JP2012007206A - Electrolytic cell - Google Patents

Electrolytic cell Download PDF

Info

Publication number
JP2012007206A
JP2012007206A JP2010143561A JP2010143561A JP2012007206A JP 2012007206 A JP2012007206 A JP 2012007206A JP 2010143561 A JP2010143561 A JP 2010143561A JP 2010143561 A JP2010143561 A JP 2010143561A JP 2012007206 A JP2012007206 A JP 2012007206A
Authority
JP
Japan
Prior art keywords
electrolytic cell
electrode
electrodes
cathode
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010143561A
Other languages
Japanese (ja)
Inventor
Giichi Harada
義一 原田
Kenji Kawashima
建史 川嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takaoka Toko Co Ltd
Original Assignee
Takaoka Electric Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takaoka Electric Mfg Co Ltd filed Critical Takaoka Electric Mfg Co Ltd
Priority to JP2010143561A priority Critical patent/JP2012007206A/en
Publication of JP2012007206A publication Critical patent/JP2012007206A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a compact electrolytic cell that is excellent in strength performance and water-tight performance in an electrolytic hydrogen water generator.SOLUTION: The electrolytic cell includes a structure wherein an electrode unit 14 is housed in a small-diameter cylindrical container 10. The electrode unit 14 is equipped with a cathode and an anode that are made of a conductive material hardly damaged through electrolysis, such as platinum-plated titanium, are flat in shape and have feeding terminals that can be pulled out. In a gap between the cathode and the anode, a flat-shaped intermediate electrode, which is made of the same material as that composing the electrodes and has no feeding terminal, is arranged so as to form a gap using a spacer 16.

Description

本発明は,水電解機能および浄水フィルターを備えた水素水生成器に供する電解槽に関する。   The present invention relates to an electrolytic cell for use in a hydrogen water generator having a water electrolysis function and a water purification filter.

従来、図3に示すような電解式水素水生成器(以下,従来装置と記する。)が知られている。   Conventionally, an electrolytic hydrogen water generator (hereinafter referred to as a conventional apparatus) as shown in FIG. 3 is known.

この従来装置は,電解用電極1,2を備える電解槽3および水道水中の残留塩素や各種汚染成分、例えば、トリハロメタンをはじめとする有機塩素化合物やカビ臭成分,農薬等を回収する活性炭ブロック4を備えるろ過ユニット5から構成される。   This conventional apparatus includes an electrolytic cell 3 equipped with electrodes 1 and 2 for electrolysis, and an activated carbon block 4 that collects residual chlorine and various pollutants in tap water, for example, organic chlorine compounds such as trihalomethane, mold odor components, agricultural chemicals, and the like. It comprises the filtration unit 5 provided with.

前記電解用電極1,2には電源ユニット7から直流電圧が給電され、電極1,2の表面で水電解反応を生じさせて水素ガス6を生成させ、後段の前記活性炭ブロック4内に水素ガスを吸蔵させる。供給される水道水8に対し、活性炭ブロック4では水道水8に含まれる不純物を取り除く浄水機能を発揮させるとともに吸蔵した水素ガスを浄水に溶解させ、飲用の水素水9を生成する。   A direct current voltage is supplied to the electrodes 1 and 2 for electrolysis from the power supply unit 7 to cause a water electrolysis reaction on the surfaces of the electrodes 1 and 2 to generate hydrogen gas 6. Occlude. With respect to the supplied tap water 8, the activated carbon block 4 exhibits a water purification function for removing impurities contained in the tap water 8, and dissolves the stored hydrogen gas in the purified water, thereby generating drinking hydrogen water 9.

なお、前記活性炭ブロック4は活性炭粉末をポリエチレン等のバインダを用いて中空柱状に成形した、数μm〜数十μm程度の無数の細孔を有した浄水フィルターであり、この細孔内で水素ガスと水の接触効率が高められ、高濃度の水素水9を作ることができる。   The activated carbon block 4 is a water purification filter having an infinite number of pores of several μm to several tens of μm, in which activated carbon powder is formed into a hollow column shape using a binder such as polyethylene, and hydrogen gas is contained in the pores. The contact efficiency between water and water is increased, and high-concentration hydrogen water 9 can be produced.

また、前記電解槽3で生成される水素ガス量は電極1,2間に通電される電流にほぼ比例して増加するが、安全性への配慮から給電電圧が過剰とならぬ様、電極の電流密度は1〜2A/dm以下で利用されることが一般である。 In addition, the amount of hydrogen gas generated in the electrolytic cell 3 increases in proportion to the current passed between the electrodes 1 and 2, but the electrode voltage is set so that the supply voltage does not become excessive for safety reasons. The current density is generally used at 1 to 2 A / dm 2 or less.

したがって、所定の水電解反応を確保するための表面積を有した一対の電極を備えるか、あるいは、陽極、陰極を交互に複数枚配列して、電極サイズをコンパクト化しつつ、電極面積を確保する構造がとられていた。   Therefore, it has a pair of electrodes having a surface area for ensuring a predetermined water electrolysis reaction, or a structure in which a plurality of anodes and cathodes are alternately arranged to make the electrode size compact while ensuring the electrode area Was taken.

なお、上記構成の電解槽においては、各々の電極に給電端子を保有させ、これをシール部を介して容器外に引き出し、直流電源と接続することで水の電気分解を行うための電気回路を構成する。   In the electrolytic cell having the above configuration, each electrode has a power supply terminal, which is drawn out of the container through a seal portion and connected to a direct current power source to perform an electrolysis of water. Constitute.

上記、従来装置の電解槽の一例として、7枚の電極で構成する電極ユニットの回路構成を図4に示す。   As an example of the above-described conventional electrolytic cell, FIG. 4 shows a circuit configuration of an electrode unit composed of seven electrodes.

特許第4420667号公報Japanese Patent No. 4420667

前述したように,従来装置の電解槽においては、一対の電極で構成した場合、所定濃度の水素水を生成するための電解電流を確保するため、電極面積が過大となり、電解槽が大型化する問題があった。   As described above, when the electrolytic cell of the conventional apparatus is constituted by a pair of electrodes, the electrode area becomes excessive and the electrolytic cell becomes large in order to secure an electrolytic current for generating hydrogen water having a predetermined concentration. There was a problem.

このため、陽極、陰極を交互に複数枚設けて並列配置とすることで、電解槽のコンパクト化が図られたが、各電極の給電端子すべてを外部に引き出す構造であるため、水密のためのシール部を多数備える必要があり、煩雑な組立作業や配線作業が必要となっていた。   For this reason, the electrolytic cell was made compact by providing a plurality of anodes and cathodes alternately and arranged in parallel, but because it is a structure that draws all the power supply terminals of each electrode to the outside, It is necessary to provide a large number of seal portions, and complicated assembly work and wiring work are required.

加えて、フィルターの前段に電解槽を配備する従来装置ではフィルターの目詰まりが生じた場合は水圧上昇をともない、電解槽を加圧条件で使用することになる。   In addition, in the conventional apparatus in which the electrolytic cell is provided in the front stage of the filter, when the filter is clogged, the electrolytic cell is used under a pressurized condition with an increase in water pressure.

このため、電解槽には充分な強度性能や水密性能を備える必要があるが、前記した一対の電極で構成した電解槽では電極面積が大きいため、電解槽が大型化し、強度確保に課題があった。   For this reason, it is necessary to provide the electrolytic cell with sufficient strength performance and water tightness performance. However, since the electrolytic cell composed of the above-described pair of electrodes has a large electrode area, the electrolytic cell is enlarged, and there is a problem in securing strength. It was.

また、前記した陽極、陰極を交互配列させる電解槽を採用した場合は、構造上、シール部が多くなるため、水漏れリスクが高くなる課題があった。   In addition, when an electrolytic cell in which the above-described anode and cathode are alternately arranged is employed, there is a problem that the risk of water leakage increases because the number of seal portions increases due to the structure.

上述の課題を解決するために、本発明の電解槽においては、例えば、白金めっきを施したチタン等、電気分解による損耗をうけにくい導電性材料から成り、平板形状で、かつ、外部引出し用の給電端子をもつ陰極および陽極を備え、さらに、前記両電極の間隙に前記両電極と材質を同じくして、給電端子を保有しない平板形状の中間電極を絶縁材料から成るスペーサを用いてギャップを形成する様、配列した電極ユニットを小径の円筒容器に収納して構成する。   In order to solve the above-mentioned problems, the electrolytic cell of the present invention is made of a conductive material that is not easily damaged by electrolysis, such as platinum-plated titanium, and has a flat plate shape and is used for external drawing. Provided with a cathode and an anode having a power supply terminal, and the same material as the electrodes in the gap between the electrodes, and a flat intermediate electrode without a power supply terminal is formed using a spacer made of an insulating material Thus, the arranged electrode units are housed in a small-diameter cylindrical container.

なお、上記電解槽において、電極は導電性を有する他の材質、例えば、酸化イリジウム、酸化パラジウム、酸化ルテニウム等のコーティングを施したチタン、あるいは、フェライトや二酸化鉛等を使用しても良く、加えて、ギャップを構成する手段も上記に限定されるものではない。   In the electrolytic cell, the electrode may be made of another conductive material, for example, titanium coated with iridium oxide, palladium oxide, ruthenium oxide or the like, or ferrite or lead dioxide. Thus, the means for forming the gap is not limited to the above.

前記構成の電解槽では中間電極の表裏面が異なる極性の電極としてはたらき、中間電極の表面でも水の電気分解反応が生じるため、電解電流を増加することなく、ギャップ数にほぼ比例した水素発生量を得ることが可能となる。   In the electrolytic cell having the above structure, the front and back surfaces of the intermediate electrode serve as electrodes having different polarities, and an electrolysis reaction of water also occurs on the surface of the intermediate electrode. Therefore, the amount of hydrogen generated is approximately proportional to the number of gaps without increasing the electrolysis current. Can be obtained.

また、電解式水素水生成器の電解槽は、同じく飲用電解水を生成するアルカリイオン整水器の電解槽とは異なり、電極間隙に隔膜を配備する必要がないことから、極めて小さいギャップ寸法で電極を配設できるため、給電電圧を低く抑えることができる。   In addition, the electrolytic cell of the electrolytic hydrogen water generator is different from the electrolytic cell of the alkaline ionized water device that also produces potable electrolytic water. Since the electrodes can be disposed, the supply voltage can be kept low.

本発明の電解槽を用いることにより、給電端子を要する電極は陽極、陰極のみとなり、この間隙に給電端子の不要な中間電極を設置するだけで電極ユニットを構成できるため、組立作業や配線作業が大幅に軽減され、かつ、電解槽のシール部が少なくなるため、水漏れリスクも低減される。   By using the electrolytic cell of the present invention, the electrodes that require power supply terminals are only anodes and cathodes, and an electrode unit can be configured simply by installing an intermediate electrode that does not require power supply terminals in this gap. The risk of water leakage is also reduced because it is greatly reduced and the number of seals in the electrolytic cell is reduced.

また、中間電極の枚数を増やすことで、1枚の電極面積を削減し、コンパクトな電解槽を構成できるため、加圧条件下の使用においても強度安定性に優れる電解槽を提供することができる。   Also, by increasing the number of intermediate electrodes, the area of one electrode can be reduced and a compact electrolytic cell can be constructed, so that it is possible to provide an electrolytic cell that is excellent in strength stability even when used under pressurized conditions. .

本発明は、電解式水素水生成器において、優れた強度性能、水密性能を発揮するコンパクトな電解槽を提供するものであって、陽極、陰極の間隙に給電端子をもたない中間電極を配設することで電極の表面積を小さく抑え、かつ、各電極間を短ギャップで構成して、低電圧でも所定の水素水生成の性能を達成できる。   The present invention provides a compact electrolytic cell that exhibits excellent strength performance and water tightness in an electrolytic hydrogen water generator, and includes an intermediate electrode having no power supply terminal in the gap between the anode and the cathode. By providing the electrodes, the surface area of the electrodes can be kept small, and the electrodes can be configured with a short gap to achieve a predetermined hydrogen water generation performance even at a low voltage.

本発明の電解槽の一例を図1に示す。なお、図1では内部構造を説明するため、背面図において、正面側の容器上部および背面側の側面を切断して図示した。   An example of the electrolytic cell of the present invention is shown in FIG. In FIG. 1, in order to explain the internal structure, in the rear view, the upper part of the container on the front side and the side surface on the rear side are cut and illustrated.

本発明の電解槽は、背面端部に原水流入口11と中央上部に電解水流出口12を備えたケース10と、給電端子13を貫通固定することで電極ユニット14を保持させ、前記ケース10との勘合部に水密のためのオーリング(Oリング)18を備えたフタ15を組み合わせて構成される。   The electrolytic cell of the present invention comprises a case 10 having a raw water inlet 11 at the back end and an electrolytic water outlet 12 at the center upper part, and holding the electrode unit 14 by fixing the feed terminal 13 therethrough. And a lid 15 having an O-ring 18 for watertightness.

また、電解槽内部に収納される電極ユニット14は、例えば、白金めっきを施したチタン等,電気分解による損耗をうけにくい導電性平板材料から成る電極板7枚を、例えば1mmの短ギャップを形成できる様、電極ユニット14の上下に電極板を挟み込んで固定するフレーム形状のスペーサ16を備える。   The electrode unit 14 housed in the electrolytic cell is formed of seven electrode plates made of a conductive flat plate material that is not easily damaged by electrolysis, such as platinum plated titanium, and a short gap of 1 mm, for example. A frame-shaped spacer 16 is provided so as to sandwich and fix an electrode plate above and below the electrode unit 14 so as to be able to do so.

前記電極ユニット14は、両端および中央部に配設され、給電端子13を保有する3枚の電極板と、前記3枚の電極板が構成する間隙に各々2枚ずつ配設される給電端子をもたない電極板4枚で構成される。   The electrode unit 14 includes three electrode plates disposed at both ends and a central portion, each having a power supply terminal 13, and two power supply terminals each disposed in a gap formed by the three electrode plates. Consists of four electrode plates that do not have.

なお、前記給電端子13は前記フタ15から引き出した後、例えば、パッキンを保有するシール座金17をもちいて固定することで水密性を確保する。   The power supply terminal 13 is secured by using, for example, a seal washer 17 having packing after being pulled out from the lid 15.

また、前記した電解槽の外装を構成するケース10およびフタ15は、電気分解に対して影響を及ぼさない絶縁材料として、合成樹脂等の成形品を使用する。   The case 10 and the lid 15 constituting the exterior of the electrolytic cell described above use a molded product such as a synthetic resin as an insulating material that does not affect the electrolysis.

図2に電極ユニットの回路構成例を示す。   FIG. 2 shows a circuit configuration example of the electrode unit.

電極ユニットの両端に配設される電極板20a、20bは、前記フタから給電端子を引き出された後に、例えば、図1に示す金属製の短絡板19、または、絶縁電線等をもちいて電気的に短絡する。   The electrode plates 20a and 20b disposed at both ends of the electrode unit are electrically connected to each other using, for example, a metal short-circuit plate 19 shown in FIG. 1 or an insulated wire after the feeding terminal is drawn out from the lid. Short circuit to

前記、両端電極20a、20bおよび中央電極21間に外部電源より給電端子を介して極性の異なる電位を給電すると、電位を供給しない中間電極22の表裏がそれぞれ逆極性の電極としてはたらき、各々の電極表面で水の電気分解反応が進み、陰極側(−極側)で水素ガスが生成される。   When potentials having different polarities are fed between the both end electrodes 20a, 20b and the central electrode 21 from an external power source via a power feeding terminal, the front and back of the intermediate electrode 22 that does not supply the potential act as electrodes having opposite polarities, respectively. Water electrolysis proceeds on the surface, and hydrogen gas is generated on the cathode side (-electrode side).

なお、図2の電極構成例の場合は、中央電極21と両端電極20a、20b間に給電するため、3ギャップの並列回路となる。   In the case of the electrode configuration example of FIG. 2, since power is supplied between the center electrode 21 and both end electrodes 20a and 20b, a three-gap parallel circuit is formed.

上記構成の電極ユニットを採用した場合、中間電極を採用しない1ギャップ構成の電極ユニットに対し、電極板の面積を1/3に削減できるため、機械的強度に優れた、例えば、小径の円筒容器で電解槽を構成できる。   When the electrode unit having the above configuration is adopted, the area of the electrode plate can be reduced to 1/3 as compared with the electrode unit having the one gap configuration that does not employ the intermediate electrode. The electrolytic cell can be configured with.

各電極板で生成される電解ガス(水素、酸素)の量は電極板を通過する電荷量で決定するため、各々の電極ギャップで等量の水素ガスが生成され、電流一定の条件下では理論上、電極ギャップ数に比例した水素ガス量を得ることができる。   Since the amount of electrolytic gas (hydrogen, oxygen) generated in each electrode plate is determined by the amount of charge passing through the electrode plate, an equal amount of hydrogen gas is generated in each electrode gap, and the theory is that the current is constant. In addition, the amount of hydrogen gas proportional to the number of electrode gaps can be obtained.

水の電気分解で生じる化学反応を化学式1に記する。
(1)式は陰極反応,(2)式は陽極反応,(3)式は前記(1),(2)式を踏まえた系全体としての反応を示す。
A chemical reaction generated by water electrolysis is shown in Formula 1.
Equation (1) represents the cathodic reaction, equation (2) represents the anodic reaction, and equation (3) represents the reaction of the entire system based on the above equations (1) and (2).

(化1)
2HO+2e→H+2OH … (1)
O→1/2O+2H+2e … (2)
O→H+1/2O … (3)
(Chemical formula 1)
2H 2 O + 2e → H 2 + 2OH (1)
H 2 O → 1 / 2O 2 + 2H + + 2e (2)
H 2 O → H 2 + 1 / 2O 2 (3)

化学式1から、1つの電極ギャップで2個の電荷(e)が移動すると、1個の水素分子(H)と1/2個の酸素分子(O)が生成されることになる。 From chemical formula 1, when two charges (e ) move in one electrode gap, one hydrogen molecule (H 2 ) and one-half oxygen molecule (O 2 ) are generated.

上述した本発明による電解槽を搭載した電解式水素水生成器の構造図を図5に示す。   FIG. 5 shows a structural diagram of an electrolytic hydrogen water generator equipped with the above-described electrolytic cell according to the present invention.

電解槽3の上部に活性炭ブロック4を収納したカートリッジ23を装着する。   A cartridge 23 containing the activated carbon block 4 is mounted on the upper part of the electrolytic cell 3.

電解槽3の原水流入口11には原水の流入を検出して電気分解の起動信号を出力するフローセンサー24を備え、この起動信号が入力され、電解槽3に電気分解のための直流電圧を給電するとともに、原水の水質による影響を受けず、安定した電気分解を行うための定電流機能を保有する制御電源25を搭載する。   The raw water inlet 11 of the electrolytic cell 3 is provided with a flow sensor 24 that detects the inflow of raw water and outputs an electrolysis start signal, and this start signal is input, and the electrolytic cell 3 is supplied with a DC voltage for electrolysis. A control power supply 25 having a constant current function for performing stable electrolysis without being affected by the quality of the raw water is mounted while supplying power.

前記、定電流機能は水道水の電気伝導度に応じて、適宜、給電電圧を可変して電解電流を一定に保つ機能であるが、装置の安全性を確保するため、給電電圧がDC100V以下となる様、水素水生成能力に応じて、電極面積、中間電極の数を決定する。   The constant current function is a function of keeping the electrolytic current constant by appropriately changing the power supply voltage according to the electric conductivity of tap water. However, in order to ensure the safety of the apparatus, the power supply voltage is DC 100 V or less. Thus, the electrode area and the number of intermediate electrodes are determined according to the hydrogen water generation capability.

背面下部に突出した給水管26よりフローセンサー24を介して水道水8の通水を開始すると電解槽3内で電気分解が開始され、水素ガスを含む水が上部のカートリッジ23に供給され、無数の細孔をもつ活性炭ブロック4内で水道水8に含まれる不純物の回収と水素ガスの混合が行われた後、カートリッジ23の上部から吐水管27を経て、水素水9として排出される。   When the tap water 8 starts to flow through the flow sensor 24 from the water supply pipe 26 projecting to the lower back side, electrolysis starts in the electrolytic cell 3, and water containing hydrogen gas is supplied to the upper cartridge 23, and countless After the impurities contained in the tap water 8 are collected and the hydrogen gas is mixed in the activated carbon block 4 having the pores, the hydrogen water 9 is discharged from the upper part of the cartridge 23 through the water discharge pipe 27.

上記構成の本発明の電解槽(7枚電極構成)を搭載した電解式水素水生成器における水素水生成特性および中間電極を排除した3枚電極構成で同一の電解電流(600mA)を通電した場合の水素水生成特性を図6に示す。   When the same electrolytic current (600 mA) is applied in the three-electrode configuration excluding the hydrogen water generation characteristics and the intermediate electrode in the electrolytic hydrogen water generator equipped with the electrolytic cell of the present invention having the above-described configuration (seven-electrode configuration) The hydrogen water production characteristics of are shown in FIG.

双方とも流量の上昇にともなって水素濃度が低下する傾向をもつが、いずれの流量においても、本発明の電解槽を使用した場合の溶存水素濃度は中間電極を排除した場合に比較し、約2.5〜3倍程度高い値を示している。   In both cases, the hydrogen concentration tends to decrease as the flow rate increases, but at any flow rate, the dissolved hydrogen concentration when the electrolytic cell of the present invention is used is about 2 compared to when the intermediate electrode is excluded. The value is about 5 to 3 times higher.

前述したように、本発明の電解槽は3ギャップの並列回路、中間電極を排除した場合は1ギャップの並列回路で構成されるため、理論上の水素濃度は3倍となり、図6に示す試験結果にほぼ合致している。   As described above, since the electrolytic cell of the present invention is composed of a 3-gap parallel circuit and a 1-gap parallel circuit when the intermediate electrode is eliminated, the theoretical hydrogen concentration is tripled, and the test shown in FIG. It almost agrees with the result.

以上、本発明の電解槽について、7枚の平板電極を3ギャップの並列回路で構成した例をもちいて詳述したが、許容される給電電圧、電解槽の大きさに応じて電極面積および電極枚数を最適化することで、所定の水素水生成能力を達成すればよい。   As described above, the electrolytic cell of the present invention has been described in detail using an example in which seven flat plate electrodes are configured by a parallel circuit of 3 gaps. However, the electrode area and the electrode according to the allowable feeding voltage and the size of the electrolytic cell. By optimizing the number of sheets, a predetermined hydrogen water generation capability may be achieved.

加えて、上述の実施例では陰極および陽極として使用する3枚の給電電極で構成したが、水密性を重視してシール部を削減するため、2枚構成の給電電極を選択しても良い。   In addition, in the above-described embodiment, the three power supply electrodes used as the cathode and the anode are configured. However, in order to reduce the seal portion with an emphasis on water tightness, a two-electrode power supply electrode may be selected.

使用する電極は平板形状に限らず、曲板電極を配列させた電極ユニットや径の異なるパイプ形状電極を同心円状に配置させた電極ユニットを搭載した電解槽をもちいても同様の効果を期待できる。   The electrode to be used is not limited to a flat plate shape, but the same effect can be expected by using an electrolytic unit equipped with an electrode unit in which curved plate electrodes are arranged or an electrode unit in which pipe-shaped electrodes having different diameters are arranged concentrically. .

本発明の電解槽を利用することで、コンパクトで、水密性・強度安定性に優れた電解式水素水生成器を構成できる。   By using the electrolytic cell of the present invention, an electrolytic hydrogen water generator that is compact and excellent in water tightness and strength stability can be configured.

また、電解電流を抑えつつ、電極ギャップ数を増加することで水素発生量を増やすことができるため、電源回路のコンパクト化も可能となり、装置全体のコンパクト化に寄与する。   Moreover, since the amount of hydrogen generation can be increased by increasing the number of electrode gaps while suppressing the electrolysis current, the power supply circuit can be made compact, contributing to the compactness of the entire apparatus.

加えて、組立・配線に関わる作業内容が簡素化されること、給電端子の不要な中間電極の採用等でイニシャルコストも低減できる実用的な電解槽を提供できる。 In addition, it is possible to provide a practical electrolytic cell that can reduce the initial cost by simplifying the work contents related to assembly and wiring and adopting an intermediate electrode that does not require a power supply terminal.

本発明の電解槽の構造例を示す図である。It is a figure which shows the structural example of the electrolytic vessel of this invention. 本発明の電解槽の回路構成例を示す図である。It is a figure which shows the circuit structural example of the electrolytic vessel of this invention. 従来装置の構造を示す図である。It is a figure which shows the structure of the conventional apparatus. 従来装置の電解槽の回路構成例を示す図である。It is a figure which shows the circuit structural example of the electrolytic vessel of a conventional apparatus. 本発明の電解槽を搭載した電解式水素水生成器の構造を示す図である。It is a figure which shows the structure of the electrolytic hydrogen water generator carrying the electrolytic vessel of this invention. 中間電極の採用にともなう水素水生成特性の変化を示す図である。It is a figure which shows the change of the hydrogen water production | generation characteristic accompanying adoption of an intermediate electrode.

1、2 電解用電極
3 電解槽
4 活性炭ブロック
5 ろ過ユニット
6 水素ガス
7 電源ユニット
8 水道水
9 水素水
10 ケース
11 原水流入口
12 電解水流出口
13 給電端子
14 電極ユニット
15 フタ
16 スペーサ
17 シール座金
18 オーリング
20a、20b 電極板
21 中央電極
22 中間電極
23 カートリッジ
24 フローセンサー
25 制御電源
26 給水管
27 吐水管
DESCRIPTION OF SYMBOLS 1, 2 Electrode 3 Electrolysis tank 4 Activated carbon block 5 Filtration unit 6 Hydrogen gas 7 Power supply unit 8 Tap water 9 Hydrogen water 10 Case 11 Raw water inlet 12 Electrolyzed water outlet 13 Feed terminal 14 Electrode unit 15 Cover 16 Spacer 17 Seal washer 18 O-rings 20a and 20b Electrode plate 21 Central electrode 22 Intermediate electrode 23 Cartridge 24 Flow sensor 25 Control power supply 26 Water supply pipe 27 Water discharge pipe

Claims (6)

導電性材料から成り、かつ、外部引出し用の給電端子を有する陰極および陽極を備えるとともに、前記両電極の間隙に給電端子を有しない中間電極をギャップを形成して配列した電極ユニットを備えることを特徴とする電解槽。   It comprises a cathode and an anode made of a conductive material and having a power supply terminal for external extraction, and an electrode unit in which an intermediate electrode having no power supply terminal is arranged in a gap between the two electrodes. A characteristic electrolytic cell. 外部引出し用の給電端子を有する陰極、陽極および前記両電極間に配設する中間電極を、いずれも平板形状で構成したことを特徴とする請求項1の電解槽。   2. The electrolytic cell according to claim 1, wherein the cathode, the anode, and the intermediate electrode disposed between the two electrodes, each having a power supply terminal for external drawing, are formed in a flat plate shape. 外部引出し用の給電端子を有する陰極、陽極および前記両電極間に配設する中間電極を、いずれも曲板形状で構成したことを特徴とする請求項1の電解槽。   2. The electrolytic cell according to claim 1, wherein the cathode, the anode, and the intermediate electrode disposed between both electrodes, each having a power supply terminal for external drawing, are formed in a curved plate shape. 外部引出し用の給電端子を有する陰極、陽極および前記両電極間に配設する中間電極を、いずれも外径の異なるパイプ形状で構成し、これら電極を同心円状に配置したことを特徴とする請求項1の電解槽。   A cathode having a power supply terminal for external extraction, an anode, and an intermediate electrode disposed between the two electrodes are all configured in a pipe shape having different outer diameters, and these electrodes are arranged concentrically. Item 1. The electrolytic cell according to item 1. 給電端子を有する陰極、陽極および中間電極が白金めっきを施した、または、酸化イリジウム、酸化パラジウム、酸化ルテニウム等によるコーティングを施したチタン、あるいはフェライトや二酸化鉛から成る請求項1から4のいずれかの電解槽。   5. The cathode according to claim 1, wherein the cathode, the anode and the intermediate electrode each having a feeding terminal are made of platinum plated, or titanium coated with iridium oxide, palladium oxide, ruthenium oxide or the like, or ferrite or lead dioxide. Electrolyzer. 電極間隙に絶縁材料からなるスペーサを備えて、陽極、陰極および中間電極をギャップを形成して配列したことを特徴とする請求項1から請求項5のいずれかの電解槽。   6. The electrolytic cell according to claim 1, wherein a spacer made of an insulating material is provided in the electrode gap, and the anode, the cathode and the intermediate electrode are arranged in a gap.
JP2010143561A 2010-06-24 2010-06-24 Electrolytic cell Pending JP2012007206A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010143561A JP2012007206A (en) 2010-06-24 2010-06-24 Electrolytic cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010143561A JP2012007206A (en) 2010-06-24 2010-06-24 Electrolytic cell

Publications (1)

Publication Number Publication Date
JP2012007206A true JP2012007206A (en) 2012-01-12

Family

ID=45538070

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010143561A Pending JP2012007206A (en) 2010-06-24 2010-06-24 Electrolytic cell

Country Status (1)

Country Link
JP (1) JP2012007206A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102603036A (en) * 2012-03-23 2012-07-25 烟台市马可波罗电子科技有限公司 Device for manufacturing hydrogen water
JP2013234355A (en) * 2012-05-09 2013-11-21 Suzuki Sangyo Kk Hydrogen gas generation device
CN104047018A (en) * 2014-06-20 2014-09-17 深圳市好美水科技开发有限公司 Hydrogen-rich electrolysis method
JP2016204743A (en) * 2015-04-24 2016-12-08 エクセルギー・パワー・システムズ株式会社 Hydrogen production apparatus comprising third electrode and hydrogen production method
WO2017098598A1 (en) * 2015-12-09 2017-06-15 株式会社富士計器 Hydrogen water generator

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000160383A (en) * 1998-12-01 2000-06-13 Techno Custom:Kk Gas generator and electrolytic cell
JP2005200761A (en) * 2004-01-15 2005-07-28 Hokuetsu:Kk Electrochemical reactor
JP2006291297A (en) * 2005-04-11 2006-10-26 Sato Toshigoro Wet multiplate electrolytic cell, and compound type wet multiplate electrolytic cell
JP2009114487A (en) * 2007-11-02 2009-05-28 久慶 ▲福▼▲楊▼ Electrolytic device using electrolysis and gas liquid separation device
JP2009195884A (en) * 2008-02-25 2009-09-03 Purotekku:Kk Apparatus for generating electrolytic water
JP4420667B2 (en) * 2003-12-26 2010-02-24 タカオカ化成工業株式会社 Electrolytic hydrogen water generator

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000160383A (en) * 1998-12-01 2000-06-13 Techno Custom:Kk Gas generator and electrolytic cell
JP4420667B2 (en) * 2003-12-26 2010-02-24 タカオカ化成工業株式会社 Electrolytic hydrogen water generator
JP2005200761A (en) * 2004-01-15 2005-07-28 Hokuetsu:Kk Electrochemical reactor
JP2006291297A (en) * 2005-04-11 2006-10-26 Sato Toshigoro Wet multiplate electrolytic cell, and compound type wet multiplate electrolytic cell
JP2009114487A (en) * 2007-11-02 2009-05-28 久慶 ▲福▼▲楊▼ Electrolytic device using electrolysis and gas liquid separation device
JP2009195884A (en) * 2008-02-25 2009-09-03 Purotekku:Kk Apparatus for generating electrolytic water

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102603036A (en) * 2012-03-23 2012-07-25 烟台市马可波罗电子科技有限公司 Device for manufacturing hydrogen water
JP2013234355A (en) * 2012-05-09 2013-11-21 Suzuki Sangyo Kk Hydrogen gas generation device
CN104047018A (en) * 2014-06-20 2014-09-17 深圳市好美水科技开发有限公司 Hydrogen-rich electrolysis method
JP2016204743A (en) * 2015-04-24 2016-12-08 エクセルギー・パワー・システムズ株式会社 Hydrogen production apparatus comprising third electrode and hydrogen production method
WO2017098598A1 (en) * 2015-12-09 2017-06-15 株式会社富士計器 Hydrogen water generator
CN107046807A (en) * 2015-12-09 2017-08-15 株式会社富士计器 Hydrogen water generator
JPWO2017098598A1 (en) * 2015-12-09 2018-09-27 株式会社富士計器 Hydrogen water generator
US10457575B2 (en) 2015-12-09 2019-10-29 Fuji Keiki Co., Ltd. Hydrogen water generator

Similar Documents

Publication Publication Date Title
CN102869616B (en) Membrane-electrode assembly, electrolytic cell using the same, method and apparatus for producing ozone water, method for disinfection and method for wastewater or waste fluid treatment
JP6450636B2 (en) Electrolysis method
TW406059B (en) Method of water electrolysis
JP5640266B1 (en) Electrolyzed water production apparatus and electrolyzed water production method using the same
JP6288473B2 (en) Hydrogen generator
KR101220199B1 (en) Electrolytic synthesis of hydrogen peroxide directly from water and application thereof
JP3007137B2 (en) Electrolytic ozone generation method and apparatus
JP5764474B2 (en) Electrolytic synthesis apparatus, electrolytic treatment apparatus, electrolytic synthesis method, and electrolytic treatment method
JP2000104189A (en) Production of hydrogen peroxide and electrolytic cell for production
CN103459674B (en) For the electrodialytic groove of saline solution depolarization
KR20130023154A (en) Continuous electrolyzed oxidizing/reduction water generator device
JP2012007206A (en) Electrolytic cell
WO2012070287A1 (en) Electrolyzed water producing apparatus
KR20130024109A (en) Electrolytically ionized water generator
KR20170106288A (en) Apparatus for producing electrolyzed water
KR101147491B1 (en) Electrolysis apparatus
US3421994A (en) Electrochemical apparatus
KR20130138295A (en) Electrolyser having a spiral inlet tube
KR102400469B1 (en) Electrolytic cell and electrode plate for electrolytic cell
WO2014141587A1 (en) Electrolyzed water-generating device
KR20120021688A (en) A porosity electrode and an electrolytic cell having the same
KR20150092822A (en) Hydrogen generating unit for producing hydrogen water
CN115427610A (en) Advanced commercial seawater electrolysis hydrogen production
CN108602695B (en) Electrolyzed water generation device
CN108473344B (en) Electrolyzed water production device and device for producing water for dialysate preparation using same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130313

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140106

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140527