例えば、当該異常が発見された旨が報知された場合、保守員は、異常な振動を検出したときに変位センサ40が測定した移動手摺5との距離の情報等のデータを参照し、乗客コンベア1に作業員を派遣するか否かを検討する。
 次に、図10を用いて、実施の形態2において遠隔管理装置14の異常判定部31が行う異常振動判定処理を説明する。
 図10は実施の形態2における移動手摺の点検システムが行う移動手摺の異常振動判定処理の概要を説明するためのフローチャートである。
 例えば、遠隔管理装置14は、乗客コンベア1が通常運転している場合、常に移動手摺5の異常振動判定処理を実行する。
 図10に示されるように、ステップS11において、遠隔管理装置14は、変位センサ40が異常を検出したか否かを判定する。
 ステップS11で、変位センサ40が異常を検出していないと判定した場合、遠隔管理装置14は、ステップS12の動作を行う。ステップS12において、遠隔管理装置14は、報知器25によって異常が検出されていない旨を報知する。
 ステップS11で、変位センサ40が異常を検出したと判定した場合、遠隔管理装置14は、ステップS13の動作を行う。ステップS13において、遠隔管理装置14は、検出カメラ19が撮影した情報に基づいて変位センサ40が検出した異常が実際に発生しているか否かを判定する。
 ステップS13で、異常が実際に発生していないと判定した場合、遠隔管理装置14は、ステップS14の動作を行う。ステップS14において、遠隔管理装置14は、報知器25によって経過観察状態である旨を報知する。その後、遠隔管理装置14は、ステップS11以降の動作を行う。
 ステップS13で、実際に異常が発生していると判定した場合、遠隔管理装置14は、ステップS15の動作を行う。ステップS15において、遠隔管理装置14は、報知器25によって駆動機器に実際に異常が発見された旨の警報と当該異常の情報とを報知する。その後、遠隔管理装置14は、ステップS11以降の動作を行う。
 以上で説明した実施の形態2によれば、点検装置13は、変位センサ40を更に備える。点検装置13は、移動手摺5の異常な振動を検出する。点検装置13は、異常な振動を検出した場合、遠隔管理装置14に第3アラート情報を送信する。このため、乗客コンベア1の駆動装置6、主スプロケット7、手摺チェーン9、手摺スプロケット8および複数の手摺ローラ8a等の駆動機器を遠隔で点検することができる。また、点検装置13は、乗客コンベア1の駆動機器を常に点検することができる。その結果、乗客コンベア1の駆動機器のタイムリーな異常診断が可能となる。
 移動手摺5に関わる駆動機器に異常が発生した場合、移動手摺5が振動するだけでなく、ステップに対して移動手摺5が相対的に遅れて移動する事象が発生し得る。点検システム12において、保守員は、移動手摺5の状態を常時確認できる。さらに点検システム12は、タイムリーに異常診断を行うことで、乗客コンベア1の安全性を向上できる。
 また、点検装置13が駆動機器を常時点検することで、乗客コンベア1の通常の保守点検作業の点検項目を削減することができる。一般的に、これらの駆動機器の点検は、乗客コンベアの保守点検時、移動手摺5の保守点検時に実施される。当該保守点検は、乗客コンベアの設置客先の営業が終了してから営業が開始されるまでの時間帯に行われる。このため、乗客コンベアを停止して作業できる時間は限定される。実施の形態1および実施の形態2における点検システム12は、移動手摺5の内部、移動手摺5の表面および移動手摺5に関わる駆動機器を遠隔から点検できる。即ち、乗客コンベア1の定期的な検査をリモートで実施することができる。当該保守点検の作業内容の削減、作業の短時間化、保守点検の回数の削減、等を実現できる。
 また、変位センサ40は、移動手摺5に接触することなく移動手摺5との距離を測定する。このため、変位センサ40の設置によって移動手摺5に傷等が発生することを抑制できる。また、測定時に外乱の影響を受けることを抑制できる。
 なお、変位センサ40は、カメラが内蔵された変位センサであってもよい。この場合、点検システム12において、検出カメラ19の代わりに変位センサ40に内蔵されたカメラが用いられてもよい。このため、部品点数を削減することができる。
 なお、遠隔管理装置14は、点検装置13から第3アラート情報を受け取った場合に、異常な振動が検出された旨を報知器25に報知させてもよい。
 なお、図10のフローチャートのステップS13における実際に異常が発生しているか否かの判定は、保守員が行ってもよい。この場合、保守員は、検出カメラ19の映像に基づいて、実際に移動手摺5が異常に振動しているか否かを判定してもよい。保守員は、判定結果を遠隔管理装置14に入力することで、図10のフローチャートのステップを進めてもよい。
 以上のように、本開示に係る点検システムは、乗客コンベアに利用できる。
 1 乗客コンベア、 2a 第1乗降口、 2b 第2乗降口、 3 主枠、 4 欄干、 5 移動手摺、 5a 往路部分、 5b 復路部分、 5c 折り返し部分、 6 駆動装置、 7 主スプロケット、 8 手摺スプロケット、 8a 手摺ローラ、 9 手摺チェーン、 10 制御装置、 11 機械室、 12 点検システム、 13 点検装置、 14 遠隔管理装置、 15 芯体、 16 鋼線、 16a 金属素線、 17 筐体、 18 磁気センサ、 18a 永久磁石、 18b MR素子アレイ、 19 検出カメラ、 20 通信機、 21 運行監視器、 22 第1通信制御器、 23 第1送信部、 24 第1受信部、 25 報知器、 26 第2通信制御器、 27 情報処理器、 28 第2受信部、 29 第2送信部、 30 履歴記憶部、 31 異常判定部、 32 警報出力部、 40 変位センサ、 100a プロセッサ、 100b メモリ、 200 ハードウェア

Claims (7)

  1.  乗客コンベアの欄干の下部において内部に鋼線を有する移動手摺の下方に配置された筐体と、
     前記移動手摺の下方に位置するよう前記筐体に設けられ、前記移動手摺の前記鋼線が通過する空間に発生させた磁界の変化を検出する磁気センサと、
    を備えた移動手摺の点検装置。
  2.  前記磁気センサは、前記移動手摺が前記欄干の周囲を規定の回数だけ周回する間に繰り返し測定した前記磁界の測定値を平均化する演算を行い、前記磁界の測定値を平均化した情報に基づいて、前記磁界の変化を検出する請求項1に記載の移動手摺の点検装置。
  3.  前記磁気センサが前記磁界の変化を検出した場合、前記乗客コンベアの保守員に情報を報知する装置に対して前記移動手摺の前記鋼線の異常が検出された旨の第1アラート情報を送信する通信機、
    を備えた請求項1または請求項2に記載の移動手摺の点検装置。
  4.  前記移動手摺の下方に位置するよう前記筐体に設けられ、前記移動手摺の表面を撮影した画像の情報に基づいて、前記移動手摺の表面の状態の変化を検出する検出カメラ、
    を備え、
     前記通信機は、前記検出カメラが前記移動手摺の表面の状態の変化を検出した場合、前記乗客コンベアの保守員に情報を報知する装置に対して前記移動手摺の表面の状態に異常が検出された旨の第2アラート情報を送信する請求項3に記載の移動手摺の点検装置。
  5.  前記検出カメラは、前記移動手摺が前記欄干の周囲を規定の回数だけ周回する間に繰り返し撮影した前記移動手摺の表面の画像を平均化する演算を行い、前記画像を平均化した情報に基づいて、前記移動手摺の表面の状態の変化を検出する請求項4に記載の移動手摺の点検装置。
  6.  前記移動手摺の下方に位置するよう前記筐体に設けられ、前記移動手摺に検出波を照射し、前記検出波の反射波の情報に基づいて前記移動手摺の位置の変化を測定することで、前記移動手摺の異常な振動を検出する変位センサ、
    を備え、
     前記通信機は、前記変位センサが前記移動手摺の異常な振動を検出した場合、前記乗客コンベアの保守員に情報を報知する装置に対して前記移動手摺の異常な振動が検出された旨の第3アラート情報を送信する請求項4または請求項5に記載の移動手摺の点検装置。
  7.  前記通信機が前記検出カメラに撮影された前記移動手摺の表面の映像の情報を送信する請求項4から請求項6のいずれか一項に記載の移動手摺の点検装置と、
     前記通信機から前記映像の情報と前記移動手摺の前記鋼線の異常が検出された旨の前記第1アラート情報とを受信し、前記移動手摺の表面の映像に基づいて前記移動手摺の表面に異物が付着しているか否かを判定し、前記第1アラート情報を受信したとき前記移動手摺の表面に異物が付着していないと判定した場合に異常を検出した旨を報知し、前記第1アラート情報を受信したとき前記移動手摺の表面に異物が付着していると判定した場合に異常を検出した旨を報知しない遠隔管理装置と、
    を備えた移動手摺の点検システム。
PCT/JP2021/041906 2021-05-27 2021-11-15 移動手摺の点検装置および移動手摺の点検システム WO2022249512A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023523951A JP7460021B2 (ja) 2021-05-27 2021-11-15 移動手摺の点検装置および移動手摺の点検システム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-089451 2021-05-27
JP2021089451 2021-05-27

Publications (1)

Publication Number Publication Date
WO2022249512A1 true WO2022249512A1 (ja) 2022-12-01

Family

ID=84229683

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/041906 WO2022249512A1 (ja) 2021-05-27 2021-11-15 移動手摺の点検装置および移動手摺の点検システム

Country Status (2)

Country Link
JP (1) JP7460021B2 (ja)
WO (1) WO2022249512A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7585441B1 (ja) 2023-11-27 2024-11-18 東芝エレベータ株式会社 乗客コンベアシステム

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06316394A (ja) * 1993-05-07 1994-11-15 Hitachi Building Syst Eng & Service Co Ltd エスカレータハンドレールの損傷検出器
JP2013049560A (ja) * 2011-08-31 2013-03-14 Hitachi Building Systems Co Ltd 乗客コンベアの移動手摺の劣化診断装置
CN104891293A (zh) * 2015-05-29 2015-09-09 四川省特种设备检验研究院 基于二维激光传感器的自动扶梯安全控制系统及方法
JP2016088698A (ja) * 2014-11-05 2016-05-23 株式会社日立ビルシステム 移動手摺り劣化診断装置
CN112456293A (zh) * 2020-12-14 2021-03-09 中铁第四勘察设计院集团有限公司 可实时标记的自动扶梯扶手带内嵌钢丝监测系统及方法
EP3819252A1 (en) * 2019-11-08 2021-05-12 Otis Elevator Company Monitoring systems for inclined passenger conveyors

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015174729A (ja) 2014-03-14 2015-10-05 株式会社日立ビルシステム 乗客コンベア装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06316394A (ja) * 1993-05-07 1994-11-15 Hitachi Building Syst Eng & Service Co Ltd エスカレータハンドレールの損傷検出器
JP2013049560A (ja) * 2011-08-31 2013-03-14 Hitachi Building Systems Co Ltd 乗客コンベアの移動手摺の劣化診断装置
JP2016088698A (ja) * 2014-11-05 2016-05-23 株式会社日立ビルシステム 移動手摺り劣化診断装置
CN104891293A (zh) * 2015-05-29 2015-09-09 四川省特种设备检验研究院 基于二维激光传感器的自动扶梯安全控制系统及方法
EP3819252A1 (en) * 2019-11-08 2021-05-12 Otis Elevator Company Monitoring systems for inclined passenger conveyors
CN112456293A (zh) * 2020-12-14 2021-03-09 中铁第四勘察设计院集团有限公司 可实时标记的自动扶梯扶手带内嵌钢丝监测系统及方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7585441B1 (ja) 2023-11-27 2024-11-18 東芝エレベータ株式会社 乗客コンベアシステム

Also Published As

Publication number Publication date
JPWO2022249512A1 (ja) 2022-12-01
JP7460021B2 (ja) 2024-04-02

Similar Documents

Publication Publication Date Title
JP6271680B1 (ja) エレベータのロープ検査システム
JP6522203B1 (ja) 乗客コンベアの異常検知システム
CA2716796C (en) Method and apparatus for monitoring a conveyor belt
US10118802B2 (en) Structural health monitoring of an escalator drive system
GB2406844A (en) Chain elongation monitoring apparatus and method
KR101051231B1 (ko) 벨트 컨베어의 리턴 롤러 결함 검출 장치 및 그 방법
JP6449376B2 (ja) エレベータ
WO2018076086A1 (en) Continuous belt conveyor monitoring systems and methods
JP2009029524A (ja) 乗客コンベア監視装置
JP2009173364A (ja) 乗客コンベアの異常診断システム
WO2022249512A1 (ja) 移動手摺の点検装置および移動手摺の点検システム
JP2019089620A (ja) 乗客コンベア
AU2018203294B2 (en) Automatic elevator inspection systems and methods
CN113023537B (zh) 乘客输送机的异常检测系统
JP2013018643A (ja) エレベータの診断装置
JP6692305B2 (ja) 乗客コンベアの自動隙間測定装置および乗客コンベアの自動隙間測定方法
JP7155367B1 (ja) エスカレータ異常検出装置およびエスカレータ異常検出方法
CN112875484A (zh) 乘客输送机的链松弛检测装置
JPH08301566A (ja) エスカレータ踏板破損監視装置
JP6748044B2 (ja) 乗客コンベア点検装置および乗客コンベア点検システム
JP2006273549A (ja) マンコンベアのステップチェーン伸び検出装置
JP2007112565A (ja) 駆動系診断装置
RU2803042C1 (ru) Способ мониторинга состояния ленточного конвейера с модулем камеры искробезопасной машинного зрения и тепловизора
CN114057078B (zh) 链条伸长检测装置
JP7437295B2 (ja) ステップ踏板検査装置及びステップ踏板検査方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21943145

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023523951

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21943145

Country of ref document: EP

Kind code of ref document: A1