JP4420667B2 - Electrolytic hydrogen water generator - Google Patents

Electrolytic hydrogen water generator Download PDF

Info

Publication number
JP4420667B2
JP4420667B2 JP2003434400A JP2003434400A JP4420667B2 JP 4420667 B2 JP4420667 B2 JP 4420667B2 JP 2003434400 A JP2003434400 A JP 2003434400A JP 2003434400 A JP2003434400 A JP 2003434400A JP 4420667 B2 JP4420667 B2 JP 4420667B2
Authority
JP
Japan
Prior art keywords
water
electrolysis
electrode
activated carbon
porous body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003434400A
Other languages
Japanese (ja)
Other versions
JP2005186034A (en
Inventor
義一 原田
建史 川嶋
弘晃 江頭
Original Assignee
タカオカ化成工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by タカオカ化成工業株式会社 filed Critical タカオカ化成工業株式会社
Priority to JP2003434400A priority Critical patent/JP4420667B2/en
Priority to TW093137609A priority patent/TW200528399A/en
Priority to KR1020040110271A priority patent/KR101065742B1/en
Publication of JP2005186034A publication Critical patent/JP2005186034A/en
Application granted granted Critical
Publication of JP4420667B2 publication Critical patent/JP4420667B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/467Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction
    • C02F1/4676Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electroreduction
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46133Electrodes characterised by the material
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46152Electrodes characterised by the shape or form
    • C02F2001/46157Perforated or foraminous electrodes
    • C02F2001/46161Porous electrodes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/002Construction details of the apparatus
    • C02F2201/005Valves
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/4616Power supply
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Description

本発明は、電気分解により発生した水素ガスを原水に溶解させて水素水を生成する電解式水素水生成装置に関するものである。   The present invention relates to an electrolytic hydrogen water generating apparatus that generates hydrogen water by dissolving hydrogen gas generated by electrolysis in raw water.

従来、図4に示すような電解式水素水生成装置が知られている。この従来装置51は水電解部52と給電部53とから構成されている。水電解部52は原水50を貯留する電解容器54を備えている。電解容器54の内部には、円筒状の金属電極55と円柱状の活性炭多孔質体56とが数mmの環状隙間57を介して同軸に収納されている。そして、金属電極55を陰極とし、導電性の活性炭多孔質体56を陽極とし、或いは、両者の極性を逆にして、両電極に給電部53から直流の電解電圧が印加される。   Conventionally, an electrolytic hydrogen water generator as shown in FIG. 4 is known. This conventional apparatus 51 includes a water electrolysis unit 52 and a power feeding unit 53. The water electrolysis unit 52 includes an electrolysis vessel 54 that stores the raw water 50. Inside the electrolytic vessel 54, a cylindrical metal electrode 55 and a columnar activated carbon porous body 56 are accommodated coaxially via an annular gap 57 of several mm. The metal electrode 55 is used as a cathode and the conductive activated carbon porous body 56 is used as an anode, or the polarities of both are reversed, and a DC electrolysis voltage is applied to both electrodes from the power feeding portion 53.

この電解電圧により、環状隙間57の原水50が電気分解され、陽極に酸素ガス58が発生し、陰極に水素ガス59が発生し、これらの電解ガスが電解容器54の上部に滞留する。電解ガスの圧力によって電解容器54の内圧が上昇すると、原水50及び電解ガスが活性炭多孔質体56の外から内に浸透し、中心部の貫通穴60に浸み出す。このとき、余剰の原水50及び電解ガスが吐出口69から器外に吐出され、電解容器54の内部がほぼ大気圧に維持される。   By this electrolysis voltage, the raw water 50 in the annular gap 57 is electrolyzed, oxygen gas 58 is generated at the anode, hydrogen gas 59 is generated at the cathode, and these electrolysis gases stay in the upper part of the electrolysis vessel 54. When the internal pressure of the electrolysis vessel 54 increases due to the pressure of the electrolysis gas, the raw water 50 and the electrolysis gas permeate from the outside of the activated carbon porous body 56 into the inside through hole 60. At this time, surplus raw water 50 and electrolytic gas are discharged from the discharge port 69 to the outside of the vessel, and the inside of the electrolytic vessel 54 is maintained at substantially atmospheric pressure.

活性炭多孔質体56は、図5に示すように、活性炭粒子61をバインダ62で結合することで、中空円柱状に成形されている。この多孔質体56には、活性炭粒子61の細孔(ミクロ孔)63や隣接する活性炭粒子61の間隙64からなる無数の小空間が存在する。電気分解を継続すると、電解容器54の内部に電解ガスが充満し、このガス圧によって電解ガスが活性炭多孔質体56の内部に充填され、無数の小空間に貯蔵される。   As shown in FIG. 5, the activated carbon porous body 56 is formed into a hollow cylindrical shape by binding the activated carbon particles 61 with a binder 62. The porous body 56 has innumerable small spaces composed of pores (micropores) 63 of the activated carbon particles 61 and gaps 64 between the adjacent activated carbon particles 61. If the electrolysis is continued, the electrolytic gas is filled in the electrolytic vessel 54, and the electrolytic gas is filled into the activated carbon porous body 56 by this gas pressure and stored in countless small spaces.

この状態で、給水用バルブ65を開放すると、原水50が電解容器54の内部に導入され、活性炭多孔質体56の水路66を流れる過程で、電解ガスの気泡67を巻き込み、水素ガスを混合・溶解して、水素水68を生成する。この水素水68は原水50の給水圧によって吐出口69から電解容器54の外部に取り出され、飲料水又はスキンケア水等として使用される。   In this state, when the water supply valve 65 is opened, the raw water 50 is introduced into the electrolysis vessel 54, and in the process of flowing through the water channel 66 of the activated carbon porous body 56, the bubbles 67 of the electrolysis gas are involved, and the hydrogen gas is mixed. Dissolve to produce hydrogen water 68. The hydrogen water 68 is taken out from the discharge port 69 to the outside of the electrolytic vessel 54 by the supply pressure of the raw water 50, and used as drinking water or skin care water.

従来の電解式水素水生成装置の多くは上記の従来装置51の基本技術を踏襲しており、例えば、特許文献1には、導電性の筒状体の内側に活性炭多孔質体を環状隙間を介して収納し、筒状体を陰極とし、多孔質体を陽極として、両電極間に直流電圧を印加し、環状隙間の原水を電気分解する技術が記載されている。特許文献2には、内外一対の活性炭多孔質体の間に環状隙間を形成し、両多孔質体に50〜60Hzの交流電圧を印加して、環状隙間の原水を電気分解する技術が記載されている。
特開2001−187382公報 特開2003−113488公報
Many of the conventional electrolytic hydrogen water generators follow the basic technology of the above-described conventional apparatus 51. For example, Patent Document 1 discloses that an activated carbon porous body is provided with an annular gap inside a conductive cylindrical body. A technique is described in which a cylindrical body is used as a cathode, a porous body is used as an anode, a direct current voltage is applied between both electrodes, and raw water in an annular gap is electrolyzed. Patent Document 2 describes a technique in which an annular gap is formed between a pair of inner and outer activated carbon porous bodies, an AC voltage of 50-60 Hz is applied to both porous bodies, and the raw water in the annular gap is electrolyzed. ing.
JP 2001-187382 A JP 2003-113488 A

ところが、従来装置51によると、次のような問題点があった。
(1)電解容器54の内部は、金属電極55及び活性炭多孔質体56を電極とする電解室と、活性炭多孔質体56による浄化室とを兼ねており、また、特に活性炭多孔質体56を電極としていることに起因して、次の問題があった。
・電極に表面積の大きな金属電極55と活性炭多孔質体56を使用しているので、原水50の抵抗による電圧降下が大きく、電解効率が悪い。
・電解効率を上げるために、電流密度を上昇させると、活性炭多孔質体56の表面に改質が生じ、電気特性が変化しやすくなる。
・電解電圧に直流電圧を用いているので、原水50中に溶解しているカルシウムから炭酸カルシウムが生成し、陰極の表面に析出して、電解効率に悪影響を及ぼしたり、活性炭多孔質体56に付着して濾過性能に悪影響を及ぼしたりする。
・このため、定期的に酸性薬剤(例えば、クエン酸等)を使用し、電極を洗浄し、炭酸カルシウムを取り除く保守作業が必要である。
・また、電解電流値を上げると、炭酸カルシウムが生成しやすくなるため、200mA以下の弱い電流で長時間をかけて電気分解を行う必要があり、短時間に多量の水素ガスを生成することが困難である。
However, the conventional device 51 has the following problems.
(1) The inside of the electrolytic vessel 54 serves as an electrolysis chamber using the metal electrode 55 and the activated carbon porous body 56 as an electrode and a purification chamber using the activated carbon porous body 56. Due to the use of electrodes, there were the following problems.
-Since the metal electrode 55 with a large surface area and the activated carbon porous body 56 are used for an electrode, the voltage drop by the resistance of the raw | natural water 50 is large, and electrolysis efficiency is bad.
If the current density is increased in order to increase the electrolysis efficiency, the surface of the activated carbon porous body 56 is modified, and the electrical characteristics are likely to change.
-Since a direct current voltage is used for the electrolysis voltage, calcium carbonate is produced from calcium dissolved in the raw water 50 and deposited on the surface of the cathode, adversely affecting the electrolysis efficiency, Adhering may adversely affect filtration performance.
For this reason, it is necessary to perform maintenance work that periodically uses an acidic agent (for example, citric acid), cleans the electrode, and removes calcium carbonate.
・ In addition, when the electrolysis current value is increased, calcium carbonate is likely to be generated. Therefore, it is necessary to perform electrolysis over a long time with a weak current of 200 mA or less, and a large amount of hydrogen gas can be generated in a short time. Have difficulty.

(2)電極への電圧のかけ方を工夫した例であっても、次の問題があった。
・原水供給時のみ電気分解を行う方式の水素水生成装置では、原水を供給する都度に電極の極性を入れ替える対策を講じることもできるが、この場合、供給時間が毎回異なるため、どちらかの電極に極性が偏り、炭酸カルシウムの生成を免れることができない。
・特許文献2の技術によれば、一対の活性炭多孔質体に交流電圧を印加するので、電極の極性を周期的に変化させて、炭酸カルシウムの生成を抑えることができる。しかし、50〜60Hzの商用周波数では、極性が短時間に変わるため、直流電圧と比較し、電解効率が低下する(同文献段落0032参照)。
・直流にしても交流にしても定電圧電源を採用していたため、原水の水質、例えば硬度、塩素濃度、塩分等の変化で電解電流が大幅に変動し、電気分解の安定性に問題があった。
(2) Even in the example in which the voltage is applied to the electrode, the following problem has occurred.
-In a hydrogen water generator that performs electrolysis only when raw water is supplied, it is possible to take measures to change the polarity of the electrode each time raw water is supplied. However, the polarity is biased and the production of calcium carbonate cannot be avoided.
-According to the technique of patent document 2, since an alternating voltage is applied to a pair of activated carbon porous body, the polarity of an electrode can be changed periodically and the production | generation of a calcium carbonate can be suppressed. However, at a commercial frequency of 50 to 60 Hz, the polarity changes in a short time, so that the electrolysis efficiency is reduced compared to a DC voltage (see paragraph 0032 of the same document).
・ Because a constant voltage power supply was used for both direct current and alternating current, the electrolysis current fluctuated significantly due to changes in the quality of raw water, such as hardness, chlorine concentration, and salinity, and there was a problem in electrolysis stability It was.

(3)電解容器54の内部がほぼ常圧(大気圧)に維持されているので、活性炭多孔質体56への電解ガスの貯蔵量が少く、水素水の溶存水素濃度が低く、水素水68として供給できる時間が短い。 (3) Since the inside of the electrolytic vessel 54 is maintained at substantially normal pressure (atmospheric pressure), the amount of electrolytic gas stored in the activated carbon porous body 56 is small, the dissolved hydrogen concentration of hydrogen water is low, and the hydrogen water 68 The time that can be supplied as is short.

(4)原水浄化機能の点では、一般に、微生物の大きさは数μm以下であるのに対し、活性炭多孔質体56の細孔径は数10μmであるため、従来装置51によっては充分な微生物除去性能が得られない。また、活性炭多孔質体56に吸着した有機物が微生物の繁殖を促進し、水素水68中に多量の微生物が混入するおそれもある。 (4) In terms of the raw water purification function, the size of microorganisms is generally several μm or less, whereas the pore diameter of the activated carbon porous body 56 is several tens of μm. Performance cannot be obtained. Further, the organic matter adsorbed on the activated carbon porous body 56 promotes the growth of microorganisms, and there is a possibility that a large amount of microorganisms are mixed in the hydrogen water 68.

本発明の主要な目的は、上記課題を解決し、高濃度の水素水を長時間安定供給でき、活性炭多孔質体への炭酸カルシウムの付着がほとんどなくなる電解式水素水生成装置を提供することにある。   The main object of the present invention is to provide an electrolytic hydrogen water generator that solves the above-mentioned problems, can stably supply high-concentration hydrogen water for a long period of time, and eliminates the adhesion of calcium carbonate to the activated carbon porous body. is there.

上記の課題を解決するために、本発明の電解式水素水生成装置は、電気分解により発生した水素ガスを原水中に溶解させて水素水を生成する装置であって、貯水容器と、前記貯水容器に収納された電解用電極と、前記電解用電極に電解電圧を印加する給電部と、円柱外周面と中心部の縦長の貫通穴とを備える円柱状に成形され、該円柱外周面が前記電解用電極とは離間して前記電解用電極の上端より上方まで延びるようにして、前記貯水容器に収納され、前記電解用電極による電解後の原水を浄化するとともに、前記電解用電極で発生した水素ガスを吸着し貯蔵して、該水素ガスを原水中に溶解させる、前記電解電圧の印加されない活性炭多孔質体と、前記貯水容器の前記電解用電極に下方から所定水圧の原水を供給する給水部と、前記活性炭多孔質体の貫通穴に接続された取水パイプにより前記貯水容器から水素水を取り出す取水部とを含むことを特徴とする。 In order to solve the above-described problems, an electrolytic hydrogen water generating apparatus of the present invention is an apparatus that generates hydrogen water by dissolving hydrogen gas generated by electrolysis in raw water, and includes a water storage container and the water storage An electrode for electrolysis accommodated in a container, a power feeding part for applying an electrolysis voltage to the electrode for electrolysis, a cylindrical outer peripheral surface, and a vertically long through hole in the center, are formed into a cylindrical shape, and the cylindrical outer peripheral surface is It was separated from the electrode for electrolysis and extended above the upper end of the electrode for electrolysis so as to be housed in the water storage container, purifying raw water after electrolysis by the electrode for electrolysis, and generated at the electrode for electrolysis An activated carbon porous body to which the electrolysis voltage is not applied , which absorbs and stores hydrogen gas and dissolves the hydrogen gas in raw water, and water supply that supplies raw water at a predetermined water pressure to the electrolysis electrode of the water storage container from below and parts, the active Characterized in that the connected intake pipes through hole of the porous body and a water intake portion for taking out the hydrogen water from the reservoir.

ここで、電解用電極と活性炭多孔質体の円柱外周面との離間距離が最短部で左右方向には100mmを超えないように(さらに好ましくは50mmを超えないように)且つ上下方向には100mmを超えないように(さらに好ましくは50mmを超えないように)両者を接近させ、電解用電極で生じた水素ガスが浮上し始めて直ぐに活性炭多孔質体の表面に接しうるようにすることが好ましい。また、離間距離が最短部で左右方向に10〜100mmになるときは、水素ガスを電解用電極から活性炭多孔質体へと斜め上方向にガイドする斜状ガイド板を設けることが好ましい。 Here, the separation distance between the electrode for electrolysis and the outer peripheral surface of the cylindrical column of the activated carbon porous body is 100 mm in the vertical direction so that it does not exceed 100 mm in the left-right direction at the shortest part (more preferably, it does not exceed 50 mm). It is preferable that both be brought close to each other so as not to exceed (more preferably not exceed 50 mm) so that the hydrogen gas generated at the electrode for electrolysis can come into contact with the surface of the activated carbon porous body as soon as it begins to float. Further, when the separation distance is 10 to 100 mm in the left-right direction at the shortest portion, it is preferable to provide an oblique guide plate that guides the hydrogen gas obliquely upward from the electrode for electrolysis to the activated carbon porous body.

電解用電極で生じた水素ガスは、浮上し始める時には非常に微細であるため活性炭多孔質体に吸着されやすいが、それが浮上の途中で合体して大きな気泡になると活性炭多孔質体に吸着されにくくなる。そこで、電解用電極と活性炭多孔質体とを前記離間距離となるように接近させると、浮上し始めの非常に微細な水素ガスを活性炭多孔質体に多く吸着させることができる。   The hydrogen gas generated at the electrode for electrolysis is very fine when it begins to float, so it is easy to be adsorbed to the activated carbon porous body. It becomes difficult. Therefore, when the electrode for electrolysis and the activated carbon porous body are brought close to each other with the separation distance, a very fine hydrogen gas that starts to float can be adsorbed to the activated carbon porous body.

また、貯水容器に、電解用電極が収納される電解室を下側に、活性炭多孔質体が収納される浄水室を上側に、それぞれ区分して設けることができる。この場合、電解用電極の略真上に活性炭多孔質体の表面を縦方向に位置させることにより、浮上する水素ガスが活性炭多孔質体の表面に接しやすくなる。あるいは、電解用電極が収納される電解室を活性炭多孔質体が収納される浄水室の下部に重複して配置し、電解用電極と活性炭多孔質体とを前記のとおり接近させることもできる。   In addition, the water storage container can be provided with an electrolysis chamber in which the electrode for electrolysis is stored on the lower side and a water purification chamber in which the activated carbon porous body is stored on the upper side. In this case, by placing the surface of the activated carbon porous body in the vertical direction substantially directly above the electrode for electrolysis, the floating hydrogen gas can easily come into contact with the surface of the activated carbon porous body. Alternatively, the electrolysis chamber in which the electrode for electrolysis is accommodated can be disposed overlapping the lower part of the water purification chamber in which the activated carbon porous body is accommodated, and the electrolysis electrode and the activated carbon porous body can be brought close to each other as described above.

電解室に対(正負の対(後述する通り極低周波数で切替わる場合も含む))の電解用電極を収納して、貯水容器を一方の電極としても使用しない場合には、貯水容器の材質は、特に限定されず、ステンレス鋼系又はアルミ系等の金属でもよく、合成樹脂でもよい。貯水容器の構造は、特に限定されないが、原水の給水圧に充分に耐え得る耐圧構造が望ましい。   If the electrolysis chamber is housed with a pair of positive and negative electrodes (including the case of switching at a very low frequency as described later) and the water storage container is not used as one of the electrodes, the material of the water storage container Is not particularly limited, and may be a metal such as stainless steel or aluminum, or may be a synthetic resin. The structure of the water storage container is not particularly limited, but a pressure resistant structure that can sufficiently withstand the supply pressure of the raw water is desirable.

電解用電極には、例えば、白金系の耐食性に優れた金属メッキを施した電極を使用できる。本発明では、活性炭多孔質体を電解用電極として使用せず、電解室において専用の電解用電極により原水の電気分解を行う。このため、活性炭多孔質体と比較して表面積の小さい電解用電極を使用して電流密度を高め、短時間に多量の水素ガスを発生させることができる。従って、従来と比較し、水素ガスの貯蔵に要する時間が大幅に短縮され、高濃度の水素水を長時間安定供給できる。また、活性炭多孔質体の表面に炭酸カルシウムがほとんど付着しなくなり、細孔の閉塞を防止して、安定した濾過性能を確保できる。   As the electrode for electrolysis, for example, a platinum-plated electrode with excellent metal corrosion resistance can be used. In the present invention, the activated carbon porous body is not used as an electrode for electrolysis, but electrolysis of raw water is performed using a dedicated electrode for electrolysis in an electrolysis chamber. For this reason, compared with an activated carbon porous body, an electrode for electrolysis with a smaller surface area can be used to increase the current density, and a large amount of hydrogen gas can be generated in a short time. Therefore, compared with the conventional case, the time required for storing hydrogen gas is greatly shortened, and high-concentration hydrogen water can be stably supplied for a long time. In addition, calcium carbonate hardly adheres to the surface of the activated carbon porous body, so that the pores are blocked and stable filtration performance can be secured.

次に、取水部に貯水容器の内部を加圧状態に保持する圧力弁を設けることが好ましい。これにより、貯水容器の内部が圧力弁の設定圧と同じ圧力に保持される。このため、電気分解により発生した電解ガスは容器の内部で加圧され、活性炭多孔質体の内部に強制充填され、無数の小空間に貯蔵される。この状態で、給水を開始すると、貯水容器の内部に原水の給水圧と圧力弁の設定圧との差圧によって水流が生じ、活性炭多孔質体中に貯蔵された電解ガスが水流に巻き込まれ、加圧条件下で水素ガスの気泡が原水中に強制溶解される。従って、常圧条件下で電解ガスを貯蔵・溶解していた従来と比較し、より多量の電解ガスを活性炭多孔質体に貯蔵し、より高濃度の水素水を長時間にわたり安定的に供給することができる。   Next, it is preferable to provide a pressure valve for holding the inside of the water storage container in a pressurized state in the water intake. Thereby, the inside of the water storage container is maintained at the same pressure as the set pressure of the pressure valve. For this reason, the electrolytic gas generated by electrolysis is pressurized inside the container, forcibly filled into the activated carbon porous body, and stored in countless small spaces. When water supply is started in this state, a water flow is generated by the differential pressure between the supply pressure of the raw water and the set pressure of the pressure valve inside the water storage container, the electrolytic gas stored in the activated carbon porous body is caught in the water flow, Under pressure, hydrogen gas bubbles are forcibly dissolved in the raw water. Therefore, compared to the conventional case where the electrolytic gas is stored and dissolved under normal pressure conditions, a larger amount of electrolytic gas is stored in the activated carbon porous body, and a higher concentration of hydrogen water is stably supplied over a long period of time. be able to.

すなわち、下記の数式1に表されるように、ガスの溶解度は気液接触圧力に比例するため、貯水容器の内圧を圧力弁で加圧状態に保持することで、原水中への水素ガスの溶解度を高めて、水素水の溶存水素濃度を向上させることができる。   That is, as expressed in Equation 1 below, the solubility of the gas is proportional to the gas-liquid contact pressure, so the internal pressure of the water storage container is kept pressurized by the pressure valve, so that the hydrogen gas in the raw water is The solubility can be increased and the dissolved hydrogen concentration of hydrogen water can be improved.

(数1)
C=kP
ここで、C:ガスの溶解度
k:ヘンリー定数
P:圧力
(Equation 1)
C = kP
Where C: gas solubility
k: Henry's constant
P: Pressure

また、水素ガスの気泡を加圧縮小することで、気泡の浮上速度が低下し、気泡を長期間水中に滞留させることができるため、単位面積当たりの水に含まれる水素ガスの気泡が飛躍的に増加し、すなわち、下記の数式2に表すaの増加により、原水中への水素ガスの溶解速度を加速することができる。   In addition, by reducing the pressure of hydrogen gas bubbles, the rising speed of the bubbles is reduced and the bubbles can stay in the water for a long time, so the bubbles of hydrogen gas contained in the water per unit area are dramatically increased. In other words, the increase of a shown in Equation 2 below can accelerate the dissolution rate of hydrogen gas in the raw water.

(数2)
dCAL/dt=Ka(CA−CAL)
ここで、CAL:溶存ガス濃度
t:時間
K:液側総括物質移動係数
a:単位体積あたりの気液接触面積
CA:飽和溶存ガス濃度
(Equation 2)
dCAL / dt = Ka (CA−CAL)
Where CAL: dissolved gas concentration
t: time
K: Liquid side mass transfer coefficient
a: Gas-liquid contact area per unit volume
CA: Saturated dissolved gas concentration

圧力弁の種類は、特に限定されず、例えば、設定圧を一定値に固定した定圧弁、設定圧を調整可能な圧力調整弁、リリーフ圧を調整可能な逃し弁等を使用できる。なお、圧力弁の設定圧は、給水圧が0.3MPa・G(G:ゲージ圧)程度の水道水を原水とする場合、0.2MPa・G前後が好ましい。   The type of the pressure valve is not particularly limited, and for example, a constant pressure valve in which the set pressure is fixed to a constant value, a pressure adjustment valve that can adjust the set pressure, a relief valve that can adjust the relief pressure, and the like can be used. Note that the set pressure of the pressure valve is preferably about 0.2 MPa · G when tap water having a feed water pressure of about 0.3 MPa · G (G: gauge pressure) is used as raw water.

次に、電解用電極への炭酸カルシウムの付着を防止するためには、電解電圧に極低周波数の交流電圧を用いるのが望ましい。特に、電解効率が高く、電解反応が安定する点で、給電部は、電解用電極に10-4〜10-1Hzの矩形波交流電圧を出力する電解電源であることが好ましい。電解電圧の周波数が10-1Hzを超過すると、電気分解反応の効率が低下し、水素ガスの発生率が減少する。また、周波数が10-4Hzを下回る領域では、陰極に炭酸カルシウムが析出しやすく、これを逆電位で消失させることはできても、析出・消失の繰り返しで電気分解反応が不安定となる。 Next, in order to prevent the adhesion of calcium carbonate to the electrode for electrolysis, it is desirable to use an alternating voltage with an extremely low frequency as the electrolysis voltage. In particular, in terms of high electrolytic efficiency and stable electrolytic reaction, the power supply unit is preferably an electrolytic power source that outputs a rectangular wave AC voltage of 10 −4 to 10 −1 Hz to the electrode for electrolysis. When the frequency of the electrolysis voltage exceeds 10 −1 Hz, the efficiency of the electrolysis reaction is lowered and the generation rate of hydrogen gas is reduced. Further, in the region where the frequency is lower than 10 −4 Hz, calcium carbonate is likely to be deposited on the cathode, and even if it can be eliminated at a reverse potential, the electrolytic reaction becomes unstable due to repeated deposition and disappearance.

また、給電部は、電解電流を一定に保つように矩形波交流電圧を自動可変する電解用定電流電源であることが好ましい。原水の水質に関わらず、電解電流が一定に保たれ、水素ガスの発生を安定化することが可能になるからである。この矩形波交流電圧は、特に限定されないが、1〜40Vが好ましい。   Moreover, it is preferable that the power feeding unit is a constant current power source for electrolysis that automatically varies the rectangular wave AC voltage so as to keep the electrolysis current constant. This is because the electrolysis current is kept constant regardless of the quality of the raw water, and the generation of hydrogen gas can be stabilized. Although this rectangular wave alternating voltage is not specifically limited, 1-40V is preferable.

活性炭多孔質体は、例えば活性炭粒子をバインダーで結合してなる導電性の成形体であって、原水中の塩素成分やトリハロメタン等の有機物を除去する浄水機能と、電解ガスを貯蔵するスペース機能とを備える。浄水機能に関しては、pHが中性域の水中で微生物の細胞が負極性に帯電していることから、活性炭多孔質体を正極性に帯電させることで、多孔質体の表面に炭酸カルシウムを析出させることなく、微生物の捕集性能を高めることができる。具体的には、活性炭多孔質体に1V以上で且つ電解が発生しない電圧範囲の正電圧を印加する直流電源を備えることが好ましい。また、水素ガスも負極性に帯電していることもあり、水素の吸着・吸蔵にも効果がある。なお、印加電圧が1V未満になると、微生物の捕集性能が不充分になる。   The activated carbon porous body is, for example, a conductive molded body formed by binding activated carbon particles with a binder, and has a water purification function for removing organic substances such as chlorine components and trihalomethane in raw water, and a space function for storing electrolytic gas. Is provided. Regarding the water purification function, since the cells of microorganisms are negatively charged in water with a neutral pH, calcium carbonate is deposited on the surface of the porous body by charging the activated carbon porous body to the positive polarity. Therefore, the collection performance of microorganisms can be improved. Specifically, it is preferable to provide a DC power source that applies a positive voltage in a voltage range of 1 V or more and no electrolysis to the activated carbon porous body. In addition, hydrogen gas is also negatively charged, which is effective for hydrogen adsorption and storage. When the applied voltage is less than 1 V, the microorganism collection performance becomes insufficient.

なお、給水部の構成は、特に限定されず、例えば、水道管の蛇口や井戸水の給水源にホースを介して接続される給水口を備えた構成を採用できる。取水部の構成も、特に限定されず、例えば、水素水を吐出する吐出口の前段(上流側)に圧力弁を設けた構成を採用できる。   In addition, the structure of a water supply part is not specifically limited, For example, the structure provided with the water supply port connected to the faucet of a water pipe and the water supply source of well water via a hose is employable. The configuration of the water intake unit is not particularly limited, and for example, a configuration in which a pressure valve is provided in the front stage (upstream side) of the discharge port for discharging hydrogen water can be adopted.

さらに、給水部より上流に、前置浄水室を備えた前置貯水容器と、前置浄水室に収納された前置活性炭部材と、前置浄水室に所定水圧の原水を供給する前置給水部と、前置浄水室から前置浄化された水を取り出して給水部に送る前置取水部とからなる前置浄水装置を設けることもできる。活性炭部材としては、特に限定されないが、多孔質体、粉末状、粒状等を例示することができる。前置浄水室では、前置浄化として水道原水等のろ過(遊離塩素、ゴミ、有機物、鉛等)を主に行うことにより、後の電解室での電気分解を安定化させると同時に、電解による有害物質(主に有機塩素系化合物)の生成を抑制し、また、後の浄水室の活性炭多孔質体の負荷を軽減して浄化吸着の寿命を延長させることができ、より清浄で安全な水素水を大量に成形させることができる。すなわち、後の浄水室の活性炭多孔質体は水素ガスの吸蔵を主に行うことができる。   Further, upstream of the water supply unit, a pre-water storage container provided with a pre-clean water chamber, a pre-activated carbon member housed in the pre-clean water chamber, and pre-water supply for supplying raw water of a predetermined water pressure to the pre-clean water chamber It is also possible to provide a front water purification apparatus that includes a front part and a front water intake unit that takes out the purified water from the front water purification chamber and sends it to the water supply unit. Although it does not specifically limit as an activated carbon member, A porous body, a powder form, a granular form, etc. can be illustrated. In the pre-treatment water purification chamber, the water purification of the water source is mainly performed as pre-purification (free chlorine, dust, organic matter, lead, etc.) to stabilize the electrolysis in the subsequent electrolysis chamber and at the same time by electrolysis. It is possible to suppress the generation of harmful substances (mainly organic chlorine compounds) and to reduce the load of the activated carbon porous body in the subsequent water purification chamber and extend the life of purification adsorption. A large amount of water can be formed. That is, the activated carbon porous body in the subsequent water purification chamber can mainly store hydrogen gas.

以上詳述したように、本発明に係る電解式水素水生成装置によれば、高濃度の水素水を長時間安定供給でき、活性炭多孔質体への炭酸カルシウムの付着がほとんどなくなるという優れた効果を奏する。また、電解用電極に10-4〜10-1Hzの矩形波交流電圧を供給することにより、電極への炭酸カルシウムの付着を防止し、電解効率を高め、電解反応を安定化できる効果がある。さらに、活性炭多孔質体に1V以上で且つ電解が発生しない電圧範囲の正電圧を印加することにより、多孔質体の表面に炭酸カルシウムを析出させることなく、微生物の捕集性能を向上できる効果がある。 As described above in detail, according to the electrolytic hydrogen water generator according to the present invention, high concentration hydrogen water can be stably supplied for a long time, and the excellent effect that the adhesion of calcium carbonate to the activated carbon porous body is almost eliminated. Play. Further, by supplying a rectangular wave AC voltage of 10 −4 to 10 −1 Hz to the electrode for electrolysis, it is possible to prevent adhesion of calcium carbonate to the electrode, increase electrolysis efficiency, and stabilize the electrolysis reaction. . Furthermore, by applying a positive voltage in a voltage range of 1 V or more and no electrolysis to the activated carbon porous body, there is an effect that the performance of collecting microorganisms can be improved without precipitating calcium carbonate on the surface of the porous body. is there.

電気分解により発生した水素ガスを原水中に溶解させて水素水を生成する装置であって、貯水容器と、前記貯水容器に収納された電解用電極と、前記電解用電極に電解電圧を印加する給電部と、前記貯水容器に前記電解用電極とは離間して前記電解用電極の上端より上方まで延びるように収納された、前記電解電圧の印加されない活性炭多孔質体と、前記貯水容器に所定水圧の原水を供給する給水部と、前記貯水容器から水素水を取り出す取水部とを含む。電解用電極と活性炭多孔質体との離間距離が最短部で左右方向には100mmを超えないように且つ上下方向には100mmを超えないように両者を接近させ、電解用電極で生じた水素ガスが浮上し始めて直ぐに活性炭多孔質体の表面に接しうるようにする。取水部に貯水容器の内部を加圧状態に保持する圧力弁を設ける。給電部を、電解用電極に10-4〜10-1Hzの矩形波交流電圧を出力し、且つ、電解電流を一定に保つように矩形波交流電圧を自動可変する電解用定電流電源とする。 An apparatus for generating hydrogen water by dissolving hydrogen gas generated by electrolysis in raw water, and applying an electrolysis voltage to a water storage container, an electrode for electrolysis stored in the water storage container, and the electrode for electrolysis A feeding unit; and an activated carbon porous body to which the electrolysis voltage is not applied, which is housed in the water storage container so as to be separated from the electrolysis electrode and extend above the upper end of the electrolysis electrode; A water supply unit that supplies raw water at a hydraulic pressure; and a water intake unit that extracts hydrogen water from the water storage container. Hydrogen gas generated at the electrode for electrolysis by bringing both electrodes close to each other so that the separation distance between the electrode for electrolysis and the activated carbon porous body does not exceed 100 mm in the left-right direction at the shortest part and does not exceed 100 mm in the vertical direction As soon as it starts to float, it can come into contact with the surface of the activated carbon porous body. A pressure valve for holding the inside of the water storage container in a pressurized state is provided in the water intake. The feeding unit is a constant current power source for electrolysis that outputs a rectangular wave AC voltage of 10 −4 to 10 −1 Hz to the electrode for electrolysis and that automatically changes the rectangular wave AC voltage so as to keep the electrolysis current constant. .

図1に示す実施例1の電解式水素水生成装置1は、水電解部2と給電装置3とから構成されている。水電解部2には、水道水を原水4として貯留する貯水容器5と、原水4を貯水容器5に供給する給水部6と、貯水容器5から水素水7を取り出す取水部8とが設けられている。貯水容器5は、樹脂系材料によって上下2室構造に一体成形され、上流側である小容積の電解室9を下側に、下流側である大容積の浄水室10を上側に、区分してそれぞれ備えている。両室9,10は連通口23を介して連通している。   An electrolytic hydrogen water generator 1 of Example 1 shown in FIG. 1 includes a water electrolysis unit 2 and a power feeding device 3. The water electrolysis unit 2 includes a water storage container 5 that stores tap water as raw water 4, a water supply unit 6 that supplies the raw water 4 to the water storage container 5, and a water intake unit 8 that extracts hydrogen water 7 from the water storage container 5. ing. The water storage container 5 is integrally formed of a resin-based material into an upper and lower two-chamber structure, and is divided into a small volume electrolysis chamber 9 on the upstream side and a large volume water purification chamber 10 on the downstream side on the upper side. Each has. Both chambers 9 and 10 communicate with each other via a communication port 23.

電解室9には原水4を電気分解する一対(又は複数対)の電解用電極11が収納されている。電解用電極11は白金系の金属材料により小形に形成され、所定の隙間を介して電解室9内に対向配置されている。浄水室10には電解後の原水4を浄化する活性炭多孔質体12が、電解用電極11とは離間して、また、(前記浄水質10の配置からして当然のことであるが)電解用電極11の上端より上方まで延びるように収納されている。活性炭多孔質体12は円柱状に成形され、中心部に縦長の貫通穴13を備えている。また、活性炭多孔質体12の円柱外周面24は、電解用電極11の略真上に位置しているが、電解用電極11の略真上よりやや内側又は外側に位置していてもよい。   In the electrolysis chamber 9, a pair (or a plurality of pairs) of electrolysis electrodes 11 that electrolyze the raw water 4 are accommodated. The electrode 11 for electrolysis is formed in a small size using a platinum-based metal material, and is disposed opposite to the electrolysis chamber 9 with a predetermined gap. In the water purification chamber 10, an activated carbon porous body 12 that purifies the raw water 4 after electrolysis is separated from the electrode 11 for electrolysis, and is electrolyzed (which is naturally due to the arrangement of the water purification material 10). The electrode 11 is housed so as to extend upward from the upper end of the electrode 11. The activated carbon porous body 12 is formed in a cylindrical shape, and has a vertically long through hole 13 in the center. Moreover, although the cylindrical outer peripheral surface 24 of the activated carbon porous body 12 is located substantially directly above the electrode 11 for electrolysis, it may be located slightly inside or outside of the electrode 11 for electrolysis.

電解用電極11と活性炭多孔質体12円柱外周面24との離間距離は最短部で左右方向には実質的に0(なお、図1で左方向(円柱外周面24の外側方向)又は右方向(円柱外周面24の内側方向)に30〜50mm程度離間していてもよい。)、且つ上下方向には15mmである。このように両者を接近させることで、電解用電極11で生じた水素ガスが浮上し始めて直ぐに活性炭多孔質体11の円柱外周面24に接しうる。そして、給電装置3には、電解用電極11に例えば約10-3Hzの極低周波数の矩形波交流電圧を連続的に供給する給電部としての電解電源14と、活性炭多孔質体12に1V以上で且つ電解が発生しない電圧範囲の正電圧を印加する直流電源15とが設けられている。電解電源14は、電解電流を一定に保つように矩形波交流電圧を自動可変する電解用定電流電源であり、矩形波交流電圧は1〜40Vの範囲内で可変される。 The separation distance between the electrode 11 for electrolysis and the cylindrical outer peripheral surface 24 of the activated carbon porous body 12 is substantially 0 in the left-right direction at the shortest portion (note that the left direction in FIG. 1 (the outer direction of the cylindrical outer peripheral surface 24) or right (It may be about 30-50 mm apart in the direction (inner direction of the cylindrical outer peripheral surface 24).) And 15 mm in the vertical direction. By bringing the two close to each other in this way, the hydrogen gas generated in the electrode 11 for electrolysis can come into contact with the cylindrical outer peripheral surface 24 of the activated carbon porous body 11 as soon as it begins to float. The power supply device 3 includes an electrolytic power supply 14 as a power supply unit that continuously supplies a rectangular wave AC voltage of, for example, about 10 −3 Hz to the electrode 11 for electrolysis, and 1 V to the activated carbon porous body 12. There is provided a DC power source 15 that applies a positive voltage in a voltage range that does not generate electrolysis. The electrolytic power source 14 is a constant current power source for electrolysis that automatically varies the rectangular wave AC voltage so as to keep the electrolytic current constant, and the rectangular wave AC voltage is varied within a range of 1 to 40V.

給水部6は、給水源に接続される給水バルブ16と、電解室9の底に開口する給水口17とを備え、原水4を0.3MPa・G程度の水圧で電解室9に供給するように構成されている。取水部8は、活性炭多孔質体12の貫通穴13に接続された取水パイプ18と、水素水7を吐出する吐出口19と、貯水容器5の内部を加圧状態に保持する圧力弁20とを備え、圧力弁20が吐出口19より上流側に設けられている。圧力弁20には、設定圧を0.05〜0.2MPa・Gの範囲で調整可能な圧力調整弁が用いられている。   The water supply unit 6 includes a water supply valve 16 connected to a water supply source and a water supply port 17 that opens to the bottom of the electrolysis chamber 9, and supplies the raw water 4 to the electrolysis chamber 9 with a water pressure of about 0.3 MPa · G. It is configured. The water intake unit 8 includes a water intake pipe 18 connected to the through hole 13 of the activated carbon porous body 12, a discharge port 19 for discharging the hydrogen water 7, and a pressure valve 20 for maintaining the inside of the water storage container 5 in a pressurized state. The pressure valve 20 is provided on the upstream side of the discharge port 19. As the pressure valve 20, a pressure adjusting valve capable of adjusting the set pressure in a range of 0.05 to 0.2 MPa · G is used.

この実施例の電解式水素水生成装置1において、電解用電極11に矩形波交流電圧を印加すると、電解室9の原水4が例えば200〜500mAの範囲内から定められる定電流で電気分解され、矩形波交流電圧は12V前後で自動可変され、陽極に酸素ガス21が発生し、陰極に水素ガス22が発生する。電解用電極11の極性は比較的長い時間(例えば10分)をおいて周期的に変化し、酸素ガス21及び水素ガス22が両方の電解用電極11から交互に発生する。そして、これらの電解ガスは連通口23から浄水室10内を浮上するが、前記のとおり電解用電極11と活性炭多孔質体12円柱外周面24とが接近しているため、浮上し始めの非常に微細な水素ガスを活性炭多孔質体12に多く吸着させることができる。 In the electrolytic hydrogen water generating apparatus 1 of this embodiment, when a rectangular wave AC voltage is applied to the electrode 11 for electrolysis, the raw water 4 in the electrolysis chamber 9 is electrolyzed with a constant current determined within a range of 200 to 500 mA, for example. The rectangular AC voltage is automatically varied around 12 V, oxygen gas 21 is generated at the anode, and hydrogen gas 22 is generated at the cathode. The polarity of the electrode 11 for electrolysis changes periodically over a relatively long time (for example, 10 minutes), and oxygen gas 21 and hydrogen gas 22 are alternately generated from both the electrodes 11 for electrolysis. And these electrolytic gas floats in the water purification chamber 10 from the communication port 23, but since the electrode 11 for electrolysis and the cylindrical outer peripheral surface 24 of the activated carbon porous body 12 are close as described above, A large amount of very fine hydrogen gas can be adsorbed on the activated carbon porous body 12.

また、このとき、貯水容器5の内部は圧力弁20により例えば0.2MPa・Gの加圧状態に保持されている。このため、電解ガスは容器5の内圧により加圧され、活性炭多孔質体12の内部に強制充填され、無数の小空間(図5参照)に貯蔵される。この状態で、給水バルブ16を開いて0.3MPa・Gの原水4を給水すると、貯水容器5の内部に給水圧と圧力弁設定圧との差圧(0.1MPa・G)による水流が生じ、活性炭多孔質体12中に貯蔵された電解ガスが水流に巻き込まれる。そして、0.2MPa・Gの加圧条件下で、水素ガスの気泡が、従来と比較し、気泡径約1/3、表面積約1/9、体積約1/27に圧縮された状態で原水4中に強制溶解される。   At this time, the inside of the water storage container 5 is maintained in a pressurized state of, for example, 0.2 MPa · G by the pressure valve 20. For this reason, electrolytic gas is pressurized by the internal pressure of the container 5, is forcibly filled into the activated carbon porous body 12, and is stored in countless small spaces (see FIG. 5). In this state, when the water supply valve 16 is opened and the raw water 4 of 0.3 MPa · G is supplied, a water flow is generated inside the reservoir 5 due to the pressure difference between the water supply pressure and the pressure valve set pressure (0.1 MPa · G). The electrolytic gas stored in the activated carbon porous body 12 is entrained in the water flow. Then, under pressurized conditions of 0.2 MPa · G, the hydrogen gas bubbles are compressed to about 1/3, the surface area is about 1/9, and the volume is about 1/27 compared with the conventional raw water. 4 is forcibly dissolved.

従って、この実施例の電解式水素水生成装置1によれば、次のような作用効果が得られる。
(1)活性炭多孔質体12を電解用電極として使用せず、浄水室10とは区分した電解室9において専用の電解用電極11により原水の電気分解を行うので、多孔質体12の表面に炭酸カルシウムが析出するおそれがほとんどなく、活性炭の濾過機能を長期間良好に維持できる。また、電解電極11に表面積の小さい金属電極を使用することができるので、原水4の抵抗による電圧降下が小さくなり、また、電解電流値を200〜500mA程度にまで上げて電流密度を高めることも可能で、電解効率をよくして短時間に多量の水素ガスを発生できる。
Therefore, according to the electrolytic hydrogen water generator 1 of this embodiment, the following operational effects can be obtained.
(1) Since the activated carbon porous body 12 is not used as an electrode for electrolysis and the electrolysis of the raw water is performed by the electrode 11 for electrolysis in the electrolysis chamber 9 separated from the water purification chamber 10, the surface of the porous body 12 is There is almost no possibility of precipitation of calcium carbonate, and the filtration function of activated carbon can be maintained well for a long period of time. Further, since a metal electrode having a small surface area can be used as the electrolytic electrode 11, the voltage drop due to the resistance of the raw water 4 is reduced, and the current density can be increased by raising the electrolysis current value to about 200 to 500 mA. It is possible to generate a large amount of hydrogen gas in a short time with improved electrolysis efficiency.

(2)活性炭多孔質体12が電解用電極11の上端より上方まで延びており、また、電解用電極11と活性炭多孔質体12と円柱外周面24とが接近しているため、浮上し始めの非常に微細な水素ガスを活性炭多孔質体12に多く吸着させることができる。 (2) The activated carbon porous body 12 extends upward from the upper end of the electrode 11 for electrolysis, and since the electrode 11 for electrolysis, the activated carbon porous body 12, and the cylindrical outer peripheral surface 24 are close to each other, the activated carbon porous body 12 begins to float. A large amount of the very fine hydrogen gas can be adsorbed to the activated carbon porous body 12.

(3)貯水容器5の内部を圧力弁20で加圧状態に保持したので、活性炭多孔質体12への電解ガスの貯蔵量及び水素水7の溶存水素濃度を共に従来の約3倍に増やすことができ、高濃度の水素水7を長時間にわたり安定的に供給できる。 (3) Since the inside of the water storage container 5 is maintained in a pressurized state by the pressure valve 20, both the amount of electrolytic gas stored in the activated carbon porous body 12 and the dissolved hydrogen concentration of the hydrogen water 7 are increased to about three times the conventional one. And high-concentration hydrogen water 7 can be stably supplied over a long period of time.

(4)電解電極11に極低周波数の矩形波交流電圧を印加するので、電極11への炭酸カルシウムの付着を防止し、電解効率を高め、電解反応を安定化できるとともに、保守作業を省くことが可能となる。 (4) Since a very low frequency rectangular wave AC voltage is applied to the electrolytic electrode 11, the adhesion of calcium carbonate to the electrode 11 can be prevented, the electrolytic efficiency can be improved, the electrolytic reaction can be stabilized, and maintenance work can be omitted. Is possible.

(5)活性炭多孔質体12に1V以上の正電圧を常時印加するので、負極性に帯電した原水4中の微生物を効率よく捕集し、微生物の漏洩を抑制でき、水素水7の衛生度を向上できる。正電圧を印加するので、活性炭多孔質体12の表面に炭酸カルシウムが析出するおそれがない。 (5) Since a positive voltage of 1 V or higher is constantly applied to the activated carbon porous body 12, microorganisms in the negatively charged raw water 4 can be efficiently collected, and leakage of microorganisms can be suppressed. Can be improved. Since a positive voltage is applied, there is no possibility that calcium carbonate precipitates on the surface of the activated carbon porous body 12.

図2に示す実施例2の電解式水素水生成装置1は、電解室9を浄水室10の下部に重複して配置するとともに、電解用電極11を活性炭多孔質体12の下部に並べて配置し、もって活性炭多孔質体12が電解用電極11の上端より上方まで延びているようにした点において、実施例1と相違するものである。電解用電極11と活性炭多孔質体12円柱外周面24との離間距離は最短部で左右方向には5mm、且つ上下方向には実質的に0であり、このように両者を接近させることで、電解用電極11で生じた水素ガスが浮上し始めて直ぐに活性炭多孔質体11の円柱外周面24に接しうる。従って、この実施例2によっても実施例1と同様の作用効果が得られる。 The electrolytic hydrogen water generating apparatus 1 of Example 2 shown in FIG. 2 arranges the electrolysis chamber 9 overlapping the lower portion of the water purification chamber 10 and arranges the electrode 11 for electrolysis side by side under the activated carbon porous body 12. Thus, the activated carbon porous body 12 is different from the embodiment 1 in that the activated carbon porous body 12 extends upward from the upper end of the electrode 11 for electrolysis. The separation distance between the electrode 11 for electrolysis and the cylindrical outer peripheral surface 24 of the activated carbon porous body 12 is 5 mm in the left-right direction at the shortest portion and substantially 0 in the vertical direction. As soon as the hydrogen gas generated in the electrode 11 for electrolysis begins to float, it can come into contact with the cylindrical outer peripheral surface 24 of the activated carbon porous body 11. Therefore, this second embodiment can provide the same effects as those of the first embodiment.

図3に示す実施例3の電解式水素水生成装置1は、給水部6より上流に、前置浄水室32を備えた前置貯水容器31と、前置浄水室32に収納された前置活性炭多孔質体33と、前置浄水室32に所定水圧の原水を供給する前置給水部34と、前置浄水室32から前置浄化された水を取り出して給水部6に送る前置取水部35とからなる前置浄水装置30を設けた点においてのみ、実施例1と相違するものである。   The electrolytic hydrogen water generator 1 of Example 3 shown in FIG. 3 is upstream of the water supply unit 6, a front water storage container 31 having a front water purification chamber 32, and a front water housed in the front water purification chamber 32. Activated carbon porous body 33, front water supply unit 34 for supplying raw water of a predetermined water pressure to front water purification chamber 32, and front water intake for removing the pre-purified water from front water purification chamber 32 and sending it to water supply unit 6 It differs from Example 1 only in the point which provided the front water purifier 30 which consists of a part 35. FIG.

前置活性炭多孔質体33の形状は活性炭多孔質体12と類似したものであり、電圧は印加されないが、活性炭多孔質体12と同様に1V以上で且つ電解が発生しない電圧範囲の正電圧が印加されてもよい。前置給水部34は前置活性炭多孔質体33の外周側に設けられ、前記取水部35は前記活性炭多孔質体33の貫通穴側に設けられる。   The shape of the activated carbon porous body 33 is similar to that of the activated carbon porous body 12, and no voltage is applied. However, like the activated carbon porous body 12, a positive voltage in a voltage range of 1 V or more and no electrolysis is generated. It may be applied. The pre-water supply unit 34 is provided on the outer peripheral side of the pre-activated carbon porous body 33, and the water intake unit 35 is provided on the through-hole side of the activated carbon porous body 33.

前置浄水室32では、前置浄化として水道原水等のろ過(遊離塩素、ゴミ、有機物、鉛等)を主に行うことにより、後の電解室9での電気分解を安定化させると同時に、電解による有害物質(主に有機塩素系化合物)の生成を抑制し、また、後の浄水室10の活性炭多孔質体12の負荷を軽減して浄化吸着の寿命を延長させることができ、より清浄で安全な水素水を大量に成形させることができる。すなわち、後の浄水室10の活性炭多孔質体12は水素ガスの吸蔵をを主に行うことができる。   In the pre-purification water chamber 32, by mainly performing filtration (free chlorine, dust, organic matter, lead, etc.) of raw water for pre-purification, the electrolysis in the subsequent electrolysis chamber 9 is stabilized, It is possible to suppress the generation of harmful substances (mainly organochlorine compounds) due to electrolysis, and to reduce the load on the activated carbon porous body 12 in the subsequent water purification chamber 10 to extend the life of the purification adsorption, thus making it cleaner And can form a large amount of safe hydrogen water. That is, the activated carbon porous body 12 in the subsequent water purification chamber 10 can mainly store hydrogen gas.

本発明に係る実施例1の電解式水素水生成装置を示す概略図である。It is the schematic which shows the electrolytic hydrogen water generating apparatus of Example 1 which concerns on this invention. 本発明に係る実施例2の電解式水素水生成装置を示す概略図である。It is the schematic which shows the electrolytic hydrogen water generating apparatus of Example 2 which concerns on this invention. 本発明に係る実施例3の電解式水素水生成装置を示す概略図である。It is the schematic which shows the electrolytic hydrogen water generating apparatus of Example 3 which concerns on this invention. 従来の電解式水素水生成装置を示す概略図である。It is the schematic which shows the conventional electrolytic hydrogen water production | generation apparatus. 活性炭多孔質体の組成を示す概略図である。It is the schematic which shows the composition of an activated carbon porous body.

符号の説明Explanation of symbols

1 電解式水素水生成装置
4 原水
5 貯水容器
6 給水部
7 水素水
8 取水部
9 電解室
10 浄水室
11 電解用電極
12 活性炭多孔質体
14 給電部としての電解電源
15 直流電源
20 圧力弁
23 連通口
24 円柱外周面
30 前置浄水装置
DESCRIPTION OF SYMBOLS 1 Electrolytic hydrogen water production | generation apparatus 4 Raw water 5 Water storage container 6 Water supply part 7 Hydrogen water 8 Water intake part 9 Electrolytic chamber 10 Water purification room 11 Electrolytic electrode 12 Activated carbon porous body 14 Electrolytic power source 15 DC power source 20 Pressure valve 23 Communication port 24 Cylinder outer peripheral surface 30 Preliminary water purifier

Claims (9)

電気分解により発生した水素ガスを原水中に溶解させて水素水を生成する装置であって、
貯水容器と、
前記貯水容器に収納された電解用電極と、
前記電解用電極に電解電圧を印加する給電部と、
円柱外周面と中心部の縦長の貫通穴とを備える円柱状に成形され、該円柱外周面が前記電解用電極とは離間して前記電解用電極の上端より上方まで延びるようにして、前記貯水容器に収納され、前記電解用電極による電解後の原水を浄化するとともに、前記電解用電極で発生した水素ガスを吸着し貯蔵して、該水素ガスを原水中に溶解させる、前記電解電圧の印加されない活性炭多孔質体と、
前記貯水容器の前記電解用電極に下方から所定水圧の原水を供給する給水部と、
前記活性炭多孔質体の貫通穴に接続された取水パイプにより前記貯水容器から水素水を取り出す取水部とを含むことを特徴とする電解式水素水生成装置。
An apparatus for generating hydrogen water by dissolving hydrogen gas generated by electrolysis in raw water,
A water storage container,
An electrode for electrolysis stored in the water storage container;
A power feeding unit for applying an electrolysis voltage to the electrode for electrolysis;
The water storage is molded into a cylindrical shape having a cylindrical outer peripheral surface and a vertically long through hole at the center, and the cylindrical outer peripheral surface is spaced apart from the electrolysis electrode and extends above the upper end of the electrolysis electrode. Applying the electrolysis voltage stored in a container, purifies raw water after electrolysis by the electrode for electrolysis, adsorbs and stores hydrogen gas generated by the electrode for electrolysis, and dissolves the hydrogen gas in raw water Activated carbon porous body,
A water supply unit for supplying raw water having a predetermined water pressure from below to the electrode for electrolysis of the water storage container;
An electrolytic hydrogen water generating apparatus comprising: a water intake portion that extracts hydrogen water from the water storage container by a water intake pipe connected to the through hole of the activated carbon porous body .
前記電解用電極と前記活性炭多孔質体の円柱外周面との離間距離が最短部で左右方向には100mmを超えないように且つ上下方向には100mmを超えないように両者を接近させ、前記電解用電極で生じた水素ガスが浮上し始めて直ぐに前記活性炭多孔質体の表面に接しうるようにした請求項1記載の電解式水素水生成装置。 The distance between the electrode for electrolysis and the columnar outer peripheral surface of the activated carbon porous body is close to the shortest portion so that it does not exceed 100 mm in the left-right direction and does not exceed 100 mm in the up-down direction. The electrolytic hydrogen water generator according to claim 1, wherein the hydrogen gas generated at the working electrode can come into contact with the surface of the porous activated carbon as soon as it begins to float. 前記貯水容器に、前記電解用電極が収納される電解室を下側に、前記活性炭多孔質体が収納される浄水室を上側に、それぞれ区分して設けた請求項1又は2記載の電解式水素水生成装置。   The electrolytic method according to claim 1 or 2, wherein the water storage container is provided with an electrolysis chamber in which the electrode for electrolysis is stored on the lower side and a water purification chamber in which the activated carbon porous body is stored on the upper side. Hydrogen water generator. 前記取水部に前記貯水容器の内部を加圧状態に保持する圧力弁を設けた請求項1、2又は3記載の電解式水素水生成装置。   The electrolytic hydrogen water generating apparatus according to claim 1, 2, or 3, wherein a pressure valve for holding the inside of the water storage container in a pressurized state is provided in the water intake section. 前記給電部が、前記電解用電極に10-4〜10-1Hzの矩形波交流電圧を出力する請求項1、2、3又は4記載の電解式水素水生成装置。 5. The electrolytic hydrogen water generator according to claim 1, wherein the power feeding unit outputs a rectangular wave AC voltage of 10 −4 to 10 −1 Hz to the electrode for electrolysis. 前記給電部が、電解電流を一定に保つように前記矩形波交流電圧を自動可変する電解用定電流電源である請求項5記載の電解式水素水生成装置。   The electrolytic hydrogen water generator according to claim 5, wherein the power feeding unit is a constant current power source for electrolysis that automatically varies the rectangular wave AC voltage so as to keep the electrolysis current constant. 前記矩形波交流電圧が1〜40Vである請求項6記載の電解式水素水生成装置。   The electrolytic hydrogen water generator according to claim 6, wherein the rectangular wave AC voltage is 1 to 40V. 前記活性炭多孔質体に1V以上で且つ電解が発生しない電圧範囲の正電圧を印加する直流電源を備える請求項1〜7のいずれか一項に記載の電解式水素水生成装置。   The electrolytic hydrogen water generator according to any one of claims 1 to 7, further comprising a DC power source that applies a positive voltage in a voltage range of 1 V or more and no electrolysis occurs to the activated carbon porous body. 前記給水部より上流に、前置浄水室を備えた前置貯水容器と、前記前置浄水室に収納された前置活性炭部材と、前記前置浄水室に所定水圧の原水を供給する前置給水部と、前記前置浄水室から前置浄化された水を取り出して前記給水部に送る前置取水部とからなる前置浄水装置を設けた請求項1〜8のいずれか一項に記載の電解式水素水生成装置。   Upstream from the water supply unit, a front water storage container having a front water purification chamber, a front activated carbon member housed in the front water purification chamber, and a front water supply for supplying raw water having a predetermined water pressure to the front water purification chamber The front water purification apparatus which consists of a water supply part and the front water intake part which takes out the water by which front purification was carried out from the said front water purification chamber, and sends it to the said water supply part was provided. Electrolytic hydrogen water generator.
JP2003434400A 2003-12-26 2003-12-26 Electrolytic hydrogen water generator Expired - Lifetime JP4420667B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2003434400A JP4420667B2 (en) 2003-12-26 2003-12-26 Electrolytic hydrogen water generator
TW093137609A TW200528399A (en) 2003-12-26 2004-12-06 Generator of electrolyzed hydrogen water
KR1020040110271A KR101065742B1 (en) 2003-12-26 2004-12-22 Electrolytic hydrogen water generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003434400A JP4420667B2 (en) 2003-12-26 2003-12-26 Electrolytic hydrogen water generator

Publications (2)

Publication Number Publication Date
JP2005186034A JP2005186034A (en) 2005-07-14
JP4420667B2 true JP4420667B2 (en) 2010-02-24

Family

ID=34791485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003434400A Expired - Lifetime JP4420667B2 (en) 2003-12-26 2003-12-26 Electrolytic hydrogen water generator

Country Status (3)

Country Link
JP (1) JP4420667B2 (en)
KR (1) KR101065742B1 (en)
TW (1) TW200528399A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012007206A (en) * 2010-06-24 2012-01-12 Takaoka Electric Mfg Co Ltd Electrolytic cell

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100634944B1 (en) 2004-04-21 2006-10-16 배금주 Apparatus for producing water having high oxygen content
JP4783598B2 (en) * 2005-08-03 2011-09-28 三井化学株式会社 Manufacturing method of chemical substances
JP2007228936A (en) * 2006-03-03 2007-09-13 Hiroshima Kasei Ltd Method for washing skin of mammal and system for washing skin of mammal
JP2007254435A (en) * 2006-03-27 2007-10-04 Takaoka Kasei Kogyo Kk Anticancer functional water
JP2007253131A (en) * 2006-03-27 2007-10-04 Takaoka Kasei Kogyo Kk Functional water containing anti-oxidant
KR100872968B1 (en) * 2008-04-01 2008-12-08 김철옥 An manufacturing apparatus of water with oxygen and hydrogen using brown's gas and manufacturing method thereof
JP4944913B2 (en) * 2009-03-13 2012-06-06 タカオカ化成工業株式会社 Hydrogen water generator
KR200459135Y1 (en) 2010-05-03 2012-03-19 김일봉 Portable device for producing hydrogen enriched water
JP5986718B2 (en) * 2011-07-25 2016-09-06 バイオコーク技研株式会社 Hydrogen water production apparatus and hydrogen water production method
KR101120942B1 (en) * 2011-08-08 2012-03-13 주식회사 선도 Manufacturing device of hydrogen water with functional
KR101190779B1 (en) 2012-02-29 2012-10-12 구본민 Generation device of hydrogen water
KR101171302B1 (en) 2012-02-29 2012-08-06 구본민 Generation device of hydrogen water
KR102408368B1 (en) * 2014-09-01 2022-06-10 가부시키가이샤니혼트림 Agricultural electrolyzed water-generating apparatus and agricultural electrolyzed water
JP2017029965A (en) * 2015-08-03 2017-02-09 医療環境テクノ株式会社 Alternating current electrolytic hydrogen water production method, and in-vivo radioactive material discharge method
CN105883980B (en) * 2016-04-06 2019-12-03 佛山市海狮凯尔科技有限公司 A kind of hydrogen-rich water generating device and method
JP6859573B2 (en) * 2016-08-29 2021-04-14 株式会社光未来 Water supply pumpless hydrogen water production equipment and hydrogen water production method
KR200486168Y1 (en) * 2016-09-22 2018-04-10 이진백 Hydrogen water production device driven by self generation electricity
JPWO2022249488A1 (en) * 2021-05-28 2022-12-01
WO2022249487A1 (en) * 2021-05-28 2022-12-01 中国電力株式会社 Water discharge method, water treatment method, residual chlorine reduction method, and water treatment facility

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06304549A (en) * 1993-04-21 1994-11-01 Funai Electric Co Ltd Water treating device
JP3664302B2 (en) 2001-10-04 2005-06-22 東京窯業株式会社 Electrolytic water purifier

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012007206A (en) * 2010-06-24 2012-01-12 Takaoka Electric Mfg Co Ltd Electrolytic cell

Also Published As

Publication number Publication date
KR20050067021A (en) 2005-06-30
TWI346089B (en) 2011-08-01
TW200528399A (en) 2005-09-01
KR101065742B1 (en) 2011-09-19
JP2005186034A (en) 2005-07-14

Similar Documents

Publication Publication Date Title
JP4420667B2 (en) Electrolytic hydrogen water generator
JP5913693B1 (en) Electrolytic device and electrolytic ozone water production device
JP5764474B2 (en) Electrolytic synthesis apparatus, electrolytic treatment apparatus, electrolytic synthesis method, and electrolytic treatment method
KR101436138B1 (en) A seawater electrolysi and fuel cell complex system
KR101842552B1 (en) Electrolytic Carbon Filter and Equipment of Water Treatment using the same
GB2267508A (en) Electrolytic and filter treatment of water
CN103936111A (en) Auxiliary purification device for water purifier
CN103951020A (en) Health water dispenser
WO2017090431A1 (en) Device for producing reduced water and method for producing reduced water
CN101723532B (en) System for treating concentrated water produced by coking wastewater recycling process
JPWO2016047257A1 (en) Electrolyzed water generating apparatus and dialysate preparation water production apparatus provided with the same
KR101427563B1 (en) Seawater electrolytic apparatus
CN202201742U (en) Neutral hydrogen-rich water electrolysis device
CN108002518B (en) Bioelectrochemical system and purification method for purifying nitrate in drinking water
US20130098819A1 (en) Enhanced resin regeneration
CN103819036B (en) Treating method for desulfurization waste water of power plant
CN106348539B (en) Method and device for removing nitrate in water
CN105692731B (en) It is a kind of that waste water and regeneration method are handled using electric conductivity filtering material
CN103449564B (en) Micro-series-wound photoelectric catalysis oxidation wastewater treatment device
JP2006043610A (en) Electrolytic hydrogen-containing water producing apparatus
JP4929279B2 (en) Electrolytic hydrogen water generator
CN113666547B (en) Low-energy-consumption double-electrode induction diaphragm electrolysis circulating water descaling and scale inhibition device
CN208378503U (en) A kind of electro-chemical systems for purifying drinking water
KR100890604B1 (en) Apparatus of producing dissolved oxygen and hydrogen enriched drinking water
KR102361980B1 (en) Electrolyzed Water Generating Device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060808

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090811

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091009

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091201

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4420667

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131211

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250