WO2022249487A1 - Water discharge method, water treatment method, residual chlorine reduction method, and water treatment facility - Google Patents

Water discharge method, water treatment method, residual chlorine reduction method, and water treatment facility Download PDF

Info

Publication number
WO2022249487A1
WO2022249487A1 PCT/JP2021/020545 JP2021020545W WO2022249487A1 WO 2022249487 A1 WO2022249487 A1 WO 2022249487A1 JP 2021020545 W JP2021020545 W JP 2021020545W WO 2022249487 A1 WO2022249487 A1 WO 2022249487A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
hydrogen
salt water
chlorine
salt
Prior art date
Application number
PCT/JP2021/020545
Other languages
French (fr)
Japanese (ja)
Inventor
司 吉崎
一郎 内山
直彦 谷口
Original Assignee
中国電力株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国電力株式会社 filed Critical 中国電力株式会社
Priority to PCT/JP2021/020545 priority Critical patent/WO2022249487A1/en
Priority to JP2023502981A priority patent/JPWO2022249487A1/ja
Publication of WO2022249487A1 publication Critical patent/WO2022249487A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K63/00Receptacles for live fish, e.g. aquaria; Terraria
    • A01K63/04Arrangements for treating water specially adapted to receptacles for live fish
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/10Accessories; Auxiliary operations
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/50Treatment of water, waste water, or sewage by addition or application of a germicide or by oligodynamic treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/66Treatment of water, waste water, or sewage by neutralisation; pH adjustment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/70Treatment of water, waste water, or sewage by reduction

Definitions

  • the present invention relates to a water discharge method, water treatment method, residual chlorine reduction method, and water treatment equipment.
  • Intake channels and discharge channels are laid from the sea area to the inside of the power plant in order to take in seawater for water cooling of equipment such as condensers in the power plant and to discharge the taken in seawater.
  • Marine organisms such as barnacles and mussels breed inside the intake and discharge channels, and adhesion of such marine organisms leads to narrowing or blockage of the intake and discharge channels and condenser cooling pipes. As a result, the flow rates of intake water and discharge water are reduced, and the efficiency of condensate cooling is reduced.
  • Patent Literature 1 describes a method of using a chlorine-based disinfectant to prevent marine organisms from adhering to a water intake channel and a water discharge channel.
  • the present disclosure aims to reduce the residual chlorine concentration of water.
  • a residual reduction method in which a hydrogen-containing liquid containing dissolved hydrogen is brought into contact with a catalyst, and then the hydrogen-containing liquid is added to water containing residual chlorine. be done.
  • the salt water flowing through the main path is supplied to the dissolution tank and the electrolyzer, and the salt water is electrolyzed by the electrolyzer to generate gaseous hydrogen and a chlorine-based aqueous solution.
  • the chlorine-based aqueous solution is added to the salt water in the main path, and at a second predetermined position downstream from the first predetermined position, the hydrogen-containing liquid is added to the salt water in the main path
  • An additive water treatment method is provided.
  • a hydrogen-containing liquid containing dissolved hydrogen is brought into contact with a catalyst.
  • a water discharge method is then provided for adding said hydrogen-containing liquid to said water in said discharge channel.
  • a water treatment method for taking water from a natural water area into a waterway through a water intake and discharging the water taken into the waterway into the natural waterway through a water outlet, After adding a chlorine-based chemical to the water at one predetermined position and bringing the hydrogen-containing liquid containing dissolved hydrogen into contact with the catalyst, the water in the water channel is added at a second predetermined position closer to the water outlet than the predetermined position.
  • a water treatment method is provided in which the hydrogen-containing liquid is added.
  • a water intake and a water outlet are provided in a natural water area, water is taken in from the natural water area through the water intake, and the water taken in is discharged through the water outlet.
  • a chlorinated chemical addition device for adding a chlorinated chemical to the water in the duct at a first predetermined position in the duct; storing a hydrogen-containing liquid containing dissolved hydrogen;
  • a water treatment facility comprising: a reservoir that discharges the hydrogen-containing liquid to a second predetermined position closer to the water outlet than the first predetermined position; and a catalyst that is immersed in the hydrogen-containing liquid in the reservoir.
  • the residual chlorine concentration of water is reduced. Therefore, even if the water is discharged into natural waters, for example, it does not adversely affect the environment of natural waters.
  • BRIEF DESCRIPTION OF THE DRAWINGS It is a top view of the thermal power plant with which the water treatment equipment of 1st Embodiment was constructed.
  • BRIEF DESCRIPTION OF THE DRAWINGS It is a schematic diagram of the water treatment equipment of 1st Embodiment. It is a block diagram of water treatment equipment of a 1st embodiment. It is a block diagram of the water treatment equipment of 2nd Embodiment. It is a block diagram of the water treatment equipment of 3rd Embodiment. It is a block diagram of the water treatment equipment of 4th Embodiment at the time of water intake. It is a block diagram of the water treatment equipment of 4th Embodiment at the time of water discharge.
  • FIG. 1 is a plan view of a thermal power plant 10.
  • FIG. 2 is a schematic diagram of the water treatment facility 11 constructed in the thermal power plant 10.
  • FIG. 3 is a block diagram showing the configuration of the water treatment facility 11. As shown in FIG.
  • the thermal power plant 10 is built on the site facing the sea 2 as a natural water area.
  • a thermal power plant 10 includes a water treatment facility 11 , a fuel storage facility 14 and a power generation facility 16 .
  • the fuel storage facility 14 is a facility for storing fuel.
  • the power generation equipment 16 includes a turbine, a boiler, a generator, and a condenser 18 (not shown). When the fuel supplied to the boiler from the fuel storage facility 14 is burned, high-temperature, high-pressure steam is generated in the boiler, the energy of the steam drives the turbine and generator, and the generator generates electrical energy. .
  • a condenser 18 as equipment is connected to a turbine, and steam discharged from the turbine is supplied to the condenser 18 .
  • Condenser 18 is a surface condenser or a mixed condenser.
  • the water treatment facility 11 is a water cooling system that takes in salt water from the sea 2 , cools the condenser 18 with the taken in salt water, and discharges the salt water used for cooling into the sea 2 .
  • the water treatment facility 11 has a water channel 25 , a condenser 18 and an addition device 30 .
  • the condenser 18 serves as both a component of the power generation equipment 16 and a component of the water treatment equipment 11 as described above.
  • the waterway 25 of the water treatment facility 11 is the main route of salt water returning from the sea 2 to the sea 2 via the condenser 18 inside the thermal power plant 10 .
  • the waterway 25 takes in the thermal power plant 10 from the sea 2 and discharges the taken-in salt water to the sea 2 .
  • the water channel 25 has an intake channel 20 upstream of the condenser 18 and a discharge channel 22 downstream of the condenser 18 .
  • the intake channel 20 is a channel for taking salt water from the sea 2 into the thermal power plant 10 .
  • the water intake channel 20 is constructed on the ground from the sea or seabed to the condenser 18 or its vicinity. An end of the water intake channel 20 opens in the sea or on the seabed, and the opening serves as a water intake 21 .
  • Salt water of the sea 2 is taken into the water intake channel 20 through the water intake 21 .
  • Salt water taken into the intake channel 20 is sent to the condenser 18 .
  • the discharge channel 22 is a channel for discharging salt water into the sea 2 .
  • the discharge channel 22 is built in the ground from the sea or seabed to the condenser 18 or its vicinity.
  • the end of the water discharge channel 22 opens in the sea or on the seabed, and the opening serves as a water discharge port 24 .
  • the salt water in the condenser 18 is discharged to the discharge channel 22 and the discharged water is sent to the discharge port 24 .
  • the salt water is then discharged into the sea 2 through the water outlet 24 .
  • the inlet of the condenser 18 is connected to the water intake channel 20 via the channel, pump 19 and the like.
  • the outlet of the condenser 18 is connected to the discharge channel 22 via a channel or the like.
  • This pump 19 feeds the salt water in the intake channel 20 to the condenser 18 .
  • the brine supplied to the condenser 18 cools and condenses the steam supplied from the turbine.
  • the salt water used for cooling in the condenser 18 is discharged to the spillway 22 and discharged to the sea 2 through the spillway 22 .
  • the pump 19 may be replaced by potential energy or pressure differential to cause salt water to flow from the sea 2 to the sea 2 via the intake channel 20 , the condenser 18 and the discharge channel 22 .
  • salt water containing aquatic organisms flows through the intake channel 20, the discharge channel 22, and the condenser 18, the aquatic organisms tend to adhere and grow inside the intake channel 20, the discharge channel 22, and the condenser 18.
  • a chlorine-based chemical is added to the salt water in the water intake channel 20 by the addition device 30 to suppress adhesion and breeding of aquatic organisms.
  • water containing dissolved hydrogen hereinafter referred to as hydrogen water
  • the water used as the solvent for the hydrogen water is salt water, but fresh water or clean water may be used.
  • the addition device 30 produces a chlorine-based aqueous solution and hydrogen water from the salt water in the water intake channel 20 or the water discharge channel 22 .
  • the addition device 30 adds the chlorine-based aqueous solution to the salt water in the intake channel 20 and adds the hydrogen water to the salt water in the discharge channel 22 .
  • the addition device 30 has an electrolyzer 31 , a discharge pipe 33 , an introduction pipe 32 , a feed pipe 34 , a gas dissolver 41 , a platinum catalyst 51 , liquid feed pumps 35 and 44 and a valve 53 .
  • the inlet of the electrolyzer 31 is connected to the water intake channel 20 via the introduction pipe 32 and the liquid feed pump 35 .
  • a liquid outlet of the electrolyzer 31 is connected to the intake channel 20 via a discharge pipe 33 .
  • a gas outlet of the electrolyzer 31 is connected to a gas inlet of the gas dissolver 41 via a pipe 34 .
  • a liquid inlet of the gas dissolving device 41 is connected to the intake channel 20 via an introduction pipe 42 and a liquid pump 44 .
  • a liquid outlet of the gas dissolver 41 is connected to the water discharge channel 22 via a valve 53 and a discharge pipe 52 .
  • the liquid-sending pump 35 supplies the salt water in the intake channel 20 to the electrolyzer 31 .
  • the electrolyzer 31 electrolyzes the salt water introduced from the intake channel 20 to generate chlorine (Cl 2 ) at the anode of the electrolyzer 31 . Therefore, the salt water electrolyzed by the electrolyzer 31 contains effective chlorine composed of free chlorine, combined chlorine, and the like.
  • Free chlorine refers to chlorine gas molecules (Cl 2 ), hypochlorous acid (HClO) and hypochlorite ions (ClO ⁇ ) in salt water.
  • Combined chlorine is obtained by reacting ammonia and its compounds contained in salt water with free chlorine, and refers to chloramines such as monochloramine, dichloramine and trichloramine.
  • Hydrogen (H 2 ) is produced at the cathode of the electrolyzer 31 by electrolysis of salt water in the electrolyser 31 .
  • the electrolyzer 31 has a degassing tower, a receiving tank, or the like, and the electrolyzed hydrogen molecules in the salt water are separated from the salt water in the degassing tower, the receiving tank, or the like, and gaseous hydrogen is generated from the salt water.
  • the gaseous hydrogen is sent from the electrolyzer 31 to the gas dissolver 41 through the pipe 34 .
  • a valve for adjusting the flow rate of gaseous hydrogen from the electrolyzer 31 to the gas dissolver 41 may be provided in the middle of the pipe 34 .
  • the salt water from which hydrogen is separated in the electrolyzer 31 is a chlorine-based chemical, more specifically, a chlorine-based aqueous solution containing effective chlorine.
  • the chlorine-based aqueous solution is introduced from the electrolyzer 31 into the intake channel 20 through the discharge pipe 33 . Therefore, the electrolyzer 31 is a chlorine-based chemical addition device that adds the chlorine-based aqueous solution to the salt water in the intake channel 20 at the first predetermined position in the intake channel 20 .
  • the first predetermined position where the chlorine-based aqueous solution is added from the discharge pipe 33 to the intake channel 20 is the intake port 21 in order to obtain the effect of preventing the adhesion and breeding of aquatic organisms in the widest possible range of the intake channel 20. As close as possible is preferred.
  • one liquid transfer pump 35 is provided.
  • a plurality of liquid-sending pumps 35 may be provided on the route from the water intake channel 20 to the water intake channel 20 via the introduction pipe 32 , the electrolyzer 31 and the discharge pipe 33 .
  • one or more valves may be provided in the route from the water intake channel 20 to the water intake channel 20 via the introduction pipe 32 , the electrolyzer 31 and the discharge pipe 33 .
  • One or a plurality of liquid-sending pumps 35 and valves adjust the supply flow rate of salt water from the intake channel 20 to the electrolyzer 31, or adjust the input flow rate of the chlorine-based aqueous solution from the electrolyzer 31 to the intake channel 20. or By controlling the liquid feed pump 35 and valves and controlling the power consumption of the electrolyzer 31, the residual chlorine concentration in the intake channel 20 and the condenser 18 and discharge channel 22 downstream thereof is appropriate. adjusted to
  • the liquid feed pump 44 supplies the salt water in the intake channel 20 to the gas dissolving device 41 .
  • a liquid inlet of the gas dissolving device 41 is connected to the water discharge channel 22 via an introduction pipe 42 and a liquid feeding pump 44 , and the liquid feeding pump 44 supplies the salt water in the water discharge channel 22 to the gas dissolving device 41 . good too.
  • the gas dissolving device 41 dissolves the gaseous hydrogen introduced from the electrolyzer 31 into the salt water introduced from the intake channel 20 .
  • the gas dissolving device 41 has a dissolving tank 41a and an ejection part (not shown).
  • the dissolution tank 41a is a storage section that stores the salt water introduced from the intake channel 20 .
  • the ejection part ejects the gaseous hydrogen introduced from the electrolyzer 31 into the salt water in the dissolution tank 41a in the form of bubbles.
  • the ejected gaseous hydrogen dissolves in the salt water in the dissolving tank 41a.
  • a hydrogen-containing liquid containing dissolved hydrogen hereinafter referred to as hydrogen water
  • the inside of the dissolving tank 41a may be pressurized to a high pressure by a compressor or the like. As a result, the dissolved hydrogen concentration in the hydrogen water generated by the gas dissolving device 41 increases.
  • a platinum catalyst 51 is provided in the dissolving tank 41a, and the platinum catalyst 51 is immersed in hydrogen water in the dissolving tank 41a.
  • the hydrogen water in the dissolution tank 41a contacts the platinum catalyst 51, the hydrogen water is activated. Activation of the hydrogen water enhances the reducing power of the hydrogen water and efficiently neutralizes residual chlorine in the salt water with the hydrogen water as described later. Since the platinum catalyst 51 contains platinum, the higher the content, the better, and the larger the microscopic surface area of platinum.
  • platinum catalyst 51 instead of the platinum catalyst 51 containing platinum, from Group 10 element metals (eg, nickel, platinum), metal oxides (eg, copper-chromium oxide) and platinum group metals (eg, ruthenium, palladium, rhodium)
  • a reducing catalyst containing at least one substance selected from the group may be used.
  • the hydrogen water produced in the dissolution tank 41a is introduced from the dissolution tank 41a into the water discharge channel 22 through the valve 53 and the discharge pipe 52 . Therefore, the combination of the gas dissolving device 41 and the valve 53 is a hydrogen-containing liquid adding device that adds hydrogen water to the salt water in the water discharge channel 22 at the second predetermined position in the water discharge channel 22 .
  • a platinum catalyst does not exist in the discharge channel 22 .
  • the valve 53 adjusts the flow rate of hydrogen water supplied to the water discharge channel 22 .
  • the hydrogen water introduced into the water discharge channel 22 is a reducing agent and a neutralizing agent. Therefore, by adding hydrogen water to the salt water in the discharge channel 22, residual chlorine in the salt water is reduced or removed, and the salt water is neutralized.
  • the neutralized saltwater is discharged into the sea 2 through the spillway 22 .
  • the residual chlorine concentration of the neutralized salt water is at a level that does not affect the natural environment of the sea 2, and is below the value determined by agreements with local communities, laws, regulations, and the like. In order to reduce the concentration of residual chlorine in the water discharge port 24 as much as possible, the closer the second predetermined position to which hydrogen water is added from the discharge pipe 52 to the outlet of the condenser 18, the better. However, if the concentration of residual chlorine in the salt water discharged into the sea 2 can be suppressed to the predetermined value or less, the position where the hydrogen water is added from the discharge pipe 52 may be near the water outlet 24 .
  • a platinum catalyst 51 is placed in the dissolution tank 41a, and is brought into contact with the platinum catalyst 51 before the hydrogen water is added to the salt water in the discharge channel 22. Therefore, hydrogen water is activated. When such hydrogen water is added to the salt water in the discharge channel 22, neutralization of the salt water in the discharge channel 22 progresses efficiently.
  • the platinum catalyst 51 Since the platinum catalyst 51 is arranged in the dissolution tank 41a, the probability of the platinum catalyst 51 coming into contact with aquatic organisms or solid substances flowing through the water intake channel 20 or the water discharge channel 22 is low. Therefore, the risk of physical wear of the platinum catalyst 51 is low. Further, maintenance of the platinum catalyst 51 can be carried out by emptying only the dissolving tank 41a, so maintenance of the platinum catalyst 51 is easy.
  • the chlorine-based chemical added to the salt water in the intake channel 20 is the chlorine-based aqueous solution generated by the electrolyzer 31 .
  • a chlorine-based aqueous solution that has been generated in advance and stored in a storage tank or the like may be added to the salt water in the intake channel 20 by an injection device.
  • the chlorine-based aqueous solution is, for example, an aqueous sodium hypochlorite solution, an aqueous hypochlorous acid solution, or an aqueous solution of chlorinated isocyanuric acid, but may be another chlorine-based aqueous solution.
  • chlorine gas may be jetted into the salt water in the water intake channel 20 .
  • Chlorine gas is stored in gas cylinders.
  • a solid chlorine-based chemical may be added to the salt water in the water intake channel 20 by the charging device.
  • Solid chlorine agents are, for example, calcium hypochlorite, sodium hypochlorite, chlorinated isocyanuric acid or bleaching powder. The solid chlorine chemical is stored in advance in a storage tank.
  • the gaseous hydrogen generated by the electrolyzer 31 is supplied to the dissolving tank 41a of the gas dissolving device 41.
  • the addition device 30 may have a gas cylinder or a hydrogenation device, and gaseous hydrogen stored in the gas cylinder or gaseous hydrogen generated by the hydrogenation device may be supplied to the dissolution tank 41a.
  • the hydrogenation device is, for example, an electrolysis device that electrolyzes water to produce hydrogen and oxygen.
  • the salt water in the water intake channel 20 or the water discharge channel 22 is supplied to the dissolving tank 41a of the gas dissolving device 41.
  • clean water may be supplied to the dissolving tank 41a.
  • fresh water in a natural water area other than the sea 2 may be supplied to the dissolving tank 41a.
  • the natural water area is Sea 2, and the thermal power plant 10 is built on the coast of Sea 2.
  • the natural water area may be a salt lake, freshwater lake, marsh, or river, and the thermal power plant 10 may be constructed on the coast of the salt lake, freshwater lake, marsh, or river. If the water existing in the natural water area is fresh water, it is necessary to apply the above modifications (A) and (B) together, or dissolve sodium chloride in the fresh water supplied to the electrolyzer 31. There is a need.
  • brackish water is salt water, so brackish lakes are a type of salt lakes in the present disclosure.
  • the water treatment facility 11 is built in the thermal power plant 10.
  • the water treatment facility 11 may be constructed in other types of power plants, such as hydroelectric power plants, pumped-storage power plants, and nuclear power plants, or may be built in factories other than power plants. good.
  • the equipment provided between the water intake channel 20 and the water discharge channel 22 is the condenser 18, it may be other equipment such as a hydraulic power generator.
  • the second predetermined position where the hydrogen water is added to the salt water may be any position from the first predetermined position where the chlorine-based aqueous solution is added from the discharge pipe 33 to the water intake channel 20 to the water outlet 24 .
  • the position where the hydrogen water or gaseous hydrogen is added is preferably downstream of the condenser 18.
  • a hypochlorous acid solution was used as chlorine water.
  • hydrogen water one generated as follows was used. First, 15 grains of platinum catalyst were immersed in pure water, and immediately, while stirring the pure water, hydrogen was dissolved in the pure water by jetting hydrogen gas from a hydrogen tank into the pure water in the form of bubbles. The hydrogen concentration of the hydrogen water obtained in this way was measured with a hydrogen concentration meter, and hydrogen water with two types of hydrogen concentrations of about 0.88 ppm and about 0.50 ppm was prepared. In addition, after immersing 15 grains of platinum catalyst in pure water for 60 minutes, while stirring the pure water without taking out the platinum catalyst, hydrogen gas was jetted into the pure water in the form of bubbles from the hydrogen tank to purify the hydrogen. Dissolved in water.
  • the hydrogen concentration of the hydrogen water thus obtained was measured with a hydrogen concentration meter to prepare hydrogen water having a hydrogen concentration of about 0.15 ppm.
  • Hydrogen water with a hydrogen concentration of about 0.88 ppm is used in the first test
  • hydrogen water with a hydrogen concentration of about 0.55 ppm is used in the second test
  • hydrogen water with a hydrogen concentration of about 0.15 ppm is used in the third test. This is the residual chlorine concentration reduction effect when the platinum catalyst immersion time is short like the first and second tests, and the residual chlorine concentration reduction effect when the platinum catalyst immersion time is long like the third test.
  • Tables 1 to 3 show the residual chlorine concentration and the amount of decrease in each of three tests in which chlorine water and hydrogen water were mixed.
  • the amount of decrease in residual chlorine concentration is represented by the difference from the residual chlorine concentration calculated according to the dilution ratio when chlorine water is diluted with hydrogen water.
  • the residual chlorine concentration immediately after mixing is about half of the residual chlorine concentration before mixing, but this is because chlorine water and hydrogen water are mixed in equal amounts and diluted to 50%.
  • Tables 1 to 3 when hydrogen water in which a platinum catalyst has been immersed in advance is mixed with chlorine water, the concentration of residual chlorine in the mixed water gradually decreases with the passage of time, and 15 minutes after mixing. A decrease of 0.17 ppm, 0.21 ppm or 0.22 ppm was observed at time points.
  • the hydrogen water in which the platinum catalyst is immersed in advance contributes to the reduction of the residual chlorine concentration of the mixture of hydrogen water and chlorine water.
  • the concentration of residual chlorine can be reduced by immersing the catalyst when generating hydrogen water and mixing the hydrogen water with chlorine water.
  • the residual chlorine concentration of mixed water of 50 ml of chlorine water and 50 ml of pure water was similarly measured. However, neither the pure water before mixing nor the mixed water after mixing was brought into contact with the platinum catalyst.
  • the residual chlorine concentration of mixed water of 50 ml of chlorine water and 50 ml of hydrogen water was similarly measured.
  • the hydrogen water before mixing and the mixed water after mixing were not brought into contact with the platinum catalyst.
  • the residual chlorine concentration of mixed water of 50 ml of chlorine water and 50 ml of hydrogen water was similarly measured.
  • the catalyst is not brought into contact with hydrogen water before mixing, and 5 grains or 15 grains of platinum catalyst are continuously immersed in the mixed liquid from the time of mixing.
  • Table 6 shows the results when 5 platinum catalyst particles were immersed in the mixed liquid
  • Table 7 shows the results when 15 platinum catalyst particles were immersed in the mixed liquid.
  • the platinum catalyst is immersed in a mixture of hydrogen water and chlorine water in the same manner as in the case of mixing hydrogen water and chlorine water in which the platinum catalyst is previously immersed. Even in the case where the concentration of residual chlorine in the mixed water is reduced, a decrease is observed. From this, even if the mixed water is not brought into contact with the platinum catalyst when mixing the hydrogen water and chlorine water, if the hydrogen water is brought into contact with the platinum catalyst in advance and activated before mixing, the mixed water is turned into the platinum catalyst. It can be seen that the concentration of residual chlorine in the mixed water decreases as in the case of contact.
  • FIG. 4 is a block diagram showing the configuration of the water treatment facility 110 built in the desalination plant.
  • the water treatment facility 110 is built on a site facing the sea 102 as a natural water area.
  • the water treatment facility 110 is a desalination system that takes in salt water from the sea 102 and produces fresh water from the salt water. Note that instead of the sea 102 , salt water of a salt lake or a brackish lake may be desalinated by the water treatment facility 110 .
  • the water treatment facility 110 includes a treated water tank 111 , an addition device 130 , a desalination device 120 , a storage tank 160 and a supply pump 161 .
  • the treated water tank 111, the addition device 130, the desalination device 120, the storage tank 160 and the supply pump 161 are installed on land.
  • the salt water flows from the sea 102 through the piping to the storage tank 160 through the treated water tank 111 and the desalination device 120 in order.
  • the piping from the sea 102 to the storage tank 160 is the main route for salt water.
  • Salt water taken in from the sea 102 is stored in the treated water tank 111 .
  • the supply of salt water from the sea 102 to the treated water tank 111 utilizes, for example, pumps, potential energy, or pressure differentials.
  • the chlorine-based aqueous solution produced by the addition device 130 is added to the salt water sent from the sea 102 to the treated water tank 111 in order to suppress the growth of microorganisms in the salt water.
  • salt water is sterilized with a chlorine-based aqueous solution.
  • the desalination device 120 removes contaminants such as microorganisms and turbidity in the salt water supplied from the treated water tank 111, and desalinates the salt water from which the contaminants have been removed.
  • the storage tank 160 stores fresh water produced by the desalination device 120 .
  • the supply pump 161 supplies the fresh water in the storage tank 160 to the demand area.
  • the fresh water sent by the supply pump 161 is loaded with minerals, alkalis and disinfectants.
  • the disinfectant is suitable for drinking.
  • the desalination device 120 has a pump 121 , a multi-layer filter 122 , a water tank 123 , a pump 124 , a safety filter 125 , a high-pressure pump 126 and a reverse osmosis membrane filtration device 127 .
  • the pump 121 is provided between the treated water tank 111 and the multi-layer filter 122.
  • the pump 121 supplies salt water in the treated water tank 111 to the multi-layer filter 122 .
  • Flocculant and acid are added to the brine supplied by pump 121 .
  • the chlorine-based aqueous solution produced by the addition device 130 is also added to the brine supplied by the pump 121 .
  • the multi-layer filter 122 is constructed by stacking a plurality of layers of filter media such as sand. Multilayer filter 122 filters the brine supplied by pump 121 to remove contaminants in the brine. The multi-layer filter 122 discharges the decontaminated salt water into the water tank 123 . The multi-layer filter 122 is backwashable. The water tank 123 stores salt water discharged from the multi-layer filter 122 . Pump 124 is connected to water tank 123 and safety filter 125 . Pump 124 supplies salt water in water tank 123 to safety filter 125 .
  • the safety filter 125 is a filter having, for example, a microfiltration membrane, an ultrafiltration membrane or a nanofiltration membrane.
  • Safety filter 125 filters the brine supplied by pump 124 to remove contaminants in the brine.
  • the safety filter 125 can remove contaminants of smaller particle size than the contaminants removed by the multi-layer filter 122 .
  • the salt water from which contaminants have been removed by safety filter 125 is sent to high pressure pump 126 .
  • the high-pressure pump 126 pressurizes the salt water and supplies the high-pressure salt water to the reverse osmosis membrane filtration device 127 .
  • the reverse osmosis membrane filtering device 127 has a reverse osmosis membrane.
  • the reverse osmosis membrane filtration device 127 separates fresh water from the high-pressure salt water by permeating water molecules of high-pressure salt water pressurized by the high-pressure pump 126 through the reverse osmosis membrane. By separating fresh water from salt water, the salt water is concentrated.
  • the reverse osmosis membrane filtration device 127 discharges the separated fresh water to the storage tank 160 .
  • the flow energy of the concentrated salt water generated by the reverse osmosis membrane filtration device 127 is converted into kinetic energy of the high-pressure pump 126 by the turbine.
  • the concentrated salt water is also used for backwashing the multi-layer filter 122 .
  • the reverse osmosis membrane of the reverse osmosis membrane filtration device 127 has low chlorine resistance. Therefore, in order to reduce the chlorine concentration of the salt water supplied to the reverse osmosis membrane filtration device 127, the hydrogen water generated by the addition device 130 is added to the salt water between the safety filter 125 and the reverse osmosis membrane filtration device 127. be.
  • the addition device 130 generates a chlorine-based aqueous solution and hydrogen water from salt water.
  • the adding device 130 adds a chlorine-based aqueous solution to salt water sent from the sea 102 to the treated water tank 111 .
  • the addition device 130 adds a chlorine-based aqueous solution to the salt water sent from the treated water tank 111 to the multi-layer filter 122 .
  • the addition device 130 adds hydrogen water to the salt water sent from the safety filter 125 to the reverse osmosis membrane filtration device 127 .
  • the addition device 130 has an electrolyzer 131 , inlet pipes 132 and 142 , discharge pipes 133 and 152 , a pipe 134 , a gas dissolving device 141 , a platinum catalyst 151 , liquid feed pumps 135 and 144 and a valve 153 .
  • the inlet of the electrolyzer 131 is connected to the pipe between the sea 102 and the treated water tank 111 via an introduction pipe 132 and a liquid feed pump 135 .
  • a liquid outlet of the electrolyzer 131 is connected to a discharge pipe 133 .
  • the discharge pipe 133 branches into two, one of which is connected to the pipe between the sea 102 and the treated water tank 111, and the other is connected to the pipe between the treated water tank 111 and the pump 121. .
  • a gas outlet of the electrolyzer 131 is connected to a gas inlet of the gas dissolver 141 via a pipe 134 .
  • a liquid inlet of the gas dissolving device 141 is connected to piping between the safety filter 125 and the high-pressure pump 126 via an introduction pipe 142 and a liquid feed pump 144 .
  • the liquid outlet of gas dissolver 141 is connected via valve 153 and discharge pipe 152 to piping between safety filter 125 and high pressure pump 126 .
  • the liquid-sending pump 135 supplies salt water from the sea 102 to the electrolyzer 131 .
  • any position in the path from the sea 102 to the safety filter 125 may serve as a supply source of salt water to the electrolyzer 131 .
  • the liquid feed pump 144 supplies the salt water filtered by the safety filter 125 to the gas dissolving device 141 .
  • the electrolyzer 131 electrolyzes salt water introduced from the sea 102 to produce chlorine at the anode of the electrolyzer 131 and hydrogen at the cathode. Chlorine generated at the anode of the electrolyzer 131 dissolves in salt water to produce a chlorine-based aqueous solution. The produced chlorine-based aqueous solution is added to the salt water sent from the sea 102 to the treated water tank 111 through the discharge pipe 133 from the electrolyzer 131 . Therefore, the salt water is sterilized and propagation of microorganisms is suppressed.
  • the position where the chlorine-based aqueous solution is added in the route of the salt water from the sea 102 to the treated water tank 111 corresponds to the first predetermined position.
  • the chlorine-based aqueous solution produced by the electrolyzer 131 is added to the salt water sent by the pump 121 from the electrolyzer 131 through the discharge pipe 133 . Therefore, propagation of microorganisms in the pump 121, the multi-layer filter 122, the water tank 123, the pump 124 and the safety filter 125 is suppressed.
  • the position where the chlorine-based aqueous solution is added in the salt water path from the treated water tank 111 to the pump 121 corresponds to the first predetermined position.
  • the hydrogen molecules generated at the cathode of the electrolyzer 131 are separated from the salt water in the degassing tower or the receiving tank, and gaseous hydrogen is generated from the salt water.
  • the gaseous hydrogen is sent from the electrolyzer 131 to the gas dissolver 141 through the pipe 134 .
  • the gas dissolver 141 dissolves the gaseous hydrogen introduced from the electrolyzer 131 into the salt water supplied by the liquid feed pump 144 .
  • the gas dissolving device 141 has a dissolving tank 141a and an ejection part (not shown).
  • the dissolution tank 141a is a storage section that stores the salt water supplied by the liquid-sending pump 144 .
  • the ejection part ejects gaseous hydrogen introduced from the electrolyzer 131 into the salt water in the dissolution tank 141a in the form of bubbles.
  • the ejected gaseous hydrogen dissolves in the salt water to produce hydrogen water containing dissolved hydrogen.
  • the inside of the dissolving tank 141a may be pressurized to a high pressure by a compressor or the like so that the gaseous hydrogen is efficiently dissolved in the salt water.
  • a platinum catalyst 151 is provided in the dissolution tank 141a, and the platinum catalyst 151 is immersed in the hydrogen water in the dissolution tank 141a.
  • the platinum catalyst 151 is selected from the group consisting of Group 10 element metals (eg, nickel, platinum), metal oxides (eg, copper-chromium oxide), and platinum group metals (eg, ruthenium, palladium, rhodium). may be replaced by a reducing catalyst comprising at least one substance with a
  • the hydrogen water produced in the dissolution tank 141a passes through the valve 153 and the discharge pipe 152 and is added to the salt water supplied to the reverse osmosis membrane filtration device 127 by the high pressure pump 126.
  • the position where the hydrogen water is added in the salt water route from the safety filter 125 to the high-pressure pump 126 corresponds to the second predetermined position.
  • the second predetermined position is downstream of the first predetermined position.
  • a valve 153 adjusts the flow rate of hydrogen water.
  • the salt water sent by the high-pressure pump 126 is neutralized with hydrogen water, and the concentration of residual chlorine in the salt water is reduced.
  • the hydrogen water is activated by the platinum catalyst 151 and the reducing power of the hydrogen water is enhanced, the residual chlorine concentration of chlorine is greatly reduced. Since the neutralized salt water is supplied to the reverse osmosis membrane filtration device 127, deterioration of the reverse osmosis membrane of the reverse osmosis membrane filtration device 127 can be suppressed.
  • the hydrogen water generated by the gas dissolving device 141 is added to the salt water at the second predetermined position, and the salt water is supplied to the reverse osmosis membrane filtering device 127 .
  • the salt water is neutralized with hydrogen water to reduce the residual chlorine concentration of the salt water. Since the hydrogen water is activated by the platinum catalyst 151 before being added to the salt water, the hydrogen water is highly effective in reducing the residual chlorine concentration of the salt water. Since the salt water from which residual chlorine has been removed is supplied to the reverse osmosis membrane filtration device 127, deterioration of the reverse osmosis membrane of the reverse osmosis membrane filtration device 127 can be prevented.
  • the multilayer filter 122, the safety filter 125 and the reverse osmosis membrane filtration device 127 can be protected at low cost.
  • the chlorine-based aqueous solution produced by the electrolyzer 131 is added to the salt water sent from the sea 102 to the pump 121 .
  • a chlorine-based aqueous solution that has been generated in advance and stored in a storage tank or the like may be added to the salt water sent from the sea 102 to the pump 121 by the dosing device.
  • the chlorine-based aqueous solution is, for example, an aqueous sodium hypochlorite solution, an aqueous hypochlorous acid solution, or an aqueous solution of chlorinated isocyanuric acid, but may be another chlorine-based aqueous solution.
  • chlorine gas may be spouted from the sea 102 into the salt water sent to the pump 121 .
  • Chlorine gas is stored in gas cylinders.
  • a solid chlorine-based chemical may be added to the salt water sent from the sea 102 to the pump 121 by an input device.
  • Solid chlorine agents are, for example, calcium hypochlorite, sodium hypochlorite, chlorinated isocyanuric acid or bleaching powder. The solid chlorine chemical is stored in advance in a storage tank.
  • the gaseous hydrogen generated by the electrolyzer 131 is supplied to the dissolution tank 141a of the gas dissolver 141.
  • the addition device 130 may have a gas cylinder or a hydrogenation device, and gaseous hydrogen stored in the gas cylinder or gaseous hydrogen generated by the hydrogenation device may be supplied to the dissolution tank 141a.
  • the hydrogenation device is, for example, an electrolysis device that electrolyzes water to produce hydrogen and oxygen.
  • FIG. 5 is a block diagram showing the configuration of a water treatment facility 210 in which aquatic organisms such as fish and shellfish are raised.
  • the water treatment facility 210 is a closed circulation breeding system that circulates salt water and removes contaminants such as excrement, leftover food, and turbidity from the circulating salt water.
  • This water treatment facility 210 is used for cultivating aquatic organisms, transporting live fish and shellfish, and storing and breeding live fish and shellfish at fresh fish shops and the like.
  • the water treatment facility 210 includes a circulation path 229 , a breeding tank 220 , a contaminant removal device 221 , an addition device 230 , a heat exchanger 224 , a reaction tank 225 , a neutralization tank 226 and a circulation pump 227 .
  • the contaminant removal system 221 has a sedimentation tank 222 and a pressurized flotation separation system 223 .
  • the circulation path 229 is configured by piping or the like. Circulation path 229 is the main path through which salt water circulates.
  • the circulation path 229 is provided with a breeding tank 220, a sedimentation tank 222, a pressurized flotation separator 223, a reaction tank 225, a neutralization tank 226, and a circulation pump 227 in this order.
  • a branch path 256 branches off from the circulation path 229 between the reaction vessel 225 and the pressurized flotation separator 223 , and the branch path 256 is connected to the reaction vessel 225 via the heat exchanger 224 .
  • an electrolyzer 231 and a liquid feed pump 235 of an addition device 230 to be described later are provided between the heat exchanger 224 and the pressurized levitation separation device 223 .
  • the circulation pump 227 imparts kinetic energy to the salt water and circulates the salt water.
  • the salt water flows from the breeding tank 220 through the sedimentation tank 222 , the pressurized flotation separator 223 , the reaction tank 225 , the neutralization tank 226 and the circulation pump 227 in order, and returns to the breeding tank 220 .
  • the breeding tank 220 stores salt water. Aquatic organisms such as fish and shellfish are raised in the breeding tank 220 .
  • the salt water in the breeding tank 220 is sent to the sedimentation tank 222 of the contaminant removal device 221 . Salt water is stored in the sedimentation tank 222 .
  • the contaminant removal device 221 separates the contaminants from the salt water and removes the contaminants.
  • the sedimentation tank 222 of the contaminant removal device 221 separates the contaminants suspended in the salt water into a sediment and a supernatant liquid.
  • the supernatant is sent to the pressurized flotation separator 223 .
  • the pressurized flotation separation device 223 releases high-pressure salt water in which air is supersaturated and dissolved to atmospheric pressure, causing microbubbles generated in the salt water to adhere to contaminants in the salt water, thereby allowing the contaminants to float to the surface of the water together with the microbubbles. to separate the contaminants from the brine.
  • the decontaminated brine is sent to reaction vessel 225 and addition device 230 .
  • a chlorine-based aqueous solution generated by the addition device 230 is added to the salt water in the reaction tank 225 .
  • the salt water is sterilized with the chlorine-based aqueous solution.
  • nitrogen components such as ammonia in the salt water react with the chlorine-based aqueous solution to remove the nitrogen components.
  • the sterilized brine is sent to neutralization tank 226 .
  • Hydrogen water generated by the addition device 230 is added to the salt water in the neutralization tank 226 .
  • the salt water in the neutralization tank 226 is neutralized by the hydrogen water to reduce the concentration of residual chlorine in the salt water.
  • the neutralized salt water is sent to the breeding tank 220 via the circulation pump 227 .
  • the addition device 230 generates chlorine-based aqueous solution and hydrogen water from the salt water sent from the pressurized flotation separation device 223 .
  • the addition device 230 adds chlorine-based aqueous solution to the salt water in the reaction tank 225 .
  • Addition device 230 adds hydrogen water to the salt water in neutralization tank 226 .
  • the addition device 230 has an electrolyzer 231 , a pipe 234 , a gas dissolving device 241 , a platinum catalyst 251 , liquid feed pumps 235 and 244 and a valve 253 .
  • the inlet of the electrolyzer 231 is connected to a portion of the circulation path 229 between the reaction tank 225 and the pressurized float separation device 223 . Therefore, the salt water from which contaminants have been removed in the pressurized flotation separator 223 is supplied to the electrolyzer 231 .
  • a liquid outlet of the electrolyzer 231 is connected to an inlet of the heat exchanger 224 via a liquid pump 235 .
  • a gas outlet of the electrolyzer 231 is connected to a gas inlet of the gas dissolver 241 via a pipe 234 .
  • a liquid inlet of the gas dissolving device 241 is connected to a portion of the circulation path 229 between the reaction tank 225 and the pressurized levitation separation device 223 via a liquid sending pump 244 .
  • the liquid feed pump 244 supplies the salt water from which contaminants have been removed in the pressurized float separation device 223 to the gas dissolving device 241 .
  • the liquid outlet of gas dissolver 241 is connected to neutralization tank 226 via valve 253 .
  • the electrolyzer 231 electrolyzes the salt water supplied from the pressurized float separator 223 to produce chlorine at the anode of the electrolyzer 231 and hydrogen at the cathode. Chlorine generated at the anode of the electrolyzer 231 dissolves in salt water to produce a chlorine-based aqueous solution. The generated chlorine-based aqueous solution is sent from the electrolyzer 231 to the heat exchanger 224 by the liquid sending pump 235 . Therefore, the heat exchanger 224 is sterilized, and propagation of microorganisms in the heat exchanger 224 is suppressed.
  • the heat exchanger 224 adjusts the temperature of the chlorine-based aqueous solution by heat exchange. Normally, the chlorine-based aqueous solution is heated by the heat exchanger 224, but it may be cooled.
  • the chlorine-based aqueous solution temperature-controlled by the heat exchanger 224 is sent to the reaction tank 225 , and the chlorine-based aqueous solution and salt water are mixed in the reaction tank 225 .
  • the salt water is sterilized with the chlorine-based aqueous solution.
  • the reaction tank 225 corresponds to a first predetermined position in the circulation path 229 to which the chlorine-based aqueous solution is added.
  • the hydrogen molecules generated at the cathode of the electrolyzer 231 are separated from the salt water in the degassing tower or the receiving tank, and gaseous hydrogen is generated from the salt water.
  • the gaseous hydrogen is sent from the electrolyzer 231 to the gas dissolver 241 through the pipe 234 .
  • the gas dissolver 241 dissolves the gaseous hydrogen introduced from the electrolyzer 231 into the salt water supplied by the liquid feed pump 244 .
  • the gas dissolving device 241 has a dissolving tank 241a and an ejection part (not shown).
  • the dissolution tank 241a is a storage section that stores the salt water supplied by the liquid-sending pump 244 .
  • the ejection part ejects the gaseous hydrogen introduced from the electrolyzer 231 into the salt water in the dissolution tank 241a in the form of bubbles.
  • the ejected gaseous hydrogen dissolves in the salt water to produce hydrogen water containing dissolved hydrogen.
  • the inside of the dissolving tank 241a may be pressurized to a high pressure by a compressor or the like so that the gaseous hydrogen is efficiently dissolved in the salt water.
  • a platinum catalyst 251 is provided in the dissolution tank 241a, and the platinum catalyst 251 is immersed in hydrogen water in the dissolution tank 241a.
  • the platinum catalyst 251 is selected from the group consisting of Group 10 element metals (eg, nickel, platinum), metal oxides (eg, copper-chromium oxide), and platinum group metals (eg, ruthenium, palladium, rhodium). may be replaced by a reducing catalyst comprising at least one substance with a
  • the hydrogen water produced in the dissolution tank 241 a is added to the salt water in the neutralization tank 226 through the valve 253 .
  • the neutralization tank 226 corresponds to a second predetermined position in the circulation path 229 to which hydrogen water is added.
  • a valve 253 adjusts the flow rate of hydrogen water.
  • the salt water in the neutralization tank 226 is neutralized with hydrogen water, and the concentration of residual chlorine in the salt water is reduced.
  • the hydrogen water is activated by the platinum catalyst 251 and the reducing power of the hydrogen water is enhanced, the residual chlorine concentration of chlorine is greatly reduced.
  • the neutralized salt water is sent to the breeding tank 220 through the circulation pump 227 .
  • the heat exchanger 224 is sterilized with a chlorine-based aqueous solution, and the breeding of microorganisms in the heat exchanger 224 is suppressed.
  • the chlorine-based aqueous solution generated by the electrolyzer 231 is added to the salt water in the reaction tank 225 as the first predetermined position.
  • the salt water in the reaction tank 225 is sterilized by the chlorine-based aqueous solution, and propagation of microorganisms in the circulating salt water is suppressed.
  • ammonia and the like resulting from the excrement of aquatic organisms being reared are decomposed by the chlorine-based aqueous solution. Therefore, the circulating salt water can be kept clean.
  • the hydrogen water generated by the gas dissolving device 241 is added to the salt water in the neutralization tank 226 as the second predetermined position.
  • the salt water in the neutralization tank 226 is neutralized with hydrogen water to reduce the residual chlorine concentration of the salt water. Since the hydrogen water is activated by the platinum catalyst 251 before being added to the salt water, the hydrogen water is highly effective in reducing the residual chlorine concentration of the salt water. Since the salt water from which residual chlorine has been removed returns to the breeding tank 220, aquatic organisms can be reared in the breeding tank 220. - ⁇
  • the platinum catalyst 251 is placed in the dissolution tank 241a of the gas dissolving device 241, and the hydrogen water produced is stored in the dissolution tank 241a, so that the hydrogen water comes into contact with the platinum catalyst 251 for a long time. Therefore, the activation of the hydrogen water is also enhanced, and the effect of reducing the residual chlorine concentration of the salt water by the hydrogen water is enhanced.
  • the chlorine-based aqueous solution produced by the electrolyzer 231 is added to the salt water in the reaction tank 225 .
  • a chlorine-based aqueous solution that has been generated in advance and stored in a storage tank or the like may be added to the salt water in the reaction tank 225 by an injection device.
  • the chlorine-based aqueous solution is, for example, an aqueous sodium hypochlorite solution, an aqueous hypochlorous acid solution, or an aqueous solution of chlorinated isocyanuric acid, but may be another chlorine-based aqueous solution.
  • Chlorine gas may be jetted into the salt water in the reaction tank 225 instead of the chlorine-based aqueous solution.
  • Chlorine gas is stored in gas cylinders.
  • a solid chlorine-based chemical may be added to the salt water in the reaction tank 225 by an input device.
  • Solid chlorine agents are, for example, calcium hypochlorite, sodium hypochlorite, chlorinated isocyanuric acid or bleaching powder.
  • the solid chlorine chemical is stored in advance in a storage tank.
  • the gaseous hydrogen generated by the electrolyzer 231 is supplied to the dissolution tank 241a of the gas dissolver 241.
  • the addition device 230 may have a gas cylinder or a hydrogenation device, and gaseous hydrogen stored in the gas cylinder or gaseous hydrogen generated by the hydrogenation device may be supplied to the dissolution tank 241a.
  • the hydrogenation device is, for example, an electrolysis device that electrolyzes water to produce hydrogen and oxygen.
  • FIGS. 6 and 7 are block diagrams showing the configuration of water treatment equipment 310 mounted on a ship.
  • thick arrows represent the flow of salt water.
  • FIG. 6 the flow of salt water as it takes in salt water from the sea 302 is represented by the thick arrows, and in FIG.
  • FIGS. 6 and 7 the symbols for closed valves are shown in black and those for open valves are shown in white.
  • This water treatment facility 310 is a ballast adjustment system that adjusts the weight of the ship and adjusts the rising and sinking of the ship by taking salt water into and out of the ship.
  • the water treatment facility 310 includes a water intake 320, valves 321a and 321b, a pump 322, valves 323a and 323b, a filtration device 324, a valve 325, a mixer 327, a ballast tank 360, valves 328a and 328b, a water outlet 361, and an addition device 330. Prepare.
  • the water intake 320 is provided on the ship. Water intake 320 takes in salt water from outboard sea 302 . This water intake 320 is connected to a valve 321a via a pipe.
  • the valve 321a is connected to the pump 322 via piping.
  • the valve 321 a opens and closes the path of salt water from the water intake 320 to the pump 322 .
  • the pump 322 is connected to valves 323a and 323b via piping.
  • the pump 322 generates both the kinetic energy of the saltwater flow taken from the sea 302 as shown in FIG. 6 and the kinetic energy of the saltwater flow discharged into the sea 302 as shown in FIG.
  • the valve 323a is connected to the filtering device 324 via piping.
  • the valve 323b is connected to a pipe 326 between the valve 325 and the mixer 327 via a pipe.
  • a route from the pump 322 to the pipe 326 via the valve 323b is called a bypass route.
  • Valve 323 a opens and closes the path of salt water from pump 322 to filter 324 .
  • the valve 323 b opens and closes a salt water bypass route from the pump 322 to the pipe 326 .
  • the combination of valves 323a and 323b is a directional control unit that switches the flow of salt water.
  • valve 323a when the valve 323a is open and the valve 323b is closed, the brine is allowed to flow from the pump 322 to the filtration device 324, and the brine from the pump 322 to the mixer 327 via the bypass path. flow is interrupted.
  • valve 323a when the valve 323a is closed and the valve 323b is opened, the flow of salt water from the pump 322 to the filtering device 324 is blocked, and the flow of salt water from the pump 322 to the mixer 327 is allowed via the bypass route. be done.
  • the filtering device 324 is connected to the valve 325 .
  • Filtration device 324 filters the salt water flowing through filtration device 324 .
  • valve 325 is connected to the mixer 327 via a pipe 326.
  • Valve 325 opens and closes the path of brine from filter 324 to mixer 327 .
  • Mixer 327 is connected to valves 328a and 328b via piping.
  • the valve 328a is connected to the ballast tank 360 via piping.
  • Valve 328a opens and closes the passage of salt water from mixer 327 to ballast tank 360 .
  • the valve 328b is connected to the water outlet 361 via piping.
  • the valve 328b opens and closes the passage of salt water from the mixer 327 to the water outlet 361.
  • valves 328a and 328b is a directional control unit that switches the flow of salt water. Specifically, when the valve 328a is opened and the valve 328b is closed, the flow of salt water from the mixer 327 to the ballast tank 360 is permitted, and the flow of salt water from the mixer 327 to the water outlet 361 is blocked. be. On the other hand, when the valve 328a is closed and the valve 328b is opened, the flow of salt water from the mixer 327 to the ballast tank 360 is blocked and the flow of salt water from the mixer 327 to the water outlet 361 is allowed.
  • the water outlet 361 is provided on the ship. Outlet 361 discharges salt water outboard to sea 302 .
  • the ballast tank 360 stores salt water.
  • the saltwater stored in ballast tanks 360 is used to provide vessel stability, and increasing or decreasing the amount of saltwater balances the vessel. For example, if the cargo loaded on the ship is heavy, the amount of salt water in the ballast tank 360 is small, and if the cargo loaded on the ship is light, the amount of salt water in the ballast tank 360 is large.
  • the ballast tank 360 is connected to the valve 321b.
  • Valve 321 b is connected to pump 322 .
  • Valve 321 b opens and closes the path of salt water from ballast tank 360 to pump 322 .
  • the combination of valves 321a and 321b is a directional control unit that switches the flow of salt water. Specifically, when the valve 321a is opened and the valve 321b is closed, the flow of salt water from the water intake 320 to the pump 322 is permitted, and the flow of salt water from the ballast tank 360 to the pump 322 is blocked. On the other hand, when the valve 321a is closed and the valve 321b is opened, the flow of salt water from the water intake 320 to the pump 322 is blocked and the flow of salt water from the ballast tank 360 to the pump 322 is permitted.
  • valves 321a, 321b, 323a, 323b, 325, 328a, and 328b establish a salt water intake route from the water intake 320 to the ballast tank 360, or cancel establishment of the water intake route.
  • the valves 321a, 321b, 323a, 323b, 325, 328a, and 328b establish a water discharge route from the ballast tank 360 to the water outlet 361 when canceling the establishment of the water intake route, or when the water intake route is established.
  • the establishment of the route from the ballast tank 360 to the water outlet 361 is cancelled.
  • a salt water intake route is established to the ballast tank 360 via.
  • Such a water intake route is the main route of salt water at the time of water intake.
  • the ballast tank 360 passes through the pump 322 and the mixer 327 to the water outlet 361 in order.
  • salt water discharge route is established.
  • Such a water discharge route is the main route of salt water at the time of water discharge.
  • the operation of the pump 322 causes salt water to flow through the water intake route or the water discharge route.
  • the salt water is stored in ballast tank 360, so the salt water in ballast tank 360 increases.
  • the saltwater flows through the discharge path, it is released into the sea 302 and reduces the amount of saltwater in the ballast tanks 360 .
  • the addition device 330 When the salt water flows through the water intake path, the addition device 330 generates a chlorine-based aqueous solution from the salt water and adds the chlorine-based aqueous solution to the salt water flowing through the water intake path. Therefore, the salt water stored in the ballast tank 360 is sterilized with the chlorine-based aqueous solution, and the breeding of aquatic organisms in the salt water is suppressed.
  • the addition device 130 When salt water flows through the water discharge path, the addition device 130 generates a chlorine-based aqueous solution and hydrogen water from the salt water, adds the chlorine-based aqueous solution to the salt water flowing in the water discharge path, and then releases the chlorine-based aqueous solution from the addition position. Hydrogen water is also added downstream. Therefore, the residual chlorine concentration in the salt water discharged into the sea 302 is reduced, and the natural environment of the sea 302 is not adversely affected.
  • the addition device 330 has an electrolyzer 331, a gas dissolver 341, a platinum catalyst 351, liquid feed pumps 335, 344, and valves 334a, 334b, 353.
  • the inlet of the electrolyzer 331 is connected to the pipe 326 between the valve 325 and the mixer 327 via the liquid feed pump 335 .
  • the liquid outlet of electrolyzer 331 is connected to piping 326 between valve 325 and mixer 327 .
  • the position where the inlet of the electrolyzer 331 is connected to the pipe 326 via the liquid feed pump 335 is closer to the valve 325 than the position where the liquid outlet of the electrolyzer 331 is connected to the pipe 326, and the valve 323 b is closer to the mixer 327 than the position where it is connected to the pipe 326 .
  • the gas outlets of electrolyzer 331 are connected to valves 334a and 334b.
  • the liquid-sending pump 335 operates regardless of whether the water intake route or the water discharge route is established.
  • the liquid feed pump 335 supplies salt water flowing through the pipe 326 between the valve 325 and the mixer 327 to the electrolyzer 331 .
  • the electrolyzer 331 electrolyzes the salt water sent by the liquid sending pump 335 to generate chlorine at the anode of the electrolyzer 331 and hydrogen at the cathode. Chlorine generated at the anode of the electrolyzer 331 dissolves in salt water to produce a chlorine-based aqueous solution.
  • the produced chlorine-based aqueous solution is sent to the pipe 326 between the valve 325 and the mixer 327 .
  • the pipe 326 between the valve 325 and the mixer 327 corresponds to the first predetermined position where the chlorine-based aqueous solution is added in the salt water discharge path.
  • the hydrogen molecules generated at the cathode of the electrolyzer 331 are separated from the salt water in the degassing tower or the receiving tank, and gaseous hydrogen is generated from the salt water.
  • the gaseous hydrogen flows from electrolyzer 331 to valves 334a, 334b.
  • the valve 334a is connected to the exhaust port.
  • the valve 334a opens the gaseous hydrogen path from the electrolyzer 331 to the exhaust port, and when the water discharge path is established, the valve 334a opens the gaseous hydrogen path from the electrolyzer 331 to the exhaust port. Closes the hydrogen pathway.
  • the valve 334 b is connected to the gas inlet of the gas dissolver 341 .
  • the valve 334b closes the path of gaseous hydrogen from the electrolyzer 331 to the gas dissolver 341
  • the valve 334b closes the path of gaseous hydrogen from the electrolyzer 331 to the gas dissolver. Open the path for gaseous hydrogen to 341.
  • valve 334a is a directional control that switches the flow of gaseous hydrogen. Specifically, when the valve 334a is opened and the valve 334b is closed, gaseous hydrogen is permitted to flow from the electrolyzer 331 to the exhaust port, and gaseous hydrogen from the electrolyzer 331 to the gas dissolver 341 is permitted. flow is interrupted. On the other hand, when the valve 334a is closed and the valve 334b is opened, the flow of gaseous hydrogen from the electrolyzer 331 to the exhaust port is blocked, and the flow of gaseous hydrogen from the electrolyzer 331 to the gas dissolver 341 is permitted. be done.
  • a liquid inlet of the gas dissolving device 341 is connected to the pipe 326 between the valve 325 and the mixer 327 via a liquid feed pump 344 .
  • the position where the liquid inlet of the gas dissolving device 341 is connected to the pipe 326 via the liquid feed pump 344 is closer to the mixer 327 than the position where the valve 323b is connected to the pipe 326, and the electrolyzer 331 inlet is closer to the valve 325 than the position where the inlet is connected to the pipe 326 via the liquid feed pump 335 .
  • the liquid outlet of gas dissolver 341 is connected to valve 353 .
  • Valve 353 is connected to mixer 327 .
  • the liquid transfer pump 344 When the water intake route is established, the liquid transfer pump 344 is stopped and the valve 353 is closed. When the water discharge path is established, the liquid transfer pump 344 is activated and the valve 353 is opened. The liquid-sending pump 344 supplies salt water flowing through the pipe 326 between the valve 325 and the mixer 327 to the gas dissolving device 341 .
  • the gas dissolver 341 dissolves the gaseous hydrogen introduced from the electrolyzer 331 into the salt water supplied by the liquid feed pump 344 .
  • the gas dissolving device 341 has a dissolving tank 341a and an ejection part (not shown).
  • the dissolution tank 341a is a storage section that stores the salt water supplied by the liquid-sending pump 344 .
  • the ejection part ejects the gaseous hydrogen introduced from the electrolyzer 331 into the salt water in the dissolution tank 341a in the form of bubbles.
  • the ejected gaseous hydrogen dissolves in the salt water to produce hydrogen water containing dissolved hydrogen.
  • the inside of the dissolution tank 341a may be pressurized to a high pressure by a compressor or the like so that the gaseous hydrogen is efficiently dissolved in the salt water.
  • a platinum catalyst 351 is provided in the dissolution tank 341a, and the platinum catalyst 351 is immersed in hydrogen water in the dissolution tank 341a.
  • the platinum catalyst 351 is selected from the group consisting of Group 10 element metals (eg, nickel, platinum), metal oxides (eg, copper-chromium oxide), and platinum group metals (eg, ruthenium, palladium, rhodium). may be replaced by a reducing catalyst comprising at least one substance with a
  • the hydrogen water produced in the dissolution tank 341 a is added to the salt water in the mixer 327 through the valve 353 .
  • the mixer 327 corresponds to a second predetermined position where hydrogen water is added in the salt water discharge path.
  • a valve 353 adjusts the flow rate of hydrogen water.
  • the liquid transfer pump 335 is activated. Therefore, the salt water flowing through the pipe 326 from the valve 325 to the mixer 327 is supplied to the electrolyzer 331 by the liquid feed pump 335 , and the chlorine-based aqueous solution and gaseous hydrogen are generated by the electrolyzer 331 . Since the valve 334a opens, the produced gaseous hydrogen is released to the atmosphere through the exhaust port. Also, since the valve 334b is closed, gaseous hydrogen does not flow into the gas dissolver 341. FIG. Further, since the liquid feed pump 344 is stopped and the valve 353 is closed, the salt water does not flow back from the mixer 327 to the gas dissolving device 341 .
  • the chlorine-based aqueous solution generated by the electrolyzer 331 is added to the salt water flowing through the pipe 326 from the valve 325 to the mixer 327.
  • the salt water and chlorine-based aqueous solution are mixed, and the salt water is sterilized.
  • the sterilized salt water is stored in ballast tanks 360 . Therefore, breeding of aquatic organisms in salt water is suppressed within the ballast tank 360 .
  • the valve 334a may be closed, the valves 334b and 353 may be opened, and the liquid transfer pump 344 may be operated. Thereby, hydrogen water is generated in the gas dissolving device 341, and the hydrogen water is added to the salt water in the mixer 327, thereby reducing the residual chlorine concentration of the salt water.
  • the valve 334a is closed, the valves 334b and 353 are opened, and the liquid feed pumps 335 and 344 are operated. Therefore, the salt water flowing through the pipe 326 from the valve 325 to the mixer 327 is supplied to the electrolyzer 331 by the liquid feed pump 335 , and the chlorine-based aqueous solution and gaseous hydrogen are generated by the electrolyzer 331 .
  • the chlorine-based aqueous solution produced by the electrolyzer 331 is added to the salt water flowing through the pipe 326 from the valve 325 to the mixer 327 . Therefore, the salt water is sterilized.
  • the gaseous hydrogen generated by the electrolyzer 331 is sent from the electrolyzer 331 to the gas dissolver 341 through the valve 334b.
  • the gaseous hydrogen is jetted into the salt water in the dissolution tank 341a in the form of bubbles from the jetting part of the gas dissolving device 341, and the jetted gaseous hydrogen dissolves in the salt water to generate hydrogen water. Since the generated hydrogen water comes into contact with the platinum catalyst 351, the hydrogen water is activated and the reducing power of the hydrogen water is enhanced.
  • the produced hydrogen water is sent to the mixer 327 through the valve 353 and added to the salt water in the mixer 327.
  • the salt water in the mixer 327 is neutralized by the hydrogen water to reduce the concentration of residual chlorine in the salt water. In particular, since the reducing power of hydrogen water is enhanced, the residual chlorine concentration of chlorine is greatly reduced.
  • Neutralized salt water is discharged into sea 302 through valve 328b and outlet 361 .
  • the chlorine-based aqueous solution generated by the electrolyzer 331 is added to the salt water in the pipe 326 . Since the salt water is sterilized by the piping chlorine-based aqueous solution, breeding of aquatic organisms in the ballast tank 360 is suppressed. Even if the aquatic organisms in the ballast tank 360 are regenerated during the voyage, the chlorine-based aqueous solution generated by the electrolyzer 331 is added to the salt water in the pipe 326 serving as the first predetermined position when water is discharged. The salt water is sterilized by a chlorine-based aqueous solution. Therefore, the occurrence of alien species in the water discharge area is suppressed, and the impact on the ecosystem is suppressed.
  • the hydrogen water generated by the gas dissolving device 341 is added to the salt water in the mixer 327 serving as the second predetermined position.
  • the salt water is neutralized with hydrogen water to reduce the residual chlorine concentration of the salt water. Since the hydrogen water is activated by the platinum catalyst 351 and the contact time between the hydrogen water and the platinum catalyst 351 is long, the effect of reducing the residual chlorine concentration of the salt water is high. Therefore, the discharged salt water does not adversely affect the natural environment of the discharge area.
  • the chlorine-based aqueous solution generated by the electrolyzer 331 is added to salt water.
  • a chlorine-based aqueous solution that has been generated in advance and stored in a storage tank or the like may be added to the salt water flowing through the pipe 326 between the valve 325 and the mixer 327 by the dosing device.
  • the chlorine-based aqueous solution is, for example, an aqueous sodium hypochlorite solution, an aqueous hypochlorous acid solution, or an aqueous solution of chlorinated isocyanuric acid, but may be another chlorine-based aqueous solution.
  • chlorine gas may be jetted into the salt water flowing through the pipe 326 between the valve 325 and the mixer 327 .
  • Chlorine gas is stored in gas cylinders.
  • a solid chlorine-based chemical may be added to the salt water flowing through the pipe 326 between the valve 325 and the mixer 327 by an input device.
  • Solid chlorine agents are, for example, calcium hypochlorite, sodium hypochlorite, chlorinated isocyanuric acid or bleaching powder.
  • the solid chlorine chemical is stored in advance in a storage tank.
  • gaseous hydrogen generated by the electrolyzer 331 is supplied to the dissolution tank 341a of the gas dissolver 341.
  • the addition device 330 may have a gas cylinder or a hydrogenation device, and gaseous hydrogen stored in the gas cylinder or gaseous hydrogen generated by the hydrogenation device may be supplied to the dissolution tank 341a.
  • the hydrogenation device is, for example, an electrolysis device that electrolyzes water to produce hydrogen and oxygen.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Environmental Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Animal Husbandry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Marine Sciences & Fisheries (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

The purpose of the present invention is to reduce the concentration of residual chlorine in water to be discharged into a body of natural water, such as a sea. Water is taken into a water channel 25 from a body of natural water through a water inlet 21, and the water taken into the water channel 25 is discharged to the body of natural water through a water outlet 24. The water is added with a chlorine chemical at a first predetermined position in the water channel 25. After bringing a hydrogen-containing liquid having hydrogen dissolved therein into contact with a catalyst 51 for enhancement of reducing power, the hydrogen-containing liquid is added to the water within the water channel 25 at a second predetermined position that is on the water outlet 24 side with respect to the first predetermined position.

Description

放水方法、水処理方法、残留塩素低減方法及び水処理設備Water discharge method, water treatment method, residual chlorine reduction method and water treatment equipment
 本発明は、放水方法、水処理方法、残留塩素低減方法及び水処理設備に関する。 The present invention relates to a water discharge method, water treatment method, residual chlorine reduction method, and water treatment equipment.
 発電所内の復水器等の設備の水冷用の海水を取り込んだり、取り込んだ海水を放出したりすべく、取水路及び放水路が海域から発電所内にまで敷設されている。取水路及び放水路の内側にはフジツボ類及びイガイ類等の海生生物が繁殖するところ、このような海生生物の付着は取水路及び放水路ならびに復水器冷却管の狭窄或いは閉塞を招き、その結果、取込水及び放出水の流量の低下や復水冷却効率の低下が発生する。このような問題を解決するべく、塩素系薬剤を取水路に投入すると、取水路及び放水路における海生生物の発生を抑えることができる。特許文献1には、塩素系殺菌剤を用いて取水路及び放水路に海生生物が付着することを防止する方法が記載されている。 Intake channels and discharge channels are laid from the sea area to the inside of the power plant in order to take in seawater for water cooling of equipment such as condensers in the power plant and to discharge the taken in seawater. Marine organisms such as barnacles and mussels breed inside the intake and discharge channels, and adhesion of such marine organisms leads to narrowing or blockage of the intake and discharge channels and condenser cooling pipes. As a result, the flow rates of intake water and discharge water are reduced, and the efficiency of condensate cooling is reduced. In order to solve such a problem, if a chlorine-based chemical is injected into the intake channel, it is possible to suppress the generation of marine organisms in the intake channel and the discharge channel. Patent Literature 1 describes a method of using a chlorine-based disinfectant to prevent marine organisms from adhering to a water intake channel and a water discharge channel.
特開2019-76813号公報JP 2019-76813 A
 しかしながら、放水路から海へ放出される海水の残留塩素濃度が高いと、海の自然環境に悪影響を及ぼしてしまう。 However, if the residual chlorine concentration in the seawater discharged from the discharge channel into the sea is high, it will adversely affect the natural environment of the sea.
 そこで、本開示は、水の残留塩素濃度の低減を図ることを目的とする。 Therefore, the present disclosure aims to reduce the residual chlorine concentration of water.
 本発明者らは鋭意研究の結果、溶存水素を含む水素含有液を触媒に接触させた後、残留塩素を含む水に前記水素含有液を添加すると、その水に含まれる残留塩素が低減するという新たな知見を得た。 As a result of intensive research, the present inventors have found that when a hydrogen-containing liquid containing dissolved hydrogen is brought into contact with a catalyst and then the hydrogen-containing liquid is added to water containing residual chlorine, the residual chlorine contained in the water is reduced. I got new knowledge.
 以上の課題を解決するために、そのような知見に基づいて、溶存水素を含む水素含有液を触媒に接触させた後、残留塩素を含む水に前記水素含有液を添加する残留低減方法が提供される。 In order to solve the above problems, based on such findings, a residual reduction method is provided in which a hydrogen-containing liquid containing dissolved hydrogen is brought into contact with a catalyst, and then the hydrogen-containing liquid is added to water containing residual chlorine. be done.
 また、以上の課題を解決するために、主経路を流れる塩水を溶解槽及び電気分解装置に供給して、前記電気分解装置により前記塩水を電気分解することによって気体水素及び塩素系水溶液を生成し、前記気体水素を前記溶解槽に送って、前記溶解槽内において触媒に接触される前記塩水に前記気体水素を溶解することによって、溶存水素を含む水素含有液を生成し、前記主経路の内の第1所定位置において、前記塩素系水溶液を前記主経路内の前記塩水に添加し、前記第1所定位置よりも下流の第2所定位置において、前記水素含有液を前記主経路の前記塩水に添加する水処理方法が提供される。 Further, in order to solve the above problems, the salt water flowing through the main path is supplied to the dissolution tank and the electrolyzer, and the salt water is electrolyzed by the electrolyzer to generate gaseous hydrogen and a chlorine-based aqueous solution. sending the gaseous hydrogen to the dissolution tank and dissolving the gaseous hydrogen in the salt water contacting the catalyst in the dissolution tank to generate a hydrogen-containing liquid containing dissolved hydrogen; At a first predetermined position, the chlorine-based aqueous solution is added to the salt water in the main path, and at a second predetermined position downstream from the first predetermined position, the hydrogen-containing liquid is added to the salt water in the main path An additive water treatment method is provided.
 また、以上の課題を解決するために、残留塩素を含む水が使用される設備から放水路を通じて前記水を自然水域に放出する放水方法において、溶存水素を含む水素含有液を触媒に接触させた後、前記水素含有液を前記放水路内の前記水に添加する放水方法が提供される。 In addition, in order to solve the above problems, in a water discharge method in which water containing residual chlorine is discharged from a facility in which water containing residual chlorine is used to a natural water area through a water discharge channel, a hydrogen-containing liquid containing dissolved hydrogen is brought into contact with a catalyst. A water discharge method is then provided for adding said hydrogen-containing liquid to said water in said discharge channel.
 また、以上の課題を解決するために、自然水域から水を取水口を通じて水路に取り込むとともに、前記水路に取り込んだ水を放水口を通じて前記自然水域に放出する水処理方法において、前記水路内の第1所定位置において塩素系薬剤を前記水に添加し、溶存水素を含む水素含有液を触媒に接触させた後に、前記所定位置よりも放水口側の第2所定位置において前記水路内の前記水に前記水素含有液を添加する水処理方法が提供される。 Further, in order to solve the above problems, in a water treatment method for taking water from a natural water area into a waterway through a water intake and discharging the water taken into the waterway into the natural waterway through a water outlet, After adding a chlorine-based chemical to the water at one predetermined position and bringing the hydrogen-containing liquid containing dissolved hydrogen into contact with the catalyst, the water in the water channel is added at a second predetermined position closer to the water outlet than the predetermined position. A water treatment method is provided in which the hydrogen-containing liquid is added.
 また、以上の課題を解決するために、自然水域に設けられた取水口及び放水口を有し、前記自然水域から前記取水口を通じて水を取り込み、取り込まれた水を前記放水口を通じて前記自然水域に放出する水路と、前記水路の第1所定位置において塩素系薬剤を前記水路内の前記水に添加する塩素系薬剤添加装置と、溶存水素を含む水素含有液を貯留するとともに、前記水路のうち前記第1所定位置よりも放水口側の第2所定位置に前記水素含有液を排出する貯留部と、前記貯留部内において前記水素含有液に浸漬される触媒と、を備える水処理設備が提供される。 Further, in order to solve the above problems, a water intake and a water outlet are provided in a natural water area, water is taken in from the natural water area through the water intake, and the water taken in is discharged through the water outlet. a chlorinated chemical addition device for adding a chlorinated chemical to the water in the duct at a first predetermined position in the duct; storing a hydrogen-containing liquid containing dissolved hydrogen; A water treatment facility is provided, comprising: a reservoir that discharges the hydrogen-containing liquid to a second predetermined position closer to the water outlet than the first predetermined position; and a catalyst that is immersed in the hydrogen-containing liquid in the reservoir. be.
 本開示によれば、水の残留塩素濃度が低減する。よって、例えば水が自然水域に放出される場合であっても、自然水域の環境に悪影響を及ぼさない。 According to the present disclosure, the residual chlorine concentration of water is reduced. Therefore, even if the water is discharged into natural waters, for example, it does not adversely affect the environment of natural waters.
第1実施形態の水処理設備が構築された火力発電所の平面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a top view of the thermal power plant with which the water treatment equipment of 1st Embodiment was constructed. 第1実施形態の水処理設備の模式図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a schematic diagram of the water treatment equipment of 1st Embodiment. 第1実施形態の水処理設備のブロック図である。It is a block diagram of water treatment equipment of a 1st embodiment. 第2実施形態の水処理設備のブロック図である。It is a block diagram of the water treatment equipment of 2nd Embodiment. 第3実施形態の水処理設備のブロック図である。It is a block diagram of the water treatment equipment of 3rd Embodiment. 取水時における第4実施形態の水処理設備のブロック図である。It is a block diagram of the water treatment equipment of 4th Embodiment at the time of water intake. 放水時における第4実施形態の水処理設備のブロック図である。It is a block diagram of the water treatment equipment of 4th Embodiment at the time of water discharge.
 以下、図面を参照して、実施形態について説明する。以下に述べる実施形態には技術的に好ましい種々の限定が付されているところ、本発明の範囲を以下の実施形態及び図示例に限定するものではない。 Embodiments will be described below with reference to the drawings. Although various technically preferable limitations are attached to the embodiments described below, the scope of the present invention is not limited to the following embodiments and illustrated examples.
<<第1の実施の形態>>
 図1は、火力発電所10の平面図である。図2は、火力発電所10に構築された水処理設備11の模式図である。図3は、水処理設備11の構成を示すブロック図である。
<<First Embodiment>>
FIG. 1 is a plan view of a thermal power plant 10. FIG. FIG. 2 is a schematic diagram of the water treatment facility 11 constructed in the thermal power plant 10. As shown in FIG. FIG. 3 is a block diagram showing the configuration of the water treatment facility 11. As shown in FIG.
 火力発電所10は、自然水域としての海2に臨む敷地に建設されている。火力発電所10は水処理設備11、燃料貯蔵設備14及び発電設備16を備える。 The thermal power plant 10 is built on the site facing the sea 2 as a natural water area. A thermal power plant 10 includes a water treatment facility 11 , a fuel storage facility 14 and a power generation facility 16 .
 燃料貯蔵設備14は、燃料を貯蔵する設備である。
 発電設備16は、図示しないタービン、ボイラ、発電機及び復水器18を備える。
 燃料貯蔵設備14からボイラに供給された燃料が燃焼されると、高温・高圧の蒸気がボイラにおいて生成され、その蒸気のエネルギーによりタービン及び発電機が駆動され、発電機において電気エネルギーが生成される。設備としての復水器18はタービンに連結されており、タービンから排出された蒸気が復水器18に供給される。復水器18は表面復水器又は混合復水器である。
The fuel storage facility 14 is a facility for storing fuel.
The power generation equipment 16 includes a turbine, a boiler, a generator, and a condenser 18 (not shown).
When the fuel supplied to the boiler from the fuel storage facility 14 is burned, high-temperature, high-pressure steam is generated in the boiler, the energy of the steam drives the turbine and generator, and the generator generates electrical energy. . A condenser 18 as equipment is connected to a turbine, and steam discharged from the turbine is supplied to the condenser 18 . Condenser 18 is a surface condenser or a mixed condenser.
 水処理設備11は、海2から塩水を取り込んで、取り込んだ塩水により復水器18を冷却して、その冷却に用いられた塩水を海2に放出する水冷システムである。水処理設備11は、水路25、復水器18及び添加装置30を有する。復水器18は、上述のように発電設備16の構成要素と水処理設備11の構成要素を兼ねている。 The water treatment facility 11 is a water cooling system that takes in salt water from the sea 2 , cools the condenser 18 with the taken in salt water, and discharges the salt water used for cooling into the sea 2 . The water treatment facility 11 has a water channel 25 , a condenser 18 and an addition device 30 . The condenser 18 serves as both a component of the power generation equipment 16 and a component of the water treatment equipment 11 as described above.
 水処理設備11の水路25は、海2から火力発電所10内の復水器18を経由して海2まで戻る塩水の主経路である。水路25は、海2から火力発電所10に取り込むとともに、取り込んだ塩水を海2に放出する。水路25は、復水器18よりも上流側の取水路20と、復水器18よりも下流側の放水路22と、を有する。取水路20は、海2の塩水を火力発電所10内に取り込むための水路である。取水路20は、海中又は海底から復水器18又はその近傍にかけて地盤に構築されている。取水路20の端部が海中又は海底において開口し、その開口が取水口21とされている。海2の塩水は取水口21を通って取水路20に取り込まれる。取水路20に取り込まれた塩水は復水器18へ送られる。放水路22は、塩水を海2に放出するための水路である。放水路22は、海中又は海底から復水器18又はその近傍にかけて地盤に構築されている。放水路22の端部が海中又は海底において開口し、その開口が放水口24とされている。復水器18内の塩水が放水路22に排出され、排出された水は放水口24へ送られる。そして、塩水は放水口24を通って海2に放出される。 The waterway 25 of the water treatment facility 11 is the main route of salt water returning from the sea 2 to the sea 2 via the condenser 18 inside the thermal power plant 10 . The waterway 25 takes in the thermal power plant 10 from the sea 2 and discharges the taken-in salt water to the sea 2 . The water channel 25 has an intake channel 20 upstream of the condenser 18 and a discharge channel 22 downstream of the condenser 18 . The intake channel 20 is a channel for taking salt water from the sea 2 into the thermal power plant 10 . The water intake channel 20 is constructed on the ground from the sea or seabed to the condenser 18 or its vicinity. An end of the water intake channel 20 opens in the sea or on the seabed, and the opening serves as a water intake 21 . Salt water of the sea 2 is taken into the water intake channel 20 through the water intake 21 . Salt water taken into the intake channel 20 is sent to the condenser 18 . The discharge channel 22 is a channel for discharging salt water into the sea 2 . The discharge channel 22 is built in the ground from the sea or seabed to the condenser 18 or its vicinity. The end of the water discharge channel 22 opens in the sea or on the seabed, and the opening serves as a water discharge port 24 . The salt water in the condenser 18 is discharged to the discharge channel 22 and the discharged water is sent to the discharge port 24 . The salt water is then discharged into the sea 2 through the water outlet 24 .
 復水器18のインレットは流路及びポンプ19等を介して取水路20に連結されている。復水器18のアウトレットは流路等を介して放水路22に連結されている。このポンプ19は取水路20内の塩水を復水器18に送液する。復水器18に供給された塩水によって、タービンから供給された蒸気が冷却されて凝縮される。復水器18において冷却に使用された塩水は放水路22に排出されて、放水路22を通じて海2に放出される。なお、ポンプ19の代わりに位置エネルギー又は圧力差を利用して、塩水が海2から取水路20、復水器18及び放水路22を経由して海2に流れるものとしてもよい。 The inlet of the condenser 18 is connected to the water intake channel 20 via the channel, pump 19 and the like. The outlet of the condenser 18 is connected to the discharge channel 22 via a channel or the like. This pump 19 feeds the salt water in the intake channel 20 to the condenser 18 . The brine supplied to the condenser 18 cools and condenses the steam supplied from the turbine. The salt water used for cooling in the condenser 18 is discharged to the spillway 22 and discharged to the sea 2 through the spillway 22 . Alternatively, the pump 19 may be replaced by potential energy or pressure differential to cause salt water to flow from the sea 2 to the sea 2 via the intake channel 20 , the condenser 18 and the discharge channel 22 .
 取水路20、放水路22及び復水器18には水生生物を含む塩水が流れるため、水生生物が取水路20、放水路22及び復水器18の内部に付着・繁殖しやすい。水生生物の付着及び繁殖を抑えるべく、塩素系薬剤が添加装置30によって取水路20内の塩水に添加される。また、放水路22から海2に放出される塩水の残留塩素濃度の低減を図るべく、溶存水素を含む水(以下、水素水という。)が添加装置30によって放水路22内の塩水に添加される。以下の説明では水素水の溶媒となる水は塩水であるが、淡水又は上水であってもよい。 Since salt water containing aquatic organisms flows through the intake channel 20, the discharge channel 22, and the condenser 18, the aquatic organisms tend to adhere and grow inside the intake channel 20, the discharge channel 22, and the condenser 18. A chlorine-based chemical is added to the salt water in the water intake channel 20 by the addition device 30 to suppress adhesion and breeding of aquatic organisms. In addition, in order to reduce the residual chlorine concentration of the salt water discharged from the discharge channel 22 to the sea 2, water containing dissolved hydrogen (hereinafter referred to as hydrogen water) is added to the salt water in the discharge channel 22 by the adding device 30. be. In the following description, the water used as the solvent for the hydrogen water is salt water, but fresh water or clean water may be used.
 添加装置30について以下に詳細に説明する。
 添加装置30は、取水路20又は放水路22の塩水から塩素系水溶液と水素水を生成する。添加装置30は、その塩素系水溶液を取水路20の塩水に添加するとともに、その水素水を放水路22の塩水に添加する。
 添加装置30は電気分解装置31、排出管33、導入管32、送管34、気体溶解装置41、白金触媒51、送液ポンプ35,44及びバルブ53を有する。
The dosing device 30 will be described in detail below.
The addition device 30 produces a chlorine-based aqueous solution and hydrogen water from the salt water in the water intake channel 20 or the water discharge channel 22 . The addition device 30 adds the chlorine-based aqueous solution to the salt water in the intake channel 20 and adds the hydrogen water to the salt water in the discharge channel 22 .
The addition device 30 has an electrolyzer 31 , a discharge pipe 33 , an introduction pipe 32 , a feed pipe 34 , a gas dissolver 41 , a platinum catalyst 51 , liquid feed pumps 35 and 44 and a valve 53 .
 電気分解装置31のインレットは、導入管32及び送液ポンプ35を介して取水路20に連結されている。電気分解装置31の液用アウトレットは、排出管33を介して取水路20に連結されている。電気分解装置31の気体用アウトレットは、送管34を介して気体溶解装置41の気体用インレットに連結されている。気体溶解装置41の液用インレットは、導入管42及び送液ポンプ44を介して取水路20に連結されている。気体溶解装置41の液用アウトレットは、バルブ53及び排出管52を介して放水路22に連結されている。 The inlet of the electrolyzer 31 is connected to the water intake channel 20 via the introduction pipe 32 and the liquid feed pump 35 . A liquid outlet of the electrolyzer 31 is connected to the intake channel 20 via a discharge pipe 33 . A gas outlet of the electrolyzer 31 is connected to a gas inlet of the gas dissolver 41 via a pipe 34 . A liquid inlet of the gas dissolving device 41 is connected to the intake channel 20 via an introduction pipe 42 and a liquid pump 44 . A liquid outlet of the gas dissolver 41 is connected to the water discharge channel 22 via a valve 53 and a discharge pipe 52 .
 送液ポンプ35は取水路20内の塩水を電気分解装置31に供給する。
 電気分解装置31は、取水路20から導入された塩水を電気分解することによって、電気分解装置31の陽極に塩素(Cl2)を生成する。そのため、電気分解装置31によって電気分解された塩水には、遊離塩素及び結合塩素等からなる有効塩素が含まれている。遊離塩素とは、塩水中の塩素ガス分子(Cl2)、次亜塩素酸(HClO)及び次亜塩素酸イオン(ClO-)のことをいう。結合塩素は、塩水に含まれるアンモニア及びその化合物と遊離塩素が反応することによって得られたものであって、例えばモノクロラミン、ジクロラミン、トリクロラミン等のクロラミンのことをいう。
The liquid-sending pump 35 supplies the salt water in the intake channel 20 to the electrolyzer 31 .
The electrolyzer 31 electrolyzes the salt water introduced from the intake channel 20 to generate chlorine (Cl 2 ) at the anode of the electrolyzer 31 . Therefore, the salt water electrolyzed by the electrolyzer 31 contains effective chlorine composed of free chlorine, combined chlorine, and the like. Free chlorine refers to chlorine gas molecules (Cl 2 ), hypochlorous acid (HClO) and hypochlorite ions (ClO ) in salt water. Combined chlorine is obtained by reacting ammonia and its compounds contained in salt water with free chlorine, and refers to chloramines such as monochloramine, dichloramine and trichloramine.
 電気分解装置31における塩水の電気分解によって水素(H2)が電気分解装置31の陰極に生成される。電気分解装置31は脱気塔又は受槽等を有し、電気分解された塩水中の水素分子が脱気塔又は受槽等において塩水から分離されて、気体水素が塩水から発生する。その気体水素は電気分解装置31から送管34を通って気体溶解装置41に送られる。送管34の中途部には、電気分解装置31から気体溶解装置41への気体水素の流量を調整するバルブが設けられてもよい。 Hydrogen (H 2 ) is produced at the cathode of the electrolyzer 31 by electrolysis of salt water in the electrolyser 31 . The electrolyzer 31 has a degassing tower, a receiving tank, or the like, and the electrolyzed hydrogen molecules in the salt water are separated from the salt water in the degassing tower, the receiving tank, or the like, and gaseous hydrogen is generated from the salt water. The gaseous hydrogen is sent from the electrolyzer 31 to the gas dissolver 41 through the pipe 34 . A valve for adjusting the flow rate of gaseous hydrogen from the electrolyzer 31 to the gas dissolver 41 may be provided in the middle of the pipe 34 .
 電気分解装置31において水素が分離された塩水は塩素系薬剤であり、より具体的には、有効塩素を含む塩素系水溶液である。その塩素系水溶液が電気分解装置31から排出管33を通って取水路20に投入される。従って、この電気分解装置31は、取水路20内の第1所定位置において塩素系水溶液を取水路20内の塩水に添加する塩素系薬剤添加装置である。その塩素系水溶液が取水路20内の塩水に添加されることによって、水生生物の付着及び繁殖が抑制される。排出管33から取水路20に塩素系水溶液が添加される第1所定位置は、取水路20の出来る限り広い範囲で水生生物の付着及び繁殖の防止効果を得るために、取水口21に可能な限り近いことが好ましい。 The salt water from which hydrogen is separated in the electrolyzer 31 is a chlorine-based chemical, more specifically, a chlorine-based aqueous solution containing effective chlorine. The chlorine-based aqueous solution is introduced from the electrolyzer 31 into the intake channel 20 through the discharge pipe 33 . Therefore, the electrolyzer 31 is a chlorine-based chemical addition device that adds the chlorine-based aqueous solution to the salt water in the intake channel 20 at the first predetermined position in the intake channel 20 . By adding the chlorine-based aqueous solution to the salt water in the intake channel 20, adhesion and propagation of aquatic organisms are suppressed. The first predetermined position where the chlorine-based aqueous solution is added from the discharge pipe 33 to the intake channel 20 is the intake port 21 in order to obtain the effect of preventing the adhesion and breeding of aquatic organisms in the widest possible range of the intake channel 20. As close as possible is preferred.
 図2に示す例では、1体の送液ポンプ35が設けられている。それに対して、取水路20から導入管32、電気分解装置31及び排出管33を経由して取水路20までの経路に複数の送液ポンプ35が設けられてもよい。また、取水路20から導入管32、電気分解装置31及び排出管33を経由して取水路20までの経路に一又は複数のバルブが設けられてもよい。一又は複数の送液ポンプ35及びバルブは、取水路20から電気分解装置31への塩水の供給流量を調整したり、電気分解装置31から取水路20への塩素系水溶液の投入流量を調整したりする。送液ポンプ35及びバルブが制御されたり、電気分解装置31の消費電力が制御されたりすることによって、取水路20並びにそれよりも下流側の復水器18及び放水路22における残留塩素濃度が適切に調整される。  In the example shown in FIG. 2, one liquid transfer pump 35 is provided. On the other hand, a plurality of liquid-sending pumps 35 may be provided on the route from the water intake channel 20 to the water intake channel 20 via the introduction pipe 32 , the electrolyzer 31 and the discharge pipe 33 . In addition, one or more valves may be provided in the route from the water intake channel 20 to the water intake channel 20 via the introduction pipe 32 , the electrolyzer 31 and the discharge pipe 33 . One or a plurality of liquid-sending pumps 35 and valves adjust the supply flow rate of salt water from the intake channel 20 to the electrolyzer 31, or adjust the input flow rate of the chlorine-based aqueous solution from the electrolyzer 31 to the intake channel 20. or By controlling the liquid feed pump 35 and valves and controlling the power consumption of the electrolyzer 31, the residual chlorine concentration in the intake channel 20 and the condenser 18 and discharge channel 22 downstream thereof is appropriate. adjusted to
 送液ポンプ44は取水路20内の塩水を気体溶解装置41に供給する。なお、気体溶解装置41の液用インレットが導入管42及び送液ポンプ44を介して放水路22に連結されて、送液ポンプ44が放水路22内の塩水を気体溶解装置41に供給してもよい。 The liquid feed pump 44 supplies the salt water in the intake channel 20 to the gas dissolving device 41 . A liquid inlet of the gas dissolving device 41 is connected to the water discharge channel 22 via an introduction pipe 42 and a liquid feeding pump 44 , and the liquid feeding pump 44 supplies the salt water in the water discharge channel 22 to the gas dissolving device 41 . good too.
 気体溶解装置41は、取水路20から導入された塩水に、電気分解装置31から導入された気体水素を溶解させる。気体溶解装置41は溶解槽41a及び不図示の噴出部を有する。溶解槽41aは、取水路20から導入された塩水を貯留する貯留部である。噴出部は、電気分解装置31から導入された気体水素を溶解槽41a中の塩水に泡状に噴出する。噴出された気体水素が溶解槽41a中の塩水に溶解する。これにより、溶解槽41a内において、溶存水素を含む水素含有液(以下、水素水という。)が生成される。溶解槽41aにおいて気体水素が塩水に効率よく溶解するために、溶解槽41aの内部がコンプレッサー等によって高圧に加圧されてもよい。これにより、気体溶解装置41によって生成された水素水中の溶存水素濃度が高くなる。 The gas dissolving device 41 dissolves the gaseous hydrogen introduced from the electrolyzer 31 into the salt water introduced from the intake channel 20 . The gas dissolving device 41 has a dissolving tank 41a and an ejection part (not shown). The dissolution tank 41a is a storage section that stores the salt water introduced from the intake channel 20 . The ejection part ejects the gaseous hydrogen introduced from the electrolyzer 31 into the salt water in the dissolution tank 41a in the form of bubbles. The ejected gaseous hydrogen dissolves in the salt water in the dissolving tank 41a. As a result, a hydrogen-containing liquid containing dissolved hydrogen (hereinafter referred to as hydrogen water) is generated in the dissolution tank 41a. In order to efficiently dissolve the gaseous hydrogen in the salt water in the dissolving tank 41a, the inside of the dissolving tank 41a may be pressurized to a high pressure by a compressor or the like. As a result, the dissolved hydrogen concentration in the hydrogen water generated by the gas dissolving device 41 increases.
 溶解槽41aには白金触媒51が設けられて、白金触媒51が溶解槽41a内の水素水に浸漬される。溶解槽41a内の水素水が白金触媒51と接触すると、水素水が活性化される。水素水の活性化は、水素水の還元力を増強して、後述のように水素水による塩水の残留塩素の中和を効率よく進行させる。白金触媒51は白金を含有するところ、その含有率は高いほどよく、また、微視的な白金の表面積が大きいほどよい。
 なお、白金を含有する白金触媒51に代えて、第10族元素金属(例えば、ニッケル、白金)、金属酸化物(例えば銅-酸化クロム)及び白金族金属(例えば、ルテニウム、パラジウム、ロジウム)からなる群の中から選ばれた少なくとも1つの物質を含む還元性触媒を用いてもよい。
A platinum catalyst 51 is provided in the dissolving tank 41a, and the platinum catalyst 51 is immersed in hydrogen water in the dissolving tank 41a. When the hydrogen water in the dissolution tank 41a contacts the platinum catalyst 51, the hydrogen water is activated. Activation of the hydrogen water enhances the reducing power of the hydrogen water and efficiently neutralizes residual chlorine in the salt water with the hydrogen water as described later. Since the platinum catalyst 51 contains platinum, the higher the content, the better, and the larger the microscopic surface area of platinum.
In addition, instead of the platinum catalyst 51 containing platinum, from Group 10 element metals (eg, nickel, platinum), metal oxides (eg, copper-chromium oxide) and platinum group metals (eg, ruthenium, palladium, rhodium) A reducing catalyst containing at least one substance selected from the group may be used.
 バルブ53が開放されると、溶解槽41aにおいて生成された水素水が溶解槽41aからバルブ53及び排出管52を通って放水路22に投入される。従って、この気体溶解装置41及びバルブ53の組み合わせは、放水路22内の第2所定位置において水素水を放水路22内の塩水に添加する水素含有液添加装置である。なお、放水路22には、白金触媒が存在しない。
 バルブ53は、放水路22への水素水の投入流量を調整する。放水路22に投入される水素水は還元剤且つ中和剤である。そのため、水素水が放水路22内の塩水に添加されることによって、その塩水中の残留塩素が低減又は除去されて、その塩水が中和される。中和された塩水は放水路22から海2に放出される。中和された塩水の残留塩素濃度は、海2の自然環境に影響を及ばさない程度であり、例えば地元との協定や、法律、規則等によって定められた値以下である。放水口24における残留塩素濃度を極力低下させるために、排出管52から水素水が添加される第2所定位置は復水器18の出口に近いほど良い。但し、海2に放出される塩水の残留塩素濃度を前記定められた値以下に抑えられるのであれば、排出管52から水素水が添加される位置が放水口24近傍であってもよい。
When the valve 53 is opened, the hydrogen water produced in the dissolution tank 41a is introduced from the dissolution tank 41a into the water discharge channel 22 through the valve 53 and the discharge pipe 52 . Therefore, the combination of the gas dissolving device 41 and the valve 53 is a hydrogen-containing liquid adding device that adds hydrogen water to the salt water in the water discharge channel 22 at the second predetermined position in the water discharge channel 22 . A platinum catalyst does not exist in the discharge channel 22 .
The valve 53 adjusts the flow rate of hydrogen water supplied to the water discharge channel 22 . The hydrogen water introduced into the water discharge channel 22 is a reducing agent and a neutralizing agent. Therefore, by adding hydrogen water to the salt water in the discharge channel 22, residual chlorine in the salt water is reduced or removed, and the salt water is neutralized. The neutralized saltwater is discharged into the sea 2 through the spillway 22 . The residual chlorine concentration of the neutralized salt water is at a level that does not affect the natural environment of the sea 2, and is below the value determined by agreements with local communities, laws, regulations, and the like. In order to reduce the concentration of residual chlorine in the water discharge port 24 as much as possible, the closer the second predetermined position to which hydrogen water is added from the discharge pipe 52 to the outlet of the condenser 18, the better. However, if the concentration of residual chlorine in the salt water discharged into the sea 2 can be suppressed to the predetermined value or less, the position where the hydrogen water is added from the discharge pipe 52 may be near the water outlet 24 .
 以上の実施形態によれば、以下のような有利な効果をもたらす。 According to the above embodiment, the following advantageous effects are obtained.
(1) 気体溶解装置41の溶解槽41a内で生成された水素水が放水路22内の第2所定位置における塩水に投入されるため、放水路22から海2に放出される塩水の残留塩素濃度が低減する。そのため、海2における自然環境に悪影響を及ぼさない。 (1) Since the hydrogen water generated in the dissolution tank 41a of the gas dissolving device 41 is put into the salt water at the second predetermined position in the water discharge channel 22, residual chlorine in the salt water discharged from the water discharge channel 22 into the sea 2 Density is reduced. Therefore, the natural environment in the sea 2 is not adversely affected.
(2) 溶解槽41aに白金触媒51が配置され、水素水が放水路22の塩水に添加される前に白金触媒51と接触する。それゆえ、水素水は活性化される。そのような水素水が放水路22内の塩水に添加されると、放水路22内での塩水の中和が効率よく進行する。 (2) A platinum catalyst 51 is placed in the dissolution tank 41a, and is brought into contact with the platinum catalyst 51 before the hydrogen water is added to the salt water in the discharge channel 22. Therefore, hydrogen water is activated. When such hydrogen water is added to the salt water in the discharge channel 22, neutralization of the salt water in the discharge channel 22 progresses efficiently.
(3) 白金触媒51が溶解槽41aに配置されているので、溶解槽41aに貯留される水素水が白金触媒51と長時間接触することができる。それゆえ、水素水の活性化も高まる。高活性化された水素水が放水路22内の塩水に注入されると、放水路22内での塩水の中和が効率よく進行する。 (3) Since the platinum catalyst 51 is arranged in the dissolution tank 41a, the hydrogen water stored in the dissolution tank 41a can contact the platinum catalyst 51 for a long time. Therefore, the activation of hydrogen water also increases. When highly activated hydrogen water is injected into the salt water in the discharge channel 22, neutralization of the salt water in the discharge channel 22 progresses efficiently.
(4) 白金触媒を放水路22に配置する場合、放水路22では水が流れることから、白金触媒と水素水の接触時間を長く確保するために大量の白金触媒を広範囲にわたって配置する必要がある。それに対して、本実施形態では、白金触媒51が溶解槽41a内に配置され、その溶解槽41aでは水素水が貯留されることから、水素水と白金触媒51の接触時間を長く確保できる。それゆえ、白金触媒51の使用量が少量で済む。 (4) When a platinum catalyst is placed in the water discharge channel 22, water flows through the water discharge channel 22, so it is necessary to place a large amount of platinum catalyst over a wide area in order to ensure a long contact time between the platinum catalyst and the hydrogen water. . On the other hand, in the present embodiment, the platinum catalyst 51 is arranged in the dissolution tank 41a, and the hydrogen water is stored in the dissolution tank 41a. Therefore, the amount of the platinum catalyst 51 used is small.
(5) 白金触媒51が溶解槽41aに配置されているので、白金触媒51が取水路20又は放水路22を流れる水生生物や固体物質と接触する可能性が低い。それゆえ、白金触媒51の物理的損耗のリスクが低い。また、白金触媒51をメンテナンスする場合、溶解槽41aのみを空にすれば実施できるため、白金触媒51のメンテナンスがしやすい。 (5) Since the platinum catalyst 51 is arranged in the dissolution tank 41a, the probability of the platinum catalyst 51 coming into contact with aquatic organisms or solid substances flowing through the water intake channel 20 or the water discharge channel 22 is low. Therefore, the risk of physical wear of the platinum catalyst 51 is low. Further, maintenance of the platinum catalyst 51 can be carried out by emptying only the dissolving tank 41a, so maintenance of the platinum catalyst 51 is easy.
(6) 電気分解装置31によって生成された塩素系水溶液が取水路20内の塩水に投入されるため、取水路20、復水器18及び放水路22における水生生物の付着及び繁殖が抑えられる。特に、電気分解装置31によって生成された塩素系水溶液の有効塩素濃度を高くしても、放水路22内の塩水の残留塩素濃度が水素水により低減するため、水生生物の付着及び繁殖が確実に抑えられる。つまり、塩素系水溶液の有効塩素濃度を高くすることによる水生生物の繁殖防止効果の向上と、海2に放水される塩水の残留塩素濃度の低減効果とを両立できる。 (6) Since the chlorine-based aqueous solution produced by the electrolyzer 31 is put into the salt water in the water intake channel 20, adhesion and breeding of aquatic organisms in the water intake channel 20, the condenser 18 and the water discharge channel 22 are suppressed. In particular, even if the effective chlorine concentration of the chlorine-based aqueous solution generated by the electrolyzer 31 is increased, the residual chlorine concentration of the salt water in the discharge channel 22 is reduced by hydrogen water, so that aquatic organisms adhere and propagate reliably. suppressed. In other words, it is possible to achieve both an improvement in the effect of preventing breeding of aquatic organisms by increasing the effective chlorine concentration of the chlorine-based aqueous solution and an effect of reducing the residual chlorine concentration in the salt water discharged into the sea 2 .
(7) 電気分解装置31において塩水から生成された気体水素が水素水の生成に利用されるため、塩水の残留塩素の低減のために水素を別途準備しなくても済む。よって、放水路22内の塩水の残留塩素濃度の低減を低コストで行える。また、電気分解装置31において気体水素を大気に放出しなくても済む。 (7) Since the gaseous hydrogen generated from the salt water in the electrolyzer 31 is used to generate hydrogen water, there is no need to separately prepare hydrogen for reducing residual chlorine in the salt water. Therefore, the concentration of residual chlorine in the salt water in the discharge channel 22 can be reduced at low cost. Moreover, it is not necessary to release gaseous hydrogen to the atmosphere in the electrolyzer 31 .
(8) 電気分解装置31において生成された気体水素が放水路22内の塩水に直接注入されるのではなく、その気体水素が気体溶解装置41の溶解槽41aによって一旦塩水に溶解された上で、水素水が放水路22内の塩水に添加される。それゆえ、放水路22内での塩水の中和が効率よく進行する。 (8) Instead of directly injecting the gaseous hydrogen generated in the electrolyzer 31 into the salt water in the discharge channel 22, the gaseous hydrogen is once dissolved in the salt water by the dissolution tank 41a of the gas dissolving device 41, and then , hydrogen water is added to the salt water in the discharge channel 22 . Therefore, neutralization of salt water in the discharge channel 22 proceeds efficiently.
<<第1の実施の形態の変形例>>
 以上に第1実施形態について説明した。以上の第1実施形態は変更又は改良され得る。以上の第1実施形態からの変更点について以下に説明する。以下に説明する各変更点を組み合わせて適用してもよい。
<<Modified example of the first embodiment>>
The first embodiment has been described above. The first embodiment described above may be modified or improved. Changes from the first embodiment described above will be described below. The modifications described below may be applied in combination.
(A) 第1実施形態では、取水路20内の塩水に添加される塩素系薬剤が、電気分解装置31によって生成された塩素系水溶液である。それに対して、予め生成されて且つ貯留槽等に貯留された塩素系水溶液が投入装置によって取水路20内の塩水に添加されてもよい。塩素系水溶液は例えば次亜塩素酸ナトリウム水溶液、次亜塩素酸水溶液又は塩素化イソシアヌル酸水溶液であるが、それ以外の塩素系水溶液であってもよい。また、塩素系水溶液の代わりに塩素ガスが取水路20内の塩水に噴出されるものとしてもよい。塩素ガスはガスボンベに貯留されている。また、塩素系水溶液の代わりに固形塩素系薬剤が投入装置によって取水路20内の塩水に投入されるものとしてもよい。固形塩素系薬剤は例えば次亜塩素酸カルシウム、次亜塩素酸ナトリウム、塩素化イソシアヌル酸又はさらし粉である。固形塩素系薬剤は貯留タンクに予め貯留されている。 (A) In the first embodiment, the chlorine-based chemical added to the salt water in the intake channel 20 is the chlorine-based aqueous solution generated by the electrolyzer 31 . On the other hand, a chlorine-based aqueous solution that has been generated in advance and stored in a storage tank or the like may be added to the salt water in the intake channel 20 by an injection device. The chlorine-based aqueous solution is, for example, an aqueous sodium hypochlorite solution, an aqueous hypochlorous acid solution, or an aqueous solution of chlorinated isocyanuric acid, but may be another chlorine-based aqueous solution. Alternatively, instead of the chlorine-based aqueous solution, chlorine gas may be jetted into the salt water in the water intake channel 20 . Chlorine gas is stored in gas cylinders. Further, instead of the chlorine-based aqueous solution, a solid chlorine-based chemical may be added to the salt water in the water intake channel 20 by the charging device. Solid chlorine agents are, for example, calcium hypochlorite, sodium hypochlorite, chlorinated isocyanuric acid or bleaching powder. The solid chlorine chemical is stored in advance in a storage tank.
(B) 第1実施形態では、電気分解装置31によって生成された気体水素が気体溶解装置41の溶解槽41aに供給される。それに対して、添加装置30がガスボンベ又は水素添加装置を有し、ガスボンベに貯留された気体水素又は水素添加装置によって生成された気体水素が溶解槽41aに供給されてもよい。水素添加装置は、例えば、水を電気分解して水素と酸素を生成する電気分解装置である。 (B) In the first embodiment, the gaseous hydrogen generated by the electrolyzer 31 is supplied to the dissolving tank 41a of the gas dissolving device 41. Alternatively, the addition device 30 may have a gas cylinder or a hydrogenation device, and gaseous hydrogen stored in the gas cylinder or gaseous hydrogen generated by the hydrogenation device may be supplied to the dissolution tank 41a. The hydrogenation device is, for example, an electrolysis device that electrolyzes water to produce hydrogen and oxygen.
(C) 第1実施形態では、取水路20又は放水路22内の塩水が気体溶解装置41の溶解槽41aに供給される。それに対して、上水が溶解槽41aに供給されてもよい。また、海2以外の自然水域の淡水が溶解槽41aに供給されてもよい。 (C) In the first embodiment, the salt water in the water intake channel 20 or the water discharge channel 22 is supplied to the dissolving tank 41a of the gas dissolving device 41. Alternatively, clean water may be supplied to the dissolving tank 41a. Also, fresh water in a natural water area other than the sea 2 may be supplied to the dissolving tank 41a.
(D) 第1実施形態では、自然水域が海2であり、火力発電所10が海2の沿岸に建造されている。それに対して、自然水域が塩湖、淡水湖、沼又は河川であり、火力発電所10が塩湖、淡水湖、沼又は河川の沿岸に建造されるものとしてもよい。自然水域に存在する水が淡水である場合には、上記(A)及び(B)の変形例を併せて適用する必要があるか、電気分解装置31に供給される淡水に塩化ナトリウムを溶解させる必要がある。なお、汽水が塩水であるので、本開示では汽水湖は塩湖の一種である。 (D) In the first embodiment, the natural water area is Sea 2, and the thermal power plant 10 is built on the coast of Sea 2. Alternatively, the natural water area may be a salt lake, freshwater lake, marsh, or river, and the thermal power plant 10 may be constructed on the coast of the salt lake, freshwater lake, marsh, or river. If the water existing in the natural water area is fresh water, it is necessary to apply the above modifications (A) and (B) together, or dissolve sodium chloride in the fresh water supplied to the electrolyzer 31. There is a need. Note that brackish water is salt water, so brackish lakes are a type of salt lakes in the present disclosure.
(E) 第1実施形態では、水処理設備11が火力発電所10に構築されている。それに対して、水処理設備11が他の種類の発電所、例えば水力発電所、揚水発電所、原子力発電所に構築されるものとしてもよいし、発電所以外の工場に構築されるものとしてもよい。また、取水路20と放水路22との間に設けられた設備が復水器18であったが、他の設備、例えば水力発電機であってもよい。 (E) In the first embodiment, the water treatment facility 11 is built in the thermal power plant 10. On the other hand, the water treatment facility 11 may be constructed in other types of power plants, such as hydroelectric power plants, pumped-storage power plants, and nuclear power plants, or may be built in factories other than power plants. good. Also, although the equipment provided between the water intake channel 20 and the water discharge channel 22 is the condenser 18, it may be other equipment such as a hydraulic power generator.
(F) 水素水が塩水に添加される第2所定位置は、排出管33から取水路20に塩素系水溶液が添加される第1所定位置から放水口24までのうちどの位置でもよい。但し、復水器18に水生生物が付着するのを抑制するため、水素水又は気体水素が添加される位置が復水器18の下流側であることが好ましい。 (F) The second predetermined position where the hydrogen water is added to the salt water may be any position from the first predetermined position where the chlorine-based aqueous solution is added from the discharge pipe 33 to the water intake channel 20 to the water outlet 24 . However, in order to prevent aquatic organisms from adhering to the condenser 18, the position where the hydrogen water or gaseous hydrogen is added is preferably downstream of the condenser 18.
<<実験による検証>>
 白金触媒を水素水に接触させた後、残留塩素を含む水(以下、塩素水という)と水素水を混合することによって、残留塩素濃度が低減することを3回の試験により検証した。以下に具体的に説明する。
<< Verification by experiment >>
After contacting the platinum catalyst with hydrogen water, it was verified by three tests that the residual chlorine concentration was reduced by mixing water containing residual chlorine (hereinafter referred to as chlorine water) and hydrogen water. A specific description will be given below.
 塩素水として、次亜塩素酸溶液を用いた。
 水素水として、次のように生成したものを用いた。先ず15粒の白金触媒を純水に浸漬してすぐに、純水を攪拌しながら、水素タンクから水素ガスを純水に泡状に噴出することで、水素を純水に溶解した。こうして得られた水素水の水素濃度を水素濃度計で測定して、約0.88 ppm及び約0.50 ppmの2種類の水素濃度の水素水を準備した。また、15粒の白金触媒を純水に60分浸漬した後、白金触媒を取り出すことなく純水を攪拌しながら、水素タンクから水素ガスを純水に泡状に噴出することで、水素を純水に溶解した。こうして得られた水素水の水素濃度を水素濃度計で測定して、約0.15 ppmの水素濃度の水素水を準備した。1回目の試験では約0.88 ppmの水素濃度の水素水を、2回目の試験では約0.55 ppmの水素濃度の水素水を、3回目の試験では約0.15 ppmの水素濃度の水素水を用いる。これは、白金触媒の浸漬時間が1回目及び2回目の試験のように短い場合における残留塩素濃度低減効果と、白金触媒の浸漬時間が3回目の試験のように長い場合における残留塩素濃度低減効果とを比較するためである。なお、使用した触媒は、SHIMADZU PLATINUM CATALYST ST SUPPORT 5/64” ALUMINA BALL SHIMADZU CORPORATION(白金触媒STタイプ P/N638-60116)であり、直径2mm程度の粒状のものである。
A hypochlorous acid solution was used as chlorine water.
As hydrogen water, one generated as follows was used. First, 15 grains of platinum catalyst were immersed in pure water, and immediately, while stirring the pure water, hydrogen was dissolved in the pure water by jetting hydrogen gas from a hydrogen tank into the pure water in the form of bubbles. The hydrogen concentration of the hydrogen water obtained in this way was measured with a hydrogen concentration meter, and hydrogen water with two types of hydrogen concentrations of about 0.88 ppm and about 0.50 ppm was prepared. In addition, after immersing 15 grains of platinum catalyst in pure water for 60 minutes, while stirring the pure water without taking out the platinum catalyst, hydrogen gas was jetted into the pure water in the form of bubbles from the hydrogen tank to purify the hydrogen. Dissolved in water. The hydrogen concentration of the hydrogen water thus obtained was measured with a hydrogen concentration meter to prepare hydrogen water having a hydrogen concentration of about 0.15 ppm. Hydrogen water with a hydrogen concentration of about 0.88 ppm is used in the first test, hydrogen water with a hydrogen concentration of about 0.55 ppm is used in the second test, and hydrogen water with a hydrogen concentration of about 0.15 ppm is used in the third test. This is the residual chlorine concentration reduction effect when the platinum catalyst immersion time is short like the first and second tests, and the residual chlorine concentration reduction effect when the platinum catalyst immersion time is long like the third test. This is for comparison with The catalyst used was SHIMADZU PLATINUM CATALYST ST SUPPORT 5/64″ ALUMINA BALL SHIMADZU CORPORATION (Platinum catalyst ST type P/N638-60116), which was granular with a diameter of about 2 mm.
 各回の試験では、50 mlの塩素水と50 mlの水素水とを白金触媒の無いビーカ内で混合し、その混合水を攪拌して、その混合水の残留塩素濃度をジエチルパラフェニレンジアミン法(DPD法)で測定した。残留塩素濃度の測定タイミングは、混合前、混合直後、混合から5 分後、10 分後及び15 分後とした。なお、塩素水と水素水を混合撹拌する際、紫外線照射等の他の手段は用いていない。 In each test, 50 ml of chlorine water and 50 ml of hydrogen water were mixed in a beaker without a platinum catalyst, the mixed water was stirred, and the residual chlorine concentration of the mixed water was measured by the diethyl paraphenylenediamine method ( DPD method). The residual chlorine concentration was measured before mixing, immediately after mixing, and 5 minutes, 10 minutes and 15 minutes after mixing. When the chlorine water and the hydrogen water were mixed and stirred, no other means such as ultraviolet irradiation was used.
 表1~表3は、塩素水と水素水を混合した3回の各試験における残留塩素濃度及びその低下量を示す。残留塩素濃度の低下量は、塩素水を水素水で希釈した場合の希釈倍率に従って計算した残留塩素濃度からの差分で表す。混合直後の残留塩素濃度は、混合前の残留塩素濃度の半分程度になっているが、これは、塩素水と水素水を等量で混合して50%に希釈したことによる。
 表1~表3に示すように、予め白金触媒が浸漬された水素水を塩素水に混合すると、その混合水の残留塩素濃度は時間の経過に伴って漸減し、混合時から15 分後の時点で0.17 ppm、0.21 ppm又は0.22 ppm程度低下することが認められた。従って、予め白金触媒が浸漬された水素水は、その水素水と塩素水の混合液の残留塩素濃度の低下に寄与することが分かる。なお、白金触媒の浸漬時間が長い3回目の試験と、浸漬時間が短い1回目および2回目の試験結果には大差は無く、1回目および2回目の試験結果のように白金触媒の浸漬時間が短い時間であっても、白金触媒を浸漬した水素水は活性化の効果があることが分かった。
Tables 1 to 3 show the residual chlorine concentration and the amount of decrease in each of three tests in which chlorine water and hydrogen water were mixed. The amount of decrease in residual chlorine concentration is represented by the difference from the residual chlorine concentration calculated according to the dilution ratio when chlorine water is diluted with hydrogen water. The residual chlorine concentration immediately after mixing is about half of the residual chlorine concentration before mixing, but this is because chlorine water and hydrogen water are mixed in equal amounts and diluted to 50%.
As shown in Tables 1 to 3, when hydrogen water in which a platinum catalyst has been immersed in advance is mixed with chlorine water, the concentration of residual chlorine in the mixed water gradually decreases with the passage of time, and 15 minutes after mixing. A decrease of 0.17 ppm, 0.21 ppm or 0.22 ppm was observed at time points. Therefore, it can be seen that the hydrogen water in which the platinum catalyst is immersed in advance contributes to the reduction of the residual chlorine concentration of the mixture of hydrogen water and chlorine water. There was no significant difference between the results of the third test, which had a longer immersion time for the platinum catalyst, and the first and second tests, which had a shorter immersion time. It was found that the hydrogen water in which the platinum catalyst was immersed had an activating effect even for a short period of time.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 以上の通り、水素水生成時に触媒を浸漬させ、その水素水を塩素水に混合することにより、残留塩素濃度を低下できることを確認した。 As described above, it was confirmed that the concentration of residual chlorine can be reduced by immersing the catalyst when generating hydrogen water and mixing the hydrogen water with chlorine water.
 次に、比較例として、50 mlの塩素水と50 mlの純水の混合水の残留塩素濃度を同様に測定した。但し、混合前の純水及び混合後の混合水のどちらも白金触媒に接触させていない。 Next, as a comparative example, the residual chlorine concentration of mixed water of 50 ml of chlorine water and 50 ml of pure water was similarly measured. However, neither the pure water before mixing nor the mixed water after mixing was brought into contact with the platinum catalyst.
 その結果を表4に示す。表4に示すように、水素水と純水を混合しただけでは、残留塩素濃度が低下しないことが分かる。それに対して、前述のように、予め白金触媒が浸漬された水素水を塩素水に混合すると、残留塩素濃度が低下する。このことからも、予め白金触媒が浸漬された水素水と純水を比較しても、前者が混合水の残留塩素濃度の低下に、より大きく寄与することが分かる。 The results are shown in Table 4. As shown in Table 4, it can be seen that the concentration of residual chlorine does not decrease simply by mixing hydrogen water and pure water. On the other hand, as described above, if the hydrogen water in which the platinum catalyst is immersed in advance is mixed with the chlorine water, the concentration of residual chlorine decreases. From this, it can be seen that even when hydrogen water in which a platinum catalyst has been immersed in advance is compared with pure water, the former greatly contributes to lowering the residual chlorine concentration of the mixed water.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 次に、比較例として、50 mlの塩素水と50 mlの水素水の混合水の残留塩素濃度を同様に測定した。但し、混合前の水素水及び混合後の混合水のどちらにも白金触媒を接触させていない。 Next, as a comparative example, the residual chlorine concentration of mixed water of 50 ml of chlorine water and 50 ml of hydrogen water was similarly measured. However, the hydrogen water before mixing and the mixed water after mixing were not brought into contact with the platinum catalyst.
 その結果を表5に示す。表5に示すように、白金触媒に接触させない水素水と塩素水とを混合した場合は、残留塩素濃度の低下が認められるものの、その低下量は小さい。白金触媒に接触させない水素水の場合には、混合時から15 分後の残留塩素濃度の低下量が0.06 ppmであるのに対して、前述のように予め白金触媒に接触させた水素水の場合には、混合時から15 分後の残留塩素濃度の低下量が0.17 ppm、0.22 ppm又は0.21 ppmである。このことからも、予め白金触媒を接触させた水素水とそうでない水素水を比較すると、前者が混合水の残留塩素濃度の低下に、より大きく寄与することが分かる。 The results are shown in Table 5. As shown in Table 5, when hydrogen water and chlorine water that are not brought into contact with the platinum catalyst are mixed, a decrease in residual chlorine concentration is observed, but the amount of decrease is small. In the case of hydrogen water that is not in contact with the platinum catalyst, the decrease in residual chlorine concentration after 15 minutes from mixing is 0.06 ppm, whereas in the case of hydrogen water that has been in contact with the platinum catalyst in advance as described above, is 0.17 ppm, 0.22 ppm or 0.21 ppm after 15 minutes of mixing. From this, too, when comparing the hydrogen water with which the platinum catalyst has been brought into contact in advance with the hydrogen water without it, it can be seen that the former contributes more greatly to the reduction of the residual chlorine concentration in the mixed water.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 最後に、比較例として、50 mlの塩素水と50 mlの水素水の混合水の残留塩素濃度を同様に測定した。ここでは、混合前の水素水には触媒を接触させず、5粒又は15粒の白金触媒を混合液に混合時から浸漬し続ける。 Finally, as a comparative example, the residual chlorine concentration of mixed water of 50 ml of chlorine water and 50 ml of hydrogen water was similarly measured. Here, the catalyst is not brought into contact with hydrogen water before mixing, and 5 grains or 15 grains of platinum catalyst are continuously immersed in the mixed liquid from the time of mixing.
 5粒の白金触媒を混合液に浸漬した場合の結果を表6に示し、15粒の白金触媒を混合液に浸漬した場合の結果を表7に示す。表1~表3、表6及び表7から明らかなように、予め白金触媒が浸漬された水素水と塩素水を混合した場合と同様に、水素水と塩素水の混合液に白金触媒を浸漬した場合でも、混合水の残留塩素濃度の低下が認められる。このことから、水素水と塩素水を混合する際に混合水を白金触媒に接触させずとも、混合前に水素水を予め白金触媒に接触させて活性化しておけば、混合水を白金触媒に接触させた場合と同様に、混合水の残留塩素濃度が低下することが分かる。 Table 6 shows the results when 5 platinum catalyst particles were immersed in the mixed liquid, and Table 7 shows the results when 15 platinum catalyst particles were immersed in the mixed liquid. As is clear from Tables 1 to 3, Tables 6 and 7, the platinum catalyst is immersed in a mixture of hydrogen water and chlorine water in the same manner as in the case of mixing hydrogen water and chlorine water in which the platinum catalyst is previously immersed. Even in the case where the concentration of residual chlorine in the mixed water is reduced, a decrease is observed. From this, even if the mixed water is not brought into contact with the platinum catalyst when mixing the hydrogen water and chlorine water, if the hydrogen water is brought into contact with the platinum catalyst in advance and activated before mixing, the mixed water is turned into the platinum catalyst. It can be seen that the concentration of residual chlorine in the mixed water decreases as in the case of contact.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
<<第2の実施の形態>>
 図4は、淡水化工場に構築された水処理設備110の構成を示すブロック図である。水処理設備110は、自然水域としての海102に臨む敷地に構築されている。
<<Second Embodiment>>
FIG. 4 is a block diagram showing the configuration of the water treatment facility 110 built in the desalination plant. The water treatment facility 110 is built on a site facing the sea 102 as a natural water area.
 水処理設備110は、海102から塩水を取り込んで、その塩水から淡水を生成する淡水化システムである。なお、海102に代えて塩湖又は汽水湖の塩水が水処理設備110によって淡水化されてもよい。 The water treatment facility 110 is a desalination system that takes in salt water from the sea 102 and produces fresh water from the salt water. Note that instead of the sea 102 , salt water of a salt lake or a brackish lake may be desalinated by the water treatment facility 110 .
 水処理設備110は、処理水タンク111、添加装置130、淡水化装置120、貯留タンク160及び供給ポンプ161を備える。処理水タンク111、添加装置130、淡水化装置120、貯留タンク160及び供給ポンプ161は陸地に設置されている。 The water treatment facility 110 includes a treated water tank 111 , an addition device 130 , a desalination device 120 , a storage tank 160 and a supply pump 161 . The treated water tank 111, the addition device 130, the desalination device 120, the storage tank 160 and the supply pump 161 are installed on land.
 塩水が海102から配管を通じて順に処理水タンク111及び淡水化装置120を経由して貯留タンク160に流れる。海102から貯留タンク160までの配管が塩水の主経路である。 The salt water flows from the sea 102 through the piping to the storage tank 160 through the treated water tank 111 and the desalination device 120 in order. The piping from the sea 102 to the storage tank 160 is the main route for salt water.
 処理水タンク111には、海102から取り込まれた塩水が貯留される。海102から処理水タンク111への塩水の供給には、例えばポンプ、位置エネルギー又は圧力差が利用される。塩水中の微生物の繁殖を抑えるべく、添加装置130によって生成された塩素系水溶液が、海102から処理水タンク111に送られる塩水に添加される。処理水タンク111では、塩素系水溶液による塩水の殺菌が進行する。 Salt water taken in from the sea 102 is stored in the treated water tank 111 . The supply of salt water from the sea 102 to the treated water tank 111 utilizes, for example, pumps, potential energy, or pressure differentials. The chlorine-based aqueous solution produced by the addition device 130 is added to the salt water sent from the sea 102 to the treated water tank 111 in order to suppress the growth of microorganisms in the salt water. In the treated water tank 111, salt water is sterilized with a chlorine-based aqueous solution.
 淡水化装置120は、処理水タンク111から供給される塩水中の微生物及び濁質等の汚染物質を除去し、汚染物質の除去された塩水を淡水化する。
 貯留タンク160は、淡水化装置120によって生成された淡水を貯留する。
 供給ポンプ161は、貯留タンク160内の淡水を需要地に供給する。供給ポンプ161によって送られる淡水には、ミネラル、アルカリ及び殺菌剤が投入される。殺菌剤は、飲用に適したものである。
The desalination device 120 removes contaminants such as microorganisms and turbidity in the salt water supplied from the treated water tank 111, and desalinates the salt water from which the contaminants have been removed.
The storage tank 160 stores fresh water produced by the desalination device 120 .
The supply pump 161 supplies the fresh water in the storage tank 160 to the demand area. The fresh water sent by the supply pump 161 is loaded with minerals, alkalis and disinfectants. The disinfectant is suitable for drinking.
 淡水化装置120は、ポンプ121、複層式濾過器122、水槽123、ポンプ124、安全フィルター125、高圧ポンプ126及び逆浸透膜濾過装置127を有する。 The desalination device 120 has a pump 121 , a multi-layer filter 122 , a water tank 123 , a pump 124 , a safety filter 125 , a high-pressure pump 126 and a reverse osmosis membrane filtration device 127 .
 ポンプ121は、処理水タンク111及び複層式濾過器122との間に設けられている。ポンプ121は、処理水タンク111内の塩水を複層式濾過器122に供給する。ポンプ121によって供給される塩水には、凝集剤及び酸が添加される。添加装置130によって生成された塩素系水溶液も、ポンプ121によって供給される塩水に添加される。 The pump 121 is provided between the treated water tank 111 and the multi-layer filter 122. The pump 121 supplies salt water in the treated water tank 111 to the multi-layer filter 122 . Flocculant and acid are added to the brine supplied by pump 121 . The chlorine-based aqueous solution produced by the addition device 130 is also added to the brine supplied by the pump 121 .
 複層式濾過器122は、砂等の濾材が複数の層になって堆積されることによって構成される。複層式濾過器122は、ポンプ121によって供給された塩水を濾過して、その塩水中の汚染物質を除去する。複層式濾過器122は、汚染物質の除去された塩水を水槽123に排出する。複層式濾過器122は、逆洗可能なものである。
 水槽123は、複層式濾過器122から排出された塩水を貯留する。
 ポンプ124は、水槽123及び安全フィルター125に連結されている。ポンプ124は、水槽123内の塩水を安全フィルター125に供給する。
The multi-layer filter 122 is constructed by stacking a plurality of layers of filter media such as sand. Multilayer filter 122 filters the brine supplied by pump 121 to remove contaminants in the brine. The multi-layer filter 122 discharges the decontaminated salt water into the water tank 123 . The multi-layer filter 122 is backwashable.
The water tank 123 stores salt water discharged from the multi-layer filter 122 .
Pump 124 is connected to water tank 123 and safety filter 125 . Pump 124 supplies salt water in water tank 123 to safety filter 125 .
 安全フィルター125は、例えば精密濾過膜(microfiltration membrane)、限外濾過膜(ultrafiltration membrane)又はナノ濾過膜(nanofiltration membrane)を有する濾過器である。安全フィルター125は、ポンプ124によって供給された塩水を濾過して、その塩水中の汚染物質を除去する。安全フィルター125は、複層式濾過器122によって除去される汚染物質よりも小さい粒度の汚染物質を除去できる。安全フィルター125によって汚染物質が除去された塩水は、高圧ポンプ126に送られる。 The safety filter 125 is a filter having, for example, a microfiltration membrane, an ultrafiltration membrane or a nanofiltration membrane. Safety filter 125 filters the brine supplied by pump 124 to remove contaminants in the brine. The safety filter 125 can remove contaminants of smaller particle size than the contaminants removed by the multi-layer filter 122 . The salt water from which contaminants have been removed by safety filter 125 is sent to high pressure pump 126 .
 複層式濾過器122及び安全フィルター125によって汚染物質が除去されるため、逆浸透膜濾過装置127の逆浸透膜の劣化が抑えられ、逆浸透膜濾過装置127の性能が長く維持される。 Since contaminants are removed by the multi-layer filter 122 and the safety filter 125, deterioration of the reverse osmosis membrane of the reverse osmosis membrane filtration device 127 is suppressed, and the performance of the reverse osmosis membrane filtration device 127 is maintained for a long time.
 高圧ポンプ126は、塩水を加圧して、高圧な塩水を逆浸透膜濾過装置127に供給する。
 逆浸透膜濾過装置127は、逆浸透膜を有する。逆浸透膜濾過装置127は、高圧ポンプ126によって加圧された高圧な塩水の水分子を逆浸透膜に浸透させることによって、その高圧な塩水から淡水を分離する。淡水が塩水から分離されることによって、塩水が濃縮される。逆浸透膜濾過装置127は、分離された淡水を貯留タンク160に排出する。逆浸透膜濾過装置127によって生成された濃縮塩水の流動エネルギーはタービンによって高圧ポンプ126の運動エネルギーに変換される。また、その濃縮塩水は、複層式濾過器122の逆洗に利用される。
The high-pressure pump 126 pressurizes the salt water and supplies the high-pressure salt water to the reverse osmosis membrane filtration device 127 .
The reverse osmosis membrane filtering device 127 has a reverse osmosis membrane. The reverse osmosis membrane filtration device 127 separates fresh water from the high-pressure salt water by permeating water molecules of high-pressure salt water pressurized by the high-pressure pump 126 through the reverse osmosis membrane. By separating fresh water from salt water, the salt water is concentrated. The reverse osmosis membrane filtration device 127 discharges the separated fresh water to the storage tank 160 . The flow energy of the concentrated salt water generated by the reverse osmosis membrane filtration device 127 is converted into kinetic energy of the high-pressure pump 126 by the turbine. The concentrated salt water is also used for backwashing the multi-layer filter 122 .
 逆浸透膜濾過装置127の逆浸透膜は塩素耐性が低い。そこで、逆浸透膜濾過装置127に供給される塩水の塩素濃度を低減させるべく、添加装置130によって生成された水素水が、安全フィルター125と逆浸透膜濾過装置127との間の塩水に添加される。 The reverse osmosis membrane of the reverse osmosis membrane filtration device 127 has low chlorine resistance. Therefore, in order to reduce the chlorine concentration of the salt water supplied to the reverse osmosis membrane filtration device 127, the hydrogen water generated by the addition device 130 is added to the salt water between the safety filter 125 and the reverse osmosis membrane filtration device 127. be.
 添加装置130は、塩水から塩素系水溶液と水素水を生成する。添加装置130は、海102から処理水タンク111に送られる塩水に塩素系水溶液を添加する。添加装置130は、処理水タンク111から複層式濾過器122に送られる塩水に塩素系水溶液を添加する。添加装置130は、安全フィルター125から逆浸透膜濾過装置127に送れる塩水に水素水を添加する。 The addition device 130 generates a chlorine-based aqueous solution and hydrogen water from salt water. The adding device 130 adds a chlorine-based aqueous solution to salt water sent from the sea 102 to the treated water tank 111 . The addition device 130 adds a chlorine-based aqueous solution to the salt water sent from the treated water tank 111 to the multi-layer filter 122 . The addition device 130 adds hydrogen water to the salt water sent from the safety filter 125 to the reverse osmosis membrane filtration device 127 .
 添加装置130は、電気分解装置131、導入管132,142、排出管133,152、送管134、気体溶解装置141、白金触媒151、送液ポンプ135,144及びバルブ153を有する。 The addition device 130 has an electrolyzer 131 , inlet pipes 132 and 142 , discharge pipes 133 and 152 , a pipe 134 , a gas dissolving device 141 , a platinum catalyst 151 , liquid feed pumps 135 and 144 and a valve 153 .
 電気分解装置131のインレットは、導入管132及び送液ポンプ135を介して、海102と処理水タンク111との間の配管に連結されている。電気分解装置131の液用アウトレットは、排出管133に連結されている。排出管133は2つに分岐して、その一方は海102と処理水タンク111との間の配管に連結され、その他方は処理水タンク111とポンプ121との間の配管に連結されている。電気分解装置131の気体用アウトレットは、送管134を介して気体溶解装置141の気体用インレットに連結されている。気体溶解装置141の液用インレットは、導入管142及び送液ポンプ144を介して、安全フィルター125と高圧ポンプ126との間の配管に連結されている。気体溶解装置141の液用アウトレットは、バルブ153及び排出管152を介して、安全フィルター125と高圧ポンプ126との間の配管に連結されている。 The inlet of the electrolyzer 131 is connected to the pipe between the sea 102 and the treated water tank 111 via an introduction pipe 132 and a liquid feed pump 135 . A liquid outlet of the electrolyzer 131 is connected to a discharge pipe 133 . The discharge pipe 133 branches into two, one of which is connected to the pipe between the sea 102 and the treated water tank 111, and the other is connected to the pipe between the treated water tank 111 and the pump 121. . A gas outlet of the electrolyzer 131 is connected to a gas inlet of the gas dissolver 141 via a pipe 134 . A liquid inlet of the gas dissolving device 141 is connected to piping between the safety filter 125 and the high-pressure pump 126 via an introduction pipe 142 and a liquid feed pump 144 . The liquid outlet of gas dissolver 141 is connected via valve 153 and discharge pipe 152 to piping between safety filter 125 and high pressure pump 126 .
 送液ポンプ135は、海102から電気分解装置131に塩水を供給する。なお、例えば、海102から安全フィルター125までの経路中の何れかの位置が、電気分解装置131への塩水の供給元となっていてもよい。 The liquid-sending pump 135 supplies salt water from the sea 102 to the electrolyzer 131 . Note that, for example, any position in the path from the sea 102 to the safety filter 125 may serve as a supply source of salt water to the electrolyzer 131 .
 送液ポンプ144は、安全フィルター125によって濾過された塩水を気体溶解装置141に供給する。 The liquid feed pump 144 supplies the salt water filtered by the safety filter 125 to the gas dissolving device 141 .
 電気分解装置131は、海102から導入された塩水を電気分解することによって、電気分解装置131の陽極に塩素を生成し、陰極に水素を生成する。電気分解装置131の陽極にて発生した塩素が塩水に溶解して、塩素系水溶液が生成される。生成された塩素系水溶液は、電気分解装置131から排出管133を通って、海102から処理水タンク111に送られる塩水に添加される。そのため、塩水が殺菌処理され、微生物の繁殖が抑制される。ここで、海102から処理水タンク111までの塩水の経路において塩素系水溶液が添加される位置は、第1所定位置に相当する。 The electrolyzer 131 electrolyzes salt water introduced from the sea 102 to produce chlorine at the anode of the electrolyzer 131 and hydrogen at the cathode. Chlorine generated at the anode of the electrolyzer 131 dissolves in salt water to produce a chlorine-based aqueous solution. The produced chlorine-based aqueous solution is added to the salt water sent from the sea 102 to the treated water tank 111 through the discharge pipe 133 from the electrolyzer 131 . Therefore, the salt water is sterilized and propagation of microorganisms is suppressed. Here, the position where the chlorine-based aqueous solution is added in the route of the salt water from the sea 102 to the treated water tank 111 corresponds to the first predetermined position.
 電気分解装置131によって生成された塩素系水溶液は、電気分解装置131から排出管133を通って、ポンプ121によって送られる塩水に添加される。そのため、ポンプ121、複層式濾過器122、水槽123、ポンプ124及び安全フィルター125における微生物の繁殖が抑制される。ここで、処理水タンク111からポンプ121までの塩水の経路において塩素系水溶液が添加される位置は、第1所定位置に相当する。 The chlorine-based aqueous solution produced by the electrolyzer 131 is added to the salt water sent by the pump 121 from the electrolyzer 131 through the discharge pipe 133 . Therefore, propagation of microorganisms in the pump 121, the multi-layer filter 122, the water tank 123, the pump 124 and the safety filter 125 is suppressed. Here, the position where the chlorine-based aqueous solution is added in the salt water path from the treated water tank 111 to the pump 121 corresponds to the first predetermined position.
 電気分解装置131の陰極にて発生した水素分子が脱気塔又は受槽等において塩水から分離して、気体水素が塩水から発生する。その気体水素は電気分解装置131から送管134を通って気体溶解装置141に送られる。 The hydrogen molecules generated at the cathode of the electrolyzer 131 are separated from the salt water in the degassing tower or the receiving tank, and gaseous hydrogen is generated from the salt water. The gaseous hydrogen is sent from the electrolyzer 131 to the gas dissolver 141 through the pipe 134 .
 気体溶解装置141は、送液ポンプ144によって供給された塩水に、電気分解装置131から導入された気体水素を溶解させる。気体溶解装置141は溶解槽141a及び不図示の噴出部を有する。溶解槽141aは、送液ポンプ144によって供給された塩水を貯留する貯留部である。噴出部は、電気分解装置131から導入された気体水素を溶解槽141a中の塩水に泡状に噴出する。噴出された気体水素が塩水に溶解して、溶存水素を含む水素水が生成される。気体水素が効率的に塩水に溶解するように、溶解槽141aの内部がコンプレッサー等によって高圧に加圧されてもよい。 The gas dissolver 141 dissolves the gaseous hydrogen introduced from the electrolyzer 131 into the salt water supplied by the liquid feed pump 144 . The gas dissolving device 141 has a dissolving tank 141a and an ejection part (not shown). The dissolution tank 141a is a storage section that stores the salt water supplied by the liquid-sending pump 144 . The ejection part ejects gaseous hydrogen introduced from the electrolyzer 131 into the salt water in the dissolution tank 141a in the form of bubbles. The ejected gaseous hydrogen dissolves in the salt water to produce hydrogen water containing dissolved hydrogen. The inside of the dissolving tank 141a may be pressurized to a high pressure by a compressor or the like so that the gaseous hydrogen is efficiently dissolved in the salt water.
 溶解槽141aには白金触媒151が設けられて、白金触媒151が溶解槽141a内の水素水に浸漬される。溶解槽141a内の水素水が白金触媒151と接触すると、水素水が活性化されて、水素水の還元力が増強される。なお、白金触媒151は、第10族元素金属(例えば、ニッケル、白金)、金属酸化物(例えば銅-酸化クロム)及び白金族金属(例えば、ルテニウム、パラジウム、ロジウム)からなる群の中から選ばれた少なくとも1つの物質を含む還元性触媒に代えられてもよい。 A platinum catalyst 151 is provided in the dissolution tank 141a, and the platinum catalyst 151 is immersed in the hydrogen water in the dissolution tank 141a. When the hydrogen water in the dissolution tank 141a contacts the platinum catalyst 151, the hydrogen water is activated and the reducing power of the hydrogen water is enhanced. The platinum catalyst 151 is selected from the group consisting of Group 10 element metals (eg, nickel, platinum), metal oxides (eg, copper-chromium oxide), and platinum group metals (eg, ruthenium, palladium, rhodium). may be replaced by a reducing catalyst comprising at least one substance with a
 溶解槽141aにおいて生成された水素水は、バルブ153及び排出管152を通って、高圧ポンプ126によって逆浸透膜濾過装置127に供給される塩水に添加される。ここで、安全フィルター125から高圧ポンプ126までの塩水の経路において水素水が添加される位置は、第2所定位置に相当する。第2所定位置は、前記第1所定位置よりも下流にある。
 バルブ153は、水素水の投入流量を調整する。
The hydrogen water produced in the dissolution tank 141a passes through the valve 153 and the discharge pipe 152 and is added to the salt water supplied to the reverse osmosis membrane filtration device 127 by the high pressure pump 126. Here, the position where the hydrogen water is added in the salt water route from the safety filter 125 to the high-pressure pump 126 corresponds to the second predetermined position. The second predetermined position is downstream of the first predetermined position.
A valve 153 adjusts the flow rate of hydrogen water.
 高圧ポンプ126によって送られる塩水が水素水によって中和されて、その塩水中の残留塩素濃度が低減する。特に、水素水が白金触媒151によって活性化されて、その水素水の還元力が増強されているため、塩素の残留塩素濃度の低減が大きい。中和された塩水が逆浸透膜濾過装置127に供給されるため、逆浸透膜濾過装置127の逆浸透膜の劣化を抑制できる。 The salt water sent by the high-pressure pump 126 is neutralized with hydrogen water, and the concentration of residual chlorine in the salt water is reduced. In particular, since the hydrogen water is activated by the platinum catalyst 151 and the reducing power of the hydrogen water is enhanced, the residual chlorine concentration of chlorine is greatly reduced. Since the neutralized salt water is supplied to the reverse osmosis membrane filtration device 127, deterioration of the reverse osmosis membrane of the reverse osmosis membrane filtration device 127 can be suppressed.
 以上の第2実施形態によれば、以下のような有利な効果をもたらす。 According to the second embodiment described above, the following advantageous effects are obtained.
(1) 電気分解装置131によって生成された塩素系水溶液が第1所定位置において塩水に添加されるため、塩水が殺菌処理されて、塩水中の微生物の繁殖が抑制される。そのため、第1所定位置よりも下流にある複層式濾過器122、安全フィルター125及び逆浸透膜濾過装置127における目詰まりが抑えられる。 (1) Since the chlorine-based aqueous solution generated by the electrolyzer 131 is added to the salt water at the first predetermined position, the salt water is sterilized and the propagation of microorganisms in the salt water is suppressed. Therefore, clogging of the multi-layer filter 122, the safety filter 125 and the reverse osmosis membrane filtration device 127 downstream of the first predetermined position is suppressed.
(2) 気体溶解装置141によって生成された水素水が第2所定位置において塩水に添加され、その塩水が逆浸透膜濾過装置127に供給される。その塩水は水素水により中和されて、その塩水の残留塩素濃度が低減される。水素水は塩水に添加される前に、白金触媒151によって活性化されたものであるから、水素水による塩水の残留塩素濃度の低減効果が高い。残留塩素が除去された塩水が逆浸透膜濾過装置127に供給されるため、逆浸透膜濾過装置127の逆浸透膜の劣化を防止できる。 (2) The hydrogen water generated by the gas dissolving device 141 is added to the salt water at the second predetermined position, and the salt water is supplied to the reverse osmosis membrane filtering device 127 . The salt water is neutralized with hydrogen water to reduce the residual chlorine concentration of the salt water. Since the hydrogen water is activated by the platinum catalyst 151 before being added to the salt water, the hydrogen water is highly effective in reducing the residual chlorine concentration of the salt water. Since the salt water from which residual chlorine has been removed is supplied to the reverse osmosis membrane filtration device 127, deterioration of the reverse osmosis membrane of the reverse osmosis membrane filtration device 127 can be prevented.
(3) 白金触媒151が気体溶解装置141の溶解槽141aに配置されているので、溶解槽141aに貯留された水素水が白金触媒151と長時間接触する。それゆえ、水素水の活性化も高まり、水素水による塩水の残留塩素濃度の低減効果が高まる。 (3) Since the platinum catalyst 151 is placed in the dissolving tank 141a of the gas dissolving device 141, the hydrogen water stored in the dissolving tank 141a contacts the platinum catalyst 151 for a long time. Therefore, the activation of the hydrogen water is also enhanced, and the effect of reducing the residual chlorine concentration of the salt water by the hydrogen water is enhanced.
(4) 複層式濾過器122及び安全フィルター125を通過する塩水の残留塩素濃度を高めても、逆浸透膜濾過装置127に供給される塩水の残留塩素が水素水により除去されることから、逆浸透膜濾過装置127の逆浸透膜の劣化を防止できる。つまり、塩水の残留塩素濃度を高くすることによる殺菌効果の向上と、逆浸透膜濾過装置127の逆浸透膜の劣化防止とを両立できる。 (4) Even if the concentration of residual chlorine in the salt water passing through the multi-layer filter 122 and the safety filter 125 is increased, the residual chlorine in the salt water supplied to the reverse osmosis membrane filtration device 127 is removed by hydrogen water. Degradation of the reverse osmosis membrane of the reverse osmosis membrane filtering device 127 can be prevented. That is, it is possible to improve the sterilization effect by increasing the residual chlorine concentration of the salt water and to prevent deterioration of the reverse osmosis membrane of the reverse osmosis membrane filtration device 127 .
(5) 海102の塩水を利用して塩素系水溶液及び水素水を生成するため、塩素系薬剤及び水素を別途準備しなくても済む。よって、複層式濾過器122、安全フィルター125及び逆浸透膜濾過装置127の保護を低コストで行える。 (5) Since the chlorine-based aqueous solution and hydrogen water are generated using the salt water of the sea 102, there is no need to separately prepare chlorine-based chemicals and hydrogen. Therefore, the multilayer filter 122, the safety filter 125 and the reverse osmosis membrane filtration device 127 can be protected at low cost.
<<第2の実施の形態の変形例>>
 以上に第2実施形態について説明した。以上の第2実施形態は変更又は改良され得る。以上の第2実施形態からの変更点について以下に説明する。以下に説明する各変更点を組み合わせて適用してもよい。
<<Modification of Second Embodiment>>
The second embodiment has been described above. The second embodiment described above may be modified or improved. Changes from the second embodiment described above will be described below. The modifications described below may be applied in combination.
(A) 第2実施形態では、電気分解装置131によって生成された塩素系水溶液が、海102からポンプ121に送られる塩水に添加される。それに対して、予め生成されて且つ貯留槽等に貯留された塩素系水溶液が、投入装置によって、海102からポンプ121に送られる塩水に添加されてもよい。塩素系水溶液は例えば次亜塩素酸ナトリウム水溶液、次亜塩素酸水溶液又は塩素化イソシアヌル酸水溶液であるが、それ以外の塩素系水溶液であってもよい。また、塩素系水溶液の代わりに塩素ガスが、海102からポンプ121に送られる塩水に噴出されるものとしてもよい。塩素ガスはガスボンベに貯留されている。また、塩素系水溶液の代わりに固形塩素系薬剤が、投入装置によって、海102からポンプ121に送られる塩水に投入されるものとしてもよい。固形塩素系薬剤は例えば次亜塩素酸カルシウム、次亜塩素酸ナトリウム、塩素化イソシアヌル酸又はさらし粉である。固形塩素系薬剤は貯留タンクに予め貯留されている。 (A) In the second embodiment, the chlorine-based aqueous solution produced by the electrolyzer 131 is added to the salt water sent from the sea 102 to the pump 121 . Alternatively, a chlorine-based aqueous solution that has been generated in advance and stored in a storage tank or the like may be added to the salt water sent from the sea 102 to the pump 121 by the dosing device. The chlorine-based aqueous solution is, for example, an aqueous sodium hypochlorite solution, an aqueous hypochlorous acid solution, or an aqueous solution of chlorinated isocyanuric acid, but may be another chlorine-based aqueous solution. Alternatively, instead of the chlorine-based aqueous solution, chlorine gas may be spouted from the sea 102 into the salt water sent to the pump 121 . Chlorine gas is stored in gas cylinders. Also, instead of the chlorine-based aqueous solution, a solid chlorine-based chemical may be added to the salt water sent from the sea 102 to the pump 121 by an input device. Solid chlorine agents are, for example, calcium hypochlorite, sodium hypochlorite, chlorinated isocyanuric acid or bleaching powder. The solid chlorine chemical is stored in advance in a storage tank.
(B) 第2実施形態では、電気分解装置131によって生成された気体水素が気体溶解装置141の溶解槽141aに供給される。それに対して、添加装置130がガスボンベ又は水素添加装置を有し、ガスボンベに貯留された気体水素又は水素添加装置によって生成された気体水素が溶解槽141aに供給されてもよい。水素添加装置は、例えば、水を電気分解して水素と酸素を生成する電気分解装置である。 (B) In the second embodiment, the gaseous hydrogen generated by the electrolyzer 131 is supplied to the dissolution tank 141a of the gas dissolver 141. Alternatively, the addition device 130 may have a gas cylinder or a hydrogenation device, and gaseous hydrogen stored in the gas cylinder or gaseous hydrogen generated by the hydrogenation device may be supplied to the dissolution tank 141a. The hydrogenation device is, for example, an electrolysis device that electrolyzes water to produce hydrogen and oxygen.
<<第3の実施の形態>>
 図5は、魚介類等の水生生物が飼育される水処理設備210の構成を示すブロック図である。
 水処理設備210は、塩水を循環させて、循環中の塩水から排泄物、残餌及び濁質等の汚染物質を除去する閉鎖循環型飼育システムである。この水処理設備210は、水生生物の養殖、生きた魚介類の運搬、鮮魚販売所等における生きた魚介類の保管・飼育等に使用される。
<<Third Embodiment>>
FIG. 5 is a block diagram showing the configuration of a water treatment facility 210 in which aquatic organisms such as fish and shellfish are raised.
The water treatment facility 210 is a closed circulation breeding system that circulates salt water and removes contaminants such as excrement, leftover food, and turbidity from the circulating salt water. This water treatment facility 210 is used for cultivating aquatic organisms, transporting live fish and shellfish, and storing and breeding live fish and shellfish at fresh fish shops and the like.
 水処理設備210は、循環経路229、飼育水槽220、汚染物質除去装置221、添加装置230、熱交換器224、反応槽225、中和槽226及び循環ポンプ227を備える。汚染物質除去装置221は沈殿槽222及び加圧浮上式分離装置223を有する。 The water treatment facility 210 includes a circulation path 229 , a breeding tank 220 , a contaminant removal device 221 , an addition device 230 , a heat exchanger 224 , a reaction tank 225 , a neutralization tank 226 and a circulation pump 227 . The contaminant removal system 221 has a sedimentation tank 222 and a pressurized flotation separation system 223 .
 循環経路229は、配管等から構成されている。循環経路229は、塩水が循環する主経路である。
 循環経路229には、順に飼育水槽220、沈殿槽222、加圧浮上式分離装置223、反応槽225、中和槽226及び循環ポンプ227が設けられている。また、反応槽225と加圧浮上式分離装置223との間において分岐路256が循環経路229から分岐し、その分岐路256が熱交換器224を経由して反応槽225に接続されている。分岐路256においては、後述の添加装置230の電気分解装置231及び送液ポンプ235が熱交換器224と加圧浮上式分離装置223との間に設けられている。
The circulation path 229 is configured by piping or the like. Circulation path 229 is the main path through which salt water circulates.
The circulation path 229 is provided with a breeding tank 220, a sedimentation tank 222, a pressurized flotation separator 223, a reaction tank 225, a neutralization tank 226, and a circulation pump 227 in this order. A branch path 256 branches off from the circulation path 229 between the reaction vessel 225 and the pressurized flotation separator 223 , and the branch path 256 is connected to the reaction vessel 225 via the heat exchanger 224 . In the branch line 256 , an electrolyzer 231 and a liquid feed pump 235 of an addition device 230 to be described later are provided between the heat exchanger 224 and the pressurized levitation separation device 223 .
 循環ポンプ227は塩水に運動エネルギーを付与し、塩水を循環させる。塩水は飼育水槽220から順に沈殿槽222、加圧浮上式分離装置223、反応槽225、中和槽226及び循環ポンプ227を流れて、飼育水槽220に戻る。 The circulation pump 227 imparts kinetic energy to the salt water and circulates the salt water. The salt water flows from the breeding tank 220 through the sedimentation tank 222 , the pressurized flotation separator 223 , the reaction tank 225 , the neutralization tank 226 and the circulation pump 227 in order, and returns to the breeding tank 220 .
 飼育水槽220には、塩水が貯留される。魚介類等の水生生物は飼育水槽220内に飼育される。飼育水槽220の塩水は、汚染物質除去装置221の沈殿槽222に送られる。沈殿槽222には、塩水が貯留される。 The breeding tank 220 stores salt water. Aquatic organisms such as fish and shellfish are raised in the breeding tank 220 . The salt water in the breeding tank 220 is sent to the sedimentation tank 222 of the contaminant removal device 221 . Salt water is stored in the sedimentation tank 222 .
 汚染物質除去装置221は、塩水から汚染物質を分離させて、汚染物質を除去する。 The contaminant removal device 221 separates the contaminants from the salt water and removes the contaminants.
 汚染物質除去装置221の沈殿槽222は、塩水中に浮遊した汚染物質の沈降により、沈殿物と上澄液に分離する。その上澄液は加圧浮上式分離装置223に送られる。 The sedimentation tank 222 of the contaminant removal device 221 separates the contaminants suspended in the salt water into a sediment and a supernatant liquid. The supernatant is sent to the pressurized flotation separator 223 .
 加圧浮上式分離装置223は、空気が過飽和溶解した高圧な塩水を大気圧解放することによって生じた微細気泡に塩水中の汚染物質に付着させて、微細気泡とともに汚染物質を水面に浮上させることで、汚染物質を塩水から分離する。汚染物質が除去された塩水は、反応槽225及び添加装置230に送られる。 The pressurized flotation separation device 223 releases high-pressure salt water in which air is supersaturated and dissolved to atmospheric pressure, causing microbubbles generated in the salt water to adhere to contaminants in the salt water, thereby allowing the contaminants to float to the surface of the water together with the microbubbles. to separate the contaminants from the brine. The decontaminated brine is sent to reaction vessel 225 and addition device 230 .
 反応槽225内の塩水には、添加装置230によって生成された塩素系水溶液が添加される。反応槽225内では、塩素系水溶液による塩水の殺菌が進行する。また、塩水中のアンモニア等の窒素成分が塩素系水溶液と反応して、窒素成分が除去される。殺菌された塩水は中和槽226に送られる。 A chlorine-based aqueous solution generated by the addition device 230 is added to the salt water in the reaction tank 225 . In the reaction tank 225, the salt water is sterilized with the chlorine-based aqueous solution. Also, nitrogen components such as ammonia in the salt water react with the chlorine-based aqueous solution to remove the nitrogen components. The sterilized brine is sent to neutralization tank 226 .
 中和槽226内の塩水には、添加装置230によって生成された水素水が添加される。中和槽226内の塩水が水素水によって中和されて、その塩水中の残留塩素濃度が低減する。中和された塩水は循環ポンプ227を経由して飼育水槽220に送られる。 Hydrogen water generated by the addition device 230 is added to the salt water in the neutralization tank 226 . The salt water in the neutralization tank 226 is neutralized by the hydrogen water to reduce the concentration of residual chlorine in the salt water. The neutralized salt water is sent to the breeding tank 220 via the circulation pump 227 .
 添加装置230は、加圧浮上式分離装置223から送られた塩水から塩素系水溶液と水素水を生成する。添加装置230は、反応槽225内の塩水に塩素系水溶液を添加する。添加装置230は、中和槽226内の塩水に水素水を添加する。 The addition device 230 generates chlorine-based aqueous solution and hydrogen water from the salt water sent from the pressurized flotation separation device 223 . The addition device 230 adds chlorine-based aqueous solution to the salt water in the reaction tank 225 . Addition device 230 adds hydrogen water to the salt water in neutralization tank 226 .
 添加装置230は、電気分解装置231、送管234、気体溶解装置241、白金触媒251、送液ポンプ235,244及びバルブ253を有する。 The addition device 230 has an electrolyzer 231 , a pipe 234 , a gas dissolving device 241 , a platinum catalyst 251 , liquid feed pumps 235 and 244 and a valve 253 .
 電気分解装置231のインレットは、循環経路229における反応槽225と加圧浮上式分離装置223との間の部分に連結されている。そのため、加圧浮上式分離装置223において汚染物質が除去された塩水は電気分解装置231に供給される。 The inlet of the electrolyzer 231 is connected to a portion of the circulation path 229 between the reaction tank 225 and the pressurized float separation device 223 . Therefore, the salt water from which contaminants have been removed in the pressurized flotation separator 223 is supplied to the electrolyzer 231 .
 電気分解装置231の液用アウトレットは、送液ポンプ235を介して熱交換器224のインレットに連結されている。電気分解装置231の気体用アウトレットは、送管234を介して気体溶解装置241の気体用インレットに連結されている。
 気体溶解装置241の液用インレットは、送液ポンプ244を介して、循環経路229における反応槽225と加圧浮上式分離装置223との間の部分に連結されている。送液ポンプ244は、加圧浮上式分離装置223において汚染物質が除去された塩水を気体溶解装置241に供給する。
 気体溶解装置241の液用アウトレットは、バルブ253を介して中和槽226に連結されている。
A liquid outlet of the electrolyzer 231 is connected to an inlet of the heat exchanger 224 via a liquid pump 235 . A gas outlet of the electrolyzer 231 is connected to a gas inlet of the gas dissolver 241 via a pipe 234 .
A liquid inlet of the gas dissolving device 241 is connected to a portion of the circulation path 229 between the reaction tank 225 and the pressurized levitation separation device 223 via a liquid sending pump 244 . The liquid feed pump 244 supplies the salt water from which contaminants have been removed in the pressurized float separation device 223 to the gas dissolving device 241 .
The liquid outlet of gas dissolver 241 is connected to neutralization tank 226 via valve 253 .
 電気分解装置231は、加圧浮上式分離装置223から供給された塩水を電気分解することによって、電気分解装置231の陽極に塩素を生成し、陰極に水素を生成する。電気分解装置231の陽極にて発生した塩素が塩水に溶解して、塩素系水溶液が生成される。生成された塩素系水溶液は、送液ポンプ235によって電気分解装置231から熱交換器224に送られる。そのため、熱交換器224が殺菌処理され、熱交換器224内の微生物の繁殖が抑制される。 The electrolyzer 231 electrolyzes the salt water supplied from the pressurized float separator 223 to produce chlorine at the anode of the electrolyzer 231 and hydrogen at the cathode. Chlorine generated at the anode of the electrolyzer 231 dissolves in salt water to produce a chlorine-based aqueous solution. The generated chlorine-based aqueous solution is sent from the electrolyzer 231 to the heat exchanger 224 by the liquid sending pump 235 . Therefore, the heat exchanger 224 is sterilized, and propagation of microorganisms in the heat exchanger 224 is suppressed.
 熱交換器224は、熱交換により塩素系水溶液の温度調整をする。通常は、塩素系水溶液が熱交換器224により加熱されるが、冷却されるものとしてもよい。熱交換器224によって温度調整された塩素系水溶液は反応槽225に送られて、塩素系水溶液と塩水が反応槽225内にて混合される。反応槽225内では、塩素系水溶液による塩水の殺菌が進行する。ここで、反応槽225は、循環経路229において塩素系水溶液が添加される第1所定位置に相当する。 The heat exchanger 224 adjusts the temperature of the chlorine-based aqueous solution by heat exchange. Normally, the chlorine-based aqueous solution is heated by the heat exchanger 224, but it may be cooled. The chlorine-based aqueous solution temperature-controlled by the heat exchanger 224 is sent to the reaction tank 225 , and the chlorine-based aqueous solution and salt water are mixed in the reaction tank 225 . In the reaction tank 225, the salt water is sterilized with the chlorine-based aqueous solution. Here, the reaction tank 225 corresponds to a first predetermined position in the circulation path 229 to which the chlorine-based aqueous solution is added.
 電気分解装置231の陰極にて発生した水素分子が脱気塔又は受槽等において塩水から分離して、気体水素が塩水から発生する。その気体水素は電気分解装置231から送管234を通って気体溶解装置241に送られる。 The hydrogen molecules generated at the cathode of the electrolyzer 231 are separated from the salt water in the degassing tower or the receiving tank, and gaseous hydrogen is generated from the salt water. The gaseous hydrogen is sent from the electrolyzer 231 to the gas dissolver 241 through the pipe 234 .
 気体溶解装置241は、送液ポンプ244によって供給された塩水に、電気分解装置231から導入された気体水素を溶解させる。気体溶解装置241は溶解槽241a及び不図示の噴出部を有する。溶解槽241aは、送液ポンプ244によって供給された塩水を貯留する貯留部である。噴出部は、電気分解装置231から導入された気体水素を溶解槽241a中の塩水に泡状に噴出する。噴出された気体水素が塩水に溶解して、溶存水素を含む水素水が生成される。気体水素が効率的に塩水に溶解するように、溶解槽241aの内部がコンプレッサー等によって高圧に加圧されてもよい。 The gas dissolver 241 dissolves the gaseous hydrogen introduced from the electrolyzer 231 into the salt water supplied by the liquid feed pump 244 . The gas dissolving device 241 has a dissolving tank 241a and an ejection part (not shown). The dissolution tank 241a is a storage section that stores the salt water supplied by the liquid-sending pump 244 . The ejection part ejects the gaseous hydrogen introduced from the electrolyzer 231 into the salt water in the dissolution tank 241a in the form of bubbles. The ejected gaseous hydrogen dissolves in the salt water to produce hydrogen water containing dissolved hydrogen. The inside of the dissolving tank 241a may be pressurized to a high pressure by a compressor or the like so that the gaseous hydrogen is efficiently dissolved in the salt water.
 溶解槽241aには白金触媒251が設けられて、白金触媒251が溶解槽241a内の水素水に浸漬される。溶解槽241a内の水素水が白金触媒251と接触すると、水素水が活性化されて、水素水の還元力が増強される。なお、白金触媒251は、第10族元素金属(例えば、ニッケル、白金)、金属酸化物(例えば銅-酸化クロム)及び白金族金属(例えば、ルテニウム、パラジウム、ロジウム)からなる群の中から選ばれた少なくとも1つの物質を含む還元性触媒に代えられてもよい。 A platinum catalyst 251 is provided in the dissolution tank 241a, and the platinum catalyst 251 is immersed in hydrogen water in the dissolution tank 241a. When the hydrogen water in the dissolution tank 241a contacts the platinum catalyst 251, the hydrogen water is activated and the reducing power of the hydrogen water is enhanced. The platinum catalyst 251 is selected from the group consisting of Group 10 element metals (eg, nickel, platinum), metal oxides (eg, copper-chromium oxide), and platinum group metals (eg, ruthenium, palladium, rhodium). may be replaced by a reducing catalyst comprising at least one substance with a
 溶解槽241aにおいて生成された水素水は、バルブ253を通って、中和槽226内の塩水に添加される。ここで、中和槽226は、循環経路229において水素水が添加される第2所定位置に相当する。
 バルブ253は、水素水の投入流量を調整する。
The hydrogen water produced in the dissolution tank 241 a is added to the salt water in the neutralization tank 226 through the valve 253 . Here, the neutralization tank 226 corresponds to a second predetermined position in the circulation path 229 to which hydrogen water is added.
A valve 253 adjusts the flow rate of hydrogen water.
 中和槽226内の塩水が水素水によって中和されて、その塩水中の残留塩素濃度が低減する。特に、水素水が白金触媒251によって活性化されて、その水素水の還元力が増強されているため、塩素の残留塩素濃度の低減が大きい。中和された塩水は循環ポンプ227を通って飼育水槽220に送られる。 The salt water in the neutralization tank 226 is neutralized with hydrogen water, and the concentration of residual chlorine in the salt water is reduced. In particular, since the hydrogen water is activated by the platinum catalyst 251 and the reducing power of the hydrogen water is enhanced, the residual chlorine concentration of chlorine is greatly reduced. The neutralized salt water is sent to the breeding tank 220 through the circulation pump 227 .
 以上の第3実施形態によれば、以下のような有利な効果をもたらす。 According to the above third embodiment, the following advantageous effects are obtained.
(1) 熱交換器224が塩素系水溶液によって殺菌され、熱交換器224における微生物の繁殖が抑制される。 (1) The heat exchanger 224 is sterilized with a chlorine-based aqueous solution, and the breeding of microorganisms in the heat exchanger 224 is suppressed.
(2) 電気分解装置231によって生成された塩素系水溶液が、第1所定位置としての反応槽225内の塩水に添加される。反応槽225内の塩水が塩素系水溶液によって殺菌され、循環する塩水中の微生物の繁殖が抑えられる。また、飼育中の水生生物の排泄物に起因するアンモニア等が塩素系水溶液によって分解される。よって、循環する塩水を清潔に保てる。 (2) The chlorine-based aqueous solution generated by the electrolyzer 231 is added to the salt water in the reaction tank 225 as the first predetermined position. The salt water in the reaction tank 225 is sterilized by the chlorine-based aqueous solution, and propagation of microorganisms in the circulating salt water is suppressed. In addition, ammonia and the like resulting from the excrement of aquatic organisms being reared are decomposed by the chlorine-based aqueous solution. Therefore, the circulating salt water can be kept clean.
(3) 気体溶解装置241によって生成された水素水が、第2所定位置としての中和槽226内の塩水に添加される。中和槽226内の塩水が水素水により中和されて、その塩水の残留塩素濃度が低減される。水素水は塩水に添加される前に、白金触媒251によって活性化されたものであるから、水素水による塩水の残留塩素濃度の低減効果が高い。残留塩素が除去された塩水が飼育水槽220に戻るため、飼育水槽220内にて水生生物を飼育することができる。 (3) The hydrogen water generated by the gas dissolving device 241 is added to the salt water in the neutralization tank 226 as the second predetermined position. The salt water in the neutralization tank 226 is neutralized with hydrogen water to reduce the residual chlorine concentration of the salt water. Since the hydrogen water is activated by the platinum catalyst 251 before being added to the salt water, the hydrogen water is highly effective in reducing the residual chlorine concentration of the salt water. Since the salt water from which residual chlorine has been removed returns to the breeding tank 220, aquatic organisms can be reared in the breeding tank 220. - 特許庁
(4) 白金触媒251が気体溶解装置241の溶解槽241aに配置され、生成された水素水が溶解槽241aに貯留されるため、水素水が白金触媒251と長時間接触する。それゆえ、水素水の活性化も高まり、水素水による塩水の残留塩素濃度の低減効果が高まる。 (4) The platinum catalyst 251 is placed in the dissolution tank 241a of the gas dissolving device 241, and the hydrogen water produced is stored in the dissolution tank 241a, so that the hydrogen water comes into contact with the platinum catalyst 251 for a long time. Therefore, the activation of the hydrogen water is also enhanced, and the effect of reducing the residual chlorine concentration of the salt water by the hydrogen water is enhanced.
(5) 反応槽225内の塩水の残留塩素濃度を高くすることによる殺菌効果の向上と、中和槽226内の塩水の残留塩素を除去することによる毒性低下とを両立できる。 (5) It is possible to improve the sterilization effect by increasing the residual chlorine concentration of the salt water in the reaction tank 225 and reduce the toxicity by removing the residual chlorine in the salt water in the neutralization tank 226 .
(6) 循環する塩水を利用して塩素系水溶液及び水素水を生成するため、塩素系薬剤及び水素を別途準備しなくても済む。よって、低コストで水生生物を飼育することができる。 (6) Since chlorine-based aqueous solution and hydrogen water are generated using circulating salt water, there is no need to separately prepare chlorine-based chemicals and hydrogen. Therefore, aquatic organisms can be bred at low cost.
<<第3の実施の形態の変形例>>
 以上に第3実施形態について説明した。以上の第3実施形態は変更又は改良され得る。以上の第3実施形態からの変更点について以下に説明する。以下に説明する各変更点を組み合わせて適用してもよい。
<<Modified example of the third embodiment>>
The third embodiment has been described above. The third embodiment described above may be modified or improved. Changes from the third embodiment described above will be described below. The modifications described below may be applied in combination.
(A) 第3実施形態では、電気分解装置231によって生成された塩素系水溶液が、反応槽225内の塩水に添加される。それに対して、予め生成されて且つ貯留槽等に貯留された塩素系水溶液が、投入装置によって反応槽225内の塩水に添加されてもよい。塩素系水溶液は例えば次亜塩素酸ナトリウム水溶液、次亜塩素酸水溶液又は塩素化イソシアヌル酸水溶液であるが、それ以外の塩素系水溶液であってもよい。また、塩素系水溶液の代わりに塩素ガスが反応槽225内の塩水に噴出されるものとしてもよい。塩素ガスはガスボンベに貯留されている。また、塩素系水溶液の代わりに固形塩素系薬剤が投入装置によって反応槽225内の塩水に投入されるものとしてもよい。固形塩素系薬剤は例えば次亜塩素酸カルシウム、次亜塩素酸ナトリウム、塩素化イソシアヌル酸又はさらし粉である。固形塩素系薬剤は貯留タンクに予め貯留されている。 (A) In the third embodiment, the chlorine-based aqueous solution produced by the electrolyzer 231 is added to the salt water in the reaction tank 225 . On the other hand, a chlorine-based aqueous solution that has been generated in advance and stored in a storage tank or the like may be added to the salt water in the reaction tank 225 by an injection device. The chlorine-based aqueous solution is, for example, an aqueous sodium hypochlorite solution, an aqueous hypochlorous acid solution, or an aqueous solution of chlorinated isocyanuric acid, but may be another chlorine-based aqueous solution. Chlorine gas may be jetted into the salt water in the reaction tank 225 instead of the chlorine-based aqueous solution. Chlorine gas is stored in gas cylinders. Also, instead of the chlorine-based aqueous solution, a solid chlorine-based chemical may be added to the salt water in the reaction tank 225 by an input device. Solid chlorine agents are, for example, calcium hypochlorite, sodium hypochlorite, chlorinated isocyanuric acid or bleaching powder. The solid chlorine chemical is stored in advance in a storage tank.
(B) 第3実施形態では、電気分解装置231によって生成された気体水素が気体溶解装置241の溶解槽241aに供給される。それに対して、添加装置230がガスボンベ又は水素添加装置を有し、ガスボンベに貯留された気体水素又は水素添加装置によって生成された気体水素が溶解槽241aに供給されてもよい。水素添加装置は、例えば、水を電気分解して水素と酸素を生成する電気分解装置である。 (B) In the third embodiment, the gaseous hydrogen generated by the electrolyzer 231 is supplied to the dissolution tank 241a of the gas dissolver 241. Alternatively, the addition device 230 may have a gas cylinder or a hydrogenation device, and gaseous hydrogen stored in the gas cylinder or gaseous hydrogen generated by the hydrogenation device may be supplied to the dissolution tank 241a. The hydrogenation device is, for example, an electrolysis device that electrolyzes water to produce hydrogen and oxygen.
<<第4の実施の形態>>
 図6及び図7は、船舶に搭載された水処理設備310の構成を示すブロック図である。図6及び図7中、太線の矢印は塩水の流れを表す。図6では、海302の塩水を取り入れる際の塩水の流れが太線の矢印で表され、図7では、塩水を海302に放出する際の塩水の流れが太線の矢印で表されている。図6及び図7中、閉じたバルブの記号は黒塗りで表され、開いたバルブの記号は白抜きで表されている。
<<Fourth Embodiment>>
6 and 7 are block diagrams showing the configuration of water treatment equipment 310 mounted on a ship. In FIGS. 6 and 7, thick arrows represent the flow of salt water. In FIG. 6, the flow of salt water as it takes in salt water from the sea 302 is represented by the thick arrows, and in FIG. In FIGS. 6 and 7, the symbols for closed valves are shown in black and those for open valves are shown in white.
 この水処理設備310は、船舶に対して塩水を出し入れすることによって、船舶の重量を調整して船舶の浮上及び沈降を調整するバラスト調整システムである。 This water treatment facility 310 is a ballast adjustment system that adjusts the weight of the ship and adjusts the rising and sinking of the ship by taking salt water into and out of the ship.
 水処理設備310は、取水口320、バルブ321a,321b、ポンプ322、バルブ323a,323b、濾過装置324、バルブ325、混合器327、バラストタンク360、バルブ328a,328b、放水口361及び添加装置330を備える。 The water treatment facility 310 includes a water intake 320, valves 321a and 321b, a pump 322, valves 323a and 323b, a filtration device 324, a valve 325, a mixer 327, a ballast tank 360, valves 328a and 328b, a water outlet 361, and an addition device 330. Prepare.
 取水口320は、船舶に設けられている。取水口320は、船外の海302から塩水を取り込む。この取水口320は、配管を介してバルブ321aに連結されている。 The water intake 320 is provided on the ship. Water intake 320 takes in salt water from outboard sea 302 . This water intake 320 is connected to a valve 321a via a pipe.
 バルブ321aは、配管を介してポンプ322に連結されている。バルブ321aは、取水口320からポンプ322までの塩水の経路を開閉する。 The valve 321a is connected to the pump 322 via piping. The valve 321 a opens and closes the path of salt water from the water intake 320 to the pump 322 .
 ポンプ322は、配管を介してバルブ323a,323bに連結されている。ポンプ322は、図6に示すように海302から取り入れられる塩水の流れの運動エネルギーも、図7に示すように海302に放出される塩水の流れの運動エネルギーも発生させる。 The pump 322 is connected to valves 323a and 323b via piping. The pump 322 generates both the kinetic energy of the saltwater flow taken from the sea 302 as shown in FIG. 6 and the kinetic energy of the saltwater flow discharged into the sea 302 as shown in FIG.
 バルブ323aは、配管を介して濾過装置324に連結されている。バルブ323bは、配管を介して、バルブ325と混合器327との間の配管326に連結されている。ポンプ322からバルブ323bを経由して配管326までの経路をバイパス経路という。
 バルブ323aは、ポンプ322から濾過装置324までの塩水の経路を開閉する。バルブ323bは、ポンプ322から配管326までの塩水のバイパス経路を開閉する。ここで、バルブ323a,323bの組み合わせは、塩水の流れを切り換える方向制御部である。具体的には、バルブ323aが開き、バルブ323bが閉じた場合には、ポンプ322から濾過装置324への塩水の流れが許容され、ポンプ322からバイパス経路を経由して混合器327への塩水の流れが遮断される。一方、バルブ323aが閉じ、バルブ323bが開いた場合には、ポンプ322から濾過装置324への塩水の流れが遮断され、ポンプ322からバイパス経路を経由して混合器327への塩水の流れが許容される。
The valve 323a is connected to the filtering device 324 via piping. The valve 323b is connected to a pipe 326 between the valve 325 and the mixer 327 via a pipe. A route from the pump 322 to the pipe 326 via the valve 323b is called a bypass route.
Valve 323 a opens and closes the path of salt water from pump 322 to filter 324 . The valve 323 b opens and closes a salt water bypass route from the pump 322 to the pipe 326 . Here, the combination of valves 323a and 323b is a directional control unit that switches the flow of salt water. Specifically, when the valve 323a is open and the valve 323b is closed, the brine is allowed to flow from the pump 322 to the filtration device 324, and the brine from the pump 322 to the mixer 327 via the bypass path. flow is interrupted. On the other hand, when the valve 323a is closed and the valve 323b is opened, the flow of salt water from the pump 322 to the filtering device 324 is blocked, and the flow of salt water from the pump 322 to the mixer 327 is allowed via the bypass route. be done.
 濾過装置324は、バルブ325に連結されている。濾過装置324は、濾過装置324に流れる塩水を濾過する。 The filtering device 324 is connected to the valve 325 . Filtration device 324 filters the salt water flowing through filtration device 324 .
 バルブ325は、配管326を介して混合器327に連結されている。バルブ325は、濾過装置324から混合器327までの塩水の経路を開閉する。混合器327は、配管を介してバルブ328a,328bに連結されている。 The valve 325 is connected to the mixer 327 via a pipe 326. Valve 325 opens and closes the path of brine from filter 324 to mixer 327 . Mixer 327 is connected to valves 328a and 328b via piping.
 バルブ328aは、配管を介してバラストタンク360に連結されている。バルブ328aは、混合器327からバラストタンク360までの塩水の経路を開閉する。バルブ328bは、配管を介して放水口361に連結されている。バルブ328bは、混合器327から放水口361までの塩水の経路を開閉する。 The valve 328a is connected to the ballast tank 360 via piping. Valve 328a opens and closes the passage of salt water from mixer 327 to ballast tank 360 . The valve 328b is connected to the water outlet 361 via piping. The valve 328b opens and closes the passage of salt water from the mixer 327 to the water outlet 361.
 ここで、バルブ328a,328bの組み合わせは、塩水の流れを切り換える方向制御部である。具体的には、バルブ328aが開き、バルブ328bが閉じた場合には、混合器327からバラストタンク360への塩水の流れが許容され、混合器327から放水口361への塩水の流れが遮断される。一方、バルブ328aが閉じ、バルブ328bが開いた場合には、混合器327からバラストタンク360への塩水の流れが遮断され、混合器327から放水口361への塩水の流れが許容される。 Here, the combination of valves 328a and 328b is a directional control unit that switches the flow of salt water. Specifically, when the valve 328a is opened and the valve 328b is closed, the flow of salt water from the mixer 327 to the ballast tank 360 is permitted, and the flow of salt water from the mixer 327 to the water outlet 361 is blocked. be. On the other hand, when the valve 328a is closed and the valve 328b is opened, the flow of salt water from the mixer 327 to the ballast tank 360 is blocked and the flow of salt water from the mixer 327 to the water outlet 361 is allowed.
 放水口361は、船舶に設けられている。放水口361は、塩水を船外の海302へ放出する。 The water outlet 361 is provided on the ship. Outlet 361 discharges salt water outboard to sea 302 .
 バラストタンク360は、塩水を貯留する。バラストタンク360に貯留される塩水は船舶の安定性を提供するために使用され、その塩水の量の増減によって船舶のバランスが取られる。例えば、船舶に積載される貨物が重い場合には、バラストタンク360内の塩水の量が少なく、船舶に積載される貨物が軽い場合には、バラストタンク360の塩水の量が多い。 The ballast tank 360 stores salt water. The saltwater stored in ballast tanks 360 is used to provide vessel stability, and increasing or decreasing the amount of saltwater balances the vessel. For example, if the cargo loaded on the ship is heavy, the amount of salt water in the ballast tank 360 is small, and if the cargo loaded on the ship is light, the amount of salt water in the ballast tank 360 is large.
 バラストタンク360は、バルブ321bに連結されている。バルブ321bは、ポンプ322に連結されている。バルブ321bは、バラストタンク360からポンプ322への塩水の経路を開閉する。ここで、バルブ321a,321bの組み合わせは、塩水の流れを切り換える方向制御部である。具体的には、バルブ321aが開き、バルブ321bが閉じた場合には、取水口320からポンプ322への塩水の流れが許容され、バラストタンク360からポンプ322への塩水の流れが遮断される。一方、バルブ321aが閉じ、バルブ321bが開いた場合には、取水口320からポンプ322への塩水の流れが遮断され、バラストタンク360からポンプ322への塩水の流れが許容される。 The ballast tank 360 is connected to the valve 321b. Valve 321 b is connected to pump 322 . Valve 321 b opens and closes the path of salt water from ballast tank 360 to pump 322 . Here, the combination of valves 321a and 321b is a directional control unit that switches the flow of salt water. Specifically, when the valve 321a is opened and the valve 321b is closed, the flow of salt water from the water intake 320 to the pump 322 is permitted, and the flow of salt water from the ballast tank 360 to the pump 322 is blocked. On the other hand, when the valve 321a is closed and the valve 321b is opened, the flow of salt water from the water intake 320 to the pump 322 is blocked and the flow of salt water from the ballast tank 360 to the pump 322 is permitted.
 バルブ321a,321b,323a,323b,325,328a,328bは、取水口320からバラストタンク360までの塩水の取水経路を確立したり、その取水経路の確立を解除したりする。また、バルブ321a,321b,323a,323b,325,328a,328bは、取水経路の確立の解除の際に、バラストタンク360から放水口361までの放水経路を確立したり、取水経路の確立の際に、バラストタンク360から放水口361までの経路の確立を解除したりする。 The valves 321a, 321b, 323a, 323b, 325, 328a, and 328b establish a salt water intake route from the water intake 320 to the ballast tank 360, or cancel establishment of the water intake route. In addition, the valves 321a, 321b, 323a, 323b, 325, 328a, and 328b establish a water discharge route from the ballast tank 360 to the water outlet 361 when canceling the establishment of the water intake route, or when the water intake route is established. In addition, the establishment of the route from the ballast tank 360 to the water outlet 361 is cancelled.
 具体的には、図6に示すように、バルブ321a,323a,325,328aが開き、バルブ321b,323b,328bが閉じると、取水口320から順に、ポンプ322、濾過装置324及び混合器327を経由してバラストタンク360までの塩水の取水経路が確立される。このような取水経路は、取水時の塩水の主経路である。一方、図7に示すように、バルブ321a,323a,325,328aが閉じ、バルブ321b,323b,328bが開くと、バラストタンク360から順に、ポンプ322及び混合器327を経由して放水口361までの塩水の放水経路が確立される。このような放水経路は、放水時の塩水の主経路である。 Specifically, as shown in FIG. 6, when the valves 321a, 323a, 325, 328a are opened and the valves 321b, 323b, 328b are closed, the pump 322, the filtration device 324, and the mixer 327 are sequentially operated from the intake port 320. A salt water intake route is established to the ballast tank 360 via. Such a water intake route is the main route of salt water at the time of water intake. On the other hand, as shown in FIG. 7, when the valves 321a, 323a, 325, and 328a are closed and the valves 321b, 323b, and 328b are opened, the ballast tank 360 passes through the pump 322 and the mixer 327 to the water outlet 361 in order. salt water discharge route is established. Such a water discharge route is the main route of salt water at the time of water discharge.
 取水経路と放水経路のどちらが確立された場合でも、ポンプ322が作動することによって塩水が取水経路又は放水経路を流れる。塩水が取水経路を流れる際には、その塩水がバラストタンク360に貯留されるため、バラストタンク360内の塩水が増加する。塩水が放水経路を流れる際には、塩水が海302に放出されて、バラストタンク360内の塩水が減少する。 Regardless of whether the water intake route or the water discharge route is established, the operation of the pump 322 causes salt water to flow through the water intake route or the water discharge route. When salt water flows through the water intake path, the salt water is stored in ballast tank 360, so the salt water in ballast tank 360 increases. As the saltwater flows through the discharge path, it is released into the sea 302 and reduces the amount of saltwater in the ballast tanks 360 .
 塩水が取水経路を流れる際には、添加装置330がその塩水から塩素系水溶液を生成して、取水経路を流れる塩水に塩素系水溶液を添加する。そのため、バラストタンク360に貯留される塩水が塩素系水溶液によって殺菌処理され、その塩水中の水生生物の繁殖が抑制される。 When the salt water flows through the water intake path, the addition device 330 generates a chlorine-based aqueous solution from the salt water and adds the chlorine-based aqueous solution to the salt water flowing through the water intake path. Therefore, the salt water stored in the ballast tank 360 is sterilized with the chlorine-based aqueous solution, and the breeding of aquatic organisms in the salt water is suppressed.
 塩水が放水経路を流れる際には、添加装置130がその塩水から塩素系水溶液及び水素水を生成して、放水経路を流れる塩水に塩素系水溶液を添加した上で、塩素系水溶液の添加位置よりも下流側で水素水も添加する。そのため、海302に放出される塩水中の残留塩素濃度が低減し、海302の自然環境に悪影響を及ぼさない。 When salt water flows through the water discharge path, the addition device 130 generates a chlorine-based aqueous solution and hydrogen water from the salt water, adds the chlorine-based aqueous solution to the salt water flowing in the water discharge path, and then releases the chlorine-based aqueous solution from the addition position. Hydrogen water is also added downstream. Therefore, the residual chlorine concentration in the salt water discharged into the sea 302 is reduced, and the natural environment of the sea 302 is not adversely affected.
 添加装置330は、電気分解装置331、気体溶解装置341、白金触媒351、送液ポンプ335,344及びバルブ334a,334b,353を有する。 The addition device 330 has an electrolyzer 331, a gas dissolver 341, a platinum catalyst 351, liquid feed pumps 335, 344, and valves 334a, 334b, 353.
 電気分解装置331のインレットは、送液ポンプ335を介して、バルブ325と混合器327との間の配管326に連結されている。電気分解装置331の液用アウトレットは、バルブ325と混合器327との間の配管326に連結されている。電気分解装置331のインレットが送液ポンプ335を介して配管326に接続される位置は、電気分解装置331の液用アウトレットが配管326に接続される位置よりもバルブ325寄りであり、且つ、バルブ323bが配管326に連結される位置よりも混合器327寄りである。電気分解装置331の気体用アウトレットは、バルブ334a,334bに連結されている。 The inlet of the electrolyzer 331 is connected to the pipe 326 between the valve 325 and the mixer 327 via the liquid feed pump 335 . The liquid outlet of electrolyzer 331 is connected to piping 326 between valve 325 and mixer 327 . The position where the inlet of the electrolyzer 331 is connected to the pipe 326 via the liquid feed pump 335 is closer to the valve 325 than the position where the liquid outlet of the electrolyzer 331 is connected to the pipe 326, and the valve 323 b is closer to the mixer 327 than the position where it is connected to the pipe 326 . The gas outlets of electrolyzer 331 are connected to valves 334a and 334b.
 送液ポンプ335は、取水経路と放水経路のどちらが確立された場合でも、作動する。送液ポンプ335は、バルブ325と混合器327との間の配管326に流れる塩水を電気分解装置331に供給する。 The liquid-sending pump 335 operates regardless of whether the water intake route or the water discharge route is established. The liquid feed pump 335 supplies salt water flowing through the pipe 326 between the valve 325 and the mixer 327 to the electrolyzer 331 .
 電気分解装置331は、送液ポンプ335によって送られた塩水を電気分解することによって、電気分解装置331の陽極に塩素を生成し、陰極に水素を生成する。電気分解装置331の陽極にて発生した塩素が塩水に溶解して、塩素系水溶液が生成される。生成された塩素系水溶液は、バルブ325と混合器327との間の配管326に送られる。ここで、バルブ325と混合器327との間の配管326は、塩水の放水経路において塩素系水溶液が添加される第1所定位置に相当する。 The electrolyzer 331 electrolyzes the salt water sent by the liquid sending pump 335 to generate chlorine at the anode of the electrolyzer 331 and hydrogen at the cathode. Chlorine generated at the anode of the electrolyzer 331 dissolves in salt water to produce a chlorine-based aqueous solution. The produced chlorine-based aqueous solution is sent to the pipe 326 between the valve 325 and the mixer 327 . Here, the pipe 326 between the valve 325 and the mixer 327 corresponds to the first predetermined position where the chlorine-based aqueous solution is added in the salt water discharge path.
 電気分解装置331の陰極にて発生した水素分子が脱気塔又は受槽等において塩水から分離して、気体水素が塩水から発生する。その気体水素は電気分解装置331からバルブ334a,334bに流れる。 The hydrogen molecules generated at the cathode of the electrolyzer 331 are separated from the salt water in the degassing tower or the receiving tank, and gaseous hydrogen is generated from the salt water. The gaseous hydrogen flows from electrolyzer 331 to valves 334a, 334b.
 バルブ334aは、排気口に連結されている。取水経路が確立されている場合、バルブ334aが電気分解装置331から排気口までの気体水素の経路を開き、放水経路が確立されている場合、バルブ334aが電気分解装置331から排気口までの気体水素の経路を閉じる。バルブ334bは、気体溶解装置341の気体用インレットに連結されている。取水経路が確立されている場合、バルブ334bが電気分解装置331から気体溶解装置341までの気体水素の経路を閉じ、放水経路が確立されている場合、バルブ334bが電気分解装置331から気体溶解装置341までの気体水素の経路を開く。ここで、バルブ334a.334bの組み合わせは、気体水素の流れを切り換える方向制御部である。具体的には、バルブ334aが開き、バルブ334bが閉じた場合には、電気分解装置331から排気口までの気体水素の流れが許容され、電気分解装置331から気体溶解装置341への気体水素の流れが遮断される。一方、バルブ334aが閉じ、バルブ334bが開いた場合には、電気分解装置331から排気口への気体水素の流れが遮断され、電気分解装置331から気体溶解装置341への気体水素の流れが許容される。 The valve 334a is connected to the exhaust port. When the water intake path is established, the valve 334a opens the gaseous hydrogen path from the electrolyzer 331 to the exhaust port, and when the water discharge path is established, the valve 334a opens the gaseous hydrogen path from the electrolyzer 331 to the exhaust port. Closes the hydrogen pathway. The valve 334 b is connected to the gas inlet of the gas dissolver 341 . When the water intake path is established, the valve 334b closes the path of gaseous hydrogen from the electrolyzer 331 to the gas dissolver 341, and when the water discharge path is established, the valve 334b closes the path of gaseous hydrogen from the electrolyzer 331 to the gas dissolver. Open the path for gaseous hydrogen to 341. Here, valve 334a . Combination 334b is a directional control that switches the flow of gaseous hydrogen. Specifically, when the valve 334a is opened and the valve 334b is closed, gaseous hydrogen is permitted to flow from the electrolyzer 331 to the exhaust port, and gaseous hydrogen from the electrolyzer 331 to the gas dissolver 341 is permitted. flow is interrupted. On the other hand, when the valve 334a is closed and the valve 334b is opened, the flow of gaseous hydrogen from the electrolyzer 331 to the exhaust port is blocked, and the flow of gaseous hydrogen from the electrolyzer 331 to the gas dissolver 341 is permitted. be done.
 気体溶解装置341の液用インレットは、送液ポンプ344を介して、バルブ325と混合器327との間の配管326に連結されている。気体溶解装置341の液用インレットが送液ポンプ344を介して配管326に連結される位置は、バルブ323bが配管326に連結される位置よりも混合器327寄りであり、且つ、電気分解装置331のインレットが送液ポンプ335を介して配管326に接続される位置よりもバルブ325寄りである。気体溶解装置341の液用アウトレットは、バルブ353に連結されている。バルブ353は、混合器327に連結されている。 A liquid inlet of the gas dissolving device 341 is connected to the pipe 326 between the valve 325 and the mixer 327 via a liquid feed pump 344 . The position where the liquid inlet of the gas dissolving device 341 is connected to the pipe 326 via the liquid feed pump 344 is closer to the mixer 327 than the position where the valve 323b is connected to the pipe 326, and the electrolyzer 331 inlet is closer to the valve 325 than the position where the inlet is connected to the pipe 326 via the liquid feed pump 335 . The liquid outlet of gas dissolver 341 is connected to valve 353 . Valve 353 is connected to mixer 327 .
 取水経路が確立された場合、送液ポンプ344が停止されるとともに、バルブ353が閉じる。放水経路が確立された場合、送液ポンプ344が作動するとともに、バルブ353が開く。送液ポンプ344は、バルブ325と混合器327との間の配管326に流れる塩水を気体溶解装置341に供給する。 When the water intake route is established, the liquid transfer pump 344 is stopped and the valve 353 is closed. When the water discharge path is established, the liquid transfer pump 344 is activated and the valve 353 is opened. The liquid-sending pump 344 supplies salt water flowing through the pipe 326 between the valve 325 and the mixer 327 to the gas dissolving device 341 .
 気体溶解装置341は、送液ポンプ344によって供給された塩水に、電気分解装置331から導入された気体水素を溶解させる。気体溶解装置341は溶解槽341a及び不図示の噴出部を有する。溶解槽341aは、送液ポンプ344によって供給された塩水を貯留する貯留部である。噴出部は、電気分解装置331から導入された気体水素を溶解槽341a中の塩水に泡状に噴出する。噴出された気体水素が塩水に溶解して、溶存水素を含む水素水が生成される。気体水素が効率的に塩水に溶解するように、溶解槽341aの内部がコンプレッサー等によって高圧に加圧されてもよい。 The gas dissolver 341 dissolves the gaseous hydrogen introduced from the electrolyzer 331 into the salt water supplied by the liquid feed pump 344 . The gas dissolving device 341 has a dissolving tank 341a and an ejection part (not shown). The dissolution tank 341a is a storage section that stores the salt water supplied by the liquid-sending pump 344 . The ejection part ejects the gaseous hydrogen introduced from the electrolyzer 331 into the salt water in the dissolution tank 341a in the form of bubbles. The ejected gaseous hydrogen dissolves in the salt water to produce hydrogen water containing dissolved hydrogen. The inside of the dissolution tank 341a may be pressurized to a high pressure by a compressor or the like so that the gaseous hydrogen is efficiently dissolved in the salt water.
 溶解槽341aには白金触媒351が設けられて、白金触媒351が溶解槽341a内の水素水に浸漬される。溶解槽341a内の水素水が白金触媒351と接触すると、水素水が活性化されて、水素水の還元力が増強される。なお、白金触媒351は、第10族元素金属(例えば、ニッケル、白金)、金属酸化物(例えば銅-酸化クロム)及び白金族金属(例えば、ルテニウム、パラジウム、ロジウム)からなる群の中から選ばれた少なくとも1つの物質を含む還元性触媒に代えられてもよい。 A platinum catalyst 351 is provided in the dissolution tank 341a, and the platinum catalyst 351 is immersed in hydrogen water in the dissolution tank 341a. When the hydrogen water in the dissolution tank 341a contacts the platinum catalyst 351, the hydrogen water is activated and the reducing power of the hydrogen water is enhanced. The platinum catalyst 351 is selected from the group consisting of Group 10 element metals (eg, nickel, platinum), metal oxides (eg, copper-chromium oxide), and platinum group metals (eg, ruthenium, palladium, rhodium). may be replaced by a reducing catalyst comprising at least one substance with a
 溶解槽341aにおいて生成された水素水は、バルブ353を通って、混合器327内の塩水に添加される。ここで、混合器327は、塩水の放水経路において水素水が添加される第2所定位置に相当する。
 バルブ353は、水素水の投入流量を調整する。
The hydrogen water produced in the dissolution tank 341 a is added to the salt water in the mixer 327 through the valve 353 . Here, the mixer 327 corresponds to a second predetermined position where hydrogen water is added in the salt water discharge path.
A valve 353 adjusts the flow rate of hydrogen water.
 以上のように構成された水処理設備310によって海302の塩水を取り入れる場合には、図6に示すように、バルブ321a,323a,325,328aが開き、バルブ321b,323b,328bが閉じる。そのため、取水口320からバラストタンク360までの取水経路が確立される。そして、ポンプ322が作動すると、海302の塩水が取水口320に流入し、その塩水が順にポンプ322、濾過装置324及び混合器327を経由してバラストタンク360に流れ込む。これにより、バラストタンク360内の塩水が増加する。 When salt water from the sea 302 is taken in by the water treatment facility 310 configured as described above, the valves 321a, 323a, 325, 328a are opened and the valves 321b, 323b, 328b are closed, as shown in FIG. Therefore, a water intake route from water intake 320 to ballast tank 360 is established. Then, when the pump 322 operates, salt water from the sea 302 flows into the water intake 320 , and the salt water flows through the pump 322 , the filtering device 324 and the mixer 327 in order into the ballast tank 360 . This increases the amount of salt water in ballast tank 360 .
 その際、送液ポンプ335が作動する。そのため、バルブ325から混合器327までの配管326に流れる塩水が送液ポンプ335によって電気分解装置331に供給され、塩素系水溶液及び気体水素が電気分解装置331によって生成される。バルブ334aが開くため、生成された気体水素が排気口から大気に放出される。また、バルブ334bが閉じるため、気体水素が気体溶解装置341に流れない。また、送液ポンプ344が停止し、バルブ353が閉じるため、塩水が混合器327から気体溶解装置341へ逆流することがない。 At that time, the liquid transfer pump 335 is activated. Therefore, the salt water flowing through the pipe 326 from the valve 325 to the mixer 327 is supplied to the electrolyzer 331 by the liquid feed pump 335 , and the chlorine-based aqueous solution and gaseous hydrogen are generated by the electrolyzer 331 . Since the valve 334a opens, the produced gaseous hydrogen is released to the atmosphere through the exhaust port. Also, since the valve 334b is closed, gaseous hydrogen does not flow into the gas dissolver 341. FIG. Further, since the liquid feed pump 344 is stopped and the valve 353 is closed, the salt water does not flow back from the mixer 327 to the gas dissolving device 341 .
 電気分解装置331によって生成された塩素系水溶液は、バルブ325から混合器327までの配管326に流れる塩水に添加される。混合器327では、塩水と塩素系水溶液の混合が進行し、塩水の殺菌処理が進行する。殺菌された塩水はバラストタンク360に貯留される。そのため、バラストタンク360内では、塩水中の水生生物の繁殖が抑制される。なお、塩水の残留塩素濃度が高すぎる場合、バルブ334aが閉じ、バルブ334b,353が開き、送液ポンプ344が作動してもよい。これにより、気体溶解装置341にて水素水が生成され、その水素水が混合器327内の塩水に添加され、塩水の残留塩素濃度が低減する。 The chlorine-based aqueous solution generated by the electrolyzer 331 is added to the salt water flowing through the pipe 326 from the valve 325 to the mixer 327. In the mixer 327, the salt water and chlorine-based aqueous solution are mixed, and the salt water is sterilized. The sterilized salt water is stored in ballast tanks 360 . Therefore, breeding of aquatic organisms in salt water is suppressed within the ballast tank 360 . In addition, when the residual chlorine concentration of the salt water is too high, the valve 334a may be closed, the valves 334b and 353 may be opened, and the liquid transfer pump 344 may be operated. Thereby, hydrogen water is generated in the gas dissolving device 341, and the hydrogen water is added to the salt water in the mixer 327, thereby reducing the residual chlorine concentration of the salt water.
 一方、水処理設備310によって塩水を海302に放出する場合には、図7に示すように、バルブ321a,323a,325,328aが閉じ、バルブ321b,323b,328bが開く。そのため、バラストタンク360から放水口361までの放水経路が確立される。そして、ポンプ322が作動すると、塩水がバラストタンク360から流れ出て、その塩水が順にポンプ322及び混合器327を経由して放水口361から海302へ流れ出る。これにより、バラストタンク360内の塩水が減少する。 On the other hand, when the water treatment facility 310 discharges salt water into the sea 302, as shown in FIG. Therefore, a water discharge route from the ballast tank 360 to the water discharge port 361 is established. Then, when the pump 322 operates, salt water flows out from the ballast tank 360 , and the salt water passes through the pump 322 and the mixer 327 in order, and flows out from the water outlet 361 to the sea 302 . This reduces the salt water in the ballast tank 360 .
 その際、バルブ334aが閉じ、バルブ334b,353が開き、送液ポンプ335,344が作動する。そのため、バルブ325から混合器327までの配管326に流れる塩水が送液ポンプ335によって電気分解装置331に供給され、塩素系水溶液及び気体水素が電気分解装置331によって生成される。電気分解装置331によって生成された塩素系水溶液は、バルブ325から混合器327までの配管326に流れる塩水に添加される。そのため、その塩水が殺菌処理される。 At that time, the valve 334a is closed, the valves 334b and 353 are opened, and the liquid feed pumps 335 and 344 are operated. Therefore, the salt water flowing through the pipe 326 from the valve 325 to the mixer 327 is supplied to the electrolyzer 331 by the liquid feed pump 335 , and the chlorine-based aqueous solution and gaseous hydrogen are generated by the electrolyzer 331 . The chlorine-based aqueous solution produced by the electrolyzer 331 is added to the salt water flowing through the pipe 326 from the valve 325 to the mixer 327 . Therefore, the salt water is sterilized.
 電気分解装置331によって生成された気体水素は電気分解装置331からバルブ334bを通って気体溶解装置341に送られる。その気体水素が気体溶解装置341の噴出部によって溶解槽341a中の塩水に泡状に噴出され、噴出された気体水素が塩水に溶解して、水素水が生成される。生成される水素水が白金触媒351と接触するので、水素水が活性化されて、水素水の還元力が増強される。 The gaseous hydrogen generated by the electrolyzer 331 is sent from the electrolyzer 331 to the gas dissolver 341 through the valve 334b. The gaseous hydrogen is jetted into the salt water in the dissolution tank 341a in the form of bubbles from the jetting part of the gas dissolving device 341, and the jetted gaseous hydrogen dissolves in the salt water to generate hydrogen water. Since the generated hydrogen water comes into contact with the platinum catalyst 351, the hydrogen water is activated and the reducing power of the hydrogen water is enhanced.
 生成された水素水は、バルブ353を通って混合器327に送られ、混合器327内の塩水に添加される。混合器327内の塩水が水素水によって中和されて、その塩水中の残留塩素濃度が低減する。特に、水素水の還元力が増強されているため、塩素の残留塩素濃度の低減が大きい。中和された塩水はバルブ328b及び放水口361を通って海302に放出される。 The produced hydrogen water is sent to the mixer 327 through the valve 353 and added to the salt water in the mixer 327. The salt water in the mixer 327 is neutralized by the hydrogen water to reduce the concentration of residual chlorine in the salt water. In particular, since the reducing power of hydrogen water is enhanced, the residual chlorine concentration of chlorine is greatly reduced. Neutralized salt water is discharged into sea 302 through valve 328b and outlet 361 .
 以上の第4実施形態によれば、以下のような有利な効果をもたらす。 According to the above fourth embodiment, the following advantageous effects are obtained.
(1) 取水の際、電気分解装置331によって生成された塩素系水溶液が配管326内の塩水に添加される。その塩水が配管塩素系水溶液によって殺菌されるため、バラストタンク360内における水生生物の繁殖が抑制される。航海中にバラストタンク360内の水生生物が再生しても、放水の際、電気分解装置331によって生成された塩素系水溶液が第1所定位置としての配管326内の塩水に添加されることから、その塩水が塩素系水溶液によって殺菌される。よって、放水地における外来種の発生が抑えられ、生態系への影響が抑えられる。 (1) At the time of water intake, the chlorine-based aqueous solution generated by the electrolyzer 331 is added to the salt water in the pipe 326 . Since the salt water is sterilized by the piping chlorine-based aqueous solution, breeding of aquatic organisms in the ballast tank 360 is suppressed. Even if the aquatic organisms in the ballast tank 360 are regenerated during the voyage, the chlorine-based aqueous solution generated by the electrolyzer 331 is added to the salt water in the pipe 326 serving as the first predetermined position when water is discharged. The salt water is sterilized by a chlorine-based aqueous solution. Therefore, the occurrence of alien species in the water discharge area is suppressed, and the impact on the ecosystem is suppressed.
(2) 放水の際、気体溶解装置341によって生成された水素水が第2所定位置としての混合器327内の塩水に添加される。その塩水が水素水によって中和されて、塩水の残留塩素濃度が低減される。その水素水が白金触媒351によって活性化される上、水素水と白金触媒351の接触時間も長いため、塩水の残留塩素濃度低減効果が高い。そのため、放水される塩水は放水地の自然環境に悪影響を及ぼさない。 (2) When water is discharged, the hydrogen water generated by the gas dissolving device 341 is added to the salt water in the mixer 327 serving as the second predetermined position. The salt water is neutralized with hydrogen water to reduce the residual chlorine concentration of the salt water. Since the hydrogen water is activated by the platinum catalyst 351 and the contact time between the hydrogen water and the platinum catalyst 351 is long, the effect of reducing the residual chlorine concentration of the salt water is high. Therefore, the discharged salt water does not adversely affect the natural environment of the discharge area.
(3) 取水時又は放水時の塩水の残留塩素濃度を高めても、放水時の塩水の残留塩素が水素水により除去されることから、放水地の自然環境を保護することができる。つまり、塩水の残留塩素濃度を高くすることによる殺菌効果の向上及び外来種の発生防止と、塩水の残留塩素濃度による自然環境の保護とを両立できる。 (3) Even if the concentration of residual chlorine in the salt water is increased at the time of water intake or discharge, the residual chlorine in the salt water at the time of water discharge is removed by hydrogen water, so the natural environment of the water discharge area can be protected. That is, it is possible to improve the sterilization effect and prevent the generation of alien species by increasing the residual chlorine concentration of the salt water, and to protect the natural environment by the residual chlorine concentration of the salt water.
(4) 塩素系薬剤及び水素を別途準備しなくても済み、自然環境及び生態系の保護を低コストで行える。 (4) There is no need to separately prepare chlorine chemicals and hydrogen, and the natural environment and ecosystem can be protected at low cost.
<<第4の実施の形態の変形例>>
 以上に第4実施形態について説明した。以上の第4実施形態は変更又は改良され得る。以上の第1実施形態からの変更点について以下に説明する。以下に説明する各変更点を組み合わせて適用してもよい。
<<Modified example of the fourth embodiment>>
The fourth embodiment has been described above. The above fourth embodiment may be modified or improved. Changes from the first embodiment described above will be described below. The modifications described below may be applied in combination.
(A) 第4実施形態では、電気分解装置331によって生成された塩素系水溶液が塩水に添加される。それに対して、予め生成されて且つ貯留槽等に貯留された塩素系水溶液が、投入装置によって、バルブ325と混合器327との間の配管326に流れる塩水に添加されてもよい。塩素系水溶液は例えば次亜塩素酸ナトリウム水溶液、次亜塩素酸水溶液又は塩素化イソシアヌル酸水溶液であるが、それ以外の塩素系水溶液であってもよい。また、塩素系水溶液の代わりに塩素ガスが、バルブ325と混合器327との間の配管326に流れる塩水に噴出されるものとしてもよい。塩素ガスはガスボンベに貯留されている。また、塩素系水溶液の代わりに固形塩素系薬剤が、投入装置によって、バルブ325と混合器327との間の配管326に流れる塩水に投入されるものとしてもよい。固形塩素系薬剤は例えば次亜塩素酸カルシウム、次亜塩素酸ナトリウム、塩素化イソシアヌル酸又はさらし粉である。固形塩素系薬剤は貯留タンクに予め貯留されている。 (A) In the fourth embodiment, the chlorine-based aqueous solution generated by the electrolyzer 331 is added to salt water. Alternatively, a chlorine-based aqueous solution that has been generated in advance and stored in a storage tank or the like may be added to the salt water flowing through the pipe 326 between the valve 325 and the mixer 327 by the dosing device. The chlorine-based aqueous solution is, for example, an aqueous sodium hypochlorite solution, an aqueous hypochlorous acid solution, or an aqueous solution of chlorinated isocyanuric acid, but may be another chlorine-based aqueous solution. Further, instead of the chlorine-based aqueous solution, chlorine gas may be jetted into the salt water flowing through the pipe 326 between the valve 325 and the mixer 327 . Chlorine gas is stored in gas cylinders. Alternatively, instead of the chlorine-based aqueous solution, a solid chlorine-based chemical may be added to the salt water flowing through the pipe 326 between the valve 325 and the mixer 327 by an input device. Solid chlorine agents are, for example, calcium hypochlorite, sodium hypochlorite, chlorinated isocyanuric acid or bleaching powder. The solid chlorine chemical is stored in advance in a storage tank.
(B) 第4実施形態では、電気分解装置331によって生成された気体水素が気体溶解装置341の溶解槽341aに供給される。それに対して、添加装置330がガスボンベ又は水素添加装置を有し、ガスボンベに貯留された気体水素又は水素添加装置によって生成された気体水素が溶解槽341aに供給されてもよい。水素添加装置は、例えば、水を電気分解して水素と酸素を生成する電気分解装置である。 (B) In the fourth embodiment, gaseous hydrogen generated by the electrolyzer 331 is supplied to the dissolution tank 341a of the gas dissolver 341. Alternatively, the addition device 330 may have a gas cylinder or a hydrogenation device, and gaseous hydrogen stored in the gas cylinder or gaseous hydrogen generated by the hydrogenation device may be supplied to the dissolution tank 341a. The hydrogenation device is, for example, an electrolysis device that electrolyzes water to produce hydrogen and oxygen.
 2,102,302…海(自然水域)
 11,110,210,310…水処理設備
 18…復水器(設備)
 20…取水路
 21…取水口
 22…放水路
 24…放水口
 25…水路(主経路)
 30…添加装置
 31,131,231,331…電気分解装置
 41,141,241,341…気体溶解装置
 41a…溶解槽
 51…白金触媒
 122…複層式濾過器(濾過器)
 125…安全フィルター(濾過器)
 127…逆浸透膜濾過装置
 220…飼育水槽
 221…汚染物質除去装置
 222…沈殿槽
 223…加圧浮上式分離装置
 225…反応槽
 226…中和槽
 229…循環経路(主経路)
 360…バラストタンク
2, 102, 302 ... sea (natural water area)
11, 110, 210, 310... Water treatment equipment 18... Condenser (equipment)
20... Water intake channel 21... Water intake port 22... Water discharge channel 24... Water discharge port 25... Water channel (main route)
30... Addition device 31, 131, 231, 331... Electrolysis device 41, 141, 241, 341... Gas dissolution device 41a... Dissolution tank 51... Platinum catalyst 122... Multi-layer filter (filter)
125 ... safety filter (filter)
DESCRIPTION OF SYMBOLS 127... Reverse osmosis membrane filtration apparatus 220... Breeding tank 221... Pollutant removal apparatus 222... Sedimentation tank 223... Pressure flotation type separation apparatus 225... Reaction tank 226... Neutralization tank 229... Circulation path (main path)
360... Ballast tank

Claims (25)

  1.  溶存水素を含む水素含有液を触媒に接触させた後、残留塩素を含む水に前記水素含有液を添加する残留塩素低減方法。 A method for reducing residual chlorine in which a hydrogen-containing liquid containing dissolved hydrogen is brought into contact with a catalyst, and then the hydrogen-containing liquid is added to water containing residual chlorine.
  2.  主経路を流れる塩水を溶解槽及び電気分解装置に供給して、前記電気分解装置により前記塩水を電気分解することによって気体水素及び塩素系水溶液を生成し、
     前記気体水素を前記溶解槽に送って、前記溶解槽内において触媒に接触される前記塩水に前記気体水素を溶解することによって、溶存水素を含む水素含有液を生成し、
     前記主経路の内の第1所定位置において、前記塩素系水溶液を前記主経路内の前記塩水に添加し、
     前記第1所定位置よりも下流の第2所定位置において、前記水素含有液を前記主経路の前記塩水に添加する水処理方法。
    supplying salt water flowing through the main path to a dissolution tank and an electrolyzer, and electrolyzing the salt water with the electrolyzer to generate gaseous hydrogen and a chlorine-based aqueous solution;
    producing a hydrogen-containing liquid containing dissolved hydrogen by sending the gaseous hydrogen to the dissolution tank and dissolving the gaseous hydrogen in the salt water contacted with the catalyst in the dissolution tank;
    adding the chlorine-based aqueous solution to the salt water in the main path at a first predetermined position in the main path;
    A water treatment method, wherein the hydrogen-containing liquid is added to the salt water in the main path at a second predetermined position downstream of the first predetermined position.
  3.  前記主経路が、自然水域から前記塩水を発電所に取り込むとともに、取り込んだ前記塩水を前記自然水域に放出する水路であり、
     復水器が前記第1所定位置と前記第2所定位置との間において前記主経路に設けられている請求項2に記載の水処理方法。
    The main route is a waterway that takes in the salt water from a natural water area into the power plant and discharges the taken-in salt water into the natural water area,
    3. The water treatment method according to claim 2, wherein a condenser is provided in said main path between said first predetermined position and said second predetermined position.
  4.  上流から下流に向かって順に、濾過器及び逆浸透膜濾過装置が前記主経路に設けられ、
     前記濾過器が前記第1所定位置と前記第2所定位置の間に設けられ、前記逆浸透膜濾過装置が前記第2所定位置よりも下流に設けられ、
     前記濾過器によって前記塩水を濾過し、前記逆浸透膜濾過装置によって前記塩水から淡水に分離する請求項2に記載の水処理方法。
    A filter and a reverse osmosis membrane filtration device are provided in the main path in order from upstream to downstream,
    The filter is provided between the first predetermined position and the second predetermined position, and the reverse osmosis membrane filtration device is provided downstream of the second predetermined position,
    3. The water treatment method according to claim 2, wherein the salt water is filtered by the filter, and fresh water is separated from the salt water by the reverse osmosis membrane filtration device.
  5.  前記主経路が、前記塩水が循環する循環経路であり、
     順に、飼育水槽、汚染物質除去装置、反応槽及び中和槽が前記主経路に設けられ、前記第1所定位置が前記反応槽にあり、前記第2所定位置が前記中和槽にある請求項2に記載の水処理方法。
    The main route is a circulation route through which the salt water circulates,
    A breeding tank, a pollutant removal device, a reaction tank and a neutralization tank are provided in order on said main path, said first predetermined position being in said reaction tank and said second predetermined position being in said neutralization tank. 2. The water treatment method according to 2.
  6.  前記主経路が、船舶のバラストタンクから海に前記塩水を放水する放水経路である請求項2に記載の水処理方法。 The water treatment method according to claim 2, wherein the main route is a water discharge route for discharging the salt water from the ship's ballast tank to the sea.
  7.  前記触媒が、第10族元素金属、金属酸化物及び白金族金属からなる群の中から選ばれた少なくとも1つの物質を含む還元性触媒である請求項2から6の何れか一項に記載の水処理方法。 7. The reducing catalyst according to any one of claims 2 to 6, wherein the catalyst is a reducing catalyst containing at least one substance selected from the group consisting of Group 10 element metals, metal oxides and platinum group metals. water treatment method.
  8.  残留塩素を含む水が使用される設備から放水路を通じて前記水を自然水域に放出する放水方法において、
     溶存水素を含む水素含有液を触媒に接触させた後、前記水素含有液を前記放水路内の前記水に添加する放水方法。
    In a water discharge method in which water containing residual chlorine is discharged into a natural water area through a water discharge channel from a facility where water containing residual chlorine is used,
    A water discharge method comprising bringing a hydrogen-containing liquid containing dissolved hydrogen into contact with a catalyst, and then adding the hydrogen-containing liquid to the water in the water discharge channel.
  9.  前記触媒が、第10族元素金属、金属酸化物及び白金族金属からなる群の中から選ばれた少なくとも1つの物質を含む還元性触媒である請求項8に記載の放水方法。 The water discharge method according to claim 8, wherein the catalyst is a reducing catalyst containing at least one substance selected from the group consisting of Group 10 element metals, metal oxides and platinum group metals.
  10.  前記触媒を液体に浸漬した状態でその液体に気体水素を溶かすことによって、前記水素含有液を生成して前記触媒に接触させる請求項8又は9に記載の放水方法。 The water discharge method according to claim 8 or 9, wherein the hydrogen-containing liquid is generated and brought into contact with the catalyst by dissolving gaseous hydrogen in the liquid while the catalyst is immersed in the liquid.
  11.  水の電気分解によって前記気体水素を生成し、その気体水素を前記液体に溶かすことによって前記水素含有液を生成する請求項10に記載の放水方法。 The water discharge method according to claim 10, wherein the gaseous hydrogen is generated by electrolysis of water, and the hydrogen-containing liquid is generated by dissolving the gaseous hydrogen in the liquid.
  12.  自然水域から水を取水口を通じて水路に取り込むとともに、前記水路に取り込んだ水を放水口を通じて前記自然水域に放出する水処理方法において、
     前記水路内の第1所定位置において塩素系薬剤を前記水に添加し、溶存水素を含む水素含有液を触媒に接触させた後に、前記第1所定位置よりも放水口側の第2所定位置において前記水路内の前記水に前記水素含有液を添加する水処理方法。
    In a water treatment method for taking water from a natural water area into a waterway through a water intake and discharging the water taken into the waterway through a water outlet into the natural water area,
    After adding a chlorine-based chemical to the water at a first predetermined position in the water channel and bringing the hydrogen-containing liquid containing dissolved hydrogen into contact with the catalyst, at a second predetermined position closer to the water outlet than the first predetermined position A water treatment method comprising adding the hydrogen-containing liquid to the water in the water channel.
  13.  前記触媒が、第10族元素金属、金属酸化物及び白金族金属からなる群の中から選ばれた少なくとも1つの物質を含む還元性触媒である請求項12に記載の水処理方法。 The water treatment method according to claim 12, wherein the catalyst is a reducing catalyst containing at least one substance selected from the group consisting of Group 10 element metals, metal oxides and platinum group metals.
  14.  前記触媒を液体に浸漬した状態でその液体に気体水素を溶かすことによって、前記水素含有液を生成して前記触媒に接触させる請求項12又は13に記載の水処理方法。 The water treatment method according to claim 12 or 13, wherein the hydrogen-containing liquid is generated and brought into contact with the catalyst by dissolving gaseous hydrogen in the liquid while the catalyst is immersed in the liquid.
  15.  前記自然水域が海又は塩湖であり、前記取水口を通じて取り込む水が塩水であり、
     前記水路から前記塩水を電気分解装置に供給して、前記電気分解装置により前記塩水を電気分解することによって気体水素を生成し、その気体水素を用いて前記水素含有液を生成する請求項14に記載の水処理方法。
    The natural water area is the sea or a salt lake, and the water taken in through the water intake is salt water,
    15. The method according to claim 14, wherein the salt water is supplied from the water channel to an electrolyzer, the salt water is electrolyzed by the electrolyzer to generate gaseous hydrogen, and the gaseous hydrogen is used to generate the hydrogen-containing liquid. The described water treatment method.
  16.  前記水路が、前記取水口と設備との間に設けられ、前記取水口から取り入れた水を前記設備に送る取水路と、前記設備と前記放水口との間に設けられ、前記水を前記設備から前記放水口に送る放水路と、を有し、
     前記第1所定位置が前記取水路内にあり、前記第2所定位置が前記放水路内にある請求項12から15の何れか一項に記載の水処理方法。
    The water channel is provided between the water intake and the equipment, and is provided between the water intake channel for sending water taken in from the water intake to the equipment, and between the equipment and the water discharge port, and the water is distributed to the equipment. a water discharge channel that feeds from to the water discharge port,
    16. The water treatment method according to any one of claims 12 to 15, wherein said first predetermined position is within said intake channel and said second predetermined position is within said discharge channel.
  17.  自然水域に設けられた取水口及び放水口を有し、前記自然水域から前記取水口を通じて水を取り込み、取り込まれた水を前記放水口を通じて前記自然水域に放出する水路と、
     前記水路の第1所定位置において塩素系薬剤を前記水路内の前記水に添加する塩素系薬剤添加装置と、
     溶存水素を含む水素含有液を貯留するとともに、前記水路のうち前記第1所定位置よりも放水口側の第2所定位置に前記水素含有液を排出する貯留部と、
     前記貯留部内において前記水素含有液に浸漬される触媒と、
    を備える水処理設備。
    a waterway having a water intake and a water outlet provided in a natural water area, taking in water from the natural water area through the water intake and discharging the taken water through the water outlet into the natural water area;
    a chlorine-based chemical adding device for adding a chlorine-based chemical to the water in the water channel at a first predetermined position of the water channel;
    a reservoir that stores a hydrogen-containing liquid containing dissolved hydrogen and that discharges the hydrogen-containing liquid to a second predetermined position closer to the water outlet than the first predetermined position in the water channel;
    a catalyst immersed in the hydrogen-containing liquid in the reservoir;
    Water treatment facility with.
  18.  前記触媒が、第10族元素金属、金属酸化物及び白金族金属からなる群の中から選ばれた少なくとも1つの物質を含む還元性触媒である請求項17に記載の水処理設備。 The water treatment facility according to claim 17, wherein the catalyst is a reducing catalyst containing at least one substance selected from the group consisting of Group 10 element metals, metal oxides and platinum group metals.
  19.  前記貯留部が、気体水素を液体に溶かすことによって前記水素含有液を生成する気体溶解装置の溶解槽である請求項17又は18に記載の水処理設備。 The water treatment facility according to claim 17 or 18, wherein the reservoir is a dissolving tank of a gas dissolving device that generates the hydrogen-containing liquid by dissolving gaseous hydrogen into liquid.
  20.  設備と自然水域との間に設けられ、残留塩素を含む水を前記設備から前記自然水域に放出する放水路と、
     溶存水素を含む水素含有液を貯留するとともに、前記水素含有液を前記放水路へ排出する貯留部と、
     前記貯留部内において前記水素含有液に浸漬される触媒と、
    を備える水処理設備。
    a discharge channel provided between the facility and a natural water area for discharging water containing residual chlorine from the facility to the natural water area;
    a reservoir for storing a hydrogen-containing liquid containing dissolved hydrogen and for discharging the hydrogen-containing liquid to the water discharge channel;
    a catalyst immersed in the hydrogen-containing liquid in the reservoir;
    Water treatment facility with.
  21.  前記触媒が、第10族元素金属、金属酸化物及び白金族金属からなる群の中から選ばれた少なくとも1つの物質を含む還元性触媒である請求項20に記載の水処理設備。 The water treatment facility according to claim 20, wherein the catalyst is a reducing catalyst containing at least one substance selected from the group consisting of Group 10 element metals, metal oxides and platinum group metals.
  22.  前記貯留部が、気体水素を液体に溶かすことによって前記水素含有液を生成する気体溶解装置の溶解槽である請求項20又は21に記載の水処理設備。 The water treatment facility according to claim 20 or 21, wherein the reservoir is a dissolution tank of a gas dissolver that generates the hydrogen-containing liquid by dissolving gaseous hydrogen into liquid.
  23.  前記自然水域に通じるとともに、前記自然水域から前記設備に水を供給する取水路と、
     前記取水路から前記水が供給され、その水の電気分解によって前記気体水素を生成し、その気体水素を前記気体溶解装置の前記溶解槽へ送出する電気分解装置と、を更に備える請求項22に記載の水処理設備。
    a water intake channel leading to the natural water area and supplying water from the natural water area to the facility;
    23. The electrolyzer for supplying the water from the water intake channel, generating the gaseous hydrogen by electrolysis of the water, and delivering the gaseous hydrogen to the dissolving tank of the gas dissolving device. Water treatment equipment as described.
  24.  前記自然水域が海又は塩湖であり、前記取水路に取り込まれる前記水が塩水であり、
     前記電気分解装置は、前記塩水の電気分解により有効塩素を含む塩素系水溶液を生成し、前記塩素系水溶液を前記取水路内の前記塩水に添加する請求項23に記載の水処理設備。
    The natural water area is the sea or a salt lake, and the water taken into the intake channel is salt water,
    24. The water treatment facility according to claim 23, wherein the electrolyzer produces a chlorine-based aqueous solution containing effective chlorine by electrolyzing the salt water, and adds the chlorine-based aqueous solution to the salt water in the intake channel.
  25.  前記設備が復水器である請求項20から24の何れか一項に記載の水処理設備。 The water treatment facility according to any one of claims 20 to 24, wherein the facility is a condenser.
PCT/JP2021/020545 2021-05-28 2021-05-28 Water discharge method, water treatment method, residual chlorine reduction method, and water treatment facility WO2022249487A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2021/020545 WO2022249487A1 (en) 2021-05-28 2021-05-28 Water discharge method, water treatment method, residual chlorine reduction method, and water treatment facility
JP2023502981A JPWO2022249487A1 (en) 2021-05-28 2021-05-28

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/020545 WO2022249487A1 (en) 2021-05-28 2021-05-28 Water discharge method, water treatment method, residual chlorine reduction method, and water treatment facility

Publications (1)

Publication Number Publication Date
WO2022249487A1 true WO2022249487A1 (en) 2022-12-01

Family

ID=84229596

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/020545 WO2022249487A1 (en) 2021-05-28 2021-05-28 Water discharge method, water treatment method, residual chlorine reduction method, and water treatment facility

Country Status (2)

Country Link
JP (1) JPWO2022249487A1 (en)
WO (1) WO2022249487A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5599382A (en) * 1979-01-26 1980-07-29 Power Reactor & Nuclear Fuel Dev Corp Treating method for aqueous solution of perchloric acid
JPH10504999A (en) * 1994-09-08 1998-05-19 ゾルファイ ウムヴェルトヒエミー ゲゼルシャフト ミット ベシュレンクテル ハフツング Method for removing chlorate and bromate compounds from water by catalytic reduction
JPH1137666A (en) * 1997-07-15 1999-02-12 Mitsubishi Heavy Ind Ltd Chlorine generator of sea water cooling power plant
JP2001145890A (en) * 1999-11-22 2001-05-29 Japan Organo Co Ltd Method and apparatus for treating waste water
WO2003002466A1 (en) * 2001-06-29 2003-01-09 Miz Co., Ltd. Method for antioxidation and antioxidative functional water
JP2004254574A (en) * 2003-02-25 2004-09-16 Rikujo Yoshoku Kogaku Kenkyusho:Kk Culture equipment for fishes and shellfishes
JP2006238769A (en) * 2005-03-02 2006-09-14 Hoshizaki Electric Co Ltd Method for producing water for growing marine organism and apparatus for the same
JP2011528982A (en) * 2008-07-24 2011-12-01 サムスン ヘビー インダストリーズ カンパニー リミテッド Ballast water treatment apparatus and method
WO2016121063A1 (en) * 2015-01-29 2016-08-04 中国電力株式会社 Water discharge channel
WO2019031430A1 (en) * 2017-08-10 2019-02-14 栗田工業株式会社 Reverse osmosis treatment method and water treatment device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4420667B2 (en) * 2003-12-26 2010-02-24 タカオカ化成工業株式会社 Electrolytic hydrogen water generator
JP6539817B2 (en) * 2016-08-29 2019-07-10 株式会社光未来 Hydrogen water producing apparatus and hydrogen water producing method

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5599382A (en) * 1979-01-26 1980-07-29 Power Reactor & Nuclear Fuel Dev Corp Treating method for aqueous solution of perchloric acid
JPH10504999A (en) * 1994-09-08 1998-05-19 ゾルファイ ウムヴェルトヒエミー ゲゼルシャフト ミット ベシュレンクテル ハフツング Method for removing chlorate and bromate compounds from water by catalytic reduction
JPH1137666A (en) * 1997-07-15 1999-02-12 Mitsubishi Heavy Ind Ltd Chlorine generator of sea water cooling power plant
JP2001145890A (en) * 1999-11-22 2001-05-29 Japan Organo Co Ltd Method and apparatus for treating waste water
WO2003002466A1 (en) * 2001-06-29 2003-01-09 Miz Co., Ltd. Method for antioxidation and antioxidative functional water
JP2004254574A (en) * 2003-02-25 2004-09-16 Rikujo Yoshoku Kogaku Kenkyusho:Kk Culture equipment for fishes and shellfishes
JP2006238769A (en) * 2005-03-02 2006-09-14 Hoshizaki Electric Co Ltd Method for producing water for growing marine organism and apparatus for the same
JP2011528982A (en) * 2008-07-24 2011-12-01 サムスン ヘビー インダストリーズ カンパニー リミテッド Ballast water treatment apparatus and method
WO2016121063A1 (en) * 2015-01-29 2016-08-04 中国電力株式会社 Water discharge channel
WO2019031430A1 (en) * 2017-08-10 2019-02-14 栗田工業株式会社 Reverse osmosis treatment method and water treatment device

Also Published As

Publication number Publication date
JPWO2022249487A1 (en) 2022-12-01

Similar Documents

Publication Publication Date Title
US10093561B2 (en) Apparatus and method for treating ballast water
TWI423933B (en) Wasseraufbereitungsanlage
KR101066674B1 (en) Electrolysis unit, apparatus for treatment of ballast water of ship with the same
KR100881962B1 (en) Ballast water system
US9061925B2 (en) Liquid treatment methods and apparatus
KR100814658B1 (en) Method of liquid detoxification and apparatus therefor
KR101129620B1 (en) anti-fouling system and control method thereof
JPH11510089A (en) Reduction of biofouling
CN101193824A (en) Ballast water treatment apparatus and method
KR20120139663A (en) Emissions control system and method
KR101118055B1 (en) In-line treating apparatus of ballast water
WO2005061388A1 (en) Ballast water treatment system
WO2002036499A2 (en) Treatment of waste water and apparatus therefor
WO2022249487A1 (en) Water discharge method, water treatment method, residual chlorine reduction method, and water treatment facility
JP6927452B1 (en) Water treatment method and water treatment equipment
WO2022249488A1 (en) Water discharge method, water treatment method, residual chlorine reduction method, and water treatment facility
WO2016028231A1 (en) Ballast water treatment system and method of ballast water treatment
WO2017060995A1 (en) Method and device for improving water quality
WO2021176774A1 (en) Water discharge method, water treatment method, residual chlorine reduction method, and water treatment facility
JP2020174548A (en) Marine life rearing water manufacturing method and manufacturing device
JP2005246158A (en) Method and system for desalinating seawater
JP7123250B2 (en) Ballast water treatment system and ship equipped with it
KR101163344B1 (en) A Method for Treatment of Ballast Water of Ship Using Electrolysis Unit
JP2004121896A (en) Method of producing treated water and salt water treatment equipment
AU2012203894B2 (en) Ballast water treatment methods and apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21943124

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023502981

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21943124

Country of ref document: EP

Kind code of ref document: A1